WO2004050891A1 - Method of producing protein - Google Patents

Method of producing protein Download PDF

Info

Publication number
WO2004050891A1
WO2004050891A1 PCT/JP2003/015593 JP0315593W WO2004050891A1 WO 2004050891 A1 WO2004050891 A1 WO 2004050891A1 JP 0315593 W JP0315593 W JP 0315593W WO 2004050891 A1 WO2004050891 A1 WO 2004050891A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
gel
protein
translation reaction
protein synthesis
Prior art date
Application number
PCT/JP2003/015593
Other languages
French (fr)
Japanese (ja)
Inventor
Keiko Matsubara
Original Assignee
Zoegene Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zoegene Corporation filed Critical Zoegene Corporation
Priority to AU2003289202A priority Critical patent/AU2003289202A1/en
Publication of WO2004050891A1 publication Critical patent/WO2004050891A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a method for producing a target protein using a cell-free protein synthesis system. More specifically, the present invention relates to a gel or sol containing a substance consumed in a transcription, translation reaction or translation reaction (hereinafter sometimes referred to as “protein synthesis reaction”) in both its matrix and excluded volume.
  • protein synthesis reaction a transcription, translation reaction or translation reaction
  • the method is particularly suitable when a small amount of a synthesis reaction solution is used to synthesize a small amount of protein. Furthermore, the synthesis reaction inhibition product produced by the protein synthesis reaction cannot be separated from the protein synthesis product (polysome), so that the synthesis amount is low compared with the dialysis method.
  • a reaction vessel used in the synthesis system is prepared by a carrier capable of molecular sieving, and the material involved in the cell-free protein synthesis system is transferred to the mobile phase.
  • a method of recovering a synthetic protein as a result of performing a cell-free protein synthesis reaction during the development has been proposed (Japanese Patent Application Laid-Open No. 2000-316595).
  • the present method is advantageous in that the synthesized protein is separated and purified in the carrier while having the same protein synthesis ability as the above-mentioned dialysis method and overlay method.
  • it was necessary to continuously add the feed solution as a developing solution to the carrier and the structure of the reaction apparatus was not always suitable for automation.
  • Japanese Patent Application Laid-Open No. 2003-525256 16 discloses that the low-molecular components (supply) of the reaction mixture, in particular, the substrate consumed by the reaction, are sufficiently homogeneously distributed in the entire reactor space.
  • the reactor space only the excluded volume of the matrix can be used for polymer components, especially catalytically active reactants (reactants) in the reactor space, and only the conversion of the substrate can be performed in the excluded volume of the matrix.
  • Cell-free protein synthesis is a technology that requires automation in certain aspects. For this purpose, there is a demand for a synthesis method that can maintain high protein synthesis ability with a simple synthesizer and that can be applied to a reaction system having a large capacity. Had been. Disclosure of the invention
  • a first object of the present invention is to provide a cell-free protein synthesis system in which the translation reaction lasts for a long time, is applicable to a reaction system having a large capacity, and has a protein synthesis ability that can be performed by a simple synthesizer. It is to provide a high cell-free protein synthesis method.
  • a second object of the present invention is to provide a method for separating and purifying a target protein synthesized in the same container after a transcription / translation reaction or a translation reaction.
  • a third object of the present invention is to provide a reagent kit for performing the protein synthesis reaction
  • a fourth object of the present invention is to provide an apparatus for producing a target protein using the protein synthesis reaction system. It is to be.
  • the present inventors have conducted intensive studies to achieve the above object of the present invention.
  • a gel or sol containing a substance consumed in a transcription / translation reaction or a translation reaction in both its matrix and excluded volume According to protein synthesis by contacting a transcription / translation reaction or translation reaction solution with an interface, the protein synthesis reaction is maintained for a long time, and a gel filtration agent is used as a matrix. According to this, it was found that the target protein synthesized by the gel filtration agent was separated and purified.
  • a method for producing a target protein using a cell-free protein synthesis system wherein a substance consumed in a transcription / translation reaction or a translation reaction is reduced in both the matrix and the excluded volume.
  • a method comprising performing protein synthesis by bringing a transcription / translation reaction or a translation reaction solution into contact with the gel or sol contained in the above with an interface.
  • the high molecular substance is a gel filtration agent, and after the transcription / translation reaction or the translation reaction, Characterized in that the synthesized target protein is separated and purified in the same container.
  • a reagent kit for producing the target protein in the system including at least a gel or sol component and an aqueous solution containing a substance consumed in a translation reaction, or a mixture thereof.
  • An apparatus for producing a target protein using a cell-free protein synthesis system which comprises means for performing protein synthesis by contacting with
  • FIG. 1 is a graph showing the amount of GST-GFP protein synthesized by the method of the present invention, the dialysis cup method, and the overlay method.
  • FIG. 2 is a graph showing the amount of GST-GFP protein synthesized by the method of the present invention and the overlay method.
  • FIG. 3 is an electrophoresis photograph showing the GST-PK7 protein synthesized by the method of the present invention and the dialysis method.
  • FIG. 4 is a graph showing the amount of solubilized PK7-GST protein synthesized by the method of the present invention, the dialysis cup method, and the overlay method.
  • FIG. 5 is a graph showing the amount of GST-GFP protein synthesized by the method of the present invention and the method of performing a protein synthesis reaction in an excluded volume.
  • the present invention relates to a method for producing a target protein using a cell-free protein synthesis system, comprising: a gel or a sol containing a substance consumed in a transcription / translation reaction or a translation reaction in both its matrix and excluded volume; This method is characterized in that protein synthesis is performed by bringing a transcription / translation reaction or a translation reaction solution into contact with an interface.
  • the cell-free protein synthesis system refers to a method for synthesizing a target protein encoded by a gene without using living cells. Specifically, water-soluble components containing substances required for protein synthesis such as ribosomes and tRNAs are extracted from cells, and translation type I, RNA polymerase, transcription / translation substrates, energy sources, etc. are further added. A reaction solution for transcription / translation or translation (hereinafter sometimes referred to as a “reaction solution”) is prepared and cultured in an artificial container for protein synthesis.
  • reaction solution for transcription / translation or translation
  • the cell extract used in the cell-free protein synthesis system includes those extracted from cells such as Escherichia coli, plant seed germ, and egret reticulocytes.
  • a method for preparing the cell extract a method known per se or a commercially available method can be used. Specifically, the E. coli extract is prepared by the method described in Pratt, J., et al., Transcription and Translation, Haraes, 179-209, BD & Higgins, SJ eds., IRL Press, 0xford (1984). It can be prepared according to it.
  • those derived from Escherichia coli include E.
  • coli S30 extract system manufactured by Promega
  • RTS 500 Rapid Translation System manufactured by Roche
  • Origin is Rabbit Reticulocyte Lysate Sytera (manufactured by Promega) and the like, and those derived from wheat germ include PRO TEIOS TM (manufactured by T0Y0B0).
  • PRO TEIOS TM manufactured by T0Y0B0
  • As the cell-free synthesis system used in the present invention a protein synthesis system having high polyribosome-forming activity is preferable, and therefore, a system using a wheat germ extract is preferable.
  • Methods for preparing a wheat germ extract include, for example, Johnston, FB et al., Nature, 179, 160-161 (1957), or Erickson, AH et al., (1996) Meth. In Enzymol., 96, 38- 50 and the like can be used. Furthermore, treatments such as removing endosperm containing translation inhibitory factors contained in the extract, for example, tritin, thionine, nuclease, and the like (Japanese Patent Application Laid-Open No. 2000-236896), and It is also preferable to carry out a treatment for suppressing the activation of the translation inhibitory factor (Japanese Patent Application Laid-Open No. Hei 7-23084). The cell extract thus obtained can be used in a protein synthesis system by a method similar to the conventional method.
  • the composition of the reaction solution includes the above-mentioned cell extract, translation type, substrate amino acid, energy source, various ions, buffer, ATP regeneration system, nuclease inhibitor, tRM, reducing agent, polyethylene glycol, 3 ' , 5, 1 cAMP, folate, antibacterial agents, etc. are included.
  • DNA When DNA is used as the type I translation, it may further contain a substrate for RA synthesis required for the transcription reaction, RNA polymerase, and the like. These are prepared by appropriately selecting according to the target protein and the type of the protein synthesis system to be used.
  • the amino acids serving as the substrate are 20 kinds of amino acids constituting the protein, and each is suitably in the range of 0.05 to 1.0 mM.
  • Examples of the energy source include ATP and GTP, and it is preferable to add 1.0 to 1.5 mM of ATP and 0.2 to 0.3 mM of GTP.
  • Examples of the various ions and their appropriate concentrations in the reaction solution include 60 to 150 mM potassium acetate, and 1 to 10 mM magnesium acetate.
  • As the buffer 15 to 5 OmM Hepes-K0H, 10 to 5 OmM Tris-acetic acid, or 15 to 3 OmM Hepes and 15 to 3 OmM Hepes-Na are used.
  • the ATP regeneration system may be a combination of phosphoenol pyruvate and pyruvate kinase, or 12 to 20 mM creatine phosphate (creatine phosphate) and 0.2 to 1.6. Ug / jul creatine kinase combinations.
  • Nuclear Examples of the acid-degrading enzyme inhibitors include ribonuclease inhibitors of 0.01 to 3.0 U per ⁇ l of the reaction solution, and nuclease inhibitors of 0.01 to 3 U.
  • ribonuclease inhibitors include human placenta-derived RNase inhibitor (T0Y0B0, etc.) and the like.
  • tRA can be obtained by the method described in Moniter, R., et al., Biochim. Biophys. Acta., 43, 1 (1960) or the like, or a commercially available product can be used.
  • the reducing agent include dithiothreitol of 0.1 to 5.0 niM.
  • the antibacterial agent include 0.001 to 0.01% sodium azide, and 0.1 to 0.2 mg / ml ampicillin.
  • nucleic acid stabilizer 0.3 to 0.5 mM spermidine or the like is used.
  • RNA polymerase those suitable for one of the promoters included in translation type I are used. Specifically, for example, SP6RA polymerase ⁇ T7 RNA polymerase and the like can be used. These addition amounts are appropriately selected to prepare a synthesis reaction solution.
  • the target protein synthesis reaction is carried out by culturing the above reaction solution in an appropriate container at an appropriate temperature for an appropriate time.
  • the target protein may be any protein that can be synthesized in a cell-free protein synthesis system. However, when a poorly water-soluble protein is synthesized by the method of the present invention, it becomes more water-soluble than other methods. The effect is high.
  • the culture is carried out at a temperature of 10 to 40 ° C, preferably 15 to 30 ° C, and more preferably 20 to 26 ° C.
  • the reaction time is not particularly limited as long as protein synthesis is performed. However, when a system for supplying a substance consumed in the transcription / translation reaction or the translation reaction is used as in the present invention, the reaction lasts up to about 75 hours.
  • a substance consumed in a transcription / translation reaction or a translation reaction (in this specification, this may be referred to as a “supply”) is referred to as a matrix and a matrix.
  • Protein synthesis is performed by bringing a transcription / translation reaction or translation reaction solution into contact with a gel or a zole contained in both excluded volumes with an interface.
  • Substances (supply) consumed in the transcription / translation reaction or translation reaction It means all substances consumed in the cell-free protein synthesis reaction, but the gel or sol of the present invention does not need to include all of them, and can be appropriately selected according to each reaction system. )), And the like.
  • the amount of the supply contained in the gel or the sol may be an amount sufficient to perform the target protein synthesis reaction when performing the protein synthesis reaction using this.
  • Examples of a method for preparing a gel or sol containing the feed in both the matrix and the excluded volume include, for example, a solution containing the gel or sol containing the feed (hereinafter, this may be referred to as a “feed solution”). A method for equilibration is given.
  • the feed liquid in the supernatant portion that exceeds the volume of the gel or sol is preferably removed so that the reaction solution does not become thin because the reaction solution comes into contact with the interface.
  • agarose gel or the like a method of dissolving agarose, cooling to an appropriate temperature, adding a concentrated supply solution thereto, and further cooling is used.
  • a solution containing a substance consumed in the protein synthesis reaction in the cell-free protein synthesis system of the above (1) at almost the same concentration as the reaction solution is preferably used.
  • OraM dithiothreitol, feed solution containing 0.3-3.0 U ribonuclease inhibitor per 1 jul 15-5 OmM Hepes-K0H, or 10-5 OraM Tris-acetic acid solution may include 15-3 OmM Hepes and 15-3 OmM Hepes-Na.
  • the gel or sol used in the present invention means that the above-mentioned feed can be contained in both the matrix and the excluded volume, and the feed and the synthesized object are formed between the feed and the reaction solution having an interface.
  • Any substance may be used as long as proteins, degradation products, and the like can be freely diffused.
  • genole refers to a state in which the above components have lost independent fluidity and are aggregated and solidified.
  • a sol is a state in which the components are dispersed in a liquid and exhibit fluidity.
  • Preferred examples of the gel used in the present invention include those having agarose or acrylamide as a constituent element.
  • Preferred examples of the sol include those having a gel filtration agent, an affinity gel agent, magnetic beads, and the like as constituent elements.
  • the matrix means a space occupied by gel or sol constituent molecules among spaces occupied by gel or sol.
  • the excluded volume means the space occupied by the gel or sol other than the matrix.
  • a gel or sol having the above-mentioned properties and having an amount sufficient for carrying out the cell-free protein synthesis reaction of (1) above in both the force, the matrix and the excluded volume is required. There is no particular limitation as long as the method contains the feed.
  • agarose gel is used as an example of the gel.
  • Agarose is selected so as to be purified to such an extent that it does not affect the above-mentioned protein synthesis reaction, and to maintain a suitable strength that does not dissolve when a cell-free protein synthesis reaction is performed under the conditions described below.
  • Agaroses manufactured by Nippon Gene
  • the like are preferably used.
  • the above agarose is 0.1 to 15% by weight, preferably 0.1 to 1.0%, more preferably 0.2 to 0.5%, most preferably Is suspended in water or a buffer solution contained in the reaction solution to a concentration of 0.3%, heated to dissolve agarose, and then cooled.
  • the agarose gel thus prepared can be supplied with a supply by immersing the agarose gel in a solution containing a supply described below (hereinafter, this may be referred to as a “supply solution”) or Alternatively, a method of dissolving agarose as described above, cooling the mixture to an appropriate temperature, adding a concentrated supply solution thereto, and further cooling the mixture may be mentioned.
  • the appropriate temperature is equal to or higher than the freezing point of the agarose used and lower than the temperature at which the feed is denatured. Specifically, 30 to 50 ° C is preferable.
  • the concentrated feed solution refers to a solution that has been concentrated so that the concentration of the feed solution in the finally prepared agarose gel is as described below.
  • the immersing time is not particularly limited as long as the supplied material sufficiently permeates the agarose gel, but is preferably 1 hour or more.
  • the temperature at the time of immersion is preferably low, for example, 4 ° C. in order to maintain the activity of the feed.
  • a specific removing method there is a method in which agarose gel is taken out from the common solution using tweezers or the like, and the contact surface of the gel with the reaction solution is contacted with paper or the like.
  • the agarose gel containing the supplied material may be prepared in a container for performing a protein synthesis reaction (hereinafter, this may be referred to as a “reaction container”), or the agarose gel may be prepared using an appropriate container. Later, it may be appropriately shaped according to the reaction vessel.
  • the shape of the agarose gel to be adjusted is such that when the reaction solution is brought into contact with an interface, the supply material, the synthesized target protein, the decomposed product, etc.
  • the shape is such that the diffusion is performed freely and the strength is maintained such that the agarose gel is not dissolved during the reaction.
  • a shape having a wide contact surface with the reaction solution is used. Specific examples include those solidified in a reaction vessel, small particles, and those shaped according to the shape of the bottom surface of the reaction solution.
  • the reaction vessel may be any as long as it can carry out the cell-free protein synthesis reaction of the present invention. Specifically, for example, a plastic tube, a spin column, a multi-well plate, etc. Is preferably used.
  • the plastic tube may be of any shape, and specific examples thereof include a 1.5-2 ml capacity eppendorf tube, a 5-5 O ml capacity plastic tube, and the like.
  • those having a filter having an appropriate pore size at the bottom thereof are also included.
  • An appropriate pore size is preferably a range in which a substance necessary for a protein synthesis reaction does not pass, and a feed, a synthesized target protein, a degradation product, and the like can freely pass.
  • a filter having a pore size of 0.1 to 0.45 ra, a dialysis membrane having a limiting molecular weight of 10 kD to 300 kD, ultrafiltration, or the like is used.
  • the agarose gel containing the feed is preferably prepared in the tube by the above-described method, or formed so as to be immersed in the reaction solution charged in the tube.
  • a spin column has a filter with an appropriate pore size at the bottom and can be centrifuged by a centrifuge.
  • the appropriate pore size means a pore size that allows the synthesized target protein to pass therethrough, but does not allow gel and sol components to pass through.
  • a filter having a filter of 0.1 to 0.45 / xm or a dialysis membrane having a limiting molecular weight of 10 kD to 300 kD is preferable.
  • a capacity of 0.5 to 1 Oml is preferably used.
  • the agarose gel containing the feed is preferably prepared in the tube by the above-described method, or is shaped so as to be immersed in the reaction solution charged in the tube.
  • the method of containing the feed is the same as described above.
  • a centrifugal separator may be used in a state where the agarose gel is contained. Therefore, it is preferable to use agarose having a concentration of 0.1 to 2% agarose.
  • the plastic multi-well plate used in the method of the present invention is not particularly limited, but the 1-well has a capacity of 0.1 to 5 O ml, and a filter having a pore size of 0.2 2 / m at the bottom or a limiter. Those having a dialysis membrane having a molecular weight of 10 kD to 300 kD are preferably used. Even when a multi-well plate is used, the agarose gel containing the feed material is either solidified in the well by the above-described method or shaped so as to be immersed in the reaction solution charged in the well. Things are preferred. The method for incorporating the feed can be performed in the same manner as described above.
  • the gel filtration agent is purified to such an extent that it does not affect the above-mentioned protein synthesis reaction, has no non-specific adsorptivity, and can contain the above-mentioned feed, and the feed, synthesized target protein, and degradation A substance that can diffuse freely but can form an interface with the reaction solution is selected and used.
  • Specific examples of the gel filtration agent include Cef Adex (manufactured by Amersham Bioscience), Cefacryl (manufactured by Amersham Bioscience), Sepharose (manufactured by Amersham Bioscience), and the like.
  • the synthesized target protein can be purified by using a gel filtration agent having an affinity for the target protein or a part of the polypeptide.
  • the gel filtration agent equilibrates it with the same feed solution as above.
  • the equilibration method is appropriately adjusted according to the selected gel filtration agent. Equilibration of the gel filtration agent may be performed in a reaction vessel, or may be performed in an appropriate vessel and then transferred to the reaction vessel.
  • a column tube, a spin column, a multiwell plate, a cup, or the like is preferably used as the reaction vessel.
  • the multi-well plate and the cup those having the same filter or dialysis membrane at the bottom can be used.
  • cups with filters for example, Stericup, manufactured by Millipore are also used as mass applications.
  • the transcription / translation reaction solution or the translation reaction solution is brought into contact with the gel or sol containing the supply described in the above (2) with an interface, and cultured at an appropriate temperature to obtain the target protein.
  • the transcription / translation reaction solution or the translation reaction solution those described in the above (1) can be used.
  • the amount of the reaction solution used for the synthesis reaction is not particularly limited, but is usually from lOAil to 50ml, preferably from 5 ⁇ l to 1Oml.
  • the amount of the gel or sol that brings such a reaction solution into contact with an interface may be an amount that can supply a supply such that protein synthesis in the reaction solution can be sufficiently performed.
  • the reaction solution is 50/1 to lml, it is preferable to use a gel or sol having a volume of about 0.1 to 10m1.
  • the method of adding the reaction solution so as to have an interface with the gel and the sol in the reaction vessel includes a method in which the supply in the gel and the sol is freely diffused into the reaction solution. There is no particular limitation as long as the method has a sufficient contact surface.
  • a method of placing the reaction solution on the agarose gel is preferable. In the case of agarose gel prepared to be immersed in the reaction solution, the reaction solution and the agarose gel are placed in a reaction vessel. A method of introducing a loin gel is used. At this time, the order in which the agarose gel is charged is not particularly limited.
  • the operation can be performed without taking into account the scattering of the reaction solution when the agarose gel is charged.
  • specific examples of the method of bringing the reaction solution into contact with the gel and the sol with an interface include a method in which the reaction solution is overlaid on the surface of the sol or the gel, or a method in which a solid gel is charged into the reaction solution. And a method of contacting the surface of the sol or gel with an interface.
  • the protein synthesis reaction is as described in (1) above. Further, it is preferable that the device has a sealing means so that the reaction solution is not evaporated and concentrated during the protein synthesis reaction.
  • reaction solution is layered on top of this.
  • the method is preferred.
  • the above-mentioned supply solution is further contacted via the filter or the dialysis membrane. You can also do so.
  • a container is further provided so that the bottom of the well can be used, and a supply solution is placed in the container. .
  • the target protein thus synthesized can be obtained by recovering the target protein from the reaction solution, gel or sol and, if necessary, purifying it by an appropriate method.
  • Recovery of the target protein from the reaction solution, gel or sol can be appropriately selected and performed depending on the respective reaction system.
  • the reaction is performed by performing the protein synthesis reaction as described in (3) above, and then centrifuging the reaction vessel and collecting the supernatant.
  • the solution can be recovered.
  • the reaction solution can also be collected from the bottom of the reaction vessel or the top of the agarose gel using a pipe or the like. After collecting the reaction solution, an appropriate amount of a buffer solution that can be used biochemically is added to the reaction vessel, and The recovery rate can be increased by recovering using a pipe or the like.
  • the target protein contained in the agarose gel can be recovered, for example, by freeze-thawing the agarose gel and centrifuging it.
  • a method of centrifugation it is preferable to put the melted agarose gel in a suitable container and centrifuge it at 300 to 1000 rpm.
  • the above-mentioned spin column is used as a container, the collection can be further simplified.
  • the target protein can be collected as necessary, for example, by freeze-thawing agarose gel together with the reaction solution and centrifuging the agarose gel in the same manner as described above. .
  • a buffer that can be used biochemically in the column after the reaction is completed hereinafter, this may be referred to as “eluate”.
  • the target protein can be recovered by eluting the target protein from the column.
  • the same centrifugation operation as in the case of agarose gel is preferably used.
  • the above eluate can be collected by a pipette or the like.
  • the above-mentioned eluate can be recovered by the same centrifugation operation and suction operation as in the case of agarose gel.
  • the recovery rate can be increased by adding the eluate and suspending the gel, and then recovering the solution added as described above in an appropriate method.
  • Possible eluents used include 20 mM phosphate buffer (PBS) containing 10 O mM NaCl, and salts including 10 to 500 mM NaCl 10 to: Hepes_K0H of LOO raM, Alternatively, a 10 to 10 O mM Tris-acetic acid solution or the like may be used.
  • PBS phosphate buffer
  • a 10 to 10 O mM Tris-acetic acid solution or the like may be used.
  • a buffer solution containing 5 to 20 mM magnesium ion can be used. Elution time, centrifugation, etc., should be appropriately selected depending on the gel filtration agent and target protein used. Can be adjusted.
  • the recovered eluate can be purified by a known method suitable for the target protein.
  • the target protein can be converted to an affinity gel carrier. It can be purified by two-take mouth chromatography.
  • the combination of the affinity gel carrier and the target protein used include an antibody column to which the target protein antibody is bound and the target protein, a fusion protein of guanoretathione sepharose and gu ⁇ tathione-1s transferase with the target protein, Examples include target proteins in which a nickel column is bound to a HIS tag.
  • the sol can be used as a mixture with the sol comprising the gel filtration agent described in the above (2).
  • the mixing method include a method of laminating a plurality of types of sols, a method of using a sol prepared by mixing a plurality of components, and the like.
  • the target protein can be purified by a known method suitable for each magnetic bead.
  • the target protein that has been intensively recovered and purified can be confirmed by a commonly used method known per se. Specifically, it is separated by SDS-polyacrylamide gel electrophoresis and stained with Coomassie Priliant Blue (CBB) or by autoradiography when amino acids containing radioisotope atoms are used. And so on.
  • CBB Coomassie Priliant Blue
  • a target protein is produced in a cell-free protein synthesis system, which comprises at least a component of the gel or sol and an aqueous solution having a substance consumed in a translation reaction, or a mixture thereof.
  • a reagent kit is provided.
  • the kit includes, in addition to the above, reagents for a cell-free protein synthesis reaction, components necessary for preparing the reaction solution described in (1) above, RNA polymerase, translation type I nucleic acid for positive control, translation ⁇ Bec for making mold But not necessarily all of them, and any combination of reagents and containers may be used as long as it is a kit that can be used in the method for producing the target protein of the present invention.
  • a means for performing protein synthesis by bringing the transcription and translation reaction solution into contact with a gel or sol containing at least a substance consumed in the transcription and / or translation reaction in both its matrix and the excluded volume.
  • An apparatus for producing a target protein in a cell-free protein synthesis system is provided.
  • the apparatus further includes means for preparing DNA as a base for translation type I, means for performing a transcription reaction on the DNA, means for recovering and purifying the synthesized target protein, and confirming the obtained target protein.
  • any combination of means may be used as long as it can be used in the method for producing the target protein of the present invention.
  • Example 1 Method for synthesizing target protein using carrier for gel filtration
  • a wheat germ extract was prepared according to the method described in Madin, K. et al., Proc. Natl. Acad. Sci. USA., 97, 559-564 (2000). Oligo DNA containing the SP6 promoter sequence and the ribosome binding sequence in the order of 5, ⁇ 3 'was obtained by synthesis and tatttttttttacattaacaacatttttaggccttttggccataagggccaaa: rooster c row 5), while pXen-2 (GenBank accession No. U81274) was type I GST, PreScission protease (Amersham Pharmacia Biotech, Inc., sometimes referred to as “psp”). I got it.
  • sequence 5 and sequence 6 were ligated by ligation PCR in the order of 5 ′ ⁇ 3 ′, and at this time, Smal and SfiI site were also added to the 3 ′ side.
  • the transfected vector was previously cleaved with Nael, Sfil. Ligation of the sequence 3 treated with this vector and Sfi I was carried out via the 5 'blunt end and the 3' Sfi I site.
  • pEU- SS4 solid terpolymer was prepared (pEU- SS4) is, SP6 promoter P EU vector, a ribosome binding sequence, GST, psp cleavage site, DNA cloning site (Sma I, Sfi I) is inserted for expression wheat germ Vector.
  • the vector for GST-GFP gene expression (mirror type) is a DNA sequence encoding GFP (Haas, J. et al., Curr.
  • Plasmid- P CaMV35S- A DNA fragment was obtained by PCR using sGFP (S65T) -N0S3 '(25)) in the form of a rust, the 5' side was blunt-ended, and the 3 'side was Sfil-added, followed by treatment with SfiI.
  • the pEU_SS4 vector cleaved by treatment with Sma I and Sfi I was ligated with blunt ends on the 5 'side and Sfi I sites on the 3' side.
  • transcription was performed using SP6 RNA Polymerase (Proraega), and the obtained mRNA was purified by ethanol precipitation to prepare.
  • the reaction solution for cell-free protein synthesis using the wheat germ extract was 48% of the volume of the wheat germ extract prepared in (1) above, 30 mM HEPES-K0H, pH 7.6, 100 raM potassium acetate, 2.7 mM magnesium acetate, 0.4 raM spermidine, 2.5 mM dithiothreitol, 20 kinds of L-amino acids (0.3 mM each), 1.2 mM ATP, 0.25 mM GTP, 16
  • the above mRNA (1 mg / ml reaction volume) was prepared and used for raM creatine phosphate, 0.2 mg / ml creatine kinase, and 800 units / ml ribonuclease inhibitor (RNasinTM, manufactured by Promega). This reaction solution was gently placed on the surface of the sol in the column prepared in 500 ⁇ above in (2), and reacted at 26 ° C for 48 hours.
  • the column tip was opened and eluted until the reaction solution surface reached the gel surface. 10 ml of elution buffer (PBS) was added to the gel so that the gel surface was not disturbed, and the mixture was flown, and fractions of 2 ml each were collected. Of the eluate of each fraction, ⁇ was diluted 1/500, and then the amount of the target protein (GST-GFP) contained in the kit was measured using an ELISA kit (manufactured by Amersham Bioscience) using an anti-GST antibody. The amount of protein synthesized per ml of reaction solution is shown in Fig. 1 as the average value of each fraction.
  • PBS elution buffer
  • FIG. 1 shows a comparison between the amount of protein synthesized using G5OF and control experiments.
  • the vertical axis indicates the amount of GST-GFP as the target protein synthesized per 1 ml of the reaction solution.
  • Type ⁇ was obtained by synthesis of oligo DNA containing the SP6 promoter sequence and the ribosome binding sequence in the order of 5 ′ ⁇ 3 ′ (sequence 5), while the DNA sequence encoding GFP (Haas, J. et al. , Curr. Biol., 6 (3), 315-324 (1996), Plasmid- P CaMV35S-sGFP (S65T) -N0S3 '(25)) was obtained by the PCR method. Next, the above sequences were ligated in the order of 5 ′ ⁇ 3 ′ by ligation PCR. At this time, Sfilsite was added to the 3 ′ side.
  • an SfiI site was introduced from pEU3b (Sawasaki., T. et al, Proc. Natl. Acad. Sci. USA, 99 (23), 14652-14657, 2002), excluding the SP6 promoter sequence and the ⁇ sequence.
  • the resulting vector was cleaved with Nae I and Sfi I in advance, and ligated with the sequence treated with Sfi I, blunt ends on the 5 ′ side, and Sfi I sites on the 3 side.
  • the amount of target protein (GFP) synthesized was separated by native polyacrylamide electrophoresis, stained with CBB, and the amount of synthesis per 1 ml of the reaction solution was quantified based on the intensity of the band corresponding to GFP.
  • the amount of synthesized GFP per ⁇ l of the reaction solution was determined by immersing a large amount of agarose in 100 ⁇ l of the reaction solution, 50 ⁇ l. In the order of 1 in which agarose was immersed and 50 ⁇ l in which agarose was immersed, the amount was almost the same, and almost the same amount as in the dialysis cup method was obtained.
  • the wheat germ extract was prepared according to the method described in Madin, K. et al., Pro Natl. Acad. Sci. USA., 97, 559-564 (2000).
  • An oligo DNA containing the SP6 promoter sequence and the ribosome binding sequence in the order of 5 ′ ⁇ 3 ′ was obtained by synthesis (aaagccggccgatttaggtgacactatagaacatcaacatcttacattttacattataattttcactctc tatttttttttacattaacaacatttttaggccttttggccataagggBank.
  • PreScission protease As GST, PreScission protease (Amersham Pharmacia Biotech, hereinafter sometimes referred to as “psp”) A DNA fragment (ctggaagttctgttccagggtccc: sequence 6) containing a cleavage site in the order of 5 ′ ⁇ 3 ′ was obtained by PCR. Next, the above sequence 5 and sequence 6 were ligated by ligation PCR in the order of 5 ′ ⁇ 3 ′, and at this time, Smal and SfiI sites were added to the 3 side. From pEU3b (Sawasaki., T. et al, Proc. Natl. Acad. Sci.
  • the vector into which the Sfil site was introduced was cleaved with Nael, Sfil in advance. Ligation of the sequence 3 treated with this vector and SfiI was carried out through the 5 ′ blunt end and the 3 ′ SfiI site.
  • the vector (pEU-SS4) prepared in this manner is an expression vector for wheat germ in which the SP6 promoter, ribosome binding sequence, GST, psp cleavage site, and DNA cloning sites (Sma I, Sfi I) have been inserted into the pEU vector. It is.
  • the vector for GST-GFP gene expression contains a DNA sequence encoding GFP (Haas, J. et al., Curr. Biol., 6 (3), 315-324 (1996), Plasmid- P CaMV35S- sGFP (S65T) -N0S3 '(25)) was made into a ⁇ type, a 5'-side was blunt-ended, and a Sfil was added to the 3'-side, a DNA fragment was obtained by PCR, and then treated with SfiI.
  • the pEU-SS4 vector cleaved by treatment with SmaI and SfiI was ligated with blunt ends on the 5 side and SfiI site on the 3 side.
  • transcription was carried out using SP6 RNA Polymerase (Proraega), and the obtained mRNA was purified by ethanol precipitation to prepare.
  • the amount of the target protein (GST-GFP) synthesized was determined by GST-ELISA measurement. As described in (3) above, the reaction solution 11 recovered from this method and the overlay method was diluted to 1Z500, respectively, and then diluted with an ELISA kit (Amersham Bioscience) using an anti-GST antibody.
  • Target protein contained
  • the vertical axis indicates the amount of the target protein reacted with the anti-GST antibody (per 1 ml of the reaction solution).
  • the agarose concentration is 0.3%
  • the synthesis amount is higher than 0.5%
  • the reaction volume added on the agarose gel is less than 15 ⁇ 1.
  • 30 ⁇ 1 and 60 // 1 produced higher amounts of protein.
  • 60 ⁇ l overlay on 0.3% agarose gel about 1.5 times the amount of protein synthesis was obtained compared to the overlay method.
  • ⁇ 7 protein As the poorly water-soluble protein, ⁇ 7 protein (Helix Research Institute, Inc., clone No. NT2RP2001529-1-1), which became insoluble when synthesized by the above-mentioned overlay method or the like, was used.
  • the 0RF fragment of PK7 (SEQ ID NO: 1) was obtained by PCR using a 5′-side primer (SEQ ID NO: 2) and a 3′-side primer (SEQ ID NO: 3).
  • Example 1 (2) Sephadex-1 G5 OF (manufactured by Amersham Biosciences) was equilibrated with a supply solution, and the sol 1 Om1 was equilibrated with a column (Bio-Radnet) having an inner diameter of 2.5 cm and a length of 10 cm. And 10 ml of the above feed solution was added thereto, and eluted until the liquid surface reached the gel surface.
  • the reaction solution for cell-free protein synthesis using the wheat germ extract was 48% of the wheat germ extract prepared in Example 1 (1) above, 30 mM HEPES-K0H, pH 7.6, and 100 mM acetate acetate.
  • indicates that the sample was not centrifuged
  • S indicates the supernatant
  • indicates the precipitate. Shows the amount of protein to be applied.
  • the GST-PK7 force present in the precipitate in the dialysis cup method is not seen in the method of the present invention.
  • the wheat germ extract was prepared according to the method described in Madin, K. et al., Proc. Natl. Acad. Sci. USA., 97, 559-564 (2000). Oligo DNA containing the SP6 promoter sequence and ribosome binding sequence in the order of 5, ⁇ 3 'was obtained by synthesis, and tatttttttttacattaacaacatttttaggccttttggccataagggccaaa: d column 5), while pXen-2 (GenBank accession No.
  • U81274 was used as a GST A DNA fragment (ctggaagttctgttccagggtccc: sequence 6) containing a PreScission protease (Amersham Pharmacia Biotech, Inc., hereinafter sometimes referred to as “psp”) cleavage site in the order of 5 ′ ⁇ 3 ′ was obtained by PCR. Next, the above sequence 5 and sequence 6 were ligated by ligation PCR in the order of 5 ′ ⁇ 3 ′. At this time, Smal and SfiI sites were added to the 3 ′ side. From pEU3b (Sawasaki., T. et al, Proc. Natl. Acad. Sci.
  • the vector for GST-GFP gene expression contains a DNA sequence encoding GFP (Haas, J. et al., Curr. Biol., 6 (3), 315-324 (1996), Plasmid-pCaMV35S-sGFP (S65T) -N0S3 '(25)) was made into a ⁇ type, the 5' side was blunt-ended, and the 3 'side was sifted with Sfil to obtain a DNA fragment by PCR, followed by treatment with Sfi I, The pEU_SS4 vector, which had been cleaved by Sma I and Sfi I treatment in advance, was ligated with blunt ends on the 5 'side and Sfi I sites on the 3 side.
  • Sephadex-1 G50F gel (manufactured by Amersham Biosciences) is suspended in 3 volumes of pure water, allowed to stand, discarded supernatant, washed, and then 3 volumes of feed solution (30 mM HEPES-K0H, pH 7.6, 100 mM potassium acetate, 2.7 mM magnesium acetate, 0.4 mM spermidine, 2.5 mM dithiothreitol, 20 kinds of L-amino acids (0.3 mM each), 1.2 mM ATP, 0.25 mM GTP, 16 mM creatine phosphate) and equilibrated twice.
  • the column tip was opened, and in the method of the present invention, elution was carried out until the reaction solution surface reached the gel surface.
  • elution was carried out by flowing 1.2 ml of elution buffer (PBS) with added gel so that the gel surface was not disturbed.
  • PBS elution buffer
  • the reaction solution was collected with a pipette. After diluting 1 ⁇ l of the collected solution to 1500, the amount of the target protein (GST-GFP) contained in the ELISA kit (manufactured by Amersham Bioscience) using an anti-GST antibody was measured. The amount of protein synthesized per 1 ml of the reaction solution is shown in FIG.
  • a translation reaction in a cell-free protein synthesis system is long-lasting, is applicable to a reaction system having a large capacity, and can be performed by a simple synthesizer.
  • a method for synthesizing a cell-free protein with high growth efficiency is provided.
  • a method for separating and purifying a protein synthesized in the same container after a transcription / translation reaction or a translation reaction, a reagent kit for performing the protein synthesis reaction, and a protein obtained by the protein synthesis reaction Can also be manufactured.
  • the protein synthesized is diffused to the sol side, so that it is insoluble when synthesized by a normal cell-free protein synthesis method. Was obtained in a dissolved state.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

It is intended to provide a method of synthesizing a protein at a high synthesis efficiency by which a translation reaction can be continued for a long time in a cell-free protein synthesis system, which is applicable to a large-scaled reaction system and which can be carried out by using a simple apparatus. It is also intended to provide a method of performing the synthesis and purification of a protein in a single container after the completion of the synthesis reaction as described above. Moreover, it is intended to provide a reagent kit and an apparatus for carrying out these methods. Namely, a method of producing a target protein with the use of a cell-free protein synthesis system characterized in that the protein is synthesized by bringing a liquid mixture for a transcription/translation reaction or a translation reaction into contact, via an interface, with a gel or a sol containing a substance to be consumed in the transcription/translation reaction or the translation reaction in both of its matrix and its exclusion volume.

Description

明細書  Specification
タンパク質製造方法 技術分野  Technology for protein production
本発明は、 無細胞タンパク質合成系を用いて目的タンパク質を製造する方法に 関する。 より詳細には、 本発明は、 転写,翻訳反応または翻訳反応 (以下、 これ を 「タンパク質合成反応」 と称することがある) において消費される物質をその マトリックス及び排除容積の両方に含むゲルまたはゾルに、 転写 ·翻訳反応また は翻訳反応液を、 界面を有して接触させることによりタンパク質合成を行うこと を特徴とする上記方法、 該方法を行うための試薬キット、 および該方法を行うた めの装置などに関する。 背景技術  The present invention relates to a method for producing a target protein using a cell-free protein synthesis system. More specifically, the present invention relates to a gel or sol containing a substance consumed in a transcription, translation reaction or translation reaction (hereinafter sometimes referred to as “protein synthesis reaction”) in both its matrix and excluded volume. A method for performing protein synthesis by bringing a transcription / translation reaction or translation reaction solution into contact with an interface, a reagent kit for performing the method, and a method for performing the method. And related devices. Background art
無細胞タンパク質合成反応において、タンパク質合成反応をバッチで行う場合、 反応が途中で停止してしまい十分なタンパク質合成量が得られないという問題点 があった。 そこで S p i r i n等は、 従来の方法で調製した無細胞タンパク質合 成反応溶液に、 原料であるアミノ酸と A T P、 G T Pを限外ろ過膜を介して連続 的に供給すること、 およぴ合成された目的タンパク質を反応溶液から除去するこ とによって(連続式無細胞タンパク質合成反応)、反応時間を 2 0時間以上にわた つて持続させることに成功し、 従来の 2 0倍を越えるタンパク質合成収量を達成 したと報告している (A. S. Spirin, et al. , (1998) , Science, 242, 1162 - 1164、 以下、 これを 「透析法」 と称することがある)。  In a cell-free protein synthesis reaction, when performing a protein synthesis reaction in a batch, there is a problem that the reaction is stopped halfway and a sufficient amount of protein synthesis cannot be obtained. Therefore, Spirin et al. Were able to continuously supply raw materials, amino acids, ATP, and GTP to cell-free protein synthesis reaction solutions prepared by conventional methods through ultrafiltration membranes, and were synthesized. By removing the target protein from the reaction solution (continuous cell-free protein synthesis reaction), we succeeded in maintaining the reaction time for more than 20 hours, and achieved a protein synthesis yield more than 20 times that of the past. (AS Spirin, et al., (1998), Science, 242, 1162-1164; hereinafter, this may be referred to as "dialysis method").
また、 遠藤等は、 生体抽出物を含む合成反応溶液 (反応相) と基質 *ェネルギ 一源供給溶液 (供給相) を両相の直接的な接触界面を介した自由拡散によって、 供給相の基質 ·エネルギー源分子が反応相の翻訳反応系へ連続的に供給されると 同時に、 反応相で生じた副生成物を供給相へ希釈排除されることによって合成反 応の持続時間を延長させ、 このことによつて合成反応の効率を高めることを原理 とする拡散連続バッチ方式無細胞タンパク質合成方法を提案している (WO O 2 ノ 2 4 9 3 9号公報) (以下、 これを 「重層法」 と称することがある)。 この方法 においては、 反応相と供給相の液体接触界面が乱れないように両相を重層する必 要があるため、 操作が比較的難しいという難点があった。 また界面の面積が大き かったり、 重層する溶液の量が多いと界面が形成されにくくなるため、 少量の合 成反応溶液を用いて微量のタンパク質合成を行う場合に特に適していた。さらに、 タンパク合成反応によってできる合成反応阻害産物をタンパク合成体 (ポリソー ム) と分離することができないため、 合成量が透析法などと比べて低いという欠 点があった。 Endo et al. Reported that the synthesis reaction solution (reaction phase) containing biological extracts and the substrate * energy source solution (feed phase) were free-diffused through the direct contact interface between the two phases, and the substrate As the energy source molecules are continuously supplied to the translation reaction system in the reaction phase, the duration of the synthesis reaction is extended by diluting and excluding by-products generated in the reaction phase into the supply phase. Thus, a diffusion continuous batch-based cell-free protein synthesis method based on the principle of increasing the efficiency of the synthesis reaction has been proposed (WO 02/4939). "). This way In, there was a drawback that the operation was relatively difficult because it was necessary to layer both phases so that the liquid contact interface between the reaction phase and the supply phase would not be disturbed. In addition, if the area of the interface is large or the amount of the solution to be overlaid is large, the interface is difficult to be formed. Therefore, the method is particularly suitable when a small amount of a synthesis reaction solution is used to synthesize a small amount of protein. Furthermore, the synthesis reaction inhibition product produced by the protein synthesis reaction cannot be separated from the protein synthesis product (polysome), so that the synthesis amount is low compared with the dialysis method.
さらに、 遠藤等によれば、 無細胞タンパク質合成系において、 該合成系に用い る反応槽が分子篩可能な担体によつて調製され、 無細胞タンパク質合成系に関与 する材料物質が該担体を移動相として展開され、 展開中に無細胞タンパク質合成 系反応が実行され、 その結果として、 合成タンパク質を回収する方法が提案され ている (特開 2 0 0 0— 3 1 6 5 9 5号公報)。本方法では、 上記の透析法や重層 法と同様のタンパク質合成能を有しながら、 合成されたタンパク質が、 該担体中 で分離され、 精製されるという点で有利である。 しかし、 供給液を展開液として 該担体に連続的に添加する必要があり、 反応装置の構造が自動化などに必ずしも 適切とは言えなかった。  Further, according to Endo et al., In a cell-free protein synthesis system, a reaction vessel used in the synthesis system is prepared by a carrier capable of molecular sieving, and the material involved in the cell-free protein synthesis system is transferred to the mobile phase. A method of recovering a synthetic protein as a result of performing a cell-free protein synthesis reaction during the development has been proposed (Japanese Patent Application Laid-Open No. 2000-316595). The present method is advantageous in that the synthesized protein is separated and purified in the carrier while having the same protein synthesis ability as the above-mentioned dialysis method and overlay method. However, it was necessary to continuously add the feed solution as a developing solution to the carrier, and the structure of the reaction apparatus was not always suitable for automation.
さらに、特表 2 0 0 3— 5 2 5 6 1 6号公報には、反応混合物の低分子成分(供 給物)、特に反応により消費される基質を、全反応器空間に十分に均一に分配して、 反応器空間において、 マトリックスの排除容積のみが高分子成分、 特に触媒活性 反応物 (反応液) に対して利用し得て、 マトリックスの排除容積では基質の変換 のみがなされ得る反応器でタンパク質合成を行う方法が開示されている。 本方法 では、 マトリックスの排除容積に反応溶液を充填する必要があるため、 供給液で マトリックスを膨潤させた後に、 反応溶液と交換する工程、 具体的には、 ポンプ で反応液を供給したり、 反応液を添加した後にカラム内でこれらを攪拌する等の 工程が必須となる。 従って、 本方法に用いる反応装置の構造も自動化などには必 ずしも適切とは言えなかった。  Furthermore, Japanese Patent Application Laid-Open No. 2003-525256 16 discloses that the low-molecular components (supply) of the reaction mixture, in particular, the substrate consumed by the reaction, are sufficiently homogeneously distributed in the entire reactor space. In the reactor space, only the excluded volume of the matrix can be used for polymer components, especially catalytically active reactants (reactants) in the reactor space, and only the conversion of the substrate can be performed in the excluded volume of the matrix. Discloses a method for performing protein synthesis. In this method, it is necessary to fill the excluded volume of the matrix with the reaction solution.Therefore, the process of swelling the matrix with the supply solution and exchanging with the reaction solution, specifically, supplying the reaction solution with a pump, After adding the reaction solution, a step of stirring these components in the column is essential. Therefore, the structure of the reactor used in this method was not necessarily appropriate for automation.
無細胞タンパク質合成は、 ある側面において自動化が求められている技術であ る。そのためには、簡便な合成装置によって、高いタンパク質合成能を保持し得、 かつ該合成装置が容量の大きい反応系にも適用可能であるような合成方法が求め られていた。 発明の開示 Cell-free protein synthesis is a technology that requires automation in certain aspects. For this purpose, there is a demand for a synthesis method that can maintain high protein synthesis ability with a simple synthesizer and that can be applied to a reaction system having a large capacity. Had been. Disclosure of the invention
本発明の第 1の目的は、 無細胞タンパク質合成系において翻訳反応が長時間持 続し、 容量の大きい反応系にも適用可能で、 かつ簡便な合成装置によって行うこ とができるタンパク質合成能の高い無細胞タンパク質合成方法を提供することで ある。  A first object of the present invention is to provide a cell-free protein synthesis system in which the translation reaction lasts for a long time, is applicable to a reaction system having a large capacity, and has a protein synthesis ability that can be performed by a simple synthesizer. It is to provide a high cell-free protein synthesis method.
本発明の第 2の目的は、 転写 ·翻訳反応または翻訳反応後に、 同一容器内で合 成された目的タンパク質を分離精製する方法等を提供することである。  A second object of the present invention is to provide a method for separating and purifying a target protein synthesized in the same container after a transcription / translation reaction or a translation reaction.
本発明の第 3の目的は、 該タンパク質合成反応を行うための試薬キットを提供 することであり、 また本発明の第 4の目的は、 該タンパク質合成反応系を用いる 目的タンパク質の製造装置を提供することである。  A third object of the present invention is to provide a reagent kit for performing the protein synthesis reaction, and a fourth object of the present invention is to provide an apparatus for producing a target protein using the protein synthesis reaction system. It is to be.
本発明者らは上記した本発明の目的を達成するために鋭意研究を重ねた結果、 転写 ·翻訳反応または翻訳反応において消費される物質をそのマトリックス及び 排除容積の両方に含むゲルまたはゾルに、 転写 ·翻訳反応または翻訳反応液を、 界面を有して接触させることによりタンパク質合成を行うことによれば、 タンパ ク質合成反応が長時間持続されること、 さらに、 マトリックスとしてゲルろ過剤 を用いることによれば、 該ゲルろ過剤により合成された目的タンパク質が分離精 製されることを見出した。  The present inventors have conducted intensive studies to achieve the above object of the present invention. As a result, a gel or sol containing a substance consumed in a transcription / translation reaction or a translation reaction in both its matrix and excluded volume, According to protein synthesis by contacting a transcription / translation reaction or translation reaction solution with an interface, the protein synthesis reaction is maintained for a long time, and a gel filtration agent is used as a matrix. According to this, it was found that the target protein synthesized by the gel filtration agent was separated and purified.
即ち、本発明によれば、 (1 )無細胞タンパク質合成系を用いて目的タンパク質 を製造する方法であって、 転写 ·翻訳反応または翻訳反応において消費される物 質をそのマトリックス及び排除容積の両方に含むゲルまたはゾルに、 転写 ·翻訳 反応または翻訳反応液を界面を有して接触させることによりタンパク質合成を行 うことを特徴とする方法、  That is, according to the present invention, (1) a method for producing a target protein using a cell-free protein synthesis system, wherein a substance consumed in a transcription / translation reaction or a translation reaction is reduced in both the matrix and the excluded volume. A method comprising performing protein synthesis by bringing a transcription / translation reaction or a translation reaction solution into contact with the gel or sol contained in the above with an interface.
( 2 ) ゲルまたはゾルに透析膜を介して転写 ·翻訳反応または翻訳反応において 消費される物質が供給されることを特徴とする上記 (1 ) に記載の方法、 (2) The method according to (1), wherein a substance consumed in a transcription / translation reaction or a translation reaction is supplied to the gel or sol via a dialysis membrane.
( 3 ) ゲルまたはゾルが、 高分子物質を構成要素とするものであることを特徴と する上記 (1 ) または (2 ) に記載の方法、 (3) The method according to the above (1) or (2), wherein the gel or sol comprises a polymer substance as a constituent.
( 4 ) 高分子物質が、 ゲルろ過剤であり、 転写 ·翻訳反応または翻訳反応後に、 同一容器内で、 合成された目的タンパク質を分離精製することを特徴とする上記(4) The high molecular substance is a gel filtration agent, and after the transcription / translation reaction or the translation reaction, Characterized in that the synthesized target protein is separated and purified in the same container.
(1) 〜 (3) のいずれかに記載の方法、 The method according to any one of (1) to (3),
(5) 高分子物質が、 目的タンパク質またはその一部のポリペプチドと親和性を 有するものであることを特徴とする上記 (3) または (4) に記載の方法、  (5) The method according to (3) or (4) above, wherein the polymer substance has an affinity for the target protein or a partial polypeptide thereof.
(6)ゲルが、ァガロースを構成要素とするものであることを特徴とする上記(1) 〜 (3) のいずれかに記載の方法、  (6) The method according to any one of (1) to (3) above, wherein the gel comprises agarose as a constituent element.
(7) 目的タンパク質が、水難溶性タンパク質であることを特徴とする上記(1) 〜 (6) のいずれかに記載の方法、  (7) The method according to any one of (1) to (6) above, wherein the target protein is a poorly water-soluble protein.
(8) 無細胞タンパク質合成系の転写 ·翻訳反応または翻訳反応において消費さ れる物質をそのマトリックス及び排除容積の両方に含む上記 (1) 〜 (7) のい ずれかに記載の方法に用いるためのゲルまたはゾル、  (8) For use in the method according to any one of (1) to (7) above, wherein the substance consumed in the transcription / translation reaction or translation reaction of the cell-free protein synthesis system is contained in both the matrix and the excluded volume. Gel or sol,
(9) 少なくとも、 ゲルまたはゾルの構成要素と、 翻訳反応において消費される 物質を含む水溶液、 あるいはそれらの混合物を含む、 (1) から (7) の何れかに 記載の方法によって無細胞タンパク質合成系において目的タンパク質を製造する ための試薬キット、  (9) Cell-free protein synthesis by the method according to any one of (1) to (7), including at least a gel or sol component and an aqueous solution containing a substance consumed in a translation reaction, or a mixture thereof. A reagent kit for producing the target protein in the system,
(10) 少なくとも無細胞タンパク質合成系の転写 ·翻訳反応または翻訳反応に おいて消費される物質をそのマトリックス及び排除容積の両方に含むゲルまたは ゾルに、 転写 ·翻訳反応または翻訳反応液を、 界面を有して接触させることによ りタンパク質合成を行う手段を有することを特徴とする、 無細胞タンパク質合成 系を用いる目的タンパク質製造装置、  (10) Transfer the transcription / translation reaction or translation reaction solution to a gel or sol containing at least the substance consumed in the transcription / translation reaction or translation reaction of the cell-free protein synthesis system in both its matrix and the excluded volume. An apparatus for producing a target protein using a cell-free protein synthesis system, which comprises means for performing protein synthesis by contacting with
が提供される。 図面の簡単な説明 Is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の方法、 透析カップ法、 および重層法で合成された GST-GFPタ ンパク質の量を示すグラフである。  FIG. 1 is a graph showing the amount of GST-GFP protein synthesized by the method of the present invention, the dialysis cup method, and the overlay method.
図 2は、 本発明の方法および重層法で合成された GST-GFPタンパク質の量を示 すグラフである。  FIG. 2 is a graph showing the amount of GST-GFP protein synthesized by the method of the present invention and the overlay method.
図 3は、 本発明の方法、 および透析力ップ法で合成された GST- PK7タンパク質 を示す電気泳動写真である。 図 4は、 本発明の方法、 透析カップ法、 および重層法で合成された可溶化 P K 7—G S Tタンパク質の量を示すグラフである。 FIG. 3 is an electrophoresis photograph showing the GST-PK7 protein synthesized by the method of the present invention and the dialysis method. FIG. 4 is a graph showing the amount of solubilized PK7-GST protein synthesized by the method of the present invention, the dialysis cup method, and the overlay method.
図 5は、 本発明の方法、 及び排除容積中でタンパク質合成反応を行う方法で合 成された GST-GFPタンパク質の量を示すグラフである。 発明を実施するための最良の形態  FIG. 5 is a graph showing the amount of GST-GFP protein synthesized by the method of the present invention and the method of performing a protein synthesis reaction in an excluded volume. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態についてより詳細に説明する。  Hereinafter, embodiments of the present invention will be described in more detail.
( 1 ) 無細胞タンパク質合成系  (1) Cell-free protein synthesis system
本発明は、 無細胞タンパク質合成系を用いて目的タンパク質を製造する方法で あって、 転写 ·翻訳反応または翻訳反応において消費される物質をそのマトリツ クス及び排除容積の両方に含むゲルまたはゾルに、 転写 ·翻訳反応または翻訳反 応液を界面を有するように接触させてタンパク質合成を行うことを特徴とする方 法である。  The present invention relates to a method for producing a target protein using a cell-free protein synthesis system, comprising: a gel or a sol containing a substance consumed in a transcription / translation reaction or a translation reaction in both its matrix and excluded volume; This method is characterized in that protein synthesis is performed by bringing a transcription / translation reaction or a translation reaction solution into contact with an interface.
本発明において、 無細胞タンパク質合成系とは、 生細胞を用いずに、 遺伝子に コードされた目的タンパク質を合成する方法をいう。 具体的には、 リボソームや tRNA等のタンパク質合成に必要な物質を含む水溶性成分を細胞から抽出し、 これ にさらに翻訳踌型、 RNA ポリメラ一ゼ、 転写 ·翻訳基質、 エネルギー源等を添加 して転写 ·翻訳反応または翻訳反応液 (以下、 これを 「反応溶液」 と称すること がある) を調製し、 これを人工の容器内で培養してタンパク質合成を行うもので ある。  In the present invention, the cell-free protein synthesis system refers to a method for synthesizing a target protein encoded by a gene without using living cells. Specifically, water-soluble components containing substances required for protein synthesis such as ribosomes and tRNAs are extracted from cells, and translation type I, RNA polymerase, transcription / translation substrates, energy sources, etc. are further added. A reaction solution for transcription / translation or translation (hereinafter sometimes referred to as a “reaction solution”) is prepared and cultured in an artificial container for protein synthesis.
無細胞タンパク質合成系に用いられる細胞抽出液としては、 大腸菌、 植物種子 の胚芽、 ゥサギ網状赤血球等の細胞から抽出されたものが挙げられる。 細胞抽出 液の調製方法としては、 それ自体既知の方法を用いてもよいし、 市販のものを用 いることもできる。 具体的には、 大腸菌抽出液は、 Pratt, J. , et al. , Transcription and Translation, Haraes, 179-209, B. D. & Higgins, S. J. eds. , IRL Press, 0xford (1984)に記載の方法等に準じて調製することができる。 市販の 無細胞タンパク質合成系または細胞抽出液としては、大腸菌由来のものは、 E. coli S30 extract system (Promega社製) と RTS 500 Rapid Translation System (Roche 社製)等が挙げられ、ゥサギ網状赤血球由来のものは Rabbit Reticulocyte Lysate Sytera (Promega社製) 等、 更にコムギ胚芽由来のものは PRO TEIOS™ (T0Y0B0社 製) 等が挙げられる。 このうち、 植物種子の胚芽抽出液の系を用いることが好ま しく、 植物種子としては、 コムギ、 ォォムギ、 イネ等のイネ科の植物のものが好 ましい。 本発明で用いる無細胞合成系としては、 ポリリボソーム形成活性の高い タンパク質合成系が好ましいため、コムギ胚芽抽出液を用いたものが好適である。 コムギ胚芽抽出液の作製法としては、 例えば Johnston, F. B. et al. , Nature, 179, 160- 161 (1957)、あるいは Erickson, A. H. et al. , (1996) Meth. In Enzymol. , 96, 38-50 等に記載の方法を用いることができる。 更に、 該抽出液中に含まれる 翻訳阻害因子、 例えばトリチン、 チォニン、 核酸分解酵素等を含む胚乳を取り除 く等の処理 (特開 2 0 0 0— 2 3 6 8 9 6公報等) や、 翻訳阻害因子の活性化を 抑制する処理 (特開平 7— 2 0 3 9 8 4号公報) を行うことも好ましい。 このよ うにして得られた細胞抽出液は、 従来と同様の方法によりタンパク質合成系に用 いることができる。 The cell extract used in the cell-free protein synthesis system includes those extracted from cells such as Escherichia coli, plant seed germ, and egret reticulocytes. As a method for preparing the cell extract, a method known per se or a commercially available method can be used. Specifically, the E. coli extract is prepared by the method described in Pratt, J., et al., Transcription and Translation, Haraes, 179-209, BD & Higgins, SJ eds., IRL Press, 0xford (1984). It can be prepared according to it. As a commercially available cell-free protein synthesis system or cell extract, those derived from Escherichia coli include E. coli S30 extract system (manufactured by Promega) and RTS 500 Rapid Translation System (manufactured by Roche). Origin is Rabbit Reticulocyte Lysate Sytera (manufactured by Promega) and the like, and those derived from wheat germ include PRO TEIOS ™ (manufactured by T0Y0B0). Among them, it is preferable to use a system of an embryo extract of a plant seed, and as a plant seed, a plant of the grass family such as wheat, oats, and rice is preferable. As the cell-free synthesis system used in the present invention, a protein synthesis system having high polyribosome-forming activity is preferable, and therefore, a system using a wheat germ extract is preferable. Methods for preparing a wheat germ extract include, for example, Johnston, FB et al., Nature, 179, 160-161 (1957), or Erickson, AH et al., (1996) Meth. In Enzymol., 96, 38- 50 and the like can be used. Furthermore, treatments such as removing endosperm containing translation inhibitory factors contained in the extract, for example, tritin, thionine, nuclease, and the like (Japanese Patent Application Laid-Open No. 2000-236896), and It is also preferable to carry out a treatment for suppressing the activation of the translation inhibitory factor (Japanese Patent Application Laid-Open No. Hei 7-23084). The cell extract thus obtained can be used in a protein synthesis system by a method similar to the conventional method.
反応溶液の組成としては、 上記細胞抽出液、 翻訳铸型、 基質となるアミノ酸、 エネルギー源、 各種イオン、 緩衝液、 ATP 再生系、 核酸分解酵素阻害剤、 tRM、 還元剤、 ポリエチレングリコール、 3 ' , 5, 一 cAMP、 葉酸塩、 抗菌剤等が含まれ る。 また翻訳鎵型として DNAを用いる場合には、 更に、 転写反応に必要な R A合 成の基質、 及び RNAポリメラーゼ等を含むことができる。 これらは目的タンパク 質や、 用いるタンパク質合成系の種類によって適宜選択して調製される。 基質と なるアミノ酸は、 タンパク質を構成する 2 0種類のアミノ酸で、 それぞれ 0 . 0 5〜1 . O mMの範囲が適当である。 またエネルギー源としては、 ATP、 または GTPが挙げられ、 ATPは 1 . 0〜 1 . 5 mM、 GTPは 0 . 2〜 0 . 3 mM添加する ことが好ましい。 各種イオン、 及ぴその適当な反応溶液中の濃度としては、 6 0 〜1 5 0 mMの酢酸カリウム、 1〜 1 O mMの酢酸マグネシウム等が挙げられる。 緩衝液としては、 1 5〜5 O mMの Hepes—K0H、 あるいは 1 0〜 5 O mMの Tris— 酢酸あるいは 1 5〜3 O mMの Hepesと 1 5〜3 O mMの Hepes- Na等が用いられる。 また ATP再生系としては、 ホスホェノールピルべ一トとピルビン酸キナ一ゼの組 み合わせ、 または 1 2〜2 0 mMのクレアチンリン酸 (クレアチンホスフエ一ト) と 0 . 2〜1 . 6 ; u g/ ju lのクレアチンキナーゼの組み合わせが挙げられる。 核 酸分解酵素阻害剤としては、 反応溶液 1 μ 1あたり 0 . 0 1〜 3 . 0 Uのリボヌ クレア一ゼインヒビターや、 0 . 0 1〜3 Uのヌクレアーゼインヒビター等が挙 げられる。 The composition of the reaction solution includes the above-mentioned cell extract, translation type, substrate amino acid, energy source, various ions, buffer, ATP regeneration system, nuclease inhibitor, tRM, reducing agent, polyethylene glycol, 3 ' , 5, 1 cAMP, folate, antibacterial agents, etc. are included. When DNA is used as the type I translation, it may further contain a substrate for RA synthesis required for the transcription reaction, RNA polymerase, and the like. These are prepared by appropriately selecting according to the target protein and the type of the protein synthesis system to be used. The amino acids serving as the substrate are 20 kinds of amino acids constituting the protein, and each is suitably in the range of 0.05 to 1.0 mM. Examples of the energy source include ATP and GTP, and it is preferable to add 1.0 to 1.5 mM of ATP and 0.2 to 0.3 mM of GTP. Examples of the various ions and their appropriate concentrations in the reaction solution include 60 to 150 mM potassium acetate, and 1 to 10 mM magnesium acetate. As the buffer, 15 to 5 OmM Hepes-K0H, 10 to 5 OmM Tris-acetic acid, or 15 to 3 OmM Hepes and 15 to 3 OmM Hepes-Na are used. Can be The ATP regeneration system may be a combination of phosphoenol pyruvate and pyruvate kinase, or 12 to 20 mM creatine phosphate (creatine phosphate) and 0.2 to 1.6. Ug / jul creatine kinase combinations. Nuclear Examples of the acid-degrading enzyme inhibitors include ribonuclease inhibitors of 0.01 to 3.0 U per μl of the reaction solution, and nuclease inhibitors of 0.01 to 3 U.
このうち、 リボヌクレアーゼインヒビターの具体例としては、 ヒ ト胎盤由来の RNase inhibitor (T0Y0B0社製等)等が用いられる。 tR Aは、 Moniter, R. , et al. , Biochim. Biophys. Acta. , 43, 1 (1960)等に記載の方法により取得することがで きるし、 市販のものを用いることもできる。 還元剤としては、 0 . 1〜5 . 0 niM のジチオスレィ トール等が挙げられる。抗菌剤としては、 0 . 0 0 1〜0 . 0 1 % のアジ化ナトリウム、又は 0 . 1〜0 . 2 mg/mlのアンピシリン等が挙げられる。 核酸安定化剤としては、 0 . 3〜0 . 5 mMスペルミジン等が用いられる。 更に、 RNA ポリメラーゼとしては翻訳铸型に含まれるプロモータ一に適したものが用い られる、 具体的には、 例えば、 SP6 R Aポリメラーゼゃ T7 RNAポリメラーゼ等を 用いることができる。これらの添加量は適宜選択されて合成反応液が調製される。 上記の反応溶液は、 これを適当な容器内で適当な温度で適当時間培養すること により目的タンパク質合成反応が行われる。 また、 目的タンパク質とは、 無細胞 タンパク質合成系で合成され得るものであれば何れのものでもよいが、 水難溶性 タンパク質を本発明の方法で合成すると、 他の方法に比べて水溶性となるため効 果が高い。  Among them, specific examples of ribonuclease inhibitors include human placenta-derived RNase inhibitor (T0Y0B0, etc.) and the like. tRA can be obtained by the method described in Moniter, R., et al., Biochim. Biophys. Acta., 43, 1 (1960) or the like, or a commercially available product can be used. Examples of the reducing agent include dithiothreitol of 0.1 to 5.0 niM. Examples of the antibacterial agent include 0.001 to 0.01% sodium azide, and 0.1 to 0.2 mg / ml ampicillin. As the nucleic acid stabilizer, 0.3 to 0.5 mM spermidine or the like is used. Furthermore, as the RNA polymerase, those suitable for one of the promoters included in translation type I are used. Specifically, for example, SP6RA polymerase ゃ T7 RNA polymerase and the like can be used. These addition amounts are appropriately selected to prepare a synthesis reaction solution. The target protein synthesis reaction is carried out by culturing the above reaction solution in an appropriate container at an appropriate temperature for an appropriate time. The target protein may be any protein that can be synthesized in a cell-free protein synthesis system. However, when a poorly water-soluble protein is synthesized by the method of the present invention, it becomes more water-soluble than other methods. The effect is high.
小麦胚芽抽出液を用いた場合、 培養温度は 1 0〜4 0 °C、 好ましくは 1 5〜3 0 °C、 さらに好ましくは 2 0〜2 6 °Cで行われる。 反応時間はタンパク質合成が 行われる限り特に制限はないが、 本発明のように、 転写 ·翻訳反応又は翻訳反応 で消費される物質を供給する系を用いると 7 5時間程度まで反応が持続する。 ( 2 ) 供給物を含むゲルまたはゾルの調製  When a wheat germ extract is used, the culture is carried out at a temperature of 10 to 40 ° C, preferably 15 to 30 ° C, and more preferably 20 to 26 ° C. The reaction time is not particularly limited as long as protein synthesis is performed. However, when a system for supplying a substance consumed in the transcription / translation reaction or the translation reaction is used as in the present invention, the reaction lasts up to about 75 hours. (2) Preparation of gel or sol containing feed
本発明においては、 上記無細胞タンパク質合成を行う場合に、 転写 ·翻訳反応 または翻訳反応において消費される物質 (本明細書中では、 これを 「供給物」 と 称することがある) をそのマトリックス及び排除容積の両方に含むゲルまたはゾ ルに、 転写 ·翻訳反応または翻訳反応液を、 界面を有して接触させることにより タンパク質合成を行う。  In the present invention, when performing the above-mentioned cell-free protein synthesis, a substance consumed in a transcription / translation reaction or a translation reaction (in this specification, this may be referred to as a “supply”) is referred to as a matrix and a matrix. Protein synthesis is performed by bringing a transcription / translation reaction or translation reaction solution into contact with a gel or a zole contained in both excluded volumes with an interface.
転写 ·翻訳反応または翻訳反応において消費される物質 (供給物) とは、 上記 無細胞タンパク質合成反応において消費される全ての物質を意味するが、 本発明 のゲルまたはゾルはこの全てを含む必要はなく、 それぞれの反応系に応じ適宜選 択され得るもので、例えば、 ( 1 )に記載した反応溶液の組成として挙げたもの等 である。 ゲルまたはゾルに含まれる供給物の量としては、 これを用いてタンパク 質合成反応を行った際に、 目的タンパク質合成反応を行うのに十分な量であれば よレ、。 供給物をそのマトリックス及び排除容積の両方に含むゲルまたはゾルの調 製方法としては、例えば、 ゲルまたはゾルを供給物を含む溶液(以下、 これを「供 給溶液」と称することがある)で平衡化する方法が挙げられる。平衡化した後に、 ゲルまたはゾルの容積を上回る上澄み部分の供給液は、 この後、 反応液を界面を 有して接触させるため、反応液が薄まらないよう取り除いておくことが好ましレ、。 また、 ゲルとしてァガロースゲルなどを用いる場合には、 ァガロースを溶解した 後に、 適当な温度まで冷却し、 これに濃縮供給溶液を添加してさらに冷却する方 法等が挙げられる。 この場合の供給溶液としては、 上記 (1) の無細胞タンパク 質合成系におけるタンパク質合成反応において消費される物質が、 反応溶液とほ ぼ等濃度で含まれるものが好ましく用いられる。 Substances (supply) consumed in the transcription / translation reaction or translation reaction It means all substances consumed in the cell-free protein synthesis reaction, but the gel or sol of the present invention does not need to include all of them, and can be appropriately selected according to each reaction system. )), And the like. The amount of the supply contained in the gel or the sol may be an amount sufficient to perform the target protein synthesis reaction when performing the protein synthesis reaction using this. Examples of a method for preparing a gel or sol containing the feed in both the matrix and the excluded volume include, for example, a solution containing the gel or sol containing the feed (hereinafter, this may be referred to as a “feed solution”). A method for equilibration is given. After equilibration, the feed liquid in the supernatant portion that exceeds the volume of the gel or sol is preferably removed so that the reaction solution does not become thin because the reaction solution comes into contact with the interface. ,. When agarose gel or the like is used as the gel, a method of dissolving agarose, cooling to an appropriate temperature, adding a concentrated supply solution thereto, and further cooling is used. As the supply solution in this case, a solution containing a substance consumed in the protein synthesis reaction in the cell-free protein synthesis system of the above (1) at almost the same concentration as the reaction solution is preferably used.
具体的には、 無細胞タンパク質合成系におけるタンパク質合成反応が、 翻訳反 応のみである場合、 0. 25〜0. 4mMの 20種類の L—アミノ酸、 1. 0〜 1. 5mMの ATP、 0. 2〜0. 3mMの GTP、 60〜: I 50 mMの酢酸力リウム、 :!〜 1 OmMの酢酸マグネシウム、 ホスホエノーノレピルべ一トとピルビン酸キナ ーゼ、 または 12. 0〜20. OraMのクレアチンリン酸 (クレアチンホスフエ一 ト) と 0. 2〜1. 6
Figure imgf000009_0001
のクレアチンキナーゼ、 0. 3〜0. 5raMのスぺ ルミジン、 0. 1〜5. OraMのジチオスレィトール、 供給溶液 1 julあたり 0. 3〜3.0Uのリボヌクレアーゼインヒビターを含む 15〜5 OmMの Hepes— K0H、 あるいは 10〜5 OraMの Tris—酢酸溶液あるレヽは 15〜3 OmMの Hepes と 1 5 〜3 OmMの Hepes- Na等が挙げられる。
Specifically, when the protein synthesis reaction in the cell-free protein synthesis system is only a translation reaction, 20 L-amino acids of 0.25 to 0.4 mM, ATP of 1.0 to 1.5 mM, 2 to 0.3 mM GTP, 60 to: I 50 mM potassium acetate,:! To 1 OmM magnesium acetate, phosphoenolpyruvate and pyruvate kinase, or 12.0 to 20. OraM creatine phosphate (creatine phosphate) and 0.2 to 1.6
Figure imgf000009_0001
Creatine kinase, 0.3-0.5 raM perimedin, 0.1-5. OraM dithiothreitol, feed solution containing 0.3-3.0 U ribonuclease inhibitor per 1 jul 15-5 OmM Hepes-K0H, or 10-5 OraM Tris-acetic acid solution may include 15-3 OmM Hepes and 15-3 OmM Hepes-Na.
本発明で用いられるゲルまたはゾルとは、 上記供給物をそのマトリックス及び 排除容積の両方に含有でき、 これと界面を有して接触させた反応溶液との間で供 給物、 合成された目的タンパク質、 および分解物等が自由拡散し得るものであれ ば如何なるものであってもよい。 具体的には、 高分子物質を構成要素とするもの が挙げられる。 ここで、 ゲノレとは、 上記構成要素が独立した流動性を失って、 集 合して固化した状態のものをいい、 ゾルとは、 液体中に構成要素が分散して流動 性を示す状態のものをいう。 本発明で用いられるゲルの好ましい例としては、 ァ ガロース、またはアクリルアミ ド等を構成要素とするもの等が挙げられる。また、 ゾルの好ましい例としては、 ゲルろ過剤、 ァフィ二ティゲル剤、 磁性ビーズ等を 構成要素とするもの等が挙げられる。 The gel or sol used in the present invention means that the above-mentioned feed can be contained in both the matrix and the excluded volume, and the feed and the synthesized object are formed between the feed and the reaction solution having an interface. Any substance may be used as long as proteins, degradation products, and the like can be freely diffused. Specifically, those with polymer substances as constituent elements Is mentioned. Here, genole refers to a state in which the above components have lost independent fluidity and are aggregated and solidified.A sol is a state in which the components are dispersed in a liquid and exhibit fluidity. A thing. Preferred examples of the gel used in the present invention include those having agarose or acrylamide as a constituent element. Preferred examples of the sol include those having a gel filtration agent, an affinity gel agent, magnetic beads, and the like as constituent elements.
本明細書において、 マトリックスとは、 ゲルまたはゾルが占める空間のうち、 ゲルまたはゾルの構成分子が占める空間を意味する。 また、 排除容積とは、 ゲル またはゾルが占める空間のうち、 マトリックス以外の空間を意味する。  In the present specification, the matrix means a space occupied by gel or sol constituent molecules among spaces occupied by gel or sol. The excluded volume means the space occupied by the gel or sol other than the matrix.
供給物を含むゲルまたはゾルの調製方法としては、 上記の性質を有し、 力、つそ のマトリックス及ぴ排除容積の両方に上記 ( 1 ) の無細胞タンパク質合成反応を 行うに充分な量の供給物が含有される方法であれば特に制限はない。  As a method for preparing the gel or sol containing the feed, a gel or sol having the above-mentioned properties and having an amount sufficient for carrying out the cell-free protein synthesis reaction of (1) above in both the force, the matrix and the excluded volume is required. There is no particular limitation as long as the method contains the feed.
以下に、 ゲルの 1例としてァガロースゲルを用いる場合を具体的に説明する。 ァガロースは、 上記のタンパク質合成反応に影響を及ぼさない程度に精製されて いて、 下述する条件で無細胞タンパク質合成反応を行った際に溶解しない適度な 強度を保ち得るものを選択して用いる。 具体的には、 Agarose s (二ツボンジーン 社製) 等が好ましく用いられる。 ァガロースゲルの調製方法としては、 上記ァガ ロースが重量%として 0 . 1〜1 5 %、 好ましくは 0 . 1〜1 . 0 %、 さらに好 ましくは 0 . 2〜0 . 5 %、 最も好ましくは 0 . 3 %となるように水あるいは反 応溶液に含まれる緩衝液に懸濁し、 これを加熱してァガロースを溶解した後に冷 却する方法等が用いられる。  Hereinafter, a case where agarose gel is used as an example of the gel will be specifically described. Agarose is selected so as to be purified to such an extent that it does not affect the above-mentioned protein synthesis reaction, and to maintain a suitable strength that does not dissolve when a cell-free protein synthesis reaction is performed under the conditions described below. Specifically, Agaroses (manufactured by Nippon Gene) and the like are preferably used. As a method for preparing agarose gel, the above agarose is 0.1 to 15% by weight, preferably 0.1 to 1.0%, more preferably 0.2 to 0.5%, most preferably Is suspended in water or a buffer solution contained in the reaction solution to a concentration of 0.3%, heated to dissolve agarose, and then cooled.
このように調製したァガロースゲルに、 供給物を含有させる方法としては、 該 ァガロースゲルを、 下述する供給物を含有する溶液 (以下、 これを 「供給溶液」 と称することがある) に浸漬するか、 または、 上記のとおりァガロースを溶解し た後に、 適当な温度まで冷却し、 これに濃縮供給溶液を添加してさらに冷却する 方法等が挙げられる。 ここで、 適当な温度とは、 用いるァガロースの凝固点以上 で、 かつ供給物が変性する温度未満である。 具体的には、 3 0〜5 0 °Cが好まし い。 また、 濃縮供給溶液とは、 最終的に調製されたァガロースゲル中の供給溶液 の濃度が下述のとおりになるように濃縮したものをいう。 また、 供給溶液にァガ ロースゲルを浸漬する場合には、 浸漬する時間は供給物がァガロースゲルに十分 に浸透する時間であれば特に制限はないが、 1時間以上が好ましい。 浸漬する際 の温度は、 供給物の活性を保っために低温、 例えば 4 °Cが好ましい。 さらに、 供 給溶液に浸漬した後は、 これを反応溶液と接触させる前に、 接触表面に付着した 供給液を除去することが好ましい。 具体的な除去方法としては、 ァガロースゲル を共有溶液からピンセット等を用いて取り出し、 該ゲルの反応溶液ろの接触表面 を、 紙などに接触させる方法等が挙げられる。 The agarose gel thus prepared can be supplied with a supply by immersing the agarose gel in a solution containing a supply described below (hereinafter, this may be referred to as a “supply solution”) or Alternatively, a method of dissolving agarose as described above, cooling the mixture to an appropriate temperature, adding a concentrated supply solution thereto, and further cooling the mixture may be mentioned. Here, the appropriate temperature is equal to or higher than the freezing point of the agarose used and lower than the temperature at which the feed is denatured. Specifically, 30 to 50 ° C is preferable. In addition, the concentrated feed solution refers to a solution that has been concentrated so that the concentration of the feed solution in the finally prepared agarose gel is as described below. Also, the ag When immersing the loin gel, the immersing time is not particularly limited as long as the supplied material sufficiently permeates the agarose gel, but is preferably 1 hour or more. The temperature at the time of immersion is preferably low, for example, 4 ° C. in order to maintain the activity of the feed. Further, after dipping in the supply solution, it is preferable to remove the supply solution attached to the contact surface before contacting the solution with the reaction solution. As a specific removing method, there is a method in which agarose gel is taken out from the common solution using tweezers or the like, and the contact surface of the gel with the reaction solution is contacted with paper or the like.
供給物を含むァガロースゲルの調製は、 タンパク質合成反応を行うための容器 (以下、 これを 「反応容器」 と称することがある) で行ってもよいし、 適当な容 器を用いてァガロースゲルを調製した後に、 これを反応容器に合わせて適当に整 形してもよい。 調整するァガロースゲルの形状は、 これを下述するように、 反応 溶液を界面を有して接触させた際に、 反応溶液との間で供給物質、 合成された目 的タンパク質、 および分解物等の拡散が自由に行われるもので、 かつ反応中にァ ガ口一スゲルが溶解しない程度の強度が保たれる形状であれば特に制限はない。 好ましくは、 反応溶液との接触面が広い形状が挙げられる。 具体的には、 反応容 器中で固化させたものや、 小粒状のもの、 さらには反応溶液の底面の形状に合わ せて整形したもの等が挙げられる。  The agarose gel containing the supplied material may be prepared in a container for performing a protein synthesis reaction (hereinafter, this may be referred to as a “reaction container”), or the agarose gel may be prepared using an appropriate container. Later, it may be appropriately shaped according to the reaction vessel. As described below, the shape of the agarose gel to be adjusted is such that when the reaction solution is brought into contact with an interface, the supply material, the synthesized target protein, the decomposed product, etc. There is no particular limitation as long as the shape is such that the diffusion is performed freely and the strength is maintained such that the agarose gel is not dissolved during the reaction. Preferably, a shape having a wide contact surface with the reaction solution is used. Specific examples include those solidified in a reaction vessel, small particles, and those shaped according to the shape of the bottom surface of the reaction solution.
以下に、 反応容器の具体例とともに、 これに適した供給物を含有するァガロー スゲルの調製方法の例を詳述する。 反応容器としては、 本発明の無細胞タンパク 質合成反応が行われ得るものであれば如何なるものであってもよいが、 具体的に は、 例えば、 プラスチック製のチューブ、 スピンカラム、 マルチウエルプレート 等が好ましく用いられる。  Hereinafter, specific examples of the reaction vessel and an example of a method for preparing an agarose gel containing a suitable supply material will be described in detail. The reaction vessel may be any as long as it can carry out the cell-free protein synthesis reaction of the present invention. Specifically, for example, a plastic tube, a spin column, a multi-well plate, etc. Is preferably used.
プラスチック製のチューブとしては、 何れの形状のものでもよいが、 具体的に は、 1 . 5〜 2 ml容量のエツペンドルフチューブ、 5〜5 O ml容量のプラスチッ クチューブ等が挙げられる。 また、 その底部に適当な孔径のフィルターを有する ものも含む。 適当な孔径とは、 タンパク質合成反応に必要な物質が通過せず、 か つ供給物、 合成された目的タンパク質、 および分解物等が自由に通過し得る範囲 が好ましい。 具体的には、 0 . 1〜0 . 4 5 ra の孔径を有するフィルターや限 界分子量 1 0 k D〜3 0 0 k Dの透析膜あるいは限外濾過等が用いられる。 ブラ スチックチューブを用いる場合、 供給物を含有するァガロースゲルとしては、 上 記した方法で該チューブ内で調製したものや、 あるいは該チューブ内に投入した 反応溶液に浸漬するように整形したもの等が好ましい。 The plastic tube may be of any shape, and specific examples thereof include a 1.5-2 ml capacity eppendorf tube, a 5-5 O ml capacity plastic tube, and the like. In addition, those having a filter having an appropriate pore size at the bottom thereof are also included. An appropriate pore size is preferably a range in which a substance necessary for a protein synthesis reaction does not pass, and a feed, a synthesized target protein, a degradation product, and the like can freely pass. Specifically, a filter having a pore size of 0.1 to 0.45 ra, a dialysis membrane having a limiting molecular weight of 10 kD to 300 kD, ultrafiltration, or the like is used. bra When a stick tube is used, the agarose gel containing the feed is preferably prepared in the tube by the above-described method, or formed so as to be immersed in the reaction solution charged in the tube.
スピンカラムとは、 底部に適当な孔径のフィルターを有しており、 かつ遠心機 により遠心操作が可能なものをいう。 ここで、 適当な孔径とは、 合成された目的 タンパク質が通過し得るが、 ゲルおよびゾルの構成要素が通過しない孔径を意味 する。 具体的には、 例えば 0 . 1〜0 . 4 5 /x mのフィルターや、 限界分子量 1 0 k D〜3 0 0 k Dの透析膜等を有するものが好ましい。 容量としては、 0 . 5 ~ 1 O m lのものが好ましく用いられる。スピンカラムを用いる場合も、供給物を 含有するァガロースゲルとしては、 上記した方法で該チューブ内で調製したもの や、 あるいは該チューブ内に投入した反応溶液に浸漬するように整形したもの等 が好ましい。 供給物を含有させる方法も上記と同様である。 また、 スピンカラム の場合、 ァガロースゲルが入つている状態で遠心分離機にかけることがあるので ァガロースが 0 . 1〜 2 %濃度のものを用いることが好ましい。  A spin column has a filter with an appropriate pore size at the bottom and can be centrifuged by a centrifuge. Here, the appropriate pore size means a pore size that allows the synthesized target protein to pass therethrough, but does not allow gel and sol components to pass through. Specifically, for example, a filter having a filter of 0.1 to 0.45 / xm or a dialysis membrane having a limiting molecular weight of 10 kD to 300 kD is preferable. A capacity of 0.5 to 1 Oml is preferably used. When a spin column is used, the agarose gel containing the feed is preferably prepared in the tube by the above-described method, or is shaped so as to be immersed in the reaction solution charged in the tube. The method of containing the feed is the same as described above. In the case of a spin column, a centrifugal separator may be used in a state where the agarose gel is contained. Therefore, it is preferable to use agarose having a concentration of 0.1 to 2% agarose.
本発明の方法に用いられるプラスチック製のマルチウエルプレートとしては、 特に制限はないが、 1ゥエルが 0 . 1〜5 O ml容量のもので、 底部に 0 . 2 2 / m孔径のフィルターや限界分子量 1 0 k D〜3 0 0 k Dの透析膜等を有するもの が好ましく用いられる。 マルチウエルプレートを用いる場合も、 供給物を含有す るァガロースゲルとしては、 上記した方法で該ゥエル内で固化させたものや、 あ るいは該ゥュル内に投入した反応溶液に浸漬するように整形したもの等が好まし レ、。 供給物を含有させる方法も上記と同様にして行うことができる。  The plastic multi-well plate used in the method of the present invention is not particularly limited, but the 1-well has a capacity of 0.1 to 5 O ml, and a filter having a pore size of 0.2 2 / m at the bottom or a limiter. Those having a dialysis membrane having a molecular weight of 10 kD to 300 kD are preferably used. Even when a multi-well plate is used, the agarose gel containing the feed material is either solidified in the well by the above-described method or shaped so as to be immersed in the reaction solution charged in the well. Things are preferred. The method for incorporating the feed can be performed in the same manner as described above.
さらに、ゾルの 1例としてゲルろ過剤を用いる場合について具体的に説明する。 ゲルろ過剤は、 上記のタンパク質合成反応に影響を及ぼさない程度に精製されて いて、 非特異的な吸着性がなく、 上記供給物を含有でき、 供給物、 合成された目 的タンパク質、 および分解物等が自由拡散し得るが、 反応溶液との間に界面を形 成し得る性質を有するものを選択して用いる。 具体的なゲルろ過剤として、 セフ アデックス (アマシャムバイオサイエンス社製)、 セフアクリル (アマシャムバイ ォサイエンス社製)、 セファロース (アマシャムバイオサイエンス社製) 等が挙げ られる。 このうちセフアデックス G— 2 5、 G— 5 0、 セフアクリル S 3 0 O、 セファロ一ス 4 B が好ましく用いられる。 このうち、 セフアデックス G— 5 0力 S さらに好ましく、 セフアデックス G— 5 O Fineが特に好ましレ、。 また、 後述する とおり、 目的タンパク質またはその一部のポリべプチドと親和性を有するゲルろ 過剤を用いれば、 合成された目的タンパク質を精製することもできる。 Further, a case where a gel filtration agent is used as an example of the sol will be specifically described. The gel filtration agent is purified to such an extent that it does not affect the above-mentioned protein synthesis reaction, has no non-specific adsorptivity, and can contain the above-mentioned feed, and the feed, synthesized target protein, and degradation A substance that can diffuse freely but can form an interface with the reaction solution is selected and used. Specific examples of the gel filtration agent include Cef Adex (manufactured by Amersham Bioscience), Cefacryl (manufactured by Amersham Bioscience), Sepharose (manufactured by Amersham Bioscience), and the like. Of these, SEPHADEX G—25, G—50, Sefacryl S 30 O, Sepharose 4B is preferably used. Of these, SEPHADEX G-50 Force S is more preferable, and SEPHADEX G-5 O Fine is particularly preferable. Further, as described later, the synthesized target protein can be purified by using a gel filtration agent having an affinity for the target protein or a part of the polypeptide.
ゲルろ過剤は、 これを上記と同様の供給溶液で平衡化する。 平衡化の方法は、 選択したゲルろ過剤に応じて適宜調整する。 ゲルろ過剤の平衡化は、 反応容器中 で行ってもよいし、 適当な容器中で行った後にこれを反応容器へ移してもよい。 ゾルを用いる場合には反応容器としては、 カラムチューブ、 スピンカラム、 マル チウエルプレートやカップ等が好ましく用いられる。 また、 マルチウエルプレー トおよびカップについては、 底部に上記と同様のフィルターや透析膜を有するも のも用いることができる。 特に、 大量な応用としてフィルター付きカップ (例え ば、 ステリカップ、 ミリポア社製) 等も用いられる。  The gel filtration agent equilibrates it with the same feed solution as above. The equilibration method is appropriately adjusted according to the selected gel filtration agent. Equilibration of the gel filtration agent may be performed in a reaction vessel, or may be performed in an appropriate vessel and then transferred to the reaction vessel. When a sol is used, a column tube, a spin column, a multiwell plate, a cup, or the like is preferably used as the reaction vessel. As for the multi-well plate and the cup, those having the same filter or dialysis membrane at the bottom can be used. In particular, cups with filters (for example, Stericup, manufactured by Millipore) are also used as mass applications.
( 3 ) 目的タンパク質合成反応  (3) Target protein synthesis reaction
本発明においては、上記(2 ) に記載の供給物を含むゲルまたはゾルに、転写 · 翻訳反応液または翻訳反応液を界面を有して接触させ、 適当な温度で培養するこ とにより目的タンパク質を合成することができる。 転写 ·翻訳反応液または翻訳 反応液とは、 上記 (1 ) に記載したものを用いることができる。 該合成反応に用 いられる反応溶液の量としては、 特に制限はないが、 通常 l O Ai l〜5 0 m l、 好ましくは 5 Ο μ 〜 1 O m lである。 このような反応溶液を界面を有して接触 させる上記ゲルまたはゾルの量は、 反応溶液中のタンパク質合成が十分に行える 程度に供給物を供給し得る量であればよい。 具体的には、 反応溶液が 5 0 / 1〜 l m lの時、 容積として 0 . 1〜1 0 m 1程度のゲルまたはゾルを用いることが 好ましい。  In the present invention, the transcription / translation reaction solution or the translation reaction solution is brought into contact with the gel or sol containing the supply described in the above (2) with an interface, and cultured at an appropriate temperature to obtain the target protein. Can be synthesized. As the transcription / translation reaction solution or the translation reaction solution, those described in the above (1) can be used. The amount of the reaction solution used for the synthesis reaction is not particularly limited, but is usually from lOAil to 50ml, preferably from 5μl to 1Oml. The amount of the gel or sol that brings such a reaction solution into contact with an interface may be an amount that can supply a supply such that protein synthesis in the reaction solution can be sufficiently performed. Specifically, when the reaction solution is 50/1 to lml, it is preferable to use a gel or sol having a volume of about 0.1 to 10m1.
反応容器中で、 該ゲルおよぴゾルと界面を有して接触するように反応溶液を添 加する方法としては、 該ゲルおよびゾル中の供給物が反応溶液中へ自由に拡散す るに十分な接触面を有する方法であれば特に制限はない。 ゲルとしてァガロース ゲルを用いた場合で、 ァガロースゲルを反応溶液中で固化させて調製した場合、 このァガロースゲルの上に反応溶液を載せる方法が好ましい。 また、 反応溶液に 浸漬するように調製したァガロースゲルの場合には、 反応容器に反応溶液とァガ ロースゲルを投入する方法が用いられる。 このとき、 投入する順番は特に制限は ないが、 ァガロースゲルを投入した後に反応溶液を投入すると、 ァガロースゲル の投入の際に反応溶液の飛散等を考慮に入れずに操作することができる。 上記の 通り、 反応溶液をゲルおよびゾルと界面を有して接触させる方法の具体例として は、 反応液を、 ゾルまたはゲルの表面に重層する方法、 あるいは反応液に固形ゲ ルを投入することにより、 ゾルまたはゲルの表面に界面を有して接触させる方法 などが挙げられる。 タンパク質合成反応は、 上記 (1 ) のとおりである。 また、 タンパク質合成反応中に反応溶液が蒸発して濃縮されないように密閉手段を有す るものが好ましい。 The method of adding the reaction solution so as to have an interface with the gel and the sol in the reaction vessel includes a method in which the supply in the gel and the sol is freely diffused into the reaction solution. There is no particular limitation as long as the method has a sufficient contact surface. When agarose gel is used as the gel, and when the agarose gel is prepared by solidifying it in the reaction solution, a method of placing the reaction solution on the agarose gel is preferable. In the case of agarose gel prepared to be immersed in the reaction solution, the reaction solution and the agarose gel are placed in a reaction vessel. A method of introducing a loin gel is used. At this time, the order in which the agarose gel is charged is not particularly limited. However, if the reaction solution is charged after the agarose gel is charged, the operation can be performed without taking into account the scattering of the reaction solution when the agarose gel is charged. As described above, specific examples of the method of bringing the reaction solution into contact with the gel and the sol with an interface include a method in which the reaction solution is overlaid on the surface of the sol or the gel, or a method in which a solid gel is charged into the reaction solution. And a method of contacting the surface of the sol or gel with an interface. The protein synthesis reaction is as described in (1) above. Further, it is preferable that the device has a sealing means so that the reaction solution is not evaporated and concentrated during the protein synthesis reaction.
さらに、 ゾルの 1例としてゲルろ過剤を用いた場合については、 該反応容器に 上記 (2 ) に記載した供給液で平衡化したゲルろ過剤を充填した後に、 この上部 に反応溶液を重層する方法が好ましい。  Further, when a gel filtration agent is used as an example of the sol, after filling the reaction container with the gel filtration agent equilibrated with the supply solution described in (2) above, the reaction solution is layered on top of this. The method is preferred.
上記のタンパク質合成反応において、 反応容器として、 上記した適当な孔径の フィルターや透析膜を底部に有するものを用いた場合には、 このフィルターや透 析膜を介して、 さらに上記供給溶液を接触させるようにすることもできる。 具体 的には、 例えば、 マルチウエルプレートの底部に上記のフィルターがあるものを 用いた場合、 該ゥエルの底部がつかる程度にさらに容器を設け、 該容器中に供給 溶液を入れたもの等が好ましい。  In the above-mentioned protein synthesis reaction, when the above-mentioned filter having an appropriate pore size or a dialysis membrane at the bottom is used as the reaction vessel, the above-mentioned supply solution is further contacted via the filter or the dialysis membrane. You can also do so. Specifically, for example, when a filter having the above-mentioned filter at the bottom of the multi-well plate is used, it is preferable that a container is further provided so that the bottom of the well can be used, and a supply solution is placed in the container. .
( 4 ) 目的タンパク質の回収および精製  (4) Recovery and purification of target protein
かくして合成された目的タンパク質は、 これを反応溶液およびゲルまたゾル中 から回収し、 必要であれば適当な方法により精製することにより取得することが できる。  The target protein thus synthesized can be obtained by recovering the target protein from the reaction solution, gel or sol and, if necessary, purifying it by an appropriate method.
反応溶液およぴゲルまたゾルからの目的タンパク質の回収は、 それぞれの反応 系により適宜選択して行うことができる。 ゲルの 1例としてァ.ガロースゲルを用 いたタンパク質合成反応を行った場合では、 上記 (3 ) に記載のとおりタンパク 質合成反応を行った後、 反応容器を遠心して上清を回収することにより反応溶液 を回収することができる。 また、 反応容器の底面あるいはァガロースゲルの上部 からピぺット等を用いても反応溶液を回収することができる。 反応溶液を回収し た後に、 生化学的に用いられ得る緩衝液を該反応容器に適当量投入して、 これを ピぺット等を用いて回収することによれば回収率を高めることができる。さらに、 ァガロースゲル中に含まれる目的タンパク質は、 必要な場合には、 例えば、 ァガ ロースゲルを凍結融解し、 これを遠心分離すること等により回収することができ る。 遠心分離の方法としては、 融解したァガロースゲルを適当な容器に入れ、 こ れを 3 0 0 0〜 1 0 0 0 O rpm で遠心分離することが好ましい。 ここで、 容器と して上記したスピンカラムを用いることによればさらに簡便に回収することがで きる。 また、 反応容器としてスピンカラムを用いた場合には、 必要に応じて、 例 えば、 反応溶液とともにァガロースゲルを凍結融解し、 これを上記と同様に遠心 分離することによって目的タンパク質を回収することができる。 Recovery of the target protein from the reaction solution, gel or sol can be appropriately selected and performed depending on the respective reaction system. In the case of performing a protein synthesis reaction using agarose gel as an example of the gel, the reaction is performed by performing the protein synthesis reaction as described in (3) above, and then centrifuging the reaction vessel and collecting the supernatant. The solution can be recovered. The reaction solution can also be collected from the bottom of the reaction vessel or the top of the agarose gel using a pipe or the like. After collecting the reaction solution, an appropriate amount of a buffer solution that can be used biochemically is added to the reaction vessel, and The recovery rate can be increased by recovering using a pipe or the like. Furthermore, if necessary, the target protein contained in the agarose gel can be recovered, for example, by freeze-thawing the agarose gel and centrifuging it. As a method of centrifugation, it is preferable to put the melted agarose gel in a suitable container and centrifuge it at 300 to 1000 rpm. Here, if the above-mentioned spin column is used as a container, the collection can be further simplified. When a spin column is used as the reaction vessel, the target protein can be collected as necessary, for example, by freeze-thawing agarose gel together with the reaction solution and centrifuging the agarose gel in the same manner as described above. .
ゾルの 1例としてゲルろ過剤を用いたタンパク質合成を行った場合、 反応終了 後、 該カラムに生化学的に用いられ得る緩衝液 (以下、 これを 「溶出液」 と称す ることがある) を投入して、 該カラムから目的タンパク質を溶出することにより 回収することができる。 このような方法により目的タンパク質を回収すれば、 タ ンパク質合成反応と同一容器内で、 目的タンパク質を精製して取得することがで きる。  When protein synthesis is performed using a gel filtration agent as an example of a sol, a buffer that can be used biochemically in the column after the reaction is completed (hereinafter, this may be referred to as “eluate”) And the target protein can be recovered by eluting the target protein from the column. By recovering the target protein by such a method, the target protein can be purified and obtained in the same container as the protein synthesis reaction.
具体的な溶出方法は、 スピンカラムを用いた場合、 ァガロースゲルの場合と同 様の遠心操作が好ましく用いられる。 また、 マルチウエルプレートやカップを用 いた場合には、 ピペットなどにより上記溶出液を回収できる。 さらには、 反応容 器として上記の底部にフィルターを有するマルチウエルプレートゃカップを用い た場合には、 ァガロースゲルの場合と同様の遠心操作や吸引操作によって上記溶 出液を回収することができる。 さらに、 スピンカラムやマルチウエルプレートを 用いた場合、 溶出液を加えてゲルを懸濁した後に、 上記のとおりそれぞれに適し た方法で加えた該溶液を回収することにより回収率を上昇させることができる 用いられる溶出液としては、 1 0 O mM の NaCl を含む 2 0 mM リン酸緩衝液 (PBS)、 1 0〜5 0 0 mMの NaClなどの塩類を含む 1 0〜: L O O raMの Hepes_K0H、 あるいは 1 0〜1 0 O mMの Tris—酢酸溶液等が挙げられる。また、 リボソームが 該溶出液により分解して目的タンパク質と分離できなくなることを防ぐ用途で、 5〜2 0 mM マグネシウムイオンを含む緩衝液等を用いることもできる。 溶出時 間および遠心操作等は、 用いるゲルろ過剤や目的タンパク質により適宜選択して 調整できる。 As a specific elution method, when a spin column is used, the same centrifugation operation as in the case of agarose gel is preferably used. When a multiwell plate or cup is used, the above eluate can be collected by a pipette or the like. Furthermore, when a multiwell plate / cup having a filter at the bottom is used as the reaction vessel, the above-mentioned eluate can be recovered by the same centrifugation operation and suction operation as in the case of agarose gel. In addition, when using a spin column or multi-well plate, the recovery rate can be increased by adding the eluate and suspending the gel, and then recovering the solution added as described above in an appropriate method. Possible eluents used include 20 mM phosphate buffer (PBS) containing 10 O mM NaCl, and salts including 10 to 500 mM NaCl 10 to: Hepes_K0H of LOO raM, Alternatively, a 10 to 10 O mM Tris-acetic acid solution or the like may be used. In order to prevent the ribosome from being decomposed by the eluate and being unable to be separated from the target protein, a buffer solution containing 5 to 20 mM magnesium ion can be used. Elution time, centrifugation, etc., should be appropriately selected depending on the gel filtration agent and target protein used. Can be adjusted.
回収された溶出液は、 これを目的タンパク質に適した公知の方法により精製す ることができる。  The recovered eluate can be purified by a known method suitable for the target protein.
ここで、 ゾルとして目的タンパク質またはその部分ポリべプチドと親和性を有 する高分子物質 (以下、 これを 「ァフィニティゲル担体」 と称することがある) を用いることによれば、 目的タンパク質をァフィ二テイク口マトグラフィにより 精製することができる。 用いられるァフィニティゲル担体および目的タンパク質 との組み合わせとしては、 目的タンパク質抗体を結合した抗体カラムと目的タン パク質、 グノレタチオンセファロースとグ^^タチオン一 sトランスフェラーゼと目 的タンパク質との融合タンパク質、 ニッケルカラムと H I Sタグを結合した目的 タンパク質等が挙げられる。 このようなァフィ二ティゲル担体を用いる場合、 上 記ゾルの全てが該担体で構成される必要はなく、 上記 (2 ) に記載のゲルろ過剤 からなるゾルと混合して用いることもできる。 混合の方法は、 複数種のゾルを重 層する方法や、 複数の構成要素を混合して調整したゾルを用いる方法等が挙げら れる。また、目的タンパク質と親和性を有する磁性ビーズを用いることによれば、 目的タンパク質をそれぞれの磁性ビーズに適した公知の方法により精製すること ができる。  Here, by using a polymer substance having an affinity for the target protein or its partial polypeptide (hereinafter, this may be referred to as an “affinity gel carrier”) as the sol, the target protein can be converted to an affinity gel carrier. It can be purified by two-take mouth chromatography. Examples of the combination of the affinity gel carrier and the target protein used include an antibody column to which the target protein antibody is bound and the target protein, a fusion protein of guanoretathione sepharose and gu ^ tathione-1s transferase with the target protein, Examples include target proteins in which a nickel column is bound to a HIS tag. When such an affinity gel carrier is used, it is not necessary that all of the sol is composed of the carrier, and the sol can be used as a mixture with the sol comprising the gel filtration agent described in the above (2). Examples of the mixing method include a method of laminating a plurality of types of sols, a method of using a sol prepared by mixing a plurality of components, and the like. Further, by using magnetic beads having an affinity for the target protein, the target protein can be purified by a known method suitable for each magnetic bead.
力べして回収 ·精製された目的タンパク質は、 それ自体既知の通常用いられる 方法によって確認することができる。具体的には、 SDS—ポリアクリルアミ ドゲル 電気泳動により分離し、 これをクマシ一プリリアントブルー (CBB) 等により染色 したり、 あるいは放射性同位体原子を含むアミノ酸を用いた場合にはオートラジ ォグラフィ法等により確認することができる。  The target protein that has been intensively recovered and purified can be confirmed by a commonly used method known per se. Specifically, it is separated by SDS-polyacrylamide gel electrophoresis and stained with Coomassie Priliant Blue (CBB) or by autoradiography when amino acids containing radioisotope atoms are used. And so on.
( 5 ) 無細胞タンパク質合成用試薬キット  (5) Reagent kit for cell-free protein synthesis
本発明においては、 少なくとも、 上記ゲルまたはゾルの構成要素と、 翻訳反応 において消費される物質を有する水溶液、 あるいはそれらの混合物とを含むこと を特徴とする無細胞タンパク質合成系において目的タンパク質を製造するための 試薬キットが提供される。 該キットには、 他に、 無細胞タンパク質合成反応のた めの試薬、 上記 (1 ) に記載した反応溶液を作製するために必要な成分、 RNA ポ リメラーゼ、 陽性コントロール用翻訳铸型核酸、 翻訳铸型を作製するためのべク ター、 バッファ一類、 反応容器等が含まれるが、 これら全てを含む必要はなく、 本発明の目的タンパク質の製造方法に用い得るキットであれば如何なる試薬およ び容器の組み合わせであってもよい。 In the present invention, a target protein is produced in a cell-free protein synthesis system, which comprises at least a component of the gel or sol and an aqueous solution having a substance consumed in a translation reaction, or a mixture thereof. A reagent kit is provided. The kit includes, in addition to the above, reagents for a cell-free protein synthesis reaction, components necessary for preparing the reaction solution described in (1) above, RNA polymerase, translation type I nucleic acid for positive control, translationべ Bec for making mold But not necessarily all of them, and any combination of reagents and containers may be used as long as it is a kit that can be used in the method for producing the target protein of the present invention.
( 6 ) 無細胞タンパク質合成装置  (6) Cell-free protein synthesizer
本発明においては、 少なくとも転写および または翻訳反応において消費され る物質をそのマトリックス及び排除容積の両方に含むゲルまたはゾルに転写およ び翻訳反応液を接触させてタンパク質合成を行う手段を有することを特徴とする、 無細胞タンパク質合成系において目的タンパク質を製造するための装置が提供さ れる。 該装置には、 他に、 翻訳铸型の基となる DNAの調製手段、 該 DNAについて 転写反応を行う手段、 合成された目的タンパク質を回収および精製する手段、 取 得された目的タンパク質を確認するための手段等が含まれるが、 これら全てを含 む必要はなく、 本発明の目的タンパク質の製造方法に用い得る装置であれば如何 なる手段の組み合わせであってもよい。 実施例  In the present invention, there is provided a means for performing protein synthesis by bringing the transcription and translation reaction solution into contact with a gel or sol containing at least a substance consumed in the transcription and / or translation reaction in both its matrix and the excluded volume. An apparatus for producing a target protein in a cell-free protein synthesis system is provided. The apparatus further includes means for preparing DNA as a base for translation type I, means for performing a transcription reaction on the DNA, means for recovering and purifying the synthesized target protein, and confirming the obtained target protein. However, it is not necessary to include all of them, and any combination of means may be used as long as it can be used in the method for producing the target protein of the present invention. Example
以下、 実施例を挙げて本発明を詳細に説明するが、 本発明の範囲はこれらの実 施例により限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited by these Examples.
実施例 1 ゲルろ過用担体を用いた目的タンパク質合成方法 Example 1 Method for synthesizing target protein using carrier for gel filtration
( 1 ) 小麦胚芽抽出液および铸型の調製  (1) Preparation of wheat germ extract and type I
小麦胚芽抽出液は、 Madin, K. et al. , Proc. Natl. Acad. Sci. USA. , 97, 559-564 (2000)に記載の方法に準じて調製した。 SP6プロモーター配列おょぴリボ ソーム結合配列を 5, →3' の順に含むオリ ゴ DNA を合成によって取得し tatttttttttacattaacaacatttttaggccttttggccataagggccaaa :酉 c列 5 )、 一方、 pXen-2 (GenBank accession No. U81274)を铸型として GST、 PreScission protease (アマシャムフアルマシアバイオテク社、 以下 「psp」 と称することがある) 切断 部位を 5' →3' の)頓に含む DNA断片(ctggaagttctgttccagggtccc:酉己列 6 )を PCR 法によって取得した。次に上記配列 5と配列 6を 5' →3' の順にライグーション PCRによって結合し、 この際に 3' 側に Sma l, Sfi I siteの付加も行った。また、 pEU3b (Sawasaki. , T. et al , Proc. Natl. Acad. Sci. USA, 99 (23) , 14652-14657, 2002) から SP6プロモータ配列、 Ω配列およびマルチクローニングサイ トを除い て Nael、 Sfilサイ トを導入したベクターを、 あらかじめ Nae l,、 Sfi lによって 開裂した。 このべクタ一と Sfi Iによって処理した配列 3を、 5' 側の平滑末端、 3' 側の Sfi I siteを介してライゲーシヨンを行った。 このように作成したベタ ター(pEU- SS4)は、 PEUベクタ に SP6プロモーター、 リボソーム結合配列、 GST、 psp 切断部位、 D N Aクローニングサイ ト(Sma I, Sfi I)が挿入された小麦胚芽 用発現ベクターである。 GST - GFP遺伝子発現用ベクター (鏡型) は、 GFPをコード する DNA配列 (Haas, J. et al. , Curr. Biol. , 6 (3), 315-324 (1996)、 Plasmid -PCaMV35S-sGFP (S65T)-N0S3' (25) ) を銹型にして 5'側を平滑末端、 3'側に Sfil 付加した形で PCR法によって D N A断片を取得してから Sfi Iで処理を行い、 あ らかじめ Sma I、 Sfi I処理によって開裂した上記 pEU_SS4ベクターに、 5' 側は 平滑末端、 3' 側は Sfi I siteを介してライゲーシヨンすることによって作製し た。 このプラスミ ド D NAを铸型として、 SP6 RNA Polymerase (Proraega社製) を用いて転写を行レ、、得られた mRNAをエタノール沈殿によって精製して調製した。A wheat germ extract was prepared according to the method described in Madin, K. et al., Proc. Natl. Acad. Sci. USA., 97, 559-564 (2000). Oligo DNA containing the SP6 promoter sequence and the ribosome binding sequence in the order of 5, → 3 'was obtained by synthesis and tatttttttttacattaacaacatttttaggccttttggccataagggccaaa: rooster c row 5), while pXen-2 (GenBank accession No. U81274) was type I GST, PreScission protease (Amersham Pharmacia Biotech, Inc., sometimes referred to as “psp”). I got it. Next, the above sequence 5 and sequence 6 were ligated by ligation PCR in the order of 5 ′ → 3 ′, and at this time, Smal and SfiI site were also added to the 3 ′ side. Also, Natl. Acad. Sci. USA, 99 (23), 14652-14657, 2002) from pEU3b (Sawasaki., T. et al, Proc. Natl. Acad. The transfected vector was previously cleaved with Nael, Sfil. Ligation of the sequence 3 treated with this vector and Sfi I was carried out via the 5 'blunt end and the 3' Sfi I site. Thus solid terpolymer was prepared (pEU- SS4) is, SP6 promoter P EU vector, a ribosome binding sequence, GST, psp cleavage site, DNA cloning site (Sma I, Sfi I) is inserted for expression wheat germ Vector. The vector for GST-GFP gene expression (mirror type) is a DNA sequence encoding GFP (Haas, J. et al., Curr. Biol., 6 (3), 315-324 (1996), Plasmid- P CaMV35S- A DNA fragment was obtained by PCR using sGFP (S65T) -N0S3 '(25)) in the form of a rust, the 5' side was blunt-ended, and the 3 'side was Sfil-added, followed by treatment with SfiI. The pEU_SS4 vector cleaved by treatment with Sma I and Sfi I was ligated with blunt ends on the 5 'side and Sfi I sites on the 3' side. Using this plasmid DNA as type II, transcription was performed using SP6 RNA Polymerase (Proraega), and the obtained mRNA was purified by ethanol precipitation to prepare.
( 2 ) ゾルの調製 (2) Preparation of sol
セフアデックス _G25、 G50M、 G50F、 G50SF、 セファクリノレー S300、 セファロー ス 6Bゲル(アマシャムバイォサイエンス社製)は、純水 3倍量に懸濁して静置し、 上澄みを捨てて洗浄した後、 さらに 3倍量の供給液 (30 mM HEPES- K0H、 pH 7. 6、 100 mM酢酸カリウム、 2. 7 raM酢酸マグネシウム、 0. 4 mMスペルミジン、 2. 5 raM ジチォスレイ トール、 20種類の ァミノ酸(各 0. 3 raM)、 1. 2 raM ATP、 0. 25 raM GTP、 16 mMクレアチンリン酸)に懸濁して、平衡化した。このゾル 10 mlを内径 2. 5 cm、 長さ 10 cmのカラム (バイオラッドネ土製) に充填し、 10 mlの上記供給液を加え て、 液面がゲル表面に達するまで溶出した。  Sephadex _G25, G50M, G50F, G50SF, Sephacrylolé S300, Sepharose 6B gel (manufactured by Amersham Biosciences) were suspended in 3 volumes of pure water, allowed to stand, and the supernatant was discarded and washed. Three times the volume of the feed solution (30 mM HEPES-K0H, pH 7.6, 100 mM potassium acetate, 2.7 raM magnesium acetate, 0.4 mM spermidine, 2.5 raM dithiothreitol, 20 kinds of amino acids ( (0.3 raM), 1.2 raM ATP, 0.25 raM GTP, 16 mM creatine phosphate). 10 ml of this sol was packed in a column (2.5 cm in diameter, 10 cm in length) (made of Bio-Radne earth), and 10 ml of the above-mentioned feed solution was added thereto, and eluted until the liquid surface reached the gel surface.
( 3 ) 反応溶液の調製およびタンパク質合成反応  (3) Reaction solution preparation and protein synthesis reaction
コムギ胚芽抽出液を用いた無細胞タンパク質合成用の反応溶液は、容量の 48% の上記 (1 ) で調製したコムギ胚芽抽出液、 30 mM HEPES- K0H、 pH 7. 6、 100 raM 酢酸カリウム、 2. 7 mM酢酸マグネシウム、 0. 4 raMスペルミジン、 2. 5 mMジチォ スレイトール、 20種類の L-ァミノ酸(各 0. 3 mM)、 1. 2 mM ATP、 0. 25 mM GTP、 16 raMクレアチンリン酸、 0.2 mg/mlクレアチンキナーゼ、 800 units/ml ribonuclease inhibitor (RNasinTM, プロメガ社製)に、 上述した mRNA (1 mg/ml反応容量) を 調製して用いた。 この反応溶液を 500 μΐ上記(2) で調製したカラム内のゾル表 面に静かにのせ、 26°Cで、 48時間反応を行った。 The reaction solution for cell-free protein synthesis using the wheat germ extract was 48% of the volume of the wheat germ extract prepared in (1) above, 30 mM HEPES-K0H, pH 7.6, 100 raM potassium acetate, 2.7 mM magnesium acetate, 0.4 raM spermidine, 2.5 mM dithiothreitol, 20 kinds of L-amino acids (0.3 mM each), 1.2 mM ATP, 0.25 mM GTP, 16 The above mRNA (1 mg / ml reaction volume) was prepared and used for raM creatine phosphate, 0.2 mg / ml creatine kinase, and 800 units / ml ribonuclease inhibitor (RNasinTM, manufactured by Promega). This reaction solution was gently placed on the surface of the sol in the column prepared in 500 μΐ above in (2), and reacted at 26 ° C for 48 hours.
(4) タンパク質の回収  (4) Recovery of protein
上記反応後、 カラム先端を開け、 反応溶液表面がゲル表面に達するまで溶出し た。溶出用バッファ (PBS) 10 mlをゲル表面が乱れないように添カ卩して流し、 2ml ずつフラクションを取った。各フラクションの溶出液のうち Ιμΐを、それぞれ 1 /500希釈した後、 抗 GST抗体を用いた ELISAキット (アマシャムバイオサイ エンス社製) により含有される目的タンパク質 (GST-GFP) 量を測定した。 反応溶 液 lml当たり合成されたタンパク質量を、 それぞれのフラクションの平均値とし て図 1に示す。  After the above reaction, the column tip was opened and eluted until the reaction solution surface reached the gel surface. 10 ml of elution buffer (PBS) was added to the gel so that the gel surface was not disturbed, and the mixture was flown, and fractions of 2 ml each were collected. Of the eluate of each fraction, {μ} was diluted 1/500, and then the amount of the target protein (GST-GFP) contained in the kit was measured using an ELISA kit (manufactured by Amersham Bioscience) using an anti-GST antibody. The amount of protein synthesized per ml of reaction solution is shown in Fig. 1 as the average value of each fraction.
(5) コントロール実験  (5) Control experiment
上記 (1) に記載の翻訳铸型を含む反応溶液 25 z lと、 供給液 4mlを用い、 WOO 2/24939号公報に記載のとおりの方法(重層法)でタンパク質合成を 行った。また、 Madin, K. et al. , Proc. Natl. Acad. Sci. USA. , 97, 559 - 564 (2000) に記載のとおりの方法 (透析力ップ法) で、 同様の反応溶液 25 μ 1 と、 供給液 125 /zl を用いてタンパク合成を行った。 反応後、 反応溶液をピぺットで回収 し、このうち Ιμΐを、それぞれ 1/500希釈した後、抗 GST抗体を用いた ELISA キット (アマシャムバイオサイエンス社製) により含有される目的タンパク質 (GST-GFP) 量を測定し、 反応溶液 lm 1当たりの合成量を定量して、 上記 (4) の実験結果と比較した。  Using 25 zl of the reaction solution containing the translation type I described in the above (1) and 4 ml of the feed solution, protein synthesis was carried out by the method described in WOO 2/24939 (layered method). Natl. Acad. Sci. USA., 97, 559-564 (2000), a similar reaction solution (25 μl) was used as described in Madin, K. et al., Proc. Natl. Protein synthesis was performed using 1 and the feed solution 125 / zl. After the reaction, the reaction solution is collected in a pipette, and Ιμΐ of each is diluted 1/500, and then the target protein (GST) contained in an ELISA kit (Amersham Biosciences) using an anti-GST antibody is used. -GFP) was measured, and the amount of synthesis per lm of the reaction solution was quantified and compared with the experimental result of (4) above.
(6) 目的タンパク質の合成量の比較結果  (6) Comparison of the amount of target protein synthesized
これらの結果から、 G25、 G50M、 G50F、 G50 SF、 S 300、 セ ファロース 4 Bを用いた系では、 いずれも重層法より多くの GST— GF Pが合 成されたことが分かった。 3種のゲルの中では G 50 Fでもつとも多量の GST — GFPが合成された。 この G 5 OF を用いたタンパク質合成量とコントロール 実験の比較を図 1に示す。 図中、 縦軸は目的タンパク質である GST— GFPの 反応溶液 1 m 1当たりの合成量を示す。 図から明らかなように本発明の方法を用 いることによれば、 従来のカップ法、 重層法に比べて多量の GST— GF Pが合 成され、 重層法の 4倍量のタンパク質が得られ、 透析カップ法の約 1. 2倍量の タンパク質が得られた。 実施例 2 ァガロースゲルを用いたタンパク質合成法 From these results, it was found that in each of the systems using G25, G50M, G50F, G50 SF, S300, and Sepharose 4B, more GST-GFP was synthesized than in the overlay method. Among the three gels, a large amount of GST-GFP was synthesized even at G50F. Figure 1 shows a comparison between the amount of protein synthesized using G5OF and control experiments. In the figure, the vertical axis indicates the amount of GST-GFP as the target protein synthesized per 1 ml of the reaction solution. As is apparent from the figure, the method of the present invention According to the results, a larger amount of GST-GFP is synthesized than in the conventional cup method and the multi-layer method, and four times as much protein as in the multi-layer method is obtained. The protein was obtained. Example 2 Protein synthesis method using agarose gel
(1) ァガロースゲルの調製  (1) Preparation of agarose gel
(1) ミリ Q水で懸濁した 2%ァガロース S (二ツボンジーン社製) を熱を加えて 溶かし、 5瞧及び 3誦の厚さになるように滅菌シャーレに流して固めた。 直径 lcmおよび 0.5cmの筒でこれらァガロースを抜き取って 5 Oml容量のチューブ(フ アルコン社製) に入れ、 4倍濃縮の供給液 (組成は実施例 1 (2) に記載の 4倍) とミリ Q水を加えて、 総量で 1 X供給液になるようにメスアップした。 このチュ —ブを冷蔵庫内にー晚置き、 ァガロースゲルを供給液に平衡化した。  (1) 2% agarose S (manufactured by Futtsubon Gene) suspended in Milli-Q water was melted by heating and poured into a sterile petri dish to a thickness of 5 瞧 and 3 to solidify. The agarose was withdrawn from a lcm or 0.5cm diameter tube, placed in a 5 Oml tube (Falcon), and concentrated 4 times (4 times as described in Example 1 (2)). Q water was added to make up a total of 1X feed. The tube was placed in a refrigerator to equilibrate the agarose gel to the feed.
( i i) ミリ Q水で懸濁した 4%ァガロース S (二ツボンジーン社製) を熱を加え て溶かし、 40°Cに冷ました。 そこに、 室温にした 2倍濃縮した供給液 (組成は実 施例 (2) に記載の 2倍) を等量加えて混合し、素早く 15ml容量のチューブ (フ アルコン社製) に 4 ml流し込んだ。  (ii) 4% agarose S (manufactured by Futatsu Gene) suspended in Milli-Q water was dissolved by heating and cooled to 40 ° C. An equal amount of a 2-fold concentrated feed solution (composition: 2 times as described in Example (2)) at room temperature was added and mixed, and 4 ml was immediately poured into a 15-ml tube (Falcon). It is.
(2) タンパク合成反応  (2) Protein synthesis reaction
铸型は、 SP6プロモーター配列、 リボソーム結合配列を 5' →3' の順に含むォ リゴ DNAを合成によつて取得し(配列 5 )、一方 GFPをコードする DNA配列(Haas, J. et al. , Curr. Biol. , 6(3), 315 - 324 (1996) 、 Plasmid -PCaMV35S-sGFP (S65T) -N0S3' (25) ) を铸型として GFPを 5, →3' の順に含む DNA 断片を PCR法によって取得した。次に上記配列を 5' →3' の順にライゲーシヨン PCRによって結合し、 この際に 3' 側に Sfilsiteの付加も行った。 また、 pEU3b (Sawasaki. ,T. et al , Proc. Natl. Acad. Sci. USA, 99(23), 14652-14657, 2002) から SP6プロモータ配列および Ω配列を除いて Sf i Iサイ トを導入したベクターを、 あらかじめ Nae I、 Sfi Iによって開裂し、 Sfi Iによって処理した配列と、 5' 側の平滑末端、 3, 側の Sfi I siteを介してライゲーシヨンを行った。 Type 、 was obtained by synthesis of oligo DNA containing the SP6 promoter sequence and the ribosome binding sequence in the order of 5 ′ → 3 ′ (sequence 5), while the DNA sequence encoding GFP (Haas, J. et al. , Curr. Biol., 6 (3), 315-324 (1996), Plasmid- P CaMV35S-sGFP (S65T) -N0S3 '(25)) Was obtained by the PCR method. Next, the above sequences were ligated in the order of 5 ′ → 3 ′ by ligation PCR. At this time, Sfilsite was added to the 3 ′ side. In addition, an SfiI site was introduced from pEU3b (Sawasaki., T. et al, Proc. Natl. Acad. Sci. USA, 99 (23), 14652-14657, 2002), excluding the SP6 promoter sequence and the Ω sequence. The resulting vector was cleaved with Nae I and Sfi I in advance, and ligated with the sequence treated with Sfi I, blunt ends on the 5 ′ side, and Sfi I sites on the 3 side.
24 穴丸底ディープゥエルプレート (ワットマン社製) の各ゥエルに、 上記実 施例 1 (2) に記載のものと同様の反応溶液を 100 1、 50 1、 30 / 1入れ、 上記 (1) で作製した (i) のァガロースゲルを円形側面が丸底面に接するよう にして (立てた状態で) それぞれの容量の反応溶液に浸した。 ディープゥエルプ レートをシールで密閉して、 26 °Cで 24および 48時間反応させた。 ァガ口一スゲ ルは、 厚さ 5瞧直径 l cm (ァガロース大)、 厚さ 5 mm直径 0.5 mm (ァガロース 中)、 厚さ 3 瞧直径 5 mm (ァガロース小) の 3種を用いた。 Into each well of a 24-hole round bottom deep-well plate (manufactured by Whatman), put 1001, 501, 30/1 of the same reaction solution as described in Example 1 (2) above. The agarose gel of (i) prepared in (1) above was immersed in each volume of the reaction solution so that the circular side surface was in contact with the round bottom surface (in an upright state). The deep pellet was sealed with a seal and reacted at 26 ° C for 24 and 48 hours. Three types of agar mouth were used: 5 cm thick lcm (large agarose), 5 mm thick 0.5 mm (middle agarose), and 3 mm thick 5 mm diameter (small agarose).
また、 上記 (1) で作製した ( i i) のチューブ中で固化させたァガロースゲ ルの上部に、反応液を 100 μΐ、および 200 μ 1のせ、チューブにふたをして、 26 °C で 24、 48時間反応させた。 反応終了後、 反応溶液をピペットを用いて回収した。 (3) 目的タンパク質の合成量の比較結果  Also, place the reaction solution on top of the agarose gel solidified in the tube of (ii) prepared in (1) above at 100 μΐ and 200 μl, cover the tube, cover at 24 The reaction was performed for 48 hours. After completion of the reaction, the reaction solution was collected using a pipette. (3) Comparison of the amount of target protein synthesized
目的タンパク質 (GFP) の合成量は、 ネイティブポリアクリルアミ ド電気泳 動で分離し、 CBB染色した後、 GFPに当たるバンドの濃さから反応液 lml当り の合成量を定量した。 上記 (1) の ( i) のァガロースゲルを用いたマルチプレ 一トで行った合成反応では、 反応液 1μ 1あたりの合成 GFP量は、 反応液 100 μ 1にァガロース大を浸漬させたもの、 50 μ 1にァガロース中を浸漬させたもの、 50 μ 1にァガロース大を浸漬させたものの順に多く、いずれも透析カップ法とほ ぼ同じ量が得られた。  The amount of target protein (GFP) synthesized was separated by native polyacrylamide electrophoresis, stained with CBB, and the amount of synthesis per 1 ml of the reaction solution was quantified based on the intensity of the band corresponding to GFP. In the above (1) (i) of the synthesis reaction performed in multiples using the agarose gel, the amount of synthesized GFP per μl of the reaction solution was determined by immersing a large amount of agarose in 100 μl of the reaction solution, 50 μl. In the order of 1 in which agarose was immersed and 50 μl in which agarose was immersed, the amount was almost the same, and almost the same amount as in the dialysis cup method was obtained.
また、 上記 (1) の ( i i) で調製したァガロースゲルを用いたプラスチック チューブで行った合成反応では、反応液 1μ 1あたりの合成 GFP量は、反応液 100 μ 1の方が 200 // 1の時より多く、 また、 いずれも従来の重層法での合成量より より多かった。 実施例 3 ァガロースゲルを用いたタンパク質合成法 2  In addition, in the synthesis reaction performed in a plastic tube using the agarose gel prepared in (ii) in (1) above, the amount of synthetic GFP per 1 μl of the reaction solution was 200 // 1 More than at the time, and in each case, it was larger than the amount synthesized by the conventional multilayer method. Example 3 Protein synthesis method using agarose gel 2
(1) 小麦胚芽抽出液および铸型の調製  (1) Preparation of wheat germ extract and type I
小麦胚芽抽出液は、 Madin, K. et al. , Pro Natl. Acad. Sci. USA., 97, 559-564(2000)に記載の方法に準じて調製した。 SP6プロモーター配列およびリボ ソーム結合配列を 5' →3' の順に含むオリ ゴ DNA を合成によって取得し (aaagccggccgatttaggtgacactatagaacatcaacatcttacattttacattataattttcactctc tatttttttttacattaacaacatttttaggccttttggccataagggccaaa : 目 G列 5 )、 一方、 pXen-2 (GenBank accession No. U81274) を铸型として GST、 PreScission protease (アマシャムフアルマシアバイオテク社、 以下 「psp」 と称することがある) 切断 部位を 5' →3' の順に含む DNA断片(ctggaagttctgttccagggtccc:配列 6 )を PCR 法によって取得した。次に上記配列 5と配列 6を 5' →3' の順にライゲーション PCRによって結合し、 この際に 3, 側に Smal, Sfi I siteの付加も行った。 また、 pEU3b (Sawasaki. , T. et al , Proc. Natl. Acad. Sci. USA, 99(23), 14652-14657, 2002) から SP6プロモータ配列、 Ω配列およびマルチクローユングサイトを除い て Nael、 Sfilサイトを導入したベクターを、 あらかじめ Nael,、 Sfilによって 開裂した。 このベクターと Sfi Iによって処理した配列 3を、 5' 側の平滑末端、 3' 側の Sfi I siteを介してライゲーシヨンを行った。 このように作成したべク ター(pEU-SS4)は、 pEUベクターに SP6プロモーター、 リボソーム結合配列、 GST、 psp切断部位、 DNAクローニングサイト(Sma I, Sfi I)が挿入された小麦胚芽 用発現ベクターである。 GST - GFP遺伝子発現用ベクター (铸型) は、 GFPをコード する DNA配列 (Haas, J. et al. , Curr. Biol. , 6(3), 315-324(1996)、 Plasmid -PCaMV35S-sGFP(S65T)-N0S3' (25) ) を铸型にして 5'側を平滑末端、 3'側に Sfil 付加した形で PCR法によって DNA断片を取得してから Sfi Iで処理を行い、 あ らかじめ Sma I、 Sfi I処理によって開裂した上記 pEU-SS4ベクターに、 5, 側は 平滑末端、 3, 側は Sfi I siteを介してライゲーシヨンすることによって作製し た。 このプラスミド DN Aを铸型として、 SP6 RNA Polymerase (Proraega 社製) を用いて転写を行い、得られた mRNAをエタノール沈殿によって精製して調製した。The wheat germ extract was prepared according to the method described in Madin, K. et al., Pro Natl. Acad. Sci. USA., 97, 559-564 (2000). An oligo DNA containing the SP6 promoter sequence and the ribosome binding sequence in the order of 5 ′ → 3 ′ was obtained by synthesis (aaagccggccgatttaggtgacactatagaacatcaacatcttacattttacattataattttcactctc tatttttttttacattaacaacatttttaggccttttggccataagggBank. As GST, PreScission protease (Amersham Pharmacia Biotech, hereinafter sometimes referred to as “psp”) A DNA fragment (ctggaagttctgttccagggtccc: sequence 6) containing a cleavage site in the order of 5 ′ → 3 ′ was obtained by PCR. Next, the above sequence 5 and sequence 6 were ligated by ligation PCR in the order of 5 ′ → 3 ′, and at this time, Smal and SfiI sites were added to the 3 side. From pEU3b (Sawasaki., T. et al, Proc. Natl. Acad. Sci. USA, 99 (23), 14652-14657, 2002), Nael, except for the SP6 promoter sequence, The vector into which the Sfil site was introduced was cleaved with Nael, Sfil in advance. Ligation of the sequence 3 treated with this vector and SfiI was carried out through the 5 ′ blunt end and the 3 ′ SfiI site. The vector (pEU-SS4) prepared in this manner is an expression vector for wheat germ in which the SP6 promoter, ribosome binding sequence, GST, psp cleavage site, and DNA cloning sites (Sma I, Sfi I) have been inserted into the pEU vector. It is. The vector for GST-GFP gene expression (type II) contains a DNA sequence encoding GFP (Haas, J. et al., Curr. Biol., 6 (3), 315-324 (1996), Plasmid- P CaMV35S- sGFP (S65T) -N0S3 '(25)) was made into a 铸 type, a 5'-side was blunt-ended, and a Sfil was added to the 3'-side, a DNA fragment was obtained by PCR, and then treated with SfiI. The pEU-SS4 vector cleaved by treatment with SmaI and SfiI was ligated with blunt ends on the 5 side and SfiI site on the 3 side. Using this plasmid DNA as type III, transcription was carried out using SP6 RNA Polymerase (Proraega), and the obtained mRNA was purified by ethanol precipitation to prepare.
(2) ァガロースゲルの調製 (2) Preparation of agarose gel
ミリ Qで懸濁した 0. 6%、 および 1. 0%のァガロース S (二ツボンジーン 社製) に熱を加えて溶かし、 40°Cに冷却した。 そこに、 室温にした 2倍濃縮し た供給液 (組成は実施例 1 (2) に記載の 2倍、 具体的には、 60 mM HEPES-K0H、 pH7.6、 200 mM酢酸カリウム、 5.4 raM酢酸マグネシウム、 0.8mMスペルミジン、 5mMジチオスレィトール、 20種類の L -アミノ酸(各 0.6mM)、 2.4 raM ATP, 0.5 raM GTP、 32 raMクレアチンリン酸) を等量加えて混合し、 素早くパイロジェンフリー チューブ (1.5ml容量、 ビーェム機器社製) に 0.5mlずつ流し込んで、 さらに冷 却した。  Heat was applied to 0.6% and 1.0% agarose S (manufactured by Nitsubon Gene) suspended in Milli-Q to dissolve it, and cooled to 40 ° C. The feed solution was concentrated twice at room temperature (the composition was twice as described in Example 1 (2), specifically 60 mM HEPES-K0H, pH 7.6, 200 mM potassium acetate, 5.4 raM Add and mix equal amounts of magnesium acetate, 0.8 mM spermidine, 5 mM dithiothreitol, 20 L-amino acids (0.6 mM each), 2.4 raM ATP, 0.5 raM GTP, 32 raM creatine phosphate, and mix quickly and pyrogen-free 0.5 ml each was poured into a tube (1.5 ml capacity, manufactured by BM Instruments), and the mixture was further cooled.
(3) タンパク質合成反応 上記 (2) のチューブのァガロースゲル上に、 上記実施例 1 (3) に記載のも のと同様の反応溶液をそれぞれ 15 μ1、 30μ1、 60 1重層するように添カ卩して、 チューブにふたをして、 26°Cで 22時間反応させた。 反応終了後、 15,000rpmの回 転数で 1時間遠心分離を行い、 上清の反応溶液を回収した。 (3) Protein synthesis reaction On the agarose gel of the tube of (2) above, the same reaction solution as described in Example 1 (3) was added so as to form a 15 μl, 30 μl, and 60 1 layer, respectively, and the tube was covered. And reacted at 26 ° C. for 22 hours. After completion of the reaction, centrifugation was performed at 15,000 rpm for 1 hour, and the reaction solution of the supernatant was recovered.
また、 コントロール実験として、 上記 (1) に記載の翻訳鎳型を含む反応溶液 25 μ1と、 供給液 125mlを、 96ゥエル角底タイタープレート (スミロン社 製) 用い、 WO 2002/24939に記載のとおりの方法 (重層法) でタンパク 質合成を行った。  As a control experiment, 25 μl of the reaction solution containing the translation type I described in (1) above and 125 ml of the feed solution were used as described in WO 2002/24939, using a 96-well square bottom titer plate (manufactured by Sumilon). Protein synthesis was performed by the method described above (layered method).
(4) 目的タンパク質の合成量の比較結果  (4) Comparison of the amount of target protein synthesized
目的タンパク質 (GST- GFP) の合成量は、 GST-ELISA測定値により判定した。 上 記 (3) に記載のとおりに本法および重層法から回収した反応溶液 1 1につい て、 それぞれ 1Z500に希釈したのち、 抗 GST抗体を用いた EL I S Aキッ ト (アマシャムバイオサイエンス社製) により含有される目的タンパク質 The amount of the target protein (GST-GFP) synthesized was determined by GST-ELISA measurement. As described in (3) above, the reaction solution 11 recovered from this method and the overlay method was diluted to 1Z500, respectively, and then diluted with an ELISA kit (Amersham Bioscience) using an anti-GST antibody. Target protein contained
(GST-GFP) 量を測定した。 (GST-GFP) was measured.
この結果を図 2に示す。 図中、 縦軸は抗 GST抗体に反応した目的タンパク質 の量 (反応液 1m l当たり) を示す。 図から明らかなように、 チューブ内に固め たァガロースを用いた合成方法では、 ァガロースの濃度が、 0.3%の方が 0.5%より 合成量が多く、 またァガロースゲル上に添加した反応液量は 15μ1 より 30μ1、 60//1の方がタンパク質合成量が高かった。 0.3%ァガロースゲルで 60μ1重層し た場合には、 重層法の約 1. 5倍量のタンパク質合成が得られた。 実施例 4 水難溶性タンパク質の合成  The result is shown in FIG. In the figure, the vertical axis indicates the amount of the target protein reacted with the anti-GST antibody (per 1 ml of the reaction solution). As is clear from the figure, in the synthesis method using agarose solidified in a tube, the agarose concentration is 0.3%, the synthesis amount is higher than 0.5%, and the reaction volume added on the agarose gel is less than 15μ1. 30 μ1 and 60 // 1 produced higher amounts of protein. In the case of 60 µl overlay on 0.3% agarose gel, about 1.5 times the amount of protein synthesis was obtained compared to the overlay method. Example 4 Synthesis of poorly water-soluble protein
(1) 鎵型の調製  (1) Preparation of type 鎵
水難溶性タンパク質としては、 上記した重層法等で合成した場合に不溶性とな る ΡΚ7タンパク質(株式会社へリックス研究所 クローン No. NT2RP2001529- 1— 1) を用いた。 PK7の 0RF断片 (配列番号 1) を、 5' 側のプライマー (配列番号 2) と、 3, 側のプライマー (配列番号 3) を用いて PCR法によって取得した。  As the poorly water-soluble protein, ΡΚ7 protein (Helix Research Institute, Inc., clone No. NT2RP2001529-1-1), which became insoluble when synthesized by the above-mentioned overlay method or the like, was used. The 0RF fragment of PK7 (SEQ ID NO: 1) was obtained by PCR using a 5′-side primer (SEQ ID NO: 2) and a 3′-side primer (SEQ ID NO: 3).
これを、 実施例 1 (1) に記載したベクター (pEU— S S 4) のクローニン グサイ トに挿入した。 上記で調製されたプラスミ ド DNAを錶型として、 SP6RNA Polymerase (Promega 社製) を用いて転写を行い、 得られた RNAをエタノール沈殿によって精製した。 This was inserted into the cloning site of the vector (pEU-SS4) described in Example 1 (1). Using the plasmid DNA prepared as described above as type I, transcription was performed using SP6 RNA Polymerase (Promega), and the obtained RNA was purified by ethanol precipitation.
(2) ゾルの調製およびタンパク質合成反応  (2) Sol preparation and protein synthesis reaction
実施例 1 (2) と同様にしてセフアデックス一G5 OF (アマシャムバイオサ ィエンス社製)を供給溶液により平衡化し、このゾル 1 Om 1を内径 2. 5 cm、 長さ 10 cmのカラム (バイオラッドネ土製) に充填し、 10m lの上記供給溶液 を加えて、 液面がゲル表面に達するまで溶出した。 コムギ胚芽抽出液を用いた無 細胞タンパク質合成用の反応溶液は、 48%の上記実施例 1 (1) で調製したコム ギ胚芽抽出液、 30 mM HEPES- K0H、 pH 7.6、 100 mM酢酸力リウム、 2.7 mM酢酸マ グネシゥム、 0.4 m スペルミジン、 2.5 mMジチオスレィ トール、 20種類の L-ァ ミノ酸(各 0.3mM)、 1.2mMATP、 0.25mMGTP、 16 mMクレアチンリン酸、 0.2 mg/ml クレアチンキナ一ゼ、 800 units/ml ribonuclease inhibitor (RNasinTM, プロメ ガ社製)に、 上述した mRNA (1 mg/ml反応容量) を添加したものを用いた。 上記反 応溶液 500μ1をカラム内のゾル表面に静かにのせ、 26°Cで、 48時間反応を行つ た。 上記反応後、 カラム先端を開け、 反応溶液表面がゲル表面に達するまで溶出 した。 溶出用バッファ (PBS) 10 ml をゲル表面が乱れないように添加して流し、 2mlずつフラクションを取った。 このうちフラクション 1〜5から 30 μ 1分を 集め、 これを 1 5, O O O r pmで遠心し、 上清を取得した。 また沈殿には、 上 清と同量の SDS—ポリアクリルアミ ドゲル電気泳動用バッファーを加えてボイ ルした。 これらのうち、 それぞれ 20 μ 1を SDS—ポリアクリルアミ ドゲル電 気泳動で分離し、 CBB染色した後に、 GST— PK7にあたるバンドの濃さから 合成量を定量した。 また、 遠心分離しないものも同様にして定量した。 さらに、 同様のタンパク質の合成を実施例 1に記載の方法と同様の透析カップ法および重 層法を用いて行い、 得られた反応溶液をピペットで回収し、 このうち 30μ1 を 遠心してそれぞれ 1ノ 30分について SDS—ポリアクリルアミ ドゲル電気泳動 で分離し、 CBB 染色した後に、 GST— ΡΚ7にあたるバンドの濃さから合成量 を定量した。 合成した G S Τ— Ρ Κ 7タンパク質を示す電気泳動の結果を図 3に 示す。  In the same manner as in Example 1 (2), Sephadex-1 G5 OF (manufactured by Amersham Biosciences) was equilibrated with a supply solution, and the sol 1 Om1 was equilibrated with a column (Bio-Radnet) having an inner diameter of 2.5 cm and a length of 10 cm. And 10 ml of the above feed solution was added thereto, and eluted until the liquid surface reached the gel surface. The reaction solution for cell-free protein synthesis using the wheat germ extract was 48% of the wheat germ extract prepared in Example 1 (1) above, 30 mM HEPES-K0H, pH 7.6, and 100 mM acetate acetate. , 2.7mM magnesium acetate, 0.4m spermidine, 2.5mM dithiothreitol, 20 kinds of L-amino acids (0.3mM each), 1.2mM ATP, 0.25mM GTP, 16mM creatine phosphate, 0.2mg / ml creatine kinase And 800 units / ml ribonuclease inhibitor (RNasinTM, manufactured by Promega) to which the above-mentioned mRNA (1 mg / ml reaction volume) was added. 500 μl of the above reaction solution was gently placed on the sol surface in the column, and the reaction was carried out at 26 ° C. for 48 hours. After the above reaction, the column tip was opened and eluted until the surface of the reaction solution reached the gel surface. Elution buffer (PBS) (10 ml) was added without disturbing the gel surface, and the mixture was allowed to flow, and fractions (2 ml each) were collected. Of these, fractions 1 to 5 were collected from 30 μl for 1 minute, and this was centrifuged at 15, OO rpm to obtain a supernatant. The precipitate was boiled with the same amount of SDS-polyacrylamide gel electrophoresis buffer as the supernatant. Of these, 20 µl of each was separated by SDS-polyacrylamide gel electrophoresis, stained with CBB, and the amount of synthesis was quantified from the intensity of the band corresponding to GST-PK7. In addition, those not subjected to centrifugation were similarly quantified. Further, the same protein was synthesized using the same dialysis cup method and overlay method as described in Example 1, and the obtained reaction solution was collected with a pipette. After 30 minutes, separation was performed by SDS-polyacrylamide gel electrophoresis, and after CBB staining, the amount of synthesis was quantified based on the intensity of the band corresponding to GST-ΡΚ7. Fig. 3 shows the results of electrophoresis showing the synthesized GSII-II protein.
図中、 Τは遠心分離していないものに、 Sは上清に、 さらに Ρは沈殿中に含ま れるタンパク質量を示す。 図から明らかなように、 透析カップ法で、 沈殿中に存 在した G S T— P K 7力 本発明の方法では見られない。 In the figure, Τ indicates that the sample was not centrifuged, S indicates the supernatant, and Ρ indicates the precipitate. Shows the amount of protein to be applied. As is clear from the figure, the GST-PK7 force present in the precipitate in the dialysis cup method is not seen in the method of the present invention.
(3) 合成タンパク質量の比較結果  (3) Comparison of synthetic protein levels
上記 (2) に記載のとおりに回収された各溶出液フラクションを 1 μ 1ずつ集 めたもの、 透析カップ法および重層法から回収した反応溶液 1 μ 1について、 抗 GST抗体 (アマシャムバイオサイエンス社製) を用いた EL I SA法により含 有される目的タンパク質 (GST—PK 7) 量を測定した。 この結果を図 4に示 す。 図中、 縦軸は抗 GST抗体に反応した目的タンパク質の量を示す。 この測定 法により測定されるタンパク質は、 全て可溶化されているものである。 図から明 らかなように、 透析カップ法により合成された場合、 沈殿に多く含まれていた水 難溶性のタンパク質は、 本発明の方法により可溶化された状態で最も多く合成さ れることがわかった。 比較例 1 反応液を排除容積中に入れる場合との比較  1 μl of each eluate fraction collected as described in (2) above, and 1 μl of the reaction solution recovered from the dialysis cup method and the overlay method, were subjected to anti-GST antibody (Amersham Biosciences, Inc.). The amount of the target protein (GST-PK7) contained was measured by the ELISA method using the above method. Figure 4 shows the results. In the figure, the vertical axis indicates the amount of the target protein reacted with the anti-GST antibody. The proteins measured by this method are all solubilized. As is evident from the figure, when synthesized by the dialysis cup method, the poorly water-soluble protein, which was contained in a large amount in the precipitate, was most often synthesized in the state of being solubilized by the method of the present invention. Was. Comparative Example 1 Comparison with the case where the reaction solution is placed in the excluded volume
(1) 小麦胚芽抽出液、 铸型およびタンパク質合成反応液の調製  (1) Preparation of wheat germ extract, 铸 type and protein synthesis reaction solution
小麦胚芽抽出液は、 Madin, K. et al. , Proc. Natl. Acad. Sci. USA., 97, 559-564(2000)に記載の方法に準じて調製した。 SP6プロモータ一配列およびリボ ソーム結合配列を 5, →3' の順に含むオリゴ DNA を合成によって取得し tatttttttttacattaacaacatttttaggccttttggccataagggccaaa: 目 d列 5 )、 一方、 pXen-2 (GenBank accession No. U81274)を铸型として GST、 PreScission protease (アマシャムフアルマシアバイオテク社、 以下 「psp」 と称することがある)切断 部位を 5' →3' の順に含む DNA断片(ctggaagttctgttccagggtccc:配列 6 )を PCR 法によって取得した。次に上記配列 5と配列 6を 5' →3' の順にライゲーシヨン PCRによって結合し、 この際に 3' 側に Smal, Sfi I siteの付加も行った。また、 pEU3b (Sawasaki. , T. et al , Proc. Natl. Acad. Sci. USA, 99(23), 14652-14657, 2002) から SP6プロモータ配列、 Ω配列およびマルチクローニングサイ トを除い て Nael、 Sfilサイトを導入したベクターを、 あらかじめ Nae l,、 Sfi Iによって 開裂した。 このベクターと Sfi Iによって処理した配列 3を、 5' 側の平滑末端、 3, 側の Sfi I siteを介してライゲーシヨンを行った。 このように作成したべク タ一(pEU- SS4)は、 PEUベクターに SP6プロモータ一、 リボソーム結合配列、 GST、 psp切断部位、 D NAクローユングサイト(Sma I, Sfi I)が挿入された小麦胚芽 用発現ベクターである。 GST-GFP遺伝子発現用ベクター (铸型) は、 GFPをコード する DNA配列 (Haas, J. et al. , Curr. Biol. , 6 (3) , 315-324 (1996)、 Plasmid -pCaMV35S-sGFP (S65T) -N0S3' (25) ) を铸型にして 5'側を平滑末端、 3'側に Sfil 付カ卩した形で PCR法によって D N A断片を取得してから Sfi Iで処理を行い、 あ らかじめ Sma I、 Sfi I処理によって開裂した上記 pEU_SS4ベクターに、 5' 側は 平滑末端、 3, 側は Sfi I siteを介してライゲーシヨンすることによって作製し た。 このプラスミ ド D N Aを踌型として、 SP6 RNA Polymerase (Promega 社製) を用いて転写を行レ、、得られた mRNAをエタノール沈殿によって精製して調製した。 コムギ胚芽抽出液を用いた無細胞タンパク質合成用の反応溶液は、容量の 48% の上記コムギ胚芽抽出液、 30 mM HEPES- K0H、 pH 7. 6、 100 mM酢酸力リウム、 2. 7 mM酢酸マグネシウム、 0. 4 mMスペルミジン、 2. 5 mMジチオスレィ トーノレ、 20種 類の L -アミノ酸(各 0. 3 mM)、 1. 2 mM ATP、 0. 25 mM GTP、 16 mMクレアチンリン 酸、 0. 2 mg/ml クレアチンキナーゼ、 800 units/ml ribonuclease inhibitor (RNasinTM, プロメガ社製) 267 μ 1に、 上述した mRNA (1 mg/ml反応容量) 133 μ 1 を調製して反応溶液とした。 The wheat germ extract was prepared according to the method described in Madin, K. et al., Proc. Natl. Acad. Sci. USA., 97, 559-564 (2000). Oligo DNA containing the SP6 promoter sequence and ribosome binding sequence in the order of 5, → 3 'was obtained by synthesis, and tatttttttttacattaacaacatttttaggccttttggccataagggccaaa: d column 5), while pXen-2 (GenBank accession No. U81274) was used as a GST A DNA fragment (ctggaagttctgttccagggtccc: sequence 6) containing a PreScission protease (Amersham Pharmacia Biotech, Inc., hereinafter sometimes referred to as “psp”) cleavage site in the order of 5 ′ → 3 ′ was obtained by PCR. Next, the above sequence 5 and sequence 6 were ligated by ligation PCR in the order of 5 ′ → 3 ′. At this time, Smal and SfiI sites were added to the 3 ′ side. From pEU3b (Sawasaki., T. et al, Proc. Natl. Acad. Sci. USA, 99 (23), 14652-14657, 2002), Nael, except for the SP6 promoter sequence, the Ω sequence and the multicloning site. The vector into which the Sfil site was introduced was cleaved in advance with Nael, SfiI. Sequence 3 treated with this vector and Sfi I was added to the 5 ' Ligation was conducted via the Sfi I site on the 3rd side. Such base pin definition one was created (pEU- SS4) is, SP6 promoter foremost P EU vector, a ribosome binding sequence, GST, psp cleavage site, D NA claw Jung site (Sma I, Sfi I) was inserted It is an expression vector for wheat germ. The vector for GST-GFP gene expression (type III) contains a DNA sequence encoding GFP (Haas, J. et al., Curr. Biol., 6 (3), 315-324 (1996), Plasmid-pCaMV35S-sGFP (S65T) -N0S3 '(25)) was made into a 铸 type, the 5' side was blunt-ended, and the 3 'side was sifted with Sfil to obtain a DNA fragment by PCR, followed by treatment with Sfi I, The pEU_SS4 vector, which had been cleaved by Sma I and Sfi I treatment in advance, was ligated with blunt ends on the 5 'side and Sfi I sites on the 3 side. Using this plasmid DNA as type I, transcription was carried out using SP6 RNA Polymerase (Promega), and the obtained mRNA was purified by ethanol precipitation to prepare. The reaction solution for cell-free protein synthesis using the wheat germ extract was 48% of the above-mentioned wheat germ extract, 30 mM HEPES-K0H, pH 7.6, 100 mM potassium acetate, 2.7 mM acetic acid. Magnesium, 0.4 mM spermidine, 2.5 mM dithiothreitole, 20 L-amino acids (0.3 mM each), 1.2 mM ATP, 0.25 mM GTP, 16 mM creatine phosphate, 0.2 mM 133 μl of the above-mentioned mRNA (1 mg / ml reaction volume) was prepared in 267 μl of 2 mg / ml creatine kinase, 800 units / ml ribonuclease inhibitor (RNasinTM, manufactured by Promega), and used as a reaction solution.
( 2 ) ゾルの調製およびタンパク質合成反応  (2) Sol preparation and protein synthesis reaction
(本発明の方法:図 5中 Αで示される)  (The method of the present invention: indicated by Α in FIG. 5)
セフアデックス一G50Fゲル (アマシャムバイオサイエンス社製) は、 純水 3倍 量に懸濁して静置し、 上澄みを捨てて洗浄した後、 さらに 3倍量の供給液 (30 mM HEPES- K0H、 pH 7. 6、 100 mM酢酸カリゥム、 2. 7 mM酢酸マグネシウム、 0. 4 mMス ペルミジン、 2. 5 mMジチオスレィ トール、 20種類の L-アミノ酸(各 0. 3 mM)、 1. 2 mM ATP, 0. 25 mM GTP, 16 mMクレアチンリン酸) に懸濁して、 2回平衡化した。 このゾル 1 . 2 mlを内径 1. 5瞧、 長さ 5 cmのカラム (バイオラッド社製) に充 填し、 2. 4 mlの上記供給液を加えて、 液面がゲル表面に達するまで溶出して平衡 ィ匕した。 該カラムに 60 μ 1の反応液を重層して、 26° ( 、 48時間反応を行った。  Sephadex-1 G50F gel (manufactured by Amersham Biosciences) is suspended in 3 volumes of pure water, allowed to stand, discarded supernatant, washed, and then 3 volumes of feed solution (30 mM HEPES-K0H, pH 7.6, 100 mM potassium acetate, 2.7 mM magnesium acetate, 0.4 mM spermidine, 2.5 mM dithiothreitol, 20 kinds of L-amino acids (0.3 mM each), 1.2 mM ATP, 0.25 mM GTP, 16 mM creatine phosphate) and equilibrated twice. 1.2 ml of this sol is packed into a 1.5 mm ID, 5 cm long column (manufactured by Bio-Rad), and 2.4 ml of the above-mentioned feed solution is added until the liquid level reaches the gel surface. After elution, the mixture was equilibrated. 60 μl of the reaction solution was overlaid on the column and reacted at 26 ° (48 hours).
(排除容積中でタンパク質合成反応を行う方法:図 5中 Βで示される) 上記と同様で、 同様に平衡化したゾル 1. 211)1を内径1.5111111、 長さ 5 cmの力 ラム (バイオラッド社製) に充填し、 2.4 ml の上記供給液を加えて平衡化した。 該カラムに 400μ1の反応液をアプライして、 ゾル中に浸透させ、 26°C、 48時間 反応を行った。 (Method of performing protein synthesis reaction in excluded volume: indicated by Β in Figure 5) A sol 1.211) 1 similarly equilibrated in the same manner as above was filled in a force ram (manufactured by Bio-Rad) having an inner diameter of 1.5111111 and a length of 5 cm, and equilibrated by adding 2.4 ml of the above-mentioned feed solution. 400 μl of the reaction solution was applied to the column, permeated into the sol, and reacted at 26 ° C. for 48 hours.
(排除容積中でタンパク質合成反応を行う方法 2 :図 5中 Cで示される) 上記と同様で、 同様に平衡化したゾル 1. 2mlを内径 1.5mra、 長さ 5 cmの力 ラム (バイオラッド社製) に充填した後、 カラムの先から注射器で吸引して該ゾ ルの排除容積中の供給液を取り除いた。 他の空の内径 1.5 mm、 長さ 5 cmのカラ ム (バイオラッド社製) に 400;/ 1の反応液をいれ、 その上に、 排除容積中の供給 液を取り除いたゾルを投入して、 26°C、 48時間反応を行った。  (Method 2 for performing protein synthesis reaction in the excluded volume: indicated by C in Fig. 5) 1.2 ml of the same equilibrated sol as above and a force of 5 cm in length and 1.5 mra in diameter (Biorad) After that, the liquid in the excluded volume of the sol was removed by suction with a syringe from the end of the column. Into another empty 1.5 mm inner diameter, 5 cm long column (manufactured by Bio-Rad), put the 400; / 1 reaction solution, and then put the sol from which the feed solution in the excluded volume has been removed. The reaction was carried out at 26 ° C. for 48 hours.
(コントロール:図 5中、 重層法で示される)  (Control: indicated by the overlay method in Fig. 5)
上記 (1) に記載の翻訳铸型を含む反応溶液 25 1と、 供給液 4mlを用い、 WOO 2/249 3 9号公報に記載のとおりの方法(重層法)でタンパク質合成を 行った。  Using the reaction solution 251 containing translation type I described in (1) above and 4 ml of the feed solution, protein synthesis was carried out by the method (layering method) described in WOO 2/24939.
(3) タンパク質の回収  (3) Recovery of protein
上記反応後、 カラム先端を開け、 本発明の方法では、 反応溶液表面がゲル表面 に達するまで溶出した。 また排除容積中でタンパク質合成を行う方法では溶出用 バッファ (PBS) 1.2 ml をゲル表面が乱れないように添カ卩して流し、 溶出した。 さらに、 重層法では反応溶液をピペットで回収した。 回収した溶液 1μ 1につい て、 それぞれ 1 500に希釈したのち、 抗 GST抗体を用いた EL I SAキッ ト (アマシャムバイオサイエンス社製) により含有される目的タンパク質 (GST-GFP) 量を測定した。 反応溶液 lml当たり合成されたタンパク質量を、それ ぞれのフラクションの平均値として図 5に示す。 図から明らかなように、 排除容 積中で反応を行う方法は、 本発明の方法の約 1ノ 4〜1 3のタンパク質合成量 しかなく、 重層法と比べても約 1Z 2程度であった。 産業上の利用の可能性  After the above reaction, the column tip was opened, and in the method of the present invention, elution was carried out until the reaction solution surface reached the gel surface. In the method for protein synthesis in the excluded volume, elution was carried out by flowing 1.2 ml of elution buffer (PBS) with added gel so that the gel surface was not disturbed. Furthermore, in the overlay method, the reaction solution was collected with a pipette. After diluting 1 μl of the collected solution to 1500, the amount of the target protein (GST-GFP) contained in the ELISA kit (manufactured by Amersham Bioscience) using an anti-GST antibody was measured. The amount of protein synthesized per 1 ml of the reaction solution is shown in FIG. 5 as the average value of each fraction. As is clear from the figure, the method of performing the reaction in the exclusion volume had a protein synthesis amount of only about 1 to 4 to 13 of the method of the present invention, and was about 1Z2 compared to the overlay method. . Industrial potential
本発明によれば、 無細胞タンパク質合成系において翻訳反応が長時間持続し、 容量の大きい反応系にも適用可能で、 簡便な合成装置により行うことのできる合 成効率の高い無細胞タンパク質合成方法が提供される。さらに、本発明によれば、 転写 ·翻訳反応または翻訳反応後に同一容器内で合成されたタンパク質を分離精 製する方法、 該タンパク質合成反応を行うための試薬キット、 並びに該タンパク 質合成反応によるタンパク質の製造装置等も作製することが可能である。 また、 本発明のうち、 ゾルとしてゲルろ過剤を用いて行う目的タンパク質合成方法によ れば、 ゾル側へ合成されるタンパク質が拡散するために、 通常の無細胞タンパク 質合成方法で合成すると不溶性となるような水難溶性タンパク質が、 溶解された 状態で取得することができた。 According to the present invention, a translation reaction in a cell-free protein synthesis system is long-lasting, is applicable to a reaction system having a large capacity, and can be performed by a simple synthesizer. A method for synthesizing a cell-free protein with high growth efficiency is provided. Further, according to the present invention, a method for separating and purifying a protein synthesized in the same container after a transcription / translation reaction or a translation reaction, a reagent kit for performing the protein synthesis reaction, and a protein obtained by the protein synthesis reaction Can also be manufactured. Further, according to the method of the present invention for synthesizing a target protein using a gel filtration agent as a sol, the protein synthesized is diffused to the sol side, so that it is insoluble when synthesized by a normal cell-free protein synthesis method. Was obtained in a dissolved state.
本出願は、 2 0 0 2年 1 2月 5日付の日本特許出願 (特願 2 0 0 2— 3 5 4 0 6 2 ) に基づく優先権を主張する出願であり、 その内容は本明細書中に参照とし て取り込まれる。 また、 本明細書にて引用した文献の内容も本明細書中に参照と して取り込まれる。  This application is an application claiming priority based on a Japanese patent application (Japanese Patent Application No. 2002-3504 62) filed on February 5, 2002, the contents of which are incorporated herein by reference. Taken in as a reference. The contents of the documents cited in this specification are also incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
1 . 無細胞タンパク質合成系を用いて目的タンパク質を製造する方法であって、 転写♦翻訳反応または翻訳反応において消費される物質をそのマトリックス及び 排除容積の両方に含むゲルまたはゾルに、 転写 ·翻訳反応または翻訳反応液を界 面を有して接触させることによりタンパク質合成を行うことを特徴とする方法。1. A method for producing a target protein using a cell-free protein synthesis system, wherein the transcription / translation reaction is performed on a gel or sol containing a substance consumed in a transcription reaction or a translation reaction in both its matrix and excluded volume. A method comprising performing protein synthesis by bringing a reaction or translation reaction solution into contact with an interface.
2 . ゲルまたはゾルに、 透析膜を介して転写 '翻訳反応または翻訳反応におい て消費される物質が供給されることを特徴とする請求項 1に記載の方法。 2. The method according to claim 1, wherein the gel or the sol is supplied with a transcription / translation reaction or a substance consumed in the translation reaction via a dialysis membrane.
3 . ゲルまたはゾルが、 高分子物質を構成要素とするものであることを特徴と する請求項 1または 2に記載の方法。  3. The method according to claim 1, wherein the gel or the sol is composed of a polymer substance.
4 . 高分子物質が、 ゲルろ過剤であり、 転写 ·翻訳反応または翻訳反応後に、 同一容器内で、 合成された目的タンパク質を分離精製することを特徴とする請求 項 1から 3のいずれかに記載の方法。  4. The high molecular substance is a gel filtration agent, and after the transcription / translation reaction or translation reaction, the synthesized target protein is separated and purified in the same container. The described method.
5 . 高分子物質が、 目的タンパク質またはその一部のポリペプチドと親和性を 有するものであることを特徴とする請求項 3または 4に記載の方法。  5. The method according to claim 3, wherein the high-molecular substance has an affinity for the target protein or a partial polypeptide thereof.
6 . ゲルが、 ァガロースを構成要素とするものであることを特徴とする請求項 1力 ら 3のいずれかに記載の方法。  6. The method according to any one of claims 1 to 3, wherein the gel comprises agarose as a component.
7 . 目的タンパク質が、 水難溶性タンパク質であることを特徴とする請求項 1 から 6のいずれかに記載の方法。  7. The method according to any one of claims 1 to 6, wherein the target protein is a poorly water-soluble protein.
8 . 無細胞タンパク質合成系の転写 ·翻訳反応または翻訳反応において消費さ れる物質をそのマトリックス及び排除容積の両方に含む、 請求項 1から 7の何れ かに記載の方法に用いるためのゲルまたはゾル。  8. A gel or sol for use in the method according to any one of claims 1 to 7, wherein a substance consumed in a transcription / translation reaction or a translation reaction of a cell-free protein synthesis system is contained in both the matrix and the excluded volume. .
9 . 少なくとも、 ゲルまたはゾルの構成要素と、 翻訳反応において消費される 物質を含む水溶液、 あるいはそれらの混合物を含む、 請求項 1から 7の何れかに 記載の方法によって無細胞タンパク質合成系において目的タンパク質を製造する ための試薬キット。  9. The method according to any one of claims 1 to 7, comprising an aqueous solution containing at least a gel or sol component and a substance consumed in a translation reaction, or a mixture thereof. Reagent kit for protein production.
1 0 . 少なくとも無細胞タンパク質合成系の転写 *翻訳反応または翻訳反応に おいて消費される物質をそのマトリックス及び排除容積の両方に含むゲルまたは ゾルに、 転写 ·翻訳反応または翻訳反応液を、 界面を有して接触させることによ りタンパク質合成を行う手段を有することを特徴とする、 無細胞タンパク質合成 系を用いる目的タンパク質製造装置。 10. At least the transcription of a cell-free protein synthesis system * Transfer the transcription / translation reaction or translation reaction solution to a gel or sol containing substances consumed in the translation reaction or translation reaction in both its matrix and excluded volume. By contacting with An apparatus for producing a target protein using a cell-free protein synthesis system, comprising means for performing protein synthesis.
PCT/JP2003/015593 2002-12-05 2003-12-05 Method of producing protein WO2004050891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003289202A AU2003289202A1 (en) 2002-12-05 2003-12-05 Method of producing protein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002354062A JP2006129702A (en) 2002-12-05 2002-12-05 Method for producing protein
JP2002-354062 2002-12-05

Publications (1)

Publication Number Publication Date
WO2004050891A1 true WO2004050891A1 (en) 2004-06-17

Family

ID=32463323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015593 WO2004050891A1 (en) 2002-12-05 2003-12-05 Method of producing protein

Country Status (3)

Country Link
JP (1) JP2006129702A (en)
AU (1) AU2003289202A1 (en)
WO (1) WO2004050891A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6159808B2 (en) 2012-11-30 2017-07-05 バイオニア コーポレーション Fully automatic cell-free protein production equipment and protein production method using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068412A1 (en) * 1999-05-11 2000-11-16 Wakenyaku Co., Ltd. Preparation containing cell extract for synthesizing cell-free protein and means for synthesizing cell-free protein
WO2001002548A2 (en) * 1999-07-01 2001-01-11 Glaxo Group Limited Methods for the propagation of lytic organisms
WO2002024939A1 (en) * 2000-08-29 2002-03-28 Wakenyaku Co Ltd Methods of synthesizing cell-free protein
JP2002162353A (en) * 2000-11-27 2002-06-07 Denso Corp Biochemical component measuring apparatus and blood sugar level measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068412A1 (en) * 1999-05-11 2000-11-16 Wakenyaku Co., Ltd. Preparation containing cell extract for synthesizing cell-free protein and means for synthesizing cell-free protein
WO2001002548A2 (en) * 1999-07-01 2001-01-11 Glaxo Group Limited Methods for the propagation of lytic organisms
WO2002024939A1 (en) * 2000-08-29 2002-03-28 Wakenyaku Co Ltd Methods of synthesizing cell-free protein
JP2002162353A (en) * 2000-11-27 2002-06-07 Denso Corp Biochemical component measuring apparatus and blood sugar level measuring apparatus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALEXANDER S. ET AL: "A Continuous cell-free translation system capable of producing polypeptides in high yield", SCIENCE, vol. 242, 1988, pages 1162 - 1164, XP002044225 *
ISHIKAWA T.ET AL.: "Zukai Biseibutsugaku Handbook", 1ST EDITION, MARUZEN CO., LTS, 30 September 1990 (1990-09-30), pages 42 - 47, XP002977668 *
OGINO K. ET AL: "Gel-soft Material no Kiso to Oyo-", 1STE EDITION, SANGYO TOSHO KABUSHIKI KAISHA, 20 May 1991 (1991-05-20), pages 153 - 160, XP002977666 *
YAMAGUCHI T.: "Ippan Seitbutsugaku", 1ST EDITION, KABUSHIKI KAISHA GIHODO, 10 September 1968 (1968-09-10), pages 12 - 13, XP002977665 *

Also Published As

Publication number Publication date
JP2006129702A (en) 2006-05-25
AU2003289202A1 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
JP5383197B2 (en) Cell-free synthesis of membrane-bound polypeptides
US20180142275A1 (en) Immobilized poly(n)polymerase
PT2329020E (en) Cell surface display of polypeptide isoforms by stop codon readthrough
RU2615446C2 (en) Devices for automatic cell-free production of proteins and methods for proteins production using this product
WO2008028218A1 (en) Affinity separation methods and systems
WO2001027260A1 (en) Template molecule having broad applicability and highly efficient function means of cell-free synthesis of proteins by using the same
US7919597B2 (en) Method of producing cell extract for cell-free protein synthesis
WO2003018797A2 (en) Method and device for integrated protein expression, purification and detection
JP2011188776A (en) Synthesis method of membrane protein by in vitro reconstituted protein synthesis system
WO2004050891A1 (en) Method of producing protein
CN101709306B (en) Fusion protein containing single-stranded DNA binding protein, expression and purification methods thereof
US20060257997A1 (en) High throughput synthesis system and synthesizer for automatically performing the system
EP2060629A1 (en) Method of separating small RNA molecules using kosmotropic salt
CN112552378B (en) Membrane scaffold protein, phospholipid nanodisk and nanoparticle and preparation method thereof
Altamura et al. Systems for production of proteins for biomimetic membrane devices
US9139619B2 (en) Fusion protein containing a single-stranded DNA binding protein and methods for expression and purification of the same
JP2005341904A (en) Cell-free method for synthesizing protein
US11208444B2 (en) BRCA2-mediated purification of recombinase protein
TWI712691B (en) Dextran affinity tag and application thereof
US20230391821A1 (en) Methods for target release from intein complexes
JP5010269B2 (en) Protein synthesis / recovery integrated cell-free protein synthesis method
US10604778B2 (en) BRCA2 mediated protein purification recombinase
WO2020087194A1 (en) Glucan affinity label and application thereof
CN113429487A (en) Artificially synthesized protein capable of removing antibiotic resistance gene in water environment
WO2004053123A1 (en) METHOD OF EFFICIENTLY RECOMBINING ORF ENCODED BY cDNA AND TEMPLATE VECTOR, TRAP VECTOR AND PRIMER TO BE USED THEREIN

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase