WO2004047156A1 - Position measurement method, position measurement device, exposure method, and exposure device - Google Patents

Position measurement method, position measurement device, exposure method, and exposure device Download PDF

Info

Publication number
WO2004047156A1
WO2004047156A1 PCT/JP2003/014828 JP0314828W WO2004047156A1 WO 2004047156 A1 WO2004047156 A1 WO 2004047156A1 JP 0314828 W JP0314828 W JP 0314828W WO 2004047156 A1 WO2004047156 A1 WO 2004047156A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
measurement
focus
exposure
wafer
Prior art date
Application number
PCT/JP2003/014828
Other languages
French (fr)
Japanese (ja)
Other versions
WO2004047156B1 (en
Inventor
Naoto Kondo
Tsuneyuki Hagiwara
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2004553221A priority Critical patent/JPWO2004047156A1/en
Priority to AU2003302066A priority patent/AU2003302066A1/en
Publication of WO2004047156A1 publication Critical patent/WO2004047156A1/en
Publication of WO2004047156B1 publication Critical patent/WO2004047156B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing

Definitions

  • the present invention is used in a position measuring method and a position measuring device for measuring position information in a normal direction of a substrate surface by irradiating a substrate with detection light, and in a manufacturing process of a device such as a semiconductor element or a liquid crystal display element.
  • An exposure method and an exposure apparatus are used in a position measuring method and a position measuring device for measuring position information in a normal direction of a substrate surface by irradiating a substrate with detection light, and in a manufacturing process of a device such as a semiconductor element or a liquid crystal display element.
  • Various devices such as semiconductor elements, liquid crystal display elements, and thin-film magnetic heads have been formed by applying planar technology, and photolithographic technology is indispensable for planar technology.
  • photolithographic technology is indispensable for planar technology.
  • a mask or reticle pattern image is exposed via a projection optical system onto a photosensitive substrate such as a wafer or a glass substrate coated with a photosensitive material such as a photoresist.
  • Light emitting exposure devices are used.
  • an exposure apparatus uses a projection optical system having a large numerical aperture (N.A.A.) and a small depth of focus in order to obtain a resolution required for forming a fine pattern. Therefore, in order to transfer a fine circuit pattern with high resolution, the surface of the photosensitive substrate must be accurately and reliably aligned with the image plane (within the depth of focus (DOF)) of the projection optical system. . Therefore, the exposure apparatus includes a focus detection system that detects the position and inclination of the surface of the photosensitive substrate in the optical axis direction of the projection optical system (the direction normal to the substrate surface), and a focus detection system based on the detected height and inclination. A focusing mechanism including an adjustment mechanism for adjusting the posture of the photosensitive substrate including the position of the photosensitive substrate surface is provided.
  • the detection light is irradiated on the wafer through the light transmission slit, that is, a slit image is formed on the wafer surface, and the slit image is reflected on the wafer surface and the light receiving aperture (slit) is formed.
  • the detection light (the re-formed slit image) on the light receiving slit is aligned with the optical axis direction of the focus detection system. It will be shifted laterally in the orthogonal direction.
  • the position of the projection optical system in the optical axis direction of the wafer surface is measured by detecting the shift amount, that is, the change in the position of the center of gravity of the light amount of the slit image (detection light). ing.
  • the numerical aperture of the projection optical system has been increased, and the depth of focus has been increasingly reduced. Therefore, the entire surface of the exposure area where the reticle pattern image is projected within the projection field of view of the projection optical system (that is, the exposure light irradiation area), so that the wafer surface falls within the depth of focus of the projection optical system.
  • CMP Chipi cal mechanical polishing
  • One cause of the focus error is thin-film multiple interference.
  • This thin film multiple interference is caused by the light reflected on the resist surface and the base, due to the resist film thickness, the structure of the base that is the device part, and the optical constants (refractive index and extinction coefficient) between the resist and the base. And the reflected light interferes.
  • Semiconductor devices, S i and the metal wiring portion are formed from S 1 0 2 Ya i N such as an interlayer insulating film, S i O 2, S i N have substantially same optical constants and the resist, Since it becomes a dielectric at the wavelength of the detection light for focus detection (for example, illumination light generated from a halogen lamp), multiple interference is likely to occur.
  • the ratio of the reflected light intensity on the base to the reflected light intensity on the wafer is relatively increased. Therefore, the position of the center of gravity of the light amount on the light receiving slit of the detection light reflected by the wafer is shifted laterally from the position of the center of gravity of the light amount when almost all of the light is reflected from the resist surface. turn into.
  • Another cause of the focus error is an adjustment error of the focus detection system. If the focus detection system is adjusted out of the ideal state, the light receiving slit position will deviate from the focal position.
  • a slit image is a set of point images, but the point image that should become a point image at the light receiving slit position has a spread, and if the light beam forming the point image has an intensity distribution due to the incident angle to the point image, the slit image also have an intensity distribution in the lateral displacement direction, which results in an error in the focus detection value.
  • the detection light of the focus detection system to be incident on the wafer surface, a light beam forming a point image is incident at a different incident angle according to the numerical aperture of the light transmitting lens, and as a result, the reflected light intensity is also higher. It has an intensity distribution due to the law of reflection and refraction, or the multiple interference of thin films described above. Therefore, a focus error that does not occur when a point image is formed occurs due to the angular distribution of the reflected light intensity in the entire slit light.
  • the detection light of the focus detection system is made incident at a large incident angle of 80 ° or more to increase the reflectivity on the resist surface or to use a light source with a wavelength bandwidth, such as a fluorescent lamp).
  • the focus error due to thin-film multiple interference is minimized by increasing the intensity distribution of wavelengths at which errors due to interference do not occur.
  • the optical system was strictly adjusted so that the focus error was smaller than the depth of focus of the projection optical system.
  • the focus optical system has a small numerical aperture of the incident light beam (for example, one hundredth level) so that the incident angle of the light beam forming the image is hardly changed, and the reflectivity is reduced. The difference was not made.
  • the reflectance is partially different in the projection area of the slit image by the focus detection system (that is, the irradiation area of the detection light), especially in the focus measurement direction (when the wafer is displaced in the focus direction) in that area.
  • the focus detection system that is, the irradiation area of the detection light
  • the reflected slit image also has an intensity distribution in the detection direction of the lateral displacement at the light receiving slit position. In this case, as shown in Fig. 15, the center of gravity of the slit image moves from the center according to the image intensity distribution, so that the surface position of the wafer in the focus direction is independent of the actual shape of the wafer surface.
  • the present invention has been made in consideration of the above points, and has a position measuring method and a position measuring method capable of performing a highly accurate focus detection by eliminating an adverse effect due to a distribution of a wafer surface state such as a reflectance distribution. It is an object to provide a measuring device, an exposure method, and an exposure device.
  • the present invention employs the following configuration corresponding to FIGS. 1 to 13 showing the embodiment.
  • the position measurement method of the present invention is a position measurement method that irradiates detection light to a measurement location on a substrate, receives reflected light reflected at the measurement location, and measures positional information of the substrate surface in a normal direction.
  • the position measuring device of the present invention is a position measuring device that irradiates detection light to a measurement location on a substrate, receives reflected light reflected at the measurement location, and measures positional information of the substrate surface in a normal direction. Caused by the reflectance distribution of the detection light at the measurement point on the substrate It has a storage device for storing an error component of the position information, and a correction device for correcting the position information in the normal direction based on the stored error component. Therefore, in the position measuring method and position measuring apparatus of the present invention, since the error component of the position information generated by the reflectance distribution of the detection light at the measurement location on the substrate is known in advance, the position of the substrate surface measured using the detection light is known.
  • the error component can be eliminated from the position information in the normal direction, and the substrate can be positioned at a predetermined position without being affected by the reflectance distribution.
  • the error component can be obtained by a method of calculating based on the intensity of the detection signal obtained when the detection light is received, or by actually measuring the surface shape of the board (for example, using a separate measurement device) and measuring the error. Method based on the result of comparing the measured surface shape with the design surface shape (for example, the difference between the two surface shapes), and when the substrate surface is flattened by CMP or the like, the measured position of the substrate surface A method of directly setting information as an error component can be employed.
  • An exposure method is an exposure method for exposing a mask pattern onto a substrate with exposure light, wherein the position information is measured by the position measurement method described above, and the surface position of the substrate is determined based on the measurement result. Is adjusted ⁇ ".
  • an exposure apparatus of the present invention is an exposure apparatus for exposing a pattern of a mask on a substrate with exposure light, wherein the position measurement apparatus (21) is used as an apparatus for measuring surface position information of the substrate. It is a feature.
  • the exposure method and exposure apparatus of the present invention surface position information of the substrate can be measured with high accuracy without adversely affecting the reflectance distribution of the substrate surface with respect to the detection light. Accurate positioning in the axial direction becomes possible. Therefore, for example, even when a projection optical system with a shallow depth of focus is used, the substrate surface can be adjusted within the depth of focus, and the necessary contrast (resolution) can be easily obtained. Also, even if the resulting focus error is such that the substrate surface falls within the depth of focus, the scan type (synchronous scan type) exposure apparatus does not perform unnecessary tilt correction, so synchronization accuracy is reduced. Exposure can be performed without deteriorating.
  • the exposure apparatus of the present invention is an exposure apparatus that projects a mask pattern onto a plurality of divided areas on a substrate by synchronously moving the mask and the substrate.
  • a surface position detector that detects the surface position of the substrate during synchronous movement by irradiating detection light onto the substrate and detecting the reflected light, and distribution information of the surface state within the partitioned area on the substrate, the synchronous movement direction
  • a control device for setting the surface position of the substrate based on the detection result of the surface position detection device and the distribution information stored in the storage device.
  • the surface position of the substrate is corrected based on the distribution information of the surface state in the partitioned area according to the synchronous movement direction. It can be set in the state where it was done. Therefore, the surface position of the substrate can be accurately positioned in the optical axis direction of the exposure light (the imaging plane of the projection optical system) without being adversely affected by the surface condition on the substrate or the synchronous movement direction. Therefore, for example, even when a projection optical system with a shallow depth of focus is used, the substrate surface can be adjusted within the depth of focus, and even when so-called scanning exposure is performed, unnecessary tilting of the wafer surface is performed. Since no correction is performed, exposure can be performed without deteriorating synchronization accuracy, and the required contrast (resolution) can be easily obtained.
  • FIG. 1 is a diagram showing a schematic configuration of an exposure apparatus according to one embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a wafer stage constituting the exposure apparatus.
  • FIG. 3 is a diagram showing a configuration of an oblique incidence type multipoint focus position detection system.
  • FIG. 4A is a diagram of a focus measurement point and an exposure region projected on a transfer surface of a wafer
  • FIG. 4B is a diagram showing a relationship between a shot region and an illumination region.
  • FIGS. 5A and 5B are diagrams each showing a positional relationship between a device pattern and a focus measurement point.
  • FIG. 6 is a diagram showing a control system of the wafer stage.
  • FIG. 7A is a diagram showing a positional relationship between a focus measurement point and an area having different reflectance
  • FIGS. 7B and 7C are diagrams showing received light intensities.
  • FIGS. 8A and 8B are diagrams showing the relationship between the position and the light intensity when the measurement intervals are different.
  • FIG. 9 is a flowchart for focus error measurement.
  • FIG. 10 is a diagram schematically showing a path and a measurement position where focus measurement is performed.
  • FIG. 11A is a diagram showing a sensor position during scanning, and
  • FIG. 11B is a diagram showing a sensing value at that time.
  • FIG. 12 is a flowchart showing another form of focus correction method.
  • FIG. 13 is a flowchart showing another form of focus correction method.
  • FIG. 14 is a flowchart of manufacturing a device using the exposure apparatus according to the embodiment of the present invention.
  • Fig. 15 is a diagram for explaining the relationship between the reflectance distribution and the focus error.
  • FIGS. 1 to 14 embodiments of a position measuring method, a position measuring device, an exposure method, and an exposure device according to the present invention will be described with reference to FIGS. 1 to 14.
  • FIG. 1 is a view showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention.
  • the XYZ rectangular coordinate system shown in FIG. 1 is set, and the positional relationship of each member will be described with reference to the ⁇ . ⁇ Rectangular coordinate system.
  • a reticle R as a mask having a predetermined pattern area formed thereon and a wafer W as a substrate having a photoresist coated on its upper surface are moved during scanning exposure.
  • the direction (synchronous movement direction) is set to the ⁇ axis direction
  • the direction perpendicular to the ⁇ axis in the plane of reticle R is set to the X axis direction
  • the normal direction of reticle R is set to the ⁇ axis direction.
  • the ⁇ ⁇ ⁇ rectangular coordinate system in Fig. 1 the ⁇ ⁇ plane is actually set as a plane parallel to the horizontal plane, and the ⁇ axis is set vertically upward.
  • an area where the exposure light EL is irradiated on the reticle R by an illumination optical system is referred to as an “illumination area”, and the projection optical system PL is conjugated to the illumination area via the projection optical system PL.
  • the area on the wafer W where the exposure light EL is irradiated is referred to as an “exposure area”.
  • the exposure apparatus (FIG. 1) of the present embodiment is a scanning exposure apparatus that transfers the pattern of the reticle R to a plurality of shot areas (partition areas) on the wafer W in a step-and-scan manner.
  • the above-mentioned illumination area is a rectangular area extending on the reticle R in the X-axis direction with the optical axis of the illumination optical system (coincident with the optical axis AX of the projection optical system PL) as a center.
  • the illumination optical system not shown includes a shaping optical system that makes the illumination condition of the reticle R variable, an optical integrator, and a blind (variable field stop) that defines an illumination area on the reticle R.
  • Exposure light EL generated from a light source (not shown) (such as an excimer laser) is applied to the above-mentioned illumination area with almost uniform illuminance.
  • the projection optical system PL generates an image of a part of the pattern of the reticle R arranged on the first surface (object surface) in the illumination area in the exposure area on the second surface (imaging plane).
  • the image is transferred onto the wafer W whose surface is substantially aligned with the second surface.
  • the relative movement of the reticle R with respect to the illumination area and the relative movement of the wafer W with respect to the exposure area are performed in synchronization. Is irradiated with the exposure light EL, and each shot area is irradiated with the exposure light EL via the projection optical system PL.
  • the reticle R is scanned at a constant speed V in the positive or negative direction of the Y-axis with respect to the illumination area, while the wafer W is simultaneously fixed in the negative or positive direction of the Y-axis. Scanning is performed at the speed V / 3 (1 / ⁇ is the reduction magnification of the projection optical system PL).
  • the reticle R is held on the reticle minute drive stage 1 by a vacuum chuck or the like.
  • the reticle minute drive stage 1 can be finely moved in the X-axis direction, the Y-axis direction, and the rotation direction (0 direction) in a plane perpendicular to the optical axis AX (XY plane) of the projection optical system PL. Performs reticle R position control with high accuracy.
  • the reticle minute drive stage 1 is mounted on a reticle Y drive stage 2 that can be driven in the Y-axis direction, and the reticle Y drive stage 2 is mounted on a reticle support 3.
  • a movable mirror 4 is disposed on the reticle micro-drive stage 1 and an interferometer 5 disposed on the reticle support 3 constantly moves the reticle micro-drive stage 1 in the X, Y, and S directions. Is monitored.
  • the positional information S 1 obtained by the interferometer 5 is supplied to the main control system 20.
  • FIG. 2 is a perspective view showing a schematic configuration of the wafer stage.
  • the wafer W is held on a Z-tilt stage 7 via a wafer holder 6 that performs vacuum suction, and each of the Z-tilt stage 7 is moved three Z-axis directions (for example, a voice coil module). , EI core, etc.) mounted on an XY stage 9 via 8a to 8c.
  • the Z tilt ⁇ ⁇ ⁇ ⁇ stage 7 can be moved in the Z-axis direction, and the driving amounts of the three actuators 8a to 8c can be reduced.
  • the Z tilt ⁇ ⁇ stage 7 is configured to be able to rotate around the Z axis within a predetermined range by using an actuary (not shown) different from the three actuaries 8a to 8c. .
  • the XY stage 9 is configured to move the Z-tilt stage 7 at a constant speed in the Y-axis direction and to move in steps in the X-axis and Y-axis directions by, for example, a linear motor.
  • the wafer stage is constituted by the wafer holder 6, the Z-tilt stage 7, the functions 8 a to 8 c, and the XY stage 9.
  • a movable mirror 10 is fixed on the Z tilt ⁇ ⁇ ⁇ ⁇ stage 7, and the position of the Z tilt 0 stage 7 in the X axis direction, the Y axis direction, and the ⁇ ⁇ ⁇ ⁇ direction is monitored by the interferometer 11 disposed outside,
  • the position information obtained by the interferometer 1 is also supplied to the main control system 20.
  • the moving mirror 10 X and the moving mirror 1 are placed on the Z tilt ⁇ ⁇ ⁇ ⁇ stage 7.
  • an interferometer 1IX and an interferometer 11Y are arranged at positions facing these movable mirrors 10X and 10Y, respectively.
  • a reflecting surface obtained by mirror-finishing a wafer stage for example, an “end surface (side surface) of the Z-tilt stage 7” may be used.
  • the interferometer 11 may be capable of measuring not only the amount of rotation about the Z axis, but also the amounts of rotation about the X axis and the Y axis.
  • the main control system 20 controls the positioning operation of the Z tilt stage 7 and the XY stage 9 via the wafer driving device 12 and the like, and controls the operation of the entire apparatus. Also, the correspondence between the wafer coordinate system defined by the coordinates measured by the interferometer 11 on the wafer W side and the reticle coordinate system defined by the coordinates measured by the interferometer 5 on the reticle R side is described.
  • a reference mark plate 13 is fixed on the Z tilt stage 7 and near the wafer W.
  • Various reference marks are formed on the reference mark plate 13.
  • the exposure apparatus of the present embodiment is provided above the reticle R, and includes reticle alignment systems 14 and 15 for simultaneously detecting the reference mark on the reference mark plate 13 and the mark on the reticle R. .
  • the reticle alignment systems 14 and 15 of the present embodiment are image processing systems that use the exposure light EL as the alignment light to detect the images of the two marks with an imaging probe, and that the reticle alignment from the reticle R Deflection mirrors 16 and 17 for guiding the detection light to each are movably arranged.
  • these deflection mirrors 16 and 17 are moved out of the optical path of the exposure light EL by mirror driving devices 18 and 19, respectively, under a command from the main control system 20. Will be evacuated.
  • An oblique incidence type multi-point focus detection system 21 is provided as a position measurement device (surface position detection device) for measuring the surface position of the wafer W.
  • FIG. 3 is a diagram showing a configuration of the oblique incidence type multipoint focus position detection system 21. As shown in FIG. In FIG. 3, some of the members shown in FIG. 1 are omitted to simplify the illustration.
  • the oblique incidence multi-point focus position detection system 21 shown in FIG. 3 includes illumination light having a wavelength different from that of the exposure light EL and not exposing the photoresist on the wafer W from an illumination light source (not shown). It is guided through the optical fiber bundle 25.
  • the illumination light emitted from the optical fiber bundle 25 illuminates a pattern forming plate 27 on which a plurality of slit-shaped opening patterns are formed via a condenser lens 26.
  • FIG. 4 is a diagram showing a state in which the aperture pattern formed on the pattern forming plate 27 is imaged on the transfer surface of the wafer W disposed below the projection optical system PL.
  • a rectangular area denoted by reference numeral EF indicates the above-described exposure area.
  • the image of the pattern of the reticle R is irradiated into the exposure area EF.
  • the pattern forming plate 27 is used to set the arrangement (number and positions) of the focus measurement points on the wafer W and the shape and size of the detection light irradiation area at the focus measurement points. is there.
  • seven focus measurement points are provided at predetermined intervals along the Y direction as the scanning direction (synchronous movement direction) and the X direction as the non-scanning direction (step movement direction) (49 in total).
  • the longitudinal direction of the aperture pattern image (slit image) AF projected on the focus measurement point is oblique to the X-axis and the Y-axis on the transfer surface of the wafer W in FIG. Is set to 45 degrees).
  • the aperture pattern image (slit image) AF may also be referred to as a focus measurement point. .
  • device patterns DP formed in a part of each shot area on the wafer W are usually arranged along the Y direction and the X direction. Therefore, when the slit image AF is arranged along the Y direction (or X direction), the slit image AF may partially overlap the device pattern DP formed on the base as shown in FIG. 5A. In this case, the presence of the device pattern DP causes a large difference in the reflectance of the detection light in the width direction (X direction) in the slit image AF over the entire length. Therefore, as shown in Fig. 5B, by inclining the slit image AF so that it is not parallel to the X or Y direction, the difference in reflectivity occurs only around the boundary of the device pattern DP. The resulting adverse effects can be minimized.
  • the illumination light (reflected light) reflected by the wafer W passes through the converging objective lens 31, the rotating diaphragm 32, and the imaging lens 33, and is re-transmitted to the light receiving surface of the light receiver 34.
  • the image of the pattern on the pattern forming plate 27 is re-imaged on the light receiving surface of the projected light receiver 34. Openings are arranged on the light receiving surface of the light receiver 34 in a shape similar to the pattern forming plate 27.
  • a light shielding plate (not shown) is provided.
  • the main control system 20 vibrates the rotational direction diaphragm 32 via the vibrating device 36, the position of the image projected on the light receiver 34 is determined by the opening formed in the light shielding plate.
  • Detection signals from many light receiving elements of the light receiver 34 are supplied to the signal processing device 35.
  • the signal processing device 35 synchronously detects each of the supplied detection signals with the drive signal of the vibrating device 36, and performs 49 focuses corresponding to the focus positions of the focus measurement points AF 11 to AF 77, respectively. Get the signal.
  • the focus measurement points AF31 to AF37 and AF51 to 57 are arranged at the periphery of the exposure area EF, and the measurement points AF41 to AF47 are exposed.
  • the measurement points AF11 to AF17, AF21 to AF27 and measurement points AF61 to AF67, AF71 to AF77 are located inside the area EF, and the exposure area EF It is located outside.
  • the shape of the area to be exposed using the measurement results at the measurement points AF61 to AF67, AF71 to AF77 This is for pre-measurement (pre-reading) of (position information in the Z-axis direction).
  • the measurement results at the measurement points AF11 to AF17 and AF21 to AF27 are used to determine the area to be exposed next. This is for measuring the shape in advance. Then, exposure is performed using measurement results at measurement points AF11 to AF17 and AF21 to AF27 or measurement results at measurement points AF61 to AF67 and AF71 to AF77.
  • the Jeha-W attitude control is performed on the part.
  • the signal processing device 35 performs various arithmetic processing such as least square approximation on the 49 focus signals (detection signals) to obtain the inclination angle of the transfer surface of the wafer W in the exposure area EF and the transfer thereof.
  • the focus position of the surface is determined and output to the main control system 20.
  • FIG. 6 is a diagram showing a control system of the wafer stage, and the same members as those shown in FIGS. 1 and 2 are denoted by the same reference numerals.
  • Z tilt ⁇ —Di7 is supported via three actuaries 8a-8c located at the bottom.
  • the actuators 8a to 8c are adjusted by the drive units 41a to 41c to adjust the amount of expansion and contraction of the actuators 8a to 8c, respectively.
  • the focus position, the scan direction tilt angle, and the non-scan direction tilt angle of the transfer surface of the wafer W mounted on the wafer holder 6 (not shown) provided above are set to desired values. Can be.
  • a height sensor that can measure the displacement in the focus direction of each actuator at a resolution of, for example, about 0.001 ⁇ m, is used.
  • c are attached, and the measurement results of the height sensors 38a to 38c are output to the main control system 20.
  • the driving units 41a to 41c are provided in the wafer driving device 12 shown in FIG.
  • the main control system 20 of the present embodiment scans the reticle R and the wafer W synchronously when transferring the image of the pattern formed on the reticle R to the transfer surface of the wafer W via the projection optical system PL. Therefore, various calculations are performed according to the shape of the transfer surface and the focus position obtained by the multipoint focus position detection system 21, and the attitude and the position in the Z direction of the wafer W are controlled based on the results.
  • the main control system 20 includes a tilt angle of the transfer surface of the wafer W output from the signal processing device 35, a focus position of the transfer surface, and a height sensor 3 8 a to 3 c Output from the actuator 8 a to 8 c by controlling the driving of the drive units 41 a to 41 c according to the displacement of the 8 a to 8 c, etc.
  • the focus position and attitude of the wafer W are controlled via c.
  • the main control system 20 is provided with a storage device 40 for storing various calculation results and the like.
  • the multipoint focus position detection system 21 is used while moving the wafer W in the XY plane in advance.
  • a procedure for adjusting the focus of the transfer surface of the wafer W will be described.
  • the position in the Z direction of the transfer surface is measured at each of a plurality of focus measurement points by the multi-point focus position detection system 21.
  • a focus error due to the reflectance distribution on the transfer surface is included as an error component. As shown in Fig.
  • the positions P1 and P4 on both ends of the slit are highly reflective.
  • the reflected light intensity distribution in the focus measurement direction in this part is in the focus measurement direction at position P2 in the low reflectance part LR. It becomes larger than the reflected light intensity distribution.
  • the reflected light intensity distribution in the focus measurement direction at the position P3 straddling both reflectance portions in the focus measurement direction is an intensity distribution according to the reflectance.
  • the light receiver 34 of the focus position detection system 21 detects the average reflected light intensity in the slit at the focus measurement point. Therefore, as shown in FIG.
  • the reflected light intensity distribution in 4 (actually in the entire direction orthogonal to the force measurement direction) is combined (added), and the center of gravity position is shifted.
  • the focus detection method of the focus position detection system 21 measures, for example, a detection signal (voltage value V) at the maximum amplitude position of the slit image oscillating with respect to the opening on the light receiver 34. These positions are two places when the slit image is located at both ends of the opening. Then, the difference between the two measured detection signals (voltage value V) is used as a focus signal. In this case, if there is an intensity distribution in the reflected light of the slit image, an error occurs in the voltage value at each maximum amplitude position, and an accurate focus signal cannot be obtained.
  • the focus detection method of the focus position detection system 21 uses, for example, the position of the center of gravity in the slit image as a focus signal, that is, in the case of the detection method using a line CCD, the displacement of the position of the center of gravity is directly considered as a focus error. It has become.
  • this focus error is measured in advance before exposure.
  • the focus error is measured based on the intensity of the detection signal obtained when the reflected light of the detection light applied to the focus measurement point is received.
  • a procedure for measuring a focus error caused by a reflectance distribution at each focus measurement point will be described first. .
  • the detection signal at one force measurement point detected by the focus position detection system 21 is the average reflected light intensity at the focus measurement point, and is the intensity of the reflected light in the focus measurement direction in the slit. It does not show a reflectance distribution.
  • the reflectance distribution can be obtained by measuring the slit image AF projection area at the focus measurement point several times using the detection light of a slit (extremely fine slit) having an infinitesimal width. It is difficult to equip such detection light.
  • FIG. 8A shows a state in which a slit image is projected on each of the three focus measurement points to measure the intensity of the reflected light.
  • the reflected light intensity is measured at three locations on the wafer W corresponding to the three focus measurement points in Fig. 8A. You may make it.
  • the number of measurement locations on the wafer at which reflected light intensity should be detected using at least one slit image AF is not limited to three, but may be two or four or more. From these three measurement results, the reflectance distribution r (x) is obtained by arithmetic processing such as the least square method.
  • the 'reflected light intensity I (X)' of a slit image having a width ⁇ in the focus measurement direction at a certain measurement position x is calculated as follows.
  • the reflected light intensity I (X) is the reflectance distribution! "(x), and there is no problem even if the reflectance distribution detected using the detection light having a finite width is used as the reflectance distribution detected using the detection light having an infinitesimal width.
  • the reflected light intensity I (X) in this case is calculated as follows.
  • the rate of change of the second-order component is smaller than the constant reflectance component c, considering that the reflectance on the resist surface (wafer surface) is large.
  • the reflected light intensity I (X) is calculated as follows.
  • the reflected light intensity I (X) of the second-order reflectance distribution is proportional to the reflectance distribution r (X). Therefore, there is no problem even if the reflectance distribution detected using the detection light having a finite width is used as the reflectance distribution detected using the detection light having an infinitesimal width. This is the same for the reflectivity distribution expressed by the third or higher order, and as a result, the intensity distribution of the detection signal (light intensity) of the focus position detection system 21 is calculated as follows. (C) It can be used for calculating the position of the center of gravity as a reflectance distribution on W. When a vibrating plate (vibrator) is used as in the focus position detecting system 21, the frequency component twice the vibration frequency of the vibrator becomes the focus detection signal. It can be obtained by detecting the amplitude.
  • the center of gravity c (X) of the reflected light from the focus measurement point AF can be calculated by the following equation (5) for calculating the center of gravity.
  • the focus error e (X) can be obtained by the following equation (6) at the angle of incidence ⁇ on the wafer surface based on the focus detection principle.
  • the main control system 20 stores the calculated focus error e (X) in the storage device 40 in association with the coordinates of the force measurement point (the measurement position of the reflected light intensity on the wafer W). Let it.
  • focus error measurement is basically performed at all focus measurement points.
  • measurement points at which focus measurement is actually performed during scanning exposure by synchronous movement in other words, irradiation of the wafer W Of the plurality of detection lights to be used, the detection light used for focus measurement during actual exposure is used.
  • the focus measurement points AF11 to AF17, AF21 to AF27,... ⁇ Among the multiple detection lights irradiated to AF71 to AF77, for convenience, as shown in FIG.
  • the focus measurement points AF 57 and AF 5 that are arranged on the shot area (block area) SA and around the exposure area EF 4, the description will be made assuming that the detection light emitted to AF 51, AF 31, AF 34, AF 37 (hereinafter, referred to as S1 to S6) is used.
  • the timing of performing the focus error measurement the head of the lot processing, the interval between the mouth processing, and the like can be selected.
  • focus error after EGA processing Endhansed Global Arrangement; see Japanese Patent Application Laid-Open No. 61-44249 and corresponding US Pat. No. 4,780,617) Measurement is performed, and the calculated focus error is used as a correction amount (offset value) for the image plane of the projection optical system PL.
  • the focus error measurement is to be performed between lot processes, take out the wafer to be measured (for example, a wafer in the next exposure processing lot) and set it in the exposure apparatus. After performing wafer alignment (EGA), focus error measurement is performed and the result is stored. Then, when the lot is subjected to exposure processing, the stored information is read out and reflected in the wafer posture adjustment including the focus position.
  • EGA processing Endhansed Global Arrangement
  • step ST1 when the EGA processing is completed for the wafer at the beginning of the lot in step ST0, it is first determined whether or not focus error measurement is to be performed (step ST1). Move to 0 exposure processing. Usually, a plurality of shot areas S A on which the pattern of the reticle R is exposed are sectioned on the wafer W in a grid pattern. Therefore, when executing focus error measurement, a shot area to be measured is selected (step ST2).
  • the reflectance distribution may be measured for a plurality of shot areas.
  • step ST3 ' the reflectance distribution is measured as the distribution information of the surface state of the wafer W using the detection signal of the focus position detection system 21.
  • the detection light irradiated to focus measurement points S1 to S6 shown in FIG. 4B is used.
  • the reflectance distribution is measured for the path where the focus measurement is performed during the synchronous movement between the reticle R and the wafer W.
  • FIG. 10 schematically shows a path K in which focus measurement is performed at the time of scanning exposure and measurement positions P11 to P14.
  • the measurement of the reflectance distribution is performed not only on the path K on which the focus measurement is performed, but also on the position P 1 on the wafer W where the focus measurement is performed;
  • the interval between the positions P 11 and P 14 in FIG. 10 is set to be equal to or less than the width of the shot area on the wafer in the scanning direction (Y direction).
  • the positions of the focus measurement points S1 to S6 are precisely adjusted, there is a possibility that a minute adjustment error may be included.
  • the path shown at the left end can measure the reflectance distribution at only one of the focus measurement points S3 and S4.
  • the reflectance distribution is measured at all the focus measurement points S1 to S6, and the reflectance distribution corresponding to the coordinate position of the wafer W is stored for each measurement point (step ST4). ).
  • step ST5 it is determined whether or not the measurement of the set number of times of averaging has been performed, and the above steps ST3 and ST4 are repeated until the measurement of the predetermined number of times is completed.
  • the reflectivity distribution measurement variations due to measurement reproducibility occur, so in order to reduce the variance due to the averaging effect, correction is performed by performing multiple reflectivity distribution measurements on one shot area SA Accuracy can be improved.
  • step ST6 it is determined whether or not all the measurements for the selected shot area have been completed, and the above steps ST3 to ST5 are repeated until the measurement is completed.
  • step ST7 A focus error is calculated corresponding to the coordinate position of the wafer (shot area) (step ST7). Based on the calculated focus error, a map is created in which the offset data at the time of scanning exposure corresponds to the coordinate position of the focus measurement point and stored (step ST8), and an image plane correction value at the time of exposure is created. (Step ST), and store it in the storage device 40.
  • the flow shifts to exposure processing (step ST10).
  • the reticle R and the wafer W are synchronously moved to transfer the image of the pattern formed on the reticle R to the transfer surface of the wafer W.
  • the position and the Z position of the wafer W are controlled according to the shape of the transfer surface of the wafer W calculated above while measuring the focus position of the transfer surface at the focus measurement point using the position detection system 21. I do.
  • the main control system 20 determines the focus error stored in the storage device 40 Select the focus error (map of) measured at the focus measurement point S3, and correct the measurement result using the selected focus error. That is, the main control system 20 corrects the measurement value input during the synchronous movement using the focus error at the force measurement point at which the measurement value was obtained. As a result, it is possible to eliminate an adjustment error when setting a focus measurement point from the measurement result.
  • the main control system 20 serves as a correction device, and corrects the measurement results of the multipoint focus position detection system 21 by the focus error (offset data) stored in the storage device 40, and performs the corrected measurement.
  • I calculates the inclination angle and the focus position of the surface. For example, as shown in Fig. 11 (a), when a wafer having an originally uniform surface position is scanned by the focus measurement point S3, a low reflection area LR is formed between the position SP1 and the position SP2. If there is, the measurement result (sensing value) at the focus measurement point S3 includes a focus error as shown in FIG. 11B. Therefore, the focus error stored in advance By correcting the measurement result using the difference, it is possible to obtain surface position information according to the actual surface position (surface state) as shown by the two-dot chain line in the figure.
  • the main control system 20 adjusts the surface position of the wafer W via the Z tilt ⁇ ⁇ ⁇ ⁇ stage 7 by individually driving the actuators 8 a to 8 c based on the obtained results. Can be.
  • the main control system 20 uses the focus error corresponding to the measurement point with respect to the measurement result of the multipoint focus position detection system 21.
  • the position on the wafer where the focus position was actually measured at the focus measurement point (actual measurement position) and the position on the wafer corresponding to the stored focus error (error measurement position) are equal to one another. If the actual measurement position and the error measurement position do not match, the focus error at the position closest to the actual measurement position is used.
  • the wafer W is moved stepwise to start the scanning exposure of the next shot area.
  • the scanning exposure and the step movement are repeatedly executed, and when the pattern of the reticle R is transferred to all the shot areas on the wafer W, the exposure processing of the wafer W is completed.
  • the emissivity distributions respectively measured at different positions on the wafer W (shot area) in the scanning direction (Y direction) corresponding to the focus measurement points used in the scanning exposure in advance. Since the focus error is calculated from the data, the error component due to the reflectance distribution can be eliminated and corrected when the focus position is measured for the wafer W, and the surface position of the wafer W can be easily projected. It can be positioned on the image plane of the system PL. Therefore, in the present embodiment, even when a projection optical system having a shallow depth of focus is used, high-resolution exposure processing can be realized by accurate focusing adjustment.
  • the focus error is measured based on the intensity of the detection signal at the time of receiving the detection light in the focus measurement, it is not necessary to separately install a reflectance distribution measuring device, and the device is compact. It can contribute to cost reduction and cost reduction.
  • the focus error is measured in advance for the path for performing the focus measurement during the synchronous movement of the reticle R and the wafer W (at the time of actual exposure), so that the focus error measurement is required. The time can be shortened, and it can contribute to the improvement of production efficiency.
  • the focus error is measured for each of the plurality of focus measurement points, and a map is created and stored for each measurement point. (Detection light used when performing focus measurement) By performing correction based on the results obtained, it is possible to eliminate the adverse effects of adjustment errors when setting the position of the focus measurement point, and to achieve more accurate focus adjustment Can be implemented.
  • the focus measurement point AF and the measurement points at positions spaced from the measurement point AF are measured.
  • AFL and AFR are used to measure the intensity of the reflected light.
  • the detection light overlaps with each other (a pitch smaller than the slit width in the focus measurement direction).
  • It may be configured to measure the intensity of reflected light at a plurality of points. At this time, for example, by moving the wafer W in the focus measurement direction with respect to the focus measurement point AF, the intensity of the reflected light is measured at a plurality of points including the measurement point AF in FIG. 8B.
  • the reflectance distribution r ( X) can be used as the second order to calculate the light intensity centroid.
  • the synchronous movement direction is not particularly mentioned.
  • timing there are two types of timing: a timing at which a coordinate position is obtained by an interferometer or the like; and a timing at which the attitude and the Z position of the wafer W are controlled. Gaps may occur.
  • the measurement result of the reflectance distribution may be different depending on the synchronous movement direction. Therefore, when measuring the reflectance distribution and the focus error, the reflectance distribution and the focus error corresponding to the coordinate position for each synchronous movement direction are the same as when a map is created for each focus measurement point. It is preferable that a map corresponding to the synchronous movement direction be called up when the focus is adjusted, and that the focus measurement value is corrected using the offset value included in the map.
  • the reflectance distribution ′ is measured at a plurality of positions (four in this example) that are discretely set on a path K parallel to the scanning direction (Y direction) in the shot area.
  • the number of measurement positions of the reflectance distribution on the path K may be arbitrary.For example, by moving the wafer in the scanning direction at a pitch substantially equal to the width of the above-described slit image AF in the scanning direction, The reflectivity distribution may be measured over almost the entire shot area in the scanning direction.
  • the reflectivity distribution of the wafer surface is calculated and measured by receiving the reflected light of the detection light relating to the focus measurement, but the surface shape of the wafer W is measured in advance, and the result is measured. It can also be used to obtain a focus error distribution caused by the reflectance distribution.
  • the surface shape of the wafer W is measured using the focus position detection system 21 described above (step ST 11), and the measured surface shape and the focus position of the capacitance sensor and the like are measured.
  • Surface measured in advance using a measuring instrument different from detection system 21 It is also possible to set the offset value as a focus error based on the reflectance distribution using the difference from the shape (step ST 12). In this case, if the focus measurement result is corrected using the set offset value (step ST13), an error component due to the reflectance distribution can be eliminated as in the above embodiment.
  • step ST 21 After performing the flattening process (step ST 21), when the focus measurement is performed using the focus position detection system 21 (step ST 22), the measured values (position information, surface position information) Can be set as the focus error (step ST23).
  • the flatness of the wafer is not actually measured, if the wafer is not flat, an error is included in the focus error distribution.
  • a threshold value corresponding to the flatness is set, and the focus measurement result changes by more than the threshold value. If is included, correction may be performed assuming that a focus error due to the reflectance distribution exists.
  • the flatness of the wafer may be measured in advance, and the focus error distribution previously calculated may be corrected using the measured flatness.
  • the calculated focus error distribution includes an error caused by the tendency. Therefore, for example, it is preferable to set the shot area substantially parallel to the reference plane before the focus measurement, or to subtract an error caused by the inclination from the focus error distribution.
  • the allowable value of the tilt can be set in consideration of the depth of focus of the projection optical system PL. Therefore, this allowable value is set as a threshold, and when the inclination of the wafer W at the time of focus adjustment is calculated from the measurement result of the focus position detection system 21, if the threshold is exceeded, the focus position is detected. Assuming that the measurement result of the system 21 includes an error component due to the reflectance distribution, a procedure for performing the correction may be adopted. Note that, in the above-mentioned Japanese Patent Application Laid-Open No. 2002-270704, the step information in the shot area SA is measured in advance, and the focus adjustment (exposure) during the exposure process is performed according to the state. Operation) A technique for selecting a mode from a plurality of modes is disclosed.
  • the above technique is applied, and the step state is also measured when measuring the reflectivity distribution in the shot area (when measuring the reflectivity map).
  • a leveling correction map may be created.
  • This focus / leveling correction map can be stored in the storage device 40 in the same manner as the above-described map based on the focus error generated by the reflectance distribution (hereinafter, the reflectance map). Good. It is preferable that the reflectance map and the focus / leveling correction map are created and stored for each synchronous movement direction (scan direction; + Y direction and -Y direction) when exposing the shot area.
  • the focus / leveling correction map contains a focus error caused by the reflectance distribution
  • the value of the reflectance map is subtracted from the value of the focus / leveling correction map at each focus measurement point to obtain the true value.
  • the focus and repelling correction map can be obtained.
  • focus leveling correction is performed based on the true value map.
  • the shot area existing in the wafer W is a normal shot area, an edge shot partially overlapping the peripheral edge of the wafer, a TEG shot as a dummy shot for various measurements, and the like, and focus errors and steps due to reflectance distribution.
  • the respective numbers of the reflectance map and the focus / leveling correction map that can be stored in the exposure apparatus correspond to the process program, for example, eight types of shot areas, and this corresponds to the synchronous movement direction ( (Scanning direction), there are two types of each, so the total is eight pairs (16). This number can be further increased according to the type of the shot area.
  • the control modes of the focusing operation according to the leveling correction map include, for example, a first mode in which the height position of the wafer holder 6 is controlled so that an intermediate portion of the step coincides with the focal plane, and a predetermined tolerance. It is conceivable that a second mode in which a stepped portion exceeding the value is not driven by using the focus position detection system 21 is performed. It is preferable that the operator can switch and set these modes as appropriate.
  • the focus position detection system 21 is described as a configuration using a vibrator. However, the present invention is not limited to this. For example, an image processing method using a CCD, a method using a polarization modulation element, or the like. Alternatively, the focus position (and the reflectance distribution) may be measured by another detection principle.
  • the wafer W is moved during the focus adjustment so that the wafer surface substantially matches the image forming plane of the projection optical system PL in the above-described exposure area EF.
  • the imaging plane of the projection optical system PL may be moved by, for example, driving at least one optical element of the projection optical system PL.
  • the above-described focus error is obtained by using the multipoint focus position detection system 21 arranged at the exposure position where the pattern of the reticle R is transferred via the projection optical system PL.
  • the wafer stage has two independently movable wafer stages, and a wafer stage is arranged at each of an exposure position and a measurement position (alignment position) at which a mark is detected by a wafer alignment system.
  • the present invention may be applied to an exposure apparatus capable of performing the operation and the measurement operation substantially in parallel, and the above-described focus error may be obtained using a detection system arranged at the measurement position.
  • the detection system arranged at the measurement position for example, one having the same configuration as that of the above-described multipoint focus position detection system 21 can be used.
  • the aforementioned reflectance distribution and focus position were measured at the measurement position using the detection system, and the measurement was performed based on the focus error obtained from the reflectance distribution.
  • the focus position is corrected, and in the exposure processing of the wafer transferred from the measurement position to the exposure position, the focus adjustment is performed using the corrected focus position.
  • the above-mentioned multi-point focus position detection system 21 need not be provided at the exposure position. Even if the Z-tilt stage 7 is driven using an interferometer that measures the distance in the Z-axis direction between the PL (or a gantry holding it) and the wafer stage (for example, Z-tilt stage 7) Good.
  • the reflectance distribution may be measured at the measurement position, and the focus position measured at the exposure position may be corrected using a focus error obtained from the reflectance distribution to execute the exposure processing.
  • the focus position is measured at the measurement position using the detection system, and the measurement result is directly used as a “focus error” and transferred from the measurement position to the exposure position.
  • focus adjustment is performed using the focus error.
  • the reflectance distribution or the focus position can be measured in parallel with the exposure operation. Therefore, the measurement can be performed multiple times without lowering the throughput of the exposure apparatus. That is, the accuracy of focus adjustment can be improved.
  • the twin wafer stage type exposure apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-214 783 and corresponding US Pat. No. 6,341,073 or International Publication WO98 Z 40791 and the corresponding U.S. Patent Nos. 6,262,796, etc., to the extent permitted by the national laws of the designated or designated elected States in this International Application.
  • the disclosure of that US patent is incorporated herein by reference.
  • the reflectivity distribution of the wafer is measured using the multipoint focus position detection system 21.
  • a sensor detection system
  • the reflectivity distribution may be measured using another measuring device or the like, and the focus error may be calculated based on the measured reflectivity distribution.
  • the substrate of the present embodiment includes not only a semiconductor wafer W for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or an original mask or reticle used in an exposure apparatus. (Synthetic quartz, silicon wafer) etc. are applied.
  • the reticle R and the wafer W It can also be applied to a projection exposure apparatus (stepper) of the 'and' repeat type, in which the pattern of the reticle R is exposed while the wafer is in the upright position, and the wafer W is sequentially moved in steps.
  • the present invention is also applicable to a step-and-stitch type exposure apparatus that transfers at least two patterns on a wafer W while partially overlapping each other.
  • the present invention discloses a mirror projection aligner, for example, disclosed in International Publication WO 99/49504, which is filled with a liquid (eg, pure water) between a projection optical system PL and a wafer. It can be applied to an immersion type exposure apparatus and the like.
  • a liquid eg, pure water
  • the type of exposure apparatus is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a wafer W, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging element ( The present invention can be widely applied to an exposure apparatus for manufacturing a reticle, a mask, or the like.
  • emission lines (g-line (436 nm), h-line (404.nm), i-line (365 nm)) and KrF excimer laser (248 nm ), A r F excimer laser (1 93 nm), F 2 laser (1 57 eta m), eight 1 "2, single-THE (1 26 nm) not only, X-rays, or electron beam or ion beam over ⁇ etc.
  • a thermionic emission type lanthanum hexaporite (L a B 6 ) or tantalum (T a) can be used as an electron gun.
  • a harmonic such as a YAG laser or a semiconductor laser may be used.
  • a single-wavelength laser in the infrared or visible range emitted from a DFB semiconductor laser or fiber laser is amplified by a fiber-amplifier doped with, for example, erbium (or both erbium and yttrium), and a nonlinear optical crystal is used.
  • a harmonic converted to ultraviolet light by using the above method may be used as exposure light. Assuming that the oscillation wavelength of a single-wavelength laser is in the range of 1.544 to 1.553 xm, the 8th harmonic in the range of 93 to 194 nm, that is, an ArF excimer laser substantially the same wavelength and name Ru ultraviolet light is obtained, when the oscillation wavelength 1. 57 to 1.
  • a soft X-ray region having a wavelength of about 5 to 50 nm generated from a laser plasma light source or SOR, for example, EUV (Extreme Ultra Violet) having a wavelength of 13.4 nm or 11.5 nm Light may be used as exposure light.
  • EUV exposure apparatuses use a reflective reticle, and the projection optical system is a reduction system composed of only a plurality of (for example, about 3 to 6) reflective optical elements (mirrors). It has become.
  • the projection optical system PL may be not only a reduction system but also an equal magnification system or an enlargement system. Further, the projection optical system PL may be any one of a refraction system, a reflection system, and a catadioptric system.
  • the wavelength of the exposure light is about 200 nm or less
  • the light path through which the exposure light passes may be purged with a gas that absorbs the exposure light little (an inert gas such as nitrogen or helium). desirable.
  • an electron optical system including an electron lens and a deflector may be used as the optical system. It goes without saying that the optical path through which the electron beam passes is in a vacuum state.
  • each stage may be of a type that moves along a guide or a guideless type that has no guide.
  • a planar unit that drives each stage by electromagnetic force with a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil may be used.
  • one of the magnet unit and the armature unit may be connected to the stage, and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stage.
  • the reaction force generated by the movement of the wafer stage is not transmitted to the projection optical system PL as described in Japanese Patent Application Laid-Open No. 8-166645 (US Pat. No. 5,528,118). It may be mechanically released to the floor (ground) using a room member.
  • the reaction force generated by the movement of the reticle stage 2 is not transmitted to the projection optical system PL as described in JP-A-8-330224 (US Pat. No. 5,874,820). It may be mechanically released to the floor (ground) using a frame member.
  • the exposure apparatus according to the embodiment of the present invention performs various subsystems including each component listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical The system will be adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from the various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled.
  • microdevices such as semiconductor devices have a step 201 for designing the function and performance of the microdevice, a step 202 for fabricating a mask (reticle) based on this design step, Step 2 of manufacturing a wafer from a silicon material Step 2 of exposing a reticle pattern to the reticle pattern by the exposure apparatus of the above-described embodiment 4 Step 4 of device assembling step (Dicing step, bonding step, package step It is manufactured through 205, inspection step 206, etc.
  • the present invention when measuring the position information of the substrate, it is possible to eliminate and correct the error component caused by the reflectance distribution, and to easily determine the surface position of the substrate by the projection optical system. Positioning on the image plane becomes possible. Therefore, according to the present invention, even when a projection optical system having a shallow depth of focus is used, high-resolution exposure processing can be realized by accurate focusing adjustment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Highly-accurate focus adjustment is performed by eliminating adverse affect attributed to reflectivity distribution. Detection light is applied to a measurement position on a substrate and reflected light reflected from the measurement position is received, thereby measuring position information in the normal direction of the substrate surface. The position measurement method includes a step for measuring an error component of the position information caused by reflectivity distribution of the detection light at the measurement position on the substrate and a step for correcting the position information in the normal direction according to the error component measured.

Description

明細書 位置計測方法、 位置計測装置及び露光方法並びに露光装置 技術分野  Description Position measurement method, position measurement device, exposure method, and exposure device
本発明は、 基板に検知光を照射することで基板表面の法線方向の位置情報を計 測する位置計測方法及び位置計測装置、 並びに半導体素子や液晶表示素子などの デバイスの製造工程で使用される露光方法及び露光装置に関する。  INDUSTRIAL APPLICABILITY The present invention is used in a position measuring method and a position measuring device for measuring position information in a normal direction of a substrate surface by irradiating a substrate with detection light, and in a manufacturing process of a device such as a semiconductor element or a liquid crystal display element. An exposure method and an exposure apparatus.
本出願は、 日本国特許出願 2 0 0 2— 3 3 6 7 7 8号を基礎としており、 その 内容を本明細書に組み込む。 背景技術  This application is based on Japanese Patent Application No. 2002-33036778, the contents of which are incorporated herein. Background art
半導体素子、 液晶表示素子、 又は薄膜磁気ヘッド等の各種デバイスは、 従来か らプレーナ技術を応用して形成されており、 プレーナ技術にはフォトリソグラフ ィ技術が必要不可欠である。 これらのデバイスをフォトリソグラフィ技術を用い て製造する際に、 マスク又はレチクルのパターン像を投影光学系を介して、 フォ トレジスト等の感光材料が塗布されたウェハ又はガラス基板等の感光基板上に露 光する露光装置が使用されている。  Various devices such as semiconductor elements, liquid crystal display elements, and thin-film magnetic heads have been formed by applying planar technology, and photolithographic technology is indispensable for planar technology. When manufacturing these devices using photolithography technology, a mask or reticle pattern image is exposed via a projection optical system onto a photosensitive substrate such as a wafer or a glass substrate coated with a photosensitive material such as a photoresist. Light emitting exposure devices are used.
一般的に露光装置は、 微細なパターンを形成するうえで必要な解像度を得るた め、 開口数 (N . A . ) が大きく焦点深度の浅い投影光学系が使用される。 よつ て、 微細な回路パターンを高い解像度で転写するためには、 感光基板の表面を投 影光学系の結像面 (焦点深度 (D O F ) 内) により正確、 且つ確実に合わせ込む 必要がある。 このため、 露光装置は、 投影光学系の光軸方向 (基板表面の法線方 向) の感光基板表面の位置と傾きとを検出するフォーカス検出系と、 検出された 高さ及び傾きに基づいて感光基板表面の位置を含めた感光基板の姿勢を調整する 調整機構から構成される合焦機構を備えている。  In general, an exposure apparatus uses a projection optical system having a large numerical aperture (N.A.A.) and a small depth of focus in order to obtain a resolution required for forming a fine pattern. Therefore, in order to transfer a fine circuit pattern with high resolution, the surface of the photosensitive substrate must be accurately and reliably aligned with the image plane (within the depth of focus (DOF)) of the projection optical system. . Therefore, the exposure apparatus includes a focus detection system that detects the position and inclination of the surface of the photosensitive substrate in the optical axis direction of the projection optical system (the direction normal to the substrate surface), and a focus detection system based on the detected height and inclination. A focusing mechanism including an adjustment mechanism for adjusting the posture of the photosensitive substrate including the position of the photosensitive substrate surface is provided.
この種の露光装置では、 例えば特開平 1 0— 2 7 0 3 0 3号公報及び対応する 米国特許第 6 4 5 5 2 1 4号に開示されているように、 ウェハに対して垂直では ない任意の角度をもった斜め方向から焦点検出用のスリット状検知光をウェハに 入射させ、 ウェハ表面からの反射光を受光部となる検出器に導く、 いわゆる斜入 射反射型のフォーカス検出系 (位置計測装置) が多く用いられている。 このフォ —カス検出系では、 送光スリットを介して検知光がウェハに照射される、 即ちゥ ェハ表面にスリット像が形成され、 そのスリツト像がウェハ表面で反射し受光用 の開口 (スリット形状) に再結像されるが、 ウェハ表面の位置が法線方向に変位 したときに、 受光スリット上で検知光 (再結像されたスリット像) がフォ一カス 検知系の光軸方向と直交する方向に横ずれすることになる。 そのため、 この横ず れ量を、 つまりスリット像 (検知光) の光量重心の位置の変化を検知することで ウェハ表面の投影光学系の光軸方向の位置、 すなわちフォーカス方向の位置を計 測している。 In this type of exposure apparatus, for example, as disclosed in Japanese Patent Application Laid-Open No. H10-270703 and the corresponding U.S. Pat. No. 6,455,214, it is not perpendicular to the wafer. Slit-like detection light for focus detection is applied to the wafer from an oblique direction with an arbitrary angle. A so-called oblique reflection type focus detection system (position measurement device), which makes incident light and guides reflected light from the wafer surface to a detector serving as a light receiving unit, is often used. In this focus detection system, the detection light is irradiated on the wafer through the light transmission slit, that is, a slit image is formed on the wafer surface, and the slit image is reflected on the wafer surface and the light receiving aperture (slit) is formed. However, when the position of the wafer surface is displaced in the normal direction, the detection light (the re-formed slit image) on the light receiving slit is aligned with the optical axis direction of the focus detection system. It will be shifted laterally in the orthogonal direction. Therefore, the position of the projection optical system in the optical axis direction of the wafer surface, that is, the position in the focus direction, is measured by detecting the shift amount, that is, the change in the position of the center of gravity of the light amount of the slit image (detection light). ing.
ところで、 近年、 半導体デバイスの更なる微細化に伴い、 投影光学系の開口数 が大きくなり焦点深度が益々小さくなつている。 そのため、'投影光学系の投影視 野内でレチクルのパターン像が投影される露光領域 (即ち、 露光光の照射領域) の全面で, ウェハ表面が投影光学系の焦点深度内に収まるようにウェハ表面の平 坦度を向上させる様々な努力がなされている。 例えば、 ウェハに対しては、 C M P (Chemi ca l Mechani cal Po l i sh ing) と称される表面の平坦化処理を施すことで、 レジスト塗布時のウェハ表面の平坦度を向上させることが可能である。 ところが、 このように平坦度向上により表面形状に変化がないにも拘わらず、 種々の要因に よりフォーカス検出値に誤差 (以下、 フォーカス誤差と称する) が含まれること がある。  By the way, in recent years, with further miniaturization of semiconductor devices, the numerical aperture of the projection optical system has been increased, and the depth of focus has been increasingly reduced. Therefore, the entire surface of the exposure area where the reticle pattern image is projected within the projection field of view of the projection optical system (that is, the exposure light irradiation area), so that the wafer surface falls within the depth of focus of the projection optical system. Various efforts have been made to improve the level of public transport. For example, by performing a wafer flattening process called CMP (Chemi cal mechanical polishing), it is possible to improve the flatness of the wafer surface during resist coating. is there. However, despite the fact that there is no change in the surface shape due to the improvement in flatness, an error (hereinafter referred to as a focus error) may be included in the focus detection value due to various factors.
このフォーカス誤差を生じさせる一因としては、 薄膜多重干渉が挙げられる。 この薄膜多重干渉は、 レジストの膜厚、 デバイス部分である下地の構造、 レジス 卜と下地との光学定数 '(屈折率、 消衰係数) に起因して、 レジスト表面での反射 光と下地からの反射光とが干渉するものである。 半導体デバイスは、 S iや金属 配線部分、 層間絶縁膜としての S 1 0 2ゃ i N等から形成されているが、 S i O 2、 S i Nはレジストとほぼ同じ光学定数を有し、 フォーカス検出用の検知光 (例 えば、 ハロゲンランプから発生する照明光) の波長において誘電体となるため多 重干渉を起こしやすくなる。 特に、 下地に反射率の高い部分 (例えば、 金属配線 など) が存在すると、 ウェハでの反射光強度に占める下地での反射光強度の割合、 即ちレジスト表面での反射光強度に対する下地での反射光強度の比率が相対的に 増大することになる。 このため、 ウェハで反射される検知光の受光スリット上で の光量重心位置は、 ほとんど全てがレジスト表面からの反射光のみの場合におけ る光量重心位置から横ずれし、 これがフォーカス位置の検出誤差となってしまう。 また、 上記フォーカス誤差を生じさせる他の一因としては、 フォーカス検出系 の調整誤差が挙げられる。 フォーカス検出系が理想状態から外れて調整されると、 受光スリット位置が焦点位置からずれてしまう。 このため、 スリット像は点像の 集合であるが、 受光スリット位置において点像となるべきものが拡がりを持ち、 点像を形成する光線に点像への入射角度による強度分布があればスリット像も横 ずれ方向に強度分布を持ってしまい、 これがフォーカス検出値の誤差となってし まう。 さらに、 ウェハ表面に入射させるフォーカス検出系の検知光は、 点像を形 成する光線が送光レンズの開口数に応じて入射角を変えて入射しており、 結果と して反射光強度も反射 ·屈折の法則、 または上述した薄膜多重干渉により強度分 布を持ってしまう。 そのため、 スリット光全体で反射光強度の角度分布により、 点像が結像されている場合には発生しないフォーカス誤差が生じてしまう。 One cause of the focus error is thin-film multiple interference. This thin film multiple interference is caused by the light reflected on the resist surface and the base, due to the resist film thickness, the structure of the base that is the device part, and the optical constants (refractive index and extinction coefficient) between the resist and the base. And the reflected light interferes. Semiconductor devices, S i and the metal wiring portion, are formed from S 1 0 2 Ya i N such as an interlayer insulating film, S i O 2, S i N have substantially same optical constants and the resist, Since it becomes a dielectric at the wavelength of the detection light for focus detection (for example, illumination light generated from a halogen lamp), multiple interference is likely to occur. In particular, if there is a highly reflective portion (for example, metal wiring, etc.) on the base, the ratio of the reflected light intensity on the base to the reflected light intensity on the wafer, That is, the ratio of the reflected light intensity on the base to the reflected light intensity on the resist surface is relatively increased. Therefore, the position of the center of gravity of the light amount on the light receiving slit of the detection light reflected by the wafer is shifted laterally from the position of the center of gravity of the light amount when almost all of the light is reflected from the resist surface. turn into. Another cause of the focus error is an adjustment error of the focus detection system. If the focus detection system is adjusted out of the ideal state, the light receiving slit position will deviate from the focal position. For this reason, a slit image is a set of point images, but the point image that should become a point image at the light receiving slit position has a spread, and if the light beam forming the point image has an intensity distribution due to the incident angle to the point image, the slit image Also have an intensity distribution in the lateral displacement direction, which results in an error in the focus detection value. Furthermore, as for the detection light of the focus detection system to be incident on the wafer surface, a light beam forming a point image is incident at a different incident angle according to the numerical aperture of the light transmitting lens, and as a result, the reflected light intensity is also higher. It has an intensity distribution due to the law of reflection and refraction, or the multiple interference of thin films described above. Therefore, a focus error that does not occur when a point image is formed occurs due to the angular distribution of the reflected light intensity in the entire slit light.
そこで従来では、 フォーカス検出系の検知光を 8 0 ° 以上の大きな入射角で入 射させることにより.、 レジスト表面における反射率を大きくしたり、 また波長帯 域幅のある光源 ひ \ロゲンランプ等) を用いることで干渉による誤差が生じない 波長の強度分布を増やすといった工夫により薄膜多重干渉によるフォーカス誤差 を極小化している。 また、 調整誤差に関しては、 フォーカス誤差が投影光学系の 焦点深度に対して小さくなるように光学系の調整を厳密に行っていた。 そして、 入射角の違いに関しては、 入射光束の開口数が小さい (例えば百分の一レベル) フォーカス光学系とすることで、 像を形成する光線の入射角がほとんど変わらな いようにし、 反射率の違いが生じない工夫をしていた。  Therefore, conventionally, the detection light of the focus detection system is made incident at a large incident angle of 80 ° or more to increase the reflectivity on the resist surface or to use a light source with a wavelength bandwidth, such as a fluorescent lamp). The focus error due to thin-film multiple interference is minimized by increasing the intensity distribution of wavelengths at which errors due to interference do not occur. Regarding the adjustment error, the optical system was strictly adjusted so that the focus error was smaller than the depth of focus of the projection optical system. Regarding the difference in the incident angle, the focus optical system has a small numerical aperture of the incident light beam (for example, one hundredth level) so that the incident angle of the light beam forming the image is hardly changed, and the reflectivity is reduced. The difference was not made.
しかしながら、 上述のフォーカス誤差を生じさせる要因の他に、 以下のような 問題が存在する。  However, in addition to the above-mentioned factors that cause the focus error, there are the following problems.
ウェハ表面において、 フォーカス検出系によるスリット像の投影領域(即ち、 検 知光の照射領域)内で反射率が部分的に異なる、 特にその領域内でフォーカス計測 方向 (ウェハがフォーカス方向に変位した場合にウェハ表面上で移動するスリッ 卜像の移動方向) に反射率分布が存在する場合、 反射されたスリット像も受光ス リット位置において横ずれの検出方向に強度分布を持つことになる。 この場合、 図 1 5に示すように、 像強度分布に応じてスリット像の重心位置が中心から移動 することで、 ウェハ表面の実際の形状とは闋係なくフォーカス方向にウェハの表 面位置が変位したように計測され、 正確な合焦調整に支障を来たしてしまう。 ま た、 生じる誤差がそれほど大きくなく、 結果としてウェハ表面が焦点深度内に収 まる量であっても、 合焦調整時に不必要な傾斜補正がかかってしまう為、 特にス キャンタイプ'(同期走査型) の露光装置の場合、 同期精度が悪化するという問題 もある。 On the wafer surface, the reflectance is partially different in the projection area of the slit image by the focus detection system (that is, the irradiation area of the detection light), especially in the focus measurement direction (when the wafer is displaced in the focus direction) in that area. Slip on the wafer surface If there is a reflectance distribution in the direction of movement of the image, the reflected slit image also has an intensity distribution in the detection direction of the lateral displacement at the light receiving slit position. In this case, as shown in Fig. 15, the center of gravity of the slit image moves from the center according to the image intensity distribution, so that the surface position of the wafer in the focus direction is independent of the actual shape of the wafer surface. It is measured as if it were displaced, which hinders accurate focusing adjustment. In addition, even if the error that occurs is not so large, and as a result the wafer surface is within the depth of focus, unnecessary tilt correction is required at the time of focus adjustment. In the case of the exposure apparatus of the (type), there is also a problem that synchronization accuracy is deteriorated.
なお、 半導体デバイスの微細化の進展によって、 デバイスを構成する材料の変' 化や.、 レジストの膜圧が薄くなつていることに伴い、 ウェハ上でのスリット像の 投影領域 (検知光の照射領域) 内で反射率分布が生じやすくなつている、 即ち薄 膜多重干渉の状態が大きく異なるようになつている。 発明の開示  In addition, with the progress of miniaturization of semiconductor devices, changes in the materials that make up the devices and the decrease in the film thickness of the resist have led to the projection area of the slit image on the wafer (detection light irradiation Within the region, the reflectivity distribution is easily generated, that is, the state of the thin film multiple interference greatly differs. Disclosure of the invention
本発明は、 以上のような点を考慮してなされたもので、 反射率分布等のウェハ 表面状態の分布に起因する悪影響を排除して高精度なフォーカス検出を実施でき る位置計測方法、 位置計測装置及び露光方法並びに露光装置を提供することを目 的とする。  The present invention has been made in consideration of the above points, and has a position measuring method and a position measuring method capable of performing a highly accurate focus detection by eliminating an adverse effect due to a distribution of a wafer surface state such as a reflectance distribution. It is an object to provide a measuring device, an exposure method, and an exposure device.
上記の目的を達成するために本発明は、 実施の形態を示す図 1ないし図 1 3に 対応付けした以下の構成を採用している。  In order to achieve the above object, the present invention employs the following configuration corresponding to FIGS. 1 to 13 showing the embodiment.
本発明の位置計測方法は、 基板上の計測箇所に検知光を照射し、 計測箇所で反 射した反射光を受光して、 基板表面の法線方向の位置情報を計測する位置計測方 法であって、 基板上の計測箇所における検知光の反射率分布により生じる位置情 報の誤差成分を計測するステップと、 計測した誤差成分に基づいて、 法線方向の 位置情報を補正するステップとを有することを特徴とするものである。  The position measurement method of the present invention is a position measurement method that irradiates detection light to a measurement location on a substrate, receives reflected light reflected at the measurement location, and measures positional information of the substrate surface in a normal direction. A step of measuring an error component of the position information generated by the reflectance distribution of the detection light at the measurement point on the substrate; and a step of correcting the position information in the normal direction based on the measured error component. It is characterized by the following.
また、 本発明の位置計測装置は、 基板上の計測箇所に検知光を照射し、 計測箇 所で反射した反射光を受光して、 基板表面の法線方向の位置情報を計測する位置 計測装置であって、 基板上の計測箇所における検知光の反射率分布により生じる 位置情報の誤差成分を記憶する記憶装置と、 記憶された誤差成分に基づいて、 法 線方向の位置情報を補正する補正装置とを有することを特徴とするものである。 従って、 本発明の位置計測方法及び位置計測装置では、 予め基板上の計測箇所 における検知光の反射率分布により生じる位置情報の誤差成分が既知であるので、 検知光を用いて計測した基板表面の法線方向の位置情報から誤差成分を排除する ことができ、 反射率分布に起因する悪影響を受けることなく基板を所定の位置に 位置決めすることが可能になる。 なお、 誤差成分を求める方法としては、 検知光 を受光したときに得られる検出信号の強度に基づいて演算する方法や、 基板の表 面形状を (例えば別途計測装置で) 実際に計測し、 計測した表面形状と設計上の 表面形状とを比較した結果 (例えば両表面形状の差分) に基づいて求める方法、 さらには C M P等により基板表面を平坦化した場合には、 計測した基板表面の位 置情報をそのまま誤差成分として設定する方法等を採用することができる。 Further, the position measuring device of the present invention is a position measuring device that irradiates detection light to a measurement location on a substrate, receives reflected light reflected at the measurement location, and measures positional information of the substrate surface in a normal direction. Caused by the reflectance distribution of the detection light at the measurement point on the substrate It has a storage device for storing an error component of the position information, and a correction device for correcting the position information in the normal direction based on the stored error component. Therefore, in the position measuring method and position measuring apparatus of the present invention, since the error component of the position information generated by the reflectance distribution of the detection light at the measurement location on the substrate is known in advance, the position of the substrate surface measured using the detection light is known. The error component can be eliminated from the position information in the normal direction, and the substrate can be positioned at a predetermined position without being affected by the reflectance distribution. Note that the error component can be obtained by a method of calculating based on the intensity of the detection signal obtained when the detection light is received, or by actually measuring the surface shape of the board (for example, using a separate measurement device) and measuring the error. Method based on the result of comparing the measured surface shape with the design surface shape (for example, the difference between the two surface shapes), and when the substrate surface is flattened by CMP or the like, the measured position of the substrate surface A method of directly setting information as an error component can be employed.
そして、 本発明の露光方法は、 露光光によりマスクのパターンを基板に露光す る露光方法において、 上記記載の位置計測方法により前記位置情報を計測し、 そ の計測結果に基づいて基板の面位置を調整^"ることを特徴とするものである。  An exposure method according to the present invention is an exposure method for exposing a mask pattern onto a substrate with exposure light, wherein the position information is measured by the position measurement method described above, and the surface position of the substrate is determined based on the measurement result. Is adjusted ^ ".
また、 本発明の露光装置は、 露光光によりマスクのパターンを基板に露光する 露光装置において、 基板の面位置情報を計測する装置として、 上記の位置計測装 置 (2 1 ) が用いられることを特徴とするものである。  Further, an exposure apparatus of the present invention is an exposure apparatus for exposing a pattern of a mask on a substrate with exposure light, wherein the position measurement apparatus (21) is used as an apparatus for measuring surface position information of the substrate. It is a feature.
従って、 本発明の露光方法及び露光装置では、 検知光に対する基板表面の反射 率分布に悪影響を及ぼされることなく基板の面位置情報を高精度に計測すること ができ、 基板表面を露光光の光軸方向に正確に位置決めすることが可能になる。 そのため、 例えば焦点深度が浅い投影光学系等を用いた場合でも、 基板表面を焦 点深度内に合わせ込むことが可能になり、 必要なコントラスト (解像度) を容易 に得ることができる。 また、 生じるフォーカス誤差が結果として基板表面を焦点 深度内におさまるような量であっても、 スキャンタイプ (同期走査型) の露光装 置の場合、 不要な傾斜補正が行われないので、 同期精度が悪化することなく露光 できることになる。  Therefore, with the exposure method and exposure apparatus of the present invention, surface position information of the substrate can be measured with high accuracy without adversely affecting the reflectance distribution of the substrate surface with respect to the detection light. Accurate positioning in the axial direction becomes possible. Therefore, for example, even when a projection optical system with a shallow depth of focus is used, the substrate surface can be adjusted within the depth of focus, and the necessary contrast (resolution) can be easily obtained. Also, even if the resulting focus error is such that the substrate surface falls within the depth of focus, the scan type (synchronous scan type) exposure apparatus does not perform unnecessary tilt correction, so synchronization accuracy is reduced. Exposure can be performed without deteriorating.
また、 本発明の露光装置は、 マスクと基板とを同期移動することによって、 マ スクのパターンを基板上の複数の区画領域に投影する露光装置において、 基板上 に検知光を照射し、 その反射光を検出することによって同期移動中に基板の面位 置を検出する面位置検出装置と、 基板上の区画領域内の表面状態の分布情報を、 同期移動方向に応じて記憶する記憶装置と、 面位置検出装置の検出結果と記憶装 置に記憶された分布情報とに基づいて基板の面位置を設定する制御装置と、 を有 することを特徴としている。 Further, the exposure apparatus of the present invention is an exposure apparatus that projects a mask pattern onto a plurality of divided areas on a substrate by synchronously moving the mask and the substrate. A surface position detector that detects the surface position of the substrate during synchronous movement by irradiating detection light onto the substrate and detecting the reflected light, and distribution information of the surface state within the partitioned area on the substrate, the synchronous movement direction And a control device for setting the surface position of the substrate based on the detection result of the surface position detection device and the distribution information stored in the storage device.
従って、 本発明の露光装置では、 基板上の区画領域に対してどの同期移動方向 を選択した場合でも、 同期移動方向に応じて区画領域内の表面状態の分布情報に より基板の面位置を補正した状態で設定することができる。 そのため、 基板上の 表面状態や同期移動方向により悪影響を及ぼされることなく基板の面位置を露光 光の光軸方向 .(投影光学系の結像面) に正確に位置決めすることが可能になる。 そのため、 例えば焦点深度が浅い投影光学系等を用いた場合でも、 基板表面を焦 点深度内に合わせ込むことが可能になり、 いわゆる走査露光を実施した場合であ つても不要なウェハ面の傾斜補正が行われないので、 同期精度を悪化させること なく露光でき、 必要なコントラスト (解像度) を容易に得ることができる。 図面の簡単な説明  Therefore, in the exposure apparatus of the present invention, no matter which synchronous movement direction is selected for the partitioned area on the substrate, the surface position of the substrate is corrected based on the distribution information of the surface state in the partitioned area according to the synchronous movement direction. It can be set in the state where it was done. Therefore, the surface position of the substrate can be accurately positioned in the optical axis direction of the exposure light (the imaging plane of the projection optical system) without being adversely affected by the surface condition on the substrate or the synchronous movement direction. Therefore, for example, even when a projection optical system with a shallow depth of focus is used, the substrate surface can be adjusted within the depth of focus, and even when so-called scanning exposure is performed, unnecessary tilting of the wafer surface is performed. Since no correction is performed, exposure can be performed without deteriorating synchronization accuracy, and the required contrast (resolution) can be easily obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施形態による露光装置の概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of an exposure apparatus according to one embodiment of the present invention.
図 2は同露光装置を構成するウェハステージの概略を示す斜視図である。  FIG. 2 is a perspective view schematically showing a wafer stage constituting the exposure apparatus.
図 3は斜入射方式の多点フォ一カス位置検出系の構成を示す図である。  FIG. 3 is a diagram showing a configuration of an oblique incidence type multipoint focus position detection system.
図 4 Aはウェハの転写面に投影されたフォーカス計測点及び露光領域の図であ り、 図 4 Bはショット領域と照明領域との関係を示す図である。  FIG. 4A is a diagram of a focus measurement point and an exposure region projected on a transfer surface of a wafer, and FIG. 4B is a diagram showing a relationship between a shot region and an illumination region.
図 5 A及び 5 Bは、 それぞれデバイスパターンとフォーカス計測点との位置関 係を示す図である。  FIGS. 5A and 5B are diagrams each showing a positional relationship between a device pattern and a focus measurement point.
図 6はウェハステージの制御系を示す図である。  FIG. 6 is a diagram showing a control system of the wafer stage.
図 7 Aはフォーカス計測点と反射率の異なる領域との位置関係を示す図であり、 図.7 B及び 7 Cは受光した光強度を示す図である。  FIG. 7A is a diagram showing a positional relationship between a focus measurement point and an area having different reflectance, and FIGS. 7B and 7C are diagrams showing received light intensities.
図 8 A及び 8 Bは、 計測間隔が異なる場合の、 位置と光強度との関係を示す図 である。  FIGS. 8A and 8B are diagrams showing the relationship between the position and the light intensity when the measurement intervals are different.
図 9はフォーカス誤差計測に係るフローチヤ一ト図である。 図 1 0はフォーカス計測が行われる経路及び計測位置を概略的に示す図である。 図 1 1 Aはスキャン中のセンサ位置を示す図であり、 図 1 1 Bはそのときのセ ンシング値を示す図である。 FIG. 9 is a flowchart for focus error measurement. FIG. 10 is a diagram schematically showing a path and a measurement position where focus measurement is performed. FIG. 11A is a diagram showing a sensor position during scanning, and FIG. 11B is a diagram showing a sensing value at that time.
図 1 2は別形態のフォーカス補正方法を示すフローチャート図である。  FIG. 12 is a flowchart showing another form of focus correction method.
図 1 3は別形態のフォーカス補正方法を示すフローチヤ一ト図である。  FIG. 13 is a flowchart showing another form of focus correction method.
図 1 4は本 ¾明の一実施形態による露光装置を用いてデバイスを製造する際の フローチヤ一ト図である。  FIG. 14 is a flowchart of manufacturing a device using the exposure apparatus according to the embodiment of the present invention.
図.1 5は反射率分布とフォーカス誤差との関係を説明するための図である。 発明を実施するための最良の形態  Fig. 15 is a diagram for explaining the relationship between the reflectance distribution and the focus error. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の位置計測方法、 位置計測装置及び露光方法並びに露光装置の実 施の形態を、 図 1ないし図 1 4を参照して説明する。  Hereinafter, embodiments of a position measuring method, a position measuring device, an exposure method, and an exposure device according to the present invention will be described with reference to FIGS. 1 to 14.
図 1は、 本発明の一実施形態による露光装置の概略構成を.示す図である。 尚、 以下の説明においては、 図 1中に示された X Y Z直交座標系を設定し、 この Χ Υ· Ζ直交座標.系を参照しつつ各部材の位置関係について説明する。 図 1に示した X Υ Ζ直交座標系では、 所定のパターン領域が形成されたマスクとしてのレチクル Rと、 上面にフォトレジストが塗布された基板としてのウェハ Wとが走査露光時 に移動される方向 (同期移動方向) を Υ軸方向、 レチクル Rの平面内で Υ軸と直 交する方向を X軸方向、 レチクル R (ウェハ表面) の法線方向を Ζ軸方向に設定 してある。 図 1中の Χ Υ Ζ直交座標系は、 実際には Χ Υ平面が水平面に平行な面 に設定され、 Ζ軸が鉛直上方向に設定される。  FIG. 1 is a view showing a schematic configuration of an exposure apparatus according to an embodiment of the present invention. In the following description, the XYZ rectangular coordinate system shown in FIG. 1 is set, and the positional relationship of each member will be described with reference to the {Ζ.} Rectangular coordinate system. In the X-axis orthogonal coordinate system shown in FIG. 1, a reticle R as a mask having a predetermined pattern area formed thereon and a wafer W as a substrate having a photoresist coated on its upper surface are moved during scanning exposure. The direction (synchronous movement direction) is set to the Υ axis direction, the direction perpendicular to the Υ axis in the plane of reticle R is set to the X axis direction, and the normal direction of reticle R (wafer surface) is set to the Ζ axis direction. In the Ζ Υ Ζ rectangular coordinate system in Fig. 1, the Χ Υ plane is actually set as a plane parallel to the horizontal plane, and the Ζ axis is set vertically upward.
なお、 以下では図示省略された照明光学系によってレチクル R上で露光光 E L が照射される領域を 「照明領域」 と称し、 投影光学系 P Lに関してその照明領域 と共役で、 投影光学系 P Lを介してウェハ W上で露光光 E Lが照射される領域を 「露光領域」 と称する。 また、 本実施形態の露光装置 (図 1 ) はステップ 'アン ド -スキャン方式にてウェハ W上の複数のショット領域 (区画領域) にそれぞれ レチクル Rのパターンを転写する走査型露光装置であり、 前述の照明領域はレチ クル R上で照明光学系の光軸 (投影光学系 P Lの光軸 A Xと一致) を中心として X軸方向に延びる矩形領域である。 図 1において、 図示省略された照明光学系は、 レチクル Rの照明条件を可変と する成形光学系、 オプティカルインテグレ一夕、 及びレチクル R上の照明領域を 規定するブラインド (可変視野絞り) などを含み、 不図示の光源 (エキシマレー ザなど) から発生する露光光 E Lをほぼ均一な照度で前述の照明領域に照射する。 投影光学系 P Lは、 第 1面 (物体面) に配置されるレチクル Rのパターンのうち、 照明領域内のその一部の像を第 2面 (結像面) 上の露光領域内に生成し、 表面が 第 2面とほぼ一致して配置されるウェハ W上にその像が転写される。 ウェハ W上 ' の各ショット領域にレチクル Rのパターンを転写する走査露光では、 照明領域に 対するレチクル Rの相対移動と露光領域に対するウェハ Wの相対移動とが同期し て行われ、 そのパターンの全面が露光光 E Lで照射されるとともに、 投影光学系 P Lを介して各ショット領域に露光光 E Lが照射される。 この際、 照明領域に対 してレチクル Rは Y軸の正の方向又は負の方向に一定速度 Vで走査されるのに同 期してウェハ Wは Y軸の負の方向又は正の方向に一定速度 V/ 3 ( 1 / β は投影光 学系 P Lの縮小倍率) で走査される。 In the following, an area where the exposure light EL is irradiated on the reticle R by an illumination optical system (not shown) is referred to as an “illumination area”, and the projection optical system PL is conjugated to the illumination area via the projection optical system PL. The area on the wafer W where the exposure light EL is irradiated is referred to as an “exposure area”. The exposure apparatus (FIG. 1) of the present embodiment is a scanning exposure apparatus that transfers the pattern of the reticle R to a plurality of shot areas (partition areas) on the wafer W in a step-and-scan manner. The above-mentioned illumination area is a rectangular area extending on the reticle R in the X-axis direction with the optical axis of the illumination optical system (coincident with the optical axis AX of the projection optical system PL) as a center. In FIG. 1, the illumination optical system not shown includes a shaping optical system that makes the illumination condition of the reticle R variable, an optical integrator, and a blind (variable field stop) that defines an illumination area on the reticle R. Exposure light EL generated from a light source (not shown) (such as an excimer laser) is applied to the above-mentioned illumination area with almost uniform illuminance. The projection optical system PL generates an image of a part of the pattern of the reticle R arranged on the first surface (object surface) in the illumination area in the exposure area on the second surface (imaging plane). The image is transferred onto the wafer W whose surface is substantially aligned with the second surface. In the scanning exposure in which the pattern of the reticle R is transferred to each shot area on the wafer W, the relative movement of the reticle R with respect to the illumination area and the relative movement of the wafer W with respect to the exposure area are performed in synchronization. Is irradiated with the exposure light EL, and each shot area is irradiated with the exposure light EL via the projection optical system PL. At this time, the reticle R is scanned at a constant speed V in the positive or negative direction of the Y-axis with respect to the illumination area, while the wafer W is simultaneously fixed in the negative or positive direction of the Y-axis. Scanning is performed at the speed V / 3 (1 / β is the reduction magnification of the projection optical system PL).
上記レチクル Rは、 レチクル微小駆動ステージ 1上に真空チヤック等により保 持されている。 レチクル微小駆動ステージ 1は、 投影光学系 P Lの光軸 A Xに垂 直な面内 (X Y平面) で X軸方向、 Y軸方向、 及び回転方向 (0 方向) にそれぞ れ微動可能であり、 高精度にレチクル Rの位置制御を行う。 レチクル微小駆動ス テ一ジ 1は、 Y軸方向に駆動自在なレチクル Y駆動ステージ 2上に載置されてお り、 レチクル Y駆動ステージ 2はレチクル支持台 3上に載置されている。 上記レ チクル微小駆動ステージ 1上には移動鏡 4が配置され、 レチクル支持台 3上に配 置された干渉計 5によって、 常時レチクル微小駆動ステージ 1の X軸方向、 Y軸 方向、 及び S 方向の位置がモニタ一されている。 干渉計 5により得られた位置情 報 S 1は主制御系 2 0に供給されている。  The reticle R is held on the reticle minute drive stage 1 by a vacuum chuck or the like. The reticle minute drive stage 1 can be finely moved in the X-axis direction, the Y-axis direction, and the rotation direction (0 direction) in a plane perpendicular to the optical axis AX (XY plane) of the projection optical system PL. Performs reticle R position control with high accuracy. The reticle minute drive stage 1 is mounted on a reticle Y drive stage 2 that can be driven in the Y-axis direction, and the reticle Y drive stage 2 is mounted on a reticle support 3. A movable mirror 4 is disposed on the reticle micro-drive stage 1 and an interferometer 5 disposed on the reticle support 3 constantly moves the reticle micro-drive stage 1 in the X, Y, and S directions. Is monitored. The positional information S 1 obtained by the interferometer 5 is supplied to the main control system 20.
一方、 ウェハ Wはウェハステージ上に載置されている。 図 2は、 ウェハステ一 ジの概略構成を示す斜視図である。 ウェハ Wは、 真空吸着を行うウェハホルダ 6 を介して Zチルト Θ ステージ 7上に保持され、 Zチルト Θ ステージ 7はそれぞ れ Z軸方向に可動な 3個のァクチユエ一夕 (例えば、 ボイスコイルモ一夕、 E I コアなど) 8 a〜 8 cを介して X Yステージ 9上に載置されている。 この場合、 3個のァクチユエ一夕 8 a〜 8 cの駆動量を同一とすることによって、 Zチルト Θ ステージ 7を Z軸方向に移動でき、 それら 3個のァクチユエ一夕 8 a〜 8 cの 駆動量を独立に設定することによって Zチルト Θ ステージ 7の X軸の周りの傾斜 角、 及び Y軸の周りの傾斜角を制御できる。 また、 それら 3個のァクチユエ一夕 8 a〜8 cとは別のァクチユエ一夕 (不図示) によって、 Zチルト Θ ステージ 7 は所定範囲内で Z軸の周りに回転できるように構成されている。 また、 X Yステ ージ 9は、 例えばリニアモータによって、 Zチルト Θ ステージ 7を Y軸方向に一 定速度で移動できると共に、 X軸及び Y軸方向にそれぞれステップ移動できるよ うに構成されている。 これらウェハホルダ 6、 Zチルト Θ ステージ 7、 ァクチュ ェ一夕 8 a〜 8 c、 及び X Yステージ 9によりウェハステージが構成されている。 On the other hand, the wafer W is mounted on the wafer stage. FIG. 2 is a perspective view showing a schematic configuration of the wafer stage. The wafer W is held on a Z-tilt stage 7 via a wafer holder 6 that performs vacuum suction, and each of the Z-tilt stage 7 is moved three Z-axis directions (for example, a voice coil module). , EI core, etc.) mounted on an XY stage 9 via 8a to 8c. in this case, By making the driving amounts of the three actuators 8a to 8c the same, the Z tilt ス テ ー ジ stage 7 can be moved in the Z-axis direction, and the driving amounts of the three actuators 8a to 8c can be reduced. By independently setting the tilt, the tilt angle of the stage 7 around the X axis and the tilt angle of the stage 7 around the Y axis can be controlled. The Z tilt チ ル stage 7 is configured to be able to rotate around the Z axis within a predetermined range by using an actuary (not shown) different from the three actuaries 8a to 8c. . The XY stage 9 is configured to move the Z-tilt stage 7 at a constant speed in the Y-axis direction and to move in steps in the X-axis and Y-axis directions by, for example, a linear motor. The wafer stage is constituted by the wafer holder 6, the Z-tilt stage 7, the functions 8 a to 8 c, and the XY stage 9.
Zチルト Θ ステージ 7上には移動鏡 1 0が固定され、 外部に配置された干渉計 1 1により、 Zチルト 0 ステージ 7の X軸方向、 Y軸方向、 及び Θ 方向の位置 がモニターされ、 干渉計 1 Γにより得られた位置情報も主制御系 2 0に供給され ている。 ここで、 図 2に示すように、 Zチルト Θ ステージ 7の X軸方向及び Y軸 方向の位置情報を計測するために、 Zチルト Θ ステージ 7上には移動鏡 1 0 X及 び移動鏡 1 0 Yが配置され、 これらの移動鏡 1 0 X, 1 0 Yに対面した位置に干 渉計 1 I X及び干渉計 1 1 Yがそれぞれ配置されている。 なお、 移動鏡 1 0を Z チルト Θ ステージ 7に固定する代わりに、 ウェハステージ、 '例えば Zチルト Θ ステージ 7の端面 (側面) 'を鏡面加工して得られる反射面を用いてもよい。 また、 干渉計 1 1は Z軸回りの回転量だけでなく、 X軸及び Y軸回りの各回転量を計測 可能としてもよい。  A movable mirror 10 is fixed on the Z tilt ス テ ー ジ stage 7, and the position of the Z tilt 0 stage 7 in the X axis direction, the Y axis direction, and the モ ニ タ ー direction is monitored by the interferometer 11 disposed outside, The position information obtained by the interferometer 1 is also supplied to the main control system 20. Here, as shown in FIG. 2, in order to measure the position information of the Z tilt ス テ ー ジ stage 7 in the X axis direction and the Y axis direction, the moving mirror 10 X and the moving mirror 1 are placed on the Z tilt ス テ ー ジ stage 7. 0Y is arranged, and an interferometer 1IX and an interferometer 11Y are arranged at positions facing these movable mirrors 10X and 10Y, respectively. Instead of fixing the movable mirror 10 to the Z-tilt stage 7, a reflecting surface obtained by mirror-finishing a wafer stage, for example, an “end surface (side surface) of the Z-tilt stage 7” may be used. The interferometer 11 may be capable of measuring not only the amount of rotation about the Z axis, but also the amounts of rotation about the X axis and the Y axis.
主制御系 2 0は、 ウェハ駆動装置 1 2等を介して Zチルト Θ ステージ 7及び X Yステージ 9の位置決め動作を制御するとともに、 装置全体の動作を制御する。 また、 ウェハ W側の干渉計 1 1によって計測される座標により規定されるウェハ 座標系と、 レチクル R側の干渉計 5によって計測される座標により規定されるレ チ'クル座標系との対応をとるために、 Zチルト Θ ステージ 7上であってウェハ W の近傍に基準マーク板 1 3が固定されている。 この基準マーク板 1 3上には各種 基準マークが形成されている。 本実施形態の露光装置は、 レチクル Rの上方に配置され、 基準マーク板 1 3上 の基準マークとレチクル R上のマークとを同時に検出するためのレチクルァライ メント系 1 4、 1 5を備えている。 本実施形態のレチクルァライメント系 1 4、 1 5は、 前述の露光光 E Lをァライメント光として用いてそれら 2つのマークの 像を撮像索子で検出する画像処理方式であるとともに、 レチクル Rからの検出光 を各々に導くための偏向ミラー 1 6、 1 7が移動自在に配置されている。 これら の偏向ミラ一 1 6、 1 7は、 露光シーケンスが開始されると、 主制御系 2 0から の指令のもとで、 ミラー駆動装置 1 8、 1 9によりそれぞれ露光光 E Lの光路外 に退避される。 また、 投影光学系 P Lの側方にはウェハ Wの Z軸方向 (光軸方向、 法線方向) の位置情報及び X Y平面 (投影光学系 P Lの結像面) に対するウェハ Wの傾斜角、 すなわちウェハ Wの面位置を計測するための位置計測装置 (面位置 検出装置) として斜入射方式の多点フォーカス検出系 2 1·が設けられている。 The main control system 20 controls the positioning operation of the Z tilt stage 7 and the XY stage 9 via the wafer driving device 12 and the like, and controls the operation of the entire apparatus. Also, the correspondence between the wafer coordinate system defined by the coordinates measured by the interferometer 11 on the wafer W side and the reticle coordinate system defined by the coordinates measured by the interferometer 5 on the reticle R side is described. For this purpose, a reference mark plate 13 is fixed on the Z tilt stage 7 and near the wafer W. Various reference marks are formed on the reference mark plate 13. The exposure apparatus of the present embodiment is provided above the reticle R, and includes reticle alignment systems 14 and 15 for simultaneously detecting the reference mark on the reference mark plate 13 and the mark on the reticle R. . The reticle alignment systems 14 and 15 of the present embodiment are image processing systems that use the exposure light EL as the alignment light to detect the images of the two marks with an imaging probe, and that the reticle alignment from the reticle R Deflection mirrors 16 and 17 for guiding the detection light to each are movably arranged. When the exposure sequence is started, these deflection mirrors 16 and 17 are moved out of the optical path of the exposure light EL by mirror driving devices 18 and 19, respectively, under a command from the main control system 20. Will be evacuated. Also, on the side of the projection optical system PL, the position information of the wafer W in the Z-axis direction (optical axis direction, normal direction) and the inclination angle of the wafer W with respect to the XY plane (the imaging plane of the projection optical system PL) An oblique incidence type multi-point focus detection system 21 is provided as a position measurement device (surface position detection device) for measuring the surface position of the wafer W.
次に、 ウェハ Wの傾斜角を計測するための斜入射方式の多点フォーカス位置検 出系 2 1について説明する。 図 3は、 斜入射方式の多点フォーカス位置検出系 2 1の構成を示す図である。 尚、 図 3においては、 図 1に示した部材の一部を省略 して図示を簡略化している。 図 3に示した斜入射方式の多点フォーカス位置検出 系 2 1には、 露光光 E Lとは波長が異なりウェハ W上のフォトレジストを感光さ せない照明光が、 図示省略された照明光源から光ファイバ束 2 5を介して導かれ ている。 光ファイバ束 2 5から射出された照明光は、 集光レンズ 2 6を経てスリ ット状の開口パターンが複数形成されたパターン形成板 2 7を照明する。  Next, an oblique incidence type multi-point focus position detection system 21 for measuring the inclination angle of the wafer W will be described. FIG. 3 is a diagram showing a configuration of the oblique incidence type multipoint focus position detection system 21. As shown in FIG. In FIG. 3, some of the members shown in FIG. 1 are omitted to simplify the illustration. The oblique incidence multi-point focus position detection system 21 shown in FIG. 3 includes illumination light having a wavelength different from that of the exposure light EL and not exposing the photoresist on the wafer W from an illumination light source (not shown). It is guided through the optical fiber bundle 25. The illumination light emitted from the optical fiber bundle 25 illuminates a pattern forming plate 27 on which a plurality of slit-shaped opening patterns are formed via a condenser lens 26.
. パターン形成板 2 7を透過した照明光は、 レンズ 2 8、 ミラ一 2 9、 及び照射 対物レンズ 3 0を経てウェハ Wの転写面 (フォトレジスト表面) に投影され、 ゥ ェハ Wの転写面にはパターン形成板 2 7上の開口パターンの像 (スリット像) が 投影光学系 P Lの光軸 A Xに対して斜めに投影結像される。 図 4は、 投影光学系 P Lの下方に配置されたウェハ Wの転写面に、 パターン形成板 2 7に形成された 開口パターンが結像される様子を示す図である。 図 4 ( a ) において、 符号 E F が付された矩形状の領域は前述した露光領域を示している。 この露光領域 E F内 にレチクル Rのパターンの像が照射される。 パターン形成板 2 7は、 ウェハ W上でのフォーカス計測点の配置 (個数や位 置) 及びフォーカス計測点での検知光の照射領域 ひ \°ターン像) の形状や大きさ を設定するものである。 本実施形態におけるフォーカス計測点は、 走査方向 (同 期移動方向) である Y方向及び非走査方向 (ステップ移動方向) である X方向に 沿って所定間隔でそれぞれ 7個ずつ (合計 4 9個) 設定され、 図 4 Aに示すよう に 4 9個のフォーカス計測点に開口パターンの像 (スリット像) A F 1 ;!〜 A F 1 7、 A F 2 1〜A F 2 7、 '··、 A F 7 1〜A F 7 7 (以下、 適宜、 単に符号 A Fと称する) がそれぞれ投影されるように、 パターン形成版 2 7はその開ロパタ ーンがフォーカス計測点の配置 (図 4 A) に対応して形成されている。 さらに本 実施形態では、 フォーカス計測点に投影される開口パターンの像 (スリット像) A Fはその長手方向が、 図 1のウェハ Wの転写面上で X軸及び Y軸に対して斜め (本例では 4 5度) に設定されている。 なお、 以下では開口パターンの像 (スリ ット像) A Fをフォーカス計測点とも呼ぶことがある。 。 The illumination light transmitted through the pattern forming plate 27 is projected onto the transfer surface (photoresist surface) of the wafer W through the lens 28, the mirror 29, and the irradiation objective lens 30, and the wafer W is transferred. An image (slit image) of the aperture pattern on the pattern forming plate 27 is projected and formed on the surface obliquely to the optical axis AX of the projection optical system PL. FIG. 4 is a diagram showing a state in which the aperture pattern formed on the pattern forming plate 27 is imaged on the transfer surface of the wafer W disposed below the projection optical system PL. In FIG. 4A, a rectangular area denoted by reference numeral EF indicates the above-described exposure area. The image of the pattern of the reticle R is irradiated into the exposure area EF. The pattern forming plate 27 is used to set the arrangement (number and positions) of the focus measurement points on the wafer W and the shape and size of the detection light irradiation area at the focus measurement points. is there. In this embodiment, seven focus measurement points are provided at predetermined intervals along the Y direction as the scanning direction (synchronous movement direction) and the X direction as the non-scanning direction (step movement direction) (49 in total). Set, as shown in Fig. 4A, the aperture pattern image (slit image) at 49 focus measurement points AF1;! ~ AF17, AF21 ~ AF27, '..., AF71 ~ AF77 (hereinafter referred to simply as AF) as appropriate, so that the open pattern is formed corresponding to the arrangement of the focus measurement points (Fig. 4A). Have been. Further, in the present embodiment, the longitudinal direction of the aperture pattern image (slit image) AF projected on the focus measurement point is oblique to the X-axis and the Y-axis on the transfer surface of the wafer W in FIG. Is set to 45 degrees). In the following, the aperture pattern image (slit image) AF may also be referred to as a focus measurement point. .
ここで、 フォーカス計測点に投影されるスリツ卜像 A Fの設定について簡単に 説明する。  Here, the setting of the slit image AF projected on the focus measurement point will be briefly described.
図 5に示すように、 ウェハ W上の各ショット領域の一部に形成されるデバイス パターン D Pは、 通常 Y方向や X方向に沿って配置される。 そのため、 スリット 像 A Fを Y方向 (または X方向) に沿って配置した場合、 図 5 Aに示すように、 スリット像 A Fが下地に形成されているデバイスパターン D Pと部分的に重なる ことがある。 この場合、 デバイスパターン D Pの存在により、 スリット像 A Fに おいては、 幅方向 (X方向) で検知光の反射率に大きな差が全長に亘つて生じる ことになる。 そのため、 図 5 Bに示すように、 スリット像 A Fを X方向または Y 方向と平行にならないように傾けることにより、 反射率に差が生じる部分がデバ ィスパターン D Pの境界周辺のみとなり、 反射率差に起因する悪影響を極力小さ くすることができる。  As shown in FIG. 5, device patterns DP formed in a part of each shot area on the wafer W are usually arranged along the Y direction and the X direction. Therefore, when the slit image AF is arranged along the Y direction (or X direction), the slit image AF may partially overlap the device pattern DP formed on the base as shown in FIG. 5A. In this case, the presence of the device pattern DP causes a large difference in the reflectance of the detection light in the width direction (X direction) in the slit image AF over the entire length. Therefore, as shown in Fig. 5B, by inclining the slit image AF so that it is not parallel to the X or Y direction, the difference in reflectivity occurs only around the boundary of the device pattern DP. The resulting adverse effects can be minimized.
図 3に戻り、 ウェハ Wで反射された照明光 (反射光) は、 集光対物レンズ 3 1、 回転方向振動板 3 2、 及び結像レンズ 3 3を経て受光器 3 4の受光面に再投影さ れ 受光器 3 4の受光面には、 パターン形成板 2 7上のパターンの像が再結像さ れる。 受光器 3 4の受光面には、 パターン形成板 2 7と相似形に開口部が配列さ れた遮光板 (図示省略) が設けられる。 ここで、 主制御系 2 0は加振装置 3 6を 介して回転方向振動板 3 2に振動を与えているので、 受光器 34に投影される像 の位置は遮光板に形成された開口部の長手方向に対して 4 5度傾いた方向、 すな わち図 3における X方向に振動する。 この振動方向は、 ウェハ Wが Z軸方向 (投 影光学系 P Lの光軸方向) に変位したときにウェハ W上でスリット像 A Fが移動 するフォーカス計測方向 (X方向) と一致する。 受光器 34の多数の受光素子か らの検出信号は信号処理装置 3 5に供給される。 信号処理装置 3 5は、 供給され てくる各検出信号を加振装置 3 6の駆動信号で同期検波してフォーカス計測点 A F 1 1〜AF 7 7のフォーカス位置にそれぞれ対応する 4 9個のフォーカス信号 を得る。 Returning to FIG. 3, the illumination light (reflected light) reflected by the wafer W passes through the converging objective lens 31, the rotating diaphragm 32, and the imaging lens 33, and is re-transmitted to the light receiving surface of the light receiver 34. The image of the pattern on the pattern forming plate 27 is re-imaged on the light receiving surface of the projected light receiver 34. Openings are arranged on the light receiving surface of the light receiver 34 in a shape similar to the pattern forming plate 27. A light shielding plate (not shown) is provided. Here, since the main control system 20 vibrates the rotational direction diaphragm 32 via the vibrating device 36, the position of the image projected on the light receiver 34 is determined by the opening formed in the light shielding plate. It vibrates in a direction inclined by 45 degrees with respect to the longitudinal direction, that is, in the X direction in FIG. This vibration direction coincides with the focus measurement direction (X direction) in which the slit image AF moves on the wafer W when the wafer W is displaced in the Z axis direction (the optical axis direction of the projection optical system PL). Detection signals from many light receiving elements of the light receiver 34 are supplied to the signal processing device 35. The signal processing device 35 synchronously detects each of the supplied detection signals with the drive signal of the vibrating device 36, and performs 49 focuses corresponding to the focus positions of the focus measurement points AF 11 to AF 77, respectively. Get the signal.
ここで、 図 4 Aに示したように、 フォーカス計測点 AF 3 1〜AF 3 7及び A F 5 1〜 5 7が露光領域 E Fの周辺部に配置され、 計測点 A F 4 1〜 A F 47が 露光領域 E Fの内部に配置されており、 計測点 AF 1 1〜AF 1 7、 AF 2 1〜 AF 2 7及び計測点 A F 6 1〜AF 6 7、 AF 7 1〜AF 7 7は、 露光領域 E F 外に配置されている。 これは、 ウェハ Wが Y軸の正の方向に走査されている場合 に計測点 A F 6 1〜AF 6 7、 AF 7 1〜AF 7 7における計測結果を用いて、 これから露光される領域の形状 (Z軸方向に関する位置情報) を予め計測 (先読 み) するためである。 また、 同様にウェハ Wが Y軸の負の方向に走査されている 場合に計測点 A F 1 1〜AF 1 7、 AF 2 1〜AF 2 7における計測結果を用い て、 これから露光される領域の形状を予め計測するためである。 そして、 計測点 AF 1 1〜AF 1 7、 AF 2 1〜AF 2 7における計測結果又は計測点 A F 6 1 〜AF 6 7、 AF 7 1〜AF 7 7における計測結果を用いてこれから露光される 部分に対してゥェハ Wの姿勢制御を行うようにしている。  Here, as shown in FIG. 4A, the focus measurement points AF31 to AF37 and AF51 to 57 are arranged at the periphery of the exposure area EF, and the measurement points AF41 to AF47 are exposed. The measurement points AF11 to AF17, AF21 to AF27 and measurement points AF61 to AF67, AF71 to AF77 are located inside the area EF, and the exposure area EF It is located outside. When the wafer W is scanned in the positive direction of the Y-axis, the shape of the area to be exposed using the measurement results at the measurement points AF61 to AF67, AF71 to AF77 This is for pre-measurement (pre-reading) of (position information in the Z-axis direction). Similarly, when the wafer W is scanned in the negative direction of the Y axis, the measurement results at the measurement points AF11 to AF17 and AF21 to AF27 are used to determine the area to be exposed next. This is for measuring the shape in advance. Then, exposure is performed using measurement results at measurement points AF11 to AF17 and AF21 to AF27 or measurement results at measurement points AF61 to AF67 and AF71 to AF77. The Jeha-W attitude control is performed on the part.
信号処理装置 3 5は、 これら 4 9個のフォーカス信号 (検出信号) に対して最 小自乗近似等の各種演算処理を施して、 露光領域 E F内におけるウェハ Wの転写 面の傾斜角及びその転写面のフォ一カス位置を求め主制御系 2 0に出力する。 次に、 図 1及び図 2に示したウェハステージの制御系についてより詳細に説明 する。 図 6は、 ウェハステージの制御系を示す図であり、 図 1及び図 2に示した 部材と同一の部材には同一の符号を付してある。 図 6において、 Zチルト Θ ステ —ジ 7はその下部に配置された 3個のァクチユエ一夕 8 a〜 8 cを介して支持さ れている。 ァクチユエ一夕 8 a〜 8 cは、 それぞれ駆動部 4 1 a〜4 1 cによつ て、 各ァクチユエ一夕 8 a〜 8 cの伸縮量がそれぞれ調整されることにより、 Z チルト Θ ステージ 7上に設けられた不図示のウェハホルダ 6上に載置されたゥェ ハ Wの転写面のフォ一カス位置、 走査方向の傾斜角、 及び非走査方向の傾斜角を 所望の値に設定することができる。 各ァクチユエ一夕 8 a〜 8 cの近傍にはそれ ぞれ、 各ァクチユエ一夕のフォーカス方向の変位量を例えば 0 . O O l ^ m程度 の分解能で計測できる高さセンサ 3 8 a〜3 8 cがそれぞれ取り付けられており、 高さセンサ 3 8 a〜 3 8 cの計測結果は主制御系 2 0に出力される。 尚、 上記駆 動部 4 1 a〜4 1 cは図 1に示したウェハ駆動装置 1 2内に設けられている。 The signal processing device 35 performs various arithmetic processing such as least square approximation on the 49 focus signals (detection signals) to obtain the inclination angle of the transfer surface of the wafer W in the exposure area EF and the transfer thereof. The focus position of the surface is determined and output to the main control system 20. Next, the control system of the wafer stage shown in FIGS. 1 and 2 will be described in more detail. FIG. 6 is a diagram showing a control system of the wafer stage, and the same members as those shown in FIGS. 1 and 2 are denoted by the same reference numerals. In FIG. 6, Z tilt Θ —Di7 is supported via three actuaries 8a-8c located at the bottom. The actuators 8a to 8c are adjusted by the drive units 41a to 41c to adjust the amount of expansion and contraction of the actuators 8a to 8c, respectively. The focus position, the scan direction tilt angle, and the non-scan direction tilt angle of the transfer surface of the wafer W mounted on the wafer holder 6 (not shown) provided above are set to desired values. Can be. In the vicinity of each of the actuaries 8a to 8c, a height sensor that can measure the displacement in the focus direction of each actuator at a resolution of, for example, about 0.001 ^ m, is used. c are attached, and the measurement results of the height sensors 38a to 38c are output to the main control system 20. The driving units 41a to 41c are provided in the wafer driving device 12 shown in FIG.
本実施形態の主制御系 2 0は、 レチクル Rに形成されたパターンの像を投影光 学系 P Lを介してウェハ Wの転写面に転写する際にレチクル Rとウェハ Wとを同 期走査しているため、 多点フォーカス位置検出系 2 1によって得られた転写面の 形状及びフォーカス位置に応じて各種演算を行い、 その結果に基づきウェハ Wの 姿勢及び Z方向の位置を制御している。 すなわち、 ウェハ Wの姿勢 ·位置を制御 するために主制御系 2 0は、 信号処理装置 3 5から出力されるウェハ Wの転写面 の傾斜角及びその転写面のフォーカス位置と、 高さセンサ 3 8 a〜3 8 cから出 力されるァクチユエ一夕 8 a〜 8 cの変位量等に応じて駆動部 4 1 a〜4 1 cの 駆動を制御することにより、 ァクチユエ一夕 8 a〜8 cを介してウェハ Wのフォ 一カス位置及び姿勢を制御する。 また、 主制御系 2 0には各種演算結果等を記憶 しておくための記憶装置 4 0が付設されている。  The main control system 20 of the present embodiment scans the reticle R and the wafer W synchronously when transferring the image of the pattern formed on the reticle R to the transfer surface of the wafer W via the projection optical system PL. Therefore, various calculations are performed according to the shape of the transfer surface and the focus position obtained by the multipoint focus position detection system 21, and the attitude and the position in the Z direction of the wafer W are controlled based on the results. That is, in order to control the attitude and position of the wafer W, the main control system 20 includes a tilt angle of the transfer surface of the wafer W output from the signal processing device 35, a focus position of the transfer surface, and a height sensor 3 8 a to 3 c Output from the actuator 8 a to 8 c by controlling the driving of the drive units 41 a to 41 c according to the displacement of the 8 a to 8 c, etc. The focus position and attitude of the wafer W are controlled via c. The main control system 20 is provided with a storage device 40 for storing various calculation results and the like.
続いて、 レチクル Rに形成されたパターンの像をウェハ W上の転写面に転写す るに先立って、 予めウェハ Wを X Y平面内で移動させつつ多点フォーカス位置検 出系 2 1を用いてウェハ Wの転写面のフォーカス調整を行う手順について説明す る。 ここで、 フォーカス調整を実施する際には、 多点フォーカス位置検出系 2 1 により複数のフォーカス計測点でそれぞれ転写面の Z方向の位置を計測するが、 この計測結果には、 既述したように、 転写面の反射率分布に起因するフォーカス 誤差が誤差成分として含まれることがある。 図 7 Aに示すように、 ウェハ W上においてフォーカス計測点 A Fが高反射率部 H Rと低反射率部 L Rとに跨っている場合、 スリッ トの両端側の位置 P 1、 P 4 は高反射率部 H Rに位置しているため、 この部分におけるブォ一カス計測方向の 反射光強度分布は図 Ί Bに示すように、 低反射率部 L R内の位置 P 2におけるフ ォ一カス計測方向の反射光強度分布に比べて大きくなる。 また、 フォーカス計測 方向に関して両反射率部に跨る位置 P 3におけるフォーカス計測方向の反射光強 度分布は、 反射率に応じた強度分布となる。 フォーカス位置検出系 2 1の受光器 3 4は、 フォーカス計測点のスリット内の平均的な反射光強度を検出するため、 図 7 Cに示すように、 その検出信号は上記の位置 P 1〜P 4 (実際にはフォー力 ス計測方向と直交する方向全体) における反射光強度分布が合成 (加算) され重 心位置がずれることになる。 フォーカス位置検出系 2 1のフォーカス検出方式は、 例えば受光器 3 4上の開口部に対して振動するスリット像の最大振幅位置におけ る検出信号 (電圧値 V ) を計測する。 この位置は、 スリット像が開口部の両端部 に位置するときの 2ケ所である。 そして、 計測した 2つの検出信号 (電圧値 V ) の差をフォーカス信号として用いる。 この場合、 スリッ ト像の反射光に強度分布 があると、 各最大振幅位置での電圧値にそれぞれ誤差が生じてしまい、 正確なフ オーカス信号を得ることができなくなる。 Subsequently, prior to transferring the image of the pattern formed on the reticle R to the transfer surface on the wafer W, the multipoint focus position detection system 21 is used while moving the wafer W in the XY plane in advance. A procedure for adjusting the focus of the transfer surface of the wafer W will be described. Here, when performing focus adjustment, the position in the Z direction of the transfer surface is measured at each of a plurality of focus measurement points by the multi-point focus position detection system 21. In some cases, a focus error due to the reflectance distribution on the transfer surface is included as an error component. As shown in Fig. 7A, when the focus measurement point AF on the wafer W straddles the high-reflectance part HR and the low-reflectance part LR, the positions P1 and P4 on both ends of the slit are highly reflective. As shown in Fig. ΊB, the reflected light intensity distribution in the focus measurement direction in this part is in the focus measurement direction at position P2 in the low reflectance part LR. It becomes larger than the reflected light intensity distribution. In addition, the reflected light intensity distribution in the focus measurement direction at the position P3 straddling both reflectance portions in the focus measurement direction is an intensity distribution according to the reflectance. The light receiver 34 of the focus position detection system 21 detects the average reflected light intensity in the slit at the focus measurement point. Therefore, as shown in FIG. The reflected light intensity distribution in 4 (actually in the entire direction orthogonal to the force measurement direction) is combined (added), and the center of gravity position is shifted. The focus detection method of the focus position detection system 21 measures, for example, a detection signal (voltage value V) at the maximum amplitude position of the slit image oscillating with respect to the opening on the light receiver 34. These positions are two places when the slit image is located at both ends of the opening. Then, the difference between the two measured detection signals (voltage value V) is used as a focus signal. In this case, if there is an intensity distribution in the reflected light of the slit image, an error occurs in the voltage value at each maximum amplitude position, and an accurate focus signal cannot be obtained.
また、 フォーカス位置検出系 2 1のフォーカス検出方式が、 例えばスリット像 内の重心位置をフォーカス信号として用いるような場合、 すなわちライン C C D による検出方式の場合、 重心位置のずれはそのままフォ一カス誤差となってしま 。  Further, when the focus detection method of the focus position detection system 21 uses, for example, the position of the center of gravity in the slit image as a focus signal, that is, in the case of the detection method using a line CCD, the displacement of the position of the center of gravity is directly considered as a focus error. It has become.
そのため、 高精度にフォーカス調整を実施するために、 露光前に予めこのフォ —カス誤差を計測しておく。 本実施の形態では、 フォーカス計測点に照射した検 知光の反射光を受光したときに得られる検出信号の強度に基づいてフォーカス誤 差を計測している。 以下では、 まず各フォーカス計測点において反射率分布によ り生じるフォーカス誤差を計測する手順について説明する。.  Therefore, in order to perform focus adjustment with high accuracy, this focus error is measured in advance before exposure. In the present embodiment, the focus error is measured based on the intensity of the detection signal obtained when the reflected light of the detection light applied to the focus measurement point is received. Hereinafter, a procedure for measuring a focus error caused by a reflectance distribution at each focus measurement point will be described first. .
上述したように、 フォーカス位置検出系 2 1により検出される一つのフォー力 ス計測点での検出信号は、 当該フォ カス計測点における平均的な反射光強度で あり、 スリット内のフォーカス計測方向の反射率分布を示すものではない。 また、 無限小の幅を有するスリット (極細スリット) の検知光を用いて、 フォーカス計 測点におけるスリッ卜像 A Fの投影領域内を複数回計測すれば反射率分布を求め ることが可能であるが、 このような検知光を装備することは困難である。 そこで、 本実施の形態では、 図 8 Aに示すように、 計測対象であるフォーカス計測点 A F と、 この計測点 A Fを挟んでフォーカス計測方向 (本実施形態では X方向) 両側 に所定間隔をあけた位置の計測点 A F L、 A F Rとでそれぞれ反射光の強度を計 測する。 ここで、 図 8 Aは 3個のフォーカス計測点にそれぞれスリット像を投影 して反射光の強度を計測する様子を示しているが、 必ずしも 3つのスリツト像を 投影しなくてもよく、 例えば 1個のフォーカス計測点のみにスリット像を投影し、 ウェハ Wを X方向に移動することで図 8 Aの 3個のフォーカス計測点に対応する ウェハ W上の 3箇所でそれぞれ反射光の強度を計測するようにしてもよい。 なお、 少なくとも 1個のスリット像 A Fを用いて反射光強度を検出すべきウェハ上の計 測箇所は 3つに限定されるものではなく 2つまたは 4つ以上でも構わない。 これ ら 3点の計測結果から、 例えば最小自乗法等の演算処理により反射率分布 r ( x ) を求める。 As described above, the detection signal at one force measurement point detected by the focus position detection system 21 is the average reflected light intensity at the focus measurement point, and is the intensity of the reflected light in the focus measurement direction in the slit. It does not show a reflectance distribution. Also, The reflectance distribution can be obtained by measuring the slit image AF projection area at the focus measurement point several times using the detection light of a slit (extremely fine slit) having an infinitesimal width. It is difficult to equip such detection light. Thus, in the present embodiment, as shown in FIG. 8A, a focus measurement point AF to be measured and a predetermined interval on both sides of the focus measurement direction (the X direction in the present embodiment) with this measurement point AF interposed therebetween. The intensity of the reflected light is measured at the measurement points AFL and AFR at the positions indicated by the arrows. Here, FIG. 8A shows a state in which a slit image is projected on each of the three focus measurement points to measure the intensity of the reflected light. However, it is not always necessary to project three slit images. By projecting a slit image only at the focus measurement points and moving the wafer W in the X direction, the reflected light intensity is measured at three locations on the wafer W corresponding to the three focus measurement points in Fig. 8A. You may make it. It should be noted that the number of measurement locations on the wafer at which reflected light intensity should be detected using at least one slit image AF is not limited to three, but may be two or four or more. From these three measurement results, the reflectance distribution r (x) is obtained by arithmetic processing such as the least square method.
ここで、 次式 ( 1 ) のように、 フォーカス計測方向に 1次で表される反射率分 布がウェハ Wの表面に存在する場合を考える。  Here, it is assumed that the reflectance distribution expressed by the first order in the focus measurement direction exists on the surface of the wafer W as in the following equation (1).
r ( x ) = a x + b … ( 1 )  r (x) = a x + b… (1)
ある計測位置 xにおいてフォーカス計測方向に幅 △ を有するスリット像の'反射 光強度 I ( X ) は、 以下のように算出される。  The 'reflected light intensity I (X)' of a slit image having a width Δ in the focus measurement direction at a certain measurement position x is calculated as follows.
Figure imgf000017_0001
Figure imgf000017_0001
= AQA · (ax + b) = A Q A
= A ' r(x)  = A 'r (x)
A。 ;入射光強度 式 (2) から明らかなように、 反射光強度 I (X) は反射率分布!" (x) に比 例しており、 有限幅を有する検知光を用いて検出した反射率分布を、 無限小幅の 検知光で検出した反射率分布としても支障がない。 A. ; Incident light intensity As is clear from equation (2), the reflected light intensity I (X) is the reflectance distribution! "(x), and there is no problem even if the reflectance distribution detected using the detection light having a finite width is used as the reflectance distribution detected using the detection light having an infinitesimal width.
次に、 式 (3) のように、 フォーカス計測方向に 2次で表される反射率分布が ウェハ Wの表面に存在する場合を考える。  Next, let us consider a case where a reflectivity distribution expressed by quadratic in the focus measurement direction exists on the surface of the wafer W as in the equation (3).
r (X) = a x 2 + b x + c … ( 3) r (X) = ax 2 + bx + c… (3)
この場合の反射光強度 I (X) は、 以下の'ように算出される。  The reflected light intensity I (X) in this case is calculated as follows.
=4 2ベ5^
Figure imgf000018_0001
= 4 2 base 5 ^
Figure imgf000018_0001
No
ここで、 下地の構造による変動が存在する場合でも、 レジスト表面 (ウェハ表 面) での反射率が大きいということを考慮すると、 一定した反射率成分 cよりも 2次の成分の変化率が小さいと見なすことができ、 この場合反射光強度 I ( X) は以下のように算出される。  Here, even if there is a variation due to the structure of the underlying layer, the rate of change of the second-order component is smaller than the constant reflectance component c, considering that the reflectance on the resist surface (wafer surface) is large. In this case, the reflected light intensity I (X) is calculated as follows.
,
Figure imgf000018_0002
Figure imgf000018_0002
No
≡ 4。Δ ' (ax2 +bx + c) ≡ 4. Δ '(ax 2 + bx + c)
= A - r(x) (4) 式 (4) から明らかなように、 2次で表される反射率分布の反射光強度 I ( X) においても、 反射率分布 r ( X) に比例しており、 有限幅を有する検知光 を用いて検出した反射率分布を、 無限小幅の検知光で検出した反射率分布として も支障がない。 これは、 3次以上で表される反射率分布でも同様であるため、 結 果として、 フォーカス位置検出系 2 1の検出信号 (光強度) の強度分布を、 ゥェ ハ W上の反射率分布として重心位置の算出に使用することができる。 なお、 フォ —カス位置検出系 2 1のように、 振動板 (振動子) を用いる場合には、 振動子の 振動周波数に対する、 倍の周波数成分がフォーカス検出信号となるため、 反射光 の強度はその振幅を検出することで得ることができる。 = A-r (x) (4) As is clear from Eq. (4), the reflected light intensity I (X) of the second-order reflectance distribution is proportional to the reflectance distribution r (X). Therefore, there is no problem even if the reflectance distribution detected using the detection light having a finite width is used as the reflectance distribution detected using the detection light having an infinitesimal width. This is the same for the reflectivity distribution expressed by the third or higher order, and as a result, the intensity distribution of the detection signal (light intensity) of the focus position detection system 21 is calculated as follows. (C) It can be used for calculating the position of the center of gravity as a reflectance distribution on W. When a vibrating plate (vibrator) is used as in the focus position detecting system 21, the frequency component twice the vibration frequency of the vibrator becomes the focus detection signal. It can be obtained by detecting the amplitude.
上記の方法で反射率分布 r (x) が得られると、 下記の重心算出の式 (5) に より、 フォーカス計測点 AFからの反射光の重心位置 c (X) を算出することが できる。  When the reflectance distribution r (x) is obtained by the above method, the center of gravity c (X) of the reflected light from the focus measurement point AF can be calculated by the following equation (5) for calculating the center of gravity.
Figure imgf000019_0001
重心位置 C ( x) を算出したら、 フォーカス検出原理に基づき、 ウェハ表面へ の入射角 Θ において、 フォーカス誤差 e (X) は次式 (6) で求めることができ る。 ·
Figure imgf000019_0001
After calculating the center of gravity C (x), the focus error e (X) can be obtained by the following equation (6) at the angle of incidence Θ on the wafer surface based on the focus detection principle. ·
e (x) = ( c (x) X t an / 2 … (6)  e (x) = (c (x) X t an / 2… (6)
そして、 主制御系 20は、 演算して求めたフォーカス誤差 e (X) をフォ一力 ス計測点の座標 (ウェハ W上での反射光強度の計測位置) と対応させて記憶装置 40に記憶させる。  Then, the main control system 20 stores the calculated focus error e (X) in the storage device 40 in association with the coordinates of the force measurement point (the measurement position of the reflected light intensity on the wafer W). Let it.
続いて、 上記の位置計測方法を用いてウェハ Wの転写面のフォーカス調整を行 う手順について、 図 9に示すフロ一チャートを参照して説明する。  Next, a procedure for adjusting the focus of the transfer surface of the wafer W using the above-described position measurement method will be described with reference to a flowchart shown in FIG.
なお、 フォーカス誤差計測は、 基本的に全てのフォーカス計測点で実施するが、 本実施の形態では、 同期移動による走査露光時に実際にフォーカス計測が行われ る計測点、 換言すると、 ウェハ Wに照射される複数の検知光のうち、 実露光時に フォ一カス計測に用いられる検知光を使用する。 具体的には、 フォーカス計測点 AF 1 1〜AF 1 7、 AF 2 1〜AF 27、 …ゝ AF 7 1〜AF 77に照射され る複数の検知光の中、 便宜上、 図 4 Bに示すように、 ショット領域 (区画領域) S A上で露光領域 E Fの周辺部に配置されるフォーカス計測点 AF 5 7、 AF 5 4、 AF 5 1、 AF 3 1、 AF 34、 AF 3 7 (以下、 符号 S 1〜S 6とする) に照射される検知光を用いるものとして説明する。 Note that focus error measurement is basically performed at all focus measurement points. However, in the present embodiment, measurement points at which focus measurement is actually performed during scanning exposure by synchronous movement, in other words, irradiation of the wafer W Of the plurality of detection lights to be used, the detection light used for focus measurement during actual exposure is used. Specifically, the focus measurement points AF11 to AF17, AF21 to AF27,... ゝ Among the multiple detection lights irradiated to AF71 to AF77, for convenience, as shown in FIG. In addition, the focus measurement points AF 57 and AF 5 that are arranged on the shot area (block area) SA and around the exposure area EF 4, the description will be made assuming that the detection light emitted to AF 51, AF 31, AF 34, AF 37 (hereinafter, referred to as S1 to S6) is used.
なお、 フォーカス誤差計測を行うタイミングとしては、 ロット処理の先頭や口 ット処理の合間等を選択することができる。 ロット先頭で行う場合には、 例えば E G A処理 (ェンハンスド · グローバル 'ァライメント ;特開昭 6 1— 4442 9号公報及び対応する米国特許第 4, 7 8 0, 6 1 7号参照) 後にフォーカス誤 差計測を行い、 算出されたフォーカス誤差を投影光学系 P Lの像面に対する補正 量 (オフセット値) とする。 また、 フォーカス誤差計測をロット処理の合間に行 う場合は、 計測対象となるウェハ (例えば、 次に露光処理するロッ ト内のゥェ ハ) を取り出して露光装置内にセッティングし、 上述と同様にウェハァライメン ト (EGA) を行った後にフォーカス誤差計測を行ってその結果を記憶する。 そ して、 そのロットが露光処理される時に、 記憶された情報を読み出して、 フォー カス位置を含むウェハの姿勢調整に反映させる。 ここでは、 EGA処理後にフォ 一カス誤差計測を実施するものとする。  In addition, as the timing of performing the focus error measurement, the head of the lot processing, the interval between the mouth processing, and the like can be selected. In the case of performing at the beginning of the lot, for example, focus error after EGA processing (Enhansed Global Arrangement; see Japanese Patent Application Laid-Open No. 61-44249 and corresponding US Pat. No. 4,780,617) Measurement is performed, and the calculated focus error is used as a correction amount (offset value) for the image plane of the projection optical system PL. If the focus error measurement is to be performed between lot processes, take out the wafer to be measured (for example, a wafer in the next exposure processing lot) and set it in the exposure apparatus. After performing wafer alignment (EGA), focus error measurement is performed and the result is stored. Then, when the lot is subjected to exposure processing, the stored information is read out and reflected in the wafer posture adjustment including the focus position. Here, it is assumed that focus error measurement is performed after EGA processing.
図 9に示すように、 ステップ S T 0でロッ卜先頭のウェハに対して E G A処理 が終了すると、 まずフォーカス誤差計測を実行するかどうかを判断し (ステップ S T 1) 、 実行しない場合はステップ ST 1 0の露光処理に移佇する。 通常、 ゥ ェハ W上にはレチクル Rのパターンが露光されるショット領域 S Aが区画された 状態で碁盤状に複数配列される。 そのため、 フォーカス誤差計測を実行する際に は、 計測対象とするショット領域を選択する (ステップ ST 2) 。  As shown in FIG. 9, when the EGA processing is completed for the wafer at the beginning of the lot in step ST0, it is first determined whether or not focus error measurement is to be performed (step ST1). Move to 0 exposure processing. Usually, a plurality of shot areas S A on which the pattern of the reticle R is exposed are sectioned on the wafer W in a grid pattern. Therefore, when executing focus error measurement, a shot area to be measured is selected (step ST2).
通常、 ウェハ Wにおける各ショット領域内の構造は同じであり、 またプロセス プログラムも同じであることから、 あるショット領域で生じるフォーカス誤差は 他のショット領域でも生じる。 そのため、 全領域を計測できるショット領域を選 択して計測すれば、 計測したフォーカス誤差を他のショット領域に対しても適用 することが可能である。 ただし、 計測精度をより向上させるためには、 複数のシ ョット領域に対して反射率分布を計測してもよい。  Normally, since the structure in each shot area on the wafer W is the same and the process program is also the same, a focus error generated in one shot area also occurs in another shot area. Therefore, if a shot area where the entire area can be measured is selected and measured, the measured focus error can be applied to other shot areas. However, in order to further improve the measurement accuracy, the reflectance distribution may be measured for a plurality of shot areas.
次に、 ステップ S T 3'では上述したように、 フォーカス位置検出系 2 1の検出 信号を用いて、 ウェハ Wの表面状態の分布情報として反射率分布を計測する。 ここで、 本実施の形態では、 既述のように、 図 4 Aに示した複数のフォーカス 計測点の中、 図 4 Bに示すフォーカス計測点 S 1〜S 6に照射される検知光を用 いて、 レチクル Rとウェハ Wとの同期移動中にフォーカス計測が行われる経路に 対して反射率分布の計測を実施する。 より詳細には、 本露光装置では、 ショット マップデ一夕かちウェハ W上で露光すべきショット領域 S Aのサイズや位置、 及 びオートフォーカスアルゴリズムから走査露光時に使用されるフォーカス計測点 (露光領域 E Fの外側に設定される計測点を含んでもよい) が既知であるため、 フォーカス計測の信号サンプリング間隔と同期移動速度 (スキャン速度) とから、 ウェハ W上の計測位置も判明している。 図 1 0には、 走査露光時にフォーカス計 測が行われる経路 K及び計測位置 P 1 1〜P 1 4が概略的に示されている。 この ように、 反射率分布の計測は、 フォーカス計測が行われる経路 Kに関してはもち ろんのこと、 フォーカス計測が行われるウェハ W上の位置 P 1 ;!〜 P 1 4に対し て実施する。 なお、 図 1 0中の位置 P 1 1と P 1 4との間隔は, 走査方向 (Y方 向) に関するウェハ上のショット領域の幅と同程度以下に設定されている。 Next, in step ST3 ', as described above, the reflectance distribution is measured as the distribution information of the surface state of the wafer W using the detection signal of the focus position detection system 21. Here, in the present embodiment, as described above, among the plurality of focus measurement points shown in FIG. 4A, the detection light irradiated to focus measurement points S1 to S6 shown in FIG. 4B is used. Then, the reflectance distribution is measured for the path where the focus measurement is performed during the synchronous movement between the reticle R and the wafer W. More specifically, in the present exposure apparatus, the size and position of the shot area SA to be exposed on the wafer W in a short time after the shot map mapping, and the focus measurement point (the exposure area EF The measurement position on the wafer W is also known from the focus measurement signal sampling interval and the synchronous movement speed (scan speed). FIG. 10 schematically shows a path K in which focus measurement is performed at the time of scanning exposure and measurement positions P11 to P14. As described above, the measurement of the reflectance distribution is performed not only on the path K on which the focus measurement is performed, but also on the position P 1 on the wafer W where the focus measurement is performed; The interval between the positions P 11 and P 14 in FIG. 10 is set to be equal to or less than the width of the shot area on the wafer in the scanning direction (Y direction).
また、 各フォーカス計測点 S 1〜S 6の位置は、 精密な調整がなされているが、 微小な調整誤差が含まれる可能性もある。 図 4 Bに示すフォーカス計測経路 (矢 印が付された点線) の中、 例えば左端に示される経路は、 フォーカス計測点 S 3、 S 4のいずれか一方のみで反射率分布を計測することが可能であるが、 この計測 点の設定位置に誤差が含まれる場合はフォーカス計測を行う位置に対して、 正確 な反射率分布の計測を実施できない虞がある。 そこで、 本実施の形態では、 全て のフォーカス計測点 S 1〜S 6で反射率分布を計測し、 各計測点毎にウェハ Wの 座標位置に対応させた反射率分布を記憶する (ステップ S T 4 ) 。  Although the positions of the focus measurement points S1 to S6 are precisely adjusted, there is a possibility that a minute adjustment error may be included. Of the focus measurement paths (dotted lines with arrows) shown in Fig. 4B, for example, the path shown at the left end can measure the reflectance distribution at only one of the focus measurement points S3 and S4. Although it is possible, if there is an error in the set position of this measurement point, there is a possibility that accurate measurement of the reflectance distribution cannot be performed at the position where the focus measurement is performed. Therefore, in the present embodiment, the reflectance distribution is measured at all the focus measurement points S1 to S6, and the reflectance distribution corresponding to the coordinate position of the wafer W is stored for each measurement point (step ST4). ).
' 続いて、 ステップ S T 5では、 設定された平均化回数の計測を実施したか否か を判断し、 所定回数の計測が終了するまで上記ステップ S T 3、 S T 4を繰り返 す。 反射率分布計測においては、 計測再現性によるばらつきが生じるため、 平均 化効果でばらつきを小さくするために、 一つのショッ卜領域 S Aに対して複数回 の反射率分布計測を実施することで、 補正精度を向上させることができる。 次に、 ステップ S T 6では、 選択したショット領域に対する計測が全て終了したか否か を判断し、 計測が終了するまで上記ステップ S T 3〜S T 5を繰り返す。 そして、 ウェハ Wに対する全ての反射率分布計測が終了すると、 続いて記憶し た反射率分布、 及び上記の式 (5 ) 、 ( 6 ) を用いて演算することにより、 各フ オーカス計測点毎にウェハ (ショット領域) の座標位置に対応させてフォーカス 誤差を算出する (ステップ S T 7 ) 。 そして、 算出したフォーカス誤差により、 走査露光時のオフセットデータをフォーカス計測点の座標位置に対応させたマツ プを作成し記憶する (ステップ S T 8 ) とともに、 露光時の像面補正値を作成し て (ステップ S T ) 、 記憶装置 4 0に記憶させる。 そして、 これら一連のフォー カス誤差計測が終了すると露光処理 (ステップ S T 1 0 ) に移行する。 'Subsequently, in step ST5, it is determined whether or not the measurement of the set number of times of averaging has been performed, and the above steps ST3 and ST4 are repeated until the measurement of the predetermined number of times is completed. In the reflectivity distribution measurement, variations due to measurement reproducibility occur, so in order to reduce the variance due to the averaging effect, correction is performed by performing multiple reflectivity distribution measurements on one shot area SA Accuracy can be improved. Next, in step ST6, it is determined whether or not all the measurements for the selected shot area have been completed, and the above steps ST3 to ST5 are repeated until the measurement is completed. Then, when all the reflectance distribution measurements for the wafer W are completed, the reflectance distribution is then calculated using the stored reflectance distributions and the above equations (5) and (6), so that each focus measurement point is calculated. A focus error is calculated corresponding to the coordinate position of the wafer (shot area) (step ST7). Based on the calculated focus error, a map is created in which the offset data at the time of scanning exposure corresponds to the coordinate position of the focus measurement point and stored (step ST8), and an image plane correction value at the time of exposure is created. (Step ST), and store it in the storage device 40. When the series of focus error measurement is completed, the flow shifts to exposure processing (step ST10).
この露光処理では、 主制御系 2 0の制御の下、 レチクル Rとウェハ Wとを同期 移動してレチクル Rに形成されたパターンの像をウェハ Wの転写面に転写する際 に、 多点フォーカス位置検出系 2 1を用いてフォーカス計測点にて転写面のフォ 一カス位置を計測しつつ、 上記で算出したウェハ Wの転写面の形状に応じてゥェ ハ Wの姿勢及び Z位置を制御する。  In this exposure processing, under the control of the main control system 20, the reticle R and the wafer W are synchronously moved to transfer the image of the pattern formed on the reticle R to the transfer surface of the wafer W. The position and the Z position of the wafer W are controlled according to the shape of the transfer surface of the wafer W calculated above while measuring the focus position of the transfer surface at the focus measurement point using the position detection system 21. I do.
ここで、 同期移動中に、 例えばフォーカス計測点 S 3 (図 4 B参照) の計測結 果が入力すると、 主制御系 2 0は、 記憶装置 4 0に記憶されているフォーカス誤 差の中、 フォーカス計測点 S 3により計測したフォーカス誤差 (のマップ) を選 択し、 選択したフォーカス誤差を用いて計測結果を補正する。 つまり、 主制御系 2 0は、 同期移動中に入力した計測値に対して、 この計測値が得られたフォ一力 ス計測点でのフォーカス誤差を用いて補正する。 これにより、 計測結果からフォ —カス計測点を設定する際の調整誤差を排除することができる。  Here, during the synchronous movement, for example, when the measurement result of the focus measurement point S 3 (see FIG. 4B) is input, the main control system 20 determines the focus error stored in the storage device 40 Select the focus error (map of) measured at the focus measurement point S3, and correct the measurement result using the selected focus error. That is, the main control system 20 corrects the measurement value input during the synchronous movement using the focus error at the force measurement point at which the measurement value was obtained. As a result, it is possible to eliminate an adjustment error when setting a focus measurement point from the measurement result.
すなわち、 主制御系 2 0は補正装置として、 多点フォ一カス位置検出系 2 1の 計測結果を記憶装置 4 0に記憶しているフォーカス誤差 (オフセットデータ) に よってそれぞれ補正し、 補正した計測値を用いて上記の演算処理を行うことによ り、 ゥ: I ハ表面の傾斜角及びフォーカス位置を算出する。 例えば図 1 1 ( a ) に 示すように、 フォーカス計測点 S 3により、 本来一様な面位置を有するウェハを 走査した際に、 位置 S P 1と位置 S P 2との間に低反射領域 L Rが存在する場合、 フォーカス計測点 S 3における計測結果 (センシング値) には、 図 1 1 Bに示す ように、 フォーカス誤差が含まれてしまう。 そこで、 予め記憶したフォーカス誤 差を用いて計測結果を補正することで、 図中二点鎖線で示すように、 実際の面位 置 (面状態) に即した面位置情報を得ることができる。 That is, the main control system 20 serves as a correction device, and corrects the measurement results of the multipoint focus position detection system 21 by the focus error (offset data) stored in the storage device 40, and performs the corrected measurement. By performing the above calculation process using the values, ゥ: I calculates the inclination angle and the focus position of the surface. For example, as shown in Fig. 11 (a), when a wafer having an originally uniform surface position is scanned by the focus measurement point S3, a low reflection area LR is formed between the position SP1 and the position SP2. If there is, the measurement result (sensing value) at the focus measurement point S3 includes a focus error as shown in FIG. 11B. Therefore, the focus error stored in advance By correcting the measurement result using the difference, it is possible to obtain surface position information according to the actual surface position (surface state) as shown by the two-dot chain line in the figure.
そして、 主制御系 2 0は、 得られた結果に基づいてァクチユエ一夕 8 a〜 8 c をそれぞれ個別に駆動することにより、 Zチルト Θ ステージ 7を介してウェハ W の面位置を調整することができる。 このとき、 主制御系 2 0は、 多点フォーカス 位置検出系 2 1の計測結果に対して、 この計測点に対応するフォーカス誤差を用 いる。 このとき、 フォーカス計測点にて実際にフォーカス位置が計測されたゥェ ハ上の位置 (実計測位置) と、 記憶されているフォーカス誤差に対応するウェハ 上の位置 (誤差計測位置) とが一致している場合は、 直接そのフォーカス誤差を 用いて補正を行うが、 'その実計測位置と誤差計測位置とがー致しない場合には実 計測位置に最も近い位置のフォーカス誤差を用いるか、 もしくは実計測位置近傍 2点のフォーカス誤差を用いて補間することにより、 当該実計測位置のフォー力 ス誤差を算出し、 得られたフォーカス誤差に基づいて補正を行う。 なお、 ウェハ 表面の傾斜角及びフォーカス位置の詳細な算出方法は、 例えば特開 2 0 0 2 - 2 7 0 4 9 8号公報、 あるいは特開平 9 - 8 2 6 3 6号公報及び対応する米国特許 第 6 0 8 0 5 1 7号などに開示されているため、 ここでは省略する。  Then, the main control system 20 adjusts the surface position of the wafer W via the Z tilt ス テ ー ジ stage 7 by individually driving the actuators 8 a to 8 c based on the obtained results. Can be. At this time, the main control system 20 uses the focus error corresponding to the measurement point with respect to the measurement result of the multipoint focus position detection system 21. At this time, the position on the wafer where the focus position was actually measured at the focus measurement point (actual measurement position) and the position on the wafer corresponding to the stored focus error (error measurement position) are equal to one another. If the actual measurement position and the error measurement position do not match, the focus error at the position closest to the actual measurement position is used. By interpolating using the focus error at two points near the measurement position, the force error at the actual measurement position is calculated, and correction is performed based on the obtained focus error. A detailed calculation method of the tilt angle and the focus position of the wafer surface is described in, for example, Japanese Patent Application Laid-Open No. 2002-27098, Japanese Patent Application Laid-Open No. Since it is disclosed in Japanese Patent No. 6808510, it is omitted here.
そして、 1つのショット領域 S Aの走査露光が終了すると、 ウェハ Wをステツ プ移動して次のショット領域の走査露光を開始する。 以下、 走査露光とステップ 移動とを繰り返し実行して、 ウェハ W上の全てのショット領域にレチクル Rのパ ターンが転写されると、 ウェハ Wの露光処理が完了する。  When the scanning exposure of one shot area SA is completed, the wafer W is moved stepwise to start the scanning exposure of the next shot area. Hereinafter, the scanning exposure and the step movement are repeatedly executed, and when the pattern of the reticle R is transferred to all the shot areas on the wafer W, the exposure processing of the wafer W is completed.
以上のように、 本実施の形態では、 予め走査露光で使用するフォーカス計測点 に対応して、 走査方向 (Y方向) に関するウェハ W (ショット領域) 上の異なる 位置でそれぞれ計測される 射率分布からフォーカス誤差を算出しているので、 ウェハ Wに対するフォーカス位置計測を実施する際には、 反射率分布に起因する 誤差成分を排除 ·補正することができ、 ウェハ Wの表面位置を容易に投影光学系 P Lの結像面に位置決めすることが可能である。 そのため、 本実施の形態では、 焦点深度の浅い投影光学系を用いた場合でも、 正確な合焦調整により高解像度の 露光処理を実現することが可能になる。 特に、 本実施の形態では、 フォーカス計測における検知光受光時の検出信号の 強度に基づいてフォーカス誤差を計測しているので、 反射率分布計測用の機器を 別途設置する必要がなく、 装置の小型化及び低価格化に寄与することができる。 また、 本実施の形態では、 レチクル Rとウェハ Wとの同期移動中 (実露光時) に フォ一カス計測を行う経路に対して、 予めフォーカス誤差を計測するので、 フォ 一カス誤差計測に要する時間を短縮することができ、 生産効率の向上にも寄与で 'きる。 さらに、 本実施の形態では、 複数のフォーカス計測点に対してそれぞれフ オーカス誤差を計測するとともに、 各計測点毎にマップを作成 ·記憶させるので、 同期移動中にフォーカス計測を実施するフォーカス計測点 (フォーカス計測を行 う際に用いる検知光) で得られた結果により補正を実施することで、 フォーカス 計測点の位置設定時の調整誤差による悪影響を排除することができ、 より高精度 なフォーカス調整を実施できる。 As described above, in the present embodiment, the emissivity distributions respectively measured at different positions on the wafer W (shot area) in the scanning direction (Y direction) corresponding to the focus measurement points used in the scanning exposure in advance. Since the focus error is calculated from the data, the error component due to the reflectance distribution can be eliminated and corrected when the focus position is measured for the wafer W, and the surface position of the wafer W can be easily projected. It can be positioned on the image plane of the system PL. Therefore, in the present embodiment, even when a projection optical system having a shallow depth of focus is used, high-resolution exposure processing can be realized by accurate focusing adjustment. In particular, in the present embodiment, since the focus error is measured based on the intensity of the detection signal at the time of receiving the detection light in the focus measurement, it is not necessary to separately install a reflectance distribution measuring device, and the device is compact. It can contribute to cost reduction and cost reduction. Further, in the present embodiment, the focus error is measured in advance for the path for performing the focus measurement during the synchronous movement of the reticle R and the wafer W (at the time of actual exposure), so that the focus error measurement is required. The time can be shortened, and it can contribute to the improvement of production efficiency. Further, in the present embodiment, the focus error is measured for each of the plurality of focus measurement points, and a map is created and stored for each measurement point. (Detection light used when performing focus measurement) By performing correction based on the results obtained, it is possible to eliminate the adverse effects of adjustment errors when setting the position of the focus measurement point, and to achieve more accurate focus adjustment Can be implemented.
なお、 上記実施の形態では、 図 8 Aに示したように、 反射率分布 r ( x ) を計 測する際に、 フォーカス計測点 A F及びこの計測点 A Fに間隔をあけた位置の計 測点 A F L、 A F Rにおいて反射光の強度を計測する構成としたが、 図 8 Bに示 すように、 フォーカス計測点 A Fの他に、 検知光が互いに重なる (フォーカス計 測方向のスリット幅よりも小さいピッチの) 複数点において反射光の強度を計測 する構成としてもよい。 このとき、 例え.ばフォーカス計測点 A Fに対してウェハ Wをフォーカス計測方向に移動することで、 図 8 Bの計測点 A Fを含む複数点で それぞれ反射光の強度を計測する。 この場合、 より微視的な反射率分布を得るこ とができ、 例えば最小自乗近似法等により反射光強度分布が 2次で変化している 成分を算出可能であれば、 反射率分布 r ( X ) を 2次として上記の光量重心を算 出できる。  In the above embodiment, as shown in FIG. 8A, when measuring the reflectance distribution r (x), the focus measurement point AF and the measurement points at positions spaced from the measurement point AF are measured. AFL and AFR are used to measure the intensity of the reflected light. However, as shown in Fig. 8B, in addition to the focus measurement point AF, the detection light overlaps with each other (a pitch smaller than the slit width in the focus measurement direction). ) It may be configured to measure the intensity of reflected light at a plurality of points. At this time, for example, by moving the wafer W in the focus measurement direction with respect to the focus measurement point AF, the intensity of the reflected light is measured at a plurality of points including the measurement point AF in FIG. 8B. In this case, a more microscopic reflectance distribution can be obtained.For example, if a component in which the reflected light intensity distribution changes quadratically by the least squares approximation method or the like can be calculated, the reflectance distribution r ( X) can be used as the second order to calculate the light intensity centroid.
なお、 検知光が互いに重なる複数点で反射光強度分布を計測する場合は、 計測 間隔が小さいので、 式 (5 ) のように積分処理することなく、 下式 (7 ) を用い て重心算出を実施してもよい。 ∑η · χι When measuring the reflected light intensity distribution at a plurality of points where the detection light overlaps each other, since the measurement interval is small, the center of gravity can be calculated using the following equation (7) without performing integration processing as in equation (5). May be implemented. ∑η · χ ι
c x) = ~~ …… (7)  c x) = ~~ …… (7)
 ∑
i ;反射光強度計測点 x iにおける反射光強度  i: reflected light intensity at the reflected light intensity measurement point x i
また、 上記の実施形態では、 同期移動方向については特に言及しなかったが、 実際には干渉計等により座標位置が得られる夕イミングとウェハ Wの姿勢及び Z 位置等を制御する夕イミングとにギャップが生じる場合がある。 このような場合 には、 同期移動方向に応じて反射率分布の計測結果が異なることがある。 そのた め、 反射率分布及びフォーカス誤差を計測する際には、 フォーカス計測点毎にマ ップを作成したのと同様に、 同期移動方向毎に座標位置に対応させた反射率分布 及びフォーカス誤差のマップを作成 ·記憶させ、 フォーカス調整時には、 同期移 動方向に対応したマップを呼び出して、 このマップに含まれるオフセット値を用 いてフォーカス計測値を補正することが好ましい。 なお、 本実施形態ではショッ ト領域内で走査方向 (Y方向) と平行な経路 K上に離散的に設定される複数位置 (本例では 4つ) でそれぞれ反射率分布'を計測するものとしたが、 経路 K上での 反射率分布の計測位置の数は任意でよいし、 例えば走査方向に関する前述のスリ ット像 A Fの幅とほぼ同じピッチでウェハを走査方向に移動することで、 走査方 向に関するショット領域のほぼ全域に渡って反射率分布を計測してもよい。  Further, in the above embodiment, the synchronous movement direction is not particularly mentioned. However, in actuality, there are two types of timing: a timing at which a coordinate position is obtained by an interferometer or the like; and a timing at which the attitude and the Z position of the wafer W are controlled. Gaps may occur. In such a case, the measurement result of the reflectance distribution may be different depending on the synchronous movement direction. Therefore, when measuring the reflectance distribution and the focus error, the reflectance distribution and the focus error corresponding to the coordinate position for each synchronous movement direction are the same as when a map is created for each focus measurement point. It is preferable that a map corresponding to the synchronous movement direction be called up when the focus is adjusted, and that the focus measurement value is corrected using the offset value included in the map. In this embodiment, the reflectance distribution ′ is measured at a plurality of positions (four in this example) that are discretely set on a path K parallel to the scanning direction (Y direction) in the shot area. However, the number of measurement positions of the reflectance distribution on the path K may be arbitrary.For example, by moving the wafer in the scanning direction at a pitch substantially equal to the width of the above-described slit image AF in the scanning direction, The reflectivity distribution may be measured over almost the entire shot area in the scanning direction.
続いて、 本発明の他の実施形態について説明する。  Subsequently, another embodiment of the present invention will be described.
上記の実施形態では、 フォーカス計測に係る検知光の反射光を受光することで、 ウェハ表面の反射率分布を算出 ·計測する構成としたが、 ウェハ Wの表面形状を 予め実測し、 その結果を用いて反射率分布により生じるフォーカス誤差分布を得 ることも可能である。 なお、 以下の計測方法においても、 計測精度を向上させる ために、 単一ショット領域内、 複数のショット領域、 同期移動方向毎等、 複数回 計測による平均化を行うことが好ましい。  In the above embodiment, the reflectivity distribution of the wafer surface is calculated and measured by receiving the reflected light of the detection light relating to the focus measurement, but the surface shape of the wafer W is measured in advance, and the result is measured. It can also be used to obtain a focus error distribution caused by the reflectance distribution. In the following measurement method, it is preferable to perform averaging by multiple measurements within a single shot region, a plurality of shot regions, and for each synchronous movement direction in order to improve measurement accuracy.
例えば図 1 2に示すように、 上述のフォーカス位置検出系 2 1を用いてウェハ Wの表面形状を計測し (ステップ S T 1 1 ) 、 計測した表面形状と、 静電容量セ ンサ等のフォーカス位置検出系 2 1とは異なる計測器を用いて予め実測した表面 形状との差分を反射率分布によるフォ.一カス誤差としてオフセット値を設定する (ステップ S T 1 2 ) ことも可能である。 この場合、 設定したオフセット値を用 いてフォーカス計測結果を補正すれば (ステップ S T 1 3 ) 、 上記実施形態と同 様に、 反射率分布に起因する誤差成分を排除することができる。 For example, as shown in FIG. 12, the surface shape of the wafer W is measured using the focus position detection system 21 described above (step ST 11), and the measured surface shape and the focus position of the capacitance sensor and the like are measured. Surface measured in advance using a measuring instrument different from detection system 21 It is also possible to set the offset value as a focus error based on the reflectance distribution using the difference from the shape (step ST 12). In this case, if the focus measurement result is corrected using the set offset value (step ST13), an error component due to the reflectance distribution can be eliminated as in the above embodiment.
また、 近年のデバイス製造プロセスにおいては、 上述した C M Pにより平坦化. 処理が設けられることが多いが、 この処理により表面形状が平坦と見なせるゥェ ハに対しては、 図 1 3に示すように、 平坦化処理を実施した後に (ステップ S T 2 1 ) 、 フォーカス位置検出系 2 1を用いてフォーカス計測を実施した際に (ス テツプ S T 2 2 ) 、 この計測値 (位置情報、 面位置情報) をフォーカス誤差とし て設定することもできる (ステップ S T 2 3 ) 。 この場合、 ウェハのフラットネ スを実測していないので、 ウェハが平坦でない場合はフォーカス誤差分布に誤差 が含まれることになる。 しかし、 ウェハホルダの平坦度やウェハ自身のグレード 等により、 計測時のウェハのフラットネスは概ね把握可能であるので、 フラット ネスに対応するしきい値を設定し、 フォーカス計測結果にしきい値以上の変化が 含まれる場合は、 反射率分布に起因するフォーカス誤差が存在するとして補正を 行うようにしてもよい。 なお、 例えばウェハのフラットネスを予め実測しておき、 この実測されたフラットネスを用いて先に算出したフォーカス誤差分布を補正し てもい。 また、 フォーカス位置検出系 2 1を用いてフォーカス計測を実施すると き、 計測対象となるショット領域が所定の基準面 (例えば、 投影光学系 P Lの結 像面) に対して傾いていると、 先に算出したフォーカス誤差分布にその傾向に起 因した誤差が含まれることになる。 そこで、 例えばフォーカス計測に先立ってシ ョッ卜領域を基準面とほぼ平行に設定しておく、 あるいはフォーカス誤差分布か らその傾斜に起因した誤差を差し引くことが好ましい。  Also, in recent device manufacturing processes, planarization is often performed by the above-mentioned CMP. For wafers whose surface shape can be regarded as flat by this processing, as shown in Fig. 13 After performing the flattening process (step ST 21), when the focus measurement is performed using the focus position detection system 21 (step ST 22), the measured values (position information, surface position information) Can be set as the focus error (step ST23). In this case, since the flatness of the wafer is not actually measured, if the wafer is not flat, an error is included in the focus error distribution. However, since the flatness of the wafer at the time of measurement can be generally grasped by the flatness of the wafer holder and the grade of the wafer itself, etc., a threshold value corresponding to the flatness is set, and the focus measurement result changes by more than the threshold value. If is included, correction may be performed assuming that a focus error due to the reflectance distribution exists. For example, the flatness of the wafer may be measured in advance, and the focus error distribution previously calculated may be corrected using the measured flatness. When focus measurement is performed using the focus position detection system 21, if the shot area to be measured is inclined with respect to a predetermined reference plane (for example, the imaging plane of the projection optical system PL), The calculated focus error distribution includes an error caused by the tendency. Therefore, for example, it is preferable to set the shot area substantially parallel to the reference plane before the focus measurement, or to subtract an error caused by the inclination from the focus error distribution.
また、 ウェハの姿勢制御に関しても、 投影光学系 P Lの焦点深度を考慮して傾 斜の許容値を設定することができる。 従って、 この許容値をしきい値として設定 し、 フォーカス位置検出系 2 1の計測結果からフォーカス調整時のウェハ Wの傾 斜を算出したときに、 しきい値を超える場合には、 フォーカス位置検出系 2 1の 計測結果に反射率分布に起因した誤差成分が含まれていると見なし、 補正を行う 手順とすることもできる。 なお、 上述した特開 2 0 0 2— 2 7 0 4 9 8号公報には、 ショット領域 S A内 の段差情報を予め計測しておき、 その状態に応じて露光処理時のフォーカス調整 (合焦動作) モードを複数のモ一ドから.選択する技術が開示されている。 Also, regarding the attitude control of the wafer, the allowable value of the tilt can be set in consideration of the depth of focus of the projection optical system PL. Therefore, this allowable value is set as a threshold, and when the inclination of the wafer W at the time of focus adjustment is calculated from the measurement result of the focus position detection system 21, if the threshold is exceeded, the focus position is detected. Assuming that the measurement result of the system 21 includes an error component due to the reflectance distribution, a procedure for performing the correction may be adopted. Note that, in the above-mentioned Japanese Patent Application Laid-Open No. 2002-270704, the step information in the shot area SA is measured in advance, and the focus adjustment (exposure) during the exposure process is performed according to the state. Operation) A technique for selecting a mode from a plurality of modes is disclosed.
本実施の形態においても、 上記の技術を適用し、 ショット領域内の反射率分布 計測時 (反射率マップ計測時) に段差状態も併せて計測し、 ショット領域内の段 差に応じたフォーカス · レベリング補正マップを作成しておいてもよい。 このフ ォ一カス · レべリング補正マップも、 先に述べた反射率分布により生じるフォ一 カス誤差に基づくマップ (以下、 反射率マップ) と同様に、 記憶装置 4 0に記憶 しておけばよい。 なお、 反射率マップとフォーカス · レベリング補正マップとは、 それぞれショット領域を露光するときの同期移動方向 (スキャン方向; + Y方向 及び— Y方向) 毎に作成し、 記憶しておくことが好ましい。 尚、 フォーカス · レ ベリング補正マップには反射率分布により生じるフォーカス誤差が混入している ので、 各フォーカス計測点において、 反射率マップの値をフォーカス · レベリン グ補正マップの値から差し引くことにより、 真のフォーカス · レペリング補正マ ップが得られることになる。 露光時にはこの真の値のマップに基づいて、 フォ一 カス · レべリング補正が行われる。  Also in the present embodiment, the above technique is applied, and the step state is also measured when measuring the reflectivity distribution in the shot area (when measuring the reflectivity map). A leveling correction map may be created. This focus / leveling correction map can be stored in the storage device 40 in the same manner as the above-described map based on the focus error generated by the reflectance distribution (hereinafter, the reflectance map). Good. It is preferable that the reflectance map and the focus / leveling correction map are created and stored for each synchronous movement direction (scan direction; + Y direction and -Y direction) when exposing the shot area. Since the focus / leveling correction map contains a focus error caused by the reflectance distribution, the value of the reflectance map is subtracted from the value of the focus / leveling correction map at each focus measurement point to obtain the true value. The focus and repelling correction map can be obtained. At the time of exposure, focus leveling correction is performed based on the true value map.
さらに、 ウェハ W内に存在するショット領域は、 通常のショット領域、 一部が ウェハの周縁部に掛かるエッジショット、 各種計測用のダミーショットである T E Gショット等、 反射率分布によるフォーカス誤差や段差状態が異なるショット 領域が複数種類存在する。 従って、 これら複数種類のショット領域が存在するゥ ェハではその種類毎に、 反射率マップやフォーカス · レべリング補正マップを作 成し、 記憶しておくことが好ましい。  In addition, the shot area existing in the wafer W is a normal shot area, an edge shot partially overlapping the peripheral edge of the wafer, a TEG shot as a dummy shot for various measurements, and the like, and focus errors and steps due to reflectance distribution. There are multiple types of shot areas with different. Therefore, in a wafer in which a plurality of types of shot regions exist, it is preferable to create and store a reflectance map and a focus / leveling correction map for each type.
以上のことから、 露光装置が記憶できる反射率マップとフォーカス · レベリン グ補正マップとのそれぞれの数は、 プロセスプログラムに対応して、 ショット領 域の種類として、 例えば 8種類、 これが同期移動方向 (走査方向) に応じてそれ ぞれ 2種類存在するため、 合計 8対 ( 1 6個) となる。 この数は、 ショット領域 の種類に応じてさらに増やすことも可能である。  From the above, the respective numbers of the reflectance map and the focus / leveling correction map that can be stored in the exposure apparatus correspond to the process program, for example, eight types of shot areas, and this corresponds to the synchronous movement direction ( (Scanning direction), there are two types of each, so the total is eight pairs (16). This number can be further increased according to the type of the shot area.
また、 ショッ小領域に対して露光処理する場合、 反射率マップとフォーカス ' レペリング補正マップとのそれぞれに応じた補正を行うことになるが、 フォー力 ス ' レべリング補正マップに応じた合焦動作の制御モードとしては、 例えば段差 の中間部分が合焦面に合致するようにウェハホルダ 6の高さ位置を制御する第 1 モード、 及び所定の許容値を超えた段差部分についてはフォーカス位置検出系 2 1を用いた追い込みを行わない第 2モードとが考えられる。 そして、 これらのモ 一ドをオペレータが適宜切り換えて設定できるようにしておくことが好ましい。 なお、 上記実施の形態では、 フォーカス位置検出系 2 1が振動子を用いる構成 として説明したが、 これに限定されるものではなく、 例えば C C Dを用いた画像 処理方式や偏光変調素子を用いる方式等、 他の検出原理によりフォーカス位置 (及び反射率分布) を計測する方式としてもよい。 In addition, when performing exposure processing on a small shot area, correction is performed according to each of the reflectance map and the focus and repelling correction map. The control modes of the focusing operation according to the leveling correction map include, for example, a first mode in which the height position of the wafer holder 6 is controlled so that an intermediate portion of the step coincides with the focal plane, and a predetermined tolerance. It is conceivable that a second mode in which a stepped portion exceeding the value is not driven by using the focus position detection system 21 is performed. It is preferable that the operator can switch and set these modes as appropriate. In the above-described embodiment, the focus position detection system 21 is described as a configuration using a vibrator. However, the present invention is not limited to this. For example, an image processing method using a CCD, a method using a polarization modulation element, or the like. Alternatively, the focus position (and the reflectance distribution) may be measured by another detection principle.
また、 上記各実施形態ではフォーカス調整時にウェハ Wを移動して、 前述の露 光領域 E F内でウェハ表面を投影光学系 P Lの結像面とほぼ合致させるものとし たが、 ウェハの移動の代わりに、 あるいはそれと組み合わせて、 例えば投影光学 系 P Lの少なくとも 1つの光学素子を駆動することで、 投影光学系 P Lの結像面 を移動するようにしてもよい。  In each of the above embodiments, the wafer W is moved during the focus adjustment so that the wafer surface substantially matches the image forming plane of the projection optical system PL in the above-described exposure area EF. Alternatively, or in combination therewith, the imaging plane of the projection optical system PL may be moved by, for example, driving at least one optical element of the projection optical system PL.
さらに、 上記各実施形態では投影光学系 P Lを介してレチクル Rのパターンの 転写が行われる露光位置に配置される多点フォーカス位置検出系 2 1を用いて前 述のフォーカス誤差を求めるものとしたが、 例えば独立に可動な 2つのウェハス テージを有し、 露光位置と、 ウェハァライメント系によるマーク検出が行われる 計測位置 (ァライメント位置) とにそれぞれウェハステ一ジを配置して、 露光動' '作と計測動作とをほぼ並行して実行可能な露光装置に本発明を適用し、 その計測 位置に配置される検出系を用いて前述のフォーカス誤差を求めるようにしてよい。 ここで、 計測位置に配置される検出系としては、 例えば前述の多点フォーカス位 置検出系 2 1と同様の構成のものを用いることができる。  Further, in each of the above embodiments, the above-described focus error is obtained by using the multipoint focus position detection system 21 arranged at the exposure position where the pattern of the reticle R is transferred via the projection optical system PL. However, for example, the wafer stage has two independently movable wafer stages, and a wafer stage is arranged at each of an exposure position and a measurement position (alignment position) at which a mark is detected by a wafer alignment system. The present invention may be applied to an exposure apparatus capable of performing the operation and the measurement operation substantially in parallel, and the above-described focus error may be obtained using a detection system arranged at the measurement position. Here, as the detection system arranged at the measurement position, for example, one having the same configuration as that of the above-described multipoint focus position detection system 21 can be used.
このツインウェハステージ方式の露光装置では、 計測位置にてその検出系を用 いて前述の反射率分布とフォーカス位置とを計測するとともに、 その反射率分布 から得られるフォーカス誤差に基づいてその計測されたフォーカス位置を補正し、 計測位置から露光位置に移送されるウェハの露光処理ではその補正されたフォー カス位置を用いてフォーカス調整が行われることになる。 このとき、 露光位置に は前述の多点フォーカス位置検出系 2 1を設けなくてもよく、 例えば投影光学系 P L (又はそれを保持する架台) とウェハステージ (例えば、 Zチルト Θ ステ一. ジ 7 ) との Z軸方向の間隔を計測する干渉計を用いて Zチルト Θ ステージ 7を駆 動してもよい。 また、 計測位置では反射率分布のみを計測し、 露光位置にて計測 されるフォーカス位置を、 その反射率分布から得られるフォーカス誤差を用いて 補正して露光処理を実行するようにしてもよい。 さらに、 前述の如く平坦化処理 が施されたウェハでは、 計測位置にてその検出系を用いてフォーカス位置を計測 して、 この計測結果をそのまま 'フォーカス誤差とし、 計測位置から露光位置に移 送されるウェハの露光処理ではそのフォーカス誤差を用いてフォーカス調整が行 われることになる。 なお、 ツインウェハステージ方式の露光装置では、 露光動作 と並行して前述の反射率分布またはフォーカス位置を計測することが可能である ので、 露光装置のスループットを低下させることなく、 前述の複数回計測を行う、 即ちフォーカス調整の精度向上を図ることができる。 In this twin wafer stage type exposure apparatus, the aforementioned reflectance distribution and focus position were measured at the measurement position using the detection system, and the measurement was performed based on the focus error obtained from the reflectance distribution. The focus position is corrected, and in the exposure processing of the wafer transferred from the measurement position to the exposure position, the focus adjustment is performed using the corrected focus position. At this time, the above-mentioned multi-point focus position detection system 21 need not be provided at the exposure position. Even if the Z-tilt stage 7 is driven using an interferometer that measures the distance in the Z-axis direction between the PL (or a gantry holding it) and the wafer stage (for example, Z-tilt stage 7) Good. Alternatively, only the reflectance distribution may be measured at the measurement position, and the focus position measured at the exposure position may be corrected using a focus error obtained from the reflectance distribution to execute the exposure processing. Furthermore, on the wafer that has been subjected to the flattening process as described above, the focus position is measured at the measurement position using the detection system, and the measurement result is directly used as a “focus error” and transferred from the measurement position to the exposure position. In the wafer exposure process performed, focus adjustment is performed using the focus error. In the twin wafer stage type exposure apparatus, the reflectance distribution or the focus position can be measured in parallel with the exposure operation. Therefore, the measurement can be performed multiple times without lowering the throughput of the exposure apparatus. That is, the accuracy of focus adjustment can be improved.
なお、 このツインウェハステージ方式の露光装置は、 例えば特開平 1 0— 2 1 4 7 8 3号公報及び対応する米国特許第 6 , 3 4 1 , 0 0 7号、 あるいは国際公 開 W O 9 8 Z 4 0 7 9 1号及び対応する米国特許第 6 , 2 6 2 , 7 9 6号などに 開示されており、 本国際出願で指定した指定国又は選択した選択国の国内法令が 許す限りにおいて、 その米国特許の開示を援用して本明細書の記載の一部とする。 また、 上記実施形態では多点フォーカス位置検出系 2 1を用いてウェハの反射 率分布を計測するものとしたが、 多点フォーカス位置検出系と異なるセンサ (検 出系) 、 あるいは露光装置とは別の計測装置などを用いて反射率分布を計測し、 この計測した反射率分布に基づいて前述のフォーカス誤差を算出するようにして もよい。  The twin wafer stage type exposure apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-214 783 and corresponding US Pat. No. 6,341,073 or International Publication WO98 Z 40791 and the corresponding U.S. Patent Nos. 6,262,796, etc., to the extent permitted by the national laws of the designated or designated elected States in this International Application. The disclosure of that US patent is incorporated herein by reference. In the above embodiment, the reflectivity distribution of the wafer is measured using the multipoint focus position detection system 21. However, a sensor (detection system) different from the multipoint focus position detection system or an exposure apparatus is used. The reflectivity distribution may be measured using another measuring device or the like, and the focus error may be calculated based on the measured reflectivity distribution.
なお、 本実施の形態の基板としては、 半導体デバイス製造用の半導体ウェハ W のみならず、 ディスプレイデバイス用のガラス基板や、 薄膜磁気ヘッド用のセラ ミックウェハ、 あるいは露光装置で用いられるマスクまたはレチクルの原版 (合 成石英、 シリコンウェハ) 等が適用される。  The substrate of the present embodiment includes not only a semiconductor wafer W for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or an original mask or reticle used in an exposure apparatus. (Synthetic quartz, silicon wafer) etc. are applied.
露光装置としては、 レチクル Rとウェハ Wとを同期移動してレチクル Rのパ夕 ーンを走査露光するステップ 'アンド ·スキャン方式の走査型露光装置 (スキヤ ニング ' ステッパー ; USP5, 473, 410) の他に、 レチクル Rとウェハ Wとを静止し た状態でレチクル Rのパターンを露光し、 ゥェハ Wを順次ステツプ移動させるス テツプ 'アンド ' リピート方式の投影露光装置 (ステッパー) にも適用すること ができる。 また、 本発明はウェハ W上で少なくとも 2つのパターンを部分的に重 ねて転写するステツプ .アンド ·スティツチ方式の露光装置にも適用できる。 さ らに、 本発明はミラープロジェクシヨン ·ァライナ一、 例えば国際公開 W〇 99 Z4 9 5 04などに開示される、 投影光学系 PLとウェハとの間に液体 (例えば 純水など) が満たされる液浸型露光装置などにも適用できる。 US Patent No. 5,473,410 US Patent No. 5,473,410 Scanning exposure apparatus using a step-and-scan method (scanning stepper) that synchronously moves reticle R and wafer W to scan and expose reticle R pattern. In addition, the reticle R and the wafer W It can also be applied to a projection exposure apparatus (stepper) of the 'and' repeat type, in which the pattern of the reticle R is exposed while the wafer is in the upright position, and the wafer W is sequentially moved in steps. The present invention is also applicable to a step-and-stitch type exposure apparatus that transfers at least two patterns on a wafer W while partially overlapping each other. Furthermore, the present invention discloses a mirror projection aligner, for example, disclosed in International Publication WO 99/49504, which is filled with a liquid (eg, pure water) between a projection optical system PL and a wafer. It can be applied to an immersion type exposure apparatus and the like.
露光装置の種類としては、 ウェハ Wに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、 液晶表示素子製造用又はディスプレイ製造用の 露光装置や、 薄膜磁気ヘッド.、 撮像素子 (CCD) あるいはレチクル又はマスク などを製造するための露光装置などにも広く適用できる。  The type of exposure apparatus is not limited to an exposure apparatus for manufacturing a semiconductor element for exposing a semiconductor element pattern onto a wafer W, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging element ( The present invention can be widely applied to an exposure apparatus for manufacturing a reticle, a mask, or the like.
また、 露光光の光源として、 超高圧水銀ランプから発生する輝線 (g線 (43 6 nm) 、 h線 (404. nm) 、 i線 ( 36 5 nm) ) 、 K r Fエキシマレー ザ ( 248 nm) 、 A r Fエキシマレーザ ( 1 93 nm) 、 F 2レーザ ( 1 57 η m) 、 八 1" 2レ一ザ (1 26 nm) のみならず、 X線、 あるいは電子線やイオンビ ー厶などの荷電粒子線を用いることができる。 例えば、 電子線を用いる場合には 電子銃として、 熱電子放射型のランタンへキサポライ ト (L a B6) 、 タンタル (T a) を用いることができる。 また、 YAGレーザや半導体レーザ等の高調波 などを用いてもよい。 As the light source of the exposure light, emission lines (g-line (436 nm), h-line (404.nm), i-line (365 nm)) and KrF excimer laser (248 nm ), A r F excimer laser (1 93 nm), F 2 laser (1 57 eta m), eight 1 "2, single-THE (1 26 nm) not only, X-rays, or electron beam or ion beam over厶etc. For example, when using an electron beam, a thermionic emission type lanthanum hexaporite (L a B 6 ) or tantalum (T a) can be used as an electron gun. Further, a harmonic such as a YAG laser or a semiconductor laser may be used.
例えば、 D F B半導体レーザ又はファイバーレーザから発振される赤外域又は 可視域の単一波長レーザを、 例えばエルビウム (又はエルビウムとイツトリピウ ムの両方) がドープされたファイバ一アンプで増幅し、 かつ非線形光学結晶を用 いて紫外光に波長変換した高調波を露光光として用いてもよい。 なお、 単一波長 レーザの発振波長を 1. 544~ 1. 5 5 3 xmの範囲内とすると、 1 9 3〜 1 94 nmの範囲内の 8倍高調波、 即ち A r Fエキシマレ一ザとほぼ同一波長とな る紫外光が得られ、 発振波長を 1. 57〜 1. 58 xmの範囲内とすると、 1 5 7〜 1 58 nmの範囲内の 10倍高調波、 即ち F 2レーザとほぼ同一波長となる紫 外光が得られる。 また、 レーザプラズマ光源、 又は S O Rから発生する波長 5〜 5 0 n m程度の 軟 X線領域、 例えば波長 1 3 . 4 n m、 又は 1 1 . 5 n mの E U V (Ex t reme U l t ra Vi o l e t)光を露光光として用いてもよく、 E U V露光装置では反射型レチク ルが用いられ、 かつ投影光学系が複数枚 (例えば 3〜 6枚程度) の反射光学素子 (ミラ一) のみからなる縮小系となっている。 For example, a single-wavelength laser in the infrared or visible range emitted from a DFB semiconductor laser or fiber laser is amplified by a fiber-amplifier doped with, for example, erbium (or both erbium and yttrium), and a nonlinear optical crystal is used. A harmonic converted to ultraviolet light by using the above method may be used as exposure light. Assuming that the oscillation wavelength of a single-wavelength laser is in the range of 1.544 to 1.553 xm, the 8th harmonic in the range of 93 to 194 nm, that is, an ArF excimer laser substantially the same wavelength and name Ru ultraviolet light is obtained, when the oscillation wavelength 1. 57 to 1. within the range of 58 xm, 1 5 7~ 10 harmonic in the range of 1 58 nm, i.e. F 2 laser and Ultraviolet light having almost the same wavelength can be obtained. In addition, a soft X-ray region having a wavelength of about 5 to 50 nm generated from a laser plasma light source or SOR, for example, EUV (Extreme Ultra Violet) having a wavelength of 13.4 nm or 11.5 nm Light may be used as exposure light. EUV exposure apparatuses use a reflective reticle, and the projection optical system is a reduction system composed of only a plurality of (for example, about 3 to 6) reflective optical elements (mirrors). It has become.
投影光学系 P Lは、 縮小系のみならず等倍系および拡大系のいずれでもよい。 また、 投影光学系 P Lは屈折系、 反射系、 及び反射屈折系のいずれであってもよ い。 なお、 露光光の波長が 2 0 0 n m程度以下であるときは、 露光光が通過する 光路を、 露光光の吸収が少ない気体 (窒素、 ヘリウムなどの不活性ガス) でパ一 ジすることが望ましい。 また電子線を用いる場合には光学系として電子レンズお よび偏向器からなる電子光学系を用いればよい。 なお、 電子線が通過する光路は、 真空状態にすることはいうまでもない。  The projection optical system PL may be not only a reduction system but also an equal magnification system or an enlargement system. Further, the projection optical system PL may be any one of a refraction system, a reflection system, and a catadioptric system. When the wavelength of the exposure light is about 200 nm or less, the light path through which the exposure light passes may be purged with a gas that absorbs the exposure light little (an inert gas such as nitrogen or helium). desirable. When an electron beam is used, an electron optical system including an electron lens and a deflector may be used as the optical system. It goes without saying that the optical path through which the electron beam passes is in a vacuum state.
ウェハステージゃレチクルステージにリニアモータ (USP5, 623, 853 または USP5,528, 118 参照) を用いる場合は、 エアベアリングを用いたエア浮上型および ローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。 また、 各ステ ジは、' ガイドに沿って移動するタイプでもよく、 ガイ ドを設けな いガイドレスタイプであってもよい。  When a linear motor (see USP5, 623, 853 or USP5, 528, 118) is used for the wafer stage and reticle stage, either an air levitation type using an air bearing or a magnetic levitation type using Lorentz force or reactance force is used. May be used. In addition, each stage may be of a type that moves along a guide or a guideless type that has no guide.
各ステージの駆動機構としては、 二次元に磁石を配置した磁石ユニットと、 二 次元にコイルを配置した電機子ュニットとを対向させ電磁力により各ステージを 駆動する平面モ一夕を用いてもよい。 この場合、 磁石ユニットと電機子ユニット とのいずれか一方をステージに接続し、 磁石ュニットと電機子ュニットとの他方 をステージの移動面側に設ければよい。  As a driving mechanism of each stage, a planar unit that drives each stage by electromagnetic force with a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil may be used. . In this case, one of the magnet unit and the armature unit may be connected to the stage, and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stage.
ウェハステージの移動により発生する反力は、 投影光学系 P Lに伝わらないよ うに、 特開平 8 - 1 6 6 4 7 5号公報 (USP5, 528, 1 18) に記載されているように、 フレー厶部材を用いて機械的に床 (大地) に逃がしてもよい。  The reaction force generated by the movement of the wafer stage is not transmitted to the projection optical system PL as described in Japanese Patent Application Laid-Open No. 8-166645 (US Pat. No. 5,528,118). It may be mechanically released to the floor (ground) using a room member.
レチクルステージ 2の移動により発生する反力は、 投影光学系 P Lに伝わらな いように、 特開平 8 - 3 3 0 2 2 4号公報 (USP5, 874, 820) に記載されているよ うに、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。 以上のように、 本願実施形態の露光装置は、 本願特許請求の範囲に挙げられた 各構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学的 精度を保つように、 組み立てることで製造される。 これら各種精度を確保するた めに、 この組み立ての前後には、 各種光学系については光学的精度を達成するた めの調整、 各種機械系については機械的精度を達成するための調整、 各種電気系 については電気的精度を達成するための調整が行われる。 各種サブシステムから 露光装置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回路 の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露光 装置への組み立て工程の前に、 各サブシステム個々の組み立て工程があることは いうまでもない。 各種サブシステムの露光装置への組み立て工程が終了したら、 総合調整が行われ、 露光装置全体としての各種精度が確保される。 なお、 露光装 置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望 ましい。 The reaction force generated by the movement of the reticle stage 2 is not transmitted to the projection optical system PL as described in JP-A-8-330224 (US Pat. No. 5,874,820). It may be mechanically released to the floor (ground) using a frame member. As described above, the exposure apparatus according to the embodiment of the present invention performs various subsystems including each component listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical The system will be adjusted to achieve electrical accuracy. The process of assembling the exposure apparatus from the various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled.
半導体デバイス等のマイクロデバイスは、 図 1 4に示すように、 マイクロデバ イスの機能 ·性能設計を行うステップ 2 0 1、 この設計ステップに基づいたマス ク (レチクル) を製作するステップ 2 0 2、 シリコン材料からウェハを製造する ステツプ 2 0 3、 前述した実施形態の露光装置によりレチクルのパターンをゥェ 八に露光する露光処理ステップ 2ひ 4、 デバイス組み立てステップ (ダイシング 工程、 ボンディング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6 等を経て製造される。 産業上の利用可能性  As shown in Fig. 14, microdevices such as semiconductor devices have a step 201 for designing the function and performance of the microdevice, a step 202 for fabricating a mask (reticle) based on this design step, Step 2 of manufacturing a wafer from a silicon material Step 2 of exposing a reticle pattern to the reticle pattern by the exposure apparatus of the above-described embodiment 4 Step 4 of device assembling step (Dicing step, bonding step, package step It is manufactured through 205, inspection step 206, etc. Industrial applicability
以上説明したように、 本発明では、 基板の位置情報を計測する際に、 反射率分 布に起因する誤差成分を排除 ·補正することができ、 基板の表面位置を容易に投 影光学系の結像面に位置決めすることが可能になる。 そのため、 本発明では、 焦 点深度の浅い投影光学系を用いた場合でも、 正確な合焦調整により高解像度の露 光処理を実現することが可能になる。  As described above, in the present invention, when measuring the position information of the substrate, it is possible to eliminate and correct the error component caused by the reflectance distribution, and to easily determine the surface position of the substrate by the projection optical system. Positioning on the image plane becomes possible. Therefore, according to the present invention, even when a projection optical system having a shallow depth of focus is used, high-resolution exposure processing can be realized by accurate focusing adjustment.

Claims

請求の範囲  The scope of the claims
1 - 基板上の計測箇所に検知光を照射し、 前記計測箇所で反射した反射光を受 光して、 前記基板表面の法線方向の位置情報を計測する位置計測方法であって、 , 前記基板上の前記計測箇所における前記検知光の反射率分布により生じる前記 位置情報の誤差成分を計測するステップと、 1-A position measurement method for irradiating a measurement point on a substrate with detection light, receiving reflected light reflected at the measurement point, and measuring position information in a normal direction of the substrate surface, Measuring an error component of the position information caused by a reflectance distribution of the detection light at the measurement location on the substrate;
計測した前記誤差成分に基づいて、 前記法線方向の位置情報を補正するステツ プとを有する位置計測方法。  Correcting the position information in the normal direction based on the measured error component.
2 . 請求項 1記載の位置計測方法において、 2. In the position measuring method according to claim 1,
前記検知光を受光したときに得られる検出信号の強度に基づいて前記誤差成分 を演算するステップを更に有する位置計測方法。  A position measurement method, further comprising: calculating the error component based on an intensity of a detection signal obtained when the detection light is received.
3 . 請求項 2記載の位置計測方法において、 3. In the position measuring method according to claim 2,
前記基板表面の前記検知光の計測方向に沿った複数の点における前記検出信号 の強度分布に基づいて前記誤差成分を演算する位置計測方法。  A position measurement method for calculating the error component based on an intensity distribution of the detection signal at a plurality of points on the substrate surface along a measurement direction of the detection light.
4 . 請求項 3記載の位置計測方法において、 前記複数点で前記検知光が互いに 重複する位置計測方法。 4. The position measuring method according to claim 3, wherein the detection lights overlap with each other at the plurality of points.
5 . 請求項 1記載の位置計測方法において、 . 5. The position measuring method according to claim 1,
前記基板の表面形状を計測するステップと、  Measuring the surface shape of the substrate,
計測した前記表面形状と設計上の表面形状とを比較した結果に基づいて、 前記 誤差成分を求めるステップとを有する位置計測方法。  Obtaining the error component based on a result of comparing the measured surface shape with a designed surface shape.
6 . 請求項 1記載の位置計測方法において、 · 前記基板の表面を平坦化するステップと、 6. The position measuring method according to claim 1, wherein a step of flattening a surface of the substrate,
前記検知光を用いて前記基板表面の位置情報を計測するステップと、 計測した前記位置情報を前記誤差成分として設定するステップとを有する位置 計測方法。 Measuring the position information of the substrate surface using the detection light, Setting the measured position information as the error component.
7 . 請求項 6記載の位置計測方法において、 7. The position measuring method according to claim 6,
計測した前記位置情報に基づいて前記基板の姿勢を算出するステップと、 算出した前記姿勢と.所定のしきい値とを比較した結果に基づいて前記姿勢を補 正するステップとを有する位置計測方法。  Calculating a posture of the substrate based on the measured position information; and correcting the posture based on a result of comparing the calculated posture with a predetermined threshold value. .
8 . 請求項 1から 7のいずれかに記載の位置計測方法において、 8. The position measuring method according to any one of claims 1 to 7,
前記基板上の複数の計測箇所に対して複数の前記検知光をそれぞれ照射し、 前記複数の計測箇所のそれぞれにおいて前記誤差成分を計測する位置計測方法。  A position measurement method that irradiates a plurality of the detection lights to a plurality of measurement locations on the substrate, and measures the error component at each of the plurality of measurement locations.
9 . 露光光によりマスクのパターンを基板に露光する露光方法において、 9. In an exposure method of exposing a pattern of a mask to a substrate by exposure light,
請求項 1から 8のいずれか一項に記載の位置計測方法により前記位置情報を計 測し、 その計測結果に基づいて前記基板の面位置を調整する露光方法。  An exposure method that measures the position information by the position measurement method according to any one of claims 1 to 8, and adjusts a surface position of the substrate based on the measurement result.
1 0 . 請求項 9記載の露光方法において、 10. The exposure method according to claim 9,
前記露光前に前記誤差成分を記憶するステップと、  Storing the error component before the exposure,
前記マスクと前記基板とを同期移動させつつ前記基板を露光するステップと、 前記同期移動中に検出した前記位置情報と前記記憶した誤差成分に基づいて前 記基板を駆動するステップとを有する露光方法。  An exposure method comprising: exposing the substrate while synchronously moving the mask and the substrate; and driving the substrate based on the position information detected during the synchronous movement and the stored error component. .
1 1 . 請求項 1 0記載の露光方法において、 11. The exposure method according to claim 10,
前記同期移動時に前記位置情報を検出する前記基板上の検出位置に基づいて前 記誤差成分の計測位置を設定する露光方法。 .  An exposure method for setting the measurement position of the error component based on a detection position on the substrate at which the position information is detected during the synchronous movement. .
1 2 . 請求項 1 1記載の露光方法において、 1 2. The exposure method according to claim 11,
前記位置情報を計測するための複数の検知光のうち、 前記同期移動時に前記位 置情報を計測する検知光を用いて前記誤差成分を計測する露光方法。 An exposure method for measuring the error component using detection light for measuring the position information during the synchronous movement among a plurality of detection lights for measuring the position information.
1 3 . 請求項 1 0から 1 2のいずれかに記載の露光方法において、 複数の前記同期移動方向のそれぞれについて前記誤差成分を記憶する露光方法。 13. The exposure method according to any one of claims 10 to 12, wherein the error component is stored for each of the plurality of synchronous movement directions.
1 4 . 基板上の計測箇所に検知光を照射し、 前記計測箇所で反射した反射光を 受光して、 前記基板表面の法線方向の位置情報を計測する位置計測装蘆であって、 前記基板上の前記計測箇所における前記検知光の反射率分布により生じる前記 位置情報の誤差成分を記憶する記憶装置と、 14. A position measuring device for irradiating a measuring point on a substrate with detection light, receiving reflected light reflected at the measuring point, and measuring position information in a normal direction of the substrate surface, A storage device for storing an error component of the position information generated by the reflectance distribution of the detection light at the measurement location on the substrate;
記憶された前記誤差成分に基づいて、 前記法線方向の位置情報を補正する補正 装置とを有する位置計測装置。  A correction device for correcting the position information in the normal direction based on the stored error component.
1 5 . 露光光によりマスクのパターンを基板に露光する露光装置において、 前記基板の面位置情報を計測する装置として、 請求項 1 4記載の位置計測装置 が用いられる露光装置。 15. An exposure apparatus for exposing a pattern of a mask onto a substrate with exposure light, wherein the apparatus for measuring surface position information of the substrate uses the position measurement apparatus according to claim 14.
1 6 . 請求項 1 5記載の露光装置において、 16. The exposure apparatus according to claim 15, wherein
補正された前記位置情報に基づいて前記基板を駆動させるとともに、 前記マス クと前記基板とを同期移動させて前記パターンを前記基板に露光させる制御装置 を有する露光装置。  An exposure apparatus comprising: a control device that drives the substrate based on the corrected position information and that synchronously moves the mask and the substrate to expose the pattern on the substrate.
1 7 . マスクと基板とを同期移動することによって、 前記マスクのパターンを 前記基板上の複数の区画領域に投影する露光装置において、 17. An exposure apparatus that projects a pattern of the mask onto a plurality of partitioned areas on the substrate by synchronously moving the mask and the substrate.
前記基板上に検知光を照射し、 その反射光を検出することによって前記同期移 動中に前記基板の面位置を検出する面位置検出装置と、  A surface position detection device that irradiates the substrate with detection light and detects the reflected light to detect the surface position of the substrate during the synchronous movement;
前記基板上の区画領域内の表面状態の分布情報を、 前記同期移動方向に応じて 記憶する記憶装置と、  A storage device for storing distribution information of the surface state in the partitioned area on the substrate according to the synchronous movement direction;
前記面位置検出装置の検出結果と前記記憶装置に記憶された分布情報とに基づ いて前記基板の面位置を設定する制御装置とを有する露光装置。 An exposure apparatus comprising: a control device that sets a surface position of the substrate based on a detection result of the surface position detection device and distribution information stored in the storage device.
1 8 . 請求項 1 7記載の露光装置において、 18. The exposure apparatus according to claim 17,
前記区画 域内の表面状態は、 前記区画領域内における前記検知光の反射率、 及び前記区画領域内に存在する段差との何れか一方である露光装置。  The exposure apparatus, wherein the surface state in the partitioned area is any one of a reflectance of the detection light in the partitioned area and a step existing in the partitioned area.
1 9 . 請求項 1 7または 1 8記載の露光装置において、 19. The exposure apparatus according to claim 17 or 18, wherein
前記記憶装置は、 同じプロセスプログラムを有する複数の基板中に存在する複 数種類の区画領域のそれぞれにおいて、 前記表面状態の分布情報を記憶する露光 装置。  The exposure apparatus, wherein the storage device stores the distribution information of the surface state in each of a plurality of types of partitioned areas existing in a plurality of substrates having the same process program.
2 0 . マスクと基板とを同期移動して、 投影光学系を介してマスクのパターン を基板上に転写する露光方法であって、 20. An exposure method for transferring a mask pattern onto a substrate via a projection optical system by synchronously moving the mask and the substrate,
前記基板上に照射される検知光の反射光を受光して前記基板の法線方向の位置 情報を計測するときに前記基板の反射率分布に起因して生しる誤差成分を計測す るステツフと、  A step for measuring an error component generated due to the reflectance distribution of the substrate when measuring the position information in the normal direction of the substrate by receiving the reflected light of the detection light irradiated on the substrate. When,
前記同期移動時に前記計測した誤差成分を用いて前記投影光学系の像面と前記 基板との位置関係を調整するステップとを有する露光方法。  Adjusting the positional relationship between the image plane of the projection optical system and the substrate using the measured error component during the synchronous movement.
2 1 . マスクと基板とを同期移動して、 投影光学系を介してマスクのパターン を基板上に転写す.る露光装置であって、 2 1. An exposure apparatus that moves a mask and a substrate synchronously and transfers a pattern of the mask onto the substrate via a projection optical system.
前記基板上に照射される検知光の反射光を受光して前記基板の法線方向の位置 情報を計測する位置検出系と、  A position detection system that receives reflected light of the detection light applied to the substrate and measures position information in the normal direction of the substrate,
前記位置検出系による前記位置情報の計測時に前記基板の反射率分布に起因し て生じる誤差成分を用いて、 前記投影光学系の像面と前記基板との位置関係を調 整する調整装置とを備える露光装置。  An adjustment device that adjusts a positional relationship between an image plane of the projection optical system and the substrate by using an error component caused by a reflectance distribution of the substrate when the position information is measured by the position detection system. Exposure equipment provided.
PCT/JP2003/014828 2002-11-20 2003-11-20 Position measurement method, position measurement device, exposure method, and exposure device WO2004047156A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004553221A JPWO2004047156A1 (en) 2002-11-20 2003-11-20 Position measuring method, position measuring apparatus, exposure method, and exposure apparatus
AU2003302066A AU2003302066A1 (en) 2002-11-20 2003-11-20 Position measurement method, position measurement device, exposure method, and exposure device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002336778 2002-11-20
JP2002-336778 2002-11-20

Publications (2)

Publication Number Publication Date
WO2004047156A1 true WO2004047156A1 (en) 2004-06-03
WO2004047156B1 WO2004047156B1 (en) 2004-07-29

Family

ID=32321815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014828 WO2004047156A1 (en) 2002-11-20 2003-11-20 Position measurement method, position measurement device, exposure method, and exposure device

Country Status (3)

Country Link
JP (1) JPWO2004047156A1 (en)
AU (1) AU2003302066A1 (en)
WO (1) WO2004047156A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258365A (en) * 2007-04-04 2008-10-23 Dainippon Screen Mfg Co Ltd Position detection device, pattern drawing apparatus, and position detecting method
JP2009239274A (en) * 2008-03-25 2009-10-15 Asml Netherlands Bv Method and lithographic apparatus for acquiring height data relating to substrate surface
JP2011505079A (en) * 2007-11-28 2011-02-17 株式会社ニコン Autofocus system with error compensation
JP2016015371A (en) * 2014-07-01 2016-01-28 ウシオ電機株式会社 Thickness measurement apparatus, thickness measurement method and exposure apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118957A (en) * 1988-10-11 1992-06-02 Canon Kabushiki Kaisha Method and apparatus for precisely detecting surface position of a patterned wafer
US5124562A (en) * 1989-01-27 1992-06-23 Canon Kabushiki Kaisha Surface position detecting method at a predetermined and plurality of adjacent points
JPH05157058A (en) * 1991-12-02 1993-06-22 Koyo Seiko Co Ltd Vane pump
US5602400A (en) * 1992-08-19 1997-02-11 Canon Kabushiki Kaisha Surface position detecting method and apparatus including detection and correction of errors, such as surface position errors or tilt, in exposure regions
JPH10239015A (en) * 1997-02-27 1998-09-11 Nikon Corp Surface position detector
JP2001143991A (en) * 1999-11-11 2001-05-25 Canon Inc Surface position detector and device manufacturing method
JP2002270498A (en) * 2001-03-14 2002-09-20 Nikon Corp Aligner and exposure method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118957A (en) * 1988-10-11 1992-06-02 Canon Kabushiki Kaisha Method and apparatus for precisely detecting surface position of a patterned wafer
US5124562A (en) * 1989-01-27 1992-06-23 Canon Kabushiki Kaisha Surface position detecting method at a predetermined and plurality of adjacent points
JPH05157058A (en) * 1991-12-02 1993-06-22 Koyo Seiko Co Ltd Vane pump
US5602400A (en) * 1992-08-19 1997-02-11 Canon Kabushiki Kaisha Surface position detecting method and apparatus including detection and correction of errors, such as surface position errors or tilt, in exposure regions
JPH10239015A (en) * 1997-02-27 1998-09-11 Nikon Corp Surface position detector
JP2001143991A (en) * 1999-11-11 2001-05-25 Canon Inc Surface position detector and device manufacturing method
JP2002270498A (en) * 2001-03-14 2002-09-20 Nikon Corp Aligner and exposure method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258365A (en) * 2007-04-04 2008-10-23 Dainippon Screen Mfg Co Ltd Position detection device, pattern drawing apparatus, and position detecting method
JP2011505079A (en) * 2007-11-28 2011-02-17 株式会社ニコン Autofocus system with error compensation
JP2009239274A (en) * 2008-03-25 2009-10-15 Asml Netherlands Bv Method and lithographic apparatus for acquiring height data relating to substrate surface
JP2016015371A (en) * 2014-07-01 2016-01-28 ウシオ電機株式会社 Thickness measurement apparatus, thickness measurement method and exposure apparatus

Also Published As

Publication number Publication date
JPWO2004047156A1 (en) 2006-03-23
WO2004047156B1 (en) 2004-07-29
AU2003302066A1 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
JP4345098B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US7965387B2 (en) Image plane measurement method, exposure method, device manufacturing method, and exposure apparatus
US6699630B2 (en) Method and apparatus for exposure, and device manufacturing method
JP2004072076A (en) Exposure device, stage unit and method for manufacturing device
US6416912B1 (en) Method of manufacturing microdevice utilizing combined alignment mark
US20070229791A1 (en) Step Measuring Device and Apparatus, and Exposure Method and Apparatus
JP2004265957A (en) Detecting method of optimal position detection formula, alignment method, exposure method, device, and method of manufacture the device
JP2001297982A (en) Lithography equipment, device manufacturing method and device manufactured by using them
WO2007123189A1 (en) Exposure apparatus, exposure method, and device production method
JP4434372B2 (en) Projection exposure apparatus and device manufacturing method
US8343693B2 (en) Focus test mask, focus measurement method, exposure method and exposure apparatus
US20040157143A1 (en) Exposure method and lithography system, exposure apparatus and method of making the apparatus, and method of manufacturing device
US7990519B2 (en) Exposure apparatus and device manufacturing method
JPH10223528A (en) Projection aligner and aligning method
US20040090607A1 (en) Position detecting method, position detecting apparatus, exposure method, exposure apparatus, making method thereof, and device and device manufacturing method
JP2004006892A (en) Lithography apparatus, manufacturing method of device, and device manufactured thereby
JP2004022655A (en) Semiconductor exposure system, control method therefor, and method for manufacturing semiconductor device
US8345220B2 (en) Aberration measurement method, exposure apparatus, and device manufacturing method
JP2002231616A (en) Instrument and method for measuring position aligner and method of exposure, and method of manufacturing device
JP2003156322A (en) Method and apparatus for position measurement, positioning method, aligner as well as method of manufacturing microdevice
JP2000228347A (en) Aligning method and projection aligner
WO2004047156A1 (en) Position measurement method, position measurement device, exposure method, and exposure device
US6750950B1 (en) Scanning exposure method, scanning exposure apparatus and making method for producing the same, and device and method for manufacturing the same
JP5234308B2 (en) Exposure method, exposure apparatus, and device manufacturing method
WO2002047132A1 (en) X-ray projection exposure device, x-ray projection exposure method, and semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Effective date: 20040521

WWE Wipo information: entry into national phase

Ref document number: 2004553221

Country of ref document: JP

122 Ep: pct application non-entry in european phase