WO2004049793A1 - Model animal of cognitive learning disability with the use of leukemia inhibitory factor and method of constructing the same - Google Patents

Model animal of cognitive learning disability with the use of leukemia inhibitory factor and method of constructing the same Download PDF

Info

Publication number
WO2004049793A1
WO2004049793A1 PCT/JP2003/015037 JP0315037W WO2004049793A1 WO 2004049793 A1 WO2004049793 A1 WO 2004049793A1 JP 0315037 W JP0315037 W JP 0315037W WO 2004049793 A1 WO2004049793 A1 WO 2004049793A1
Authority
WO
WIPO (PCT)
Prior art keywords
animal
inhibitory factor
cognitive learning
leukemia inhibitory
schizophrenia
Prior art date
Application number
PCT/JP2003/015037
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Nawa
Original Assignee
National University Corporation Niigata University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Niigata University filed Critical National University Corporation Niigata University
Priority to AU2003284688A priority Critical patent/AU2003284688A1/en
Publication of WO2004049793A1 publication Critical patent/WO2004049793A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0356Animal model for processes and diseases of the central nervous system, e.g. stress, learning, schizophrenia, pain, epilepsy

Definitions

  • the present invention relates to a method for preparing a brain disease model animal and its application in the fields of medicine and pharmacy.
  • autism occurs in 1 in 500-250 people, and is still effective for mental illness represented by cognitive impairment such as social repulsion and mental retardation such as learning disability.
  • cognitive impairment such as social repulsion and mental retardation such as learning disability.
  • Schizophrenia also affects 0.7-1.0% of the population, producing hundreds of thousands of long-term hospitalized patients in Japan.
  • the main symptoms of this disease are positive symptoms such as delusions, hallucinations, and hallucinations, as well as cognitive deficits such as paresthesias and various mental abnormalities, such as bowel I withdrawal and depression. It accompanies.
  • the elucidation of the etiology is not yet clear. Thus, much is unknown about basic medicine for mental illness with cognitive learning disabilities.
  • Schizophrenia develops from adolescence to middle age with symptoms characteristic of perception, thinking, emotion, and behavior, and is often a chronic disorder that causes various difficulties in social adjustment.
  • positive symptoms such as hallucinations, delusions, weakening thoughts, nervous symptoms, and strange behavior
  • negative symptoms such as flattened emotions, reduced motivation, and social withdrawal. It is hoped that the social ladle will establish an integrated and comprehensive treatment system, including early detection, treatment, social rehabilitation activities, and prevention of recurrence, based on the specific nature of the disease.
  • the only therapeutic agent that improves the positive symptoms of schizophrenia is the neurotransmitter dopami Drugs that antagonize tongue mouth tonin are said to be useful. In many cases, long-term administration of these drugs over the years is indispensable. Specifically, pheno
  • An object of the present invention is to provide a method for producing an animal model showing a cognitive learning abnormality and a method for using the same.
  • the present invention relates to a step of over-administering a specific protein factor involved in brain function development or controlling post-development brain cell function, or overexpressing the gene thereof.
  • the method comprises:
  • FIG. 1 is a graph showing changes in prepulse inhibition with growth of rats in which cognitive behavioral abnormalities were induced by administering leukemia inhibitory factor (LIF) during infancy.
  • LIF leukemia inhibitory factor
  • FIG. 2 is a graph showing the time course of waterfront activity at the age of three weeks after birth in rats to which leukemia inhibitory factor (LIF) was administered during infancy.
  • LIF leukemia inhibitory factor
  • FIG. 3 is a graph showing startle response and prepulse inhibition caused by intracerebral administration of leukemia inhibitory factor (LIF).
  • LIF leukemia inhibitory factor
  • FIG. 4 is a graph showing the amount of movement of a rat to which leukemia inhibitory factor (LIF) was administered in the brain in a novel environment.
  • LIF leukemia inhibitory factor
  • FIG. 5 shows conditioned avoidance learning ability of rats treated with leukemia inhibitory factor (LIF) intracerebrally.
  • LIF leukemia inhibitory factor
  • any animal species such as monkeys, dogs, cats, cat egrets, guinea pigs, and rats can be used with any of the mammals.
  • rats and monkeys which have accumulated a large amount of data so far, are considered optimal.
  • Leukeiraia Inhibitory Factor is positioned as an inflammatory cytokine, but is known to play a major role in the development and differentiation processes including the brain.
  • Cholinergic neurons are known for their academic and historical background. It has many other names such as differentiation factor (Cholinergic Differentiation Factor), D factor, Differentiation-Stimulating Factor).
  • differentiation factor Cholinergic Differentiation Factor
  • D factor D factor
  • Differentiation-Stimulating Factor Differentiation-Stimulating Factor
  • these protein factors may be those produced in large amounts in bacteria by genetic recombination or those purified from animal cells.
  • leukemia inhibitory factor 0.25 mg gZl / kg body weight per animal for systemic administration, or 0.2 SmgZl / kg brain weight / kg for intracerebral administration. But it may be more. However, it should be noted that excessive administration of leukemia-inhibiting factors causes excessive weight loss because they have a weight loss effect.
  • One dose is not enough, preferably 3 It is desirable to have the number of times or between 30 and more times and days.
  • Another method is to introduce a gene for leukemia inhibitory factor or an analogous protein factor into an individual animal by a recent embryo manipulation method and express the gene in one of the organs including the brain. Is achieved.
  • the transgenic animal once the transgenic animal is produced, it can be used as the model animal as it is simply by maintaining the strain.
  • the intracellular signal transduction molecule which is originally known to activate the protein factor specified in the cell, can be used for genetic manipulation, etc., as if the protein factor acted on the cell. It is also possible to produce a mutant-modified animal using developmental engineering and substitute it.
  • gene expression vectors examples include retrovirus vectors, adenovirus vectors, henorevirus vectors, and the like.
  • Animal models of cognitive learning created by this method will exhibit cognitive behavioral abnormalities and learning disabilities as seen in autistic and schizophrenic patients.
  • the abnormal cognitive behavior can be evaluated by the following method. First, behavioral measurements such as prepanolase inhibition of startle response, cognitive performance in various learning tasks, and animal locomotion correspond to this.
  • Prepulse inhibition in startle response is a test of sensory-motor response ability using the startle response as an index that can be commonly evaluated in humans and animals.
  • the abnormalities in attention and brain information processing which are considered to be central to the pathology of schizophrenia and autism, have characteristics that can be evaluated scientifically and objectively.
  • the weak sound stimulus that itself cannot swell and cause a startle response prepulse
  • the startle response measures the startle response with a loud sound.
  • the decrease due to this prepulse is called prepulse inhibition, and it is known that it shows an abnormal decrease in schizophrenia patients and autism patients (Reference 4).
  • the ability to perform various learning tasks in animals can be measured, for example, in Pavlov-type conditioning learning, such as learning of electric shock and avoidance behavior, spatial learning in the water maze, and bait position learning in the 8-way maze. (Reference 5).
  • the animal momentum reflects the phenomenon that autistic patients and schizophrenic patients with negative symptoms reluctantly come into contact with the new environment and withdraw from society.
  • animals measure exploratory activity in a new and stressful environment.
  • this index is estimated to decrease.
  • Patent application 1 2000/10/10 application; Japanese Patent Application 2000-309042 Schizophrenia-like abnormal cognitive behavior and its production
  • Patent application 2 Filed February 27, 2001; Japanese Patent Application 2001-52546 Animal model for schizophrenia-like psychiatric disorder, its production method and its use
  • an animal model of autism, schizophrenia, and similar cognitive learning disorders can be easily provided.
  • the drug in addition to using the drug as a model animal, it will be possible to develop and evaluate therapeutics and diagnostics for autism ⁇ schizophrenia and similar mental disorders with cognitive learning disorders.
  • Example 1 Abnormal startle prepulse inhibition caused by administration of Leukeimia Inhibitory Factor to infants in rats
  • mice were used from the age of 2 days after birth of SD rats (Japan SLC).
  • mouse recombinant leukemia inhibitory factor (GIBCO Lifetech) and cytochrome C (Sigma) as a control were dissolved in physiological saline.
  • GIBCO Lifetech mouse recombinant leukemia inhibitory factor
  • cytochrome C (Sigma) as a control were dissolved in physiological saline.
  • a total of 10 times every other day was administered subcutaneously to the cervix of 0.25 microdalum per gram of rat body weight.
  • startle response intensity and prepulse inhibition were measured using a small animal startle response measuring device (San Diego Instruments).
  • a sound stimulus 120 dB
  • a stimulus 75 dB that is 6 dB higher than the environmental noise (background noise) level
  • a pulse stimulus with a sound pressure of 120 dB was given.
  • the response ratio of the startle response when 120 dB alone and the prepulse were combined was defined as prepulse inhibition (PPI).
  • PPI prepulse inhibition
  • FIG. 1 Prepulse inhibition was significantly reduced (* P ⁇ 0.05) (Fig. 1).
  • open circles indicate healthy control rats
  • solid circles indicate rats treated with leukemia inhibitory factor (LIF)
  • # * indicates a significant change point
  • n indicates the number of animals examined.
  • the vertical axis is the prepulse inhibition (%)
  • the horizontal axis is the age after birth. '
  • Example 2 Novel abnormal environmental locomotion caused by infant administration of leukemia inhibitor factor
  • mice were used from the age of 2 days after birth of SD rats (Japan SLC).
  • mouse recombinant leukemia inhibitory factor GIBCQ Lifetech
  • cytochrome-I C Sigma
  • 0.25 micrograms per gram of rat body weight was subcutaneously administered subcutaneously to the neck 10 times every other day (until the 11th day after birth).
  • the activity of the animal in the new environment was determined by placing the rat in a new box of about 50 cm square, and then quantifying the amount of exercise using a videotape and an activity analysis system (Neuroscience) linked to the videotape.
  • the leukemia inhibitory factor group showed a significant decrease in the AN OVA test, especially in the 5-minute period immediately after being placed in the new environment. It showed a significant decrease in momentum (* p 0.05) (Figure 2).
  • open circles indicate healthy control rats
  • solid circles indicate rats administered with leukemia inhibitory factor (LIF)
  • n indicates the number of animals studied.
  • the vertical axis is the horizontal movement distance (cm)
  • the horizontal axis is the time (minutes) after placing in the new environment.
  • leukemia inhibitory factor Leukeimia Inhibitory Factor
  • Example 3 Abnormal startle prepulse inhibition caused by intracerebral administration of leukemic inhibitory factor (Leukeimia Inhibitory Factor)
  • leukemic inhibitory factor Leukeimia Inhibitory Factor
  • the animals were used from the age of 56-66 days after birth of SD rats (Japan SLC).
  • mouse recombinant leukemia inhibitory factor GEB CO Lifetech
  • the rat was implanted with a 28-gauge cannula 0.5 mm anterior to Bredama, 3.Omm in the hole drilled in the skull with a dental drill on the side of the dentist. did.
  • a plastic tube is connected to the end of the force-Yure carried in the striatum and connected to an osmotic pump (250 microliter volume (AZLET raodel2002, AZLA CORP; continuous administration for 14 days).
  • the osmotic pump was previously filled with mouse recombinant leukemia inhibitory factor (40 micrograms / m1; GI BCO Ranhutech) and saline. After suturing the scalp, I fastened it with a surgical clip and waited for recovery from surgery.
  • startle response intensity and prepulse inhibition were measured using a small animal startle response measuring device (San Diego Instruments). That is, a sound stimulus is used as the sensory stimulus that induces the startle response, and an environmental noise is
  • the upper figure is a graph showing the decrease rate of the main startle response when a sound pre-pulse of 75 dB, 80 dB, and 85 dB is applied, and the lower left figure is a graph of 120 dB without the pre-pulse. Draft showing the primary startle response.
  • the lower right figure is a graph showing the change in the primary startle response at 120 dB before and after the test.
  • a white bar represents a control animal to which saline was administered
  • a black bar represents a control animal. Bars indicate animals that received leukemia inhibitory factor (LIF) intracerebrally, and P indicates statistical significance.
  • LIF leukemia inhibitory factor
  • the vertical axis in the upper figure is prepulse inhibition (%)
  • the vertical axis in the lower left figure is 120 dB startle response intensity
  • the vertical axis in the lower right figure is 120 d before and after the test.
  • B is the primary startle response rate (%).
  • Example 4 Leukimia Inhibitory Factor Induced Novel Environmental Exercise by Abdominal Brain Administration
  • Example 3 SD rats (Japan SLC) 56-66 days old after birth were injected with a recombinant mouse leukemia inhibitory factor (GI BCO Ranhutech) and saline in an osmotic pump (AZLET model 2002, AZLA CORP). For 14 S. One week after the start of administration, the following exercise test was performed. The amount of exercise in the new environment was determined by placing a rat in a new box of about 50 cm square and then quantifying the amount of exercise using a videotape and an activity analysis system (Neuroscience) linked to it for 30 minutes.
  • GI BCO Ranhutech mouse leukemia inhibitory factor
  • AZLET model 2002 AZLA CORP
  • Figure 4 In Fig. 4, the left figure shows the horizontal momentum, and the right figure shows the vertical momentum.
  • the white bar indicates a control rat administered with saline, the black bar indicates a rat to which leukemia inhibitory factor (LIF) was intracerebrally administered, n indicates the number of animals examined, and P indicates statistical significance.
  • LIF leukemia inhibitory factor
  • Example 5 Decreased ability to learn conditioned avoidance caused by intracerebral administration of Leukeimia Inhibitory Factor
  • Example 3 SD rats (Japan SLC) 56-66 days old after birth were injected with a recombinant mouse leukemia inhibitory factor (GI BCO run foottech) and saline in an osmotic pump (AZLET model 2002, AZLA CORP). For 143 days. On the 10th day after the start of the administration, the ability to avoid avoidance learning was measured. At the time of the test (7-9 weeks old), using a two-way condition avoidance behavior device (Muromachi Kagakusha), when the sound and the light of 80 dB flash, it is necessary to move to the next room. If not move, electricity Learn by applying a shock (0.6 mA, 10 seconds).

Abstract

It is intended to provide an animal showing cognitive learning disability which comprises the step of administering a specific protein factor disturbing the brain function development of the animal or disrupting the developed brain structure of the animal or expressing a gene of the protein factor to achieve the same effect as the administration; and a means of evaluating a remedy for mental diseases associated with cognitive learning disability such as autism and schizophrenia or evaluating the availability of a remedy therefor.

Description

白血病阻止因子を用いた認知学習障害モデル動物とその作製方法 発明の背景  BACKGROUND OF THE INVENTION Model animal of cognitive learning disorder using leukemia inhibitory factor and its production method
1 . 本技術の分野  1. Field of the technology
本発明は、 脳疾患モデル動物の作製法とその応用に関する医学■薬学の分野の 明  The present invention relates to a method for preparing a brain disease model animal and its application in the fields of medicine and pharmacy.
新技術に関するものである。 It is about new technology.
2 . 背景技術  2. Background technology
 book
精神疾患の多くは今だ生物学的な発症原因や病態があきらかでなく、 多く難病 として患者やその家族を苦しめている。 たとえば、 自閉症は 5 0 0 _ 2 5 0 0人 に 1例の割合で発症し、 社会性忌避などの認知障害や学習障害などの精神遅延に 代表される精神疾患でいまだ有効な治療薬はない。 また、 統合失調症は、 人口の 0 . 7 - 1 . 0 %の人に発症し、 日本でも数十万人に及ぶ長期入院患者を生み出 している。 本疾患の主な症状は、 妄想、 幻覚、 幻聴といった陽性症状に加えて、 知覚異常といつた認知障害や弓 Iきこもりゃ鬱症状といつた陰性症状に至るまで、 多用な精神的異常を伴うものである。 現在のところ、 その発症原因の解明はおろ 力 \ 生物学的な病態の理解さえはっきりしていない。 このように認知学習障害を 伴う精神疾患についての基礎医学については未知のところが多い。  Many mental illnesses still have no apparent biological etiology or pathology, and many patients suffer from intractable diseases. For example, autism occurs in 1 in 500-250 people, and is still effective for mental illness represented by cognitive impairment such as social repulsion and mental retardation such as learning disability. There is no. Schizophrenia also affects 0.7-1.0% of the population, producing hundreds of thousands of long-term hospitalized patients in Japan. The main symptoms of this disease are positive symptoms such as delusions, hallucinations, and hallucinations, as well as cognitive deficits such as paresthesias and various mental abnormalities, such as bowel I withdrawal and depression. It accompanies. At present, the elucidation of the etiology is not yet clear. Thus, much is unknown about basic medicine for mental illness with cognitive learning disabilities.
統合失調症は青年期から壮年期にかけて知覚 ·思考■感情■行動面に特徴的な 症状で発病し、 多くは慢性に経過し、 社会適応にさまざまな困難を生じる精神障 害である。 精神症状について陽性症状 (幻覚、 妄想、 減弱思考、 緊張症状、 奇異 な行動など) と、 陰性症状 (感情の平板化、 意欲低下、 社会的引きこもりなど) の分類がある。 社会杓には、 本疾患の病態の特殊性から早期発見、 治療、 社会復 帰活動、 再発予防といった一貫した包括的治療体系の確立が望まれている。 唯一、 統合失調症の陽性症状を改善する治療薬として、 神経伝達物質、 ドパミ ンゃセ口トニンと拮抗する薬物が有用だとされている。 多くは年余にわたるこれ らの薬物の長期投与が不可欠であり、 具体的にはフエノチアジン系化合物、 チォ キサンチン系化合物、 プチ口フエノン系化合物、 ベンザアミド系化合物が患者に 多用されている。 Schizophrenia develops from adolescence to middle age with symptoms characteristic of perception, thinking, emotion, and behavior, and is often a chronic disorder that causes various difficulties in social adjustment. There are two types of mental symptoms: positive symptoms (such as hallucinations, delusions, weakening thoughts, nervous symptoms, and strange behavior) and negative symptoms (such as flattened emotions, reduced motivation, and social withdrawal). It is hoped that the social ladle will establish an integrated and comprehensive treatment system, including early detection, treatment, social rehabilitation activities, and prevention of recurrence, based on the specific nature of the disease. The only therapeutic agent that improves the positive symptoms of schizophrenia is the neurotransmitter dopami Drugs that antagonize tongue mouth tonin are said to be useful. In many cases, long-term administration of these drugs over the years is indispensable. Specifically, phenothiazine compounds, thioxanthine compounds, petit mouth phenone compounds, and benzamide compounds are frequently used in patients.
これら薬物の作用機序の研究にくわえて、 実際、 アンフェタミンを代表とする 覚せい剤が、 人において統合失調症の陽性症状を誘起することから、 ドパミンの 作用異常により統合失調症が発症するとの仮説が提唱されている。 また、 これら の事実より、 アンフエタミンを慢性投与した動物を統合失調症のモデルとして使 用していることがある。 同様に、 ヒトにおいて幻覚誘発作用のある薬物も、 動物 に投与することで統合失調症モデル動物として利用されることがある。 たとえば 、 記憶や学習の脳生理機能に関連するといわれているグルタミン酸受容体の阻害 剤であるフェンサイタリジンの投与動物が、 それである。  In addition to studying the mechanism of action of these drugs, the hypothesis that methamphetamine represented by amphetamine actually induces positive symptoms of schizophrenia in humans, and that dysfunction of dopamine causes schizophrenia. Has been advocated. Based on these facts, animals receiving chronic administration of amphetamine may be used as a model for schizophrenia. Similarly, drugs that have hallucinogenic effects in humans may be used as animal models for schizophrenia when administered to animals. For example, animals administered fencitaridine, which is an inhibitor of glutamate receptor, which is said to be related to brain physiology of memory and learning, is that.
これら従来の統合失調症動物モデルでは、 薬物の投与に依存した一過性の脳機 能異常を呈するものが多く、 ヒトでみられるような、 慢性的な統合失調症の病態 を必ずしも再現しているとはいえなかった。 また、 ドパミン拮抗薬の作用も、 陽 性症状の改善が主たるもので、 陰性症状の治療薬は極めて限られていた。 その原 因としては、 適切な統合失調症の動物モデルが存在しなかつたことによると考え られる。  Many of these conventional animal models of schizophrenia exhibit a transient cerebral dysfunction dependent on drug administration, and do not necessarily reproduce the pathology of chronic schizophrenia as seen in humans. I couldn't say. In addition, the action of dopamine antagonists was mainly for the improvement of positive symptoms, and therapeutic drugs for negative symptoms were extremely limited. This may be due to the lack of a suitable animal model for schizophrenia.
これまで、 統合失調症や自閉症の発症機構について、 実にさまざまな仮説が提 唱されてきている。 その中のひとつに、 Winbergerを主とする研究者によって提 唱されている神経発達障害仮説 (文献 1 ) があるが、 実際にどのような生体因子 が、 どのようなメカニズムで脳神経発達に異常を引き起こすのかまったく不明で あった。 本発明は、 その仮説を科学的に具現化する動物モデルを提供するもので ある。 これまでにも本仮説に基づき、 成長因子やサイト力インの投与により認知 障害モデルの作製が報告されているものの、 本発明による動物モデルは引きこも り行動に類似する運動量の低下と、 学習障害を併発するところにその特徴を有す る (特許申請 1、 2、 文献 8 ) 。 Until now, various hypotheses have been proposed for the pathogenesis of schizophrenia and autism. One of them is the hypothesis of neurodevelopmental disorders proposed by researchers mainly by Winberger (Reference 1). However, what biological factors actually cause abnormalities in cranial nerve development by what mechanisms. It was completely unknown what caused it. The present invention provides an animal model that scientifically embodies the hypothesis. Although a cognitive impairment model has been reported based on this hypothesis by administration of growth factors and cytodynamics, the animal model according to the present invention has a decrease in locomotor activity similar to withdrawal behavior and a learning disability. Has the characteristic that it occurs simultaneously (Patent applications 1, 2, Literature 8).
一方、 自閉症については、 統合失調症にくらべ遺伝性が高いものの、 その原因 についてはまだ未知の部分が多い。 動物では胎児の母体に繰り返し強いス トレス を付加することで、 出生した子供に、 類似の認知学習障害が出るとの報告もある 。 最近、 脳幹部のセロトニン神経の発達異常性が論議されている (文献 2 ) 。 そ の意味で、 統合失調症と同様、 脳神経の発達機能障害であるとの仮説が有力であ るが、 有効な治療薬はほとんどない (文献 3 ) 。  On the other hand, autism is more hereditary than schizophrenia, but its cause is still largely unknown. In animals, it has been reported that repeated stress on the fetal mother causes similar cognitive learning disorders in the offspring. Recently, abnormal development of serotonergic nerves in the brainstem has been discussed (Reference 2). In this sense, as in schizophrenia, the hypothesis that developmental dysfunction of cranial nerves is influential is strong, but there are few effective therapeutic agents (Reference 3).
発明の概要 Summary of the Invention
本発明は、 認知学習異常を示す動物モデルの作製方法とその利用方法を提供す ることを目的とする。  An object of the present invention is to provide a method for producing an animal model showing a cognitive learning abnormality and a method for using the same.
前記課題を解決するために、 本発明は、 動物に脳機能発達に関与する、 もしく は発達後脳細胞機能を制御する特定のタンパク因子を過剰投与する、 もしくはそ の遺伝子を過剰発現させる工程を具備する方法よりなる。  In order to solve the above-mentioned problems, the present invention relates to a step of over-administering a specific protein factor involved in brain function development or controlling post-development brain cell function, or overexpressing the gene thereof. The method comprises:
以下、 本発明を詳しく説明するが、 これら好適形態の説明および実施例は本発 明の有効範囲を限定または制御することを何ら意味するものではない。  BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail, but the description and examples of these preferred embodiments do not imply any limitation or control of the effective range of the present invention.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 白血病阻止因子 (L I F ) を乳児期に投与することで認知行動異常を 誘発させたラットの成長に伴うプレパルスインヒピションの変化を示すグラフで ある。  FIG. 1 is a graph showing changes in prepulse inhibition with growth of rats in which cognitive behavioral abnormalities were induced by administering leukemia inhibitory factor (LIF) during infancy.
図 2は、 白血病阻止因子 (L I F) を乳児期に投与されたラットの生後 3週齢 時の水辺運動量の時間経過を示すグラフである。  FIG. 2 is a graph showing the time course of waterfront activity at the age of three weeks after birth in rats to which leukemia inhibitory factor (LIF) was administered during infancy.
図 3は、 白血病阻止因子 (L I F) の脳内投与で生じた驚愕反応とプレパルス インヒビシヨンを示すグラフである。  FIG. 3 is a graph showing startle response and prepulse inhibition caused by intracerebral administration of leukemia inhibitory factor (LIF).
図 4は、 白血病阻止因子 (L I F) の脳内投与されたラットの新規環境での運 動量を示すグラフである。  FIG. 4 is a graph showing the amount of movement of a rat to which leukemia inhibitory factor (LIF) was administered in the brain in a novel environment.
図 5は、 白血病阻止因子 (L I F) の脳内投与されたラットの条件回避学習能 を示すグラフである。 Figure 5 shows conditioned avoidance learning ability of rats treated with leukemia inhibitory factor (LIF) intracerebrally. FIG.
好適形態の詳細な発明 Detailed invention of preferred embodiment
用いる動物種は、 サル、 ィヌ、 ネコ、 ゥサギ、 モルモット、 ネズミなど、 一般 的には、 哺乳類であればいずれも本手法は、 適用可能である。 通常は、 これまで に多くのデータの蓄積があるネズミやサルが最適であると考えられる。  Generally, any animal species such as monkeys, dogs, cats, cat egrets, guinea pigs, and rats can be used with any of the mammals. Usually, rats and monkeys, which have accumulated a large amount of data so far, are considered optimal.
白血病阻止因子 (Leukeiraia Inhibitory Factor) は炎症性サイトカインとし て位置付けられるが、 脳を含む発生分化過程でも大きな役割を果たしていること が知られていて、 その学問的歴史的経緯の違いからコリン作動性神経分化因子 ( Cholinergic Differentiation Factor ) や D 因 子 、 Differentiation- Stimulating Factor) 等多くの別名をもつ。 また、 同様の分子受容複合体に結合 する類縁サイトカインとしてオンコスタチン Mや毛様体神経栄養因子 (Cliary Neurotrophic Factor) があり、 これらを白血病阻止因子の代わりに使用して請 求項に記す認知学習障害動物を作製することも可能である。  Leukeiraia Inhibitory Factor is positioned as an inflammatory cytokine, but is known to play a major role in the development and differentiation processes including the brain. Cholinergic neurons are known for their academic and historical background. It has many other names such as differentiation factor (Cholinergic Differentiation Factor), D factor, Differentiation-Stimulating Factor). In addition, there are oncostatin M and ciliary neurotrophic factor as related cytokines that bind to similar molecular receptor complexes, and these are used in place of leukemia inhibitory factors, and the cognitive learning described in the claim is used. It is also possible to produce a disabled animal.
これらのタンパク因子を投与、 もしくは発現させる手段としては、 大きく 2つ の方法が考えられる。 そのひとつは、 これらタンパク因子を直接、 動物の腹腔か 皮下、 脳内等に注入する方法である。 この方法だと体内における当該タンパク因 子の代謝分解によりその体内濃度がすぐ低下するので、 何 3間かに渡つて複数回 、 注射する必要がある。 また、 末梢からの投与では、 その作用部位が脳であるこ と力 ら、 まだ脳血液関門の未成熟な乳児期の投与が理想的である。 通常、 これら のタンパク因子は、 遺伝子組替え法により細菌内で大量生成されたものか、 もし くは、 動物細胞から精製されたもの等を用いることができる。  There are roughly two methods for administering or expressing these protein factors. One method is to inject these protein factors directly into the abdominal cavity, subcutaneously, or into the brain of animals. According to this method, the concentration of the protein factor in the body is immediately reduced due to metabolic degradation of the protein factor, so it is necessary to inject several times over several times. In addition, in the case of administration from the periphery, the site of action is the brain, so it is ideal to administer immature infants at the blood-brain barrier. In general, these protein factors may be those produced in large amounts in bacteria by genetic recombination or those purified from animal cells.
白血病阻止因子の投与量については、 全身投与で動物 1キログラム体重あたり 0. 2 5 m gZ l日ぐらい、 もしくは脳内投与で脳重 1キログラムあたり 0. 2 S m gZ l日ぐらいが適当であるが、 それ以上でもよい。 ただし、 白血病阻止因 子については、 体重低下作用を有しているので過度の投与は、 極度の体重低下を 起こしてしまう点で注意を要する。 投与回数は、 1回では不十分で、 できれば 3 回もしくは 3 0間、 またそれ以上の回数、 日数が望ましい。 An appropriate dose of leukemia inhibitory factor is 0.25 mg gZl / kg body weight per animal for systemic administration, or 0.2 SmgZl / kg brain weight / kg for intracerebral administration. But it may be more. However, it should be noted that excessive administration of leukemia-inhibiting factors causes excessive weight loss because they have a weight loss effect. One dose is not enough, preferably 3 It is desirable to have the number of times or between 30 and more times and days.
もうひとつの方法は、 白血病阻止因子や類縁体タンパク因子の遺伝子を、 近年 の胚操作法により動物個体に導入し、 脳を含むいずれかの臓器で強制遺伝子発現 させることで、 結果として当該タンパク因子の投与を達成させるものである。 こ の方法によると、 一度、 その遺伝子導入動物を作製すれば、 その動物を系統維持 するだけで、 そのまま当該モデル動物となりうる。 また、 同様の目的で、 ここに 特定したタンパク因子が本来細胞内で活性化すると知られている細胞内情報伝達 分子を、 あたかもそのタンパク因子がその細胞に作用したかのように遺伝子操作 等を用いて変異■改変した動物を発生工学的に作製し、 代用することも可能であ る。  Another method is to introduce a gene for leukemia inhibitory factor or an analogous protein factor into an individual animal by a recent embryo manipulation method and express the gene in one of the organs including the brain. Is achieved. According to this method, once the transgenic animal is produced, it can be used as the model animal as it is simply by maintaining the strain. For the same purpose, the intracellular signal transduction molecule, which is originally known to activate the protein factor specified in the cell, can be used for genetic manipulation, etc., as if the protein factor acted on the cell. It is also possible to produce a mutant-modified animal using developmental engineering and substitute it.
同様に適当な遺伝子発現ベクターに白血病阻止因子や類縁体タンパク因子の遺 伝子をクローニングして、 それを生後の動物の脳内に遺伝子導入、 発現させるこ とで、 結果的に当該タンパク因子の投与と同等の効果をもたらすことも可能であ る。 用いうる遺伝子発現ベクターとしては、 レトロウイルスベクター、 アデノウ ィルスベクター、 へノレぺスウィルスベクターなどが存在する。  Similarly, by cloning the leukemia inhibitory factor and analogous protein factor genes into an appropriate gene expression vector, and transfecting and expressing them in the brain of a postnatal animal, the resulting protein factor is consequently expressed. It can also produce the same effect as administration. Examples of gene expression vectors that can be used include retrovirus vectors, adenovirus vectors, henorevirus vectors, and the like.
本手法により作製された認知学習の動物モデルは、 自閉症患者や統合失調症患 者に見られるような認知行動異常や学習障害を呈するようになる。 その認知行動 異常は、 以下の方法により評価することができる。 第一には、 驚愕反応のプレパ ノレスインヒビシヨン、 各種学習課題での認知遂行能力、 動物運動量などの行動学 的測定が、 それに相当する。  Animal models of cognitive learning created by this method will exhibit cognitive behavioral abnormalities and learning disabilities as seen in autistic and schizophrenic patients. The abnormal cognitive behavior can be evaluated by the following method. First, behavioral measurements such as prepanolase inhibition of startle response, cognitive performance in various learning tasks, and animal locomotion correspond to this.
驚愕反応におけるプレパルスインヒピションとは、 ヒトと動物で共通に評価が 可能な驚愕反応を指標とする知覚一運動反応能力のテストである。 このテストで は、 統合失調症や自閉症の病態の中心を成すと考えられている注意力と脳内情報 処理力の異常性が、 科学的に、 客観的に評佃できる特徴を有する。 テスト自身は 、 1 2 0デシベル程度の大きな音でびつくり驚愕反応をおこす前、 3 0— 1 5 0 ミリ秒に、 それ自身はびつくり驚愕反応を起こしえない弱い音刺激 (プレパルス ) をあらかじめ聴かせておくと、 本来の大きな音でびっくり驚愕反応が減少する ことを測定する。 このプレパルスによる減少分をプレパルスインヒピションと呼 び、 これは、 統合失調症患者や自閉症患者で異常な低下を示すことが知られてい る (文献 4) 。 Prepulse inhibition in startle response is a test of sensory-motor response ability using the startle response as an index that can be commonly evaluated in humans and animals. In this test, the abnormalities in attention and brain information processing, which are considered to be central to the pathology of schizophrenia and autism, have characteristics that can be evaluated scientifically and objectively. Before the test itself snarls with a loud sound of about 120 dB and causes a startle response, in 30-150 ms, the weak sound stimulus that itself cannot swell and cause a startle response (prepulse) Pre-listening to) measures the startle response with a loud sound. The decrease due to this prepulse is called prepulse inhibition, and it is known that it shows an abnormal decrease in schizophrenia patients and autism patients (Reference 4).
動物での各種学習課題での遂行能力は、 例えばパブロフ型のコンディショニン グ学習において、 電気ショックと回避行動の学習、 水迷路の空間学習、 8方向迷 路の餌位置学習などで測定することができる (文献 5) 。  The ability to perform various learning tasks in animals can be measured, for example, in Pavlov-type conditioning learning, such as learning of electric shock and avoidance behavior, spatial learning in the water maze, and bait position learning in the 8-way maze. (Reference 5).
ここでの動物運動量とは、 自閉症患者や陰性症状を有する統合失調症患者が、 新規環境との接触をいやがり、 社会から引きこもる現象を反映していると考える 。 一般に、 動物では、 新規でストレスのある環境下での探索運動量を測定してい る。 一般に動物モデルにおいて、 この指標は低下すると推定される。  Here, we consider that the animal momentum reflects the phenomenon that autistic patients and schizophrenic patients with negative symptoms reluctantly come into contact with the new environment and withdraw from society. In general, animals measure exploratory activity in a new and stressful environment. Generally, in animal models, this index is estimated to decrease.
参考文献  References
(文献 1) Weinberger DR. Arch. Gen Psychiatry 44: 660-669 (1987)  (Reference 1) Weinberger DR. Arch. Gen Psychiatry 44: 660-669 (1987)
(文献 2 ) Hornig M, Lipkin WI. Ment Retard Dev Disabil Res Rev. (Reference 2) Hornig M, Lipkin WI.Ment Retard Dev Disabil Res Rev.
7(3) :200-210(2001) 7 (3): 200-210 (2001)
(文献 3) Whitaker-Azmitia PM. Brain Res Bull. ;56 (5) :479-485 (2001) (文献 4) Braff DL, Geyer MA. Arch Gen Psychiatry 47:181-188(1990) (文献 5) Sams-Dodd F. Rev Neurosci. 10 (1) :59-90. (1999)  (Reference 3) Whitaker-Azmitia PM.Brain Res Bull.; 56 (5): 479-485 (2001) (Reference 4) Braff DL, Geyer MA.Arch Gen Psychiatry 47: 181-188 (1990) (Reference 5) Sams-Dodd F. Rev Neurosci. 10 (1): 59-90. (1999)
申請者による関連する従来の発明や研究には、 以下のものがある。  Related prior inventions and research by the applicant include:
(特許申請 1) 2000/10/10申請;特願 2000- 309042 精神分裂病様の認知行動 異常を示す動物とその作製方法  (Patent application 1) 2000/10/10 application; Japanese Patent Application 2000-309042 Schizophrenia-like abnormal cognitive behavior and its production
(特許申請 2) 2001/ 2/27申請;特願 2001- 52546 分裂病様精神疾患動物モデ ル、 その作出方法およびその用途  (Patent application 2) Filed February 27, 2001; Japanese Patent Application 2001-52546 Animal model for schizophrenia-like psychiatric disorder, its production method and its use
(文南犬 6 ) Nawa H, Takahashi M, Patterson PH. Mol Psychiatry. (Bunnan Inu 6) Nawa H, Takahashi M, Patterson PH. Mol Psychiatry.
Nov ;5 (6) :594-603(2000) Nov; 5 (6): 594-603 (2000)
(文献 7) Takahashi M, Shirakawa 0, Toyooka K, Kitamura N, Hashimoto T, Maeda K, Koizumi S, Wakabayashi H, Someya T, Nawa H. Mol Psychiatry. May;5 (3) : 293-300 (2000) (Reference 7) Takahashi M, Shirakawa 0, Toyooka K, Kitamura N, Hashimoto T, Maeda K, Koizumi S, Wakabayashi H, Someya T, Nawa H. Mol Psychiatry. May; 5 (3): 293-300 (2000)
(文陈 8 ) : Futamura T, Toyooka K, Iritani S, Niizato K, Nakamura R, Tsuchiya K, Someya T, Kakita A, Takahashi H, Nawa H. Mol Psychiatry. 7 (7) : 673-682. (2002)  (Document 8): Futamura T, Toyooka K, Iritani S, Niizato K, Nakamura R, Tsuchiya K, Someya T, Kakita A, Takahashi H, Nawa H. Mol Psychiatry. 7 (7): 673-682. (2002 )
本発明の原理と方法によれば、 自閉症や統合失調症とそれに類似する認知学習 障害の動物モデルを簡便に提供することが可能で、 この動物を用いることで認知 学習障害の医学研究材料を提供するとともに、 モデル動物として利用することで 自閉症ゃ統合失調症とそれに類する認知学習障害性の精神疾患の治療薬、 診断薬 を開発、 評価することが可能となる。  According to the principle and method of the present invention, an animal model of autism, schizophrenia, and similar cognitive learning disorders can be easily provided. In addition to using the drug as a model animal, it will be possible to develop and evaluate therapeutics and diagnostics for autism ゃ schizophrenia and similar mental disorders with cognitive learning disorders.
実施例 Example
まず、 白血病阻止因子 (Leukeimia Inhibitory Factor) の L児への末梢投与 の実施例について述べる。  First, an example of peripheral administration of Leukeimia Inhibitory Factor to L children will be described.
実施例 1 :白血病阻止因子 (Leukeimia Inhibitory Factor) のラット乳児投与 で生じた驚愕プレパルスインヒピションの異常 Example 1: Abnormal startle prepulse inhibition caused by administration of Leukeimia Inhibitory Factor to infants in rats
動物は、 S Dラット (日本 S L C ) 生後 2日齢より使用した。 試薬は、 マウス 組替え白血病阻止因子 (G I B C Oライフテック) 、 コントローノレとしてチトク ローム C (Sigma) を生理食塩水に溶解させた。 生後 2日目より 1日おきに計 1 0回 (生後 1 1 S目まで) 、 頸部にラット体重 1 g当たり 0 . 2 5マイクロダラ ム皮下投与した。 生後 3週より小動物驚愕反応測定装置 (San Diego Instruments) にて驚俜反応強度およぴプレパルスインヒピションを測定した。 すなわち、 驚愕反応を誘発する感覚刺激としては、 音刺激 (1 2 0 d B ) を用い 、 プレパルス刺激として環境騒音 (バックグラウンドノィズ) レベルより 6デシ ベル高い音圧の刺激 ( 7 5 d B ) を与え、 その 1 0 0ミリセコンド後に, 音圧が 1 2 0デシベルのパルス刺激を与えた。 1 2 0 d B単独の時の驚愕反応とプレパ ルスを組み合わせた時の反応比をプレパルスインヒビシヨン ( P P I ) とした。 測定した生後 3週から 8週について、 白血病阻止因子投与群は AN OVA検定で 低下を示し、 とくに生後 6週齢の時点においては、 白血病阻止因子投与群ではチ トクローム C投与群に比べ、 単独でプレパルスインヒビシヨンの有意な低下 (* P< 0. 05) を示した (図 1) 。 なお図 1において、 白丸は健常コントロール ラットを、 黒丸は白血病阻止因子 (L I F) 投与ラットを、 #*は有意な変化点 を、 nは調査動物数を示す。 縦軸はプレパルスインヒピション (%) であり、 横 軸は生後週齢である。 ' The animals were used from the age of 2 days after birth of SD rats (Japan SLC). As reagents, mouse recombinant leukemia inhibitory factor (GIBCO Lifetech) and cytochrome C (Sigma) as a control were dissolved in physiological saline. From the second day after birth, a total of 10 times every other day (until the 11th day after birth) was administered subcutaneously to the cervix of 0.25 microdalum per gram of rat body weight. From 3 weeks after birth, startle response intensity and prepulse inhibition were measured using a small animal startle response measuring device (San Diego Instruments). That is, a sound stimulus (120 dB) is used as a sensory stimulus to induce a startle response, and a stimulus (75 dB) that is 6 dB higher than the environmental noise (background noise) level is used as a prepulse stimulus. ), And after 100 milliseconds, a pulse stimulus with a sound pressure of 120 dB was given. The response ratio of the startle response when 120 dB alone and the prepulse were combined was defined as prepulse inhibition (PPI). From 3 weeks to 8 weeks after birth, the leukemia inhibitory factor group showed a decrease in the ANOVA test, especially at the age of 6 weeks after birth, the leukemia inhibitory factor group alone compared to the cytochrome C group. Prepulse inhibition was significantly reduced (* P <0.05) (Fig. 1). In FIG. 1, open circles indicate healthy control rats, solid circles indicate rats treated with leukemia inhibitory factor (LIF), # * indicates a significant change point, and n indicates the number of animals examined. The vertical axis is the prepulse inhibition (%), and the horizontal axis is the age after birth. '
実施例 2 :白血病阻止因子 (Leukeimia Inhibitory Factor) の乳児投与で生じ た新規環境運動量の異常 Example 2: Novel abnormal environmental locomotion caused by infant administration of leukemia inhibitor factor
動物は、 SDラット (日本 SLC) 生後 2日齢より使用した。 試薬は、 マウス 組替え白血病阻止因子 (G I BCQライフテック) 、 チトクローム一 C (Sigma ) を生理食塩水に溶解させた。 生後 2日目より 1日おきに計 10回 (生後 11日 目まで) 、 頸部にラット体重 1 g当たり 0. 25マイクログラム皮下投与した。 動物の新規環境での運動量は、 約 50 cm四方の新しい箱にラットをいれ、 その 後の運動量をビデオテープとそれに連動した行動量解析システム (ニューロサイ エンス社) で数値化した。 測定した生後 3週齢について、 白血病阻止因子投与群 は AN OVA検定で有意な低下を示し、 とくに新規環境においた直後の 5分間に 白血病阻止因子投与群ではチトクローム C投与群に比べ、 単独で水平運動量の有 意な低下 (*pく 0. 05) を示した (図 2) 。 図 2において、 白丸は健常コン トロールラットを、 黒丸は白血病阻止因子 (L I F) 投与ラットを、 nは調査動 物数を示す。 縦軸は水平移動距離 (cm) であり、 横軸は新規環境へ置いてから の時間 (分) である。  The animals were used from the age of 2 days after birth of SD rats (Japan SLC). As reagents, mouse recombinant leukemia inhibitory factor (GIBCQ Lifetech) and cytochrome-I C (Sigma) were dissolved in physiological saline. From the second day after birth, 0.25 micrograms per gram of rat body weight was subcutaneously administered subcutaneously to the neck 10 times every other day (until the 11th day after birth). The activity of the animal in the new environment was determined by placing the rat in a new box of about 50 cm square, and then quantifying the amount of exercise using a videotape and an activity analysis system (Neuroscience) linked to the videotape. At 3 weeks of age, the leukemia inhibitory factor group showed a significant decrease in the AN OVA test, especially in the 5-minute period immediately after being placed in the new environment. It showed a significant decrease in momentum (* p 0.05) (Figure 2). In FIG. 2, open circles indicate healthy control rats, solid circles indicate rats administered with leukemia inhibitory factor (LIF), and n indicates the number of animals studied. The vertical axis is the horizontal movement distance (cm), and the horizontal axis is the time (minutes) after placing in the new environment.
更に、 白血病阻止因子 (Leukeimia Inhibitory Factor) の成熟ラットへの月 ¾ 内投与の実施例について述べる。  Further, an example of intramuscular administration of leukemia inhibitory factor (Leukeimia Inhibitory Factor) to adult rats will be described.
実施例 3 :白血病阻止因子 (Leukeimia Inhibitory Factor) の脳内投与で生じ た驚愕プレパルスインヒビシヨンの異常 動物は、 SDラット (日本 SLC) 生後 56— 66日齢より使用した。 試薬は 、 マウス組替え白血病阻止因子 (G I B COライフッテック) を生理食塩水に溶 解させた。 ラットは麻酔下で 28ゲージのカヌーレをブレダマの 0. 5mm前方 、 3. Omm側方に歯科用ドリルで頭蓋骨に開けた穴に、 探さ 6. Ommで埋め 込み、 歯科用セメント等を用いて固定した。 線条体に坦め込んだ力-ユーレの端 には、 プラスチックチューブを接続し、 浸透圧ポンプ (250マイクロリツター 容量 (AZLET raodel2002, AZLA CORP; 14日間持続投与) に連結させ、 そのポン プ自身は、 ラットの背中の皮下に揷入した。 なお、 浸透圧ポンプは、 あらかじめ マウス組替え白血病阻止因子 (40マイクログラム/ m 1 ; G I BCOランフッ テック) 力、、 生理食塩水で充填しておいた。 頭皮を縫合後、 手術用クリップで留 めて外科手術からの回復を待った。 Example 3: Abnormal startle prepulse inhibition caused by intracerebral administration of leukemic inhibitory factor (Leukeimia Inhibitory Factor) The animals were used from the age of 56-66 days after birth of SD rats (Japan SLC). As a reagent, mouse recombinant leukemia inhibitory factor (GIB CO Lifetech) was dissolved in physiological saline. Under anesthesia, the rat was implanted with a 28-gauge cannula 0.5 mm anterior to Bredama, 3.Omm in the hole drilled in the skull with a dental drill on the side of the dentist. did. A plastic tube is connected to the end of the force-Yure carried in the striatum and connected to an osmotic pump (250 microliter volume (AZLET raodel2002, AZLA CORP; continuous administration for 14 days). The osmotic pump was previously filled with mouse recombinant leukemia inhibitory factor (40 micrograms / m1; GI BCO Ranhutech) and saline. After suturing the scalp, I fastened it with a surgical clip and waited for recovery from surgery.
投与開始後 1週間より小動物驚愕反応測定装置 (San Diego Instruments) に て驚愕反応強度およびプレパルスインヒビシヨンを測定した。 すなわち、 驚愕反 応を誘発する感覚刺激としては、 音刺激を用い、 プレパルス刺激として環境騒音 From one week after the start of the administration, the startle response intensity and prepulse inhibition were measured using a small animal startle response measuring device (San Diego Instruments). That is, a sound stimulus is used as the sensory stimulus that induces the startle response, and an environmental noise is
(バックグラウンドノィズ) レベルより 5デシベル高い音圧の刺激を与え、 その 100ミリセコンド後に、 音圧が 120デシベルのパルス刺激を与えた。 120 d B単独の時の驚愕反応とプレパルスを組み合わせた時の反応比をプレパルスィ ンヒビシヨン ( P P I ) とした。 これらセッションの前後での 120デシベルの パルス刺激に対する反応性低下を順応性として評価した。 白血病阻止因子投与群 は、 生理食塩水投与郡に比べ、 いずれのプレパルス強度においても有意な低下を 示した。 しかし、 120 d B単独の時の驚愕反応強度とその順化度そのものには 、 両者とも大きな差は見られなかった (図 3) 。 図 3において、 上の図は 75 d B、 80 dB、 85 dBの音プレパルスを加えたときの主驚愕反応の低下率を示 すグラフであり、 左下の図はプレパルスなしでの 120 d Bの主驚愕反応を示す ダラフであり、 右下の図はテスト前後での 120 d Bの主驚愕反応の変化を示す グラフである。 図 3において、 白棒は生理食塩水投与のコントロール動物を、 黒 棒は白血病阻止因子 (L I F) を脳内投与された動物を、 Pは統計有意性を示す 。 また、 上の図の縦軸はプレパルスインヒピション (%) であり、 左下の図の縦 軸は 120 d B驚愕反応強度であり、 右下の図の縦軸はテスト後に対するテスト 前の 120 d Bの主驚愕反応率 (%) である。 (Background noise) A stimulus with a sound pressure 5 dB higher than the level was applied, and 100 ms later, a pulse stimulus with a sound pressure of 120 dB was applied. The response ratio when the startle response when using 120 dB alone and the prepulse were combined was defined as prepulse inhibition (PPI). Decrease in responsiveness to a 120 dB pulse stimulus before and after these sessions was assessed as adaptability. The leukemia inhibitory factor-treated group showed a significant decrease in all prepulse intensities as compared with the saline-treated group. However, there was no significant difference between the startle response intensity and the degree of acclimation itself when 120 dB was used alone (FIG. 3). In Fig. 3, the upper figure is a graph showing the decrease rate of the main startle response when a sound pre-pulse of 75 dB, 80 dB, and 85 dB is applied, and the lower left figure is a graph of 120 dB without the pre-pulse. Draft showing the primary startle response. The lower right figure is a graph showing the change in the primary startle response at 120 dB before and after the test. In FIG. 3, a white bar represents a control animal to which saline was administered, and a black bar represents a control animal. Bars indicate animals that received leukemia inhibitory factor (LIF) intracerebrally, and P indicates statistical significance. The vertical axis in the upper figure is prepulse inhibition (%), the vertical axis in the lower left figure is 120 dB startle response intensity, and the vertical axis in the lower right figure is 120 d before and after the test. B is the primary startle response rate (%).
実施例 4 :白血病阻止因子 (Leukeimia Inhibitory Factor) の脳內投与で生じ た新規環境運動量の異常 Example 4: Leukimia Inhibitory Factor Induced Novel Environmental Exercise by Abdominal Brain Administration
実施例 3にあるように、 SDラット (日本 SLC) 生後 56— 66日齢の脳内 に、 マウス組替え白血病阻止因子 (G I BCOランフッテック) と生理食塩水を 浸透圧ポンプ (AZLET model2002, AZLA CORP) から 14 S間持続投与した。 投与 開始後 1週間で、 下記運動量テストを行った。 新規環境での運動量は、 約 50 c m四方の新しい箱にラットをいれ、 その後の運動量を 30分間ビデオテープとそ れに連動した行動量解析システム (ニューロサイエンス社) で数値化した。 白血 病阻止因子投与群は、 生理食塩水投与郡に比べ Student T検定で、 水平運動量に 対し低下傾向 (p = 0. 088) を示し、 起き上がり垂直運動は有意な低下 (p =0. 032) を示した (図 4) 。 図 4において左の図は水平運動量を、 右の図 は垂直運動量を示す。 また白棒は生理食塩水投与のコント口ールラットを、 黒棒 は白血病阻止因子 (L I F) を脳内投与されたラットを、 nは調査動物数を、 P は統計有意性を示す。  As shown in Example 3, SD rats (Japan SLC) 56-66 days old after birth were injected with a recombinant mouse leukemia inhibitory factor (GI BCO Ranhutech) and saline in an osmotic pump (AZLET model 2002, AZLA CORP). For 14 S. One week after the start of administration, the following exercise test was performed. The amount of exercise in the new environment was determined by placing a rat in a new box of about 50 cm square and then quantifying the amount of exercise using a videotape and an activity analysis system (Neuroscience) linked to it for 30 minutes. The leukemia inhibitory factor group showed a tendency to decrease in horizontal momentum (p = 0.088) and a significant decrease in vertical movement (p = 0.032) in the Student T test compared with the saline-treated group. (Figure 4). In Fig. 4, the left figure shows the horizontal momentum, and the right figure shows the vertical momentum. The white bar indicates a control rat administered with saline, the black bar indicates a rat to which leukemia inhibitory factor (LIF) was intracerebrally administered, n indicates the number of animals examined, and P indicates statistical significance.
実施例 5 : 白血病阻止因子 (Leukeimia Inhibitory Factor) の脳内投与で生じ た条件回避学習能の低下 Example 5: Decreased ability to learn conditioned avoidance caused by intracerebral administration of Leukeimia Inhibitory Factor
実施例 3にあるように、 SDラット (日本 SLC) 生後 56— 66日齢の脳内 に、 マウス組替え白血病阻止因子 (G I BCOランフッテック) と生理食塩水を 浸透圧ポンプ (AZLET model2002, AZLA CORP) から 143間持続投与した。 投与 開始後 10日目で、 条件回避学習能を測定した。 テスト時 (7— 9週齢) のラッ トに 2方向条件回避行動装置 (室町科学社) を使って、 80 dBの音、 および光 が点滅すると、 隣の部屋に移るべきであるということを、 移動しない場合に電気 ショック (0. 6mA、 10秒) が加えることで学習させる。 連続してこの課題 を 10— 50秒間隔 (ランダム) に 90回繰り返し、 条件刺激に対するその正解 反応率を持って学習能力を判定した。 成長ラットの脳内連続投与について、 白血 病阻止因子投与群は、 生理食塩水投与群と比べ、 ほぼすベての学習セッションに おいて著しい学習能力の低下を (*pく 0. 05) を示した (図 5) 。 図 5にお いて実線'菱形点は生理食塩水投与のコントロールラットを、 黒四角 '点線は白 血病阻止因子 (L I F) を脳内投与されたラットを、 nは調査動物数を示す。 ま た縦軸は正答率 (%) であり、 横軸は学習セッション数 (回) である。 As shown in Example 3, SD rats (Japan SLC) 56-66 days old after birth were injected with a recombinant mouse leukemia inhibitory factor (GI BCO run foottech) and saline in an osmotic pump (AZLET model 2002, AZLA CORP). For 143 days. On the 10th day after the start of the administration, the ability to avoid avoidance learning was measured. At the time of the test (7-9 weeks old), using a two-way condition avoidance behavior device (Muromachi Kagakusha), when the sound and the light of 80 dB flash, it is necessary to move to the next room. If not move, electricity Learn by applying a shock (0.6 mA, 10 seconds). This task was repeated 90 times at 10-50 second intervals (randomly), and the learning ability was judged based on the correct response rate to the conditional stimulus. Regarding continuous administration to the brain of growing rats, the leukemia inhibitory factor group showed a significant decrease in learning ability in almost all learning sessions compared to the physiological saline group (* p <0.05). (Figure 5). In FIG. 5, the solid line “diamond point” indicates a control rat administered with physiological saline, the solid square “dotted line” indicates a rat administered with leukemia inhibitory factor (LIF) intracerebrally, and n indicates the number of animals examined. The vertical axis is the correct answer rate (%), and the horizontal axis is the number of learning sessions (times).

Claims

請 求 の 範 囲 The scope of the claims
1 . 発達期の幼若動物に白血病阻止因子 (Leukeimia Inhibitory Factor) を投 与することにより、 持続的な脳機能異常を呈する認知学習障害を誘発した動物を 作製する方法。 1. A method for producing an animal that induces cognitive learning deficits with persistent cerebral dysfunction by administering a leukemia inhibitory factor (Leukeimia Inhibitory Factor) to a young animal during development.
2. 請求項 1記載の方法により作成した動物の、 認知学習障害のモデルとしての 使用方法。  2. Use of an animal created by the method of claim 1 as a model for cognitive learning disability.
3 . 自閉症、 統合失調症又は認知学習障害性の精神疾患の治療薬又は治療薬とし ての可能性を評価することを目的とする、 請求項 2記載の使用方法。  3. The method according to claim 2, wherein the method is used for evaluating a therapeutic agent or a therapeutic agent for autism, schizophrenia or a cognitive learning disorder mental disorder.
4 . 発達後の動物に'白血病阻止因子 (Leukeimia Inhibitory Factor) を投与す ることにより、 急性の脳機能異常を呈する認知学習障害を誘発した動物を作製す る方法。  4. A method of producing an animal that has induced cognitive learning disorders with acute cerebral dysfunction by administering a leukemic inhibitory factor (Leukeimia Inhibitory Factor) to a developing animal.
5 . 請求項 4記載の方法により作成した動物の、 認知学習障害のモデルとしての 使用方法。  5. Use of an animal created by the method of claim 4 as a model for cognitive learning disability.
6 . 自閉症、 統合失調症又は認知学習障害性の精神疾患の治療薬又は治療薬とし ての可能性を評価することを目的とする、 請求項 5記載の使用方法。  6. The use according to claim 5, which is intended to evaluate the therapeutic potential of autism, schizophrenia, or cognitive learning disorder mental illness.
7 . 動物胚に白血病阻止因子 (Leukeimia Inhibitory Factor) 遺伝子を過剰発 現させ、 該動物において白血病阻止因子を強制発現させることにより、 脳機能異 常を呈する認知学習障害を誘発した動物を作製する方法。  7. A method for producing an animal in which a cognitive learning disorder exhibiting cerebral dysfunction is induced by overexpressing a leukemia inhibitory factor (Leukeimia Inhibitory Factor) gene in an animal embryo and forcibly expressing the leukemia inhibitory factor in the animal. .
8 . 請求項 7記載の方法により作成した動物の、 認知学習障害のモデルとしての 使用方法。  8. Use of an animal created by the method of claim 7 as a model for cognitive learning disability.
9 . 自閉症、 統合失調症又は認知学習障害性の精神疾患の治療薬又は治療薬とし ての可能性を評価することを目的とする、 請求項 8記載の使用方法。  9. The use according to claim 8, which is intended to evaluate the therapeutic potential of autism, schizophrenia or cognitive learning disorder mental illness.
1 0 . 生後の動物に白血病阻止因子 (Leukeimia Inhibitory Factor) 遺伝子を 過剰発現させ、 該動物において白血病阻止因子を強制発現させることにより、 脳 機能異常を呈する認知学習障害を誘発した動物を作製する方法。 10. A method for producing an animal that induces cognitive learning disorders exhibiting cerebral dysfunction by overexpressing the leukemia inhibitory factor (Leukeimia Inhibitory Factor) gene in postnatal animals and forcibly expressing the leukemia inhibitory factor in the animals. .
11. 請求項 10記載の方法により作成した動物の、 認知学習障害のモデルとし ての使用方法。 11. Use of an animal created by the method of claim 10 as a model for cognitive learning disability.
12. 自閉症、 統合失調症又は認知学習障害性の精神疾患の治療薬又は治療薬と しての可能性を評価することを目的とする請求項 1 1記載の使用方法。  12. The use according to claim 11, wherein the use is intended to evaluate the therapeutic potential of autism, schizophrenia or cognitive learning impaired mental illness.
PCT/JP2003/015037 2002-11-29 2003-11-25 Model animal of cognitive learning disability with the use of leukemia inhibitory factor and method of constructing the same WO2004049793A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003284688A AU2003284688A1 (en) 2002-11-29 2003-11-25 Model animal of cognitive learning disability with the use of leukemia inhibitory factor and method of constructing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002382835A JP2004180655A (en) 2002-11-29 2002-11-29 Cognitive learning disorder model animal using leukaemia inhibitory factor and method for producing the same
JP2002-382835 2002-11-29

Publications (1)

Publication Number Publication Date
WO2004049793A1 true WO2004049793A1 (en) 2004-06-17

Family

ID=32463678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015037 WO2004049793A1 (en) 2002-11-29 2003-11-25 Model animal of cognitive learning disability with the use of leukemia inhibitory factor and method of constructing the same

Country Status (3)

Country Link
JP (1) JP2004180655A (en)
AU (1) AU2003284688A1 (en)
WO (1) WO2004049793A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030185A1 (en) * 2000-10-10 2002-04-18 Japan As Represented By President Of Niigata University Animal showing schizophrenia-like abnormality in cognitive behaviors and method of constructing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030185A1 (en) * 2000-10-10 2002-04-18 Japan As Represented By President Of Niigata University Animal showing schizophrenia-like abnormality in cognitive behaviors and method of constructing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAMOH, S ET AL: "Adenoviral-driven gene expression of leukemia inhibitory factor in the medial septum/diagonal band impaires spatial learning in mice.", JPN. J. PHARMACOL., vol. 85, no. 1, 2001, pages 813, XP002977462 *

Also Published As

Publication number Publication date
JP2004180655A (en) 2004-07-02
AU2003284688A1 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
Venner et al. A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus
Adamsky et al. Astrocytes in memory function: pioneering findings and future directions
Witten et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement
Kellendonk et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning
Richardson et al. NG2-glia as multipotent neural stem cells: fact or fantasy?
Lammel et al. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli
Baudin et al. Maternal deprivation induces deficits in temporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex
Ting-A-Kee et al. The neurobiology of opiate motivation
Cope et al. Activation of the CA2-ventral CA1 pathway reverses social discrimination dysfunction in Shank3B knockout mice
Yin et al. Selective activation of cholinergic neurotransmission from the medial septal nucleus to hippocampal pyramidal neurones improves sepsis-induced cognitive deficits in mice
WO2004049793A1 (en) Model animal of cognitive learning disability with the use of leukemia inhibitory factor and method of constructing the same
AU764847B2 (en) Animal showing schizophrenia-like abnormality in cognitive behaviors and method of constructing the same
JP4002952B2 (en) Animal model of schizophrenia-like psychiatric disorder, its production method and its use
Thelin et al. Heat nociception is severely reduced in a mutant mouse deficient for the L1 adhesion molecule
Binder et al. Recent advances in epilepsy research
Jay Cellular plasticity and the pathophysiology of depression
Drozd Aberrant Neural Activity in Cortico-Striatal-Limbic Circuitry Underlies Behavioral Deficits in a Mouse Model of Neurofibromatosis Type 1
Liénard et al. Role of the basolateral amygdala in retrieval of conditioned flavors in the awake rat
Tichánek Psychiatric-Relevant Impairments in Mouse Models of Spinocerebellar Ataxias
Bloss et al. Stress and Aging: A question of Resilience with Implications for Disease
Podgornik Role of the anterior insular cortex in salience detection and behavioral flexibility
Nishioka et al. Error-related Signaling in Nucleus Accumbens D2 Receptor-expressing Neurons Guides Avoidance-based Goal-directed Behavior
Wu Dopaminergic Modulation of Affective State and Behavior
Richard Pharmacologic and Genetic Targeting of Neural Extracellular Matrix to Restore Neuroplasticity in the Striatum for Normal and Pathologic Aging-Related Cognitive Decline
Sarro et al. The role of the rodent amygdala in early development.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase