WO2004048518A2 - Proteines associees aux organites - Google Patents

Proteines associees aux organites Download PDF

Info

Publication number
WO2004048518A2
WO2004048518A2 PCT/US2003/037278 US0337278W WO2004048518A2 WO 2004048518 A2 WO2004048518 A2 WO 2004048518A2 US 0337278 W US0337278 W US 0337278W WO 2004048518 A2 WO2004048518 A2 WO 2004048518A2
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
polypeptide
seq
orga
sequence
Prior art date
Application number
PCT/US2003/037278
Other languages
English (en)
Other versions
WO2004048518A3 (fr
Inventor
Brooke M. Emerling
David Chien
Jonathan T. Wang
Thomas W. Richardson
Jayalaxmi Ramkumar
Reena Khare
Vicki S. Elliott
Soo Yeun Lee
Umesh G. Bhatia
John D. Burrill
Sally Lee
Julie J. Blake
Anne Ho
Wenjin Zheng
Original Assignee
Incyte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Corporation filed Critical Incyte Corporation
Priority to AU2003295760A priority Critical patent/AU2003295760A1/en
Publication of WO2004048518A2 publication Critical patent/WO2004048518A2/fr
Publication of WO2004048518A3 publication Critical patent/WO2004048518A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)

Definitions

  • the invention relates to novel nucleic acids, organelle-associated proteins encoded by these nucleic acids, and to the use of these nucleic acids and proteins in the diagnosis, treatment, and prevention of cell prohferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
  • the invention also relates to the assessment of the effects of exogenous compounds on the expression of nucleic acids and organelle-associated proteins.
  • Eukaryotic cells are organized into various cellular organelles, which has the effect of separating specific molecules and their functions from one another and from the cytosol. Within the cell, various membrane structures surround and define these organelles while allowing them to interact with one another and the cell environment through both active and passive transport processes. Important cell organelles include the nucleus, the Golgi apparatus, the endoplasmic reticulum, mitochondria, peroxisomes, lysosomes, endosomes, and secretory vesicles. Nucleus
  • the cell nucleus contains all of the genetic information of the cell in the form of DNA, and the components and machinery necessary for replication of DNA and for transcription of DNA into RNA.
  • DNA is organized into compact structures in the nucleus by interactions with various DNA-binding proteins such as histones and non-histone chromosomal proteins.
  • DNA-specific nucleases, DNAses partially degrade these compacted structures prior to DNA replication or transcription.
  • DNA replication takes place with the aid of DNA helicases which unwind the double-stranded DNA helix, and DNA polymerases that duplicate the separated DNA strands.
  • Transcriptional regulatory proteins are essential for the control of gene expression. Some of these proteins function as transcription factors that initiate, activate, repress, or terminate gene transcription. Transcription factors generally bind to the promoter, enhancer, and upstream regulatory regions of a gene in a sequence-specific manner, although some factors bind regulatory elements within or downstream of a gene's coding region. Transcription factors may bind to a specific region of DNA singly or as a complex with other accessory factors. (Reviewed in Lewin, B. (1990) Genes TV, Oxford University Press, New York NY, and Cell Press, Cambridge MA, pp. 554-570.) Many transcription factors incorporate DNA-binding structural motifs which comprise either ⁇ helices or ⁇ sheets that bind to the major groove of DNA.
  • helix-turn- helix helix-turn- helix
  • zinc finger helix-turn- helix
  • leucine zipper helix-loop-helix. Proteins containing these motifs may act alone as monomers, or they may form homo- or heterodimers that interact with DNA.
  • neoplastic disorders in humans can be attributed to inappropriate gene expression.
  • Malignant cell growth may result from either excessive expression of tumor promoting genes or insufficient expression of tumor suppressor genes (Cleary, M.L. (1992) Cancer Surv. 15:89-104).
  • Chromosomal translocations may also produce chimeric loci which fuse the coding sequence of one gene with the regulatory regions of a second unrelated gene. Such an arrangement likely results in inappropriate gene transcription, potentially contributing to malignancy.
  • the immune system responds to infection or trauma by activating a cascade of events that coordinate the progressive selection, amplification, and mobilization of cellular defense mechanisms.
  • a complex and balanced program of gene activation and repression is involved in this process.
  • hyperactivity of the immune system as a result of improper or insufficient regulation of gene expression may result in considerable tissue or organ damage. This damage is well documented in immunological responses associated with arthritis, allergens, heart attack, stroke, and infections (Isselbacher K.J. et al. Harrison's Principles of Internal Medicine. 13/e, McGraw Hill, Inc. and Teton Data Systems Software, 1996).
  • RNA polymerase II transcribes genes that will be translated into proteins.
  • the primary transcript of RNA polymerase II is called heterogenous nuclear RNA (hnRNA), and must be further processed by splicing to remove non-coding sequences called introns.
  • RNA splicing is mediated by small nuclear ribonucleoprotein complexes, or snRNPs, producing mature messenger RNA (mRNA) which is then transported out of the nucleus for translation into proteins.
  • the nucleolus is a highly organized subcompartment in the nucleus that contains high concentrations of RNA and proteins and functions mainly in ribosomal RNA synthesis and assembly (Alberts et al, supra, pp. 379-382).
  • Ribosomal RNA is a structural RNA that is complexed with proteins to form ribonucleoprotein structures called ribosomes. Ribosomes provide the platform on which protein synthesis takes place.
  • Ribosomes are assemble in the nucleolus initially from a large, 45S rRNA combined with a variety of proteins imported from the cytoplasm, as well as smaller, 5S rRNAs. Later processing of the immature ribosome results in formation of smaller ribosomal subunits which are transported from the nucleolus to the cytoplasm, where they are assembled into functional ribosomes. Endoplasmic Reticulum
  • proteins are synthesized within the endoplasmic reticulum (ER), delivered from the ER to the Golgi apparatus for post-translational processing and sorting, and transported from the Golgi to specific intracellular and extracellular destinations. Synthesis of integral membrane proteins, secreted proteins, and proteins destined for the lumen of a particular organelle occurs on the rough endoplasmic reticulum (ER).
  • the rough ER is so named because of the rough appearance in electron micrographs imparted by the attached ribosomes on which protein synthesis proceeds.
  • Protein destined for the ER actually begins in the cytosol with the synthesis of a specific signal peptide which directs the growing polypeptide and its attached ribosome to the ER membrane where the signal peptide is removed and protein synthesis is completed.
  • Soluble proteins destined for the ER lumen, for secretion, or for transport to the lumen of other organelles pass completely into the ER lumen.
  • Transmembrane proteins destined for the ER or for other cell membranes are translocated across the ER membrane but remain anchored in the lipid bilayer of the membrane by one or more membrane-spanning a-helical regions.
  • Translocated polypeptide chains destined for other organelles or for secretion also fold and assemble in the ER lumen with the aid of certain "resident" ER proteins.
  • Protein folding in the ER is aided by two principal types of protein isomerases, protein disulfide isomerase (PDI), and peptidyl- prolyl isomerase (PPI).
  • PDI protein disulfide isomerase
  • PPI peptidyl- prolyl isomerase
  • PPI peptidyl- prolyl isomerase
  • PPI an enzyme that catalyzes the isomerization of certain proline imide bonds in oligopeptides and proteins, is considered to govern one of the rate limiting steps in the folding of many proteins to their final functional conformation.
  • the cyclophilins represent a major class of PPI that was originally identified as the major receptor for the immunosuppressive drug cyclosporin A (Handschumacher, R.E. et al. (1984) Science 226:544-547).
  • Molecular "chaperones” such as BiP (binding protein) in the ER recognize incorrectly folded proteins as well as proteins not yet folded into their final form and bind to them, both to prevent improper aggregation between them and to promote proper folding.
  • oligosaccharyl transferase activity is associated with an oligomeric complex composed of ribophorins I and II and a 48 kDa oligosaccharyltransferase protein.
  • Ribophorins are highly conserved glycoproteins located exclusively in the rough endoplasmic reticulum and colocalize with membrane-bound ribosomes.
  • Ribophorin I maps to chromosome 3q and ribophorin U maps to chromosome 20ql2-20ql3.1 in humans (Kelleher, DJ. et al. (1992) Cell 69:55-65; Barton, D.E. (1987) Cytogenet. Cell Genet. 46:577).
  • the Golgi apparatus is a complex structure that lies adjacent to the ER in eukaryotic cells and serves primarily as a sorting and dispatching station for products of the ER (Alberts et al., supra, pp. 600-610). Additional posttranslational processing, principally additional glycosylation, also occurs in the Golgi. Indeed, the Golgi is a major site of carbohydrate synthesis, including most of the glycosaminoglycans of the extracellular matrix. N-linked oligosaccharides, added to proteins in the ER, are also further modified in the Golgi by the addition of more sugar residues to form complex N- linked oligosaccharides.
  • O-linked glycosylation of proteins also occurs in the Golgi by the addition of N-acetylgalactosamine to the hydroxyl group of a serine or threonine residue followed by the sequential addition of other sugar residues to the first. This process is catalyzed by a series of glycosyltransferases, each specific for a particular donor sugar nucleotide and acceptor molecule (Lodish, H. et al. (1995) Molecular Cell Biology. W.H. Freeman and Co., New York NY, p ⁇ .700- 708).
  • both N- and O-linked oligosaccharides appear to be required for the secretion of proteins or the movement of plasma membrane glycoproteins to the cell surface.
  • the terminal compartment of the Golgi is the Trans-Golgi Network (TGN), where both membrane and lumenal proteins are sorted for their final destination.
  • TGN Trans-Golgi Network
  • Other transport vesicles bud off containing proteins destined for the plasma membrane, such as receptors, adhesion molecules, and ion channels, and secretory proteins, such as hormones, neurotransmitters, and digestive enzymes.
  • the vacuole system is a collection of membrane bound compartments in eukaryotic cells that functions in the processes of endocytosis and exocytosis. They include phagosomes, lysosomes, endosomes, and secretory vesicles.
  • Endocytosis is the process in cells of internalizing nutrients, solutes, or small particles (pinocytosis) or large particles such as internalized receptors, viruses, bacteria, or bacterial toxins (phagocytosis).
  • Exocytosis is the process of transporting molecules to the cell surface. It facilitates placement or localization of membrane-bound receptors or other membrane proteins and secretion of hormones, neurotransmitters, digestive enzymes, wastes, etc.
  • a common property of all of these vacuoles is an acidic pH environment ranging from approximately pH 4.5- 5.0. This acidity is maintained by the presence of a proton ATPase that uses the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane (Mellman, I. et al. (1986) Annu. Rev. Biochem. 55:663-700).
  • Eukaryotic vacuolar proton ATPase (vp-ATPase) is a multimeric enzyme composed of 3-10 different subunits.
  • One of these subunits is a highly hydrophobic polypeptide of approximately 16 kDa that is similar to the proteolipid component of vp-ATPases from eubacteria, fungi, and plant vacuoles (Mandel, M. et al. (1988) Proc. Natl. Acad. Sci. USA 85:5521-5524).
  • the 16 kDa proteolipid component is the major subunit of the membrane portion of vp-ATPase and functions in the transport of protons across the membrane.
  • Lysosomes Lysosomes are membranous vesicles containing various hydrolytic enzymes used for the controlled intracellular digestion of macromolecules.
  • Lysosomes contain some 40 types of enzymes including proteases, nucleases, glycosidases, Upases, phospholipases, phosphatases, and sulfatases, all of which are acid hydrolases that function at a pH of about 5. Lysosomes are surrounded by a unique membrane containing transport proteins that allow the final products of macromolecule degradation, such as sugars, amino acids, and nucleotides, to be transported to the cytosol where they may be either excreted or reutilized by the cell. A vp-ATPase, such as that described above, maintains the acidic environment necessary for hydrolytic activity (Alberts et al, supra, pp. 610-611). Endosomes
  • Endosomes are another type of acidic vacuole that is used to transport substances from the cell surface to the interior of the cell in the process of endocytosis. Like lysosomes, endosomes have an acidic environment provided by a vp-ATPase (Alberts et al, supra pp. 610-618). Two types of endosomes are apparent based on tracer uptake studies that distinguish their time of formation in the cell and their cellular location. Early endosomes are found near the plasma membrane and appear to function primarily in the recycling of internalized receptors back to the cell surface.
  • Late endosomes appear later in the endocytic process, close to the Golgi apparatus and the nucleus, and appear to be associated with delivery of endocytosed material to lysosomes or to the TGN where they may be recycled.
  • Specific proteins are associated with particular transport vesicles and their target compartments, and may provide selectivity in targeting vesicles to their proper compartments.
  • a cytosolic prenylated GTP-binding protein, Rab is one such protein. Rabs 4, 5, and 11 are associated with the early endosome, whereas Rabs 7 and 9 associate with the late endosome.
  • Mitochondria are oval-shaped organelles comprising an outer membrane, a tightly folded inner membrane, an intermembrane space between the outer and inner membranes, and a matrix inside the inner membrane.
  • the outer membrane contains many porin molecules that allow ions and charged molecules to enter the intermembrane space, while the inner membrane contains a variety of transport proteins that transfer only selected molecules. Mitochondria are the primary sites of energy production in cells.
  • Glucose is initially converted to pyruvate in the cytoplasm.
  • Fatty acids and pyruvate are transported to the mitochondria for complete oxidation to C0 2 coupled by enzymes to the transport of electrons from NADH and FADH 2 to oxygen and to the synthesis of ATP (oxidative phosphorylation) from ADP and P ; .
  • Pyruvate is transported into the mitochondria and converted to acetyl-CoA for oxidation via the citric acid cycle, involving pyruvate dehydrogenase components, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase.
  • Enzymes involved in the citric acid cycle include: citrate synthetase, aconitases, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex including transsuccinylases, succinyl CoA synthetase, succinate dehydrogenase, fumarases, and malate dehydrogenase.
  • Acetyl CoA is oxidized to C0 2 with concomitant formation of NADH, FADH 2 , and GTP.
  • oxidative phosphorylation the transfer of electrons from NADH and FADH 2 to oxygen by dehydrogenases is coupled to the synthesis of ATP from ADP and P; by the F Q F I ATPase complex in the mitochondrial inner membrane.
  • Enzyme complexes responsible for electron transport and ATP synthesis include the F 0 F, ATPase complex, ubiquinone(CoQ)-cytochrome c reductase, ubiquinone reductase, cytochrome b, cytochrome c 1; FeS protein, and cytochrome c oxidase.
  • Peroxisomes like mitochondria, are a major site of oxygen utilization. They contain one or more enzymes, such as catalase and urate oxidase, that use molecular oxygen to remove hydrogen atoms from specific organic substrates in an oxidative reaction that produces hydrogen peroxide
  • Catalase oxidizes a variety of substrates including phenols, formic acid, formaldehyde, and alcohol and is important in peroxisomes of liver and kidney cells for detoxifying various toxic molecules that enter the bloodstream.
  • Another major function of oxidative reactions in peroxisomes is the breakdown of fatty acids in a process called ⁇ oxidation, ⁇ oxidation results in shortening of the alkyl chain of fatty acids by blocks of two carbon atoms that are converted to acetyl CoA and exported to the cytosol for reuse in biosynthetic reactions.
  • peroxisomes import their proteins from the cytosol using a specific signal sequence located near the C-terminus of the protein.
  • the importance of this import process is evident in the inherited human disease Zellweger syndrome, in which a defect in importing proteins into perixosomes leads to a perixosomal deficiency resulting in severe abnormalities in the brain, liver, and kidneys, and death soon after birth.
  • One form of this disease has been shown to be due to a mutation in the gene encoding a perixosomal integral membrane protein called peroxisome assembly factor- 1.
  • Microarrays are analytical tools used in bioanalysis.
  • a microarray has a plurality of molecules spatially distributed over, and stably associated with, the surface of a solid support.
  • Microarrays of polypeptides, polynucleotides, and/or antibodies have been developed and find use in a variety of applications, such as gene sequencing, monitoring gene expression, gene mapping, bacterial identification, drug discovery, and combinatorial chemistry.
  • array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes.
  • arrays are employed to detect the expression of a specific gene or its variants.
  • arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
  • Prostate Cancer Prostate cancer is a common malignancy in men over the age of 50, and the incidence increases with age.
  • prostate cancer develops through a multistage progression ultimately resulting in an aggressive, metastatic phenotype.
  • the initial step in tumor progression involves the hyperproliferation of normal luminal and or basal epithelial cells that become hyperplastic and evolve into early-stage tumors.
  • the early-stage tumors are localized in the prostate but eventually may metastasize, particularly to the bone, brain or lung, and are stimulated by testosterone to a more rapid growth rate.
  • removal of the testes can indirectly reduce both rapid growth and metastasis of the cancer.
  • About 80% of these tumors remain responsive to androgen treatment, an important hormone controlling the growth of prostate epithelial cells.
  • cancer growth becomes androgen-independent and there is currently no known treatment for this condition.
  • PSA prostate specific antigen
  • PSA is a tissue-specific serine protease almost exclusively produced by prostatic epithelial cells.
  • the quantity of PSA correlates with the number and volume of the prostatic epithelial cells, and consequently, the levels of PSA are an excellent indicator of abnormal prostate growth.
  • Men with prostate cancer exhibit an early linear increase in PSA levels followed by an exponential increase prior to diagnosis.
  • PSA levels are also influenced by factors such as inflammation, androgen and other growth factors, some scientists maintain that changes in PSA levels are not useful in detecting individual cases of prostate cancer.
  • EGF Epidermal Growth Factor
  • FGF Fibroblast Growth Factor
  • TGFo ⁇ Tumor Growth Factor alpha
  • TGF- ⁇ family of growth factors are generally expressed at increased levels in human cancers, the increased expression levels correlating in many cases with advanced stages of malignancy and poor survival (Gold, L. I. (1999) Crit. Rev. Oncog. 10:303-360).
  • LNCap androgen-dependent stage of prostate cancer
  • PC3 and DU-145 the androgen-independent, hormone refractory stage of the disease
  • compositions including nucleic acids and proteins, for the diagnosis, prevention, and treatment of cell prohferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
  • Various embodiments of the invention provide purified polypeptides, organelle-associated proteins, referred to collectively as ORGA' and individually as and ORGA-1', ORGA-2', ORGA- 3', ORGA-4', ORGA-5', 'ORGA-6', and ORGA-7' and methods for using these proteins and their encoding polynucleotides for the detection, diagnosis, and treatment of diseases and medical conditions.
  • Embodiments also provide methods for utilizing the purified organelle-associated proteins and/or their encoding polynucleotides for facilitating the drug discovery process, including determination of efficacy, dosage, toxicity, and pharmacology.
  • Related embodiments provide methods for utilizing the purified organelle-associated proteins and/or their encoding polynucleotides for investigating the pathogenesis of diseases and medical conditions.
  • An embodiment provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-7.
  • Another embodiment provides an isolated polypeptide comprising an amino acid sequence of SEQ ED NO: 1-7.
  • Still another embodiment provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
  • polynucleotide encodes a polypeptide selected from the group consisting of SEQ DD NO: 1-7. In an alternative embodiment, the polynucleotide is selected from the group consisting of SEQ DD NO:8-14.
  • Still another embodiment provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
  • Another embodiment provides a cell transformed with the recombinant polynucleotide.
  • Yet another embodiment provides a transgenic organism comprising the recombinant polynucleotide.
  • Another embodiment provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
  • the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
  • Yet another embodiment provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO:l-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1 -7.
  • Still yet another embodiment provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the polynucleotide can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.
  • Yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex.
  • the method can include detecting the amount of the hybridization complex.
  • the probe can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.
  • Still yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof.
  • the method can include detecting the amount of the amplified target polynucleotide or fragment thereof.
  • compositions comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and a pharmaceutically acceptable excipient.
  • the composition can comprise an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
  • Other embodiments provide a method of treating a disease or condition associated with decreased or abnormal expression of functional ORGA, comprising administering to a patient in need of such treatment the composition.
  • Yet another embodiment provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO:l-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-7.
  • the method comprises a) contacting a sample comprising the polypeptide with a compound, and b) detecting agonist activity in the sample.
  • Another embodiment provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
  • Yet another embodiment provides a method of treating a disease or condition associated with decreased expression of functional ORGA, comprising administering to a patient in need of such treatment the composition.
  • Still yet another embodiment provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-7.
  • the method comprises a) contacting a sample comprising the polypeptide with a compound, and b) detecting antagonist activity in the sample.
  • Another embodiment provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
  • Yet another embodiment provides a method of treating a disease or condition associated with overexpression of functional ORGA, comprising administering to a patient in need of such treatment the composition.
  • Another embodiment provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
  • the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
  • Yet another embodiment provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-7.
  • the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
  • Still yet another embodiment provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, the method comprising a) contacting a sample comprising the target polynucleotide with a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
  • Another embodiment provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sah ple with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an
  • Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv).
  • the target polynucleotide can comprise a fragment of a polynucleotide selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
  • Table 1 summarizes the nomenclature for full length polynucleotide and polypeptide embodiments of the invention.
  • Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog, and the PROTEOME database identification numbers and annotations of PROTEOME database homologs, for polypeptide embodiments of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
  • Table 3 shows structural features of polypeptide embodiments, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
  • Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide embodiments, along with selected fragments of the polynucleotides.
  • Table 5 shows representative cDNA libraries for polynucleotide embodiments.
  • Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
  • Table 7 shows the tools, programs, and algorithms used to analyze polynucleotides and polypeptides, along with applicable descriptions, references, and threshold parameters.
  • Table 8 shows single nucleotide polymorphisms found in polynucleotide sequences of the invention, along with allele frequencies in different human populations.
  • a host cell includes a plurality of such host cells
  • an antibody is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
  • ORGA refers to the amino acid sequences of substantially purified ORGA obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
  • agonist refers to a molecule which intensifies or mimics the biological activity of ORGA.
  • Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of ORGA either by directly interacting with ORGA or by acting on components of the biological pathway in which ORGA participates.
  • An "allelic variant” is an alternative form of the gene encoding ORGA. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
  • altered nucleic acid sequences encoding ORGA include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as ORGA or a polypeptide with at least one functional characteristic of ORGA. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding ORGA, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide encoding ORGA.
  • the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent ORGA.
  • Deliberate amino acid substitutions may be made on the basis of one or more similarities in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of ORGA is retained.
  • negatively charged amino acids may include aspartic acid and glutamic acid
  • positively charged amino acids may include lysine and arginine.
  • Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
  • Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
  • amino acid and amino acid sequence can refer to an oligopeptide, a peptide, a polypeptide, or a protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
  • Amplification relates to the production of additional copies of a nucleic acid. Amplification may be carried out using polymerase chain reaction (PCR) technologies or other nucleic acid amplification technologies well known in the art.
  • PCR polymerase chain reaction
  • Antagonist refers to a molecule which inhibits or attenuates the biological activity of ORGA.
  • Antagonists may include proteins such as antibodies, anticalins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of ORGA either by directly interacting with ORGA or by acting on components of the biological pathway in which ORGA participates.
  • antibody refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
  • Antibodies that bind ORGA polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
  • the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • RNA e.g., a mouse, a rat, or a rabbit
  • antigenic determinant refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
  • an antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
  • aptamer refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target.
  • Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries.
  • Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules.
  • the nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2-F or 2'-NH 2 ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood.
  • Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
  • Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker (Brody, E.N. andL. Gold (2000) J. Biotechnol. 74:5-13).
  • introduction refers to an aptamer which is expressed in vivo.
  • a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).
  • spiegelmer refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
  • antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a polynucleotide having a specific nucleic acid sequence.
  • Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'- deoxyguanosine.
  • Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
  • the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
  • biologically active refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
  • immunologically active or “immunogenic” refers to the capability of the natural, recombinant, or synthetic ORGA, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
  • Complementary describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5 ⁇
  • composition comprising a given polynucleotide and a “composition comprising a given polypeptide” can refer to any composition containing the given polynucleotide or polypeptide.
  • the composition may comprise a dry formulation or an aqueous solution.
  • Compositions comprising polynucleotides encoding ORGA or fragments of ORGA may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate.
  • the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
  • salts e.g., NaCl
  • detergents e.g., sodium dodecyl sulfate; SDS
  • other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
  • Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (Accelrys, Burlington MA) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
  • Constant amino acid substitutions are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
  • the table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
  • Trp Phe Tyr Tyr His, Phe, Trp Val He, Leu, Thr
  • Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and or (c) the bulk of the side chain.
  • a “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
  • derivative refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
  • a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
  • a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
  • a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
  • “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
  • Exon shuffling refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
  • a "fragment” is a unique portion of ORGA or a polynucleotide encoding ORGA which can be identical in sequence to, but shorter in length than, the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from about 5 to about 1000 contiguous nucleotides or amino acid residues.
  • a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
  • a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
  • these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
  • a fragment of SEQ DD NO: 8- 14 can comprise a region of unique polynucleotide sequence that specifically identifies SEQ DD NO:8-14, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
  • a fragment of SEQ DD NO:8-14 can be employed in one or more embodiments of methods of the invention, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ DD NO:8-14 from related polynucleotides.
  • a fragment of SEQ DD NO: 1-7 is encoded by a fragment of SEQ DD NO:8-14.
  • a fragment of SEQ DD NO: 1-7 can comprise a region of unique amino acid sequence that specifically identifies
  • SEQ DD NO: 1-7 For example, a fragment of SEQ DD NO: 1-7 can be used as an immunogenic peptide for the development of antibodies that specifically recognize SEQ DD NO: 1-7.
  • the precise length of a fragment of SEQ DD NO:l-7 and the region of SEQ DD NO:l-7 to which the fragment corresponds can be determined based on the intended purpose for the fragment using one or more analytical methods described herein or otherwise known in the art.
  • a “full length” polynucleotide is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon.
  • a “full length” polynucleotide sequence encodes a "full length” polypeptide sequence.
  • Homology refers to sequence similarity or, alternatively, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
  • percent identity and % identity refer to the percentage of identical nucleotide matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
  • Percent identity between polynucleotide sequences may be determined using one or more computer algorithms or programs known in the art or described herein. For example, percent identity can be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the
  • LASERGENE software package a suite of molecular biological analysis programs (DNASTAR,
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
  • BLAST 2 Sequences are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:
  • Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ DD number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
  • the phrases "percent identity” and "% identity,” as applied to polypeptide sequences refer to the percentage of identical residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
  • percent similarity and % similarity refer to the percentage of residue matches, including identical residue matches and conservative substitutions, between at least two polypeptide sequences aligned using a standardized algorithm. In contrast, conservative substitutions are not included in the calculation of percent identity between polypeptide sequences.
  • NCBI BLAST software suite may be used.
  • BLAST 2 Sequences Version 2.0.12 (April-21-2000) with blastp set at default parameters.
  • Such default parameters may be, for ⁇ example:
  • Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ DD number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • "Human artificial chromosomes" are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
  • humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
  • Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
  • Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ml sheared, denatured salmon sperm DNA.
  • wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T m ) for the specific sequence at a defined ionic strength and pH.
  • T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
  • High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
  • blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
  • Organic solvent such as formamide at a concentration of about 35-50% v/v
  • RNA:DNA hybridizations Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.
  • Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
  • hybridization complex refers to a complex formed between two nucleic acids by virtue of the formation of hydrogen bonds between complementary bases.
  • a hybridization complex may be formed in solution (e.g., C 0 t or R 0 t analysis) or formed between one nucleic acid present in solution and another nucleic acid immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
  • insertion and “addition” refer to changes in an amino acid or polynucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
  • Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
  • factors e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
  • an “immunogenic fragment” is a polypeptide or oligopeptide fragment of ORGA which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal.
  • the term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of ORGA which is useful in any of the antibody production methods disclosed herein or known in the art.
  • microarray refers to an arrangement of a plurality of polynucleotides, polypeptides, antibodies, or other chemical compounds on a substrate.
  • element and “array element” refer to a polynucleotide, polypeptide, antibody, or other chemical compound having a unique and defined position on a microarray.
  • modulate refers to a change in the activity of ORGA. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional or immunological properties of ORGA.
  • nucleic acid and nucleic acid sequence refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
  • PNA peptide nucleic acid
  • operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
  • PNA protein nucleic acid
  • PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
  • Post-translational modification of an ORGA may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of ORGA.
  • Probe refers to nucleic acids encoding ORGA, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acids. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers” are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme.
  • Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
  • Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope.
  • the Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.)
  • the PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences.
  • this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments.
  • the oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
  • a "recombinant nucleic acid” is a nucleic acid that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook and Russell ⁇ supra).
  • the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
  • a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence.
  • Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
  • such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
  • a “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
  • Reporter molecules are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
  • RNA equivalent in reference to a DNA molecule, is composed of the same linear sequence of nucleotides as the reference DNA molecule with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • sample is used in its broadest sense.
  • a sample suspected of containing ORGA, nucleic acids encoding ORGA, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
  • specific binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition.
  • the interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule.
  • a particular structure of the protein e.g., the antigenic determinant or epitope
  • the binding molecule e.g., the binding molecule for binding the binding molecule.
  • an antibody is specific for epitope "A”
  • the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
  • substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably at least about 75% free, and most preferably at least about 90% free from other components with which they are naturally associated.
  • substitution refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
  • Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
  • the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
  • a “transcript image” or “expression profile” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
  • Transformation describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment.
  • transformed cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
  • a "transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art.
  • the nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
  • the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C. et al. (2002) Science 295:868-872).
  • the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
  • the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
  • the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook and Russell ⁇ supra).
  • a "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
  • Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length.
  • a variant may be described as, for example, an "allelic” (as defined above), “splice,” “species,” or “polymorphic” variant.
  • a splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing during mRNA processing.
  • the corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
  • Species variants are polynucleotides that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other.
  • a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
  • Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base.
  • SNPs single nucleotide polymorphisms
  • the presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
  • a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity or sequence similarity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters.
  • Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity or sequence similarity over a certain defined length of one of the polypeptides.
  • Various embodiments of the invention include new human organelle-associated proteins (ORGA), the polynucleotides encoding ORGA, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
  • ORGA organelle-associated proteins
  • Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide embodiments of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project DD).
  • Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ DD NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide DD) as shown.
  • Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ DD NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide DD) as shown.
  • Column 6 shows the Incyte DD numbers of physical, full length clones corresponding to the polypeptide and polynucleotide sequences of the invention.
  • the full length clones encode polypeptides which have at least 95% sequence identity to the polypeptide sequences shown in column 3.
  • Table 2 shows sequences with homology to polypeptide embodiments of the invention as identified by BLAST analysis against the GenBank protein (genpept) database and the PROTEOME database.
  • Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ DD NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide DD) for polypeptides of the invention.
  • Column 3 shows the GenBank identification number (GenBank DD NO:) of the nearest GenBank homolog and the PROTEOME database identification numbers (PROTEOME DD NO:) of the nearest PROTEOME database homologs.
  • Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2
  • FIG. 3 shows the number of amino acid residues in each polypeptide.
  • Column 4 shows amino acid residues comprising signature sequences, domains, motifs, potential phosphorylation sites, and potential glycosylation sites.
  • Column 5 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
  • SEQ DD NO:3 is 100% identical, from residue Ml to residue Q150, to human omithine transporter (GenBank DD g5565862) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.)
  • the BLAST probability score is 4.6e-76, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • SEQ DD NO:3 also has homology to solute carrier family 25 member 15 (mitochondrial omithine transporter 1), which is localized mainly to the mitochondria, and which functions in omithine metabolism; mutations in the corresponding human SLC25A15 gene are associated with hyperomithinen a-hyperammonemia-homocitrullinuria (HHH) syndrome, as determined by BLAST analysis using the PROTEOME database.
  • SEQ DD NO:3 also contains a mitochondrial carrier protein domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein families/domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ DD NO:3 is an omithine transporter.
  • SEQ DD NO:4 is 98% identical, from residue Ml to residue A534, to human carnitine palmitoyltransferase IC (GenBank DD gl9850303) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.SEQ DD NO:4 also has homology to liver carnitine palmitoyltransferase I, as determined by BLAST analysis using the PROTEOME database.
  • BLAST Basic Local Alignment Search Tool
  • SEQ DD NO:4 also contains a choline/carnitine o-acyltransferase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein families/domains.
  • HMM hidden Markov model
  • SEQ DD NO:4 is a carnitine palmitoyltransferase.
  • SEQ DD NO: 1-2 and SEQ DD NO:5-7 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ DD NO: 1-7 are described in Table 7.
  • the full length polynucleotide embodiments were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences.
  • Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ DD NO:), the corresponding Incyte polynucleotide consensus sequence number (Incyte DD) for each polynucleotide of the invention, and the length of each polynucleotide sequence in basepairs.
  • Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide embodiments, and of fragments of the polynucleotides which are useful, for example, in hybridization or amplification technologies that identify SEQ DD NO:8-14 or that distinguish between SEQ DD NO:8-14 and related polynucleotides.
  • the polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA libraries.
  • polynucleotide fragments described in column 2 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the full length polynucleotides.
  • polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database ⁇ i.e., those sequences including the designation "ENST").
  • the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database ⁇ i.e., those sequences including the designation "NM” or “NT”) or the NCBI RefSeq Protein Sequence Records ⁇ i.e., those sequences including the designation "NP”).
  • the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence identified as
  • FL_XXXXXX_N I _N 2 _YYYY_N 3 _N 4 represents a "stitched" sequence in which XXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY s the number of the prediction generated by the algorithm, and N 12,3. .., if present, represent specific exons that may have been manually edited during analysis (See Example V).
  • the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm.
  • a polynucleotide sequence identified as FLXXXXX_gAAAAA_gBBBBB_l_N is a "stretched" sequence, with XXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V).
  • a RefSeq identifier (denoted by "NM,” “NP,” or “NT”) may be used in place of the GenBank identifier ⁇ i.e., gBBBBB).
  • a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods.
  • the following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example TV and Example V).
  • Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
  • Table 5 shows the representative cDNA libraries for those full length polynucleotides which were assembled using Incyte cDNA sequences.
  • the representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotides.
  • the tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
  • Table 8 shows single nucleotide polymorphisms (SNPs) found in polynucleotide sequences of the invention, along with allele frequencies in different human populations.
  • Columns 1 and 2 show the polynucleotide sequence identification number (SEQ DD NO:) and the corresponding Incyte project identification number (PDD) for polynucleotides of the invention.
  • Column 3 shows the Incyte identification number for the EST in which the SNP was detected (EST DD), and column 4 shows the identification number for the SNP (SNP DD).
  • Column 5 shows the position within the EST sequence at which the SNP is located (EST SNP), and column 6 shows the position of the SNP within the full- length polynucleotide sequence (CB1 SNP).
  • Column 7 shows the allele found in the EST sequence.
  • Columns 8 and 9 show the two alleles found at the SNP site.
  • Column 10 shows the amino acid encoded by the codon including the SNP site, based upon the allele found in the EST.
  • Columns 11-14 show the frequency of allele 1 in four different human populations. An entry of n/d (not detected) indicates that the frequency of allele 1 in the population was too low to be detected, while n/a (not available) indicates that the allele frequency was not determined for the population.
  • ORGA variants can have at least about 80%, at least about 90%, or at least about 95% amino acid sequence identity to the ORGA amino acid sequence, and can contain at least one functional or structural characteristic of ORGA.
  • polynucleotides which encode ORGA encompass polynucleotides which encode ORGA.
  • the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ DD NO:8-14, which encodes ORGA.
  • the invention also encompasses variants of a polynucleotide encoding ORGA.
  • a variant polynucleotide will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a polynucleotide encoding ORGA.
  • a particular aspect of the invention encompasses a variant of a polynucleotide comprising a sequence selected from the group consisting of SEQ DD NO:8-14 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ DD NO:8-14.
  • Any one of the polynucleotide variants described above can encode a polypeptide which contains at least one functional or structural characteristic of ORGA.
  • a polynucleotide variant of the invention is a splice variant of a polynucleotide encoding ORGA.
  • a splice variant may have portions which have significant sequence identity to a polynucleotide encoding ORGA, but will generally have a greater or lesser number of nucleotides due to additions or deletions of blocks of sequence arising from alternate splicing during mRNA processing.
  • a splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to a polynucleotide encoding ORGA over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide encoding ORGA.
  • a polynucleotide comprising a sequence of SEQ DD NO: 9 and a polynucleotide comprising a sequence of SEQ DD NO: 10 are splice variants of each other.
  • any one of the splice variants described above can encode a polypeptide which contains at least one functional or structural characteristic of ORGA. It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding ORGA, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring ORGA, and all such variations are to be considered as being specifically disclosed.
  • polynucleotides which encode ORGA and its variants are generally capable of hybridizing to polynucleotides encoding naturally occurring ORGA under appropriately selected conditions of stringency, it may be advantageous to produce polynucleotides encoding ORGA or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
  • RNA transcripts having more desirable properties such as a greater half-life, than transcripts produced from the naturally occurring sequence.
  • the invention also encompasses production of polynucleotides which encode ORGA and ORGA derivatives, or fragments thereof, entirely by synthetic chemistry.
  • the synthetic polynucleotide may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art.
  • synthetic chemistry may be used to introduce mutations into a polynucleotide encoding ORGA or any fragment thereof.
  • Embodiments of the invention can also include polynucleotides that are capable of hybridizing to the claimed polynucleotides, and, in particular, to those having the sequences shown in SEQ DD NO:8-14 and fragments thereof, under various conditions of stringency (Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol 152:507-511). Hybridization conditions, including annealing and wash conditions, are described in "Definitions.” Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
  • the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Invitrogen, Carlsbad CA).
  • sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems).
  • Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art.
  • the resulting sequences are analyzed using a variety of algorithms which are well known in the art (Ausubel et al, supra, ch. 7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853).
  • the nucleic acids encoding ORGA may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
  • restriction-site PCR uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector (Sarkar, G. (1993) PCR Methods Applic. 2:318-322).
  • Another method, inverse PCR uses primers that extend in divergent directions to amplify unknown sequence from a circularized template.
  • the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences (Triglia, T. et al.
  • a third method involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119).
  • multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
  • Other methods which may be used to retrieve unknown sequences are known in the art (Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
  • primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
  • Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
  • Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
  • Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
  • polynucleotides or fragments thereof which encode ORGA may be cloned in recombinant DNA molecules that direct expression of ORGA, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other polynucleotides which encode substantially the same or a functionally equivalent polypeptides may be produced and used to express ORGA.
  • the polynucleotides of the invention can be engineered using methods generally known in the art in order to alter ORGA-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences.
  • oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
  • the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of ORGA, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds.
  • MOLECULARBREEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. e
  • DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening.
  • genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
  • polynucleotides encoding ORGA may be synthesized, in whole or in part, using one or more chemical methods well known in the art (Canithers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232).
  • ORGA itself or a fragment thereof may be synthesized using chemical methods known in the art.
  • peptide synthesis can be performed using various solution-phase or solid-phase techniques (Creighton, T. (1984) Proteins. Structures and Molecular Properties. WH Freeman, New York NY, pp. 55-60; Roberge, J.Y.
  • the polynucleotides encoding ORGA or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
  • these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotides encoding ORGA.
  • Such elements may vary in their strength and specificity.
  • Specific initiation signals may also be used to achieve more efficient translation of polynucleotides encoding ORGA. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
  • a variety of expression vector/host systems may be utilized to contain and express polynucleotides encoding ORGA. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems (Sambrook and Russell, supra; Ausubel et al, supra; Van Heeke, G.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors insect cell systems infected with viral expression vectors (e.g., bacul
  • Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of polynucleotides to the targeted organ, tissue, or cell population (Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5:350-356; Yu, M. et al. (1993) Proc. Natl.
  • cloning and expression vectors may be selected depending upon the use intended for polynucleotides encoding ORGA.
  • routine cloning, subcloning, and propagation of polynucleotides encoding ORGA can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen).
  • PBLUESCRIPT Stratagene, La Jolla CA
  • PSPORT1 plasmid Invitrogen.
  • these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence (Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509).
  • vectors which direct high level expression of ORGA may be used.
  • vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
  • Yeast expression systems may be used for production of ORGA.
  • a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign polynucleotide sequences into the host genome for stable propagation (Ausubel et al, supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; Scorer, CA. et al. (1994) Bio/Technology 12:181-184).
  • Plant systems may also be used for expression of ORGA. Transcription of polynucleotides encoding ORGA may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:1631). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection (The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196).
  • viral promoters e.g., the 35
  • a number of viral-based expression systems may be utilized.
  • polynucleotides encoding ORGA may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses ORGA in host cells (Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659).
  • transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
  • SV40 or EBV-based vectors may also be used for high-level protein expression.
  • HACs Human artificial chromosomes
  • HACs Human artificial chromosomes
  • plasmids may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid.
  • HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes (Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355).
  • liposomes, polycationic amino polymers, or vesicles for therapeutic purposes
  • ORGA in cell lines is preferred.
  • polynucleotides encoding ORGA can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
  • the purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
  • Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type. Any number of selection systems may be used to recover transformed cell lines.
  • herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes for use in tk and apr cells, respectively (Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823).
  • antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methotrexate
  • neo confers resistance to the aminoglycosides neomycin and G-418
  • als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively
  • trpB and hisD confer resistance to chlorsulfuron and phosphinotricin acetyltransferase
  • Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; BD Clontech), ⁇ -glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131). Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
  • sequence encoding ORGA is inserted within a marker gene sequence
  • transformed cells containing polynucleotides encoding ORGA can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding ORGA under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
  • host cells that contain the polynucleotide encoding ORGA and that express ORGA may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
  • Immunological methods for detecting and measuring the expression of ORGA using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
  • ELISAs enzyme-linked immunosorbent assays
  • RIAs radioimmunoassays
  • FACS fluorescence activated cell sorting
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding ORGA include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
  • polynucleotides encoding ORGA, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
  • RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
  • T7, T3, or SP6 RNA polymerase
  • reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host cells transformed with polynucleotides encoding ORGA may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the protein produced by a transformed cell may.be secreted or retained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode ORGA may be designed to contain signal sequences which direct secretion of ORGA through a prokaryotic or eukaryotic cell membrane.
  • a host cell strain may be chosen for its ability to modulate expression of the inserted polynucleotides or to process the expressed protein in the desired fashion.
  • modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
  • Post-translational processing which cleaves a "prepro” or "pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
  • CHO, HeLa, MDCK, HEK293, and WI38 Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities
  • ATCC American Type Culture Collection
  • HEK293, and WI38 natural, modified, or recombinant polynucleotides encoding ORGA may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
  • a chimeric ORGA protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of ORGA activity.
  • Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices.
  • Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
  • GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively.
  • FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
  • a fusion protein may also be engineered to contain a proteolytic cleavage site located between the ORGA encoding sequence and the heterologous protein sequence, so that ORGA may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel et al. ⁇ supra, ch. 10 and 16). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
  • synthesis of radiolabeled ORGA may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S-methionine.
  • ORGA fragments of ORGA, or variants of ORGA may be used to screen for compounds that specifically bind to ORGA.
  • One or more test compounds may be screened for specific binding to ORGA.
  • 1, 2, 3, 4, 5, 10, 20, 50, 100, or 200 test compounds can be screened for specific binding to ORGA.
  • Examples of test compounds can include antibodies, anticalins, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules.
  • variants of ORGA can be used to screen for binding of test compounds, such as antibodies, to ORGA, a variant of ORGA, or a combination of ORGA and/or one or more variants ORGA.
  • a variant of ORGA can be used to screen for compounds that bind to a variant of ORGA, but not to ORGA having the exact sequence of a sequence of SEQ DD NO: 1-7.
  • ORGA variants used to perform such screening can have a range of about 50% to about 99% sequence identity to ORGA, with various embodiments having 60%, 70%, 75%, 80%, 85%, 90%, and 95% sequence identity.
  • a compound identified in a screen for specific binding to ORGA can be closely related to the natural ligand of ORGA, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner (Coligan, J.E. et al. (1991) Current Protocols in Jmmunology l(2):Chapter 5).
  • the compound thus identified can be a natural ligand of a receptor ORGA (Howard, A.D. et al. (2001) Trends Pharmacol. Sci.22:132- 140; Wise, A. et al. (2002) Drug Discovery Today 7:235-246).
  • a compound identified in a screen for specific binding to ORGA can be closely related to the natural receptor to which ORGA binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket.
  • the compound may be a receptor for ORGA which is capable of propagating a signal, or a decoy receptor for ORGA which is not capable of propagating a signal (Ashkenazi, A. and V.M. Divit (1999) Curr. Opin. Cell Biol. 11:255-260; Mantovani, A. et al. (2001) Trends Immunol. 22:328-336).
  • the compound can be rationally designed using known techniques. Examples of such techniques include those used to construct the compound etanercept (ENBREL; Amgen Inc., Thousand Oaks).
  • Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human IgGj (Taylor, P.C et al. (2001) Curr. Opin. Immunol. 13:611-616).
  • TNF tumor necrosis factor
  • two or more antibodies having similar or, alternatively, different specificities can be screened for specific binding to ORGA, fragments of ORGA, or variants of ORGA.
  • the binding specificity of the antibodies thus screened can thereby be selected to identify particular fragments or variants of ORGA.
  • an antibody can be selected such that its binding specificity allows for preferential identification of specific fragments or variants of ORGA.
  • an antibody can be selected such that its binding specificity allows for preferential diagnosis of a specific disease or condition having increased, decreased, or otherwise abnormal production of ORGA.
  • anticalins can be screened for specific binding to ORGA, fragments of ORGA, or variants of ORGA.
  • Anticalins are ligand-binding proteins that have been constructed based on a lipocalin scaffold (Weiss, G.A. and H.B. Lowman (2000) Chem. Biol. 7:R177-R184; Skerra, A. (2001) J. Biotechnol. 74:257-275).
  • the protein architecture of lipocalins can include a beta-barrel having eight antiparallel beta-strands, which supports four loops at its open end.
  • loops form the natural ligand-binding site of the lipocalins, a site which can be re-engineered in vitro by amino acid substitutions to impart novel binding specificities.
  • the amino acid substitutions can be made using methods known in the art or described herein, and can include conservative substitutions (e.g., substitutions that do not alter binding specificity) or substitutions that modestly, moderately, or significantly alter binding specificity.
  • screening for compounds which specifically bind to, stimulate, or inhibit ORGA involves producing appropriate cells which express ORGA, either as a secreted protein or on the cell membrane.
  • Preferred cells can include cells from mammals, yeast, Drosophila, or E. coli.
  • Cells expressing ORGA or cell membrane fractions which contain ORGA are then contacted with a test compound and binding, stimulation, or inhibition of activity of either ORGA or the compound is analyzed.
  • An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label.
  • the assay may comprise the steps of combining at least one test compound with ORGA, either in solution or affixed to a solid support, and detecting the binding of ORGA to the compound.
  • the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
  • the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.
  • An assay can be used to assess the ability of a compound to bind to its natural ligand and or to inhibit the binding of its natural ligand to its natural receptors.
  • examples of such assays include radio- labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S. Patent No. 6,372,724.
  • one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its ability to bind to its natural ligands (Matthews, D.J. and J.A. Wells. (1994) Chem. Biol. 1:25-30).
  • one or more amino acid substitutions can be introduced into a polypeptide compound (such as a ligand) to improve or alter its ability to bind to its natural receptors (Cunningham, B.C. and J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. et al. (1991) J. Biol. Chem. 266:10982-10988).
  • ORGA, fragments of ORGA, or variants of ORGA may be used to screen for compounds that modulate the activity of ORGA. Such compounds may include agonists, antagonists, or partial or inverse agonists.
  • an assay is performed under conditions permissive for ORGA activity, wherein ORGA is combined with at least one test compound, and the activity of ORGA in the presence of a test compound is compared with the activity of ORGA in the absence of the test compound. A change in the activity of ORGA in the presence of the test compound is indicative of a compound that modulates the activity of ORGA.
  • a test compound is combined with an in vitro or cell-free system comprising ORGA under conditions suitable for ORGA activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of ORGA may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
  • polynucleotides encoding ORGA or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells.
  • ES embryonic stem
  • Such techniques are well known in the art and are useful for the generation of animal models of human disease (see, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337).
  • mouse ES cells such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture.
  • the ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene ⁇ neo; Capecchi, M.R. (1989) Science 244:1288-1292).
  • the vector integrates into the corresponding region of the host genome by homologous recombination.
  • homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
  • Transformed ES cells are identified and micromjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain.
  • the blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
  • Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
  • Polynucleotides encoding ORGA may also be manipulated in vitro in ES cells derived from human blastocysts.
  • Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
  • Polynucleotides encoding ORGA can also be used to create "knockin” humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
  • knockin technology a region of a polynucleotide encoding ORGA is injected into animal ES cells, and the injected sequence integrates into the animal cell genome.
  • Transformed cells are injected into blastulae, and the blastulae are implanted as described above.
  • Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
  • a mammal inbred to overexpress ORGA e.g., by secreting ORGA in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74). THERAPEUTICS
  • ORGA appears to play a role in cell prohferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
  • ORGA appears to play a role in cell prohferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
  • ORGA or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of ORGA.
  • disorders include, but are not limited to, a cell prohferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, colon, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thy
  • Gerstmann-Straussler-Scheinker syndrome fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorder of the central nervous system, cerebral palsy, a neuroskeletal disorder, an autonomic nervous system disorder, a cranial nerve disorder, a spinal cord disease, muscular dystrophy and other neuromuscular disorder, a peripheral nervous system disorder, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathy, myasthenia gravis, periodic paralysis, a mental disorder including mood, anxiety, and schizophrenic disorder, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder
  • nephrotoxic disorders include any functional or morphologic change in the kidney produced by any pharmaceutical, chemical, or biological agent that is ingested, injected, inhaled, or absorbed.
  • Some broad categories of common nephrotoxic agents are heavy metals, all classes of antibiotics, analgesics, solvents, oxalosis-inducing agents, anticancer drugs, herbicides and pesticides, botanicals and biologicals, and antiepileptics.
  • a vector capable of expressing ORGA or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of ORGA including, but not limited to, those described above.
  • composition comprising a substantially purified ORGA in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of ORGA including, but not limited to, those provided above.
  • an agonist which modulates the activity of ORGA may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of ORGA including, but not limited to, those listed above.
  • an antagonist of ORGA may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of ORGA.
  • disorders include, but are not limited to, those cell proliferative, reproductive, gastrointestinal, neurological urologic, and renal disorders described above.
  • an antibody which specifically binds ORGA may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express ORGA.
  • a vector expressing the complement of the polynucleotide encoding ORGA may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of ORGA including, but not limited to, those described above.
  • any protein, agonist, antagonist, antibody, complementary sequence, or vector embodiments may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • An antagonist of ORGA may be produced using methods which are generally known in the art.
  • purified ORGA may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind ORGA.
  • Antibodies to ORGA may also be generated using methods that are well known in the art.
  • Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library.
  • neutralizing antibodies i.e., those which inhibit dimer formation
  • Single chain antibodies e.g., from camels or llamas
  • Single chain antibodies may be potent enzyme inhibitors and may have application in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).
  • various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with ORGA or with any fragment or oligopeptide thereof which has immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corynebacterium parvum are especially preferable.
  • the oligopeptides, peptides, or fragments used to induce antibodies to ORGA have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are substantially identical to a portion of the amino acid sequence of the natural protein. Short stretches of ORGA amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced. Monoclonal antibodies to ORGA may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture.
  • chimeric antibodies such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; Takeda, S. et al. (1985) Nature 314:452-454).
  • techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce ORGA-specific single chain antibodies.
  • Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobulin libraries (Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137). Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299). Antibody fragments which contain specific binding sites for ORGA may also be generated.
  • fragments include, but are not limited to, F(ab fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments.
  • Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W.D. et al. (1989) Science 246:1275-1281).
  • immunoassays may be used for screening to identify antibodies having the desired specificity.
  • Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art.
  • Such immunoassays typically involve the measurement of complex formation between ORGA and its specific antibody.
  • a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering ORGA epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
  • K association constant
  • High-affinity antibody preparations with K ranging from about 10 9 to 10 12 L/mole are preferred for use in immunoassays in which the ORGA- antibody complex must withstand rigorous manipulations.
  • polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications.
  • a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generally employed in procedures requiring precipitation of ORGA-antibody complexes.
  • Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available (Catty, supra; Coligan et al, supra).
  • polynucleotides encoding ORGA may be used for therapeutic purposes.
  • modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding ORGA.
  • complementary sequences or antisense molecules DNA, RNA, PNA, or modified oligonucleotides
  • antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding ORGA (Agrawal, S., ed. (1996) Antisense Therapeutics. Humana Press, Totawa NJ).
  • Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein (Slater, J.E. et al. (1998) J. Allergy Clin. Immunol. 102:469-475; Scanlon, K.J. et al. (1995) FASEB J. 9:1288-1296).
  • Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors (Miller, A.D.
  • polynucleotides encoding ORGA may be used for somatic or germline gene therapy.
  • Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCDD)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene
  • ORGA hepatitis B or C virus
  • fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
  • protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi
  • diseases or disorders caused by deficiencies in ORGA are treated by constructing mammalian expression vectors encoding ORGA and introducing these vectors by mechanical means into ORGA-deficient cells.
  • Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J.-L. and H. Recipon (1998) Curr. Opin. Biotechnol. 9:445-450).
  • Expression vectors that may be effective for the expression of ORGA include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRJJPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (BD Clontech, Palo Alto CA).
  • ORGA may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol.
  • a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes
  • TRANSFECTION KIT available from Invitrogen
  • transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845).
  • the introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
  • diseases or disorders caused by genetic defects with respect to ORGA expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding ORGA under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus c ⁇ -acting RNA sequences and coding sequences required for efficient vector propagation.
  • Retrovirus vectors e.g., PFB and PFBNEO
  • Retrovirus vectors are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci.
  • the vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J.
  • VPCL vector producing cell line
  • U.S. Patent No. 5,910,434 to Rigg discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4 + T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al.
  • an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding ORGA to cells which have one or more genetic abnormalities with respect to the expression of ORGA.
  • the construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference.
  • a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding ORGA to target cells which have one or more genetic abnormalities with respect to the expression of ORGA.
  • the use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing ORGA to cells of the central nervous system, for which HSV has a tropism.
  • the construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art.
  • a replication-competent herpes simplex virus (HSV) type 1 -based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395).
  • HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference.
  • U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22.
  • HSV vectors see also Goins, W.F. et al. (1999; J. Virol.
  • herpesvirus sequences The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
  • an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding ORGA to target cells.
  • SFV Semliki Forest Virus
  • This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
  • inserting the coding sequence for ORGA into the alphavirus genome in place of the capsid-coding region results in the production of a large number of ORGA-coding RNAs and the synthesis of high levels of ORGA in vector transduced cells.
  • alphavirus infection is typically associated with cell lysis within a few days
  • the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83).
  • the wide host range of alphaviruses will allow the introduction of ORGA into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
  • a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes. Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of
  • RNA The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
  • engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of RNA molecules encoding ORGA.
  • RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable.
  • the suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA molecules encoding ORGA. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues. RNA molecules may be modified to increase intracellular stability and half -life.
  • flanking sequences at the 5' and or 3' ends of the molecule
  • modifications include, but are not limited to, the addition of flanking sequences at the 5' and or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule.
  • This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytosine, guanine, thymine, and uracil which are not as easily recognized by endogenous endonucleases.
  • RNAi RNA interference
  • PTGS post-transcriptional gene silencing
  • RNAi is a post- transcriptional mode of gene silencing in which double-stranded RNA (dsRNA) introduced into a targeted cell specifically suppresses the expression of the homologous gene (i.e., the gene bearing the sequence complementary to the dsRNA). This effectively knocks out or substantially reduces the expression of the targeted gene.
  • dsRNA double-stranded RNA
  • PTGS can also be accomplished by use of DNA or DNA fragments as well. RNAi methods are described by Fire, A. et al.
  • PTGS can also be initiated by introduction of a complementary segment of DNA into the selected tissue using gene delivery and/or viral vector delivery methods described herein or known in the art.
  • RNAi can be induced in mammalian cells by the use of small interfering RNA also known as siRNA.
  • siRNA are shorter segments of dsRNA (typically about 21 to 23 nucleotides in length) that result in vivo from cleavage of introduced dsRNA by the action of an endogenous ribonuclease.
  • siRNA appear to be the mediators of the RNAi effect in mammals. The most effective siRNAs appear to be 21 nucleotide dsRNAs with 2 nucleotide 3' overhangs.
  • the use of siRNA for inducing RNAi in mammalian cells is described by Elbashir, S.M. et al. (2001; Nature 411:494-498).
  • siRNA can be generated indirectly by introduction of dsRNA into the targeted cell.
  • siRNA can be synthesized directly and introduced into a cell by transfection methods and agents described herein or known in the art (such as liposome-mediated transfection, viral vector methods, or other polynucleotide delivery/introductory methods).
  • Suitable siRNAs can be selected by examining a transcript of the target polynucleotide (e.g., mRNA) for nucleotide sequences downstream from the AUG start codon and recording the occurrence of each nucleotide and the 3' adjacent 19 to 23 nucleotides as potential siRNA target sites, with sequences having a 21 nucleotide length being preferred.
  • Regions to be avoided for target siRNA sites include the 5' and 3' untranslated regions (UTRs) and regions near the start codon (within 75 bases), as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP endonuclease complex.
  • the selected target sites for siRNA can then be compared to the appropriate genome database (e.g., human, etc.) using BLAST or other sequence comparison algorithms known in the art. Target sequences with significant homology to other coding sequences can be eliminated from consideration.
  • the selected siRNAs can be produced by chemical synthesis methods known in the art or by in vitro transcription using commercially available methods and kits such as the SILENCER siRNA construction kit (Ambion, Austin TX).
  • long-term gene silencing and/or RNAi effects can be induced in selected tissue using expression vectors that continuously express siRNA. This can be accomplished using expression vectors that are engineered to express hairpin RNAs (shRNAs) using methods known in the art (see, e.g., Brummelkamp, T.R. et al. (2002) Science 296:550-553; and Paddison, P.J. et al. (2002) Genes Dev. 16:948-958).
  • shRNAs can be delivered to target cells using expression vectors known in the art.
  • An example of a suitable expression vector for delivery of siRNA is the PSDJENCER1.0-U6 (circular) plasmid (Ambion).
  • PSDJENCER1.0-U6 circular plasmid
  • shRNAs are processed in vivo into siRNA-like molecules capable of carrying out gene- specific silencing.
  • the expression levels of genes targeted by RNAi or PTGS methods can be determined by assays for mRNA and or protein analysis.
  • Expression levels of the mRNA of a targeted gene can be determined, for example, by northern analysis methods using the NORTHERNMAX-GLY kit (Ambion); by microarray methods; by PCR methods; by real time PCR methods; and by other RNA/polynucleotide assays known in the art or described herein.
  • Expression levels of the protein encoded by the targeted gene can be determined, for example, by microarray methods; by polyacrylamide gel electrophoresis; and by Western analysis using standard techniques known in the art.
  • An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding ORGA.
  • Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
  • a compound which specifically inhibits expression of the polynucleotide encoding ORGA may be therapeutically useful, and in the treatment of disorders associated with decreased ORGA expression or activity, a compound which specifically promotes expression of the polynucleotide encoding ORGA may be therapeutically useful.
  • one or more test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
  • a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly.
  • a sample comprising a polynucleotide encoding ORGA is exposed to at least one test compound thus obtained.
  • the sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system.
  • Alterations in the expression of a polynucleotide encoding ORGA are assayed by any method commonly known in the art.
  • the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding ORGA.
  • the amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide.
  • a screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13).
  • a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Bio
  • a particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence' (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).
  • oligonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides
  • vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art (Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462- 466).
  • compositions which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
  • Excipients may include, for example, sugars, starches, celluloses, gums, and proteins.
  • formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).
  • Such compositions may consist of ORGA, antibodies to ORGA, and mimetics, agonists, antagonists, or inhibitors of ORGA.
  • compositions described herein may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
  • compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient.
  • small molecules e.g. traditional low molecular weight organic drugs
  • aerosol delivery of fast- acting formulations is well-known in the art.
  • macromolecules e.g. larger peptides and proteins
  • recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al, U.S. Patent No. 5,997,848).
  • Pulmonary delivery allows administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
  • compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose.
  • the determination of an effective dose is well within the capability of those skilled in the art.
  • compositions may be prepared for direct intracellular delivery of macromolecules comprising ORGA or fragments thereof.
  • liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule.
  • ORGA or a fragment thereof may be joined to a short cationic N- terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues ⁇ including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
  • the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs.
  • An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • a therapeutically effective dose refers to that amount of active ingredient, for example ORGA or fragments thereof, antibodies of ORGA, and agonists, antagonists or inhibitors of ORGA, which ameliorates the symptoms or condition.
  • Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeutically effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 /ED 50 ratio.
  • Compositions which exhibit large therapeutic indices are preferred.
  • the data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
  • Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
  • Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
  • Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
  • antibodies which specifically bind ORGA may be used for the diagnosis of disorders characterized by expression of ORGA, or in assays to monitor patients being treated with ORGA or agonists, antagonists, or inhibitors of ORGA.
  • Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for ORGA include methods which utilize the antibody and a label to detect ORGA in human body fluids or in extracts of cells or tissues.
  • the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
  • a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
  • polynucleotides encoding ORGA may be used for diagnostic purposes.
  • the polynucleotides which may be used include oligonucleotides, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of ORGA may be correlated with disease.
  • the diagnostic assay may be used to determine absence, presence, and excess expression of ORGA, and to monitor regulation of ORGA levels during therapeutic intervention.
  • hybridization with PCR probes which are capable of detecting polynucleotides, including genomic sequences, encoding ORGA or closely related molecules may be used to identify nucleic acid sequences which encode ORGA.
  • the specificity of the probe whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding ORGA, allelic variants, or related sequences. Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the ORGA encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ DD NO:8-14 or from genomic sequences including promoters, enhancers, and introns of the ORGA gene.
  • Means for producing specific hybridization probes for polynucleotides encoding ORGA include the cloning of polynucleotides encoding ORGA or ORGA derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
  • Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
  • Polynucleotides encoding ORGA may be used for the diagnosis of disorders associated with expression of ORGA.
  • disorders include, but are not limited to, a cell prohferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, colon, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas,
  • Gerstmann-Straussler-Scheinker syndrome fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorder of the central nervous system, cerebral palsy, a neuroskeletal disorder, an autonomic nervous system disorder, a cranial nerve disorder, a spinal cord disease, muscular dystrophy and other neuromuscular disorder, a peripheral nervous system disorder, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathy, myasthenia gravis, periodic paralysis, a mental disorder including mood, anxiety, and schizophrenic disorder, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder
  • nephrotoxic disorders include any functional or morphologic change in the kidney produced by any pharmaceutical, chemical, or biological agent that is ingested, injected, inhaled, or absorbed.
  • Some broad categories of common nephrotoxic agents are heavy metals, all classes of antibiotics, analgesics, solvents, oxalosis-inducing agents, anticancer drugs, herbicides and pesticides, botanicals and biologicals, and antiepileptics.
  • Polynucleotides encoding ORGA may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered ORGA expression. Such qualitative or quantitative methods are well known in the art.
  • polynucleotides encoding ORGA may be used in assays that detect the presence of associated disorders, particularly those mentioned above.
  • Polynucleotides complementary to sequences encoding ORGA may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of polynucleotides encoding ORGA in the sample indicates the presence of the associated disorder.
  • Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
  • a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding ORGA, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
  • hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
  • the results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
  • the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
  • a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier, thereby preventing the development or further progression of the cancer.
  • oligonucleotides designed from the sequences encoding ORGA may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding ORGA, or a fragment of a polynucleotide complementary to the polynucleotide encoding ORGA, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
  • oligonucleotide primers derived from polynucleotides encoding ORGA may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods.
  • SSCP single-stranded conformation polymorphism
  • fSSCP fluorescent SSCP
  • oligonucleotide primers derived from polynucleotides encoding ORGA are used to amplify DNA using the polymerase chain reaction (PCR).
  • the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like.
  • SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels.
  • the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines.
  • sequence database analysis methods termed in silico SNP (isSNP) are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
  • SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASS ARRAY system (Sequenom, Inc., San Diego CA). SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle ceU anemia, or chronic granulomatous disease.
  • variants in the mannose-binding lectin, MBL2 have been shown to be correlated with deleterious pulmonary outcomes in cystic fibrosis.
  • SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as life-threatening toxicity.
  • a variation in N-acetyl transferase is associated with a high incidence of peripheral neuropathy in response to the anti-tuberculosis drug isoniazid, while a variation in the core promoter of the ALOX5 gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-lipoxygenase pathway.
  • Methods which may also be used to quantify the expression of ORGA include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves (Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236).
  • the speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
  • oligonucleotides or longer fragments derived from any of the polynucleotides described herein may be used as elements on a microarray.
  • the microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
  • the microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a phannacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her phannacogenomic profile.
  • ORGA fragments of ORGA, or antibodies specific for ORGA may be used as elements on a microanay.
  • the microanay may be used to monitor or measure protein- protein interactions, drug-target interactions, and gene expression profiles, as described above.
  • a particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type.
  • a transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time (Seilhamer et al, "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484; hereby expressly incorporated by reference herein).
  • a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type.
  • the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microanay.
  • the resultant transcript image would provide a profile of gene activity.
  • Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples.
  • the transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.
  • Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S.
  • test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
  • fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds.
  • the toxicity of a test compound can be assessed by treating a biological sample containing nucleic acids with the test compound.
  • Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified.
  • the transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
  • proteome refers to the global pattern of protein expression in a particular tissue or cell type.
  • proteome expression patterns, or profiles are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time.
  • a profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type.
  • the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra).
  • the proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
  • the optical density of each protein spot is generally proportional to the level of the protein in the sample.
  • the optical densities of equivalently positioned protein spots from different samples for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment.
  • the proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry.
  • the identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of interest. In some cases, further sequence data may be obtained for definitive protein identification.
  • a proteomic profile may also be generated using antibodies specific for ORGA to quantify the levels of ORGA expression.
  • the antibodies are used as elements on a microarray, and protein expression levels are quantified by contacting the microarray with the sample and detecting the levels of protein bound to each arcay element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
  • Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level.
  • There is a poor conelation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile.
  • the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound.
  • Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified.
  • the amount of each protein is compared to the amount of the conesponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Microarrays may be prepared, used, and analyzed using methods known in the art (Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application W095/25116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; Heller, M. J. et al. (1997) U.S. Patent No.
  • nucleic acid sequences encoding ORGA may be used to generate hybridization probes useful in mapping the naturally occuning genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping.
  • sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries (Hanington, J.J. et al. (1997) Nat. Genet. 15:345- 355; Price, CM. (1993) Blood Rev. 7:127-134; Trask, BJ. (1991) Trends Genet. 7:149-154).
  • HACs human artificial chromosomes
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • PI constructions or single chromosome cDNA libraries
  • nucleic acid sequences may be used to develop genetic linkage maps, for example, which conelate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP) (Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357).
  • RFLP restriction fragment length polymorphism
  • Fluorescent in situ hybridization may be conelated with other physical and genetic map data (Heinz-Uhich, et al. (1995) in Meyers, supra, pp. 965-968). Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMEvl) World Wide Web site. Conelation between the location of the gene encoding ORGA on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts. In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.
  • a gene on the chromosome of another mammalian species may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques.
  • the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to llq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation (Gatti, R.A. et al. (1988) Nature 336:577-580).
  • the nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
  • ORGA its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques.
  • the fragment employed in such screening may be free in solution, affixed to a solid support, bome on a cell surface, or located intracellularly. The formation of binding complexes between ORGA and the agent being tested may be measured.
  • Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest (Geysen, et al. (1984) PCT application WO84/03564).
  • This method large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with ORGA, or fragments thereof, and washed.
  • Bound ORGA is then detected by methods well known in the art. Purified ORGA can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
  • nucleotide sequences which encode ORGA may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are cunently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
  • Incyte cDNAs are derived from cDNA libraries described in the LlFESEQ database (Incyte, Palo Alto CA). Some tissues are homogenized and lysed in guanidinium isothiocyanate, while others are homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL
  • RNA is treated with DNase.
  • poly(A)+ RNA is isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
  • RNA is isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).
  • Stratagene is provided with RNA and constructs the conesponding cDNA libraries.
  • cDNA is synthesized and cDNA libraries are constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art (Ausubel et al, supra, ch. 5). Reverse transcription is initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters are ligated to double stranded cDNA, and the cDNA is digested with the appropriate restriction enzyme or enzymes.
  • the cDNA is size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis.
  • cDNAs are ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Invitrogen, Carlsbad CA), PCDNA2.1 plasmid (Invitrogen), PBK-CMV plasmid (Stratagene), PCR2- TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte, Palo Alto CA), pRARE (Incyte), or pINCY (Incyte), or derivatives thereof.
  • Recombinant plasmids are transformed into competent E. coli cells including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Invitrogen.
  • Plasmids obtained as described in Example I are recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids are purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP
  • plasmid purification kit from QIAGEN. Following precipitation, plasmids are resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C
  • plasmid DNA is amplified from host cell lysates using direct link PCR in a high- throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps are carried out in a single reaction mixture. Samples are processed and stored in 384-well plates, and the concentration of amplified plasmid DNA is quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN D fluorescence scanner (Labsy stems Oy, Helsinki, Finland). III. Sequencing and Analysis
  • Incyte cDNA recovered in plasmids as described in Example ⁇ are sequenced as follows. Sequencing reactions are processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions are prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
  • Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides are canied out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences are identified using standard methods (Ausubel et al, supra, ch. 7). Some of the cDNA sequences are selected for extension using the techniques disclosed in Example VDI.
  • Polynucleotide sequences derived from Incyte cDNAs are validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis.
  • the Incyte cDNA sequences or translations thereof are then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM (Haft, D.H.
  • HMM hidden Markov model
  • HMM-based protein domain databases such as SMART (Schultz, J. et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244).
  • HMM is a probabilistic approach which analyzes consensus primary structures of gene families; see, for example, Eddy, S.R. (1996) Cun. Opin. Struct. Biol. 6:361-365.
  • the queries are performed using programs based on BLAST, FASTA, BLIMPS, and HMMER.
  • the Incyte cDNA sequences are assembled to produce full length polynucleotide sequences.
  • GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences are used to extend Incyte cDNA assemblages to full length. Assembly is performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages are screened for open reading frames using programs based on GeneMark, BLAST, and FASTA.
  • the full length polynucleotide sequences are translated to derive the conesponding full length polypeptide sequences.
  • a polypeptide may begin at any of the methionine residues of the full length translated polypeptide.
  • Full length polypeptide sequences are subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (HMM)-based protein family databases such as PFAM, JJSTCY, and
  • TIGRFAM TIGRFAM
  • HMM-based protein domain databases such as SMART.
  • Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (MiraiBio, Alameda CA) and LASERGENE software (DNASTAR).
  • Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
  • Table 7 summarizes tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters.
  • the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).
  • the programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences are also used to identify polynucleotide sequence fragments from SEQ DD NO:8-14.
  • Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94; Burge, C. and S. Karlin (1998) Cun. Opin. Struct. Biol. 8:346-354).
  • the program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon.
  • Genscan is a FASTA database of polynucleotide and polypeptide sequences.
  • the maximum range of sequence for Genscan to analyze at once is set to 30 kb.
  • the encoded polypeptides are analyzed by querying against PFAM models for organelle-associated proteins. Potential organelle-associated proteins are also identified by homology to Incyte cDNA sequences that have been annotated as organelle-associated proteins.
  • Genscan-predicted sequences are then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences are then edited by comparison to the top BLAST hit from genpept to conect enors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis is also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage is available, this information is used to conect or confirm the Genscan predicted sequence.
  • Full length polynucleotide sequences are obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example HI. Alternatively, full length polynucleotide sequences are derived entirely from edited or unedited Genscan-predicted coding sequences.
  • Partial cDNA sequences are extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example ID are mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster is analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that are subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval is present on more than one sequence in the cluster are identified, and intervals thus identified are considered to be equivalent by transitivity.
  • Partial DNA sequences are extended to full length with an algorithm based on BLAST analysis.
  • First, partial cDNAs assembled as described in Example DI are queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program.
  • GenBank primate such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases
  • the nearest GenBank protein homolog is then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV.
  • a chimeric protein is generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog.
  • HSPs high-scoring segment pairs
  • GenBank protein homolog the chimeric protein, or both are used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences are therefore "stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences are examined to determine whether they contain a complete gene. VI. Chromosomal Mapping of ORGA Encoding Polynucleotides
  • sequences used to assemble SEQ DD NO:8-14 are compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ DD NO:8-14 are assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon are used to determine if any of the clustered sequences have been previously mapped. Inclusion of a mapped sequence in a cluster results in the assignment of all sequences of that cluster, including its particular SEQ DD NO:, to that map location.
  • SHGC Stanford Human Genome Center
  • WIGR Whitehead Institute for Genome Research
  • Map locations are represented by ranges, or intervals, of human chromosomes.
  • the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm.
  • centiMorgan cM
  • centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
  • the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
  • Linkage is defined as the tendency of two genes located on the same chromosome to be inherited together through meiosis ⁇ Genetics in Medicine, Fifth Edition, (1991) Thompson, M.W. Et al. W.B. Saunders Co. Philadelphia).
  • a logarithm of the odds ratio for linkage (lod) score of 3 indicates a probability of 1 in 1000 that the marker was found solely by chance in affected individuals.
  • Xu, J. et al. ((1998) Nature Genet. 20:175-179) assembled 360 prostate cancer pedigrees consisting of families collected from sites around the world and found evidence for the location of a hereditary prostate cancer susceptibility gene (HPCX) on Xq27-q28.
  • HPCX hereditary prostate cancer susceptibility gene
  • RFLP Restriction fragment length polymorphism
  • Polynucleotides encoding ORGA were mapped to NT_Contigs. Contigs longer than 1 Mb were broken into subcontigs of 1 Mb in length with overlapping sections of 100 kb. mRNA sequence/masked genomic DNA contig pairings were determined using an algorithm such as MEGABLAST (Zhang, Z. et al. (2000) J. Comput. Biol. 7:203-214). The cDNA/genomic pairings were analyzed using the SEVI4 alignment algorithm (version May 2000 with optimization for high throughput and strand assignment confidence, Florea, L. et al. (1998) Genome Res. 8:967-974). The SJJVI4 output of the mRNA sequence/genomic contig pairs was further processed to determine the conect location of the ORGA polynucleotides on the genomic contig, as well as their strand identity.
  • SEQ DD NO: 13 was mapped to NT_Contig NT_011574_001.4 from Genbank release February, 2002, covering a 3.0 Mb region of the genome that also contains hereditary prostate cancer-associated genetic markers DXS1205-DXS8106.
  • SEQ DD NO:13 is in proximity with genetic markers shown to consistently associate with hereditary prostate cancer.
  • SEQ DD NO: 13 can be used for one or more of the following: i) linkage analysis of persons and or families to the hereditary prostate cancer disease region at Xq27-q28, ii) diagnostic assays for hereditary prostate cancer, and iii) developing therapeutics and or other treatments for hereditary prostate cancer. VII. Analysis of Polynucleotide Expression
  • Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound (Sambrook and Russell, supra, ch. 7; Ausubel et al, supra, ch. 4).
  • Analogous computer techniques applying BLAST are used to search for identical or related molecules in databases such as GenBank or LIFESEQ (Incyte). This analysis is much faster than multiple membrane-based hybridizations.
  • the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.
  • the basis of the search is the product score, which is defined as:
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
  • the product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
  • the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
  • the product score represents a balance between fractional overlap and quality in a BLAST alignment.
  • a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared.
  • a product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other.
  • a product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
  • polynucleotides encoding ORGA are analyzed with respect to the tissue sources from which they are derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example DT). Each cDNA sequence is derived from a cDNA library constructed from a human tissue.
  • Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassifiedmixed; or urinary tract.
  • the number of libraries in each category is counted and divided by the total number of libraries across all categories.
  • each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding ORGA.
  • cDNA sequences and cDNA library/tissue information are found in the LIFESEQ database (Incyte, Palo Alto CA). VIII. Extension of ORGA Encoding Polynucleotides
  • Full length polynucleotides are produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment.
  • One primer is synthesized to initiate 5' extension of the known fragment, and the other primer is synthesized to initiate 3' extension of the known fragment.
  • the initial primers are designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations is avoided.
  • Selected human cDNA libraries are used to extend the sequence. If more than one extension is necessary or desired, additional or nested sets of primers are designed.
  • PCR is performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.).
  • the reaction mix contains DNA template, 200 nmol of each primer, reaction buffer containing Mg 2+ , (NH 4 ) 2 S0 4 , and 2- mercaptoethanol, Taq DNA polymerase (Amersham Biosciences), ELONGASE enzyme (Invitrogen), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C
  • the parameters for primer pair T7 and SK+ are as follows: Step 1: 94°C, 3 min; Step 2: 94°C
  • the concentration of DNA in each well is determined by dispensing 100 ⁇ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 ⁇ l of undiluted PCR product into each well of an opaque fluorimeter plate (Coming Costar, Acton MA), allowing the DNA to bind to the reagent.
  • the plate is scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
  • a 5 ⁇ l to 10 ⁇ l aliquot of the reaction mixture is analyzed by electrophoresis on a 1 % agarose gel to determine which reactions are successful in extending the sequence.
  • the extended nucleotides are desalted and concentrated, transfened to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Biosciences).
  • CviJI cholera virus endonuclease Molecular Biology Research, Madison WI
  • sonicated or sheared prior to religation into pUC 18 vector
  • the digested nucleotides are separated on low concentration (0.6 to 0.8%) agarose gels, fragments are excised, and agar digested with Agar ACE (Promega).
  • Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells are selected on antibiotic-containing media, and individual colonies are picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb liquid media.
  • the cells are lysed, and DNA is amplified by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C.
  • DNA is quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries are reamplified using the same conditions as described above.
  • Samples are diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Biosciences) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
  • SNPs single nucleotide polymorphisms
  • LIFESEQ database LIFESEQ database
  • Sequences from the same gene are clustered together and assembled as described in Example DI, allowing the identification of all sequence variants in the gene.
  • An algorithm consisting of a series of filters is used to distinguish SNPs from other sequence variants. Preliminary filters remove the majority of basecall enors by requiring a minimum Phred quality score of 15, and remove sequence alignment enors and enors resulting from improper trimming of vector sequences, chimeras, and splice variants.
  • Clone enor filters use statistically generated algorithms to identify enors introduced during laboratory processing, such as those caused by reverse transcriptase, polymerase, or somatic mutation.
  • Clustering enor filters use statistically generated algorithms to identify enors resulting from clustering of close homologs or pseudogenes, or due to contamination by non-human sequences.
  • a final set of filters removes duplicates and SNPs found in immunoglobulins or T-cell receptors.
  • Certain SNPs are selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze allele frequencies at the SNP sites in four different human populations.
  • the Caucasian population comprises 92 individuals (46 male, 46 female), including 83 from Utah, four French, three deciualan, and two Amish individuals.
  • the African population comprises 194 individuals (97 male, 97 female), all African Americans.
  • the Hispanic population comprises 324 individuals (162 male, 162 female), all Mexican Hispanic.
  • the Asian population comprises 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian. Allele frequencies are first analyzed in the Caucasian population; in some cases those SNPs which show no allelic variance in this population are not further tested in the other three populations.
  • Hybridization probes derived from SEQ DD NO:8-14 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
  • state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Biosciences),
  • the labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Biosciences). An aliquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl ⁇ , Eco RI, Pst I, Xba I, or Pvu ⁇ (DuPont NEN).
  • the DNA from each digest is fractionated on a 0.7% agarose gel and transfened to NYTRAN PLUS nylon membranes (Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared. XI. Microarrays
  • the linkage or synthesis of anay elements upon a microanay can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing; see, e.g., Baldeschweiler et al, supra), mechanical microspotting technologies, and derivatives thereof.
  • the substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena, M., ed. (1999) DNA Microarrays: A Practical Approach. Oxford University Press, London). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers.
  • a procedure analogous to a dot or slot blot may also be used to anange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
  • a typical anay may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements (Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31).
  • Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microanay.
  • Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR).
  • the anay elements are hybridized with polynucleotides in a biological sample.
  • the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
  • a fluorescence scanner is used to detect hybridization at each anay element.
  • laser desorbtion and mass spectrometry may be used for detection of hybridization.
  • the degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microanay may be assessed.
  • microarray preparation and usage is described in detail below.
  • Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oligo-(dT) cellulose method.
  • Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l oligo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences).
  • the reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with GEMBRIGHT kits (Incyte).
  • Specific control poly(A) + RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA.
  • Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (BD Clontech, Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a
  • Sequences of the present invention are used to generate array elements.
  • Each anay element is amplified from bacterial cells containing vectors with cloned cDNA inserts.
  • PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert.
  • Anay elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g. Amplified anay elements are then purified using SEPHACRYL-400 (Amersham Biosciences).
  • Purified array elements are immobilized on polymer-coated glass slides.
  • Glass microscope slides (Coming) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments.
  • Glass slides are etched in 4% hydrofluoric acid (VWR).
  • Anay elements are applied to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference.
  • 1 ⁇ l of the anay element DNA is loaded into the open capillary printing element by a high-speed robotic apparatus.
  • the apparatus then deposits about 5 nl of array element sample per slide.
  • Microanays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microanays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microanays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C followed by washes in 0.2% SDS and distilled water as before. Hybridization Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and
  • the chamber containing the arrays is incubated for about 6.5 hours at 60° C
  • the arrays are washed for 10 min at 45° C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0.1X SSC), and dried. Detection
  • Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
  • the excitation laser light is focused on the anay using a 20X microscope objective (Nikon, Inc., Melville NY).
  • the slide containing the anay is placed on a computer-controlled X-Y stage on the microscope and raster- scanned past the objective.
  • the 1.8 cm x 1.8 cm anay used in the present example is scanned with a resolution of 20 micrometers.
  • a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) conesponding to the two fluorophores. Appropriate filters positioned between the anay and the photomultiplier tubes are used to filter the signals.
  • the emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5.
  • Each anay is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
  • the sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration.
  • a specific location on the anay contains a complementary DNA sequence, allowing the intensity of the signal at that location to be conelated with a weight ratio of hybridizing species of 1:100,000.
  • the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
  • the output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer.
  • the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
  • the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first conected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore 's emission spectrum.
  • a grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid.
  • the fluorescence signal within each element is then integrated to obtain a numerical value conesponding to the average intensity of the signal.
  • the software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte). Array elements that exhibit at least about a two-fold change in expression, a signal-to-background ratio of at least about 2.5, and an element spot size of at least about 40%, are considered to be differentially expressed.
  • SEQ DD NO: 11 and SEQ DD NO:12 showed tissue-specific expression as determined by microanay analysis.
  • RNA samples isolated from a variety of normal human tissues were compared to a common reference sample. Tissues contributing to the reference sample were selected for their ability to provide a complete distribution of RNA in the human body and include brain (4%), heart (7%), kidney (3%), lung (8%), placenta (46%), small intestine (9%), spleen (3%), stomach (6%), testis (9%), and uterus (5%).
  • the normal tissues assayed were obtained from at least three different donors. RNA from each donor was separately isolated and individually hybridized to the microanay.
  • SEQ DD NO: 11 was increased by at least two-fold in brain striatum, brain amygdaloid body, brain hypothalamus and brain hippocampus tissue as compared to the reference sample. Therefore, SEQ DD NO: 11 can be used as a tissue marker for brain striatum, amygdaloid body, hypothalamus, and hippocampus tissue.
  • SEQ DD NO: 12 was increased by at least two-fold in heart and liver tissue as compared to the reference sample. Therefore, SEQ DD NO: 12 can be used as a tissue marker for heart and liver tissue.
  • Sequences complementary to the ORGA-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring ORGA.
  • oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments.
  • Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of ORGA.
  • a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence.
  • To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the ORGA-encoding transcript.
  • ORGA expression and purification of ORGA is achieved using bacterial or virus-based expression systems.
  • cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
  • promoters include, but are not limited to, the trp-lac ⁇ tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
  • Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
  • Antibiotic resistant bacteria express ORGA upon induction with isopropyl beta-D- thiogalactopyranoside (IPTG).
  • ORGA in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica calif ornica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus.
  • AcMNPV Autographica calif ornica nuclear polyhedrosis virus
  • the nonessential polyhedrin gene of baculoviras is replaced with cDNA encoding ORGA by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
  • Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
  • ORGA is synthesized as a fusion protein with, e.g., glutathione S- transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from cmde cell lysates.
  • GST glutathione S- transferase
  • FLAG FLAG or 6-His
  • GST a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences).
  • the GST moiety can be proteolytically cleaved from ORGA at specifically engineered sites.
  • FLAG an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel et al. ⁇ supra, ch. 10 and 16).
  • Purified ORGA obtained by these methods can be used directly in the assays shown in Examples XVD and XVJJJ, where applicable.
  • ORGA function is assessed by expressing the sequences encoding ORGA at physiologically elevated levels in mammalian cell culture systems.
  • cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression.
  • Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ⁇ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation.
  • 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.
  • Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector.
  • Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; BD Clontech), CD64, or a CD64-GFP fusion protein.
  • FCM Flow cytometry
  • FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994; Flow Cytometry, Oxford, New York NY).
  • ORGA The influence of ORGA on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding ORGA and either CD64 or CD64-GFP.
  • CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG).
  • Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
  • mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding ORGA and other genes of interest can be analyzed by northern analysis or microanay techniques.
  • ORGA amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a conesponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art.
  • LASERGENE software DNASTAR
  • Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art (Ausubel et al, supra, ch. 11).
  • oligopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity (Ausubel et al, supra). Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant.
  • Resulting antisera are tested for antipeptide and anti-ORGA activity by, for example, binding the peptide or ORGA to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
  • Naturally occuning or recombinant ORGA is substantially purified by immunoaffinity chromatography using antibodies specific for ORGA.
  • An immunoaffinity column is constructed by covalently coupling anti-ORGA antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Biosciences). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
  • Media containing ORGA are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of ORGA (e.g., high ionic strength buffers in the presence of detergent).
  • the column is eluted under conditions that disrupt antibody/ORGA binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and ORGA is collected.
  • ORGA or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent (Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539).
  • Candidate molecules previously anayed in the wells of a multi-well plate are incubated with the labeled ORGA, washed, and any wells with labeled ORGA complex are assayed. Data obtained using different concentrations of ORGA are used to calculate values for the number, affinity, and association of ORGA with the candidate molecules.
  • ORGA molecules interacting with ORGA are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989; Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (BD Clontech).
  • ORGA may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).
  • ORGA is expressed in a mammalian cell line such as CHO by transforming with an eukaryotic expression vector encoding ORGA.
  • Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art.
  • Velocity centrifugation and equilibrium density centrifugation are used to separate cell nuclei, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, and Golgi vesicles into distinct fractions. The localization of ORGA within these fractions is determined using antibodies specific for ORGA.
  • mitochondria are isolated as described (Conboy, J.G. et al. (1982) Biochem. Biophys. Res. Comm. 105:1-7), and fractionated into matrix and membrane by repeating four times a cycle of freezing in liquid nitrogen and rapid thawing.
  • the localization of ORGA in submitochondrial fractions is examined using a fluorescent antibody specific for extra-membrane portions of ORGA.
  • the peptide substrate, ORGA containing the recognition sequence for N-linked oligosaccharide addition, is first prepared by iodinating Asn-Lys (N-p-azidobenzoyl)-Thr-NH with [ 125 I]-labeled Bolten-Hunter reagent as described in Roos, J. et al. (1994; Proc. Natl. Acad.. Sci. U.S.A. 91:1485-1489).
  • Oligosaccharyltransferase activity is then assayed in vitro as described in Roos, supra.
  • Yeast cells are grown to logarithmic stage, and spheroplasts are then prepared by digestion of the cells with Zymolyase 100T (ICN Radiochemicals, Irvine, CA). The spheroplasts are then washed and resuspended in glycosylation buffer (50 mM Tris-HCl, pH 7.4, 10 mM MnCl, 1 mM
  • a method to determine nucleic acid binding activity of ORGA involves a polyacrylamide gel mobility-shift assay.
  • ORGA is expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector containing ORGA cDNA. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of ORGA. Extracts containing solubilized proteins can be prepared from cells expressing ORGA by methods well known in the art. Portions of the extract containing ORGA are added to [ 32 P]-labeled RNA or DNA. Radioactive nucleic acid can be synthesized in vitro by techniques well known in the art. The mixtures are incubated at 25 °C in the presence of RNase- and DNase-inhibitors under buffered conditions for 5-10 minutes.
  • ORGA isomerase activity such as peptidyl prolyl cis/trans isomerase activity can be assayed by an enzyme assay described by Rahfeld, J.U. et al. (1994; FEBS Lett. 352:180-184).
  • the assay is performed at 10°C in 35 mM HEPES buffer, pH 7.8, containing chymotrypsin (0.5 mg/ml) and ORGA at a variety of concentrations. Under these assay conditions, the substrate, Suc-Ala-Xaa-Pro-Phe-4-NA, is in equilibrium with respect to the prolyl bond, with 80- 95% in trans and 5-20% in cis conformation. An aliquot (2 ⁇ l) of the substrate dissolved in dimethyl sulfoxide (10 mg/ml) is added to the reaction mixture described above. Only the cis isomer is a substrate for cleavage by chymotrypsin.
  • the product is cleaved by chymotrypsin to produce 4-nitroanilide, which is detected by its absorbance at 390 nm.
  • 4- Nitroanilide appears in a time-dependent and a ORGA concentration-dependent manner.
  • peptidyl prolyl cis -trans isomerase activity of ORGA can be assayed using a chromogenic peptide in a coupled assay with chymotrypsin (Fischer, G. et al. (1984) Biomed. Biochim. Acta 43:1101-1111).
  • ORGA hydrolase activity is measured by the hydrolysis of appropriate synthetic peptide substrates conjugated with various chromogenic molecules in which the degree of hydrolysis is quantified by spectrophotometric (or fluorometric) absorption of the released chromophore (Beynon, R.J. and J.S. Bond (1994 ⁇ ) Proteolytic Enzymes: A Practical Approach. Oxford University Press, New York, NY, pp. 25-55).
  • Peptide substrates are designed according to the category of protease activity as endopeptidase (serine, cysteine, aspartic proteases), aminopeptidase (leucine aminopeptidase), or carboxypeptidase (Carboxypeptidase A and B, procollagen C- proteinase).
  • endopeptidase serine, cysteine, aspartic proteases
  • aminopeptidase leucine aminopeptidase
  • carboxypeptidase Carboxypeptidase A and B, procollagen C- proteinase
  • ORGA activity is measured by its inclusion in coated vesicles.
  • ORGA can be expressed by transforming a mammalian cell line such as COS7, HeLa, or CHO with an eukaryotic expression vector encoding ORGA.
  • Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art.
  • the cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of ORGA and ⁇ - galactosidase.
  • Transformed cells are collected and cell lysates are assayed for vesicle formation.
  • a non- hydrolyzable form of GTP, GTP ⁇ S, and an ATP regenerating system are added to the lysate and the mixture is incubated at 37° C for 10 minutes.
  • ORGA activity is measured by its ability to alter vesicle trafficking pathways.
  • Vesicle trafficking in cells transformed with ORGA is examined using fluorescence microscopy. Antibodies specific for vesicle coat proteins or typical vesicle trafficking substrates such as transfenin or the mannose-6-phosphate receptor are commercially available. Various cellular components such as ER, Golgi bodies, peroxisomes, endosomes, lysosomes, and the plasmalemma are examined. Alterations in the numbers and locations of vesicles in cells transformed with ORGA as compared to control cells are characteristic of ORGA activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Dans divers modes de réalisation, l'invention concerne des protéines associées aux organites humains (ORGA) et des polynucléotides qui identifient et codent les ORGA. Dans des modes de réalisation, l'invention concerne également des vecteurs d'expression, des cellules hôtes, des anticorps, des agonistes et des antagonistes. Dans d'autres modes de réalisation, l'invention concerne des méthodes de diagnostic, de traitement ou de prévention de troubles associés à l'expression aberrante d'ORGA.
PCT/US2003/037278 2002-11-26 2003-11-21 Proteines associees aux organites WO2004048518A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003295760A AU2003295760A1 (en) 2002-11-26 2003-11-21 Organelle-associated proteins

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US42944502P 2002-11-26 2002-11-26
US60/429,445 2002-11-26
US43083302P 2002-12-03 2002-12-03
US60/430,833 2002-12-03

Publications (2)

Publication Number Publication Date
WO2004048518A2 true WO2004048518A2 (fr) 2004-06-10
WO2004048518A3 WO2004048518A3 (fr) 2004-11-25

Family

ID=32397200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/037278 WO2004048518A2 (fr) 2002-11-26 2003-11-21 Proteines associees aux organites

Country Status (2)

Country Link
AU (1) AU2003295760A1 (fr)
WO (1) WO2004048518A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065938A2 (fr) * 2004-12-15 2006-06-22 Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Marqueurs spanx-n specifiques du cancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091244A1 (en) * 1997-12-31 2002-07-11 Incyte Pharmaceuticals, Inc. Human signal peptide-containing proteins

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091244A1 (en) * 1997-12-31 2002-07-11 Incyte Pharmaceuticals, Inc. Human signal peptide-containing proteins

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006065938A2 (fr) * 2004-12-15 2006-06-22 Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Marqueurs spanx-n specifiques du cancer
WO2006065938A3 (fr) * 2004-12-15 2007-02-08 Us Gov Health & Human Serv Marqueurs spanx-n specifiques du cancer

Also Published As

Publication number Publication date
AU2003295760A1 (en) 2004-06-18
WO2004048518A3 (fr) 2004-11-25
AU2003295760A8 (en) 2004-06-18

Similar Documents

Publication Publication Date Title
US20030215822A1 (en) Secreted proteins
WO2003063769A2 (fr) Proteines associees aux vesicules
WO2003052049A2 (fr) Molecules destinees a la detection et au traitement de maladies
WO2003002610A1 (fr) Messagers extracellulaires
EP1444254A2 (fr) Molecules destinees a la detection et au traitement de maladies
EP1244700A2 (fr) Proteines circulant par l'intermediaire de vesicules
JP2004528002A (ja) 分泌分子および輸送分子
US20040053396A1 (en) Molecules for disease detection and treatment
EP1292620A2 (fr) Recepteurs nucleaires d'hormones
CA2417186A1 (fr) Proteines associees aux microtubules et tubulines
WO2003094843A2 (fr) Proteines d'adhesion cellulaire et a matrice extracellulaire
WO2004048518A2 (fr) Proteines associees aux organites
WO2003046152A2 (fr) Molecules permettant de detecter et de traiter des maladies
WO2004029218A2 (fr) Recepteurs et proteines associees a une membrane
WO2002046413A2 (fr) Molecules pour la detection et le traitement de maladies
US20030186379A1 (en) Secretion and trafficking molecules
WO2004096160A2 (fr) Proteines associees aux vesicules
WO2003093427A2 (fr) Molecules utilisees dans la detection et le traitement de maladies
WO2003044171A2 (fr) Proteines associees a des organites
WO2002031151A2 (fr) Lipocalines
WO2002064792A2 (fr) Molecules utiles pour detecter et traiter des maladies
US20040258679A1 (en) Vesicle-associated proteins
WO2002092759A2 (fr) Molecules permettant de detecter et traiter des maladies
WO2004044125A2 (fr) Proteines associees a la vesicule
US20040102612A1 (en) Alzheimer's disease-associated proteins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP