WO2004049748A2 - Systeme de communication et procede pour reduire la congestion dans ce dernier - Google Patents

Systeme de communication et procede pour reduire la congestion dans ce dernier Download PDF

Info

Publication number
WO2004049748A2
WO2004049748A2 PCT/EP2003/050687 EP0350687W WO2004049748A2 WO 2004049748 A2 WO2004049748 A2 WO 2004049748A2 EP 0350687 W EP0350687 W EP 0350687W WO 2004049748 A2 WO2004049748 A2 WO 2004049748A2
Authority
WO
WIPO (PCT)
Prior art keywords
communication
speech
gprs
communication system
resource
Prior art date
Application number
PCT/EP2003/050687
Other languages
English (en)
Other versions
WO2004049748A3 (fr
Inventor
Jose Gil
Original Assignee
Motorola Inc
Motorola Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc, Motorola Limited filed Critical Motorola Inc
Priority to EP03773728A priority Critical patent/EP1568245A2/fr
Priority to AU2003282111A priority patent/AU2003282111A1/en
Publication of WO2004049748A2 publication Critical patent/WO2004049748A2/fr
Publication of WO2004049748A3 publication Critical patent/WO2004049748A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0022Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies
    • H04W36/00224Control or signalling for completing the hand-off for data sessions of end-to-end connection for transferring data sessions between adjacent core network technologies between packet switched [PS] and circuit switched [CS] network technologies, e.g. circuit switched fallback [CSFB]

Definitions

  • This invention relates to providing a quality of service (QoS) in a communication system that supports two or more modes of operation.
  • QoS quality of service
  • the invention is applicable to, but not limited to, providing a packet data QoS of a General Packet Radio System (GPRS) , whilst maintaining a particular Global System for Mobile communication (GSM) grade of service (GoS), when a communication cell supporting both modes of operation is congested.
  • GPRS General Packet Radio System
  • GSM Global System for Mobile communication
  • GoS Global System for Mobile communication
  • Wireless communication systems typically provide for radio telecommunication links to be arranged between a plurality of base transceiver stations (BTSs) and a plurality of subscriber units, often termed mobile stations (MSs) .
  • BTSs base transceiver stations
  • MSs mobile stations
  • each BTS has associated with it a particular geographical coverage area.
  • Transmitter power levels and receiver sensitivity performance define the coverage area where the BTS can maintain acceptable communications with MSs.
  • coverage areas are configured as overlapping areas to facilitate continuous communication as MS move between the areas.
  • the coverage areas are generally termed cells, which can combine to produce an extensive coverage area of the communication system, for example to provide countrywide coverage.
  • Wireless communication systems are distinguished over fixed communication systems, such as the public switched telephone network (PSTN) , principally in that mobile stations move between coverage areas served by different BTS (and/or different service providers) and, in doing so, encounter varying radio propagation environments. Therefore, in a wireless communication system, MSs perform handover operations, when moving between different geographical areas/cells. In this manner, the MSs can be supported in their communications by the nearest BTS, which typically offers the highest quality signal/communication link.
  • PSTN public switched telephone network
  • a fixed network interconnects all BTSs.
  • This fixed network comprises communication lines, switches, interfaces to other communication networks and various controllers required for operating the network,
  • a call from a MS is routed through the fixed network to the destination node or communication unit identified by the call. If the call is between two MSs of the same communication system the call will be routed through the fixed network to the BTS of the cell in which the other MS is currently located. A connection is thus established between the two serving cells through the fixed network.
  • PSTN Public Switched Telephone Network
  • a cellular mobile communication system is allocated a finite amount of frequency spectrum for radio communication between the MSs and the BTSs. This spectrum must be shared between all MSs that are simultaneously using the system.
  • techniques for communicating information simultaneously where communication resources in a communication network are shared by a number of users. Such techniques are termed multiple access techniques.
  • Codes in a code division multiple access (CDMA) system, where communication is performed by using all of the respective frequencies, in all of the time periods, and the resource is shared by allocating each communication a particular code, to differentiate desired signals from undesired signals.
  • CDMA code division multiple access
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio System
  • GSM Global System for Mobile Communications
  • ITU International Telecommunications Union
  • packet mode is a transfer mode in which the transmission and switching functions are achieved by packet-oriented techniques. This enables dynamic sharing of network transmission and switching resources between a multiplicity of connections (ITU-T 1.113).
  • packet data communication provided by GPRS will enable cellular radio communication networks such as GSM to provide enhanced levels of interfacing and compatibility with other types of communications systems and networks, including fixed communications systems such as the Internet. Further details on packet data systems can be found in 'Understanding data communications: from fundamentals to networking, 2 nd ed.', John Wiley publishers, author Gilbert Held, 1997, ISBN 0-471-96820- X.
  • GPRS is introduced as a data service within GSM.
  • GSM circuit-switched speech services and packet data GPRS services have to share the GSM infrastructure.
  • the GSM speech circuit-switched (CS) speech services have priority over the packet data GPRS services. This is because the GSM operators wish to set a higher priority to GSM voice than GPRS data.
  • the implication of allocating a higher priority to GSM speech communication over packet data GPRS communication is that a timeslot requested simultaneously by a voice user and by a GPRS data user will be allocated to the voice user.
  • an in-use GPRS switchable timeslot is reconfigured to operate as a GSM TCH to carry the circuit-switched call.
  • the GPRS data transfer that is using the switchable timeslot is no longer able to use the timeslot whilst the circuit- switched call is on going.
  • the priority allocation to GSM voice users has the potential to severely limit the performance of any data transfer session in progress. Consequently, the GPRS bandwidth of the cell is reduced, thereby compromising the GPRS quality of service (QoS) .
  • QoS quality of service
  • this reduction in GPRS resource is shared amongst several GPRS users, which is achieved by interleaving TBFs (Temporary Block Flow) . Furthermore, in the situation where all cell resources are occupied by circuit-switched services, no GPRS service can be provided to mobile users.
  • TBFs Temporal Block Flow
  • NC2 may be used as a form of congestion relief in that it supports the commanding of GPRS MSs to move to neighbouring cells.
  • the inventor of the present invention has recognised and appreciated a problem with such a forced handover process in that the GPRS mobiles might be in an active GPRS data transfer state.
  • the command to move to a new cell degrades the transfer control protocol (TCP) throughput enormously.
  • TCP transfer control protocol
  • the use of NC2 in the context of congestion relief causes TCP packets to be lost during the cell reselection process. This, in turn, triggers the TCP slow start algorithm, which further degrades the TCP throughput considerably.
  • NC2 packet control unit
  • the transmission of this information requires uplink GPRS bandwidth, which reduces the overall GPRS bandwidth usable for transmission of user data in the uplink.
  • the more MSs that are required to send measurement reports in the uplink the more uplink bandwidth is used for this signalling transmission. Therefore, there is less uplink bandwidth available for transmission of useful data.
  • the transmission of NC2 cell reselection commands will use part of the downlink GPRS bandwidth, thus reducing the available downlink bandwidth for the transmission of useful.
  • a mechanism ' to facilitate GSM congestion relief for GSM voice mobiles is currently provided by MotorolaTM.
  • the congestion relief mechanism performs automatic handover of voice calls to neighbouring cells when there is congestion in the cell and new incoming calls are requesting a timeslot in the cell.
  • this feature only triggers congestion relief handovers when new voice calls cannot be allocated a speech channel and is limited to only GSM communications.
  • the feature does not address any of the issues relating to the recent introduction of an overlaid GPRS system. Furthermore, it will not address the user requirements of the alternative (GPRS) system with regard to maintaining a QoS in terms of high throughput and low latency whilst the cell is congested.
  • GPRS alternative
  • the inventor of the present invention has therefore recognised and appreciated a need to provide a congestion relief mechanism that supports two air-interfaces and/or two modes of operation, whereby users of both are competing for the same communication resource.
  • the inventor of the present invention has therefore recognised and appreciated a need to:
  • the maintenance of the GPRS QoS is not to be at a cost of the GSM Grade of Service (GoS) in a congested cell, i.e. where the GoS indicates the % success rate for MSs accessing the network;
  • GoS GSM Grade of Service
  • a wireless communication system as claimed in Claim 1.
  • a packet control unit as claimed in Claim 7.
  • a base station controller as claimed in Claim 8.
  • the inventive concepts of the present invention alleviate the problems associated with prior art GPRS GoS provision by proposing to adapt the provision of speech communication and speech communication resources to make resources available for GPRS data communication.
  • the proposed mechanism maximises the GPRS GoS in terms of high throughput and low latency while a cell that provides for GSM communication is congested.
  • a preferred mechanism to maintain the GPRS GoS is to handover GSM voice calls to neighbouring cells when there is congestion in the cell and/or more GPRS bandwidth is needed.
  • the mechanism utilises the fact that voice calls that are handed over to a new cell are not broken or dropped, which is in contrast to the current methodology to handover packet data calls, such as GPRS calls, where data transfers are broken.
  • the congestion relief mechanism is employed to take into account at least two different air- interfaces or access protocols, instead of the known congestion relief feature offered by MotorolaTM that was conceived purely for voice users.
  • FIG. 1 shows a block diagram of a cellular radio communications system adapted to support the various inventive concepts of a preferred embodiment of the present invention
  • FIG. 2 shows a cell-based communication system adapted to support the various inventive concepts of a preferred embodiment of the present invention
  • FIG. 3 illustrates a flowchart of a congestion relief mechanism following a packet data communication resource request, in accordance with the preferred embodiment of the present invention
  • FIG. 4 illustrates a flowchart of a congestion relief mechanism following a packet data communication resource request, in accordance with the preferred embodiment of the present invention.
  • FIG. 5 illustrates a flowchart of a congestion relief mechanism following a packet data communication resource request, in accordance with the preferred embodiment of the present invention.
  • a cellular telephone communication system 100 is shown, in outline, supporting a Global System for Mobile communication (GSM) air- interface, in accordance with a preferred embodiment of the invention.
  • GSM Global System for Mobile communication
  • ETSI European Telecommunications Standards Institute
  • GSM Global System for Mobile communication
  • GPRS General Packet Radio System
  • the air-interface protocols are administered from base transceiver sites, within the network architecture 110, which are geographically spaced apart - one base station supporting a cell (or, for example, sectors of a cell) .
  • base transceiver sites within the network architecture 110, which are geographically spaced apart - one base station supporting a cell (or, for example, sectors of a cell) .
  • data users supported by co-located base transceiver sites supporting, say, both pico- and micro- cellular communications may also benefit from the inventive concepts described herein.
  • a plurality of subscriber units hereinafter referred to as mobile stations (MSs) 112-116 communicate over the selected air-interface 118-120 with a plurality of base transceiver stations (BTS) 122-132.
  • BTS base transceiver stations
  • a limited number of MSs 112-116 and BTSs 122-132 are shown for clarity purposes only.
  • the BTSs 122-132 may be connected to a conventional public-switched telephone network (PSTN) 134 through base station controllers (BSCs) 136-140 and mobile switching centres (MSCs) 142-144.
  • PSTN public-switched telephone network
  • BSCs base station controllers
  • MSCs mobile switching centres
  • Each BTS 122-132 is principally designed to serve its primary cell, with each BTS 122-132 containing one or more transceiver units and communicating 156-166 with the rest of the cellular system infrastructure
  • Each Base Station Controller (BSC) 136-140 may control one or more BTSs 122-132, with BSCs 136-140 generally interconnected through MSCs 142-144. Processes within the MSCs are provided to account for the situation where a MS passes between two BTS serving areas. For example, MS 112 may move from an area covered by BTS 122 to an area covered by BTS 124, where the two BTSs are controlled by different BSCs (BSC 136 and BSC 138 in this example) .
  • Each MSC 142-144 provides a gateway to the PSTN 134, with MSCs 142-144 interconnected through an operations and management centre (OMC) 146 that administers general control of the cellular telephone communication system 100, as will be understood by those skilled in the art.
  • OMC operations and management centre
  • the various system elements such as BSCs 136-138 and OMC 146, will include control logic 148, 150, 152, with the various system elements usually having an associated memory function 154 (shown only in relation to BSC 138 for the sake of clarity) .
  • a memory function of the OMC 146 typically stores historically compiled operational data as well as in-call data, system information such as neighbouring cell-site lists and control algorithms such as a list of frequencies to be scanned by the respective MSs.
  • the GSM system has been overlaid with a general packet radio system (GPRS) air-interface, to provide a packet data capability.
  • GPRS general packet radio system
  • the GPRS network comprises a number of packet control units (PCUs) 170, 180 operably coupled to service GPRS support nodes (SGSNs) 172, 182 to facilitate communication from the MSs to packet data networks such as the Internet 134.
  • PCUs packet control units
  • SGSNs service GPRS support nodes
  • the SGSNs 172, 182 (with only two being shown for clarity purposes only) are operably coupled to the GSM BSCs 136- 138.
  • the SGSNs are operably coupled to external packet data networks via GPRS gateway support nodes GGSNs 174, 184.
  • the PCUs 170, 180 together with the respective BSCs 136-138 have been adapted in their traffic management organisation functions within their respective sites.
  • their functions are configured to free up speech resources to allow packet data calls on the GPRS network, as described later with respect to FIG' s 3-5.
  • the dynamic adaptation of the BSCs 136- 138 and/or PCUs 170, 180 may be implemented in a respective communication unit in any suitable manner.
  • new apparatus may be added to a conventional BSC or PCU, or alternatively existing parts of a conventional BSC or PCU may be adapted, for example by reprogramming one or more processors therein.
  • the required adaptation may be implemented in the form of processor-imple entable instructions stored on a storage medium, such as a floppy disk, hard disk, PROM, RAM or any combination of these or other storage multimedia.
  • the BSC 136 when it is determined that congestion of circuit- switched calls exists in a cell, say the BSC 136 enables the option of triggering congestion relief in the cell.
  • Congestion relief may be triggered when a GPRS timeslot request is received and it is determined by the PCU that the GPRS requirements cannot be served by the existing available radio resource that is being used by (at least some) circuit-switched calls.
  • the congestion relief mechanism forces circuit-switched calls already in progress to, say, handover to their best neighbour cell, as shown in FIG. 2.
  • the cell-based communication system 200 includes a number of cells 205, 210, 215, 220, 225, 230, 235 as known in the art. Each cell is supported by respective BTS.
  • MS 112 is communicating 118 in a circuit- switched call via its serving BTS 124 with MS 114 in cell 205.
  • MS 112 Upon receipt of a GPRS request 222 from MS 214, and when no switchable timeslots are available, MS 112 is forced into a handover to cell 215.
  • MS 112 is now communicating 218 to BTS 122, in order to continue the circuit-switched speech call to MS 114.
  • the GPRS packet data call between MS 214 and, say, MS 212 via BTS 124 and BTS 222 is set up.
  • multi-band MSs may switch between the bands supported by the MS, thereby freeing up resource on the congested frequency band in the cell.
  • MS having adaptive multi-rate codec (AMR) capabilities may be reconfigured to use an alternative codec. In this manner, the use of an alternative codec may be used to maintain the speech call, whilst freeing up resource to be used for the data request.
  • AMR adaptive multi-rate codec
  • the GPRS system When the GPRS system receives a GPRS resource request.
  • the GPRS system triggers as many congestion relief handovers of GSM circuit-switched calls as there are GPRS timeslots needed, before the GPRS system resorts to sharing GPRS timeslots in use.
  • Such a scenario ensures the maintenance of the GPRS QoS in a congested cell, where there is no cost to the GSM Grade of Service (GoS) .
  • the GSM drop call rate goal of ⁇ 2% in a congested cell may be maintained, as part of the trigger algorithm.
  • a desired GPRS QoS is provided to a new user in a congested cell.
  • a congestion relief algorithm consists of triggering congestion relief handovers of GSM calls, when a GPRS resource is requested. It is envisaged that the triggers for congestion relief handovers are preferably configurable by the operator, say through a BSS database parameter called ⁇ gprs__cr'. It is further envisaged that the following are possible triggers ( gprs_cr values) :
  • gprs_cr n, where n is a number between '0' and ⁇ l' (i.e. the number of GPRS timeslots in the cell).
  • n is a number between '0' and ⁇ l' (i.e. the number of GPRS timeslots in the cell).
  • GSM congestion relief handovers are triggered when the number of unused switchable timeslots *n' is less than or equal to gprs_cr. This option allows the GPRS system to reserve dynamically GPRS bandwidth that is needed.
  • the known GSM congestion relief and other mechanisms that the inventor has appreciated can be used for congestion relief, such as AMR, have been used for different purposes to those described in the present invention.
  • Such features are used in a novel and inventive manner to facilitate packet data (GPRS) congestion relief, particularly when GPRS users are sharing the available resource with GSM users.
  • GPRS packet data
  • a congestion relief handover of existing CS voice calls is performed to free up timeslots for the new CS voice calls.
  • FIG. 3 a flowchart illustrates a congestion relief mechanism following a packet data communication resource request, in accordance with the preferred embodiments of the present invention.
  • the process commences with a packet control unit (PCU) obtaining a downlink channel resource and/or the general packet radio system (GPRS) receives an uplink GPRS request for a number (n) of timeslots, as shown in step 305. If 'n' is less than or equal to a number of unused GPRS timeslots in the cell, in step 310, the system assigns timeslots for the GPRS request (s) in the GPRS carrier in step 365.
  • the timeslots that are assigned are preferably the ones with the least amount of interference.
  • any unused timeslot (s) are allocated to the one or more GPRS request (s) , as shown in step 312.
  • a determination is then made as to whether any on-going speech calls are operating on switchable timeslots, in step 315. If there is no on-going speech call operating on switchable timeslots, in step 315, a scheduler discipline is preferably performed in step 320. The scheduler discipline will determine how the available GPRS timeslots are to be shared (vis-a-vis an order of data transmission) among the different active GPRS MSs in the cell. This sharing can be done according to different criteria.
  • the system initiates a congestion relief operation.
  • the congestion relief operation is performed on as many calls in the cell as there are GPRS timeslots that are needed.
  • the congestion relief operation preferably starts with the carrier exhibiting the least interference, in step 325.
  • step 330 If, following the congestion relief operation, there was no congestion relief handover that was triggered in step 330, preferably one or more AMR handover (s) are triggered, as in step 332. If no AMR handover was triggered, in step 334, a scheduler discipline is performed in step 320.
  • intra-carrier handovers are triggered if there are no idle contiguous switchable timeslots, as shown in step 335. Contiguous GPRS timeslots maximise the usage of GPRS bandwidth for different GPRS multi-slot class mobiles.
  • the idle traffic channel i.e. the idle contiguous switchable timeslot
  • PDTCH packet data traffic channel
  • Any idle PDTCHs are then allocated to the rest of the GPRS request (s) , in step 345.
  • a determination is then made as to whether still more PDTCHs are needed, in step 350. If more PDTCHs are needed in step 350, a scheduler discipline is performed in step 355. If no more PDTCHs are needed in step 350, the process finishes in step 360.
  • a flowchart 400 illustrates an alternative mechanism for making GPRS timeslots available following a GPRS service request.
  • the process commences with a packet control unit (PCU) obtaining a downlink channel and/or the general packet radio system (GPRS) receives an uplink GPRS request for a number (n) of timeslots, as shown in step 402. If *n' is less than or equal to a number of unused GPRS timeslots in the cell, in step 405, the system assigns timeslots for the GPRS request (s) in the GPRS carrier in step 410.
  • the timeslots that are assigned are the ones with the least amount of interference.
  • n' is greater than the number of unused GPRS timeslots in the cell, in step 410, a determination is made as to whether any on-going speech calls are operating on switchable timeslots, in step 415. If there is no on-going speech call operating on a switchable timeslot, in step 415, the scheduler allocates resources to the new request/s. If there is an on-going speech call operating on switchable timeslots, in step 415, the system initiates a GSM congestion relief operation. The congestion relief operation is performed on a number of calls equivalent to the total number of requested GPRS timeslots minus the unused GPRS timeslots, which are allocated immediately to the GPRS requests, in step 420.
  • AMR handovers are preferably triggered, as shown in step 427. If AMR handovers were not triggered in step 429, then the scheduler will allocate GPRS timeslots form the currently being used by other GPRS users to the new requests in step 440.
  • step 429 If AMR handovers were triggered in step 429, or following one or more congestion relief handover being triggered in step 425, a determination is made as to whether any ongoing GSM call is still in a switchable timeslot, as shown in step 430. If there are no on-going GSM calls in a switchable timeslot, in step 430, the scheduler will allocate the still required GPRS timeslots to the new requests in step 440.
  • step 430 If there is one or more on-going GSM call in switchable timeslots, in step 430, the on-going GSM call(s) is/are moved to idle traffic channels, in step 435.
  • FIG. 5 a third algorithm is illustrated to trigger congestion relief handovers of existing calls in the cell when a new GSM speech request is received in the (GSM) cell.
  • GSM Global System for Mobile communications
  • new voice call requests in the cell will terminate a GPRS transfer, or part of the GPRS' s bandwidth if there are no idle TCHs in the cell.
  • FIG. 5 describes a mechanism to trigger congestion relief handovers of voice calls when no idle TCHs are available, rather than 'steal' GPRS bandwidth.
  • the flowchart commences when a base station controller (BSC) receives a request for a new circuit-switched call, in step 505.
  • BSC base station controller
  • step 510 If there is any idle traffic channel (s) in the cell, in step 510, this/these idle traffic channel (s) are assigned to the circuit-switched call, as shown in step 515. If there are no idle traffic channel (s) in the cell, in step 510, a determination is made as to whether there is one or more unused switchable timeslots in step 520. If there is one or more unused switchable timeslots in step 520, the timeslot (s) are re-configured to traffic channel (s) and assigned to the requesting circuit- switched call.
  • step 530 the system then initiates a GSM congestion relief operation of existing circuit-switched calls, in step 530. If, following the congestion relief operation in step 530, there was a congestion relief handover/s that was triggered in step 535, one or more idle traffic channel (s) (TCH) are allocated to the new CS call/s, in step 538. If, following the congestion relief operation in step 530, there was no congestion relief handover triggered in step 535, the process attempts to trigger AMR handovers in step 540.
  • TCH idle traffic channel
  • AMR handovers were triggered in step 545, one or more idle traffic channel (s) (TCH) are then allocated to the new CS calls, in step 538. If, AMR handovers were not triggered in step 545, the process triggers a network control cell reselection process.
  • the cell re-selection process includes moving a GPRS unit from a switchable timeslot and re-configuring the switchable timeslot to a traffic channel, in step 550.
  • the aforementioned inventive concepts are distinguished over the GPRS congestion relief mechanism of NC2, as the congestion relief mechanism adapts the operation of GSM speech calls, for example handing a call over to a neighbouring cell. Such a handover will only happen to cells that meet the power budget criteria, as determined by the Network Operator.
  • this 'request' could be either a new originated call in the cell or an incoming handover.
  • the triggers for the congestion relief handovers, or AMR changes, or indeed any other mechanism for freeing up resource include new voice calls in the cell and/or incoming GPRS call handovers and/or new GPRS resource requests.

Abstract

L'invention concerne un système de communication sans fil (100, 200) offrant un certain nombre de ressources de communication à une pluralité de stations mobiles (112-116). Les ressources de communication comprennent au moins deux modes de fonctionnement, à savoir un premier mode de fonctionnement supportant principalement la communication de la parole, par exemple les communications par commutation de circuit, et un deuxième mode de fonctionnement supportant essentiellement la communication de données, par exemple les communications par commutation de paquets. Après avoir reçu un déclencheur, par exemple une demande de ressources de communication de données (305) ne pouvant pas être supportée par le système de communication (100, 200), le système de communication active un mécanisme de décongestionnement. Ce mécanisme adapte la mise à disposition de communications vocales afin que des ressources de communication suffisantes soient disponibles pour la demande de ressources de communication de données. L'invention concerne également un procédé de décongestionnement dans un système de communication sans fil (100), une unité de commande de paquets et une unité de commande de stations de base. La technique selon l'invention offre la possibilité de maintenir une qualité de service d'un système de communication de données, par exemple d'un système GPRS dans une cellule encombrée, par transfert ou adaptation de communications vocales, telles que des communications GSM.
PCT/EP2003/050687 2002-11-23 2003-10-03 Systeme de communication et procede pour reduire la congestion dans ce dernier WO2004049748A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03773728A EP1568245A2 (fr) 2002-11-23 2003-10-03 Systeme de communication et procede pour reduire la congestion dans ce dernier
AU2003282111A AU2003282111A1 (en) 2002-11-23 2003-10-03 Communication system and method for reducing congestion therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0227374.6 2002-11-23
GB0227374A GB2395632B (en) 2002-11-23 2002-11-23 Communication system and method for reducing congestion therein

Publications (2)

Publication Number Publication Date
WO2004049748A2 true WO2004049748A2 (fr) 2004-06-10
WO2004049748A3 WO2004049748A3 (fr) 2004-09-16

Family

ID=9948401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/050687 WO2004049748A2 (fr) 2002-11-23 2003-10-03 Systeme de communication et procede pour reduire la congestion dans ce dernier

Country Status (4)

Country Link
EP (1) EP1568245A2 (fr)
AU (1) AU2003282111A1 (fr)
GB (1) GB2395632B (fr)
WO (1) WO2004049748A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100388682C (zh) * 2005-03-21 2008-05-14 北京北方烽火科技有限公司 一种在sgsn网络处理器中提高服务质量的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1867060B1 (fr) 2005-04-07 2011-09-21 Nokia Corporation Terminal a capacite duplex variable
US9107078B2 (en) * 2011-01-14 2015-08-11 Qualcomm, Incorporated Methods and apparatuses for low-rate television white space (TVWS) enablement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005175A2 (fr) * 1996-07-29 1998-02-05 Telefonaktiebolaget Lm Ericsson (Publ) Procede de liberation d'un canal vocal dans un reseau de radiotelecommunications
WO1998027762A2 (fr) * 1996-12-17 1998-06-25 Telefonaktiebolaget Lm Ericsson Poste emetteur-recepteur commutable
WO1999049598A1 (fr) * 1998-03-26 1999-09-30 Telia Ab (Publ) Procede de reaffectation de la charge de trafic dans un systeme telephonique mobile cellulaire
US6049537A (en) * 1997-09-05 2000-04-11 Motorola, Inc. Method and system for controlling speech encoding in a communication system
WO2002093964A1 (fr) * 2001-05-17 2002-11-21 Siemens Aktiengesellschaft Procede d'utilisation optimisee de la capacite de transmission dans un systeme de radiocommunication

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE519689C2 (sv) * 2000-11-13 2003-04-01 Ericsson Telefon Ab L M Förfarande och arrangemang för att förbättra sammanvävda överföringar av rösttrafik och datatrafik i ett cellulärt telefonnätverk.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998005175A2 (fr) * 1996-07-29 1998-02-05 Telefonaktiebolaget Lm Ericsson (Publ) Procede de liberation d'un canal vocal dans un reseau de radiotelecommunications
WO1998027762A2 (fr) * 1996-12-17 1998-06-25 Telefonaktiebolaget Lm Ericsson Poste emetteur-recepteur commutable
US6049537A (en) * 1997-09-05 2000-04-11 Motorola, Inc. Method and system for controlling speech encoding in a communication system
WO1999049598A1 (fr) * 1998-03-26 1999-09-30 Telia Ab (Publ) Procede de reaffectation de la charge de trafic dans un systeme telephonique mobile cellulaire
WO2002093964A1 (fr) * 2001-05-17 2002-11-21 Siemens Aktiengesellschaft Procede d'utilisation optimisee de la capacite de transmission dans un systeme de radiocommunication

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100388682C (zh) * 2005-03-21 2008-05-14 北京北方烽火科技有限公司 一种在sgsn网络处理器中提高服务质量的方法

Also Published As

Publication number Publication date
AU2003282111A1 (en) 2004-06-18
GB2395632B (en) 2006-01-11
GB0227374D0 (en) 2002-12-31
EP1568245A2 (fr) 2005-08-31
WO2004049748A3 (fr) 2004-09-16
GB2395632A (en) 2004-05-26

Similar Documents

Publication Publication Date Title
CA2427108C (fr) Systeme et methode d'attribution dynamique de frequences pour services commutes par paquets
EP1313244B1 (fr) Dispositif et procédé de communication dans un réseau de communication mobile numérique
JP4820958B2 (ja) セル再選択の間に通信接続を維持するための通信制御部および方法
US5805995A (en) Channel reservation and power control for improved handoff performance
USRE43646E1 (en) Method for connection establishment in a radio system relaying packet-switched traffic
JP4720977B2 (ja) 基地局制御装置、移動体通信システム、および近隣セルリストフィルタリング方法
US7626989B2 (en) Capacity allocation for packet data bearers
KR101004918B1 (ko) 무선 네트워크 간 핸드오버
US20040131037A1 (en) Method to control the packet switching traffic in digital cellular communication systems
KR20020077899A (ko) 이동 통신 네트웍의 핸드오버 제어 방법
JP2006211645A (ja) 無線通信の周波数間ハンドオーバーでのセルの負荷平衡化
WO2006055113A1 (fr) Procede et appareil destines a supporter des services de donnees par paquet dans des zones limites de zones desservies
EP2014114B1 (fr) Transfert entre reseaux radio
US20090154401A1 (en) Methods and systems for initial ranging
EP1568245A2 (fr) Systeme de communication et procede pour reduire la congestion dans ce dernier
US11284305B1 (en) Systems and methods for dynamic buffer modification based on application category
EP1402750B1 (fr) Transfert de cellule dans un systeme de communication cellulaire
KR100270578B1 (ko) 코드분할다중접속 방식의 이동통신 시스템에서의 호 연결제어 방법
US7107037B1 (en) Reserving channel elements to maximize utilization of resources and prevent blocking of calls
AU2002249207A1 (en) Handover in a cellular communication system
Lee et al. Adaptive resource allocation mechanism during handoff for mobile Internet telephony

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003773728

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003773728

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP