WO2004048518A2 - Proteines associees aux organites - Google Patents
Proteines associees aux organites Download PDFInfo
- Publication number
- WO2004048518A2 WO2004048518A2 PCT/US2003/037278 US0337278W WO2004048518A2 WO 2004048518 A2 WO2004048518 A2 WO 2004048518A2 US 0337278 W US0337278 W US 0337278W WO 2004048518 A2 WO2004048518 A2 WO 2004048518A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polynucleotide
- polypeptide
- seq
- orga
- sequence
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title abstract description 236
- 102000004169 proteins and genes Human genes 0.000 title abstract description 144
- 210000003463 organelle Anatomy 0.000 title abstract description 23
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 381
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 381
- 239000002157 polynucleotide Substances 0.000 claims abstract description 381
- 238000000034 method Methods 0.000 claims abstract description 217
- 210000004027 cell Anatomy 0.000 claims abstract description 159
- 230000014509 gene expression Effects 0.000 claims abstract description 137
- 239000005557 antagonist Substances 0.000 claims abstract description 18
- 239000000556 agonist Substances 0.000 claims abstract description 17
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 250
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 237
- 229920001184 polypeptide Polymers 0.000 claims description 230
- 239000012634 fragment Substances 0.000 claims description 141
- 150000001875 compounds Chemical class 0.000 claims description 127
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 100
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 96
- 239000000523 sample Substances 0.000 claims description 87
- 150000007523 nucleic acids Chemical class 0.000 claims description 84
- 125000003729 nucleotide group Chemical group 0.000 claims description 79
- 239000002773 nucleotide Substances 0.000 claims description 77
- 238000012360 testing method Methods 0.000 claims description 62
- 238000009396 hybridization Methods 0.000 claims description 59
- 230000000694 effects Effects 0.000 claims description 58
- 102000039446 nucleic acids Human genes 0.000 claims description 58
- 108020004707 nucleic acids Proteins 0.000 claims description 58
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 57
- 239000000203 mixture Substances 0.000 claims description 55
- 201000010099 disease Diseases 0.000 claims description 51
- 230000000295 complement effect Effects 0.000 claims description 40
- 230000027455 binding Effects 0.000 claims description 38
- 108091034117 Oligonucleotide Proteins 0.000 claims description 33
- 238000012216 screening Methods 0.000 claims description 29
- 238000011282 treatment Methods 0.000 claims description 28
- 239000012472 biological sample Substances 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 24
- 230000002163 immunogen Effects 0.000 claims description 20
- 230000015572 biosynthetic process Effects 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 19
- 241001465754 Metazoa Species 0.000 claims description 17
- 230000003247 decreasing effect Effects 0.000 claims description 13
- 230000009870 specific binding Effects 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 9
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 230000009261 transgenic effect Effects 0.000 claims description 8
- 238000012408 PCR amplification Methods 0.000 claims description 5
- 108060003951 Immunoglobulin Proteins 0.000 claims description 4
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 4
- 210000004408 hybridoma Anatomy 0.000 claims description 4
- 102000018358 immunoglobulin Human genes 0.000 claims description 4
- 238000012258 culturing Methods 0.000 claims description 3
- 230000003053 immunization Effects 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims description 3
- 230000002018 overexpression Effects 0.000 claims description 2
- 230000005875 antibody response Effects 0.000 claims 2
- 210000000628 antibody-producing cell Anatomy 0.000 claims 2
- 231100000683 possible toxicity Toxicity 0.000 claims 2
- 238000002405 diagnostic procedure Methods 0.000 claims 1
- 241000282414 Homo sapiens Species 0.000 abstract description 41
- 239000013604 expression vector Substances 0.000 abstract description 22
- 230000001594 aberrant effect Effects 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 131
- 108020004414 DNA Proteins 0.000 description 72
- 239000002299 complementary DNA Substances 0.000 description 69
- 239000013598 vector Substances 0.000 description 57
- 210000001519 tissue Anatomy 0.000 description 45
- 208000035475 disorder Diseases 0.000 description 44
- 238000004458 analytical method Methods 0.000 description 43
- 238000002869 basic local alignment search tool Methods 0.000 description 39
- 239000013615 primer Substances 0.000 description 35
- 206010028980 Neoplasm Diseases 0.000 description 33
- 235000001014 amino acid Nutrition 0.000 description 33
- 238000004422 calculation algorithm Methods 0.000 description 30
- 238000003752 polymerase chain reaction Methods 0.000 description 30
- 238000003556 assay Methods 0.000 description 29
- 239000012528 membrane Substances 0.000 description 29
- 210000004379 membrane Anatomy 0.000 description 29
- 239000013612 plasmid Substances 0.000 description 29
- 108091028043 Nucleic acid sequence Proteins 0.000 description 28
- 230000002068 genetic effect Effects 0.000 description 27
- 238000006467 substitution reaction Methods 0.000 description 27
- 150000001413 amino acids Chemical class 0.000 description 25
- 229940024606 amino acid Drugs 0.000 description 24
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 22
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 21
- 230000006870 function Effects 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 206010060862 Prostate cancer Diseases 0.000 description 19
- 102000004190 Enzymes Human genes 0.000 description 18
- 108010026552 Proteome Proteins 0.000 description 18
- 229940088598 enzyme Drugs 0.000 description 18
- 238000013518 transcription Methods 0.000 description 18
- 230000035897 transcription Effects 0.000 description 18
- 108090000790 Enzymes Proteins 0.000 description 17
- 239000003814 drug Substances 0.000 description 17
- 238000002493 microarray Methods 0.000 description 17
- 108020003175 receptors Proteins 0.000 description 17
- 102000005962 receptors Human genes 0.000 description 17
- 238000012163 sequencing technique Methods 0.000 description 17
- 108020004459 Small interfering RNA Proteins 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 16
- 238000000338 in vitro Methods 0.000 description 16
- 230000014616 translation Effects 0.000 description 16
- 108020004999 messenger RNA Proteins 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 14
- 230000000692 anti-sense effect Effects 0.000 description 14
- 201000011510 cancer Diseases 0.000 description 14
- 208000015181 infectious disease Diseases 0.000 description 14
- 239000003446 ligand Substances 0.000 description 14
- 230000001105 regulatory effect Effects 0.000 description 14
- 230000001225 therapeutic effect Effects 0.000 description 14
- 125000000539 amino acid group Chemical group 0.000 description 13
- 239000003795 chemical substances by application Substances 0.000 description 13
- 210000000349 chromosome Anatomy 0.000 description 13
- 238000013519 translation Methods 0.000 description 13
- 108020004635 Complementary DNA Proteins 0.000 description 12
- 238000007792 addition Methods 0.000 description 12
- -1 adhesion molecules Proteins 0.000 description 12
- 230000003321 amplification Effects 0.000 description 12
- 230000000875 corresponding effect Effects 0.000 description 12
- 239000003550 marker Substances 0.000 description 12
- 238000003199 nucleic acid amplification method Methods 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000000746 purification Methods 0.000 description 12
- 108091023037 Aptamer Proteins 0.000 description 11
- 230000007812 deficiency Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 11
- 108020001507 fusion proteins Proteins 0.000 description 11
- 102000037865 fusion proteins Human genes 0.000 description 11
- 230000001939 inductive effect Effects 0.000 description 11
- 235000000346 sugar Nutrition 0.000 description 11
- 231100000419 toxicity Toxicity 0.000 description 11
- 230000001988 toxicity Effects 0.000 description 11
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 10
- 102000015636 Oligopeptides Human genes 0.000 description 10
- 108010038807 Oligopeptides Proteins 0.000 description 10
- 241000700584 Simplexvirus Species 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000003745 diagnosis Methods 0.000 description 10
- 210000001163 endosome Anatomy 0.000 description 10
- 238000001727 in vivo Methods 0.000 description 10
- 210000003470 mitochondria Anatomy 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 241001430294 unidentified retrovirus Species 0.000 description 10
- 108091026890 Coding region Proteins 0.000 description 9
- 108700024394 Exon Proteins 0.000 description 9
- 241000282412 Homo Species 0.000 description 9
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 9
- 238000010276 construction Methods 0.000 description 9
- 238000012217 deletion Methods 0.000 description 9
- 230000037430 deletion Effects 0.000 description 9
- 230000009368 gene silencing by RNA Effects 0.000 description 9
- 238000001415 gene therapy Methods 0.000 description 9
- 210000003734 kidney Anatomy 0.000 description 9
- 230000004048 modification Effects 0.000 description 9
- 238000012986 modification Methods 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000001890 transfection Methods 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 9
- 108700028369 Alleles Proteins 0.000 description 8
- 241000710929 Alphavirus Species 0.000 description 8
- 108091093037 Peptide nucleic acid Proteins 0.000 description 8
- 102000007066 Prostate-Specific Antigen Human genes 0.000 description 8
- 108010072866 Prostate-Specific Antigen Proteins 0.000 description 8
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 8
- 230000002759 chromosomal effect Effects 0.000 description 8
- 238000003776 cleavage reaction Methods 0.000 description 8
- 239000003623 enhancer Substances 0.000 description 8
- 230000013595 glycosylation Effects 0.000 description 8
- 238000006206 glycosylation reaction Methods 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 210000003712 lysosome Anatomy 0.000 description 8
- 238000013507 mapping Methods 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- 230000007017 scission Effects 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 102000014914 Carrier Proteins Human genes 0.000 description 7
- 108090000994 Catalytic RNA Proteins 0.000 description 7
- 102000053642 Catalytic RNA Human genes 0.000 description 7
- 102000053602 DNA Human genes 0.000 description 7
- 241000196324 Embryophyta Species 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 208000009956 adenocarcinoma Diseases 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 208000020735 familial prostate carcinoma Diseases 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 230000028993 immune response Effects 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 208000017169 kidney disease Diseases 0.000 description 7
- 239000002502 liposome Substances 0.000 description 7
- 210000004185 liver Anatomy 0.000 description 7
- 230000001868 lysosomic effect Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 210000004940 nucleus Anatomy 0.000 description 7
- 102000054765 polymorphisms of proteins Human genes 0.000 description 7
- 239000002987 primer (paints) Substances 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 230000001850 reproductive effect Effects 0.000 description 7
- 210000003705 ribosome Anatomy 0.000 description 7
- 108091092562 ribozyme Proteins 0.000 description 7
- 231100000167 toxic agent Toxicity 0.000 description 7
- 239000003440 toxic substance Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 241000701161 unidentified adenovirus Species 0.000 description 7
- 208000014001 urinary system disease Diseases 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- 102000002666 Carnitine O-palmitoyltransferase Human genes 0.000 description 6
- 108010018424 Carnitine O-palmitoyltransferase Proteins 0.000 description 6
- 108010078791 Carrier Proteins Proteins 0.000 description 6
- 108020004705 Codon Proteins 0.000 description 6
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 6
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 6
- 208000018522 Gastrointestinal disease Diseases 0.000 description 6
- 208000012902 Nervous system disease Diseases 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 6
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- 108091081024 Start codon Proteins 0.000 description 6
- 108091023040 Transcription factor Proteins 0.000 description 6
- 102000040945 Transcription factor Human genes 0.000 description 6
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical group O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 6
- 239000000427 antigen Substances 0.000 description 6
- 108091007433 antigens Proteins 0.000 description 6
- 102000036639 antigens Human genes 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 210000001124 body fluid Anatomy 0.000 description 6
- 210000000170 cell membrane Anatomy 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 201000006549 dyspepsia Diseases 0.000 description 6
- 230000002255 enzymatic effect Effects 0.000 description 6
- 238000003018 immunoassay Methods 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 229920002521 macromolecule Polymers 0.000 description 6
- 230000000926 neurological effect Effects 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 210000002824 peroxisome Anatomy 0.000 description 6
- 208000030761 polycystic kidney disease Diseases 0.000 description 6
- 210000002307 prostate Anatomy 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000028327 secretion Effects 0.000 description 6
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 6
- 230000032258 transport Effects 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 108091035707 Consensus sequence Proteins 0.000 description 5
- 238000001712 DNA sequencing Methods 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 5
- 238000012300 Sequence Analysis Methods 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 5
- 239000003098 androgen Substances 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 210000000172 cytosol Anatomy 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000002496 gastric effect Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 210000002288 golgi apparatus Anatomy 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 230000036210 malignancy Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 239000008177 pharmaceutical agent Substances 0.000 description 5
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 5
- 230000002685 pulmonary effect Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 108020004418 ribosomal RNA Proteins 0.000 description 5
- 150000003384 small molecules Chemical class 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 229940124597 therapeutic agent Drugs 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 241001529453 unidentified herpesvirus Species 0.000 description 5
- 210000003934 vacuole Anatomy 0.000 description 5
- 239000013603 viral vector Substances 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- 108091006112 ATPases Proteins 0.000 description 4
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 4
- 208000026372 Congenital cystic kidney disease Diseases 0.000 description 4
- 239000003155 DNA primer Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 206010016654 Fibrosis Diseases 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 101710154606 Hemagglutinin Proteins 0.000 description 4
- 206010058359 Hypogonadism Diseases 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- 208000003250 Mixed connective tissue disease Diseases 0.000 description 4
- 208000025966 Neurological disease Diseases 0.000 description 4
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 4
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 4
- 108010020062 Peptidylprolyl Isomerase Proteins 0.000 description 4
- 102000009658 Peptidylprolyl Isomerase Human genes 0.000 description 4
- 206010035226 Plasma cell myeloma Diseases 0.000 description 4
- 208000002500 Primary Ovarian Insufficiency Diseases 0.000 description 4
- 102000029797 Prion Human genes 0.000 description 4
- 108091000054 Prion Proteins 0.000 description 4
- 101710176177 Protein A56 Proteins 0.000 description 4
- 108010076504 Protein Sorting Signals Proteins 0.000 description 4
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 4
- 241000700159 Rattus Species 0.000 description 4
- 108091028664 Ribonucleotide Proteins 0.000 description 4
- 241000714474 Rous sarcoma virus Species 0.000 description 4
- 108091027967 Small hairpin RNA Proteins 0.000 description 4
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 108091008324 binding proteins Proteins 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 230000007882 cirrhosis Effects 0.000 description 4
- 208000019425 cirrhosis of liver Diseases 0.000 description 4
- 210000000805 cytoplasm Anatomy 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 150000004665 fatty acids Chemical class 0.000 description 4
- 210000001035 gastrointestinal tract Anatomy 0.000 description 4
- 239000003102 growth factor Substances 0.000 description 4
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 4
- 239000000185 hemagglutinin Substances 0.000 description 4
- 208000006454 hepatitis Diseases 0.000 description 4
- 231100000283 hepatitis Toxicity 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 210000000688 human artificial chromosome Anatomy 0.000 description 4
- 230000001900 immune effect Effects 0.000 description 4
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000003589 nefrotoxic effect Effects 0.000 description 4
- 231100000381 nephrotoxic Toxicity 0.000 description 4
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 4
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 4
- 230000027758 ovulation cycle Effects 0.000 description 4
- 210000000496 pancreas Anatomy 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000001323 posttranslational effect Effects 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 201000007094 prostatitis Diseases 0.000 description 4
- 238000003127 radioimmunoassay Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 4
- 239000002336 ribonucleotide Substances 0.000 description 4
- 125000002652 ribonucleotide group Chemical group 0.000 description 4
- 208000012672 seasonal affective disease Diseases 0.000 description 4
- 238000002864 sequence alignment Methods 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 230000002588 toxic effect Effects 0.000 description 4
- 231100000027 toxicology Toxicity 0.000 description 4
- 210000003412 trans-golgi network Anatomy 0.000 description 4
- 230000002485 urinary effect Effects 0.000 description 4
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 201000003883 Cystic fibrosis Diseases 0.000 description 3
- 108010089072 Dolichyl-diphosphooligosaccharide-protein glycotransferase Proteins 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241001635598 Enicostema Species 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108010008165 Etanercept Proteins 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- YPZRHBJKEMOYQH-UYBVJOGSSA-L FADH2(2-) Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1COP([O-])(=O)OP([O-])(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C(NC(=O)NC2=O)=C2NC2=C1C=C(C)C(C)=C2 YPZRHBJKEMOYQH-UYBVJOGSSA-L 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 3
- 102000019298 Lipocalin Human genes 0.000 description 3
- 108050006654 Lipocalin Proteins 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 108091005461 Nucleic proteins Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 3
- 108091034057 RNA (poly(A)) Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- 241000710961 Semliki Forest virus Species 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- 102100036407 Thioredoxin Human genes 0.000 description 3
- 108091036066 Three prime untranslated region Proteins 0.000 description 3
- 102000006601 Thymidine Kinase Human genes 0.000 description 3
- 108020004440 Thymidine kinase Proteins 0.000 description 3
- 241000723873 Tobacco mosaic virus Species 0.000 description 3
- 108091023045 Untranslated Region Proteins 0.000 description 3
- 241000700618 Vaccinia virus Species 0.000 description 3
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 210000001106 artificial yeast chromosome Anatomy 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000001574 biopsy Methods 0.000 description 3
- 210000002459 blastocyst Anatomy 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 3
- 230000006037 cell lysis Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 239000003184 complementary RNA Substances 0.000 description 3
- 230000009918 complex formation Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- VZFRNCSOCOPNDB-UHFFFAOYSA-N domoic acid Natural products OC(=O)C(C)C=CC=C(C)C1CNC(C(O)=O)C1CC(O)=O VZFRNCSOCOPNDB-UHFFFAOYSA-N 0.000 description 3
- 238000007877 drug screening Methods 0.000 description 3
- 230000012202 endocytosis Effects 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000001476 gene delivery Methods 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 230000002440 hepatic effect Effects 0.000 description 3
- 239000004009 herbicide Substances 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 206010020718 hyperplasia Diseases 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 210000004962 mammalian cell Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 230000002438 mitochondrial effect Effects 0.000 description 3
- 210000000653 nervous system Anatomy 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 229920001542 oligosaccharide Polymers 0.000 description 3
- 150000002482 oligosaccharides Chemical class 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000000750 progressive effect Effects 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 108020003519 protein disulfide isomerase Proteins 0.000 description 3
- 238000001243 protein synthesis Methods 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 208000002491 severe combined immunodeficiency Diseases 0.000 description 3
- 206010041823 squamous cell carcinoma Diseases 0.000 description 3
- 210000001550 testis Anatomy 0.000 description 3
- 108060008226 thioredoxin Proteins 0.000 description 3
- 229940113082 thymine Drugs 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000008791 toxic response Effects 0.000 description 3
- 230000002110 toxicologic effect Effects 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000010361 transduction Methods 0.000 description 3
- 230000026683 transduction Effects 0.000 description 3
- 230000008733 trauma Effects 0.000 description 3
- 230000005751 tumor progression Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 229940035893 uracil Drugs 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- ASJSAQIRZKANQN-CRCLSJGQSA-N 2-deoxy-D-ribose Chemical compound OC[C@@H](O)[C@@H](O)CC=O ASJSAQIRZKANQN-CRCLSJGQSA-N 0.000 description 2
- 101710169336 5'-deoxyadenosine deaminase Proteins 0.000 description 2
- 108020005075 5S Ribosomal RNA Proteins 0.000 description 2
- 102100026041 Acrosin Human genes 0.000 description 2
- 108090000107 Acrosin Proteins 0.000 description 2
- 208000026872 Addison Disease Diseases 0.000 description 2
- 208000003200 Adenoma Diseases 0.000 description 2
- 102000055025 Adenosine deaminases Human genes 0.000 description 2
- 208000007887 Alphavirus Infections Diseases 0.000 description 2
- 208000024985 Alport syndrome Diseases 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- 208000000044 Amnesia Diseases 0.000 description 2
- 208000031091 Amnestic disease Diseases 0.000 description 2
- 206010002383 Angina Pectoris Diseases 0.000 description 2
- 235000002198 Annona diversifolia Nutrition 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 2
- 206010003210 Arteriosclerosis Diseases 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 208000012219 Autonomic Nervous System disease Diseases 0.000 description 2
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 2
- 208000015163 Biliary Tract disease Diseases 0.000 description 2
- 206010005003 Bladder cancer Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 208000004020 Brain Abscess Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 208000007257 Budd-Chiari syndrome Diseases 0.000 description 2
- 206010006811 Bursitis Diseases 0.000 description 2
- 102000000584 Calmodulin Human genes 0.000 description 2
- 108010041952 Calmodulin Proteins 0.000 description 2
- 241000282832 Camelidae Species 0.000 description 2
- 241000222122 Candida albicans Species 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 2
- 102100035882 Catalase Human genes 0.000 description 2
- 108010053835 Catalase Proteins 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 206010008609 Cholangitis sclerosing Diseases 0.000 description 2
- 206010008635 Cholestasis Diseases 0.000 description 2
- 108700010070 Codon Usage Proteins 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 108020004394 Complementary RNA Proteins 0.000 description 2
- 208000016998 Conn syndrome Diseases 0.000 description 2
- 206010010774 Constipation Diseases 0.000 description 2
- 208000019736 Cranial nerve disease Diseases 0.000 description 2
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 2
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 2
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 2
- 208000011231 Crohn disease Diseases 0.000 description 2
- 201000005171 Cystadenoma Diseases 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- 108010017826 DNA Polymerase I Proteins 0.000 description 2
- 102000004594 DNA Polymerase I Human genes 0.000 description 2
- 230000004543 DNA replication Effects 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 208000019505 Deglutition disease Diseases 0.000 description 2
- 206010012289 Dementia Diseases 0.000 description 2
- 208000016192 Demyelinating disease Diseases 0.000 description 2
- 208000012239 Developmental disease Diseases 0.000 description 2
- 208000032131 Diabetic Neuropathies Diseases 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 208000005872 Diffuse Esophageal Spasm Diseases 0.000 description 2
- 208000027877 Disorders of Sex Development Diseases 0.000 description 2
- 206010058314 Dysplasia Diseases 0.000 description 2
- 206010014172 Ectopic ureter Diseases 0.000 description 2
- 206010014328 Ejaculation failure Diseases 0.000 description 2
- 201000009273 Endometriosis Diseases 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 206010058838 Enterocolitis infectious Diseases 0.000 description 2
- 208000007217 Esophageal Stenosis Diseases 0.000 description 2
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 2
- 108091060211 Expressed sequence tag Proteins 0.000 description 2
- 206010061846 Extradural abscess Diseases 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- 208000000571 Fibrocystic breast disease Diseases 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 201000011240 Frontotemporal dementia Diseases 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 208000001287 Galactorrhea Diseases 0.000 description 2
- 206010017600 Galactorrhoea Diseases 0.000 description 2
- 208000007882 Gastritis Diseases 0.000 description 2
- 208000005577 Gastroenteritis Diseases 0.000 description 2
- 208000012671 Gastrointestinal haemorrhages Diseases 0.000 description 2
- 208000003736 Gerstmann-Straussler-Scheinker Disease Diseases 0.000 description 2
- 206010072075 Gerstmann-Straussler-Scheinker syndrome Diseases 0.000 description 2
- 206010018364 Glomerulonephritis Diseases 0.000 description 2
- 206010018367 Glomerulonephritis chronic Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 208000018565 Hemochromatosis Diseases 0.000 description 2
- 206010019708 Hepatic steatosis Diseases 0.000 description 2
- 206010019713 Hepatic vein thrombosis Diseases 0.000 description 2
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 2
- 101001018100 Homo sapiens Lysozyme C Proteins 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 208000023105 Huntington disease Diseases 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 208000008852 Hyperoxaluria Diseases 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- 206010021518 Impaired gastric emptying Diseases 0.000 description 2
- 208000026350 Inborn Genetic disease Diseases 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 206010023126 Jaundice Diseases 0.000 description 2
- 208000008839 Kidney Neoplasms Diseases 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 241000282838 Lama Species 0.000 description 2
- 206010062062 Large intestinal obstruction Diseases 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 102100033468 Lysozyme C Human genes 0.000 description 2
- 206010026712 Mallory-Weiss syndrome Diseases 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 206010027202 Meningitis bacterial Diseases 0.000 description 2
- 206010027260 Meningitis viral Diseases 0.000 description 2
- 208000036626 Mental retardation Diseases 0.000 description 2
- 206010068836 Metabolic myopathy Diseases 0.000 description 2
- 208000019022 Mood disease Diseases 0.000 description 2
- 208000034578 Multiple myelomas Diseases 0.000 description 2
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 2
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 2
- 208000003926 Myelitis Diseases 0.000 description 2
- 206010028643 Myopathy endocrine Diseases 0.000 description 2
- 206010028648 Myopathy toxic Diseases 0.000 description 2
- 208000023137 Myotoxicity Diseases 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 208000009905 Neurofibromatoses Diseases 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 2
- 206010030184 Oesophageal spasm Diseases 0.000 description 2
- 206010030194 Oesophageal stenosis Diseases 0.000 description 2
- 206010033266 Ovarian Hyperstimulation Syndrome Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 206010049226 Oxalosis Diseases 0.000 description 2
- 206010033645 Pancreatitis Diseases 0.000 description 2
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 2
- 208000027099 Paranoid disease Diseases 0.000 description 2
- 208000018737 Parkinson disease Diseases 0.000 description 2
- 208000000733 Paroxysmal Hemoglobinuria Diseases 0.000 description 2
- 201000004602 Peliosis Hepatis Diseases 0.000 description 2
- 208000004362 Penile Induration Diseases 0.000 description 2
- 208000008469 Peptic Ulcer Diseases 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 206010034531 Perinephric abscess Diseases 0.000 description 2
- 208000020758 Peyronie disease Diseases 0.000 description 2
- 102100036050 Phosphatidylinositol N-acetylglucosaminyltransferase subunit A Human genes 0.000 description 2
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 2
- 206010058989 Portal vein occlusion Diseases 0.000 description 2
- 201000009454 Portal vein thrombosis Diseases 0.000 description 2
- 206010036376 Postherpetic Neuralgia Diseases 0.000 description 2
- 206010052649 Primary hypogonadism Diseases 0.000 description 2
- 208000024777 Prion disease Diseases 0.000 description 2
- 206010036774 Proctitis Diseases 0.000 description 2
- 206010036783 Proctitis ulcerative Diseases 0.000 description 2
- 102000003946 Prolactin Human genes 0.000 description 2
- 108010057464 Prolactin Proteins 0.000 description 2
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108010010974 Proteolipids Proteins 0.000 description 2
- 102000016202 Proteolipids Human genes 0.000 description 2
- 201000005613 Pseudohermaphroditism Diseases 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 206010037596 Pyelonephritis Diseases 0.000 description 2
- 102000009572 RNA Polymerase II Human genes 0.000 description 2
- 108010009460 RNA Polymerase II Proteins 0.000 description 2
- 108020004518 RNA Probes Proteins 0.000 description 2
- 239000003391 RNA probe Substances 0.000 description 2
- 206010037779 Radiculopathy Diseases 0.000 description 2
- 208000001647 Renal Insufficiency Diseases 0.000 description 2
- 206010038357 Renal amyloidosis Diseases 0.000 description 2
- 206010050018 Renal cancer metastatic Diseases 0.000 description 2
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 2
- 206010038967 Retrograde ejaculation Diseases 0.000 description 2
- 201000007981 Reye syndrome Diseases 0.000 description 2
- 102000006382 Ribonucleases Human genes 0.000 description 2
- 108010083644 Ribonucleases Proteins 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 206010039491 Sarcoma Diseases 0.000 description 2
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 206010049416 Short-bowel syndrome Diseases 0.000 description 2
- 241000710960 Sindbis virus Species 0.000 description 2
- 102000004598 Small Nuclear Ribonucleoproteins Human genes 0.000 description 2
- 108010003165 Small Nuclear Ribonucleoproteins Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 208000029033 Spinal Cord disease Diseases 0.000 description 2
- 208000010112 Spinocerebellar Degenerations Diseases 0.000 description 2
- 206010042265 Sturge-Weber Syndrome Diseases 0.000 description 2
- 201000000002 Subdural Empyema Diseases 0.000 description 2
- 108091027544 Subgenomic mRNA Proteins 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 206010043118 Tardive Dyskinesia Diseases 0.000 description 2
- 208000031320 Teratogenesis Diseases 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 208000000323 Tourette Syndrome Diseases 0.000 description 2
- 208000016620 Tourette disease Diseases 0.000 description 2
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 2
- 206010048302 Tubulointerstitial nephritis Diseases 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 2
- 206010046458 Urethral neoplasms Diseases 0.000 description 2
- 206010046798 Uterine leiomyoma Diseases 0.000 description 2
- 208000012346 Venoocclusive disease Diseases 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 206010047370 Vesicoureteric reflux Diseases 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 208000018839 Wilson disease Diseases 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 208000017733 acquired polycythemia vera Diseases 0.000 description 2
- 208000009621 actinic keratosis Diseases 0.000 description 2
- 208000005652 acute fatty liver of pregnancy Diseases 0.000 description 2
- 210000004100 adrenal gland Anatomy 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 230000006986 amnesia Effects 0.000 description 2
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 208000022531 anorexia Diseases 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000003556 anti-epileptic effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000001961 anticonvulsive agent Substances 0.000 description 2
- 229960003965 antiepileptics Drugs 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 239000000074 antisense oligonucleotide Substances 0.000 description 2
- 238000012230 antisense oligonucleotides Methods 0.000 description 2
- 230000036506 anxiety Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 208000011775 arteriosclerosis disease Diseases 0.000 description 2
- 210000004436 artificial bacterial chromosome Anatomy 0.000 description 2
- 206010003883 azoospermia Diseases 0.000 description 2
- 201000009904 bacterial meningitis Diseases 0.000 description 2
- 208000018300 basal ganglia disease Diseases 0.000 description 2
- 208000027119 bilirubin metabolic disease Diseases 0.000 description 2
- 239000003124 biologic agent Substances 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000008236 biological pathway Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 229960000074 biopharmaceutical Drugs 0.000 description 2
- 210000000625 blastula Anatomy 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 210000000481 breast Anatomy 0.000 description 2
- 208000011803 breast fibrocystic disease Diseases 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- 229940095731 candida albicans Drugs 0.000 description 2
- 238000005251 capillar electrophoresis Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 206010007776 catatonia Diseases 0.000 description 2
- 208000015114 central nervous system disease Diseases 0.000 description 2
- 206010008129 cerebral palsy Diseases 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 210000003679 cervix uteri Anatomy 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 201000001352 cholecystitis Diseases 0.000 description 2
- 201000001883 cholelithiasis Diseases 0.000 description 2
- 230000007870 cholestasis Effects 0.000 description 2
- 231100000359 cholestasis Toxicity 0.000 description 2
- 208000025302 chronic primary adrenal insufficiency Diseases 0.000 description 2
- 235000017471 coenzyme Q10 Nutrition 0.000 description 2
- ACTIUHUUMQJHFO-UPTCCGCDSA-N coenzyme Q10 Chemical compound COC1=C(OC)C(=O)C(C\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CC\C=C(/C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UPTCCGCDSA-N 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000001054 cortical effect Effects 0.000 description 2
- 208000014826 cranial nerve neuropathy Diseases 0.000 description 2
- 208000031513 cyst Diseases 0.000 description 2
- 201000003146 cystitis Diseases 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 206010061428 decreased appetite Diseases 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- 201000001981 dermatomyositis Diseases 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 102000038379 digestive enzymes Human genes 0.000 description 2
- 108091007734 digestive enzymes Proteins 0.000 description 2
- 208000010643 digestive system disease Diseases 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 208000016097 disease of metabolism Diseases 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 208000010118 dystonia Diseases 0.000 description 2
- 208000002296 eclampsia Diseases 0.000 description 2
- 201000003511 ectopic pregnancy Diseases 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000002124 endocrine Effects 0.000 description 2
- 208000016139 endolymphatic sac tumor Diseases 0.000 description 2
- 230000002357 endometrial effect Effects 0.000 description 2
- 208000023965 endometrium neoplasm Diseases 0.000 description 2
- 230000002616 endonucleolytic effect Effects 0.000 description 2
- 208000037902 enteropathy Diseases 0.000 description 2
- 108700004025 env Genes Proteins 0.000 description 2
- 206010069101 epididymal neoplasm Diseases 0.000 description 2
- 210000000918 epididymis Anatomy 0.000 description 2
- 201000000165 epidural abscess Diseases 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 201000005619 esophageal carcinoma Diseases 0.000 description 2
- 229960000403 etanercept Drugs 0.000 description 2
- 208000021045 exocrine pancreatic carcinoma Diseases 0.000 description 2
- 230000028023 exocytosis Effects 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 201000007891 familial visceral amyloidosis Diseases 0.000 description 2
- 201000006061 fatal familial insomnia Diseases 0.000 description 2
- 229940126864 fibroblast growth factor Drugs 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 238000002509 fluorescent in situ hybridization Methods 0.000 description 2
- 210000000232 gallbladder Anatomy 0.000 description 2
- 210000000609 ganglia Anatomy 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 208000010749 gastric carcinoma Diseases 0.000 description 2
- 208000018685 gastrointestinal system disease Diseases 0.000 description 2
- 208000001288 gastroparesis Diseases 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 238000012226 gene silencing method Methods 0.000 description 2
- 102000054767 gene variant Human genes 0.000 description 2
- 208000016361 genetic disease Diseases 0.000 description 2
- 210000004392 genitalia Anatomy 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 201000000079 gynecomastia Diseases 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 210000002216 heart Anatomy 0.000 description 2
- 208000024798 heartburn Diseases 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 201000002222 hemangioblastoma Diseases 0.000 description 2
- 208000007386 hepatic encephalopathy Diseases 0.000 description 2
- 206010019680 hepatic infarction Diseases 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 201000011200 hepatorenal syndrome Diseases 0.000 description 2
- 208000003215 hereditary nephritis Diseases 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 208000036796 hyperbilirubinemia Diseases 0.000 description 2
- 230000001118 hypergonadotropic effect Effects 0.000 description 2
- 201000003368 hypogonadotropic hypogonadism Diseases 0.000 description 2
- 230000036737 immune function Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 201000001881 impotence Diseases 0.000 description 2
- 208000027139 infectious colitis Diseases 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 208000000509 infertility Diseases 0.000 description 2
- 230000036512 infertility Effects 0.000 description 2
- 231100000535 infertility Toxicity 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 201000006334 interstitial nephritis Diseases 0.000 description 2
- 208000028774 intestinal disease Diseases 0.000 description 2
- 208000003243 intestinal obstruction Diseases 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 201000002161 intrahepatic cholestasis of pregnancy Diseases 0.000 description 2
- 208000024312 invasive carcinoma Diseases 0.000 description 2
- 208000002551 irritable bowel syndrome Diseases 0.000 description 2
- 230000000302 ischemic effect Effects 0.000 description 2
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 2
- 210000003292 kidney cell Anatomy 0.000 description 2
- 201000006370 kidney failure Diseases 0.000 description 2
- 210000000244 kidney pelvis Anatomy 0.000 description 2
- 206010023497 kuru Diseases 0.000 description 2
- 201000010260 leiomyoma Diseases 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 230000029226 lipidation Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000006249 magnetic particle Substances 0.000 description 2
- 208000010907 male breast carcinoma Diseases 0.000 description 2
- 230000036244 malformation Effects 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 208000009242 medullary sponge kidney Diseases 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 230000002503 metabolic effect Effects 0.000 description 2
- 208000011645 metastatic carcinoma Diseases 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- VKHAHZOOUSRJNA-GCNJZUOMSA-N mifepristone Chemical compound C1([C@@H]2C3=C4CCC(=O)C=C4CC[C@H]3[C@@H]3CC[C@@]([C@]3(C2)C)(O)C#CC)=CC=C(N(C)C)C=C1 VKHAHZOOUSRJNA-GCNJZUOMSA-N 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000036651 mood Effects 0.000 description 2
- 230000004660 morphological change Effects 0.000 description 2
- 208000005264 motor neuron disease Diseases 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 201000000585 muscular atrophy Diseases 0.000 description 2
- 201000006938 muscular dystrophy Diseases 0.000 description 2
- 206010028417 myasthenia gravis Diseases 0.000 description 2
- 206010028537 myelofibrosis Diseases 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 208000018389 neoplasm of cerebral hemisphere Diseases 0.000 description 2
- 201000002648 nephronophthisis Diseases 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 201000004931 neurofibromatosis Diseases 0.000 description 2
- 208000018360 neuromuscular disease Diseases 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000000624 ovulatory effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000010627 oxidative phosphorylation Effects 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 208000007312 paraganglioma Diseases 0.000 description 2
- 230000000849 parathyroid Effects 0.000 description 2
- 201000003045 paroxysmal nocturnal hemoglobinuria Diseases 0.000 description 2
- 210000003899 penis Anatomy 0.000 description 2
- 208000000689 peptic esophagitis Diseases 0.000 description 2
- 208000011906 peptic ulcer disease Diseases 0.000 description 2
- 208000029308 periodic paralysis Diseases 0.000 description 2
- 208000027232 peripheral nervous system disease Diseases 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 201000010065 polycystic ovary syndrome Diseases 0.000 description 2
- 208000037244 polycythemia vera Diseases 0.000 description 2
- 208000005987 polymyositis Diseases 0.000 description 2
- 201000011461 pre-eclampsia Diseases 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 206010036601 premature menopause Diseases 0.000 description 2
- 208000017942 premature ovarian failure 1 Diseases 0.000 description 2
- 208000013846 primary aldosteronism Diseases 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 208000016685 primary ovarian failure Diseases 0.000 description 2
- 201000000742 primary sclerosing cholangitis Diseases 0.000 description 2
- 229940097325 prolactin Drugs 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 201000001514 prostate carcinoma Diseases 0.000 description 2
- 210000000064 prostate epithelial cell Anatomy 0.000 description 2
- 108020001580 protein domains Proteins 0.000 description 2
- 230000012846 protein folding Effects 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 208000024981 pyrosis Diseases 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 206010061928 radiculitis Diseases 0.000 description 2
- 238000000163 radioactive labelling Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 206010038433 renal dysplasia Diseases 0.000 description 2
- 230000008663 renal system process Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 108010074916 ribophorin Proteins 0.000 description 2
- 210000003935 rough endoplasmic reticulum Anatomy 0.000 description 2
- 210000003079 salivary gland Anatomy 0.000 description 2
- 201000000980 schizophrenia Diseases 0.000 description 2
- 208000010157 sclerosing cholangitis Diseases 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 210000004739 secretory vesicle Anatomy 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 210000002460 smooth muscle Anatomy 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 231100000527 sperm abnormality Toxicity 0.000 description 2
- 230000021595 spermatogenesis Effects 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 201000000498 stomach carcinoma Diseases 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 208000001608 teratocarcinoma Diseases 0.000 description 2
- 201000005060 thrombophlebitis Diseases 0.000 description 2
- 210000001541 thymus gland Anatomy 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- 210000003956 transport vesicle Anatomy 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 2
- 230000010415 tropism Effects 0.000 description 2
- 239000002753 trypsin inhibitor Substances 0.000 description 2
- 208000009999 tuberous sclerosis Diseases 0.000 description 2
- 230000005748 tumor development Effects 0.000 description 2
- 102000003390 tumor necrosis factor Human genes 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 210000000626 ureter Anatomy 0.000 description 2
- 208000000143 urethritis Diseases 0.000 description 2
- 210000003932 urinary bladder Anatomy 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 208000010579 uterine corpus leiomyoma Diseases 0.000 description 2
- 201000007954 uterine fibroid Diseases 0.000 description 2
- 210000004291 uterus Anatomy 0.000 description 2
- 201000008618 vesicoureteral reflux Diseases 0.000 description 2
- 208000031355 vesicoureteral reflux 1 Diseases 0.000 description 2
- 201000010044 viral meningitis Diseases 0.000 description 2
- XOFLBQFBSOEHOG-UUOKFMHZSA-N γS-GTP Chemical class C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=S)[C@@H](O)[C@H]1O XOFLBQFBSOEHOG-UUOKFMHZSA-N 0.000 description 2
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- PHIQHXFUZVPYII-ZCFIWIBFSA-N (R)-carnitine Chemical compound C[N+](C)(C)C[C@H](O)CC([O-])=O PHIQHXFUZVPYII-ZCFIWIBFSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- UFBJCMHMOXMLKC-UHFFFAOYSA-N 2,4-dinitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O UFBJCMHMOXMLKC-UHFFFAOYSA-N 0.000 description 1
- PFCLMNDDPTZJHQ-XLPZGREQSA-N 2-amino-7-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PFCLMNDDPTZJHQ-XLPZGREQSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- 230000002407 ATP formation Effects 0.000 description 1
- 108010009924 Aconitate hydratase Proteins 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- CXISPYVYMQWFLE-VKHMYHEASA-N Ala-Gly Chemical compound C[C@H]([NH3+])C(=O)NCC([O-])=O CXISPYVYMQWFLE-VKHMYHEASA-N 0.000 description 1
- 108010025188 Alcohol oxidase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 101150050490 Alox5 gene Proteins 0.000 description 1
- 108020004306 Alpha-ketoglutarate dehydrogenase Proteins 0.000 description 1
- 102000006589 Alpha-ketoglutarate dehydrogenase Human genes 0.000 description 1
- 240000008791 Antiaris toxicaria Species 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 108010093579 Arachidonate 5-lipoxygenase Proteins 0.000 description 1
- BNODVYXZAAXSHW-IUCAKERBSA-N Arg-His Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CNC=N1 BNODVYXZAAXSHW-IUCAKERBSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- VGRHZPNRCLAHQA-IMJSIDKUSA-N Asp-Asn Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(N)=O)C(O)=O VGRHZPNRCLAHQA-IMJSIDKUSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003594 Ataxia telangiectasia Diseases 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- OGBVRMYSNSKIEF-UHFFFAOYSA-N Benzylphosphonic acid Chemical class OP(O)(=O)CC1=CC=CC=C1 OGBVRMYSNSKIEF-UHFFFAOYSA-N 0.000 description 1
- 101000800130 Bos taurus Thyroglobulin Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- 101100152433 Caenorhabditis elegans tat-1 gene Proteins 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000173351 Camvirus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000013658 Carnitine Acyltransferases Human genes 0.000 description 1
- 108010051527 Carnitine Acyltransferases Proteins 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 206010053684 Cerebrohepatorenal syndrome Diseases 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 101000709520 Chlamydia trachomatis serovar L2 (strain 434/Bu / ATCC VR-902B) Atypical response regulator protein ChxR Proteins 0.000 description 1
- 239000005496 Chlorsulfuron Substances 0.000 description 1
- RGJOEKWQDUBAIZ-IBOSZNHHSA-N CoASH Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-IBOSZNHHSA-N 0.000 description 1
- ACTIUHUUMQJHFO-UHFFFAOYSA-N Coenzym Q10 Natural products COC1=C(OC)C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C1=O ACTIUHUUMQJHFO-UHFFFAOYSA-N 0.000 description 1
- 206010010099 Combined immunodeficiency Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 102000001493 Cyclophilins Human genes 0.000 description 1
- 108010068682 Cyclophilins Proteins 0.000 description 1
- 229930105110 Cyclosporin A Natural products 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- HAYVTMHUNMMXCV-IMJSIDKUSA-N Cys-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](N)CS HAYVTMHUNMMXCV-IMJSIDKUSA-N 0.000 description 1
- 102100025287 Cytochrome b Human genes 0.000 description 1
- 102100025621 Cytochrome b-245 heavy chain Human genes 0.000 description 1
- 102000000634 Cytochrome c oxidase subunit IV Human genes 0.000 description 1
- 108090000365 Cytochrome-c oxidases Proteins 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010075028 Cytochromes b Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102100039868 Cytoplasmic aconitate hydratase Human genes 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102000003844 DNA helicases Human genes 0.000 description 1
- 108090000133 DNA helicases Proteins 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 108700020911 DNA-Binding Proteins Proteins 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 108020005199 Dehydrogenases Proteins 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 102000028526 Dihydrolipoamide Dehydrogenase Human genes 0.000 description 1
- 108010028127 Dihydrolipoamide Dehydrogenase Proteins 0.000 description 1
- 102000009093 Dihydrolipoyllysine-residue acetyltransferase Human genes 0.000 description 1
- 108010073112 Dihydrolipoyllysine-residue acetyltransferase Proteins 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102100034583 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 Human genes 0.000 description 1
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 1
- 108010089760 Electron Transport Complex I Proteins 0.000 description 1
- 102000008013 Electron Transport Complex I Human genes 0.000 description 1
- 101100001671 Emericella variicolor andF gene Proteins 0.000 description 1
- 101100001677 Emericella variicolor andL gene Proteins 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 102000004533 Endonucleases Human genes 0.000 description 1
- 241000701867 Enterobacteria phage T7 Species 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 108010036781 Fumarate Hydratase Proteins 0.000 description 1
- 102100036160 Fumarate hydratase, mitochondrial Human genes 0.000 description 1
- 208000034826 Genetic Predisposition to Disease Diseases 0.000 description 1
- 208000034951 Genetic Translocation Diseases 0.000 description 1
- FYYSIASRLDJUNP-WHFBIAKZSA-N Glu-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(O)=O FYYSIASRLDJUNP-WHFBIAKZSA-N 0.000 description 1
- CBEUFCJRFNZMCU-SRVKXCTJSA-N Glu-Met-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O CBEUFCJRFNZMCU-SRVKXCTJSA-N 0.000 description 1
- 102000053187 Glucuronidase Human genes 0.000 description 1
- 108010060309 Glucuronidase Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 108010031186 Glycoside Hydrolases Proteins 0.000 description 1
- 102000005744 Glycoside Hydrolases Human genes 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 102000051366 Glycosyltransferases Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 208000031220 Hemophilia Diseases 0.000 description 1
- 208000009292 Hemophilia A Diseases 0.000 description 1
- 208000005176 Hepatitis C Diseases 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- WSDOHRLQDGAOGU-BQBZGAKWSA-N His-Asn Chemical compound NC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](N)CC1=CN=CN1 WSDOHRLQDGAOGU-BQBZGAKWSA-N 0.000 description 1
- YADRBUZBKHHDAO-XPUUQOCRSA-N His-Gly-Ala Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)NCC(=O)N[C@@H](C)C(O)=O YADRBUZBKHHDAO-XPUUQOCRSA-N 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 101001056128 Homo sapiens Mannose-binding protein C Proteins 0.000 description 1
- 101000586212 Homo sapiens Mitochondrial ornithine transporter 1 Proteins 0.000 description 1
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 1
- 101001042049 Human herpesvirus 1 (strain 17) Transcriptional regulator ICP22 Proteins 0.000 description 1
- 101000999690 Human herpesvirus 2 (strain HG52) E3 ubiquitin ligase ICP22 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 206010020575 Hyperammonaemia Diseases 0.000 description 1
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 101150027427 ICP4 gene Proteins 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100034349 Integrase Human genes 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 102000012011 Isocitrate Dehydrogenase Human genes 0.000 description 1
- 108010075869 Isocitrate Dehydrogenase Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 108010025815 Kanamycin Kinase Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 108700005090 Lethal Genes Proteins 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- NPBGTPKLVJEOBE-IUCAKERBSA-N Lys-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=N NPBGTPKLVJEOBE-IUCAKERBSA-N 0.000 description 1
- 108010062166 Lys-Asn-Asp Proteins 0.000 description 1
- BYPMOIFBQPEWOH-CIUDSAMLSA-N Lys-Asn-Asp Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N BYPMOIFBQPEWOH-CIUDSAMLSA-N 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 108010087870 Mannose-Binding Lectin Proteins 0.000 description 1
- 102000009112 Mannose-Binding Lectin Human genes 0.000 description 1
- 102100026553 Mannose-binding protein C Human genes 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 208000024556 Mendelian disease Diseases 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- 102000016647 Mitochondrial carrier proteins Human genes 0.000 description 1
- 108050006262 Mitochondrial carrier proteins Proteins 0.000 description 1
- 101710155032 Mitochondrial ornithine transporter 1 Proteins 0.000 description 1
- 102100030108 Mitochondrial ornithine transporter 1 Human genes 0.000 description 1
- 102000005431 Molecular Chaperones Human genes 0.000 description 1
- 108010006519 Molecular Chaperones Proteins 0.000 description 1
- 108700005084 Multigene Family Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- 101710202061 N-acetyltransferase Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 102000006570 Non-Histone Chromosomal Proteins Human genes 0.000 description 1
- 108010008964 Non-Histone Chromosomal Proteins Proteins 0.000 description 1
- 108020003217 Nuclear RNA Proteins 0.000 description 1
- 102000043141 Nuclear RNA Human genes 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 241000526686 Paracoccidioides brasiliensis Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 108010055088 Peroxisomal Biogenesis Factor 2 Proteins 0.000 description 1
- 102000001224 Peroxisomal Biogenesis Factor 2 Human genes 0.000 description 1
- 208000037581 Persistent Infection Diseases 0.000 description 1
- 206010057249 Phagocytosis Diseases 0.000 description 1
- OHUXOEXBXPZKPT-STQMWFEESA-N Phe-His Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1N=CNC=1)C(O)=O)C1=CC=CC=C1 OHUXOEXBXPZKPT-STQMWFEESA-N 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 description 1
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- ZYFVNVRFVHJEIU-UHFFFAOYSA-N PicoGreen Chemical compound CN(C)CCCN(CCCN(C)C)C1=CC(=CC2=[N+](C3=CC=CC=C3S2)C)C2=CC=CC=C2N1C1=CC=CC=C1 ZYFVNVRFVHJEIU-UHFFFAOYSA-N 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 102100022364 Polyunsaturated fatty acid 5-lipoxygenase Human genes 0.000 description 1
- 241000881705 Porcine endogenous retrovirus Species 0.000 description 1
- 108010013381 Porins Proteins 0.000 description 1
- 102000017033 Porins Human genes 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 102000017143 RNA Polymerase I Human genes 0.000 description 1
- 108010013845 RNA Polymerase I Proteins 0.000 description 1
- 108091008103 RNA aptamers Proteins 0.000 description 1
- 238000010802 RNA extraction kit Methods 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 102000004389 Ribonucleoproteins Human genes 0.000 description 1
- 108010081734 Ribonucleoproteins Proteins 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 102000040739 Secretory proteins Human genes 0.000 description 1
- 108091058545 Secretory proteins Proteins 0.000 description 1
- 108091081021 Sense strand Proteins 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- FFOKMZOAVHEWET-IMJSIDKUSA-N Ser-Cys Chemical compound OC[C@H](N)C(=O)N[C@@H](CS)C(O)=O FFOKMZOAVHEWET-IMJSIDKUSA-N 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 108091027076 Spiegelmer Proteins 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 1
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 1
- 102000011929 Succinate-CoA Ligases Human genes 0.000 description 1
- 108010075728 Succinate-CoA Ligases Proteins 0.000 description 1
- 102000005262 Sulfatase Human genes 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108091085018 TGF-beta family Proteins 0.000 description 1
- 102000043168 TGF-beta family Human genes 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- GXDLGHLJTHMDII-WISUUJSJSA-N Thr-Ser Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CO)C(O)=O GXDLGHLJTHMDII-WISUUJSJSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000009843 Thyroglobulin Human genes 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- IMMPMHKLUUZKAZ-WMZOPIPTSA-N Trp-Phe Chemical compound C([C@H](NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)N)C(O)=O)C1=CC=CC=C1 IMMPMHKLUUZKAZ-WMZOPIPTSA-N 0.000 description 1
- LWFWZRANSFAJDR-JSGCOSHPSA-N Trp-Val Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](C(C)C)C(O)=O)=CNC2=C1 LWFWZRANSFAJDR-JSGCOSHPSA-N 0.000 description 1
- 241000223109 Trypanosoma cruzi Species 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 1
- AFWXOGHZEKARFH-ACRUOGEOSA-N Tyr-Tyr-His Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC=1NC=NC=1)C(O)=O)C1=CC=C(O)C=C1 AFWXOGHZEKARFH-ACRUOGEOSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 108700029631 X-Linked Genes Proteins 0.000 description 1
- 208000028247 X-linked inheritance Diseases 0.000 description 1
- 201000004525 Zellweger Syndrome Diseases 0.000 description 1
- 208000036813 Zellweger spectrum disease Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 108020002494 acetyltransferase Proteins 0.000 description 1
- 102000005421 acetyltransferase Human genes 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000011256 aggressive treatment Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 230000001088 anti-asthma Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 239000000924 antiasthmatic agent Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 238000011953 bioanalysis Methods 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 229960004203 carnitine Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 230000002032 cellular defenses Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- VJYIFXVZLXQVHO-UHFFFAOYSA-N chlorsulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)Cl)=N1 VJYIFXVZLXQVHO-UHFFFAOYSA-N 0.000 description 1
- 229960001231 choline Drugs 0.000 description 1
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 description 1
- 208000016532 chronic granulomatous disease Diseases 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- RGJOEKWQDUBAIZ-UHFFFAOYSA-N coenzime A Natural products OC1C(OP(O)(O)=O)C(COP(O)(=O)OP(O)(=O)OCC(C)(C)C(O)C(=O)NCCC(=O)NCCS)OC1N1C2=NC=NC(N)=C2N=C1 RGJOEKWQDUBAIZ-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000009137 competitive binding Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009402 cross-breeding Methods 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000012912 drug discovery process Methods 0.000 description 1
- 229940072185 drug for treatment of tuberculosis Drugs 0.000 description 1
- 239000003596 drug target Substances 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 230000002121 endocytic effect Effects 0.000 description 1
- 210000001900 endoderm Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005183 environmental health Effects 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 210000003499 exocrine gland Anatomy 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 230000009395 genetic defect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 108700014210 glycosyltransferase activity proteins Proteins 0.000 description 1
- 239000005090 green fluorescent protein Substances 0.000 description 1
- YQOKLYTXVFAUCW-UHFFFAOYSA-N guanidine;isothiocyanic acid Chemical compound N=C=S.NC(N)=N YQOKLYTXVFAUCW-UHFFFAOYSA-N 0.000 description 1
- ZJYYHGLJYGJLLN-UHFFFAOYSA-N guanidinium thiocyanate Chemical compound SC#N.NC(N)=N ZJYYHGLJYGJLLN-UHFFFAOYSA-N 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000001551 hemic and immune system Anatomy 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 230000002363 herbicidal effect Effects 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- 108010092114 histidylphenylalanine Proteins 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 208000013403 hyperactivity Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 208000026278 immune system disease Diseases 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 229940124589 immunosuppressive drug Drugs 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 244000000056 intracellular parasite Species 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000007852 inverse PCR Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001155 isoelectric focusing Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 231100001106 life-threatening toxicity Toxicity 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000002101 lytic effect Effects 0.000 description 1
- 101710130522 mRNA export factor Proteins 0.000 description 1
- 230000005291 magnetic effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000021121 meiosis Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 210000004779 membrane envelope Anatomy 0.000 description 1
- 210000003716 mesoderm Anatomy 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 229960003248 mifepristone Drugs 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 238000002887 multiple sequence alignment Methods 0.000 description 1
- 210000002346 musculoskeletal system Anatomy 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000006225 natural substrate Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008816 organ damage Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 230000009057 passive transport Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 230000008782 phagocytosis Effects 0.000 description 1
- 210000000680 phagosome Anatomy 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 230000002974 pharmacogenomic effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- BQVCCPGCDUSGOE-UHFFFAOYSA-N phenylarsine oxide Chemical compound O=[As]C1=CC=CC=C1 BQVCCPGCDUSGOE-UHFFFAOYSA-N 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 230000008884 pinocytosis Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 244000000040 protozoan parasite Species 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 102000016949 rab GTP-Binding Proteins Human genes 0.000 description 1
- 108010014420 rab GTP-Binding Proteins Proteins 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 108700015048 receptor decoy activity proteins Proteins 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- NPCOQXAVBJJZBQ-UHFFFAOYSA-N reduced coenzyme Q9 Natural products COC1=C(O)C(C)=C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)C(O)=C1OC NPCOQXAVBJJZBQ-UHFFFAOYSA-N 0.000 description 1
- 230000014493 regulation of gene expression Effects 0.000 description 1
- 230000018406 regulation of metabolic process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 125000006853 reporter group Chemical group 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 210000004708 ribosome subunit Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000000697 sensory organ Anatomy 0.000 description 1
- 230000000405 serological effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003584 silencer Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000004055 small Interfering RNA Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000010473 stable expression Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000001548 stomatognathic system Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000000446 sulfanediyl group Chemical group *S* 0.000 description 1
- 108060007951 sulfatase Proteins 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940094937 thioredoxin Drugs 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229960002175 thyroglobulin Drugs 0.000 description 1
- 238000012090 tissue culture technique Methods 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 231100000563 toxic property Toxicity 0.000 description 1
- 108091008023 transcriptional regulators Proteins 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 206010044412 transitional cell carcinoma Diseases 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- 239000000814 tuberculostatic agent Substances 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940035936 ubiquinone Drugs 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 229940005267 urate oxidase Drugs 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- QAOHCFGKCWTBGC-UHFFFAOYSA-N wybutosine Natural products C1=NC=2C(=O)N3C(CCC(NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O QAOHCFGKCWTBGC-UHFFFAOYSA-N 0.000 description 1
- QAOHCFGKCWTBGC-QHOAOGIMSA-N wybutosine Chemical compound C1=NC=2C(=O)N3C(CC[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QAOHCFGKCWTBGC-QHOAOGIMSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
Definitions
- the invention relates to novel nucleic acids, organelle-associated proteins encoded by these nucleic acids, and to the use of these nucleic acids and proteins in the diagnosis, treatment, and prevention of cell prohferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
- the invention also relates to the assessment of the effects of exogenous compounds on the expression of nucleic acids and organelle-associated proteins.
- Eukaryotic cells are organized into various cellular organelles, which has the effect of separating specific molecules and their functions from one another and from the cytosol. Within the cell, various membrane structures surround and define these organelles while allowing them to interact with one another and the cell environment through both active and passive transport processes. Important cell organelles include the nucleus, the Golgi apparatus, the endoplasmic reticulum, mitochondria, peroxisomes, lysosomes, endosomes, and secretory vesicles. Nucleus
- the cell nucleus contains all of the genetic information of the cell in the form of DNA, and the components and machinery necessary for replication of DNA and for transcription of DNA into RNA.
- DNA is organized into compact structures in the nucleus by interactions with various DNA-binding proteins such as histones and non-histone chromosomal proteins.
- DNA-specific nucleases, DNAses partially degrade these compacted structures prior to DNA replication or transcription.
- DNA replication takes place with the aid of DNA helicases which unwind the double-stranded DNA helix, and DNA polymerases that duplicate the separated DNA strands.
- Transcriptional regulatory proteins are essential for the control of gene expression. Some of these proteins function as transcription factors that initiate, activate, repress, or terminate gene transcription. Transcription factors generally bind to the promoter, enhancer, and upstream regulatory regions of a gene in a sequence-specific manner, although some factors bind regulatory elements within or downstream of a gene's coding region. Transcription factors may bind to a specific region of DNA singly or as a complex with other accessory factors. (Reviewed in Lewin, B. (1990) Genes TV, Oxford University Press, New York NY, and Cell Press, Cambridge MA, pp. 554-570.) Many transcription factors incorporate DNA-binding structural motifs which comprise either ⁇ helices or ⁇ sheets that bind to the major groove of DNA.
- helix-turn- helix helix-turn- helix
- zinc finger helix-turn- helix
- leucine zipper helix-loop-helix. Proteins containing these motifs may act alone as monomers, or they may form homo- or heterodimers that interact with DNA.
- neoplastic disorders in humans can be attributed to inappropriate gene expression.
- Malignant cell growth may result from either excessive expression of tumor promoting genes or insufficient expression of tumor suppressor genes (Cleary, M.L. (1992) Cancer Surv. 15:89-104).
- Chromosomal translocations may also produce chimeric loci which fuse the coding sequence of one gene with the regulatory regions of a second unrelated gene. Such an arrangement likely results in inappropriate gene transcription, potentially contributing to malignancy.
- the immune system responds to infection or trauma by activating a cascade of events that coordinate the progressive selection, amplification, and mobilization of cellular defense mechanisms.
- a complex and balanced program of gene activation and repression is involved in this process.
- hyperactivity of the immune system as a result of improper or insufficient regulation of gene expression may result in considerable tissue or organ damage. This damage is well documented in immunological responses associated with arthritis, allergens, heart attack, stroke, and infections (Isselbacher K.J. et al. Harrison's Principles of Internal Medicine. 13/e, McGraw Hill, Inc. and Teton Data Systems Software, 1996).
- RNA polymerase II transcribes genes that will be translated into proteins.
- the primary transcript of RNA polymerase II is called heterogenous nuclear RNA (hnRNA), and must be further processed by splicing to remove non-coding sequences called introns.
- RNA splicing is mediated by small nuclear ribonucleoprotein complexes, or snRNPs, producing mature messenger RNA (mRNA) which is then transported out of the nucleus for translation into proteins.
- the nucleolus is a highly organized subcompartment in the nucleus that contains high concentrations of RNA and proteins and functions mainly in ribosomal RNA synthesis and assembly (Alberts et al, supra, pp. 379-382).
- Ribosomal RNA is a structural RNA that is complexed with proteins to form ribonucleoprotein structures called ribosomes. Ribosomes provide the platform on which protein synthesis takes place.
- Ribosomes are assemble in the nucleolus initially from a large, 45S rRNA combined with a variety of proteins imported from the cytoplasm, as well as smaller, 5S rRNAs. Later processing of the immature ribosome results in formation of smaller ribosomal subunits which are transported from the nucleolus to the cytoplasm, where they are assembled into functional ribosomes. Endoplasmic Reticulum
- proteins are synthesized within the endoplasmic reticulum (ER), delivered from the ER to the Golgi apparatus for post-translational processing and sorting, and transported from the Golgi to specific intracellular and extracellular destinations. Synthesis of integral membrane proteins, secreted proteins, and proteins destined for the lumen of a particular organelle occurs on the rough endoplasmic reticulum (ER).
- the rough ER is so named because of the rough appearance in electron micrographs imparted by the attached ribosomes on which protein synthesis proceeds.
- Protein destined for the ER actually begins in the cytosol with the synthesis of a specific signal peptide which directs the growing polypeptide and its attached ribosome to the ER membrane where the signal peptide is removed and protein synthesis is completed.
- Soluble proteins destined for the ER lumen, for secretion, or for transport to the lumen of other organelles pass completely into the ER lumen.
- Transmembrane proteins destined for the ER or for other cell membranes are translocated across the ER membrane but remain anchored in the lipid bilayer of the membrane by one or more membrane-spanning a-helical regions.
- Translocated polypeptide chains destined for other organelles or for secretion also fold and assemble in the ER lumen with the aid of certain "resident" ER proteins.
- Protein folding in the ER is aided by two principal types of protein isomerases, protein disulfide isomerase (PDI), and peptidyl- prolyl isomerase (PPI).
- PDI protein disulfide isomerase
- PPI peptidyl- prolyl isomerase
- PPI peptidyl- prolyl isomerase
- PPI an enzyme that catalyzes the isomerization of certain proline imide bonds in oligopeptides and proteins, is considered to govern one of the rate limiting steps in the folding of many proteins to their final functional conformation.
- the cyclophilins represent a major class of PPI that was originally identified as the major receptor for the immunosuppressive drug cyclosporin A (Handschumacher, R.E. et al. (1984) Science 226:544-547).
- Molecular "chaperones” such as BiP (binding protein) in the ER recognize incorrectly folded proteins as well as proteins not yet folded into their final form and bind to them, both to prevent improper aggregation between them and to promote proper folding.
- oligosaccharyl transferase activity is associated with an oligomeric complex composed of ribophorins I and II and a 48 kDa oligosaccharyltransferase protein.
- Ribophorins are highly conserved glycoproteins located exclusively in the rough endoplasmic reticulum and colocalize with membrane-bound ribosomes.
- Ribophorin I maps to chromosome 3q and ribophorin U maps to chromosome 20ql2-20ql3.1 in humans (Kelleher, DJ. et al. (1992) Cell 69:55-65; Barton, D.E. (1987) Cytogenet. Cell Genet. 46:577).
- the Golgi apparatus is a complex structure that lies adjacent to the ER in eukaryotic cells and serves primarily as a sorting and dispatching station for products of the ER (Alberts et al., supra, pp. 600-610). Additional posttranslational processing, principally additional glycosylation, also occurs in the Golgi. Indeed, the Golgi is a major site of carbohydrate synthesis, including most of the glycosaminoglycans of the extracellular matrix. N-linked oligosaccharides, added to proteins in the ER, are also further modified in the Golgi by the addition of more sugar residues to form complex N- linked oligosaccharides.
- O-linked glycosylation of proteins also occurs in the Golgi by the addition of N-acetylgalactosamine to the hydroxyl group of a serine or threonine residue followed by the sequential addition of other sugar residues to the first. This process is catalyzed by a series of glycosyltransferases, each specific for a particular donor sugar nucleotide and acceptor molecule (Lodish, H. et al. (1995) Molecular Cell Biology. W.H. Freeman and Co., New York NY, p ⁇ .700- 708).
- both N- and O-linked oligosaccharides appear to be required for the secretion of proteins or the movement of plasma membrane glycoproteins to the cell surface.
- the terminal compartment of the Golgi is the Trans-Golgi Network (TGN), where both membrane and lumenal proteins are sorted for their final destination.
- TGN Trans-Golgi Network
- Other transport vesicles bud off containing proteins destined for the plasma membrane, such as receptors, adhesion molecules, and ion channels, and secretory proteins, such as hormones, neurotransmitters, and digestive enzymes.
- the vacuole system is a collection of membrane bound compartments in eukaryotic cells that functions in the processes of endocytosis and exocytosis. They include phagosomes, lysosomes, endosomes, and secretory vesicles.
- Endocytosis is the process in cells of internalizing nutrients, solutes, or small particles (pinocytosis) or large particles such as internalized receptors, viruses, bacteria, or bacterial toxins (phagocytosis).
- Exocytosis is the process of transporting molecules to the cell surface. It facilitates placement or localization of membrane-bound receptors or other membrane proteins and secretion of hormones, neurotransmitters, digestive enzymes, wastes, etc.
- a common property of all of these vacuoles is an acidic pH environment ranging from approximately pH 4.5- 5.0. This acidity is maintained by the presence of a proton ATPase that uses the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane (Mellman, I. et al. (1986) Annu. Rev. Biochem. 55:663-700).
- Eukaryotic vacuolar proton ATPase (vp-ATPase) is a multimeric enzyme composed of 3-10 different subunits.
- One of these subunits is a highly hydrophobic polypeptide of approximately 16 kDa that is similar to the proteolipid component of vp-ATPases from eubacteria, fungi, and plant vacuoles (Mandel, M. et al. (1988) Proc. Natl. Acad. Sci. USA 85:5521-5524).
- the 16 kDa proteolipid component is the major subunit of the membrane portion of vp-ATPase and functions in the transport of protons across the membrane.
- Lysosomes Lysosomes are membranous vesicles containing various hydrolytic enzymes used for the controlled intracellular digestion of macromolecules.
- Lysosomes contain some 40 types of enzymes including proteases, nucleases, glycosidases, Upases, phospholipases, phosphatases, and sulfatases, all of which are acid hydrolases that function at a pH of about 5. Lysosomes are surrounded by a unique membrane containing transport proteins that allow the final products of macromolecule degradation, such as sugars, amino acids, and nucleotides, to be transported to the cytosol where they may be either excreted or reutilized by the cell. A vp-ATPase, such as that described above, maintains the acidic environment necessary for hydrolytic activity (Alberts et al, supra, pp. 610-611). Endosomes
- Endosomes are another type of acidic vacuole that is used to transport substances from the cell surface to the interior of the cell in the process of endocytosis. Like lysosomes, endosomes have an acidic environment provided by a vp-ATPase (Alberts et al, supra pp. 610-618). Two types of endosomes are apparent based on tracer uptake studies that distinguish their time of formation in the cell and their cellular location. Early endosomes are found near the plasma membrane and appear to function primarily in the recycling of internalized receptors back to the cell surface.
- Late endosomes appear later in the endocytic process, close to the Golgi apparatus and the nucleus, and appear to be associated with delivery of endocytosed material to lysosomes or to the TGN where they may be recycled.
- Specific proteins are associated with particular transport vesicles and their target compartments, and may provide selectivity in targeting vesicles to their proper compartments.
- a cytosolic prenylated GTP-binding protein, Rab is one such protein. Rabs 4, 5, and 11 are associated with the early endosome, whereas Rabs 7 and 9 associate with the late endosome.
- Mitochondria are oval-shaped organelles comprising an outer membrane, a tightly folded inner membrane, an intermembrane space between the outer and inner membranes, and a matrix inside the inner membrane.
- the outer membrane contains many porin molecules that allow ions and charged molecules to enter the intermembrane space, while the inner membrane contains a variety of transport proteins that transfer only selected molecules. Mitochondria are the primary sites of energy production in cells.
- Glucose is initially converted to pyruvate in the cytoplasm.
- Fatty acids and pyruvate are transported to the mitochondria for complete oxidation to C0 2 coupled by enzymes to the transport of electrons from NADH and FADH 2 to oxygen and to the synthesis of ATP (oxidative phosphorylation) from ADP and P ; .
- Pyruvate is transported into the mitochondria and converted to acetyl-CoA for oxidation via the citric acid cycle, involving pyruvate dehydrogenase components, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase.
- Enzymes involved in the citric acid cycle include: citrate synthetase, aconitases, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase complex including transsuccinylases, succinyl CoA synthetase, succinate dehydrogenase, fumarases, and malate dehydrogenase.
- Acetyl CoA is oxidized to C0 2 with concomitant formation of NADH, FADH 2 , and GTP.
- oxidative phosphorylation the transfer of electrons from NADH and FADH 2 to oxygen by dehydrogenases is coupled to the synthesis of ATP from ADP and P; by the F Q F I ATPase complex in the mitochondrial inner membrane.
- Enzyme complexes responsible for electron transport and ATP synthesis include the F 0 F, ATPase complex, ubiquinone(CoQ)-cytochrome c reductase, ubiquinone reductase, cytochrome b, cytochrome c 1; FeS protein, and cytochrome c oxidase.
- Peroxisomes like mitochondria, are a major site of oxygen utilization. They contain one or more enzymes, such as catalase and urate oxidase, that use molecular oxygen to remove hydrogen atoms from specific organic substrates in an oxidative reaction that produces hydrogen peroxide
- Catalase oxidizes a variety of substrates including phenols, formic acid, formaldehyde, and alcohol and is important in peroxisomes of liver and kidney cells for detoxifying various toxic molecules that enter the bloodstream.
- Another major function of oxidative reactions in peroxisomes is the breakdown of fatty acids in a process called ⁇ oxidation, ⁇ oxidation results in shortening of the alkyl chain of fatty acids by blocks of two carbon atoms that are converted to acetyl CoA and exported to the cytosol for reuse in biosynthetic reactions.
- peroxisomes import their proteins from the cytosol using a specific signal sequence located near the C-terminus of the protein.
- the importance of this import process is evident in the inherited human disease Zellweger syndrome, in which a defect in importing proteins into perixosomes leads to a perixosomal deficiency resulting in severe abnormalities in the brain, liver, and kidneys, and death soon after birth.
- One form of this disease has been shown to be due to a mutation in the gene encoding a perixosomal integral membrane protein called peroxisome assembly factor- 1.
- Microarrays are analytical tools used in bioanalysis.
- a microarray has a plurality of molecules spatially distributed over, and stably associated with, the surface of a solid support.
- Microarrays of polypeptides, polynucleotides, and/or antibodies have been developed and find use in a variety of applications, such as gene sequencing, monitoring gene expression, gene mapping, bacterial identification, drug discovery, and combinatorial chemistry.
- array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes.
- arrays are employed to detect the expression of a specific gene or its variants.
- arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
- Prostate Cancer Prostate cancer is a common malignancy in men over the age of 50, and the incidence increases with age.
- prostate cancer develops through a multistage progression ultimately resulting in an aggressive, metastatic phenotype.
- the initial step in tumor progression involves the hyperproliferation of normal luminal and or basal epithelial cells that become hyperplastic and evolve into early-stage tumors.
- the early-stage tumors are localized in the prostate but eventually may metastasize, particularly to the bone, brain or lung, and are stimulated by testosterone to a more rapid growth rate.
- removal of the testes can indirectly reduce both rapid growth and metastasis of the cancer.
- About 80% of these tumors remain responsive to androgen treatment, an important hormone controlling the growth of prostate epithelial cells.
- cancer growth becomes androgen-independent and there is currently no known treatment for this condition.
- PSA prostate specific antigen
- PSA is a tissue-specific serine protease almost exclusively produced by prostatic epithelial cells.
- the quantity of PSA correlates with the number and volume of the prostatic epithelial cells, and consequently, the levels of PSA are an excellent indicator of abnormal prostate growth.
- Men with prostate cancer exhibit an early linear increase in PSA levels followed by an exponential increase prior to diagnosis.
- PSA levels are also influenced by factors such as inflammation, androgen and other growth factors, some scientists maintain that changes in PSA levels are not useful in detecting individual cases of prostate cancer.
- EGF Epidermal Growth Factor
- FGF Fibroblast Growth Factor
- TGFo ⁇ Tumor Growth Factor alpha
- TGF- ⁇ family of growth factors are generally expressed at increased levels in human cancers, the increased expression levels correlating in many cases with advanced stages of malignancy and poor survival (Gold, L. I. (1999) Crit. Rev. Oncog. 10:303-360).
- LNCap androgen-dependent stage of prostate cancer
- PC3 and DU-145 the androgen-independent, hormone refractory stage of the disease
- compositions including nucleic acids and proteins, for the diagnosis, prevention, and treatment of cell prohferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
- Various embodiments of the invention provide purified polypeptides, organelle-associated proteins, referred to collectively as ORGA' and individually as and ORGA-1', ORGA-2', ORGA- 3', ORGA-4', ORGA-5', 'ORGA-6', and ORGA-7' and methods for using these proteins and their encoding polynucleotides for the detection, diagnosis, and treatment of diseases and medical conditions.
- Embodiments also provide methods for utilizing the purified organelle-associated proteins and/or their encoding polynucleotides for facilitating the drug discovery process, including determination of efficacy, dosage, toxicity, and pharmacology.
- Related embodiments provide methods for utilizing the purified organelle-associated proteins and/or their encoding polynucleotides for investigating the pathogenesis of diseases and medical conditions.
- An embodiment provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ED NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-7.
- Another embodiment provides an isolated polypeptide comprising an amino acid sequence of SEQ ED NO: 1-7.
- Still another embodiment provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
- polynucleotide encodes a polypeptide selected from the group consisting of SEQ DD NO: 1-7. In an alternative embodiment, the polynucleotide is selected from the group consisting of SEQ DD NO:8-14.
- Still another embodiment provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
- Another embodiment provides a cell transformed with the recombinant polynucleotide.
- Yet another embodiment provides a transgenic organism comprising the recombinant polynucleotide.
- Another embodiment provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
- the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
- Yet another embodiment provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO:l-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1 -7.
- Still yet another embodiment provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the polynucleotide can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.
- Yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex.
- the method can include detecting the amount of the hybridization complex.
- the probe can comprise at least about 20, 30, 40, 60, 80, or 100 contiguous nucleotides.
- Still yet another embodiment provides a method for detecting a target polynucleotide in a sample, said target polynucleotide being selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
- the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof.
- the method can include detecting the amount of the amplified target polynucleotide or fragment thereof.
- compositions comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and a pharmaceutically acceptable excipient.
- the composition can comprise an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
- Other embodiments provide a method of treating a disease or condition associated with decreased or abnormal expression of functional ORGA, comprising administering to a patient in need of such treatment the composition.
- Yet another embodiment provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO:l-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-7.
- the method comprises a) contacting a sample comprising the polypeptide with a compound, and b) detecting agonist activity in the sample.
- Another embodiment provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
- Yet another embodiment provides a method of treating a disease or condition associated with decreased expression of functional ORGA, comprising administering to a patient in need of such treatment the composition.
- Still yet another embodiment provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-7.
- the method comprises a) contacting a sample comprising the polypeptide with a compound, and b) detecting antagonist activity in the sample.
- Another embodiment provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
- Yet another embodiment provides a method of treating a disease or condition associated with overexpression of functional ORGA, comprising administering to a patient in need of such treatment the composition.
- Another embodiment provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7.
- the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
- Yet another embodiment provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical or at least about 90% identical to an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO: 1-7, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ DD NO:l-7.
- the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
- Still yet another embodiment provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, the method comprising a) contacting a sample comprising the target polynucleotide with a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
- Another embodiment provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sah ple with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an
- Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical or at least about 90% identical to a polynucleotide sequence selected from the group consisting of SEQ DD NO:8-14, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv).
- the target polynucleotide can comprise a fragment of a polynucleotide selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
- Table 1 summarizes the nomenclature for full length polynucleotide and polypeptide embodiments of the invention.
- Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog, and the PROTEOME database identification numbers and annotations of PROTEOME database homologs, for polypeptide embodiments of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
- Table 3 shows structural features of polypeptide embodiments, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
- Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide embodiments, along with selected fragments of the polynucleotides.
- Table 5 shows representative cDNA libraries for polynucleotide embodiments.
- Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
- Table 7 shows the tools, programs, and algorithms used to analyze polynucleotides and polypeptides, along with applicable descriptions, references, and threshold parameters.
- Table 8 shows single nucleotide polymorphisms found in polynucleotide sequences of the invention, along with allele frequencies in different human populations.
- a host cell includes a plurality of such host cells
- an antibody is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
- ORGA refers to the amino acid sequences of substantially purified ORGA obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
- agonist refers to a molecule which intensifies or mimics the biological activity of ORGA.
- Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of ORGA either by directly interacting with ORGA or by acting on components of the biological pathway in which ORGA participates.
- An "allelic variant” is an alternative form of the gene encoding ORGA. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
- altered nucleic acid sequences encoding ORGA include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as ORGA or a polypeptide with at least one functional characteristic of ORGA. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding ORGA, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide encoding ORGA.
- the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent ORGA.
- Deliberate amino acid substitutions may be made on the basis of one or more similarities in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of ORGA is retained.
- negatively charged amino acids may include aspartic acid and glutamic acid
- positively charged amino acids may include lysine and arginine.
- Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
- Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
- amino acid and amino acid sequence can refer to an oligopeptide, a peptide, a polypeptide, or a protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
- Amplification relates to the production of additional copies of a nucleic acid. Amplification may be carried out using polymerase chain reaction (PCR) technologies or other nucleic acid amplification technologies well known in the art.
- PCR polymerase chain reaction
- Antagonist refers to a molecule which inhibits or attenuates the biological activity of ORGA.
- Antagonists may include proteins such as antibodies, anticalins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of ORGA either by directly interacting with ORGA or by acting on components of the biological pathway in which ORGA participates.
- antibody refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
- Antibodies that bind ORGA polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
- the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
- an animal e.g., a mouse, a rat, or a rabbit
- RNA e.g., a mouse, a rat, or a rabbit
- antigenic determinant refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
- an antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
- aptamer refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target.
- Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries.
- Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules.
- the nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2-F or 2'-NH 2 ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood.
- Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
- Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker (Brody, E.N. andL. Gold (2000) J. Biotechnol. 74:5-13).
- introduction refers to an aptamer which is expressed in vivo.
- a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).
- spiegelmer refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
- antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a polynucleotide having a specific nucleic acid sequence.
- Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'- deoxyguanosine.
- Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
- the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
- biologically active refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
- immunologically active or “immunogenic” refers to the capability of the natural, recombinant, or synthetic ORGA, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
- Complementary describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5 ⁇
- composition comprising a given polynucleotide and a “composition comprising a given polypeptide” can refer to any composition containing the given polynucleotide or polypeptide.
- the composition may comprise a dry formulation or an aqueous solution.
- Compositions comprising polynucleotides encoding ORGA or fragments of ORGA may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate.
- the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
- salts e.g., NaCl
- detergents e.g., sodium dodecyl sulfate; SDS
- other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
- Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (Accelrys, Burlington MA) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
- Constant amino acid substitutions are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
- the table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
- Trp Phe Tyr Tyr His, Phe, Trp Val He, Leu, Thr
- Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and or (c) the bulk of the side chain.
- a “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
- derivative refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
- a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
- a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
- a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
- “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
- Exon shuffling refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
- a "fragment” is a unique portion of ORGA or a polynucleotide encoding ORGA which can be identical in sequence to, but shorter in length than, the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from about 5 to about 1000 contiguous nucleotides or amino acid residues.
- a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
- a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
- these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
- a fragment of SEQ DD NO: 8- 14 can comprise a region of unique polynucleotide sequence that specifically identifies SEQ DD NO:8-14, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
- a fragment of SEQ DD NO:8-14 can be employed in one or more embodiments of methods of the invention, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ DD NO:8-14 from related polynucleotides.
- a fragment of SEQ DD NO: 1-7 is encoded by a fragment of SEQ DD NO:8-14.
- a fragment of SEQ DD NO: 1-7 can comprise a region of unique amino acid sequence that specifically identifies
- SEQ DD NO: 1-7 For example, a fragment of SEQ DD NO: 1-7 can be used as an immunogenic peptide for the development of antibodies that specifically recognize SEQ DD NO: 1-7.
- the precise length of a fragment of SEQ DD NO:l-7 and the region of SEQ DD NO:l-7 to which the fragment corresponds can be determined based on the intended purpose for the fragment using one or more analytical methods described herein or otherwise known in the art.
- a “full length” polynucleotide is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon.
- a “full length” polynucleotide sequence encodes a "full length” polypeptide sequence.
- Homology refers to sequence similarity or, alternatively, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
- percent identity and % identity refer to the percentage of identical nucleotide matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
- Percent identity between polynucleotide sequences may be determined using one or more computer algorithms or programs known in the art or described herein. For example, percent identity can be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the
- LASERGENE software package a suite of molecular biological analysis programs (DNASTAR,
- NCBI National Center for Biotechnology Information
- BLAST Basic Local Alignment Search Tool
- NCBI National Center for Biotechnology Information
- BLAST Basic Local Alignment Search Tool
- the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
- BLAST 2 Sequences are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:
- Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ DD number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
- Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
- Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
- the phrases "percent identity” and "% identity,” as applied to polypeptide sequences refer to the percentage of identical residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
- percent similarity and % similarity refer to the percentage of residue matches, including identical residue matches and conservative substitutions, between at least two polypeptide sequences aligned using a standardized algorithm. In contrast, conservative substitutions are not included in the calculation of percent identity between polypeptide sequences.
- NCBI BLAST software suite may be used.
- BLAST 2 Sequences Version 2.0.12 (April-21-2000) with blastp set at default parameters.
- Such default parameters may be, for ⁇ example:
- Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ DD number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
- Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
- "Human artificial chromosomes" are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
- humanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
- Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
- Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ml sheared, denatured salmon sperm DNA.
- wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T m ) for the specific sequence at a defined ionic strength and pH.
- T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
- High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
- blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
- Organic solvent such as formamide at a concentration of about 35-50% v/v
- RNA:DNA hybridizations Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.
- Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
- hybridization complex refers to a complex formed between two nucleic acids by virtue of the formation of hydrogen bonds between complementary bases.
- a hybridization complex may be formed in solution (e.g., C 0 t or R 0 t analysis) or formed between one nucleic acid present in solution and another nucleic acid immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
- insertion and “addition” refer to changes in an amino acid or polynucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
- Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
- factors e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
- an “immunogenic fragment” is a polypeptide or oligopeptide fragment of ORGA which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal.
- the term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of ORGA which is useful in any of the antibody production methods disclosed herein or known in the art.
- microarray refers to an arrangement of a plurality of polynucleotides, polypeptides, antibodies, or other chemical compounds on a substrate.
- element and “array element” refer to a polynucleotide, polypeptide, antibody, or other chemical compound having a unique and defined position on a microarray.
- modulate refers to a change in the activity of ORGA. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional or immunological properties of ORGA.
- nucleic acid and nucleic acid sequence refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
- PNA peptide nucleic acid
- operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
- a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
- Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
- PNA protein nucleic acid
- PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
- Post-translational modification of an ORGA may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of ORGA.
- Probe refers to nucleic acids encoding ORGA, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acids. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers” are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme.
- Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
- PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
- Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope.
- the Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.)
- the PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences.
- this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments.
- the oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
- a "recombinant nucleic acid” is a nucleic acid that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook and Russell ⁇ supra).
- the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
- a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence.
- Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
- such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
- a “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
- Reporter molecules are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
- RNA equivalent in reference to a DNA molecule, is composed of the same linear sequence of nucleotides as the reference DNA molecule with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
- sample is used in its broadest sense.
- a sample suspected of containing ORGA, nucleic acids encoding ORGA, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
- specific binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition.
- the interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule.
- a particular structure of the protein e.g., the antigenic determinant or epitope
- the binding molecule e.g., the binding molecule for binding the binding molecule.
- an antibody is specific for epitope "A”
- the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
- substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably at least about 75% free, and most preferably at least about 90% free from other components with which they are naturally associated.
- substitution refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
- Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
- the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
- a “transcript image” or “expression profile” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
- Transformation describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment.
- transformed cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
- a "transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art.
- the nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
- the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C. et al. (2002) Science 295:868-872).
- the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
- the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
- the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook and Russell ⁇ supra).
- a "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
- Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length.
- a variant may be described as, for example, an "allelic” (as defined above), “splice,” “species,” or “polymorphic” variant.
- a splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing during mRNA processing.
- the corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
- Species variants are polynucleotides that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other.
- a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
- Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base.
- SNPs single nucleotide polymorphisms
- the presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
- a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity or sequence similarity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters.
- Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity or sequence similarity over a certain defined length of one of the polypeptides.
- Various embodiments of the invention include new human organelle-associated proteins (ORGA), the polynucleotides encoding ORGA, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
- ORGA organelle-associated proteins
- Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide embodiments of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project DD).
- Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ DD NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide DD) as shown.
- Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ DD NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide DD) as shown.
- Column 6 shows the Incyte DD numbers of physical, full length clones corresponding to the polypeptide and polynucleotide sequences of the invention.
- the full length clones encode polypeptides which have at least 95% sequence identity to the polypeptide sequences shown in column 3.
- Table 2 shows sequences with homology to polypeptide embodiments of the invention as identified by BLAST analysis against the GenBank protein (genpept) database and the PROTEOME database.
- Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ DD NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide DD) for polypeptides of the invention.
- Column 3 shows the GenBank identification number (GenBank DD NO:) of the nearest GenBank homolog and the PROTEOME database identification numbers (PROTEOME DD NO:) of the nearest PROTEOME database homologs.
- Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2
- FIG. 3 shows the number of amino acid residues in each polypeptide.
- Column 4 shows amino acid residues comprising signature sequences, domains, motifs, potential phosphorylation sites, and potential glycosylation sites.
- Column 5 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
- SEQ DD NO:3 is 100% identical, from residue Ml to residue Q150, to human omithine transporter (GenBank DD g5565862) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.)
- the BLAST probability score is 4.6e-76, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
- SEQ DD NO:3 also has homology to solute carrier family 25 member 15 (mitochondrial omithine transporter 1), which is localized mainly to the mitochondria, and which functions in omithine metabolism; mutations in the corresponding human SLC25A15 gene are associated with hyperomithinen a-hyperammonemia-homocitrullinuria (HHH) syndrome, as determined by BLAST analysis using the PROTEOME database.
- SEQ DD NO:3 also contains a mitochondrial carrier protein domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein families/domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ DD NO:3 is an omithine transporter.
- SEQ DD NO:4 is 98% identical, from residue Ml to residue A534, to human carnitine palmitoyltransferase IC (GenBank DD gl9850303) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.SEQ DD NO:4 also has homology to liver carnitine palmitoyltransferase I, as determined by BLAST analysis using the PROTEOME database.
- BLAST Basic Local Alignment Search Tool
- SEQ DD NO:4 also contains a choline/carnitine o-acyltransferase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein families/domains.
- HMM hidden Markov model
- SEQ DD NO:4 is a carnitine palmitoyltransferase.
- SEQ DD NO: 1-2 and SEQ DD NO:5-7 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ DD NO: 1-7 are described in Table 7.
- the full length polynucleotide embodiments were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences.
- Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ DD NO:), the corresponding Incyte polynucleotide consensus sequence number (Incyte DD) for each polynucleotide of the invention, and the length of each polynucleotide sequence in basepairs.
- Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide embodiments, and of fragments of the polynucleotides which are useful, for example, in hybridization or amplification technologies that identify SEQ DD NO:8-14 or that distinguish between SEQ DD NO:8-14 and related polynucleotides.
- the polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA libraries.
- polynucleotide fragments described in column 2 may refer to GenBank cDNAs or ESTs which contributed to the assembly of the full length polynucleotides.
- polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database ⁇ i.e., those sequences including the designation "ENST").
- the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database ⁇ i.e., those sequences including the designation "NM” or “NT”) or the NCBI RefSeq Protein Sequence Records ⁇ i.e., those sequences including the designation "NP”).
- the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence identified as
- FL_XXXXXX_N I _N 2 _YYYY_N 3 _N 4 represents a "stitched" sequence in which XXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY s the number of the prediction generated by the algorithm, and N 12,3. .., if present, represent specific exons that may have been manually edited during analysis (See Example V).
- the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm.
- a polynucleotide sequence identified as FLXXXXX_gAAAAA_gBBBBB_l_N is a "stretched" sequence, with XXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V).
- a RefSeq identifier (denoted by "NM,” “NP,” or “NT”) may be used in place of the GenBank identifier ⁇ i.e., gBBBBB).
- a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods.
- the following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example TV and Example V).
- Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
- Table 5 shows the representative cDNA libraries for those full length polynucleotides which were assembled using Incyte cDNA sequences.
- the representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotides.
- the tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
- Table 8 shows single nucleotide polymorphisms (SNPs) found in polynucleotide sequences of the invention, along with allele frequencies in different human populations.
- Columns 1 and 2 show the polynucleotide sequence identification number (SEQ DD NO:) and the corresponding Incyte project identification number (PDD) for polynucleotides of the invention.
- Column 3 shows the Incyte identification number for the EST in which the SNP was detected (EST DD), and column 4 shows the identification number for the SNP (SNP DD).
- Column 5 shows the position within the EST sequence at which the SNP is located (EST SNP), and column 6 shows the position of the SNP within the full- length polynucleotide sequence (CB1 SNP).
- Column 7 shows the allele found in the EST sequence.
- Columns 8 and 9 show the two alleles found at the SNP site.
- Column 10 shows the amino acid encoded by the codon including the SNP site, based upon the allele found in the EST.
- Columns 11-14 show the frequency of allele 1 in four different human populations. An entry of n/d (not detected) indicates that the frequency of allele 1 in the population was too low to be detected, while n/a (not available) indicates that the allele frequency was not determined for the population.
- ORGA variants can have at least about 80%, at least about 90%, or at least about 95% amino acid sequence identity to the ORGA amino acid sequence, and can contain at least one functional or structural characteristic of ORGA.
- polynucleotides which encode ORGA encompass polynucleotides which encode ORGA.
- the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ DD NO:8-14, which encodes ORGA.
- the invention also encompasses variants of a polynucleotide encoding ORGA.
- a variant polynucleotide will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a polynucleotide encoding ORGA.
- a particular aspect of the invention encompasses a variant of a polynucleotide comprising a sequence selected from the group consisting of SEQ DD NO:8-14 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ DD NO:8-14.
- Any one of the polynucleotide variants described above can encode a polypeptide which contains at least one functional or structural characteristic of ORGA.
- a polynucleotide variant of the invention is a splice variant of a polynucleotide encoding ORGA.
- a splice variant may have portions which have significant sequence identity to a polynucleotide encoding ORGA, but will generally have a greater or lesser number of nucleotides due to additions or deletions of blocks of sequence arising from alternate splicing during mRNA processing.
- a splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to a polynucleotide encoding ORGA over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide encoding ORGA.
- a polynucleotide comprising a sequence of SEQ DD NO: 9 and a polynucleotide comprising a sequence of SEQ DD NO: 10 are splice variants of each other.
- any one of the splice variants described above can encode a polypeptide which contains at least one functional or structural characteristic of ORGA. It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding ORGA, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring ORGA, and all such variations are to be considered as being specifically disclosed.
- polynucleotides which encode ORGA and its variants are generally capable of hybridizing to polynucleotides encoding naturally occurring ORGA under appropriately selected conditions of stringency, it may be advantageous to produce polynucleotides encoding ORGA or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
- RNA transcripts having more desirable properties such as a greater half-life, than transcripts produced from the naturally occurring sequence.
- the invention also encompasses production of polynucleotides which encode ORGA and ORGA derivatives, or fragments thereof, entirely by synthetic chemistry.
- the synthetic polynucleotide may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art.
- synthetic chemistry may be used to introduce mutations into a polynucleotide encoding ORGA or any fragment thereof.
- Embodiments of the invention can also include polynucleotides that are capable of hybridizing to the claimed polynucleotides, and, in particular, to those having the sequences shown in SEQ DD NO:8-14 and fragments thereof, under various conditions of stringency (Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol 152:507-511). Hybridization conditions, including annealing and wash conditions, are described in "Definitions.” Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
- the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Invitrogen, Carlsbad CA).
- sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems).
- Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art.
- the resulting sequences are analyzed using a variety of algorithms which are well known in the art (Ausubel et al, supra, ch. 7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853).
- the nucleic acids encoding ORGA may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
- various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements.
- restriction-site PCR uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector (Sarkar, G. (1993) PCR Methods Applic. 2:318-322).
- Another method, inverse PCR uses primers that extend in divergent directions to amplify unknown sequence from a circularized template.
- the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences (Triglia, T. et al.
- a third method involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119).
- multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
- Other methods which may be used to retrieve unknown sequences are known in the art (Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
- primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.
- Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
- Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
- capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
- Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
- Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
- polynucleotides or fragments thereof which encode ORGA may be cloned in recombinant DNA molecules that direct expression of ORGA, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other polynucleotides which encode substantially the same or a functionally equivalent polypeptides may be produced and used to express ORGA.
- the polynucleotides of the invention can be engineered using methods generally known in the art in order to alter ORGA-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.
- DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences.
- oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
- the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of ORGA, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds.
- MOLECULARBREEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. e
- DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening.
- genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
- polynucleotides encoding ORGA may be synthesized, in whole or in part, using one or more chemical methods well known in the art (Canithers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232).
- ORGA itself or a fragment thereof may be synthesized using chemical methods known in the art.
- peptide synthesis can be performed using various solution-phase or solid-phase techniques (Creighton, T. (1984) Proteins. Structures and Molecular Properties. WH Freeman, New York NY, pp. 55-60; Roberge, J.Y.
- the polynucleotides encoding ORGA or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
- these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotides encoding ORGA.
- Such elements may vary in their strength and specificity.
- Specific initiation signals may also be used to achieve more efficient translation of polynucleotides encoding ORGA. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
- a variety of expression vector/host systems may be utilized to contain and express polynucleotides encoding ORGA. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems (Sambrook and Russell, supra; Ausubel et al, supra; Van Heeke, G.
- microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
- yeast transformed with yeast expression vectors insect cell systems infected with viral expression vectors (e.g., bacul
- Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of polynucleotides to the targeted organ, tissue, or cell population (Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5:350-356; Yu, M. et al. (1993) Proc. Natl.
- cloning and expression vectors may be selected depending upon the use intended for polynucleotides encoding ORGA.
- routine cloning, subcloning, and propagation of polynucleotides encoding ORGA can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen).
- PBLUESCRIPT Stratagene, La Jolla CA
- PSPORT1 plasmid Invitrogen.
- these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence (Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509).
- vectors which direct high level expression of ORGA may be used.
- vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
- Yeast expression systems may be used for production of ORGA.
- a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
- such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign polynucleotide sequences into the host genome for stable propagation (Ausubel et al, supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; Scorer, CA. et al. (1994) Bio/Technology 12:181-184).
- Plant systems may also be used for expression of ORGA. Transcription of polynucleotides encoding ORGA may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:1631). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection (The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196).
- viral promoters e.g., the 35
- a number of viral-based expression systems may be utilized.
- polynucleotides encoding ORGA may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses ORGA in host cells (Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659).
- transcription enhancers such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
- SV40 or EBV-based vectors may also be used for high-level protein expression.
- HACs Human artificial chromosomes
- HACs Human artificial chromosomes
- plasmids may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid.
- HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes (Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355).
- liposomes, polycationic amino polymers, or vesicles for therapeutic purposes
- ORGA in cell lines is preferred.
- polynucleotides encoding ORGA can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
- the purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
- Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type. Any number of selection systems may be used to recover transformed cell lines.
- herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes for use in tk and apr cells, respectively (Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823).
- antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
- dhfr confers resistance to methotrexate
- neo confers resistance to the aminoglycosides neomycin and G-418
- als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively
- trpB and hisD confer resistance to chlorsulfuron and phosphinotricin acetyltransferase
- Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; BD Clontech), ⁇ -glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131). Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
- sequence encoding ORGA is inserted within a marker gene sequence
- transformed cells containing polynucleotides encoding ORGA can be identified by the absence of marker gene function.
- a marker gene can be placed in tandem with a sequence encoding ORGA under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
- host cells that contain the polynucleotide encoding ORGA and that express ORGA may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
- Immunological methods for detecting and measuring the expression of ORGA using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
- ELISAs enzyme-linked immunosorbent assays
- RIAs radioimmunoassays
- FACS fluorescence activated cell sorting
- Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding ORGA include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
- polynucleotides encoding ORGA, or any fragments thereof may be cloned into a vector for the production of an mRNA probe.
- RNA polymerase such as T7, T3, or SP6 and labeled nucleotides.
- T7, T3, or SP6 RNA polymerase
- reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
- Host cells transformed with polynucleotides encoding ORGA may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
- the protein produced by a transformed cell may.be secreted or retained intracellularly depending on the sequence and/or the vector used.
- expression vectors containing polynucleotides which encode ORGA may be designed to contain signal sequences which direct secretion of ORGA through a prokaryotic or eukaryotic cell membrane.
- a host cell strain may be chosen for its ability to modulate expression of the inserted polynucleotides or to process the expressed protein in the desired fashion.
- modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
- Post-translational processing which cleaves a "prepro” or "pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
- CHO, HeLa, MDCK, HEK293, and WI38 Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities
- ATCC American Type Culture Collection
- HEK293, and WI38 natural, modified, or recombinant polynucleotides encoding ORGA may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
- a chimeric ORGA protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of ORGA activity.
- Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices.
- Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
- GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively.
- FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
- a fusion protein may also be engineered to contain a proteolytic cleavage site located between the ORGA encoding sequence and the heterologous protein sequence, so that ORGA may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel et al. ⁇ supra, ch. 10 and 16). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
- synthesis of radiolabeled ORGA may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S-methionine.
- ORGA fragments of ORGA, or variants of ORGA may be used to screen for compounds that specifically bind to ORGA.
- One or more test compounds may be screened for specific binding to ORGA.
- 1, 2, 3, 4, 5, 10, 20, 50, 100, or 200 test compounds can be screened for specific binding to ORGA.
- Examples of test compounds can include antibodies, anticalins, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules.
- variants of ORGA can be used to screen for binding of test compounds, such as antibodies, to ORGA, a variant of ORGA, or a combination of ORGA and/or one or more variants ORGA.
- a variant of ORGA can be used to screen for compounds that bind to a variant of ORGA, but not to ORGA having the exact sequence of a sequence of SEQ DD NO: 1-7.
- ORGA variants used to perform such screening can have a range of about 50% to about 99% sequence identity to ORGA, with various embodiments having 60%, 70%, 75%, 80%, 85%, 90%, and 95% sequence identity.
- a compound identified in a screen for specific binding to ORGA can be closely related to the natural ligand of ORGA, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner (Coligan, J.E. et al. (1991) Current Protocols in Jmmunology l(2):Chapter 5).
- the compound thus identified can be a natural ligand of a receptor ORGA (Howard, A.D. et al. (2001) Trends Pharmacol. Sci.22:132- 140; Wise, A. et al. (2002) Drug Discovery Today 7:235-246).
- a compound identified in a screen for specific binding to ORGA can be closely related to the natural receptor to which ORGA binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket.
- the compound may be a receptor for ORGA which is capable of propagating a signal, or a decoy receptor for ORGA which is not capable of propagating a signal (Ashkenazi, A. and V.M. Divit (1999) Curr. Opin. Cell Biol. 11:255-260; Mantovani, A. et al. (2001) Trends Immunol. 22:328-336).
- the compound can be rationally designed using known techniques. Examples of such techniques include those used to construct the compound etanercept (ENBREL; Amgen Inc., Thousand Oaks).
- Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human IgGj (Taylor, P.C et al. (2001) Curr. Opin. Immunol. 13:611-616).
- TNF tumor necrosis factor
- two or more antibodies having similar or, alternatively, different specificities can be screened for specific binding to ORGA, fragments of ORGA, or variants of ORGA.
- the binding specificity of the antibodies thus screened can thereby be selected to identify particular fragments or variants of ORGA.
- an antibody can be selected such that its binding specificity allows for preferential identification of specific fragments or variants of ORGA.
- an antibody can be selected such that its binding specificity allows for preferential diagnosis of a specific disease or condition having increased, decreased, or otherwise abnormal production of ORGA.
- anticalins can be screened for specific binding to ORGA, fragments of ORGA, or variants of ORGA.
- Anticalins are ligand-binding proteins that have been constructed based on a lipocalin scaffold (Weiss, G.A. and H.B. Lowman (2000) Chem. Biol. 7:R177-R184; Skerra, A. (2001) J. Biotechnol. 74:257-275).
- the protein architecture of lipocalins can include a beta-barrel having eight antiparallel beta-strands, which supports four loops at its open end.
- loops form the natural ligand-binding site of the lipocalins, a site which can be re-engineered in vitro by amino acid substitutions to impart novel binding specificities.
- the amino acid substitutions can be made using methods known in the art or described herein, and can include conservative substitutions (e.g., substitutions that do not alter binding specificity) or substitutions that modestly, moderately, or significantly alter binding specificity.
- screening for compounds which specifically bind to, stimulate, or inhibit ORGA involves producing appropriate cells which express ORGA, either as a secreted protein or on the cell membrane.
- Preferred cells can include cells from mammals, yeast, Drosophila, or E. coli.
- Cells expressing ORGA or cell membrane fractions which contain ORGA are then contacted with a test compound and binding, stimulation, or inhibition of activity of either ORGA or the compound is analyzed.
- An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label.
- the assay may comprise the steps of combining at least one test compound with ORGA, either in solution or affixed to a solid support, and detecting the binding of ORGA to the compound.
- the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
- the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.
- An assay can be used to assess the ability of a compound to bind to its natural ligand and or to inhibit the binding of its natural ligand to its natural receptors.
- examples of such assays include radio- labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S. Patent No. 6,372,724.
- one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its ability to bind to its natural ligands (Matthews, D.J. and J.A. Wells. (1994) Chem. Biol. 1:25-30).
- one or more amino acid substitutions can be introduced into a polypeptide compound (such as a ligand) to improve or alter its ability to bind to its natural receptors (Cunningham, B.C. and J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. et al. (1991) J. Biol. Chem. 266:10982-10988).
- ORGA, fragments of ORGA, or variants of ORGA may be used to screen for compounds that modulate the activity of ORGA. Such compounds may include agonists, antagonists, or partial or inverse agonists.
- an assay is performed under conditions permissive for ORGA activity, wherein ORGA is combined with at least one test compound, and the activity of ORGA in the presence of a test compound is compared with the activity of ORGA in the absence of the test compound. A change in the activity of ORGA in the presence of the test compound is indicative of a compound that modulates the activity of ORGA.
- a test compound is combined with an in vitro or cell-free system comprising ORGA under conditions suitable for ORGA activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of ORGA may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
- polynucleotides encoding ORGA or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells.
- ES embryonic stem
- Such techniques are well known in the art and are useful for the generation of animal models of human disease (see, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337).
- mouse ES cells such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture.
- the ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene ⁇ neo; Capecchi, M.R. (1989) Science 244:1288-1292).
- the vector integrates into the corresponding region of the host genome by homologous recombination.
- homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
- Transformed ES cells are identified and micromjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain.
- the blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
- Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
- Polynucleotides encoding ORGA may also be manipulated in vitro in ES cells derived from human blastocysts.
- Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
- Polynucleotides encoding ORGA can also be used to create "knockin” humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
- knockin technology a region of a polynucleotide encoding ORGA is injected into animal ES cells, and the injected sequence integrates into the animal cell genome.
- Transformed cells are injected into blastulae, and the blastulae are implanted as described above.
- Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
- a mammal inbred to overexpress ORGA e.g., by secreting ORGA in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74). THERAPEUTICS
- ORGA appears to play a role in cell prohferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
- ORGA appears to play a role in cell prohferative, reproductive, gastrointestinal, neurological, urologic, and renal disorders.
- ORGA or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of ORGA.
- disorders include, but are not limited to, a cell prohferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, colon, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thy
- Gerstmann-Straussler-Scheinker syndrome fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorder of the central nervous system, cerebral palsy, a neuroskeletal disorder, an autonomic nervous system disorder, a cranial nerve disorder, a spinal cord disease, muscular dystrophy and other neuromuscular disorder, a peripheral nervous system disorder, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathy, myasthenia gravis, periodic paralysis, a mental disorder including mood, anxiety, and schizophrenic disorder, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder
- nephrotoxic disorders include any functional or morphologic change in the kidney produced by any pharmaceutical, chemical, or biological agent that is ingested, injected, inhaled, or absorbed.
- Some broad categories of common nephrotoxic agents are heavy metals, all classes of antibiotics, analgesics, solvents, oxalosis-inducing agents, anticancer drugs, herbicides and pesticides, botanicals and biologicals, and antiepileptics.
- a vector capable of expressing ORGA or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of ORGA including, but not limited to, those described above.
- composition comprising a substantially purified ORGA in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of ORGA including, but not limited to, those provided above.
- an agonist which modulates the activity of ORGA may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of ORGA including, but not limited to, those listed above.
- an antagonist of ORGA may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of ORGA.
- disorders include, but are not limited to, those cell proliferative, reproductive, gastrointestinal, neurological urologic, and renal disorders described above.
- an antibody which specifically binds ORGA may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express ORGA.
- a vector expressing the complement of the polynucleotide encoding ORGA may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of ORGA including, but not limited to, those described above.
- any protein, agonist, antagonist, antibody, complementary sequence, or vector embodiments may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
- the combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
- An antagonist of ORGA may be produced using methods which are generally known in the art.
- purified ORGA may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind ORGA.
- Antibodies to ORGA may also be generated using methods that are well known in the art.
- Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library.
- neutralizing antibodies i.e., those which inhibit dimer formation
- Single chain antibodies e.g., from camels or llamas
- Single chain antibodies may be potent enzyme inhibitors and may have application in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).
- various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with ORGA or with any fragment or oligopeptide thereof which has immunogenic properties.
- various adjuvants may be used to increase immunological response.
- adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
- BCG Bacilli Calmette-Guerin
- Corynebacterium parvum are especially preferable.
- the oligopeptides, peptides, or fragments used to induce antibodies to ORGA have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are substantially identical to a portion of the amino acid sequence of the natural protein. Short stretches of ORGA amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced. Monoclonal antibodies to ORGA may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture.
- chimeric antibodies such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used (Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; Takeda, S. et al. (1985) Nature 314:452-454).
- techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce ORGA-specific single chain antibodies.
- Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobulin libraries (Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137). Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature (Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299). Antibody fragments which contain specific binding sites for ORGA may also be generated.
- fragments include, but are not limited to, F(ab fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments.
- Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity (Huse, W.D. et al. (1989) Science 246:1275-1281).
- immunoassays may be used for screening to identify antibodies having the desired specificity.
- Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art.
- Such immunoassays typically involve the measurement of complex formation between ORGA and its specific antibody.
- a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering ORGA epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
- K association constant
- High-affinity antibody preparations with K ranging from about 10 9 to 10 12 L/mole are preferred for use in immunoassays in which the ORGA- antibody complex must withstand rigorous manipulations.
- polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications.
- a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generally employed in procedures requiring precipitation of ORGA-antibody complexes.
- Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available (Catty, supra; Coligan et al, supra).
- polynucleotides encoding ORGA may be used for therapeutic purposes.
- modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding ORGA.
- complementary sequences or antisense molecules DNA, RNA, PNA, or modified oligonucleotides
- antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding ORGA (Agrawal, S., ed. (1996) Antisense Therapeutics. Humana Press, Totawa NJ).
- Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein (Slater, J.E. et al. (1998) J. Allergy Clin. Immunol. 102:469-475; Scanlon, K.J. et al. (1995) FASEB J. 9:1288-1296).
- Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors (Miller, A.D.
- polynucleotides encoding ORGA may be used for somatic or germline gene therapy.
- Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCDD)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene
- ORGA hepatitis B or C virus
- fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
- protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi
- diseases or disorders caused by deficiencies in ORGA are treated by constructing mammalian expression vectors encoding ORGA and introducing these vectors by mechanical means into ORGA-deficient cells.
- Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J.-L. and H. Recipon (1998) Curr. Opin. Biotechnol. 9:445-450).
- Expression vectors that may be effective for the expression of ORGA include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRJJPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (BD Clontech, Palo Alto CA).
- ORGA may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol.
- a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes
- TRANSFECTION KIT available from Invitrogen
- transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845).
- the introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
- diseases or disorders caused by genetic defects with respect to ORGA expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding ORGA under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus c ⁇ -acting RNA sequences and coding sequences required for efficient vector propagation.
- Retrovirus vectors e.g., PFB and PFBNEO
- Retrovirus vectors are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci.
- the vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J.
- VPCL vector producing cell line
- U.S. Patent No. 5,910,434 to Rigg discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4 + T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al.
- an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding ORGA to cells which have one or more genetic abnormalities with respect to the expression of ORGA.
- the construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference.
- a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding ORGA to target cells which have one or more genetic abnormalities with respect to the expression of ORGA.
- the use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing ORGA to cells of the central nervous system, for which HSV has a tropism.
- the construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art.
- a replication-competent herpes simplex virus (HSV) type 1 -based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395).
- HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference.
- U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22.
- HSV vectors see also Goins, W.F. et al. (1999; J. Virol.
- herpesvirus sequences The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
- an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding ORGA to target cells.
- SFV Semliki Forest Virus
- This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
- inserting the coding sequence for ORGA into the alphavirus genome in place of the capsid-coding region results in the production of a large number of ORGA-coding RNAs and the synthesis of high levels of ORGA in vector transduced cells.
- alphavirus infection is typically associated with cell lysis within a few days
- the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83).
- the wide host range of alphaviruses will allow the introduction of ORGA into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
- a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes. Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of
- RNA The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
- engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of RNA molecules encoding ORGA.
- RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable.
- the suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
- RNA molecules may be generated by in vitro and in vivo transcription of DNA molecules encoding ORGA. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues. RNA molecules may be modified to increase intracellular stability and half -life.
- flanking sequences at the 5' and or 3' ends of the molecule
- modifications include, but are not limited to, the addition of flanking sequences at the 5' and or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule.
- This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytosine, guanine, thymine, and uracil which are not as easily recognized by endogenous endonucleases.
- RNAi RNA interference
- PTGS post-transcriptional gene silencing
- RNAi is a post- transcriptional mode of gene silencing in which double-stranded RNA (dsRNA) introduced into a targeted cell specifically suppresses the expression of the homologous gene (i.e., the gene bearing the sequence complementary to the dsRNA). This effectively knocks out or substantially reduces the expression of the targeted gene.
- dsRNA double-stranded RNA
- PTGS can also be accomplished by use of DNA or DNA fragments as well. RNAi methods are described by Fire, A. et al.
- PTGS can also be initiated by introduction of a complementary segment of DNA into the selected tissue using gene delivery and/or viral vector delivery methods described herein or known in the art.
- RNAi can be induced in mammalian cells by the use of small interfering RNA also known as siRNA.
- siRNA are shorter segments of dsRNA (typically about 21 to 23 nucleotides in length) that result in vivo from cleavage of introduced dsRNA by the action of an endogenous ribonuclease.
- siRNA appear to be the mediators of the RNAi effect in mammals. The most effective siRNAs appear to be 21 nucleotide dsRNAs with 2 nucleotide 3' overhangs.
- the use of siRNA for inducing RNAi in mammalian cells is described by Elbashir, S.M. et al. (2001; Nature 411:494-498).
- siRNA can be generated indirectly by introduction of dsRNA into the targeted cell.
- siRNA can be synthesized directly and introduced into a cell by transfection methods and agents described herein or known in the art (such as liposome-mediated transfection, viral vector methods, or other polynucleotide delivery/introductory methods).
- Suitable siRNAs can be selected by examining a transcript of the target polynucleotide (e.g., mRNA) for nucleotide sequences downstream from the AUG start codon and recording the occurrence of each nucleotide and the 3' adjacent 19 to 23 nucleotides as potential siRNA target sites, with sequences having a 21 nucleotide length being preferred.
- Regions to be avoided for target siRNA sites include the 5' and 3' untranslated regions (UTRs) and regions near the start codon (within 75 bases), as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP endonuclease complex.
- the selected target sites for siRNA can then be compared to the appropriate genome database (e.g., human, etc.) using BLAST or other sequence comparison algorithms known in the art. Target sequences with significant homology to other coding sequences can be eliminated from consideration.
- the selected siRNAs can be produced by chemical synthesis methods known in the art or by in vitro transcription using commercially available methods and kits such as the SILENCER siRNA construction kit (Ambion, Austin TX).
- long-term gene silencing and/or RNAi effects can be induced in selected tissue using expression vectors that continuously express siRNA. This can be accomplished using expression vectors that are engineered to express hairpin RNAs (shRNAs) using methods known in the art (see, e.g., Brummelkamp, T.R. et al. (2002) Science 296:550-553; and Paddison, P.J. et al. (2002) Genes Dev. 16:948-958).
- shRNAs can be delivered to target cells using expression vectors known in the art.
- An example of a suitable expression vector for delivery of siRNA is the PSDJENCER1.0-U6 (circular) plasmid (Ambion).
- PSDJENCER1.0-U6 circular plasmid
- shRNAs are processed in vivo into siRNA-like molecules capable of carrying out gene- specific silencing.
- the expression levels of genes targeted by RNAi or PTGS methods can be determined by assays for mRNA and or protein analysis.
- Expression levels of the mRNA of a targeted gene can be determined, for example, by northern analysis methods using the NORTHERNMAX-GLY kit (Ambion); by microarray methods; by PCR methods; by real time PCR methods; and by other RNA/polynucleotide assays known in the art or described herein.
- Expression levels of the protein encoded by the targeted gene can be determined, for example, by microarray methods; by polyacrylamide gel electrophoresis; and by Western analysis using standard techniques known in the art.
- An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding ORGA.
- Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
- a compound which specifically inhibits expression of the polynucleotide encoding ORGA may be therapeutically useful, and in the treatment of disorders associated with decreased ORGA expression or activity, a compound which specifically promotes expression of the polynucleotide encoding ORGA may be therapeutically useful.
- one or more test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
- a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly.
- a sample comprising a polynucleotide encoding ORGA is exposed to at least one test compound thus obtained.
- the sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system.
- Alterations in the expression of a polynucleotide encoding ORGA are assayed by any method commonly known in the art.
- the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding ORGA.
- the amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide.
- a screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13).
- a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Bio
- a particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence' (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).
- oligonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides
- vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art (Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462- 466).
- compositions which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
- Excipients may include, for example, sugars, starches, celluloses, gums, and proteins.
- formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).
- Such compositions may consist of ORGA, antibodies to ORGA, and mimetics, agonists, antagonists, or inhibitors of ORGA.
- compositions described herein may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
- compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient.
- small molecules e.g. traditional low molecular weight organic drugs
- aerosol delivery of fast- acting formulations is well-known in the art.
- macromolecules e.g. larger peptides and proteins
- recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al, U.S. Patent No. 5,997,848).
- Pulmonary delivery allows administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
- compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose.
- the determination of an effective dose is well within the capability of those skilled in the art.
- compositions may be prepared for direct intracellular delivery of macromolecules comprising ORGA or fragments thereof.
- liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule.
- ORGA or a fragment thereof may be joined to a short cationic N- terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues ⁇ including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
- the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs.
- An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- a therapeutically effective dose refers to that amount of active ingredient, for example ORGA or fragments thereof, antibodies of ORGA, and agonists, antagonists or inhibitors of ORGA, which ameliorates the symptoms or condition.
- Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeutically effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
- the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 /ED 50 ratio.
- Compositions which exhibit large therapeutic indices are preferred.
- the data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use.
- the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
- Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
- Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
- Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc. DIAGNOSTICS
- antibodies which specifically bind ORGA may be used for the diagnosis of disorders characterized by expression of ORGA, or in assays to monitor patients being treated with ORGA or agonists, antagonists, or inhibitors of ORGA.
- Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for ORGA include methods which utilize the antibody and a label to detect ORGA in human body fluids or in extracts of cells or tissues.
- the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
- a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
- polynucleotides encoding ORGA may be used for diagnostic purposes.
- the polynucleotides which may be used include oligonucleotides, complementary RNA and DNA molecules, and PNAs.
- the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of ORGA may be correlated with disease.
- the diagnostic assay may be used to determine absence, presence, and excess expression of ORGA, and to monitor regulation of ORGA levels during therapeutic intervention.
- hybridization with PCR probes which are capable of detecting polynucleotides, including genomic sequences, encoding ORGA or closely related molecules may be used to identify nucleic acid sequences which encode ORGA.
- the specificity of the probe whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding ORGA, allelic variants, or related sequences. Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the ORGA encoding sequences.
- the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ DD NO:8-14 or from genomic sequences including promoters, enhancers, and introns of the ORGA gene.
- Means for producing specific hybridization probes for polynucleotides encoding ORGA include the cloning of polynucleotides encoding ORGA or ORGA derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
- Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
- Polynucleotides encoding ORGA may be used for the diagnosis of disorders associated with expression of ORGA.
- disorders include, but are not limited to, a cell prohferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, colon, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas,
- Gerstmann-Straussler-Scheinker syndrome fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorder of the central nervous system, cerebral palsy, a neuroskeletal disorder, an autonomic nervous system disorder, a cranial nerve disorder, a spinal cord disease, muscular dystrophy and other neuromuscular disorder, a peripheral nervous system disorder, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathy, myasthenia gravis, periodic paralysis, a mental disorder including mood, anxiety, and schizophrenic disorder, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder
- nephrotoxic disorders include any functional or morphologic change in the kidney produced by any pharmaceutical, chemical, or biological agent that is ingested, injected, inhaled, or absorbed.
- Some broad categories of common nephrotoxic agents are heavy metals, all classes of antibiotics, analgesics, solvents, oxalosis-inducing agents, anticancer drugs, herbicides and pesticides, botanicals and biologicals, and antiepileptics.
- Polynucleotides encoding ORGA may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered ORGA expression. Such qualitative or quantitative methods are well known in the art.
- polynucleotides encoding ORGA may be used in assays that detect the presence of associated disorders, particularly those mentioned above.
- Polynucleotides complementary to sequences encoding ORGA may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of polynucleotides encoding ORGA in the sample indicates the presence of the associated disorder.
- Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
- a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding ORGA, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
- hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
- the results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
- the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
- a more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier, thereby preventing the development or further progression of the cancer.
- oligonucleotides designed from the sequences encoding ORGA may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding ORGA, or a fragment of a polynucleotide complementary to the polynucleotide encoding ORGA, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
- oligonucleotide primers derived from polynucleotides encoding ORGA may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods.
- SSCP single-stranded conformation polymorphism
- fSSCP fluorescent SSCP
- oligonucleotide primers derived from polynucleotides encoding ORGA are used to amplify DNA using the polymerase chain reaction (PCR).
- the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like.
- SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels.
- the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines.
- sequence database analysis methods termed in silico SNP (isSNP) are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
- SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASS ARRAY system (Sequenom, Inc., San Diego CA). SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle ceU anemia, or chronic granulomatous disease.
- variants in the mannose-binding lectin, MBL2 have been shown to be correlated with deleterious pulmonary outcomes in cystic fibrosis.
- SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as life-threatening toxicity.
- a variation in N-acetyl transferase is associated with a high incidence of peripheral neuropathy in response to the anti-tuberculosis drug isoniazid, while a variation in the core promoter of the ALOX5 gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-lipoxygenase pathway.
- Methods which may also be used to quantify the expression of ORGA include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves (Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236).
- the speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
- oligonucleotides or longer fragments derived from any of the polynucleotides described herein may be used as elements on a microarray.
- the microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
- the microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a phannacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her phannacogenomic profile.
- ORGA fragments of ORGA, or antibodies specific for ORGA may be used as elements on a microanay.
- the microanay may be used to monitor or measure protein- protein interactions, drug-target interactions, and gene expression profiles, as described above.
- a particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type.
- a transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time (Seilhamer et al, "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484; hereby expressly incorporated by reference herein).
- a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type.
- the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microanay.
- the resultant transcript image would provide a profile of gene activity.
- Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples.
- the transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.
- Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S.
- test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
- fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds.
- the toxicity of a test compound can be assessed by treating a biological sample containing nucleic acids with the test compound.
- Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified.
- the transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
- proteome refers to the global pattern of protein expression in a particular tissue or cell type.
- proteome expression patterns, or profiles are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time.
- a profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type.
- the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra).
- the proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
- the optical density of each protein spot is generally proportional to the level of the protein in the sample.
- the optical densities of equivalently positioned protein spots from different samples for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment.
- the proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry.
- the identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of interest. In some cases, further sequence data may be obtained for definitive protein identification.
- a proteomic profile may also be generated using antibodies specific for ORGA to quantify the levels of ORGA expression.
- the antibodies are used as elements on a microarray, and protein expression levels are quantified by contacting the microarray with the sample and detecting the levels of protein bound to each arcay element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
- Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level.
- There is a poor conelation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile.
- the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.
- the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound.
- Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified.
- the amount of each protein is compared to the amount of the conesponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
- Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
- the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
- Microarrays may be prepared, used, and analyzed using methods known in the art (Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application W095/25116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; Heller, M. J. et al. (1997) U.S. Patent No.
- nucleic acid sequences encoding ORGA may be used to generate hybridization probes useful in mapping the naturally occuning genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping.
- sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries (Hanington, J.J. et al. (1997) Nat. Genet. 15:345- 355; Price, CM. (1993) Blood Rev. 7:127-134; Trask, BJ. (1991) Trends Genet. 7:149-154).
- HACs human artificial chromosomes
- YACs yeast artificial chromosomes
- BACs bacterial artificial chromosomes
- PI constructions or single chromosome cDNA libraries
- nucleic acid sequences may be used to develop genetic linkage maps, for example, which conelate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP) (Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357).
- RFLP restriction fragment length polymorphism
- Fluorescent in situ hybridization may be conelated with other physical and genetic map data (Heinz-Uhich, et al. (1995) in Meyers, supra, pp. 965-968). Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMEvl) World Wide Web site. Conelation between the location of the gene encoding ORGA on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts. In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.
- a gene on the chromosome of another mammalian species may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques.
- the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to llq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation (Gatti, R.A. et al. (1988) Nature 336:577-580).
- the nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
- ORGA its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques.
- the fragment employed in such screening may be free in solution, affixed to a solid support, bome on a cell surface, or located intracellularly. The formation of binding complexes between ORGA and the agent being tested may be measured.
- Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest (Geysen, et al. (1984) PCT application WO84/03564).
- This method large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with ORGA, or fragments thereof, and washed.
- Bound ORGA is then detected by methods well known in the art. Purified ORGA can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
- nucleotide sequences which encode ORGA may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are cunently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
- Incyte cDNAs are derived from cDNA libraries described in the LlFESEQ database (Incyte, Palo Alto CA). Some tissues are homogenized and lysed in guanidinium isothiocyanate, while others are homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL
- RNA is treated with DNase.
- poly(A)+ RNA is isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
- RNA is isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).
- Stratagene is provided with RNA and constructs the conesponding cDNA libraries.
- cDNA is synthesized and cDNA libraries are constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art (Ausubel et al, supra, ch. 5). Reverse transcription is initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters are ligated to double stranded cDNA, and the cDNA is digested with the appropriate restriction enzyme or enzymes.
- the cDNA is size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis.
- cDNAs are ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Invitrogen, Carlsbad CA), PCDNA2.1 plasmid (Invitrogen), PBK-CMV plasmid (Stratagene), PCR2- TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte, Palo Alto CA), pRARE (Incyte), or pINCY (Incyte), or derivatives thereof.
- Recombinant plasmids are transformed into competent E. coli cells including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5 ⁇ , DH10B, or ElectroMAX DH10B from Invitrogen.
- Plasmids obtained as described in Example I are recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids are purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP
- plasmid purification kit from QIAGEN. Following precipitation, plasmids are resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C
- plasmid DNA is amplified from host cell lysates using direct link PCR in a high- throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps are carried out in a single reaction mixture. Samples are processed and stored in 384-well plates, and the concentration of amplified plasmid DNA is quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN D fluorescence scanner (Labsy stems Oy, Helsinki, Finland). III. Sequencing and Analysis
- Incyte cDNA recovered in plasmids as described in Example ⁇ are sequenced as follows. Sequencing reactions are processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions are prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
- Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides are canied out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences are identified using standard methods (Ausubel et al, supra, ch. 7). Some of the cDNA sequences are selected for extension using the techniques disclosed in Example VDI.
- Polynucleotide sequences derived from Incyte cDNAs are validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis.
- the Incyte cDNA sequences or translations thereof are then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM (Haft, D.H.
- HMM hidden Markov model
- HMM-based protein domain databases such as SMART (Schultz, J. et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244).
- HMM is a probabilistic approach which analyzes consensus primary structures of gene families; see, for example, Eddy, S.R. (1996) Cun. Opin. Struct. Biol. 6:361-365.
- the queries are performed using programs based on BLAST, FASTA, BLIMPS, and HMMER.
- the Incyte cDNA sequences are assembled to produce full length polynucleotide sequences.
- GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences are used to extend Incyte cDNA assemblages to full length. Assembly is performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages are screened for open reading frames using programs based on GeneMark, BLAST, and FASTA.
- the full length polynucleotide sequences are translated to derive the conesponding full length polypeptide sequences.
- a polypeptide may begin at any of the methionine residues of the full length translated polypeptide.
- Full length polypeptide sequences are subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (HMM)-based protein family databases such as PFAM, JJSTCY, and
- TIGRFAM TIGRFAM
- HMM-based protein domain databases such as SMART.
- Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (MiraiBio, Alameda CA) and LASERGENE software (DNASTAR).
- Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
- Table 7 summarizes tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters.
- the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).
- the programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences are also used to identify polynucleotide sequence fragments from SEQ DD NO:8-14.
- Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94; Burge, C. and S. Karlin (1998) Cun. Opin. Struct. Biol. 8:346-354).
- the program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon.
- Genscan is a FASTA database of polynucleotide and polypeptide sequences.
- the maximum range of sequence for Genscan to analyze at once is set to 30 kb.
- the encoded polypeptides are analyzed by querying against PFAM models for organelle-associated proteins. Potential organelle-associated proteins are also identified by homology to Incyte cDNA sequences that have been annotated as organelle-associated proteins.
- Genscan-predicted sequences are then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences are then edited by comparison to the top BLAST hit from genpept to conect enors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis is also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage is available, this information is used to conect or confirm the Genscan predicted sequence.
- Full length polynucleotide sequences are obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example HI. Alternatively, full length polynucleotide sequences are derived entirely from edited or unedited Genscan-predicted coding sequences.
- Partial cDNA sequences are extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example ID are mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster is analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that are subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval is present on more than one sequence in the cluster are identified, and intervals thus identified are considered to be equivalent by transitivity.
- Partial DNA sequences are extended to full length with an algorithm based on BLAST analysis.
- First, partial cDNAs assembled as described in Example DI are queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program.
- GenBank primate such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases
- the nearest GenBank protein homolog is then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV.
- a chimeric protein is generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog.
- HSPs high-scoring segment pairs
- GenBank protein homolog the chimeric protein, or both are used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences are therefore "stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences are examined to determine whether they contain a complete gene. VI. Chromosomal Mapping of ORGA Encoding Polynucleotides
- sequences used to assemble SEQ DD NO:8-14 are compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ DD NO:8-14 are assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon are used to determine if any of the clustered sequences have been previously mapped. Inclusion of a mapped sequence in a cluster results in the assignment of all sequences of that cluster, including its particular SEQ DD NO:, to that map location.
- SHGC Stanford Human Genome Center
- WIGR Whitehead Institute for Genome Research
- Map locations are represented by ranges, or intervals, of human chromosomes.
- the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm.
- centiMorgan cM
- centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
- the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
- Linkage is defined as the tendency of two genes located on the same chromosome to be inherited together through meiosis ⁇ Genetics in Medicine, Fifth Edition, (1991) Thompson, M.W. Et al. W.B. Saunders Co. Philadelphia).
- a logarithm of the odds ratio for linkage (lod) score of 3 indicates a probability of 1 in 1000 that the marker was found solely by chance in affected individuals.
- Xu, J. et al. ((1998) Nature Genet. 20:175-179) assembled 360 prostate cancer pedigrees consisting of families collected from sites around the world and found evidence for the location of a hereditary prostate cancer susceptibility gene (HPCX) on Xq27-q28.
- HPCX hereditary prostate cancer susceptibility gene
- RFLP Restriction fragment length polymorphism
- Polynucleotides encoding ORGA were mapped to NT_Contigs. Contigs longer than 1 Mb were broken into subcontigs of 1 Mb in length with overlapping sections of 100 kb. mRNA sequence/masked genomic DNA contig pairings were determined using an algorithm such as MEGABLAST (Zhang, Z. et al. (2000) J. Comput. Biol. 7:203-214). The cDNA/genomic pairings were analyzed using the SEVI4 alignment algorithm (version May 2000 with optimization for high throughput and strand assignment confidence, Florea, L. et al. (1998) Genome Res. 8:967-974). The SJJVI4 output of the mRNA sequence/genomic contig pairs was further processed to determine the conect location of the ORGA polynucleotides on the genomic contig, as well as their strand identity.
- SEQ DD NO: 13 was mapped to NT_Contig NT_011574_001.4 from Genbank release February, 2002, covering a 3.0 Mb region of the genome that also contains hereditary prostate cancer-associated genetic markers DXS1205-DXS8106.
- SEQ DD NO:13 is in proximity with genetic markers shown to consistently associate with hereditary prostate cancer.
- SEQ DD NO: 13 can be used for one or more of the following: i) linkage analysis of persons and or families to the hereditary prostate cancer disease region at Xq27-q28, ii) diagnostic assays for hereditary prostate cancer, and iii) developing therapeutics and or other treatments for hereditary prostate cancer. VII. Analysis of Polynucleotide Expression
- Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound (Sambrook and Russell, supra, ch. 7; Ausubel et al, supra, ch. 4).
- Analogous computer techniques applying BLAST are used to search for identical or related molecules in databases such as GenBank or LIFESEQ (Incyte). This analysis is much faster than multiple membrane-based hybridizations.
- the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.
- the basis of the search is the product score, which is defined as:
- the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
- the product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
- the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score.
- the product score represents a balance between fractional overlap and quality in a BLAST alignment.
- a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared.
- a product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other.
- a product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
- polynucleotides encoding ORGA are analyzed with respect to the tissue sources from which they are derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example DT). Each cDNA sequence is derived from a cDNA library constructed from a human tissue.
- Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassifiedmixed; or urinary tract.
- the number of libraries in each category is counted and divided by the total number of libraries across all categories.
- each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding ORGA.
- cDNA sequences and cDNA library/tissue information are found in the LIFESEQ database (Incyte, Palo Alto CA). VIII. Extension of ORGA Encoding Polynucleotides
- Full length polynucleotides are produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment.
- One primer is synthesized to initiate 5' extension of the known fragment, and the other primer is synthesized to initiate 3' extension of the known fragment.
- the initial primers are designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations is avoided.
- Selected human cDNA libraries are used to extend the sequence. If more than one extension is necessary or desired, additional or nested sets of primers are designed.
- PCR is performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.).
- the reaction mix contains DNA template, 200 nmol of each primer, reaction buffer containing Mg 2+ , (NH 4 ) 2 S0 4 , and 2- mercaptoethanol, Taq DNA polymerase (Amersham Biosciences), ELONGASE enzyme (Invitrogen), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C
- the parameters for primer pair T7 and SK+ are as follows: Step 1: 94°C, 3 min; Step 2: 94°C
- the concentration of DNA in each well is determined by dispensing 100 ⁇ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 ⁇ l of undiluted PCR product into each well of an opaque fluorimeter plate (Coming Costar, Acton MA), allowing the DNA to bind to the reagent.
- the plate is scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
- a 5 ⁇ l to 10 ⁇ l aliquot of the reaction mixture is analyzed by electrophoresis on a 1 % agarose gel to determine which reactions are successful in extending the sequence.
- the extended nucleotides are desalted and concentrated, transfened to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Biosciences).
- CviJI cholera virus endonuclease Molecular Biology Research, Madison WI
- sonicated or sheared prior to religation into pUC 18 vector
- the digested nucleotides are separated on low concentration (0.6 to 0.8%) agarose gels, fragments are excised, and agar digested with Agar ACE (Promega).
- Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells are selected on antibiotic-containing media, and individual colonies are picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb liquid media.
- the cells are lysed, and DNA is amplified by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C.
- DNA is quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries are reamplified using the same conditions as described above.
- Samples are diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Biosciences) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
- SNPs single nucleotide polymorphisms
- LIFESEQ database LIFESEQ database
- Sequences from the same gene are clustered together and assembled as described in Example DI, allowing the identification of all sequence variants in the gene.
- An algorithm consisting of a series of filters is used to distinguish SNPs from other sequence variants. Preliminary filters remove the majority of basecall enors by requiring a minimum Phred quality score of 15, and remove sequence alignment enors and enors resulting from improper trimming of vector sequences, chimeras, and splice variants.
- Clone enor filters use statistically generated algorithms to identify enors introduced during laboratory processing, such as those caused by reverse transcriptase, polymerase, or somatic mutation.
- Clustering enor filters use statistically generated algorithms to identify enors resulting from clustering of close homologs or pseudogenes, or due to contamination by non-human sequences.
- a final set of filters removes duplicates and SNPs found in immunoglobulins or T-cell receptors.
- Certain SNPs are selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze allele frequencies at the SNP sites in four different human populations.
- the Caucasian population comprises 92 individuals (46 male, 46 female), including 83 from Utah, four French, three deciualan, and two Amish individuals.
- the African population comprises 194 individuals (97 male, 97 female), all African Americans.
- the Hispanic population comprises 324 individuals (162 male, 162 female), all Mexican Hispanic.
- the Asian population comprises 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian. Allele frequencies are first analyzed in the Caucasian population; in some cases those SNPs which show no allelic variance in this population are not further tested in the other three populations.
- Hybridization probes derived from SEQ DD NO:8-14 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
- state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine triphosphate (Amersham Biosciences),
- the labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Biosciences). An aliquot containing 10 7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl ⁇ , Eco RI, Pst I, Xba I, or Pvu ⁇ (DuPont NEN).
- the DNA from each digest is fractionated on a 0.7% agarose gel and transfened to NYTRAN PLUS nylon membranes (Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared. XI. Microarrays
- the linkage or synthesis of anay elements upon a microanay can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing; see, e.g., Baldeschweiler et al, supra), mechanical microspotting technologies, and derivatives thereof.
- the substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena, M., ed. (1999) DNA Microarrays: A Practical Approach. Oxford University Press, London). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers.
- a procedure analogous to a dot or slot blot may also be used to anange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
- a typical anay may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements (Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31).
- Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microanay.
- Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR).
- the anay elements are hybridized with polynucleotides in a biological sample.
- the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
- a fluorescence scanner is used to detect hybridization at each anay element.
- laser desorbtion and mass spectrometry may be used for detection of hybridization.
- the degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microanay may be assessed.
- microarray preparation and usage is described in detail below.
- Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oligo-(dT) cellulose method.
- Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l oligo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences).
- the reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with GEMBRIGHT kits (Incyte).
- Specific control poly(A) + RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA.
- Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (BD Clontech, Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a
- Sequences of the present invention are used to generate array elements.
- Each anay element is amplified from bacterial cells containing vectors with cloned cDNA inserts.
- PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert.
- Anay elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g. Amplified anay elements are then purified using SEPHACRYL-400 (Amersham Biosciences).
- Purified array elements are immobilized on polymer-coated glass slides.
- Glass microscope slides (Coming) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments.
- Glass slides are etched in 4% hydrofluoric acid (VWR).
- Anay elements are applied to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference.
- 1 ⁇ l of the anay element DNA is loaded into the open capillary printing element by a high-speed robotic apparatus.
- the apparatus then deposits about 5 nl of array element sample per slide.
- Microanays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microanays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microanays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C followed by washes in 0.2% SDS and distilled water as before. Hybridization Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and
- the chamber containing the arrays is incubated for about 6.5 hours at 60° C
- the arrays are washed for 10 min at 45° C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0.1X SSC), and dried. Detection
- Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
- the excitation laser light is focused on the anay using a 20X microscope objective (Nikon, Inc., Melville NY).
- the slide containing the anay is placed on a computer-controlled X-Y stage on the microscope and raster- scanned past the objective.
- the 1.8 cm x 1.8 cm anay used in the present example is scanned with a resolution of 20 micrometers.
- a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) conesponding to the two fluorophores. Appropriate filters positioned between the anay and the photomultiplier tubes are used to filter the signals.
- the emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5.
- Each anay is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
- the sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration.
- a specific location on the anay contains a complementary DNA sequence, allowing the intensity of the signal at that location to be conelated with a weight ratio of hybridizing species of 1:100,000.
- the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
- the output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer.
- the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
- the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first conected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore 's emission spectrum.
- a grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid.
- the fluorescence signal within each element is then integrated to obtain a numerical value conesponding to the average intensity of the signal.
- the software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte). Array elements that exhibit at least about a two-fold change in expression, a signal-to-background ratio of at least about 2.5, and an element spot size of at least about 40%, are considered to be differentially expressed.
- SEQ DD NO: 11 and SEQ DD NO:12 showed tissue-specific expression as determined by microanay analysis.
- RNA samples isolated from a variety of normal human tissues were compared to a common reference sample. Tissues contributing to the reference sample were selected for their ability to provide a complete distribution of RNA in the human body and include brain (4%), heart (7%), kidney (3%), lung (8%), placenta (46%), small intestine (9%), spleen (3%), stomach (6%), testis (9%), and uterus (5%).
- the normal tissues assayed were obtained from at least three different donors. RNA from each donor was separately isolated and individually hybridized to the microanay.
- SEQ DD NO: 11 was increased by at least two-fold in brain striatum, brain amygdaloid body, brain hypothalamus and brain hippocampus tissue as compared to the reference sample. Therefore, SEQ DD NO: 11 can be used as a tissue marker for brain striatum, amygdaloid body, hypothalamus, and hippocampus tissue.
- SEQ DD NO: 12 was increased by at least two-fold in heart and liver tissue as compared to the reference sample. Therefore, SEQ DD NO: 12 can be used as a tissue marker for heart and liver tissue.
- Sequences complementary to the ORGA-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring ORGA.
- oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments.
- Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of ORGA.
- a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence.
- To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the ORGA-encoding transcript.
- ORGA expression and purification of ORGA is achieved using bacterial or virus-based expression systems.
- cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
- promoters include, but are not limited to, the trp-lac ⁇ tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
- Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
- Antibiotic resistant bacteria express ORGA upon induction with isopropyl beta-D- thiogalactopyranoside (IPTG).
- ORGA in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica calif ornica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus.
- AcMNPV Autographica calif ornica nuclear polyhedrosis virus
- the nonessential polyhedrin gene of baculoviras is replaced with cDNA encoding ORGA by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
- Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
- ORGA is synthesized as a fusion protein with, e.g., glutathione S- transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from cmde cell lysates.
- GST glutathione S- transferase
- FLAG FLAG or 6-His
- GST a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences).
- the GST moiety can be proteolytically cleaved from ORGA at specifically engineered sites.
- FLAG an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel et al. ⁇ supra, ch. 10 and 16).
- Purified ORGA obtained by these methods can be used directly in the assays shown in Examples XVD and XVJJJ, where applicable.
- ORGA function is assessed by expressing the sequences encoding ORGA at physiologically elevated levels in mammalian cell culture systems.
- cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression.
- Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ⁇ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation.
- 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected.
- Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector.
- Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; BD Clontech), CD64, or a CD64-GFP fusion protein.
- FCM Flow cytometry
- FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994; Flow Cytometry, Oxford, New York NY).
- ORGA The influence of ORGA on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding ORGA and either CD64 or CD64-GFP.
- CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG).
- Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY).
- mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding ORGA and other genes of interest can be analyzed by northern analysis or microanay techniques.
- ORGA amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a conesponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art.
- LASERGENE software DNASTAR
- Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art (Ausubel et al, supra, ch. 11).
- oligopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity (Ausubel et al, supra). Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant.
- Resulting antisera are tested for antipeptide and anti-ORGA activity by, for example, binding the peptide or ORGA to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
- Naturally occuning or recombinant ORGA is substantially purified by immunoaffinity chromatography using antibodies specific for ORGA.
- An immunoaffinity column is constructed by covalently coupling anti-ORGA antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Biosciences). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
- Media containing ORGA are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of ORGA (e.g., high ionic strength buffers in the presence of detergent).
- the column is eluted under conditions that disrupt antibody/ORGA binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and ORGA is collected.
- ORGA or biologically active fragments thereof, are labeled with 125 I Bolton-Hunter reagent (Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539).
- Candidate molecules previously anayed in the wells of a multi-well plate are incubated with the labeled ORGA, washed, and any wells with labeled ORGA complex are assayed. Data obtained using different concentrations of ORGA are used to calculate values for the number, affinity, and association of ORGA with the candidate molecules.
- ORGA molecules interacting with ORGA are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989; Nature 340:245-246), or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (BD Clontech).
- ORGA may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).
- ORGA is expressed in a mammalian cell line such as CHO by transforming with an eukaryotic expression vector encoding ORGA.
- Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art.
- Velocity centrifugation and equilibrium density centrifugation are used to separate cell nuclei, mitochondria, lysosomes, peroxisomes, endoplasmic reticulum, and Golgi vesicles into distinct fractions. The localization of ORGA within these fractions is determined using antibodies specific for ORGA.
- mitochondria are isolated as described (Conboy, J.G. et al. (1982) Biochem. Biophys. Res. Comm. 105:1-7), and fractionated into matrix and membrane by repeating four times a cycle of freezing in liquid nitrogen and rapid thawing.
- the localization of ORGA in submitochondrial fractions is examined using a fluorescent antibody specific for extra-membrane portions of ORGA.
- the peptide substrate, ORGA containing the recognition sequence for N-linked oligosaccharide addition, is first prepared by iodinating Asn-Lys (N-p-azidobenzoyl)-Thr-NH with [ 125 I]-labeled Bolten-Hunter reagent as described in Roos, J. et al. (1994; Proc. Natl. Acad.. Sci. U.S.A. 91:1485-1489).
- Oligosaccharyltransferase activity is then assayed in vitro as described in Roos, supra.
- Yeast cells are grown to logarithmic stage, and spheroplasts are then prepared by digestion of the cells with Zymolyase 100T (ICN Radiochemicals, Irvine, CA). The spheroplasts are then washed and resuspended in glycosylation buffer (50 mM Tris-HCl, pH 7.4, 10 mM MnCl, 1 mM
- a method to determine nucleic acid binding activity of ORGA involves a polyacrylamide gel mobility-shift assay.
- ORGA is expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector containing ORGA cDNA. The cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of ORGA. Extracts containing solubilized proteins can be prepared from cells expressing ORGA by methods well known in the art. Portions of the extract containing ORGA are added to [ 32 P]-labeled RNA or DNA. Radioactive nucleic acid can be synthesized in vitro by techniques well known in the art. The mixtures are incubated at 25 °C in the presence of RNase- and DNase-inhibitors under buffered conditions for 5-10 minutes.
- ORGA isomerase activity such as peptidyl prolyl cis/trans isomerase activity can be assayed by an enzyme assay described by Rahfeld, J.U. et al. (1994; FEBS Lett. 352:180-184).
- the assay is performed at 10°C in 35 mM HEPES buffer, pH 7.8, containing chymotrypsin (0.5 mg/ml) and ORGA at a variety of concentrations. Under these assay conditions, the substrate, Suc-Ala-Xaa-Pro-Phe-4-NA, is in equilibrium with respect to the prolyl bond, with 80- 95% in trans and 5-20% in cis conformation. An aliquot (2 ⁇ l) of the substrate dissolved in dimethyl sulfoxide (10 mg/ml) is added to the reaction mixture described above. Only the cis isomer is a substrate for cleavage by chymotrypsin.
- the product is cleaved by chymotrypsin to produce 4-nitroanilide, which is detected by its absorbance at 390 nm.
- 4- Nitroanilide appears in a time-dependent and a ORGA concentration-dependent manner.
- peptidyl prolyl cis -trans isomerase activity of ORGA can be assayed using a chromogenic peptide in a coupled assay with chymotrypsin (Fischer, G. et al. (1984) Biomed. Biochim. Acta 43:1101-1111).
- ORGA hydrolase activity is measured by the hydrolysis of appropriate synthetic peptide substrates conjugated with various chromogenic molecules in which the degree of hydrolysis is quantified by spectrophotometric (or fluorometric) absorption of the released chromophore (Beynon, R.J. and J.S. Bond (1994 ⁇ ) Proteolytic Enzymes: A Practical Approach. Oxford University Press, New York, NY, pp. 25-55).
- Peptide substrates are designed according to the category of protease activity as endopeptidase (serine, cysteine, aspartic proteases), aminopeptidase (leucine aminopeptidase), or carboxypeptidase (Carboxypeptidase A and B, procollagen C- proteinase).
- endopeptidase serine, cysteine, aspartic proteases
- aminopeptidase leucine aminopeptidase
- carboxypeptidase Carboxypeptidase A and B, procollagen C- proteinase
- ORGA activity is measured by its inclusion in coated vesicles.
- ORGA can be expressed by transforming a mammalian cell line such as COS7, HeLa, or CHO with an eukaryotic expression vector encoding ORGA.
- Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art.
- the cells are incubated for 48-72 hours after transformation under conditions appropriate for the cell line to allow expression and accumulation of ORGA and ⁇ - galactosidase.
- Transformed cells are collected and cell lysates are assayed for vesicle formation.
- a non- hydrolyzable form of GTP, GTP ⁇ S, and an ATP regenerating system are added to the lysate and the mixture is incubated at 37° C for 10 minutes.
- ORGA activity is measured by its ability to alter vesicle trafficking pathways.
- Vesicle trafficking in cells transformed with ORGA is examined using fluorescence microscopy. Antibodies specific for vesicle coat proteins or typical vesicle trafficking substrates such as transfenin or the mannose-6-phosphate receptor are commercially available. Various cellular components such as ER, Golgi bodies, peroxisomes, endosomes, lysosomes, and the plasmalemma are examined. Alterations in the numbers and locations of vesicles in cells transformed with ORGA as compared to control cells are characteristic of ORGA activity.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Toxicology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003295760A AU2003295760A1 (en) | 2002-11-26 | 2003-11-21 | Organelle-associated proteins |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42944502P | 2002-11-26 | 2002-11-26 | |
US60/429,445 | 2002-11-26 | ||
US43083302P | 2002-12-03 | 2002-12-03 | |
US60/430,833 | 2002-12-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004048518A2 true WO2004048518A2 (fr) | 2004-06-10 |
WO2004048518A3 WO2004048518A3 (fr) | 2004-11-25 |
Family
ID=32397200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/037278 WO2004048518A2 (fr) | 2002-11-26 | 2003-11-21 | Proteines associees aux organites |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2003295760A1 (fr) |
WO (1) | WO2004048518A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006065938A2 (fr) * | 2004-12-15 | 2006-06-22 | Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Marqueurs spanx-n specifiques du cancer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020091244A1 (en) * | 1997-12-31 | 2002-07-11 | Incyte Pharmaceuticals, Inc. | Human signal peptide-containing proteins |
-
2003
- 2003-11-21 AU AU2003295760A patent/AU2003295760A1/en not_active Abandoned
- 2003-11-21 WO PCT/US2003/037278 patent/WO2004048518A2/fr not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020091244A1 (en) * | 1997-12-31 | 2002-07-11 | Incyte Pharmaceuticals, Inc. | Human signal peptide-containing proteins |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006065938A2 (fr) * | 2004-12-15 | 2006-06-22 | Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Marqueurs spanx-n specifiques du cancer |
WO2006065938A3 (fr) * | 2004-12-15 | 2007-02-08 | Us Gov Health & Human Serv | Marqueurs spanx-n specifiques du cancer |
Also Published As
Publication number | Publication date |
---|---|
AU2003295760A1 (en) | 2004-06-18 |
WO2004048518A3 (fr) | 2004-11-25 |
AU2003295760A8 (en) | 2004-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030215822A1 (en) | Secreted proteins | |
WO2003063769A2 (fr) | Proteines associees aux vesicules | |
WO2003052049A2 (fr) | Molecules destinees a la detection et au traitement de maladies | |
WO2003002610A1 (fr) | Messagers extracellulaires | |
EP1444254A2 (fr) | Molecules destinees a la detection et au traitement de maladies | |
EP1244700A2 (fr) | Proteines circulant par l'intermediaire de vesicules | |
JP2004528002A (ja) | 分泌分子および輸送分子 | |
US20040053396A1 (en) | Molecules for disease detection and treatment | |
EP1292620A2 (fr) | Recepteurs nucleaires d'hormones | |
CA2417186A1 (fr) | Proteines associees aux microtubules et tubulines | |
WO2003094843A2 (fr) | Proteines d'adhesion cellulaire et a matrice extracellulaire | |
WO2004048518A2 (fr) | Proteines associees aux organites | |
WO2003046152A2 (fr) | Molecules permettant de detecter et de traiter des maladies | |
WO2004029218A2 (fr) | Recepteurs et proteines associees a une membrane | |
WO2002046413A2 (fr) | Molecules pour la detection et le traitement de maladies | |
US20030186379A1 (en) | Secretion and trafficking molecules | |
WO2004096160A2 (fr) | Proteines associees aux vesicules | |
WO2003093427A2 (fr) | Molecules utilisees dans la detection et le traitement de maladies | |
WO2003044171A2 (fr) | Proteines associees a des organites | |
WO2002031151A2 (fr) | Lipocalines | |
WO2002064792A2 (fr) | Molecules utiles pour detecter et traiter des maladies | |
US20040258679A1 (en) | Vesicle-associated proteins | |
WO2002092759A2 (fr) | Molecules permettant de detecter et traiter des maladies | |
WO2004044125A2 (fr) | Proteines associees a la vesicule | |
US20040102612A1 (en) | Alzheimer's disease-associated proteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase in: |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |