WO2004053305A1 - Air purification apparatus utilizing a centrifugal impeller - Google Patents

Air purification apparatus utilizing a centrifugal impeller Download PDF

Info

Publication number
WO2004053305A1
WO2004053305A1 PCT/KR2003/002661 KR0302661W WO2004053305A1 WO 2004053305 A1 WO2004053305 A1 WO 2004053305A1 KR 0302661 W KR0302661 W KR 0302661W WO 2004053305 A1 WO2004053305 A1 WO 2004053305A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal
centrifugal impeller
gas stream
cylinder
compressed air
Prior art date
Application number
PCT/KR2003/002661
Other languages
French (fr)
Other versions
WO2004053305A8 (en
Inventor
Jangshik Yun
Original Assignee
Jangshik Yun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jangshik Yun filed Critical Jangshik Yun
Priority to AU2003302750A priority Critical patent/AU2003302750A1/en
Publication of WO2004053305A1 publication Critical patent/WO2004053305A1/en
Publication of WO2004053305A8 publication Critical patent/WO2004053305A8/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • B01D45/14Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces generated by rotating vanes, discs, drums or brushes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/037Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of inertial or centrifugal separators, e.g. of cyclone type, optionally combined or associated with agglomerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/04Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/022Air cleaners acting by gravity, by centrifugal, or by other inertial forces, e.g. with moistened walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2290/00Movable parts or members in exhaust systems for other than for control purposes
    • F01N2290/02Movable parts or members in exhaust systems for other than for control purposes with continuous rotary movement
    • F01N2290/06Movable parts or members in exhaust systems for other than for control purposes with continuous rotary movement driven by auxiliary drive

Definitions

  • This invention relates to an air purification apparatus utilizing a centrifugal impeller with the dynamic injection power of compressed gas only at the outlet of branch pneumatic line, and an air purification apparatus utilizing a centrifugal impeller with the dynamic injection power of compressed gas and the rotation power of an electric motor even under small pressure differences in the main pneumatic line, thus the separation of dirty liquid including water, oil and particular pollution dust can be carried out with the centrifugal power efficiently from compressed gas.
  • Compressed air generation uses an expensive cost of input energy, however compressed air includes lot of water, coolant oil, carbonated material and rusted pollution contaminants. Thus compressed air typically must be dry and purify for the usual applications. Besides the need for clean ambient air, it should be stressed that the quality of compressed air is important. The need for high standards of compressed air purity for many uses is obvious, particularly for electronic industry, automobile industry, food processing, pharmaceutical manufacturing, hospital tools and other highly precession controlled operations.
  • a continuous liquid or gas phase is subject to the accumulation of contaminants in the form of solid particles, liquids and/or gases, which must be subjected to filtration and separation as attempted by numerous techniques of the prior art.
  • the contaminating material may, for example, be present as a solid, liquid, or gas within a gas media, or dispersed as a solid, liquid or gas within a liquid.
  • Foreign matter is prevalent, for example, in pneumatic lines used in conjunction with air brakes for trucks, buses and heavy equipment, as well as for protecting other pneumatically operated devices such as doors, cylinders, etc.
  • coalescing dispersed liquid from a fluid as a means to overcome the problems inherent in the accumulation of liquid in a fuel line.
  • Such coalescing devices rely on a coalescing material to coalesce the liquids into droplets that are more readily separated from the fuel than in the dispersed state.
  • Some of the prior art devices may operate satisfactorily at low flow rates through the separator, but as the compressor output increases, the flow rate becomes greater and efficiency of coalescing and separation then suffers in such devices resulting in water particles, and the like, being delivered to the air compressor.
  • the overall deficiency of such coalescing systems has resulted, in part, from the ineffective cooperation between the incoming flow and the coalescing stage.
  • well known coalescing-type apparatus have failed to provide or have not provided sufficient filtration of solids prior to entry to the coalescing stage, because of which the coalescing operation becomes less efficient due to the interfering presence of solids.
  • the prior art coalescing devices have not further provided effective filtration and separation at all flow rates through the separator, with a resulting decrease of efficiency.
  • the present invention has been developed to overcome the above-mentioned problems of the prior art, and accordingly it is an object of the present invention to provide Air purification apparatus utilizing a centrifugal impeller with aid of the jet power of compressed gas and the rotation power of an electric motor for removing centrifugally liquid and particulate matter from a gas stream on the pneumatic line, comprising; centrifugal separation chamber 107 installed on the inlet pipe 31 of pneumatic line, electric motor 133 located on inner cylinder 113 inside of centrifugal separation chamber 107, centrifugal impeller 108 fixed with shaft 135 on electric motor 133 with installation of one-way clutch and a sensor as a feedback system, porous separation cylinder 110 fixed on bottom side 119 of separation chamber 107.
  • centrifugal impeller 108 may be rotated freely with the jet power of high-pressure gas stream on electric motor 133 through an one-way clutch (not shown) and a sensor (not shown) on the middle of main pneumatic line, meanwhile electric motor 133 may be not rotated with aid of a sensor as a feedback system in the case of higher presetting rotation speed due to the strong jet power of gas stream, further centrifugal impeller 108 may be rotated automatically with the rotation power of electric motor 133 through an oneway clutch (not shown) and a sensor (not shown), meanwhile electric motor 133 may be rotated with aid of a sensor as a feedback system in the case of lower presetting rotation speed due to the weak jet power of gas stream.
  • Fig.l is a perspective view for schematically showing an air purification apparatus utilizing a centrifugal impeller according to the present invention
  • Fig.2 is an A-A cross sectional view for schematically showing in Fig.l
  • Fig.3 is an illustrative view of operation for schematically showing a centrifugal impeller according to the present invention
  • Fig.4 is a perspective view for schematically showing a porous separation filter according to the present invention.
  • Fig.5 is an illustrative view of another embodiment for schematically showing in Fig.l;
  • Fig.6 is an illustrative view of another embodiment for an air purification apparatus utilizing a fan according to the present invention.
  • Fig.7 is a perspective view of another embodiment for an air purification apparatus utilizing a centrifugal impeller according to the present invention
  • Fig.8 is an illustrative view of another embodiment for an air purification apparatus utilizing a centrifugal impeller according to the present invention
  • Fig.9 is a B-B cross sectional view for schematically showing in Fig.7;
  • Fig.10 is a sectional view for porous separation cylinder 210 schematically showing in Fig.7
  • Fig.11 is a sectional view for exit passage bowl 250 schematically showing in Fig.7;
  • Fig.12 is a sectional view for exit passage plate 254 schematically showing in Fig.7;
  • porous separation cylinder 212 plurality of holes Best Mode for Carrying Out the Invention
  • the present invention has been cited by reference number and parts name based on the two ROK patent application laid-open No. 2002-0033201 (utility model) and 2003- 0000215 (utility model), "wet type centrifugal purification for automobile exhaust gas" by same applicant and inventor, since it has similar principle of operation and composition of parts for separating centrifugally liquid from high-pressure gas stream with utilizing centrifugal separator as in the pneumatic line.
  • Air purification apparatus utilizing a centrifugal impeller with aid of the jet power of compressed gas and the rotation power of an electric motor for removing centrifugally liquid and particulate matter from a gas stream on the pneumatic line, comprising; centrifugal separation chamber 107 installed on the inlet pipe 31 of pneumatic line, electric motor 133 located on inner cylinder 113 inside of centrifugal separation chamber 107, centrifugal impeller 108 fixed on electric motor 133 through a shaft with installation of one-way clutch and a sensor as a feedback system, porous separation cylinder 110 fixed on bottom side 119 of separation chamber 107.
  • centrifugal impeller 108 may be rotated freely with the jet power of high-pressure gas stream on electric motor 133 through an one-way clutch (not shown) and a sensor (not shown) on the middle of main pneumatic line, since electric motor 133 may be stopped with aid of a sensor as a feedback system in the case of more than presetting high rotation speed due to the strong jet power of gas stream, further centrifugal impeller 108 may be rotated automatically with the rotation power of electric motor 133 through an one- way clutch (not shown) and a sensor (not shown), since electric motor 133 may be rotated with aid of a sensor as a feedback system in the case of less than presetting low rotation speed due to the weak jet power of gas stream.
  • FIG.2 is an A-A cross sectional view for schematically showing in Fig.l, porous filter cylinder 110 is located between outer cylinder 109 and inner cylinder 113, annular drain passage 160 is formed for the flow of condensed liquid between outer cylinder 109 and porous filter cylinder 110, annular stream passage 119 is formed for gas stream between porous filter cylinder 110 and inner cylinder 113, and electric motor 133 is located at the center of porous filter cylinder 110 and inner cylinder 113, and drain hole 11 and outlet pipe 32 are located on the bottom side of centrifugal separator chamber 107, thus the clean high-pressure gas is supplied to various pneumatic tools through outlet pipe 32 on the pneumatic line.
  • centrifugal impeller 108 is installed with electric motor 133 through shaft 135 inside of centrifugal separator chamber 107 for inducing high-pressure gas stream from inlet pipe 31 connected with a pneumatic line, and then generating centrifugal spiral stream as indicated by the arrows, further centrifugal impeller 108 may be rotated freely with the jet power of high-pressure gas stream without using rotation power of electric motor 133.
  • FIG.4 is a perspective view for schematically showing a porous separation filter according to the present invention
  • porous filter cylinder 110 is located between outer cylinder 109 and inner cylinder 113 in centrifugal separator chamber 107 as shown in previous Fig.2, plurality of holes 112 and spiral grooves 111 are formed on the wall of porous filter cylinder 110.
  • Fig.5 is an illustrative view of another embodiment for schematically showing in Fig.l; separation chamber 107 is installed on the inlet pipe 31 of pneumatic line, bearings 134 are fixed on inner cylinder 113 inside of separation chamber 107, centrifugal impeller 108 is fixed on bearings
  • porous separation cylinder 110 is fixed on bottom side 119 of separation chamber 107.
  • axial fan 108A may be fixed through shaft 135 on bearings 134 as shown in previous Fig.5, thus an axial fan 108A may be utilized instead of centrifugal impeller 108 inside of centrifugal separator chamber 107 for generating centrifugal spiral stream of gas.
  • FIG.7 is a perspective view of another embodiment for an air purification apparatus utilizing a centrifugal impeller according to the present invention.
  • bearings 234, 236 are installed on inner cylinder 213 inside of centrifugal separator chamber, a centrifugal impeller 208 is fixed on bearings
  • said inner cylinder 213 may be prepared with the inductive spiral grooves for generating centrifugal spiral stream in the downstream of centrifugal impeller 208.
  • bearings 234, 236 installed on inner cylinder 213 are cooled with gas stream of pneumatic line.
  • FIG.8 is an illustrative view of another embodiment for an air purification apparatus utilizing a centrifugal impeller according to the present invention will be explained for the principle of operation.
  • FIG.9 is an B-B cross sectional view for schematically showing in Fig.7, porous separation cylinder 210 is located between outer cylinder 209 and inner cylinder 213, annular drain passage is formed for the flow of condensed liquid between outer cylinder 209 and porous separation cylinder 210, annular stream passage is formed for gas stream between porous filter cylinder 210 and inner cylinder 213, and bearings 236 are located at the center of inner cylinder 213, the shaft 235 of centrifugal impeller 208 is fixed on bearings 234, 236, and plurality of holes 212 are formed on the wall of porous separation cylinder 210.
  • FIG.10 is a sectional view for porous separation cylinder 210 schematically showing in Fig.7, plurality of holes 212 are formed on porous separation cylinder 210 for avoiding the clog problem with the dirty liquid including carbonated material from the gas stream on the pneumatic line.
  • said porous separation cylinder 210 may be replaced with porous filter cylinder 110 as shown in Fig.l and Fig.5.
  • said fluid guide plate 220 is formed on the bottom of porous separation cylinder 210 for inducing gas stream at the front of centrifugal impeller 208 through inlet pipe 231.
  • an electric motor having feedback system with a sensor and one-way clutch may be installed on bearings 234, 236 for rotating centrifugal impeller 208.
  • centrifugal impeller 108 may be rotated freely with the jet power of high-pressure gas without using the rotation power of electric motor 133 under high pressure differences in the case of rapid gas stream on the main pneumatic line, further centrifugal impeller 108 may be rotated at a presetting rotation speed automatically with the rotation power of electric motor 133 with installation of one-way clutch (not shown) and RPM sensor (not shown), thus it is efficient even under small pressure differences in the case of slow gas stream on the main pneumatic line.
  • centrifugal impeller 108 may be rotated freely again with the jet power of high-pressure gas only without using the rotation power of electric motor 133 with installation of oneway clutch (not shown) and RPM sensor (not shown) as a feedback system, thus separation chamber 107 is operated all the time for keeping strong centrifugal separation efficiency even under small pressure differences in the middle of main pneumatic line.
  • FIG.5 is an illustrative view of another embodiment for schematically showing in Fig.l, centrifugal impeller 108 on bearings 134 is rotated freely with the injection power of high pressure gas during the operation of pneumatic line since high-pressure gas is flowed in separation chamber 107 through inlet pipe 31, thus the high-pressure gas is impinged to the inside wall of outer cylinder 109 with centrifugal force, and it is formed with strong spiral stream in annual passage between porous filter cylinder 110 and inner cylinder 113 as indicated by the arrows under the influence of centrifugal force, thus the liquid is separated from gas stream centrifugally due to the different specific gravity of gas and liquid.
  • the condensed dirty liquid is passed out through the holes 112 of porous filter cylinder 110 as shown in FIG. 4, and it is flowed out downwardly through annual passage 160 between porous filter cylinder 110 and outer cylinder 109 as indicated by the arrows under the influence of gravitational force, and it is collected to drain pipe 11 for various drain devices (not shown), meanwhile the clean gas stream is supplied for various pneumatic tools (not shown) through outlet pipe 32.
  • said separation chamber 107 is installed on fastener structure 150.
  • centrifugal impeller 208 is rotated freely with the injection power of high pressure gas on bearings 234, 236 during the operation of pneumatic line since the high-pressure gas is flowed in separation chamber through inlet pipe 231, thus the high pressure gas is impinged to the inner wall of porous separation cylinder 210 with centrifugal force, and is formed with strong centrifugal spiral stream inside of porous separation cylinder 210 as indicated by the arrows under the influence of centrifugal force, thus the dirty liquid is separated from gas stream centrifugally due to the different specific gravity of gas and liquid.
  • condensed dirty liquid is separated out centrifugally through plurality of holes 212 of porous separation cylinder 210 located between outer cylinder 209 and inner cylinder 213 as shown in Fig.9 and Fig.10, and it is flowed downwardly under the influence of gravitation force through the inside wall of outer cylinder 209, further the rest of condensed dirty liquid is flowed upward with centrifugal spiral gas stream on the inner wall of porous separation cylinder 210 and is separated out centrifugally through holes 212A formed on the upper end of porous separation cylinder 210, furthermore a part of condensed dirty liquid is drained out through drain holes 222 installed on the bottom side 220 of porous separation cylinder 210, thus all of condensed dirty liquid is collected to drain hole 211 with aid of drain devices 241.
  • said inner cylinder 213 may be prepared with the inductive spiral grooves for generating spiral centrifugal stream more efficiently in the downstream of centrifugal impeller 208.
  • bearings 234, 236 installed on inner cylinder 213 may be cooled with gas stream of pneumatic line.
  • Fig.l 1 is a sectional view for exit passage bowl 250 schematically showing in Fig.7, the clean gas stream is passed out through holes 252 are formed on baffle bowl 250
  • Fig.12 is a sectional view for exit baffle plate 254 schematically showing in Fig.7, holes 256 are formed on baffle plate 254
  • holes 252 of baffle bowl 250 as shown in Fig.11 and holes 256 of baffle plate 254 as shown in Fig.12 are prepared for not mingling condensed dirty liquid with cleaned gas stream by the pressure difference of gas stream after centrifugal separation as well known technical concept in the air dryer of pneumatic line.
  • said gas comprises air, vapor, ammonia, nitrogen, hydrogen, ozone and oxygen et al. in the form of continuous gases, and liquid comprises water, lubricant oil, rust, dust and carbonated material et al.
  • air purification apparatus utilizing a centrifugal impeller according to the present invention may be installed and operated with a refrigeration system for making optimum separation efficiency according to the temperature and dew point of compressed gas .
  • air purification apparatus utilizing a centrifugal impeller utilizing a centrifugal impeller according to the present invention is noted with the following advantages: no filter use, no clog problem with carbonated sludge, superior filtering efficiencies with small loss of pressure, energy saving, small, simple and compact structure, everlasting service term without periodic filter replacement, abatement of maintenance and repair fee on the various tools of pneumatic lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

This invention relates to an air purification apparatus utilizing a centrifugal impeller by operating a centrifugal impeller with the dynamic injection power of compressed air, thus the separation of liquid, water, oil and particular pollution dust can be carried out with the centrifugal power efficiently from compressed air. Thus this arrangement enables the purification of compressed air efficiently based on centrifugal downstream of compressed air by rotating a small impeller with high speed based on the dynamic injection power of compressed air. A centrifugal separator utilizing an impeller for purifying compressed air comprising: a centrifugal impeller (107) located on the injection pipe (31) of compressed air; bearings (134) connected with the centrifugal impeller (107) thereof; a cylindrical container (109) having a inner cylinder (113) and an outer cylinder; auto drain apparatus etc. Therefore it can be supplied with its small and simple structure for the clean compressed air of the pneumatic tools and machinery in the industrial site.

Description

AIR PURIFICATION APPARATUS UTILIZING
A CENTRIFUGAL IMPELLER
Technical Field
This invention relates to an air purification apparatus utilizing a centrifugal impeller with the dynamic injection power of compressed gas only at the outlet of branch pneumatic line, and an air purification apparatus utilizing a centrifugal impeller with the dynamic injection power of compressed gas and the rotation power of an electric motor even under small pressure differences in the main pneumatic line, thus the separation of dirty liquid including water, oil and particular pollution dust can be carried out with the centrifugal power efficiently from compressed gas.
Background Art
Compressed air generation uses an expensive cost of input energy, however compressed air includes lot of water, coolant oil, carbonated material and rusted pollution contaminants. Thus compressed air typically must be dry and purify for the usual applications. Besides the need for clean ambient air, it should be stressed that the quality of compressed air is important. The need for high standards of compressed air purity for many uses is obvious, particularly for electronic industry, automobile industry, food processing, pharmaceutical manufacturing, hospital tools and other highly precession controlled operations.
In numerous situations, a continuous liquid or gas phase is subject to the accumulation of contaminants in the form of solid particles, liquids and/or gases, which must be subjected to filtration and separation as attempted by numerous techniques of the prior art. The contaminating material may, for example, be present as a solid, liquid, or gas within a gas media, or dispersed as a solid, liquid or gas within a liquid. Foreign matter is prevalent, for example, in pneumatic lines used in conjunction with air brakes for trucks, buses and heavy equipment, as well as for protecting other pneumatically operated devices such as doors, cylinders, etc.
Many devices in the prior art have relied upon the phenomenon of coalescing dispersed liquid from a fluid as a means to overcome the problems inherent in the accumulation of liquid in a fuel line. Such coalescing devices rely on a coalescing material to coalesce the liquids into droplets that are more readily separated from the fuel than in the dispersed state.
Some of the prior art devices may operate satisfactorily at low flow rates through the separator, but as the compressor output increases, the flow rate becomes greater and efficiency of coalescing and separation then suffers in such devices resulting in water particles, and the like, being delivered to the air compressor. The overall deficiency of such coalescing systems has resulted, in part, from the ineffective cooperation between the incoming flow and the coalescing stage. Moreover, well known coalescing-type apparatus have failed to provide or have not provided sufficient filtration of solids prior to entry to the coalescing stage, because of which the coalescing operation becomes less efficient due to the interfering presence of solids. The prior art coalescing devices have not further provided effective filtration and separation at all flow rates through the separator, with a resulting decrease of efficiency. Accordingly, the known techniques of filtering and separating contaminants from high-pressure gas stream have not attained the optimum level of efficiency to accomplish removal of solids, dispersed liquids from gas stream at all demand levels of the pneumatic tools especially for semiconductor manufacturing industry, for medical and hospital tools and equipment and for various precisely electronic controlled pneumatic tools.
Disclosure of Invention
The present invention has been developed to overcome the above-mentioned problems of the prior art, and accordingly it is an object of the present invention to provide Air purification apparatus utilizing a centrifugal impeller with aid of the jet power of compressed gas and the rotation power of an electric motor for removing centrifugally liquid and particulate matter from a gas stream on the pneumatic line, comprising; centrifugal separation chamber 107 installed on the inlet pipe 31 of pneumatic line, electric motor 133 located on inner cylinder 113 inside of centrifugal separation chamber 107, centrifugal impeller 108 fixed with shaft 135 on electric motor 133 with installation of one-way clutch and a sensor as a feedback system, porous separation cylinder 110 fixed on bottom side 119 of separation chamber 107. Wherein said centrifugal impeller 108 may be rotated freely with the jet power of high-pressure gas stream on electric motor 133 through an one-way clutch (not shown) and a sensor (not shown) on the middle of main pneumatic line, meanwhile electric motor 133 may be not rotated with aid of a sensor as a feedback system in the case of higher presetting rotation speed due to the strong jet power of gas stream, further centrifugal impeller 108 may be rotated automatically with the rotation power of electric motor 133 through an oneway clutch (not shown) and a sensor (not shown), meanwhile electric motor 133 may be rotated with aid of a sensor as a feedback system in the case of lower presetting rotation speed due to the weak jet power of gas stream. Brief Description of the Drawings
Fig.l is a perspective view for schematically showing an air purification apparatus utilizing a centrifugal impeller according to the present invention;
Fig.2 is an A-A cross sectional view for schematically showing in Fig.l; Fig.3 is an illustrative view of operation for schematically showing a centrifugal impeller according to the present invention;
Fig.4 is a perspective view for schematically showing a porous separation filter according to the present invention;
Fig.5 is an illustrative view of another embodiment for schematically showing in Fig.l;
Fig.6 is an illustrative view of another embodiment for an air purification apparatus utilizing a fan according to the present invention;
Fig.7 is a perspective view of another embodiment for an air purification apparatus utilizing a centrifugal impeller according to the present invention; Fig.8 is an illustrative view of another embodiment for an air purification apparatus utilizing a centrifugal impeller according to the present invention;
Fig.9 is a B-B cross sectional view for schematically showing in Fig.7;
Fig.10 is a sectional view for porous separation cylinder 210 schematically showing in Fig.7; Fig.11 is a sectional view for exit passage bowl 250 schematically showing in Fig.7;
Fig.12 is a sectional view for exit passage plate 254 schematically showing in Fig.7;
- Mark for major part of figure - 208: centrifugal impeller 234, 236: bearings
210: porous separation cylinder 212: plurality of holes Best Mode for Carrying Out the Invention
Preferred embodiments of the present invention will be explained hereafter with reference to accompanied embodiments.
As shown in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6, the present invention has been cited by reference number and parts name based on the two ROK patent application laid-open No. 2002-0033201 (utility model) and 2003- 0000215 (utility model), "wet type centrifugal purification for automobile exhaust gas" by same applicant and inventor, since it has similar principle of operation and composition of parts for separating centrifugally liquid from high-pressure gas stream with utilizing centrifugal separator as in the pneumatic line.
As shown in Fig. 1, Air purification apparatus utilizing a centrifugal impeller with aid of the jet power of compressed gas and the rotation power of an electric motor for removing centrifugally liquid and particulate matter from a gas stream on the pneumatic line, comprising; centrifugal separation chamber 107 installed on the inlet pipe 31 of pneumatic line, electric motor 133 located on inner cylinder 113 inside of centrifugal separation chamber 107, centrifugal impeller 108 fixed on electric motor 133 through a shaft with installation of one-way clutch and a sensor as a feedback system, porous separation cylinder 110 fixed on bottom side 119 of separation chamber 107.
Wherein said centrifugal impeller 108 may be rotated freely with the jet power of high-pressure gas stream on electric motor 133 through an one-way clutch (not shown) and a sensor (not shown) on the middle of main pneumatic line, since electric motor 133 may be stopped with aid of a sensor as a feedback system in the case of more than presetting high rotation speed due to the strong jet power of gas stream, further centrifugal impeller 108 may be rotated automatically with the rotation power of electric motor 133 through an one- way clutch (not shown) and a sensor (not shown), since electric motor 133 may be rotated with aid of a sensor as a feedback system in the case of less than presetting low rotation speed due to the weak jet power of gas stream. As shown in Fig.2 is an A-A cross sectional view for schematically showing in Fig.l, porous filter cylinder 110 is located between outer cylinder 109 and inner cylinder 113, annular drain passage 160 is formed for the flow of condensed liquid between outer cylinder 109 and porous filter cylinder 110, annular stream passage 119 is formed for gas stream between porous filter cylinder 110 and inner cylinder 113, and electric motor 133 is located at the center of porous filter cylinder 110 and inner cylinder 113, and drain hole 11 and outlet pipe 32 are located on the bottom side of centrifugal separator chamber 107, thus the clean high-pressure gas is supplied to various pneumatic tools through outlet pipe 32 on the pneumatic line. As shown in Fig.3 is an illustrative view of operation for schematically showing a centrifugal impeller according to the present invention; centrifugal impeller 108 is installed with electric motor 133 through shaft 135 inside of centrifugal separator chamber 107 for inducing high-pressure gas stream from inlet pipe 31 connected with a pneumatic line, and then generating centrifugal spiral stream as indicated by the arrows, further centrifugal impeller 108 may be rotated freely with the jet power of high-pressure gas stream without using rotation power of electric motor 133.
As shown in Fig.4 is a perspective view for schematically showing a porous separation filter according to the present invention; porous filter cylinder 110 is located between outer cylinder 109 and inner cylinder 113 in centrifugal separator chamber 107 as shown in previous Fig.2, plurality of holes 112 and spiral grooves 111 are formed on the wall of porous filter cylinder 110. As shown in Fig.5 is an illustrative view of another embodiment for schematically showing in Fig.l; separation chamber 107 is installed on the inlet pipe 31 of pneumatic line, bearings 134 are fixed on inner cylinder 113 inside of separation chamber 107, centrifugal impeller 108 is fixed on bearings
134 through a shaft for rotating freely with the jet power of high-pressure gas stream, porous separation cylinder 110 is fixed on bottom side 119 of separation chamber 107.
As shown in Fig.6 is an illustrative view of another embodiment for an air purification apparatus utilizing a fan according to the present invention; axial fan 108A may be fixed through shaft 135 on bearings 134 as shown in previous Fig.5, thus an axial fan 108A may be utilized instead of centrifugal impeller 108 inside of centrifugal separator chamber 107 for generating centrifugal spiral stream of gas.
As shown in Fig.7 is a perspective view of another embodiment for an air purification apparatus utilizing a centrifugal impeller according to the present invention; bearings 234, 236 are installed on inner cylinder 213 inside of centrifugal separator chamber, a centrifugal impeller 208 is fixed on bearings
234, 236, and porous separation cylinder 210 is fixed on baffle plate 254 inside of separation chamber.
Wherein said inner cylinder 213 may be prepared with the inductive spiral grooves for generating centrifugal spiral stream in the downstream of centrifugal impeller 208.
Wherein said bearings 234, 236 installed on inner cylinder 213 are cooled with gas stream of pneumatic line.
As shown in Fig.8 is an illustrative view of another embodiment for an air purification apparatus utilizing a centrifugal impeller according to the present invention will be explained for the principle of operation.
As shown in Fig.9 is an B-B cross sectional view for schematically showing in Fig.7, porous separation cylinder 210 is located between outer cylinder 209 and inner cylinder 213, annular drain passage is formed for the flow of condensed liquid between outer cylinder 209 and porous separation cylinder 210, annular stream passage is formed for gas stream between porous filter cylinder 210 and inner cylinder 213, and bearings 236 are located at the center of inner cylinder 213, the shaft 235 of centrifugal impeller 208 is fixed on bearings 234, 236, and plurality of holes 212 are formed on the wall of porous separation cylinder 210. As shown in Fig.10 is a sectional view for porous separation cylinder 210 schematically showing in Fig.7, plurality of holes 212 are formed on porous separation cylinder 210 for avoiding the clog problem with the dirty liquid including carbonated material from the gas stream on the pneumatic line. Wherein said porous separation cylinder 210 may be replaced with porous filter cylinder 110 as shown in Fig.l and Fig.5. Wherein said fluid guide plate 220 is formed on the bottom of porous separation cylinder 210 for inducing gas stream at the front of centrifugal impeller 208 through inlet pipe 231.
Whereas an electric motor having feedback system with a sensor and one-way clutch may be installed on bearings 234, 236 for rotating centrifugal impeller 208.
Hereafter preferred embodiments of the operation method of an air purification apparatus utilizing a centrifugal Impeller on the pneumatic lines would be explained. As shown in Fig. 1, in the case of installing separation chamber 107 on the middle stream of main pneumatic line, the high-pressure gas is flowed in separation chamber 107 through inlet pipe 31 with the inducing power of centrifugal impeller 108 rotating with the rotation power of electric motor 133 during the operation of pneumatic line, and the high pressure gas is impinged to the inside wall of outer cylinder 109 with centrifugal force, and it is formed with strong spiral stream of in annual passage 160 between porous filter cylinder 110 and inner cylinder 113 as indicated by the arrows under the influence of centrifugal force, thus the liquid is separated from gas centrifugally due to the different specific gravity of gas and liquid. Therefore the condensed dirty liquid is passed out through the holes 112 of porous filter cylinder 110, thus it is flowed downwardly through the inside wall of outer cylinder 109, and it is collected to drain hole 11 for various drain devices (not shown), meanwhile the clean gas is supplied for the various pneumatic tools (not shown) through outlet pipe 32.
Further centrifugal impeller 108 may be rotated freely with the jet power of high-pressure gas without using the rotation power of electric motor 133 under high pressure differences in the case of rapid gas stream on the main pneumatic line, further centrifugal impeller 108 may be rotated at a presetting rotation speed automatically with the rotation power of electric motor 133 with installation of one-way clutch (not shown) and RPM sensor (not shown), thus it is efficient even under small pressure differences in the case of slow gas stream on the main pneumatic line.
Furthermore, in the case of rapid strong gas stream, centrifugal impeller 108 may be rotated freely again with the jet power of high-pressure gas only without using the rotation power of electric motor 133 with installation of oneway clutch (not shown) and RPM sensor (not shown) as a feedback system, thus separation chamber 107 is operated all the time for keeping strong centrifugal separation efficiency even under small pressure differences in the middle of main pneumatic line. As shown in Fig.5 is an illustrative view of another embodiment for schematically showing in Fig.l, centrifugal impeller 108 on bearings 134 is rotated freely with the injection power of high pressure gas during the operation of pneumatic line since high-pressure gas is flowed in separation chamber 107 through inlet pipe 31, thus the high-pressure gas is impinged to the inside wall of outer cylinder 109 with centrifugal force, and it is formed with strong spiral stream in annual passage between porous filter cylinder 110 and inner cylinder 113 as indicated by the arrows under the influence of centrifugal force, thus the liquid is separated from gas stream centrifugally due to the different specific gravity of gas and liquid.
Therefore the condensed dirty liquid is passed out through the holes 112 of porous filter cylinder 110 as shown in FIG. 4, and it is flowed out downwardly through annual passage 160 between porous filter cylinder 110 and outer cylinder 109 as indicated by the arrows under the influence of gravitational force, and it is collected to drain pipe 11 for various drain devices (not shown), meanwhile the clean gas stream is supplied for various pneumatic tools (not shown) through outlet pipe 32. Wherein said separation chamber 107 is installed on fastener structure 150.
As shown in Fig. 8, centrifugal impeller 208 is rotated freely with the injection power of high pressure gas on bearings 234, 236 during the operation of pneumatic line since the high-pressure gas is flowed in separation chamber through inlet pipe 231, thus the high pressure gas is impinged to the inner wall of porous separation cylinder 210 with centrifugal force, and is formed with strong centrifugal spiral stream inside of porous separation cylinder 210 as indicated by the arrows under the influence of centrifugal force, thus the dirty liquid is separated from gas stream centrifugally due to the different specific gravity of gas and liquid.
Therefore condensed dirty liquid is separated out centrifugally through plurality of holes 212 of porous separation cylinder 210 located between outer cylinder 209 and inner cylinder 213 as shown in Fig.9 and Fig.10, and it is flowed downwardly under the influence of gravitation force through the inside wall of outer cylinder 209, further the rest of condensed dirty liquid is flowed upward with centrifugal spiral gas stream on the inner wall of porous separation cylinder 210 and is separated out centrifugally through holes 212A formed on the upper end of porous separation cylinder 210, furthermore a part of condensed dirty liquid is drained out through drain holes 222 installed on the bottom side 220 of porous separation cylinder 210, thus all of condensed dirty liquid is collected to drain hole 211 with aid of drain devices 241. Wherein said inner cylinder 213 may be prepared with the inductive spiral grooves for generating spiral centrifugal stream more efficiently in the downstream of centrifugal impeller 208.
Wherein said bearings 234, 236 installed on inner cylinder 213 may be cooled with gas stream of pneumatic line.
As shown in Fig.l 1 is a sectional view for exit passage bowl 250 schematically showing in Fig.7, the clean gas stream is passed out through holes 252 are formed on baffle bowl 250, and As shown in Fig.12 is a sectional view for exit baffle plate 254 schematically showing in Fig.7, holes 256 are formed on baffle plate 254
Thus the clean gas stream is passed through holes 252 of baffle bowl 250 and holes 256 of baffle plate 254, and it is supplied for various pneumatic tools (not shown) through outlet pipe 232.
Wherein said holes 252 of baffle bowl 250 as shown in Fig.11 and holes 256 of baffle plate 254 as shown in Fig.12 are prepared for not mingling condensed dirty liquid with cleaned gas stream by the pressure difference of gas stream after centrifugal separation as well known technical concept in the air dryer of pneumatic line.
Wherein said gas comprises air, vapor, ammonia, nitrogen, hydrogen, ozone and oxygen et al. in the form of continuous gases, and liquid comprises water, lubricant oil, rust, dust and carbonated material et al.
Finally air purification apparatus utilizing a centrifugal impeller according to the present invention may be installed and operated with a refrigeration system for making optimum separation efficiency according to the temperature and dew point of compressed gas .
INDUSTRIAL APPLICABILITY
Compared to conventional technologies such as are represented in the foregoing citations and other prior arts, air purification apparatus utilizing a centrifugal impeller according to the present invention is noted with the following advantages: no filter use, no clog problem with carbonated sludge, superior filtering efficiencies with small loss of pressure, energy saving, small, simple and compact structure, everlasting service term without periodic filter replacement, abatement of maintenance and repair fee on the various tools of pneumatic lines.

Claims

What is claimed is:
1. Air purification apparatus utilizing a centrifugal impeller with aid of the jet power of compressed gas and the rotation power of an electric motor for removing centrifugally liquid and particulate matter from a gas stream on the pneumatic line, comprising; centrifugal separation chamber 107 installed on the inlet pipe 31 of pneumatic line, electric motor 133 located on inner cylinder 113 inside of centrifugal separation chamber 107, centrifugal impeller 108 fixed with shaft 135 on electric motor 133 with installation of one-way clutch and a sensor as a feedback system, porous separation cylinder 110 fixed on bottom side 119 of separation chamber 107.
2. As claimed in claim 1, comprising: bearings 134 fixed on inner cylinder 113 inside of centrifugal separation chamber 107, centrifugal impeller 108 fixed on bearings 134 through shaft 135 for rotating freely with the jet power of high- pressure gas stream.
3. Air purification apparatus utilizing a centrifugal impeller without using a filter for removing liquid and particulate matter from a gas stream on the pneumatic line, comprising; bearings 234, 236 installed on inner cylinder 213 inside of centrifugal separator chamber, centrifugal impeller 208 fixed for free rotation on bearings 234, 236 with jet power of high-pressure gas stream, porous separation cylinder 210 fixed on the bottom side 119 of separation chamber.
4. As claimed in claim 3, comprising: plurality of holes 212 formed on porous separation cylinder 210 for avoiding the clog problem with the dirty liquid including carbonated material from the gas stream of pneumatic line.
5. As claimed in claim 3, comprising: fluid guide plate 220 formed on the bottom of porous separation cylinder 210 for inducing gas stream at the front of centrifugal impeller 208 through inlet pipe 231.
6. As claimed in claim 3, comprising: inner cylinder 213 having the inductive spiral grooves for generating spiral centrifugal stream in the downstream of centrifugal impeller 208.
7. As claimed in claim 3, comprising: bearings 234, 236 inside of inner cylinder 213 cooled with gas stream of pneumatic line.
PCT/KR2003/002661 2002-12-07 2003-12-05 Air purification apparatus utilizing a centrifugal impeller WO2004053305A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003302750A AU2003302750A1 (en) 2002-12-07 2003-12-05 Air purification apparatus utilizing a centrifugal impeller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20-2002-0036656U KR200328651Y1 (en) 2002-12-07 2002-12-07 centurifugal type air purification apparatus
KR20-2002-0036656 2002-12-07

Publications (2)

Publication Number Publication Date
WO2004053305A1 true WO2004053305A1 (en) 2004-06-24
WO2004053305A8 WO2004053305A8 (en) 2005-03-24

Family

ID=32501286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2003/002661 WO2004053305A1 (en) 2002-12-07 2003-12-05 Air purification apparatus utilizing a centrifugal impeller

Country Status (3)

Country Link
KR (1) KR200328651Y1 (en)
AU (1) AU2003302750A1 (en)
WO (1) WO2004053305A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012248B2 (en) 2005-02-03 2011-09-06 Jangshik Yun Centrifugal wet type air cleaner utilizing a spin vaporizer and a spiral on the basis of a labyrinth effect
US8641793B2 (en) 2009-12-07 2014-02-04 Paradigm Waterworks, LLC Devices, systems, and methods for separation of feedstock components
CN104373175A (en) * 2013-08-14 2015-02-25 吴进森 High-speed centrifugal carbon filter of automobile exhaust
US8991165B2 (en) 2009-11-16 2015-03-31 Lyle Bates Systems for energy recovery and related methods
DE102013224690A1 (en) * 2013-12-02 2015-06-03 MAHLE Behr GmbH & Co. KG Device for influencing a multiphase fluid mixture
CN104728949A (en) * 2015-04-03 2015-06-24 成都小蛋科技有限公司 Ventilation filtering equipment capable of being dismounted and mounted easily
CN104776576A (en) * 2015-04-03 2015-07-15 成都小蛋科技有限公司 Air sensor installation structure
CN105642077A (en) * 2016-02-29 2016-06-08 普利资环境科技(苏州)有限公司 Air filter for treatment of high-temperature sewage
CN107762686A (en) * 2017-11-29 2018-03-06 潍柴动力股份有限公司 A kind of guiding device, a kind of air filter and a kind of engine
CN109548391A (en) * 2019-01-14 2019-03-29 山东博能质量检测有限公司 The cooling system of electrical equipment
CN110388291A (en) * 2018-04-19 2019-10-29 曼·胡默尔有限公司 The tube section of the air inlet pipe of air inlet section for internal combustion engine
CN112642176A (en) * 2020-11-16 2021-04-13 廊坊和田生物化工有限公司 Improved separation device for separating benzene from water
CN113350897A (en) * 2021-05-27 2021-09-07 李周滔 U-shaped connected pressure container
CN113731026A (en) * 2021-08-05 2021-12-03 中石化宁波工程有限公司 Tower top water droplet separation structure
CN115788712A (en) * 2023-02-06 2023-03-14 新乡市艾普利滤清器有限公司 Filter and mounting structure thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173463B (en) * 2019-05-16 2020-10-16 山东洪涨泵业有限公司 One advances two and goes out purification formula pipeline pressure boost centrifugal pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349322A (en) * 1978-02-14 1982-09-14 Staehle Martin Cooling a motor of a centrifugal pump for conveying liquids with deposited solids
US5343831A (en) * 1993-09-01 1994-09-06 Wci Outdoor Products, Inc. Dynamic air cleaner and carburetor pressurization system for air cooled internal combustion engine
US5770058A (en) * 1995-09-29 1998-06-23 Whirlpool Corporation Centrifugal separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349322A (en) * 1978-02-14 1982-09-14 Staehle Martin Cooling a motor of a centrifugal pump for conveying liquids with deposited solids
US5343831A (en) * 1993-09-01 1994-09-06 Wci Outdoor Products, Inc. Dynamic air cleaner and carburetor pressurization system for air cooled internal combustion engine
US5770058A (en) * 1995-09-29 1998-06-23 Whirlpool Corporation Centrifugal separator

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012248B2 (en) 2005-02-03 2011-09-06 Jangshik Yun Centrifugal wet type air cleaner utilizing a spin vaporizer and a spiral on the basis of a labyrinth effect
US9945400B2 (en) 2009-11-16 2018-04-17 Paradigm Waterworks, LLC Systems for energy recovery and related methods
US8991165B2 (en) 2009-11-16 2015-03-31 Lyle Bates Systems for energy recovery and related methods
US8641793B2 (en) 2009-12-07 2014-02-04 Paradigm Waterworks, LLC Devices, systems, and methods for separation of feedstock components
CN104373175A (en) * 2013-08-14 2015-02-25 吴进森 High-speed centrifugal carbon filter of automobile exhaust
DE102013224690A1 (en) * 2013-12-02 2015-06-03 MAHLE Behr GmbH & Co. KG Device for influencing a multiphase fluid mixture
CN104728949A (en) * 2015-04-03 2015-06-24 成都小蛋科技有限公司 Ventilation filtering equipment capable of being dismounted and mounted easily
CN104776576A (en) * 2015-04-03 2015-07-15 成都小蛋科技有限公司 Air sensor installation structure
CN104776576B (en) * 2015-04-03 2018-03-20 四川行之智汇知识产权运营有限公司 A kind of air borne sensor mounting structure
CN105642077A (en) * 2016-02-29 2016-06-08 普利资环境科技(苏州)有限公司 Air filter for treatment of high-temperature sewage
CN107762686A (en) * 2017-11-29 2018-03-06 潍柴动力股份有限公司 A kind of guiding device, a kind of air filter and a kind of engine
CN110388291A (en) * 2018-04-19 2019-10-29 曼·胡默尔有限公司 The tube section of the air inlet pipe of air inlet section for internal combustion engine
CN109548391A (en) * 2019-01-14 2019-03-29 山东博能质量检测有限公司 The cooling system of electrical equipment
CN112642176A (en) * 2020-11-16 2021-04-13 廊坊和田生物化工有限公司 Improved separation device for separating benzene from water
CN112642176B (en) * 2020-11-16 2022-03-25 廊坊和田生物化工有限公司 Improved separation device for separating benzene from water
CN113350897A (en) * 2021-05-27 2021-09-07 李周滔 U-shaped connected pressure container
CN113350897B (en) * 2021-05-27 2022-07-12 烟台兴隆压力容器制造有限公司 U-shaped connected pressure container
CN113731026A (en) * 2021-08-05 2021-12-03 中石化宁波工程有限公司 Tower top water droplet separation structure
CN115788712A (en) * 2023-02-06 2023-03-14 新乡市艾普利滤清器有限公司 Filter and mounting structure thereof

Also Published As

Publication number Publication date
KR200328651Y1 (en) 2003-10-01
AU2003302750A1 (en) 2004-06-30
WO2004053305A8 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US20080034717A1 (en) Compressed air cleaner utilizing a centrifugal impeller and spiral grooves
WO2004053305A1 (en) Air purification apparatus utilizing a centrifugal impeller
JP5314826B2 (en) How to clean crankcase gas
US6187073B1 (en) Air cleaner; aerosol separator; and method
CA1322537C (en) Multi-stage gas-entrained liquid separator
US5855799A (en) Rotary disk filter with backwash
WO2004044428A2 (en) Filtration vessel and method for rotary gas compressor system
US20180169553A1 (en) Apparatus for contaminant reduction in a stream of compressed gas
JPH0857234A (en) Device for separating oil aerosol from air
KR20040043138A (en) centurifugal type air purification apparatus
WO1993018843A1 (en) Method and apparatus for the treatment of gas streams
US6527839B2 (en) Spin-on filtering oil removal cartridge
KR20080078791A (en) A centrifugal compressed gas cleaner
WO2003053543A1 (en) Gas scrubber
CN1956766A (en) Air-cleaning equipment and compressed air-supply equipment with oil separator
KR200186189Y1 (en) Cyclone filter apparatus
KR100598995B1 (en) High Efficiency Oil Removing Filter with Guide Vane of Porosity shape
KR20050116359A (en) A centrifugal compressed gas cleaner utilizing a labyrinth effect
US20080149574A1 (en) Gas/Liquid Separator Assembly with Preseparator and Liquid Filter, and Methods
KR20040099193A (en) air purification apparatus utilizing a centrifugal impeller
CN1248480A (en) Multi-function combined compressed air purifier
SE524140C2 (en) Device at a separator
US8778064B2 (en) Green house gases filtration system
KR200441380Y1 (en) A centrifugal compressed gas cleaner utilizing a labyrinth effect
KR20040043140A (en) compressed gas purification apparatus utilizing a centrifugal impeller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 26/2004 ADD "DECLARATION UNDER RULE 4.17: - AS TO THE IDENTITY OF THE INVENTOR (RULE4.17(I)) FOR ALL DESIGNATIONS."

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP