WO2004046352A1 - MUTANT ESTROGEN RECEPTOR-α AND GENE THEREOF - Google Patents

MUTANT ESTROGEN RECEPTOR-α AND GENE THEREOF Download PDF

Info

Publication number
WO2004046352A1
WO2004046352A1 PCT/JP2003/014494 JP0314494W WO2004046352A1 WO 2004046352 A1 WO2004046352 A1 WO 2004046352A1 JP 0314494 W JP0314494 W JP 0314494W WO 2004046352 A1 WO2004046352 A1 WO 2004046352A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
estrogen receptor
acid sequence
seq
dna
Prior art date
Application number
PCT/JP2003/014494
Other languages
French (fr)
Japanese (ja)
Inventor
Ko Fujimori
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to AU2003280793A priority Critical patent/AU2003280793A1/en
Publication of WO2004046352A1 publication Critical patent/WO2004046352A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/72Receptors; Cell surface antigens; Cell surface determinants for hormones
    • C07K14/721Steroid/thyroid hormone superfamily, e.g. GR, EcR, androgen receptor, oestrogen receptor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/723Steroid/thyroid hormone superfamily, e.g. GR, EcR, androgen receptor, oestrogen receptor

Definitions

  • the present invention relates to a mutant estrogen receptor ⁇ and its gene.
  • Estrogen receptors are present on estrogen target cells in tissues such as the uterus, vagina, oviduct, liver, breast cancer and bone, and are ligand-responsive transcription factors.
  • the estrogen receptor is activated when bound to estrogen, binds to an estrogen response element on the chromosome, and regulates the transcription of a target gene downstream of the response element.
  • antiestrogenic substances Attempts have been made to use as a remedy for such diseases.
  • tamoxifen an antiestrogen
  • the present inventors have conducted intensive studies and found that the amino acid at a specific position is The wild-type estrogen receptor, which has been substituted with an amino acid different from the amino acid of type estrogen receptor ⁇ , has different reactivity to certain antiestrogenic substances, and DNA encoding the receptor. Thus, the present invention has been achieved.
  • Estrogen receptor having the following properties (hereinafter sometimes referred to as the receptor of the present invention):
  • ( c ) contacting with an estrogen can activate the transcription of a gene under the transcriptional control of a transcription control region containing an estrogen response element, and the activation activates the transcription of the gene in the above (b). Not substantially inhibited by compounds that can
  • the amino acid that differs from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor ⁇ is leucine at the position corresponding to the amino acid represented by amino acid number 404, and the amino acid represented by amino acid number 405
  • receptor F404L an estrogen receptor having an amino acid sequence represented by SEQ ID NO: 2 (hereinafter sometimes referred to as receptor F404L of the present invention);
  • receptor A405V An estrogen receptor having the amino acid sequence represented by SEQ ID NO: 28 (hereinafter sometimes referred to as receptor A405V of the present invention);
  • An estrogen receptor having the amino acid sequence represented by SEQ ID NO: 33 (hereinafter sometimes referred to as the receptor ⁇ 424 ⁇ of the present invention);
  • the DNA according to the above 13 which is operably linked with a promoter; 1 9.
  • the vector containing the DNA according to the above 13 (hereinafter sometimes referred to as the vector of the present invention). ;
  • a method for producing a vector which comprises incorporating the DNA described in the item 13 into a vector capable of replicating in a host cell;
  • a method for producing a transformant which comprises introducing the DNA according to item 13 into a host cell;
  • a method for producing an estrogen receptor which comprises culturing the transformant according to item 21 to produce estrogen receptor ⁇ ;
  • the state of binding between the estrogen receptor ⁇ and the test substance is monitored by monitoring the amount of free labeled ligand or bound labeled ligand generated by competition between the labeled ligand and the test substance.
  • a ligand / receptor binding assay comprising a step of indirectly confirming the activity by performing
  • a method for evaluating the ability of a test substance to regulate estrogen receptor ⁇ activity comprising the steps of: (1) producing the estrogen receptor ⁇ according to item 1 above; Contacting a test substance with a transformant in which a reporter gene under the transcriptional control of a transcription control region containing a sequence is introduced into a chromosome;
  • the amino acids constituting estrogen receptor ⁇ and the amino acid sequence of amino acid sequence 404, 405, or 4 of the amino acid sequence represented by SEQ ID NO: 1 in an alignment based on amino acid sequence homology.
  • a method for determining the efficacy of treatment with an estrogen receptor activity modulator comprising the step of determining the gene type of estrogen receptor ⁇ by examining the presence or absence of estrogen receptor ⁇ ;
  • the amino acids that constitute estrogen receptor ⁇ and the amino acid sequence of amino acid sequence represented by SEQ ID NO: 1 in the alignment based on the homology of the amino acid sequence.
  • Equivalent to the amino acid shown in 24 The estrogen receptor is determined by examining whether the nucleotide sequence encoding the amino acid at the position corresponding to the estrogen receptor has been replaced with a base sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor ⁇ .
  • a method for determining the efficacy of treatment with an anti-estrogenic substance including the step of determining the genotype of c; 32.
  • the nucleic acid in the sample is designated as type II, and the amino acid number 40 of the amino acid sequence represented by SEQ ID NO: 1
  • the preceding item 30 including a step of amplifying a nucleic acid encoding a region containing an amino acid at a position corresponding to the amino acid represented by 4, 405 or 424 and determining the base sequence of the amplified nucleic acid Or the method according to any of 31;
  • nucleic acid in the sample as type III a region containing an amino acid at a position corresponding to the amino acid No. 404, 405 or 424 of the amino acid sequence shown in SEQ ID NO: 1
  • the encoding nucleic acid is amplified, the mobility of the amplified nucleic acid is measured by electrophoresis, and the mobility of the nucleic acid encoding the relevant region of wild-type estrogen receptor ⁇ and the mobility of the amplified nucleic acid are determined.
  • nucleic acid encoding a region containing an amino acid at a position corresponding to amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1, with the nucleic acid in the sample as type III
  • the method according to any of the above items 30 or 31, comprising a step of amplifying the nucleic acid and digesting the amplified nucleic acid with a restriction enzyme to examine the presence or absence of a recognition sequence of the restriction enzyme;
  • Fig. 3 shows the results of measuring the activation ability of 4-hydroxytamoxifen to sceptor F404L (indicated as "mutant F404LJ" in the figure). The value of luciferase activity in each test group was shown, assuming that the value of luciferase activity was 100%.
  • FIG. 2 shows that a reporter gene using a transformant in which a reporter gene was introduced into the chromosome of a host cell was used to report human wild-type estrogen receptor ⁇ or the receptor of the present invention, F404L (shown as ⁇ mutant F404L '' in the figure).
  • FIG. 9 shows the results of measuring the activation ability of raloxifene against). The luciferase activity in each of the test plots was shown assuming that the value of the luciferase activity in the control plot to which only the solvent was added (indicated as “control” in the figure) was 100%.
  • FIG. 3 shows that the reporter gene using a transformant in which a reporter gene has been introduced into the chromosome of a host cell is used to report human wild-type estrogen receptor ⁇ or the present receptor F404L (shown as “mutant F404LJ” in the figure). It is a figure which shows the result of having measured the activation ability of ZM189514 with respect to the luciferase activity value in the control group (only shown as "control" in a figure) which added only the solvent to 100%. The luciferase activity in the test plot was corrected.
  • FIG. 4 shows that the reporter gene using a transformant in which a reporter gene was introduced into the chromosome of a host cell was used to report on the human wild-type estrogen receptor ⁇ or the receptor F404L of the present invention (shown as ⁇ mutant F404L '' in the figure).
  • FIG. 4 shows the results of measuring the anti-estrogenic activity of 4-hydroxytamoxifen with respect to). The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in the test group to which only E2 of ⁇ was added (indicated as “control” in the figure) was 100%.
  • FIG. 5 shows that the reporter atssii using a transformant in which a reporter gene was introduced into the chromosome of a host cell was used to report on the human wild-type estrogen receptor ⁇ or the receptor of the present invention, F404L (in FIG. FIG. 6 shows the results of measuring the anti-estrogenic activity of raloxifene against The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in the test group to which only 100 ⁇ 2 was added (indicated as “control” in the figure) was 100%.
  • FIG. 6 shows that the reporter atssii using a transformant in which a reporter gene was introduced into the chromosome of a host cell was used to report on the human wild-type estrogen receptor ⁇ or the receptor of the present invention, F404L (in FIG. FIG. 6 shows the results of measuring the anti-estrogenic activity of raloxifene against The value of luciferase activity in each test group was shown assuming that
  • FIG. 6 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using a human wild-type estrogen receptor ⁇ or a receptor of the present invention, F404L (in FIG. FIG. 4 shows the results of measuring the anti-estrogenic activity of ZM189154 against the following.
  • the value of luciferase activity in each test group was shown assuming that the luciferase activity value in the test group supplemented with only 100 pM ⁇ 2 (indicated as “control” in the figure) was 100%.
  • FIG. 7 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, by using the human wild-type estrogen receptor ⁇ or the receptor A405V of the present invention (shown as “mutant A405VJ” in the figure).
  • the figure shows the results obtained by measuring the activation ability of 4-hydroxytamoxifen with respect to the luciferase activity in the control group to which only the solvent was added (indicated as “control” in the figure), assuming 100%. The values of luciferase activity in each test plot were shown.
  • FIG. 8 shows the results obtained by using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using a human wild-type estrogen receptor ⁇ or the receptor A405V of the present invention (mutation in the figure).
  • FIG. 10 shows the results of measuring the activation ability of raloxifene with respect to “type A405V”). The value of luciferase activity in the control group to which only the solvent was added (indicated as “control” in the figure) was taken as 100%, and the luciferase activity in each test group was shown.
  • FIG. 9 shows that the reporter gene using a transformant in which the reporter gene was introduced into the chromosome of the host cell was used to report on the human wild-type estrogen receptor ⁇ or the receptor A405V of the present invention (shown as ⁇ mutant A405V '' in the figure).
  • FIG. 9 is a view showing the results of measuring the activation ability of ZM18914 with respect to). The value of luciferase activity in each of the test groups was shown assuming that the value of luciferase activity in the control group to which only the solvent was added (indicated as “control” in the figure) was 100%.
  • FIG. 10 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell.
  • 5 is a graph showing the results of measuring the anti-estrogenic activity of 4-hydroxy tamoxifen with respect to. The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in each test group (shown as “control” in the figure) was 100%.
  • FIG. 11 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using human wild-type estrogen receptor c or receptor A405V of the present invention (in the figure, mutant A405V
  • FIG. 7 shows the results of measuring the antiestrogenic activity of raloxifene against raloxifene.
  • the value of luciferase activity in each test group was shown assuming that the value of luciferase activity in the test group to which only 100 pM E2 was added (indicated as “control” in the figure) was 100%.
  • FIG. 12 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, to obtain human wild-type estrogen receptor ⁇ or receptor A405V of the present invention (shown as ⁇ mutant A405V '' in the figure).
  • FIG. 4 shows the results of measuring the anti-estrogenic activity of ZM189154 against). The value of luciferase activity in each test group was shown assuming that the luciferase activity value in the test group supplemented with only 100 pM E2 (indicated as “control” in the figure) was 100%.
  • FIG. 13 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, to obtain human wild-type estrogen receptor ⁇ or the receptor ⁇ 424 ⁇ of the present invention (indicated as “mutant I424TJ” in the figure).
  • Fig. 4 shows the results of measuring the activation ability of 4-hydroxytamoxifen with respect to luciferase activity in a control group to which only a solvent was added (indicated as "control" in the figure), assuming 100%. The values of luciferase activity in each test plot were shown.
  • FIG. 14 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using human wild-type estrogen receptor ⁇ or the receptor of the present invention ⁇ 424 ⁇ (shown as ⁇ mutant ⁇ 424 ⁇ '' in the figure).
  • FIG. 6 shows the results of measuring the activation ability of raloxifene with respect to). The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in the control group to which only the solvent was added (indicated as “control” in the figure) was 100%.
  • FIG. 15 shows that the reporter gene using the transformant in which the reporter gene was introduced into the chromosome of the host cell was used to obtain the human wild-type estrogen receptor or the present invention. It is a figure which shows the result of having measured the activation ability of ZM1891554 with respect to receptor j424T (it shows as "mutant type I424TJ" in the figure). The value of luciferase activity in) was taken as 100%, and the change in luciferase activity in each test group was shown.
  • FIG. 16 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, to obtain human wild-type estrogen receptor ⁇ or the receptor of the present invention ⁇ 424 ⁇ (indicated as “mutant I424TJ” in the figure).
  • the figure shows the results of measuring the antiestrogenic activity of 4-hydroxytamoxifen with respect to luciferase activity in the test group to which only ⁇ of ⁇ 2 was added (indicated as “control” in the figure). The value of luciferase activity in each test group was shown as 100%.
  • FIG. 17 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, to obtain human wild-type estrogen receptor ⁇ or the present receptor ⁇ 424 ⁇ (indicated as “mutant I424TJ” in the figure).
  • Fig. 3 shows the results of measuring the antiestrogenic activity of raloxifene against luciferase, where the value of luciferase activity in the test group to which only 100 pM ⁇ 2 was added (indicated as “control” in the figure) was 100%, The value of luciferase activity was shown.
  • FIG. 18 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using human wild-type estrogen receptor ⁇ or the receptor ⁇ 424 ⁇ of the present invention (indicated as “mutant I424TJ” in the figure).
  • the figure shows the results of measuring the anti-estrogenic activity of ZM189154 against the luciferase activity in the test group to which only 100 pM of ⁇ 2 was added (indicated as “control” in the figure). The values of luciferase activity in each test plot were shown.
  • FIG. 19 is a view showing alignment of amino acid sequences of estrogen receptor ⁇ derived from human, mouse or rat. * Indicates an amino acid at a position corresponding to the amino acid of amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1.
  • “Alignment based on amino acid sequence homology” of estrogen receptor alpha refers to the alignment of amino acid sequences of estrogen receptor alpha derived from various organisms so that the amino acid sequences are identical or highly similar. Means table. Alignments based on amino acid sequence homology include, for example, FASTA [Pearson & Lipman, Proc. Natl. Acad. Sci. USA, 4, 2444-2448 (1988)], BLAST [Altschul et al., Journal of Molecular Biology, 215, 403-410 (1990)] and CLUSTAL W [Thompson, Higgins & Gibson, Nucleic Acid Research, 22, 4673-4680 (1994a)] and the like.
  • the above program is, for example, the DNA Data Bank of Japan [National Institute of Genetics Life Information. International DNA Data Bank operated within the Center for Information Biology and DNA Data Bank of Japan (CIB / DDBJ)] Is generally available on the homepage (http: ⁇ www.ddbj.nig.ac.jp).
  • the alignment was performed using a commercially available sequence analysis software, for example, GENETYX-WIN (manufactured by Software Development Co., Ltd.) using the Lipman-Pearson method [Lipman, DJ and Pearson, WR, Science, 227, 1435-1441, (1985)].
  • hERa. TXT is the amino acid sequence of human-derived estrogen receptor ⁇ (an amino acid sequence in which the amino acid at position 400 from the amino terminal of the amino acid sequence described in GenBank Accession No. M12674 is substituted with glycine; The sequence listing shows SEQ ID NO: 1.)
  • mER.TXT is a mouse-derived estrogen receptor ⁇ amino acid sequence (GenBank Accession No. M38651)
  • ratER (X6) .TXT is a rat-derived estrogen receptor The amino acid sequences IJ (GenBank Accession No.
  • X61098 and ratER (Y0) .TXT indicate the amino acid sequence of rat-derived estrogen receptor ⁇ (GenBank Accession No. Y00102) in one-letter amino acid notation. The alignment was made using commercially available software Genetyx-Win SV / R ver. 4.0 (Software Development Co., Ltd.). * Indicates an amino acid at a position corresponding to the amino acid of amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1.
  • the amino acid at a position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1 includes various amino acids as described above.
  • the amino acid represented by the amino acid sequence of the amino acid sequence of SEQ ID NO: 1 An amino acid is located at the same position as an acid.
  • the amino acid at the position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1 is human Amino acid sequence of the estrogen receptor ⁇ derived from the amino acid sequence (shown in SEQ ID NO: 1), the amino acid sequence of feniralanine, which is the amino acid at the 404th position from the amino terminal, and the amino acid sequence of the estrogen receptor 1 ⁇ derived from the mouse (GenBank Accession No.
  • Phenylalanine which is the 408th amino acid from the amino terminal
  • phenylalanine which is the 409th amino acid from the amino acid sequence of the rat estrogen receptor ⁇ amino acid sequence (GenBank Accession No. X61098)
  • rat From the amino terminal of the amino acid sequence of estrogen receptor ⁇ (GenBank Accession No. Y00102) Mention may be made of Hue two Ruaranin such as a eyes of the amino acid.
  • an amino acid at a position corresponding to the amino acid shown by amino acid No. 405 of the amino acid sequence shown by SEQ ID No. 1 refers to various organisms as described above.
  • the amino acid sequence represented by SEQ ID NO: 1 has the same position as the amino acid represented by amino acid number 405. Comes with the amino acids.
  • the amino acid at a position corresponding to the amino acid shown by amino acid No. 424 of the amino acid sequence shown by SEQ ID NO: 1 includes various amino acids as described above.
  • the amino acid sequence represented by SEQ ID NO: 1 is located at the same position as the amino acid represented by amino acid number 424.
  • Isoleucine the 4th and 4th amino acid from the amino acid sequence of the estrogen receptor (shown in SEQ ID NO: 1), and the amino acid sequence of the amino acid sequence of estrogen receptor ⁇ from mouse (GenBank Accession No. M38651)
  • wild-type estrogen receptor ⁇ means an estrogen receptor ⁇ consisting of an amino acid sequence naturally and most frequently found in the amino acid sequence of the receptor derived from the same species of organism.
  • SEQ ID NO: 1 the amino acid valine at position 400 from the amino terminal of the amino acid sequence described in GenBank Accession No. M12674 was replaced with glycine
  • a A is c es Bok Rogun response Rooster can be given estrogen receptor one ⁇ himself ⁇ IJ (estrogen responsive element) from acid sequence), included in the transcription control region of the target genes regulated transcription by S.
  • an estrogen response element include, for example, the base sequence of the 5 ′ upstream region of the vitellogenin gene of African alfalga (Cell., 57, 1139-1146).
  • a consensus sequence of an estrogen response element [5′-AGGTCAnnnTGACCTT-3,; n represents A, G, C or T. ] One or more times. In order to obtain a sufficient transcription control ability, it is preferable that the consensus sequence as described above is usually tandemly linked in about 2 to 5 times.
  • DN ⁇ having a strong nucleotide sequence can be prepared by chemical synthesis or amplification and cloning by PCR or the like according to a conventional method.
  • Estrogen receptor transcription activation region AF1 and “estrogen receptor ⁇ transcription activation region AF2” are a part of estrogen receptor ⁇ , respectively, and Are involved
  • cells such as primary culture cells of chicken embryo fibroblast express the wild-type estrogen receptor ct gene lacking the transcriptional activation region AF1 coding region, and are linked downstream of the transcription control region containing the estrogen response element. Introduce a new reporter gene.
  • a test substance is brought into contact with the obtained cells (hereinafter referred to as cells for evaluating AF2 activity) and a reporter assay is performed as described below, the “function of the transcription activation region AF2 of wild-type estrogen receptor ⁇ ” is obtained.
  • a type of antiestrogens that suppresses transcription but does not suppress the function of the transcriptional activation region AF1 does not induce transcriptional activation and does not change the expression level of the reporter gene.
  • an anti-estrogen substance of the type that suppresses the function of the transcriptionally active region AF2 of the wild-type estrogens receptor ⁇ but does not inhibit the function of the transcriptionally activated region AF1 '' having such properties
  • Examples include tamoxifen, 4-hydroxytamoxifen, raloxifene and the like.
  • Pure antiestrogen refers to a substance that exhibits substantially no estrogen activity including partial agonist activity, such as that of tamoxifen, and such a substance can be used as a cell for assessing AF1 activity or AF2 activity as described above.
  • partial agonist activity such as that of tamoxifen
  • the reporter assay is performed using any of the cells for evaluation, transcriptional activation is not induced and the expression level of the reporter gene is not changed.
  • pure anti-estrogens include ICI182780
  • the receptor of the present invention is characterized by the fact that, among the amino acids constituting the receptor, the amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 in the alignment based on the homology of the amino acid sequence. One or more of the amino acids at the positions corresponding to the amino acids represented by are replaced with amino acids different from the amino acids at the corresponding positions in the amino acid sequence of the wild-type estrogen receptor. '' (B) And (c).
  • (c) upon contact with estrogen can activate the transcription of a gene linked downstream of a transcription control region containing an estrogen response element, and the activation activates the transcription of the gene in (b) above. And is not substantially inhibited by compounds that can.
  • the ability to activate transcription of a gene that is under the transcriptional control of a transcription control region containing an estrogen response element can be determined, for example, by determining whether a reporter gene linked downstream of the transcription control region containing an estrogen response element Can be evaluated by performing a test method such as a reporter assay described below.
  • a test method such as a reporter assay described below.
  • examples of the receptor capable of activating transcription of a “gene under the transcriptional control of a transcription control region containing an estrogen response sequence” introduced into the chromosome of a cell are given. be able to.
  • the activation of transcription of the “gene under the transcriptional control of a transcription control region containing an estrogen response sequence” in the above (c) is preferably an activation inhibited by a pure anti-estrogen.
  • amino acid substitution as described above examples include, for example, substitution of phenylalanine with leucine at a position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1, sequence Substitution of alanine for valine at a position corresponding to the amino acid shown by amino acid No. 405 in the amino acid sequence shown by No. 1; Substitution of isoleucine at the corresponding position with threonine can be mentioned.
  • the amino acid numbers 303, 309, 390, 396, 415, 4 of the amino acid sequence represented by SEQ ID NO: 1 Any amino acid at a position corresponding to the amino acid represented by 94, 531, or 5778 corresponds to the amino acid sequence of the wild-type estrogen receptor ⁇ . May be the same as the amino acid at a certain position.
  • the receptor of the present invention is preferably a receptor derived from an animal such as a mammal such as a human, a monkey, a rabbit, a rat, and a mouse. More specific examples of the receptor of the present invention include an estrogen receptor ⁇ having an amino acid sequence represented by SEQ ID NO: 2, an estrogen receptor ⁇ having an amino acid sequence represented by SEQ ID NO: 28, and an amino acid represented by SEQ ID NO: 33. Estrogen receptor having a sequence can be mentioned.
  • the DNA of the present invention is an isolated DNA encoding the receptor of the present invention as described above.
  • the DNA of the present invention may be DNA isolated from nature, for example, by introducing a mutation into DNA isolated from nature by site-directed mutagenesis, mutagenesis, or the like. It may be the created DN ⁇ .
  • the DNA of the present invention can be prepared, for example, from cDNA encoding the wild-type estrogen receptor ct as follows.
  • a mammal such as a human, monkey, monkey, rat, mouse, etc. should be Design and synthesize primers to amplify the DNA encoding wild-type estrogen receptor ⁇ from the animal by polymerase chain reaction (hereinafter referred to as PCR).
  • PCR polymerase chain reaction
  • a primer designed based on the nucleotide sequence described in GenBank Accession No.M12674 for example, A formal primer consisting of the nucleotide sequence represented by SEQ ID NO: 3 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 4 are chemically synthesized.
  • RNA is prepared from animal tissues of mammals such as humans, monkeys, egrets, rats and mice.
  • liver is ground in a solution containing a protein denaturing agent such as guanidine hydrochloride / guanidine thiocyanate, and the protein is denatured by adding phenol, croperform, etc. to the ground material.
  • a protein denaturing agent such as guanidine hydrochloride / guanidine thiocyanate
  • RNA is extracted from the collected supernatant fraction by methods such as guanidine hydrochloride Z-phenol method, SDS-phenol method, guanidine thiocyanoate cesium chloride-ultracentrifugation method, etc. I do.
  • kits based on these methods include, for example, IS0GEN (manufactured by Futtsubon Gene) and TRIZ0L reagent (manufactured by Invitrogen).
  • an oligo dT primer was annealed to the poly A sequence of mRNA contained in the RNA, followed by a reverse transcription enzyme, followed by loss of the enzyme.
  • RnaseH-Superscript II Reverse Transcriptase manufactured by Invitrogen
  • a buffer attached to the enzyme oligo dT primer and total RNA are mixed, reacted at 42 ° C for 1 hour, and then heated at 99 ° C for 5 minutes.
  • kits based on these methods include, for example, a cDNA synthesis system plus (Amersham Biotech) and a TimeSaver cDNA synthesis kit (Amersham Biotech).
  • the single-stranded cDNA synthesized as described above is converted into a type II, and the above-mentioned primers are added to each at 200 nM.
  • LA Taq DNA polymerase manufactured by Takara Shuzo
  • the enzyme are added.
  • PCR System9700 manufactured by Applied Biosystems
  • the PCR is performed at 95 ° C. for 1 minute, and then at 68 ° C. for 3 minutes for about 35 cycles. Do.
  • cDNA synthesized as described above commercially available cDNAs derived from various animals, such as Clontech Quick Clone cDNA, may be used.
  • a part of the obtained reaction solution is subjected to gel electrophoresis using agarose (agarose L: Futaba Gene).
  • agarose L Futaba Gene
  • the DNA is recovered from the gel.
  • the nucleotide sequence of the recovered DNA was determined by preparing a sample for direct sequence using the recovered DNA and a commercially available fluorescent sequence reagent such as Dye Terminator Sequence Kit FS (manufactured by Applied Biosystems).
  • the DNA encoding the wild-type estrogen receptor ⁇ thus obtained is cloned into a vector capable of replicating in E. coli or the like. Specifically, for example, using about lg of the recovered DNA, its end is blunted with a DNA Blunting Kit (manufactured by Takara Shuzo) or the like, and then the end is phosphorylated by reacting with T4 polynucleotide kinase. After the DNA is treated with phenol, it is purified by the ethanol precipitation method. By introducing the purified DNA into a replicable vector in E. coli or the like, a vector having a DNA encoding a wild-type estrogen receptor can be obtained.
  • a DNA Blunting Kit manufactured by Takara Shuzo
  • DNA of a vector carrying DN ⁇ encoding wild-type estrogen receptor ⁇ thus prepared is prepared.
  • the prepared DNA was converted into type III, and it was published in Sambrook, J., and Zrussel l, DW; Molecular Cloning 3rd edition, Cold Spring Harbor Laboratory (2001), etc.
  • a base substitution for performing the desired amino acid substitution is introduced into DNA encoding wild-type estrogen receptor c.
  • kits that can be used for such a method include, for example, the QuickChange Site-Directed Mutagenesis Kit manufactured by Stratagene.
  • Primers for replacing codon TTT encoding phenylalanine, which is the fourth amino acid from the amino terminus of human-derived wild-type estrogen receptor c, with codon CTT encoding leucine include, for example, SEQ ID NO: A forward primer consisting of the base sequence represented by SEQ ID NO: 5 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 6 can be used.
  • Primers for replacing codon GCT encoding alanine which is the amino acid at position 450 from the amino terminus of human-derived wild-type estrogen receptor ⁇ , with codon GTT encoding valine include, for example, SEQ ID NO: 29 And a reverse primer consisting of the base sequence represented by SEQ ID NO: 30.
  • Human estrogen The primer for replacing the codon ATC encoding isoloisin, which is the 424th amino acid from the amino terminus of the receptor ⁇ , with the codon ACC encoding threonine is, for example, a nucleotide sequence represented by SEQ ID NO: 34 And a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 35.
  • a vector that can be used in a host cell to be transformed with the DNA of the present invention thus obtained for example, a vector that contains genetic information that can be replicated in the host cell and is autonomously replicable
  • the vector of the present invention can be constructed by incorporating it into a vector that can be isolated and purified and has a detectable marker (hereinafter, referred to as a basic vector) according to ordinary genetic engineering techniques.
  • plasmid pUC19 manufactured by Takara Shuzo
  • phagemid pBluescript iKStratagene etc.
  • budding yeast is used as the host cell
  • plasmids pGBT9, pGAD404, pACT2 manufactured by Clontech
  • P Rc / RSV is the case of a mammalian cell is used as the host cell, pRc / CMV (Invitrogen), and the like plasmid of, ⁇ Shea papilloma virus plus Mi de pBPV ( ⁇ Ma Siam Biotech), EB virus plus Mi-de-P Vectors containing a virus-derived autonomous origin of replication (ori) such as CEP4 (Invitrogen), viruses such as vaccinia virus, and the like.
  • insect viruses such as baculovirus. Can be mentioned.
  • Vectors containing autonomous replication origin for example, and the above-mentioned yeast for plasmid P ACT2, Ushipa pillow Ma virus plus mi de pBPV, Epusutain - incorporation of bar one Honoré virus plus Mi de pCEP4, etc.
  • DNA, resulting vector can be retained intracellularly as an episome when introduced into a host cell.
  • a transfer vector containing a nucleotide sequence homologous to the genome of the virus to be used can be used.
  • transfer vectors include pVL1392, pVL1393 (Smith, GE, Summers MD et al .: ol. Cell. Biol., 3, 2156-2165 (1983)) (Invitrogen), Plasmids such as pSFB5 (Funahashi, S. et al .: J. Virol., 65, 5584-5588 (1991)) (Pharmingen) can be mentioned.
  • the DNA of the present invention When the DNA of the present invention is inserted into the transfer vector as described above, and the transfer vector and the viral genome are simultaneously introduced into a host cell, homologous recombination occurs between the transfer vector and the viral genome, and the DNA of the present invention becomes A recombinant virus integrated on the genome can be obtained.
  • the virus genome genomes of baculovirus, adenovirus, vaccinia virus and the like can be used.
  • the DNA of the present invention when the DNA of the present invention is incorporated into a baculovirus, the DNA of the present invention is inserted into a multiple access site of a transfer vector such as pVL1392 or pVL1393, and then the DNA of the transfer vector is used.
  • Baculovirus genomic DNA for example, BaculoGold (Pharmingin)
  • Sf21 available from ATCC
  • the Baculogold DNA is used, only the virus particles containing the virus DNA into which the DNA of the present invention has been inserted are released into the culture medium of the host cell.
  • Viral DNA containing the DNA of the present invention can be obtained by collecting the recombinant virus particles from the culture solution and subjecting them to deproteinization with phenol or the like. Furthermore, the recombinant virus particles can be recovered by introducing the DNA of the virus into a host cell capable of forming virus particles, such as insect cell strain Sf21, by the calcium phosphate method or the like and culturing the cells. .
  • the DNA of the present invention can be directly integrated into a relatively small genome such as a mouse leukemia retrovirus without using a transfer vector.
  • virus vector-DC (X) (Eli Gilboa et al., BioTechniques, 4: 504-512 (1986)) may incorporate the DNA of the present invention into the clawing site on the vector.
  • a packaging cell such as Ampli-GPE (J. Virol., 66: 3755 (1992)
  • the virus containing the DNA of the present invention is contained.
  • Virus particles can be obtained.
  • a promoter capable of functioning in a host cell is operably linked to the upstream of the DNA of the present invention, and this is integrated into the above-described basic vector, whereby a DNA capable of expressing the DNA of the present invention in the host cell can be obtained.
  • Invention vectors can be constructed.
  • the term "functionally linked" means that the promoter and the DNA of the present invention are combined so that the DNA of the present invention is expressed under the control of a promoter in a host cell into which the DNA of the present invention is introduced. Means to combine.
  • the promoter used exhibits a promoter activity in the host cell to be transformed. For example, when the host cell is Escherichia coli, the E.
  • coli lactose operon promoter lacP
  • tryptophan operatin are used. raising etc. - of the promoter (trpP), promoter of arginine operon (argP), the promoter of the galactose operon (g alP), tac promoter, T7 promoter, T3 promoter and foremost, promoter of example phage (pR tut -pL, e)
  • the host cell is a animal cell or fission yeast
  • the Rous sarcoma virus (RSV) promoter, the cytomegalovirus (CMV) promoter, the simian virus (SV40) early or late promoter, Mouse papilloma virus (MMTV) promoter and the like can be mentioned.
  • examples thereof include an alcohol dehydrogenase (ADH) l gene promoter.
  • the promoter is placed downstream of the promoter so that the DNA of the present invention and the DNA of the present invention can be operably linked to the promoter of the vector.
  • the invention DNA may be inserted.
  • the aforementioned plasmid pRc / RSV, P Rc / CMV and the like, under flow promoter operable in animal cells cloning sites is provided in the present invention DNA in the cloning sites ⁇ and into animal cells When introduced, the DNA of the present invention can be expressed.
  • these plasmids contain the autonomous replication origin (ori) of SV40 in advance, when the plasmid is introduced into cultured cells transformed with the ori (-) SV40 genome, for example, COS cells, etc.
  • the number of copies of the plasmid is greatly increased in the cell, and as a result, the DNA of the present invention incorporated in the plasmid can be expressed in a large amount.
  • the above-mentioned yeast plasmid PACT2 has an ADH1 promoter, and the ADH1 promoter of the plasmid or a derivative thereof is used.
  • the vector of the present invention can be constructed that allows the DNA of the present invention to be expressed in large amounts in budding yeast such as CG1945 strain (manufactured by Kuguchi Tech).
  • the transformant of the present invention can be obtained by introducing the DNA of the present invention or the vector of the present invention into a host cell.
  • a usual method for introduction depending on the host cell to be transformed can be applied.
  • a host cell is a microorganism, Escherichia coli, the calcium chloride method described in Molecular 'Cloning 3rd edition (Sambrook, J., and Russell, DW, Cold Spring' Harbor, 2001), etc.
  • An ordinary method such as a deposition method can be used.
  • the cell may be prepared by a common gene transfer method such as the calcium phosphate method, the DEAE dextran method, the electroporation method, or the lipofection method.
  • yeast When yeast is used as a host cell, it can be introduced using, for example, a Yeast Transformation Kit (manufactured by Clontech) based on the lithium chloride method.
  • viral DNA can be introduced into host cells by a general gene transfer method as described above, and recombinant virus particles containing viral DNA can be transmitted to host cells. By doing so, the viral DNA can be introduced into the host cell.
  • a selectable marker gene is simultaneously introduced into the host cell, and the obtained cell is subjected to the introduced selection. It is preferable to culture under conditions according to the properties of the marker gene.
  • the selectable marker gene is a gene that confers drug resistance to a selective drug exhibiting lethal activity on host cells
  • the DNA of the present invention or the vector of the present invention is selected using a medium containing the drug.
  • a host cell into which the marker gene has been introduced may be cultured.
  • combinations of drug resistance imparting genes and selected drugs include neomycin resistance
  • the combination include a combination of a given gene and neomycin, a combination of a hygromycin resistance imparting gene and hygromycin, and a combination of a blasticidin S resistance imparting gene and blasticidin S.
  • the selectable marker gene is a gene that complements the auxotrophy of the host cell
  • the cells may be cultured.
  • a detection method based on estrogen binding activity can also be used.
  • the vector of the present invention is linearized by digestion with a restriction enzyme or the like, and then this is selected as a selection marker gene.
  • the cells may be introduced into host cells by the above-described method, and the cells are usually cultured for several weeks, and the transformant of interest may be selected using the expression of the introduced selectable marker gene as an index.
  • a gene conferring resistance to a selection drug as described above is introduced as a selection marker gene into a host cell together with the vector of the present invention by the method described above, and the cell is subcultured for several weeks or more in a medium to which the selection drug has been added.
  • the transformant of the present invention in which the DNA of the present invention has been introduced into the chromosome of a host cell, can be selected by purifying and culturing the selected drug-resistant clone remaining in a colony. Since the transformant can be cryopreserved and awakened when necessary, it can be used to prepare a transformant for each experiment as compared with a strain into which the DNA of the present invention has been transiently introduced. This makes it possible to save time and labor, and to conduct tests using transformants whose properties and handling conditions have been confirmed in advance. By culturing the transformant of the present invention obtained as described above, the receptor of the present invention can be produced.
  • the transformant of the present invention when the transformant of the present invention is a microorganism, the transformant may be prepared by using various media appropriately containing a carbon source, a nitrogen source, organic or inorganic salts, etc., which are used for ordinary culture in a general microorganism. And cultured. Cultivation is carried out according to the usual method for general microorganisms, and solid culture, liquid culture (test tube shaking culture, reciprocating shaking culture, jar armamenter (Jar Fermenter) culture, tank culture, etc.).
  • the culture temperature can be appropriately changed within a range in which the microorganism grows. For example, culture is generally performed in a culture temperature of about 15 ° C. to about 40 ° C. and a medium having a pH of about 6 to about 8.
  • the culturing time varies depending on the culturing conditions, but is usually about 1 day to about 5 days.
  • the induction time is desirably within one day, usually several hours.
  • the transformant When the transformant is an animal cell such as a mammal or an insect, the transformant can be cultured using a medium used for ordinary culture of general cultured cells. When the transformant is prepared using a selective drug, it is preferable to culture the transformant in the presence of the selective drug.
  • a Dulbecco's Modified Eagle (DMEM) medium such as Nissui Pharmaceutical
  • FBS fetal bovine serum
  • the cells When the cells have grown to confluence, add 0.25% (v / v) trypsin / PBS solution to disperse them into individual cells, dilute them several times, inoculate them into new dishes, and culture them. to continue.
  • a culture medium for insect cells such as Grace's medium containing 10% (v / v) FBS and 2% (w / v) yeast late at a culture temperature of 25 ° C. Culture may be performed at 35 ° C.
  • the culturing time is preferably up to 72 hours after the virus infection, for example, before the cells are killed due to the cytoplasmic effect.
  • the receptor protein of the present invention produced by the transformant of the present invention may be appropriately collected by a combination of ordinary isolation and purification methods.
  • the cells of the transformant are centrifuged or the like.
  • the cells are collected, and the collected cells are suspended in a normal buffer, for example, a buffer composed of 20 mM HEPES (pH 7.0), 1 mM EDTA, 1 mM DTT, 0.5 mM PMSF. Processing, crushing with a Dounce homogenizer, etc., ultracentrifugation of the crushed liquid at 100,000 Xg for several tens of minutes to about 1 hour, and collection of the supernatant fraction to obtain a fraction containing estrogen receptor be able to.
  • the supernatant fraction is subjected to ion exchange.
  • a more purified estrogen receptor can be recovered by subjecting it to various types of chromatography such as chromatography, hydrophobicity, gel filtration, and abundance.
  • the fraction containing the receptor of the present invention is identified by a DNA binding assay using an estrogen response element, ie, an oligonucleotide having a length of about 15 bp to 200 bp containing the base sequence to which the estrogen receptor binds. Can also.
  • the receptor of the present invention thus produced can be used, for example, as a ligand 'receptor binding assay for evaluating the binding ability and amount of a test substance to the receptor of the present invention.
  • the ligand-receptor binding assay using the receptor of the present invention is a test method capable of measuring the binding ability of a chemical substance to the receptor, quantifying the amount of binding, and analyzing the binding specificity and binding strength.
  • a test substance is allowed to coexist with a labeled ligand (hereinafter referred to as a labeled ligand) bound to the receptor of the present invention recovered from the transformant of the present invention as described above
  • a labeled ligand a labeled ligand bound to the receptor of the present invention recovered from the transformant of the present invention as described above
  • the labeled ligand Due to the competition between the substance and the labeled ligand, the labeled ligand is released from the receptor according to the affinity of both for the receptor, and the amount of the labeled ligand bound to the receptor decreases, and therefore, the amount of the label bound to the receptor decreases. . Therefore, by monitoring the amount of the free labeled ligand or the amount of the bound labeled ligand, the ability of the test substance to bind to the receptor can be determined indirectly.
  • the labeled ligand for example, tritium-labeled 17 / 3-estradiol (hereinafter referred to as E2) or the like can be used. Separation of the bound and free forms of the labeled ligand can be performed by the hydroxyapatite method ⁇ glycerol density gradient ultracentrifugation method or the like.
  • the reaction system is roughly divided into three groups. One system is a group in which only the solvent is added to the site where the labeled ligand is bound to the receptor of the present invention, and corresponds to a system where the concentration of the test substance is zero.
  • the labeling amount of the bound labeled ligand obtained from this system indicates the total binding amount of the labeled ligand to the estrogen receptor.
  • the concentration of the labeled ligand bound to the receptor of the present invention for example, such that unlabeled E2 sufficiently saturates the receptor to prevent the labeled ligand from binding (eg, 10 ⁇ m).
  • concentration of the labeled ligand bound to the receptor of the present invention for example, such that unlabeled E2 sufficiently saturates the receptor to prevent the labeled ligand from binding (eg, 10 ⁇ m).
  • the test substance was added to the receptor of the present invention where the labeled ligand was bound so that the test substance had a final concentration of, for example, ⁇ (this concentration may be arbitrarily changed depending on the purpose).
  • this concentration may be arbitrarily changed depending on the purpose.
  • the amount of the labeled labeled ligand obtained from this system will be the same as that of the receptor of the present invention when the test substance concentration obtained as described above is zero. Is smaller than the specific binding amount of the labeled ligand.
  • the test substance When the test substance contains a plurality of substances, the test substance can be incorporated into the receptor of the present invention. It is also possible to check whether a substance exhibiting affinity exists. Further, in order to evaluate the binding ability of the test substance to the receptor of the present invention in more detail, for example, by changing the concentration of the test substance in the third system and performing the same assay, the amount of the Is measured. Based on the measured values, the amounts of bound and free ligands in each assay were calculated, for example, by performing Scatchard analysis to determine the binding affinity and specificity between the test substance and the receptor of the present invention. The coupling capacity and the like can be evaluated.
  • the evaluation method of the present invention can be carried out, for example, by conducting a reporter assay of a test substance using the DNA of the present invention.
  • Examples of the ability to regulate estrogen receptor ⁇ activity include agonist activity and antagonist activity for estrogen receptor ⁇ , and more specifically, for example, estrogen-like activity and antiestrogenic activity.
  • the “reporter gene under the transcriptional control of a transcription control region containing an estrogen response element” used in the evaluation method of the present invention is, for example, specifically, A reporter gene in which DNA encoding a reporter protein is linked downstream of the transcription control region of the genin gene, or a base sequence and a reporter protein required for transcription initiation downstream of an estrogen response element This is a reporter gene linked to DNA which is used to monitor the ability of estrogen receptor to regulate transcription in host cells.
  • DNAs encoding luciferase, DNA encoding secretory alkaline phosphatase, DNA encoding 3-galactosidase, and chloramphene used as DNAs encoding reporter proteins used for the production of such reporter genes.
  • a DNA encoding a Nicol acetylenotransferase, a DNA encoding a growing honoremon, and the like can be used, and a DNA encoding a reporter protein having relatively high stability in host cells is preferable.
  • the DNA of the present invention and the above-described reporter gene are combined with, for example, an estrogen receptor non-endogenous host cell, specifically, for example, a HeLa cell, CV -Transform 1 cells, Hepal cells, NIH3T3 cells, HepG2 cells, C0S1 cells, BF-2 cells, CHH-1 cells, etc. to prepare transformants.
  • an estrogen receptor non-endogenous host cell specifically, for example, a HeLa cell, CV -Transform 1 cells, Hepal cells, NIH3T3 cells, HepG2 cells, C0S1 cells, BF-2 cells, CHH-1 cells, etc.
  • the DNA of the present invention may be, for example, operably linked to a promoter operable in a host cell, incorporated into a basic vector, and introduced into the above-described cells.
  • the above reporter gene may also be used by incorporating it into a basic vector.
  • a vector incorporating the DNA of the present invention, a vector incorporating the reporter gene, and a vector containing a selectable marker gene are simultaneously introduced into a host cell, and the transformant is expressed using the expression of the selectable marker gene as an index.
  • a transformant in which the reporter gene and the DNA of the present invention have been introduced into the chromosome of the host cell is obtained. Since the transformant can be cryopreserved and can be used after awakening as needed, once it is obtained, these genes are introduced into a host cell and newly renewed every time the assay is performed. Since it is not necessary to obtain a suitable transformant and the performance of the transformant can be kept constant, it is useful, for example, when performing a large-scale screening by an immobilized robot.
  • a test substance is added to the medium and brought into contact with the transformant, and the reporter gene in the transformant is The expression level is measured.
  • the reporter gene in the transformant is The expression level is measured.
  • the receptor of the present invention produced by the transformant is activated by binding of a test substance, transcription of a reporter gene is promoted, The reporter protein encoded by the gene is accumulated in the cells of the transformant or secreted into the medium. By measuring the amount of this protein, the expression level of the reporter gene per transformant cell is measured.
  • luciferase when luciferase is used as the reporter protein, when luciferin which is a substrate of luciferase is added to the crude cell extract, light is emitted at an intensity proportional to the amount of luciferase in the cell extract. Therefore, by measuring the luminescence intensity with a measuring device such as a luminometer, the amount of luciferase and, consequently, the expression level of the luciferase reporter gene can be determined. Similarly, the expression level of the reporter gene is measured under the condition that the test substance is not brought into contact with the transformant, and the expression level is compared with the expression level of the reporter gene under the condition that the test substance is brought into contact.
  • the test substance is It can be evaluated as having agonist activity, that is, having the ability to activate the receptor.
  • the reporter gene may be prepared in the same manner as described above under the conditions in which the above-mentioned transformant is contacted with an estrogen such as E2, and the condition in which the estrogen and the test substance are simultaneously contacted. Is measured.
  • the expression level of the reporter gene under the condition of contacting the estrogen with the test substance is lower than the expression level of the reporter gene under the condition of contacting the estrogen with the transformant, Can be evaluated as having antagonist activity against the receptor of the present invention, that is, antiestrogenic activity against the receptor.
  • a reporter assay is performed using a transformant in which a reporter gene under the transcriptional control of a transcription control region containing an estrogen response element and the DNA of the present invention are introduced into the chromosome of a host cell.
  • anti-estrogens such as tamoxifen and raloxifene, which suppress the function of the transcription activation region AF2 of the wild-type estrogen receptor, but do not suppress the function of AF1.
  • a substance having agonist activity and no antiestrogenic activity can be found.
  • a substance that does not exhibit agonist activity with respect to the receptor of the present invention and that exhibits antiestrogenic activity can be selected by such an evaluation method. Therefore, screening of a test substance based on the evaluation method requires estrogen.
  • the estrogen receptor produced by cells of an animal individual such as a human is the receptor of the present invention, for example, whether or not the estrogen receptor ⁇ gene of the individual encodes the receptor of the present invention You should find out.
  • genomic DNA or cDNA is prepared from the sample.
  • an animal individual such as a human
  • genomic DNA or cDNA is prepared from the sample.
  • genomic DNA can be prepared according to the usual method described in Takara Shuzo (1991). Specifically, for example, if the sample is hair, wash one hair with hair follicles with sterile water and ethanol, then add BCL-Buffer
  • genomic DNA can be obtained by performing phenol / chloroform extraction.
  • genomic DNA can be obtained by treating the sample with a DNA-Extraction Kit (Stratagene) or the like.
  • RNA is prepared using, for example, TRIZOL reagent (manufactured by Invitrogen), and the prepared RNA is analyzed. If cDNA is synthesized using reverse transcriptase as a template, the synthesized cDNA can be used for testing instead of genomic DNA.
  • the amino acids constituting the estrogen receptor alpha encoded by the gene which are based on the homology of the amino acid sequences, are identified by the amino acid numbers 404, 405 of the amino acid sequence represented by SEQ ID NO: 1.
  • nucleotide sequence encoding an amino acid at a position corresponding to the amino acid represented by 424 is different from the amino acid at a position corresponding to the amino acid in the amino acid sequence of the wild-type estrogen receptor. It is advisable to check whether or not the nucleotide sequence is replaced by the coding base sequence.
  • a region containing the above-mentioned ⁇ amino acid at a position corresponding to the amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1 '' is encoded.
  • a method of amplifying a nucleic acid to be amplified with the nucleic acid in the sample as type III and determining the base sequence of the amplified nucleic acid can be mentioned.
  • a nucleic acid encoding a region including "an amino acid at a position corresponding to the amino acid represented by amino acid No. 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1" may be amplified by, for example, PCR. Can be.
  • a region containing ⁇ the amino acid at a position corresponding to the amino acid shown by amino acid No. 404, 405 or 424 of the amino acid sequence shown by SEQ ID NO: 1 '' Has the ability to amplify the nucleic acid encoding by PCR, has a GC content of about 30% to about 70%, preferably about 35% to about 60%, and 8 to 50 bases, preferably Can produce an oligonucleotide consisting of about 15 bases to about 40 bases.
  • oligonucleotide for the forward primer an oligonucleotide consisting of the nucleotide sequence represented by any one of SEQ ID NOs: 7 to 11 can be mentioned, and as the oligonucleotide for the reverse primer, SEQ ID NO: 1
  • SEQ ID NO: 1 An oligonucleotide having a base sequence represented by any one of 2 to 16 can be used.
  • oligonucleotides When PCR is performed using the above-described oligonucleotides as primers, two types of oligonucleotides, one for forward and one for reverse, are generally used in combination. These oligonucleotides can be chemically synthesized, for example, by a 3-cyanoethylphosphoramidite method or a thiophosphite method.
  • PCR is described in, for example, Saiki, RK et al., Science, 230: 1350-1354 (1985). It can be performed according to the method.
  • an amplification buffer containing oligonucleotides used as primers, DNA polymerase, four types of bases (dATP, dTTP, dGTP, dCTP), about 1.5 mM to about 3.0 mM magnesium chloride, and genomic DNA Prepare solution.
  • a three-step amplification cycle under the following conditions is repeated.
  • a denaturation step for example, at about 90 ° C. to about 95 ° C., preferably about 94 ° C.
  • Insulation is performed.
  • a step of annealing the primer for example, at about 30 to about 70 ° C, preferably about 40 ° C to about 60, for about 3 seconds to about 3 minutes, preferably for about 5 seconds to about 2 minutes. Insulation is performed.
  • an extension step by DNA polymerase for example, about 70 ° C. to about 75 ° C., preferably about 72 ° C. to about 74 ° C., for about 15 seconds to about 5 minutes, preferably for about 30 seconds to about 4 minutes Is kept warm.
  • the amplification cycle consisting of three steps is carried out about 20 to about 50 times, preferably about 25 to about 40 times.
  • the nucleotide sequence of the DNA is confirmed by performing a direct sequence [BioTechniques, 7, 494 (1989)] on the collected nucleic acid. can do.
  • the nucleotide sequence can be determined by the Maxam Gilbert method (eg, Maxam, A.M. and Gilbert, W., Proc. Natl. Acad. Sci. USA., 74; 560, 1977) or the Sanger method (eg, Sanger, F. and Coulson, AR, J. ol. Biol., 94; 441, 1975., Sanger, F., Nicklen, S. and Coulson, AR, Proc. Natl.
  • Maxam Gilbert method eg, Maxam, A.M. and Gilbert, W., Proc. Natl. Acad. Sci. USA., 74; 560, 1977
  • the Sanger method eg, Sanger, F. and Coulson, AR, J. ol. Biol., 94; 441, 1975., Sanger, F.
  • nucleic acid in the sample the amino acids constituting the estrogen receptor ⁇ , and the alignment based on the homology of the amino acid sequence, the amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1
  • the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid shown in 4 is different from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor ⁇ .
  • the amino acid sequence represented by the amino acid sequence represented by the amino acid sequence represented by SEQ ID NO: 1 A nucleic acid encoding a region containing ⁇ the amino acid at the corresponding position '' is amplified with the nucleic acid in the sample as type ⁇ , and the amplified nucleic acid is subjected to electrophoresis to measure the mobility of the nucleic acid. A method of examining whether or not the mobility of the nucleic acid encoding the relevant region of the receptor ⁇ is different from the mobility of the nucleic acid may be mentioned.
  • the end of the oligonucleotide having the nucleotide sequence represented by any one of SEQ ID NOs: 7 to 16 is treated with a fluorescent substance such as FITC. After labeling, use this as a primer and perform PCR as described above, and confirm that ⁇ at a position corresponding to the amino acid represented by amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1. Amplify nucleic acids that encode regions containing "amino acids.” In addition, a nucleic acid encoding the corresponding region of the wild-type estrogen receptor ⁇ is amplified in the same manner.
  • the amplified nucleic acid is subjected to electrophoresis according to, for example, the SSCP (single strand conformation polymorphism) method described in Hum. Mutation, 2; 338. Specifically, PCR is performed using a fluorescently labeled primer, and the amplified nucleic acid is denatured by heating to form a single strand, which is subjected to non-denaturing polyacrylamide electrophoresis to separate the single strands. Buffers used for electrophoresis include tris-phosphate (pH 7.5-8.0), tris-acetic acid (pH 7.5-8.0), and tris-boric acid (pH 7.0).
  • SSCP single strand conformation polymorphism
  • the conditions of the electric swimming include, for example, electrophoresis at a constant power of 30 W to 40 W, at room temperature (about 20 ° C. to about 25 ° C.) or at about 4 ° C. for about 4 hours to about 8 hours. it can.
  • the fluorescence signal in the gel after electrophoresis is detected by a scanner capable of reading fluorescence, and the amino acid number of the amino acid sequence represented by SEQ.
  • the mobility of a nucleic acid encoding a region containing an amino acid at a position corresponding to the amino acid represented by 424 is compared with the mobility of a nucleic acid encoding the region of the wild-type estrogen receptor.
  • the amino acid sequence represented by the amino acid sequence represented by SEQ ID NO: 1 corresponds to the amino acid sequence represented by amino acid number 404, 405 or 424. It can be determined that the nucleotide sequence encoding the region containing the “amino acid at the position” contains a nucleotide sequence different from the nucleotide sequence encoding the region of the wild-type estrogen receptor ⁇ .
  • the nucleic acid contained in the gel containing nucleic acids having different mobilities is extracted into sterilized water, the nucleic acid is converted into a ⁇ form, the nucleic acid is amplified by PCR, and the amplified product is pGEM-T Easy After cloning into a vector such as a vector (manufactured by Invitrogen), the nucleotide sequence of the cleaved nucleic acid can be confirmed. Thus, a nucleotide sequence different from the nucleotide sequence encoding the wild-type estrogen receptor can be specified.
  • the amino acids constituting the estrogen receptor ⁇ and in an alignment based on the homology of the amino acid sequence, the amino acid numbers of the amino acid sequence represented by SEQ ID NO: 1
  • a nucleotide sequence encoding an amino acid at a position corresponding to the amino acid represented by 5 or 4 24 is different from an amino acid at an amino acid position corresponding to the amino acid sequence of the wild-type estrogen receptor
  • a method for examining whether or not the amino acid sequence has been substituted includes, for example, a probe consisting of a nucleotide sequence encoding a region containing an amino acid at a position corresponding to the amino acid in the amino acid sequence of wild-type estrogen receptor ⁇ . And a method for examining the efficiency of hybridization with a nucleic acid in a sample.
  • the probe consisting of the base sequence to encode include oligonucleotides consisting of a strong base sequence and having a GC content of about 30% or more and about 60% or less.
  • the number of bases constituting the oligonucleotide is preferably about 15 or more and about 40 or less so as to be suitable for detection by hybridization.
  • phenylalanine at a position corresponding to the amino acid shown by amino acid number 404 in the amino acid sequence shown by SEQ ID NO: 1 examples include a probe consisting of the base sequence represented by any one of SEQ ID NOS: 17 to 21.
  • the probe include a probe having a base sequence represented by SEQ ID NO: 17, 18, 18, 20 or 21.
  • the oligonucleotide as described above is chemically synthesized by, for example, the j3-cyanoethylphosphamidide method or the thiophosphite method. be able to.
  • a nucleic acid such as genomic DNA or cDNA prepared from a sample of an animal individual such as a human as described above is mixed with the above-described probe, and the mixture is usually hybridized under stringent conditions. I do.
  • the nucleic acid in the sample comprises, for example, an oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 7 to 11 and a nucleotide sequence represented by any of the SEQ ID NOs: 12 to 16
  • PCR using an oligonucleotide as a primer the ⁇ amino acid at a position corresponding to the amino acid No. 405, 405 or 424 of the amino acid sequence shown in SEQ ID NO: 1 '' was obtained.
  • hybridization with the above-described probe can be performed.
  • prehybridization and hybridization may be performed using 6 ⁇ SSC (0.9 M NaCl, 0.09 M sodium citrate), 5 ⁇ Denhardt solution (0 l% (w / v) Ficoll 400, 0.1% (w / v) polyvinylpyrrolidone, 0.1% BSA), 0.5% (w / v) SDS and 100 g / ml denatured salmon Force in the presence of sperm DNA or in a DIG EASY Hyb solution (Boehringer Mannheim) containing lOOig / ml denatured salmon sperm DNA, and wash with 1X SSC (0.15M NaCl, 0.015M sodium citrate) ) And 0.5% SDS in the presence of 0.5X SSC (0.15M NaCl, 0.0015M sodium citrate) and 0.5% SDS.
  • the incubation temperature in the prehybridization, hybridization and washing steps can be varied according to the length and composition of the probe used, and is generally based on the same Tm value as the Tm value of the probe. Is also set to a slightly lower temperature. Specifically, for example, in hybridization, assuming base pairs when an interbase hydrogen bond is formed between a probe and a nucleic acid in a sample, one base pair of A and one base is assumed. Assuming 2 ° C, 4 ° C for each G and C base pair, sum the values of all base pairs that form hydrogen bonds and use this as the Tm value. For the pre-hybridization, hybridization, and washing steps, the temperature is selected to be the same as the Tm value calculated in this way or a temperature lower by about 2 ° C to 3 ° C. .
  • Specific procedures of the dot blot hybridization method include, for example, first, genomic DNA or cDNA prepared from a sample of an animal individual such as a human, or ⁇ SEQ ID NO: 1 amplified by PCR.
  • spot it on a nylon filter [Hybond N + (Amersham Biotech) etc.] dry the spotted filter on filter paper, and irradiate it with ultraviolet light. To the filter.
  • the obtained DNA-immobilized filter and the above-mentioned probe are hybridized by incubating, for example, at 40 ° C. to 50 ° C. for 10 to 20 hours, and the hybrid containing the probe is subjected to a conventional method.
  • a radioactive probe labeled with a radioactive isotope such as 3 2 P as a probe, it is possible to detect the hybrid comprising the probe by photosensitive filter after Haiburidi's the X-ray film.
  • the hybrid containing the probe When using a non-radioactive probe labeled with a biotinylated nucleotide, the hybrid containing the probe is enzymatically labeled with streptavidin using a biotinylated alkaline phosphatase, etc., and the color or luminescence of the substrate due to the enzyme reaction is detected. Thus, a hybrid containing a probe can be detected.
  • a non-radioactive probe directly labeled with an enzyme such as alkaline phosphatase or peroxidase via a spacer can also be used.
  • the nucleotide sequence of the probe used for the nucleic acid in the test sample is used. Can be determined to contain a different base sequence.
  • Taq MutS is an enzyme that binds to the mismatch hybridization site
  • it is stable against heat (0 to 75 ° C) and maintains its activity even at high temperatures.
  • Taq MutS an enzyme that binds to the mismatch hybridization site
  • the mismatched base pair can be detected by the dot blotting method described above. If a mismatch is detected, encode a region containing ⁇ the amino acid at a position corresponding to the amino acid No.
  • the amino acid sequence shown by SEQ ID NO: 1 '' Can be determined to contain a base sequence different from the base sequence of the probe used.
  • the amino acids constituting the estrogen receptor c and in an alignment based on the homology of the amino acid sequences, the amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 in the amino acid sequence of SEQ ID NO: 1; 4
  • the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid shown in 4 is replaced with a nucleotide sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor.
  • a nucleic acid encoding a region containing an amino acid in the sample is amplified from a gene in the sample, and the amplified nucleic acid is replaced with a base sequence to produce a recognition sequence for the nucleic acid.
  • a method of examining the presence or absence of a recognition sequence for the restriction enzyme by extinguishing with a restriction enzyme that appears or disappears can also be used.
  • genomic DNA or cDNA prepared from the sample is referred to as type III, for example, SEQ ID NO: PCR was performed as described above using an oligonucleotide consisting of the nucleotide sequence represented by any one of 7 to 16 as a primer, and ⁇ amino acid number 404, 405 or 42 of the amino acid sequence represented by SEQ ID NO: 1 ''
  • a nucleic acid encoding a region containing an amino acid at a position corresponding to the amino acid indicated by 4 is amplified.
  • a nucleic acid encoding a region corresponding to the wild-type estrogen receptor is similarly amplified.
  • the amplified nucleic acid is digested with a restriction enzyme whose recognition sequence appears or disappears due to base substitution.
  • a restriction enzyme whose recognition sequence appears or disappears due to base substitution.
  • the obtained nucleic acid digest is subjected to gel electrophoresis using agarose, polyacrylamide, or the like, the nucleic acid digest from the test sample and the nucleotide sequence encoding the region corresponding to wild-type estrogen receptor ⁇ can be obtained. Based on the difference in the fragment pattern from the digested nucleic acid, it can be determined whether or not the nucleic acid in the sample has a nucleotide sequence different from the nucleotide sequence encoding the wild-type estrogen receptor.
  • the determination of the estrogen receptor ⁇ genotype in a sample derived from an animal individual such as a human is based on the determination of the estrogen receptor ⁇ of the individual with respect to estrogen activity modulators such as antiestrogenic substances. It is very useful in predicting reactivity and predicting the efficacy of treatment such as administration of the substance before starting treatment. In addition, by determining the genotype of the receptor in a specific tissue during or after administration of an estrogen activity modulator such as an anti-estrogen substance, it is also useful for determining the duration and efficacy of treatment with the administered substance. It is.
  • Example 1 Preparation of Expression Plasmid for DNA Encoding Human Wild-Type Estrogen Receptor ⁇
  • cDNA encoding human wild-type estrogen receptor was obtained.
  • An oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 3 and an oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 4 were chemically synthesized.
  • Human liver-derived cDNA Quick clone cDNA # 7113-l; manufactured by Clontech
  • 10 ng was made into type III, and 10 pmol of each of the oligonucleotide having the nucleotide sequence of SEQ ID NO: 3 and the oligonucleotide having the nucleotide sequence of SEQ ID NO: 4 were added.
  • PCR was performed using LA Taq DNA polymerase (Takara Shuzo) and a buffer attached to the enzyme.
  • the reaction solution was maintained at a temperature of 95 ° C. for 1 minute, followed by 68 ° C. for 3 minutes for 35 cycles using PCR System 9700 (manufactured by Applied Biosystems).
  • PCR System 9700 manufactured by Applied Biosystems.
  • the entire amount of the reaction solution was subjected to agarose gel electrophoresis using agarose (Agarose S: Futaba Gene). After confirming that about 1.8 kb of DNA was amplified, the DNA was recovered.
  • a sample for the direct sequence is prepared using a part of the recovered DNA and a dye terminator-sequence kit FS (manufactured by Applied Biosystems), and the sample is prepared using an automatic DNA sequencer (manufactured by Applied Biosystems, Inc.). Model 3700) was used for nucleotide sequence analysis. As a result, it was confirmed that the recovered DNA had a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 1.
  • Plasmid pRc / RSV (manufactured by Invitrogen) was digested with a restriction enzyme HindIII, phenol-treated, and then precipitated with ethanol to recover DNA. Recovered DNA into DNA
  • the ends were blunted by treatment with a Blunting Kit (Takara Shuzo) and subjected to agarose gel electrophoresis using a low-melting point agarose (Nippon Gene; Agarose L), and DNA in a band portion was recovered from the gel.
  • Bacterial alkaline to about 100 ng of recovered DNA After adding phosphatase (BAP) and incubating at 65 ° C for 1 hour, the mixture was mixed with the whole amount of the insert DNA, and T4 ligase was added to carry out a ligation reaction. The resulting reaction solution was used to transform E.
  • BAP phosphatase
  • plasmid DNA was prepared from ampicillin-resistant colonies, and its base sequence was automatically sequenced using an automatic DNA sequencer. It was determined by the Dye Terminator method using Applied Biosystems, Model 3700). The obtained nucleotide sequence is compared with the nucleotide sequence obtained by the above-mentioned direct sequence, and a plasmid having a confirmed that the nucleotide sequence of the translation region is completely identical is selected, and pRc / RSV- Named hERa Kozak.
  • Example 2 (Preparation of Expression Plasmid of DNA Encoding Receptor of the Present Invention F404L) Plasmid pRc / RSV-hERa Kozak prepared in Example 1 was made into type III, and a synthetic oriconucleotide for base substitution and Quickchange Site- Mutations were introduced using a directed mutagenesis Kit (manufactured by Stratagene) according to the method described in the kit instructions. First, an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 5 and an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 6 were chemically synthesized.
  • the extension reaction was carried out using pRc / RSV-hER a Kozak as a ⁇ type, and using the two oligonucleotides as primers, Pfu Turbo DNA polymerase (Stratagene) and four types of bases (dATP, dTTP, 200 ⁇ M each). , dGTP, dCTP), and in a dedicated buffer attached to the enzyme, 95 ° C, 30 seconds, then 55 ° C, 1 minute, and further 68 ° C, 10 minutes as one cycle. The test was carried out under a cycle condition. Next, a part of this reaction solution is taken and the restriction enzyme Dpn I (
  • Example 3 (Preparation of Plasmid Containing Reporter Gene and Selectable Marker Gene) Oligonucleotide consisting of a base sequence (base sequence represented by SEQ ID NO: 23) upstream of Afat Xenopus vitellogenin gene containing an estrogen response element and said base An oligonucleotide consisting of a nucleotide sequence complementary to the sequence was synthesized using a DNA synthesizer. These are annealed to form double-stranded DNA (the DNA is hereinafter referred to as ERE DNA), and then T4 ligase is actuated to bind the ERE DNA to tandem, which is then acted upon by T4 polynucleotide kinase. Both ends were phosphorylated.
  • ERE DNA double-stranded DNA
  • oligonucleotides consisting of the nucleotide sequence near the TATA box of the mouse metallothionein I gene and the nucleotide sequence derived from the leader sequence, that is, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 24 and SEQ ID NO: 25,
  • An oligonucleotide having the base sequence shown was subjected to a double-stranded DNA reaction, and T4 polynucleotide kinase was acted thereon to phosphorylate both ends of the double-stranded DNA (the DNA is hereinafter referred to as TATA DNA).
  • plasmid PGL3 (promega) containing the firefly luciferase gene was digested with restriction enzymes Bgl II and Hind III, and bacterial alkaline phosphatase (BAP) was added thereto. Incubated for hours. Next, the heat-retained solution was subjected to electrophoresis using low-melting point agarose (Agarose L; manufactured by Futatsu Gene Co., Ltd.), and DNA was recovered from the gel at the band portion. Approximately 100 ng of the DNA was mixed with 1 / g of the TATA DNA and bound with T4 ligase to prepare plasmid pGL3-TATA.
  • BAP bacterial alkaline phosphatase
  • pGL3-TATA was digested with a restriction enzyme SmaI, BAP was added thereto, and the mixture was incubated at 65 ° C for 1 hour.
  • the incubation solution was subjected to low-melting point agarose gel electrophoresis, and DNA was recovered from the gel in the band portion.
  • the reaction solution is used to form a DH5a competent cell of Escherichia coli (Toyobo Co., Ltd.). ) was transformed.
  • each plasmid was purified, digested with restriction enzymes KpnI and XhoI, and the digested solution was analyzed by agarose gel electrophoresis.
  • a plasmid having a structure in which five copies of ERE DNA were introduced in tandem at the SmaI site of pGL3-TATA was selected, and named plasmid pGL3-TATA_EREx5.
  • the plasmid pUCSV-BSD (Funakoshi) was digested with BamHI to prepare a DNA encoding the blasticidin S deaminase gene expression cassette.
  • the DNA is mixed with the DNA obtained by digesting the plasmid pGL3-TATA-EREx5 with BamHI and treating with BAP, and reacting with T4 ligase.
  • Tent cells Tent cells (Toyobo) were transformed.
  • Plasmid DNA was prepared from Escherichia coli showing ampicillin resistance, each was digested with the restriction enzyme BamHI, and the digested solution was analyzed by agarose gel electrophoresis.
  • a plasmid having a structure in which the blasticidin S deaminase gene expression cassette was introduced into the BamHI site was selected and named plasmid pGL3-TATA_EREx5-BSD.
  • the DNA of the plasmid pGL3-TATA_EREx5-BSD prepared as described above was linearized and introduced into human-derived HeLa cells to prepare stable transformed cells.
  • DNA of plasmid pGL3-TATA-EREx5-BSD was digested with SalI.
  • the HeLa cell of approximately 5 x lO 5 cells, 10 ° /.
  • the cells were cultured in a DMEM medium containing FBS (manufactured by Nissui Pharmaceutical Co., Ltd.) at 37 ° C. in the presence of 5% CO 2 for 24 hours using a petri dish having a diameter of about 10 cm (manufactured by Falcon).
  • the linearized plasmid pGL3-TATA-EREx5-BSD DNA was introduced into the cells by a lipofection method using lipofectamine (manufactured by Invitrogen).
  • the conditions for the ribofecting method were as described in the manual attached to the ribofectamine, the processing time was 5 hours, the total amount of linearized plasmid DNA was TgZ Petri dish, and the amount of ribofectamine was 21/1 Petri dish. did.
  • After ribofection remove the medium at 10 ° /. The medium was replaced with a DMEM medium containing FBS and cultured for about 36 hours.
  • the cells are detached from the Petri dish by trypsinization and collected, transferred to a culture vessel containing a medium containing a final concentration of blasticidin S at a final concentration of ml, and the medium is cultivated every 3 to 4 days. The cells were cultured for about one month while exchanging them for Scidin S.
  • a cell colony of several mm from the appearing cell was transferred to a 96-well view plate (manufactured by Berthold) into which the medium had been previously dispensed, and further cultured. Once the cells have grown to cover more than half of the bottom of the well (about 5 days after transplantation), Cells were detached and collected by trypsinization, divided into two equal parts, and seeded on two new 96-well view plates. Subculture and culturing were continued for one sheet as it was, and used as a master plate.
  • each of the cells was expanded and cultured on a 10 cm plate.
  • the wild-type estogen receptor ct expression plasmid prepared in Example 1 was introduced into these 10 cells by a lipofection method using lipofectamine (manufactured by Invitrogen) according to the description of the attached manual.
  • E2 dissolved in DMS0 was added to the obtained cells so that the final concentration in the medium was 10 nM, and the cells were cultured for 2 days, and luciferase activity was measured according to the method described above.
  • Example 5 Reporter assay using stable transformed cells
  • the medium was replaced and the cells were further cultured for 3 hours.
  • the cells were then collected, suspended and homogenized in E-MEM medium containing FBS, and seeded in a 96-well plate containing various concentrations of antiestrogenic compounds previously dissolved in DMS0 (DMS0 final concentration 0.1%). did.
  • various concentrations of anti-s The cells were seeded on a 96-well plate in which a trogen-like compound and 10 nM E2 were simultaneously added (DMS0 final concentration: 0.1%).
  • the 96-well plate in which the cells have been seeded is cultured at 37 ° C for about 40 hours, and the cell lysing agent PGC50 (manufactured by Futtsubon Gene), diluted 5 times, is added at 50 / l Zwell at a time, and then shaken occasionally at room temperature. And left for 30 minutes to lyse the cells. 10 ⁇ l of the cell lysate prepared in this manner was collected into a 96-well white sample plate (Berthold), and the enzyme substrate solution was added at 50 ⁇ / well using a luminometer LB96p (Berthold) with an automatic substrate injector. PGL100 (manufactured by Futtsubon Gene) was added, and the light emission was measured immediately for 5 seconds.
  • PGC50 manufactured by Futtsubon Gene
  • FIGS. 1 to 3 The results of measuring the estrogenic effect of 4-hydroxytamoxifen, raloxifene or ZM189154 on the wild-type estrogen receptor ⁇ or the receptor F404L of the present invention are shown in FIGS. 1 to 3, respectively.
  • amplification of the nucleic acid at the 404th phenylalanine-encoding site from the amino terminal of the human wild-type estrogen receptor is performed.
  • An oligonucleotide is prepared based on the designed nucleotide sequence.
  • the amino acid at the corresponding position of the base sequence forces the wild-type amino acid sequence of the estrogen receptor ⁇ encoding the amino acid at the position corresponding to amino acid represented by amino acid numbers 4 0 4 of the amino acid sequence shown in SEQ ID NO: 1 May be referred to as a 404 mutation when the mutation is replaced by a nucleotide sequence encoding a different amino acid.
  • Example 7 Analysis of 404 mutation using human tissue as material
  • RNA 1 to 5 ⁇ to ⁇ , oligo dT primer (Amersham Biotech) using l // g as a primer during reverse transcription synthesis, in the accompanying buffer by Superscript II (Invitrogen)
  • the cDNA is synthesized by reacting at 42 ° C for 1 hour.
  • One-fiftieth of the cDNA solution thus obtained was made into type III, and an oligonucleotide having the base sequence of SEQ ID NO: 10 and an oligonucleotide having the base sequence of SEQ ID NO: 16 were separated.
  • PCR uses the Pfu DNA Polymerase (Stratagene Co., Ltd.), 200 mu 4 kinds of each of the bases of ⁇ (dATP, dTTP, dGTP, dCTP) and in only buffer one attached to the enzyme, 94 ° C, 1 minute, then 55 ° C, 30 seconds, 72 ° C, 1 minute, 1 cycle, 35 cycles. Amplified DNA at 1 ° /. Separate by electrophoresis in a gel containing Agarose S (Agarose S, manufactured by Futaba Gene) and collect.
  • Pfu DNA Polymerase (Stratagene Co., Ltd.)
  • 200 mu 4 kinds of each of the bases of ⁇ dATP, dTTP, dGTP, dCTP
  • Amplified DNA at 1 ° /. Separate by electrophoresis in a gel containing Agarose S (Agarose S, manufactured by Futaba Gene) and collect.
  • a sample for direct sequence was prepared using a dye terminator-sequence kit FS (manufactured by Applied Biosystems) using 5 pM of oligonucleotide having the nucleotide sequence of SEQ ID NO: 11 as a sequence primer. Prepare. This is subjected to nucleotide sequence analysis using an automatic DNA sequencer (Applied Biosystems, Model 3700) to determine the nucleotide sequence. In this manner, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1 is clarified.
  • Example 8 extraction of genomic DNA contained in specimen
  • BCL buffer 10 mM 200 ⁇ l of Tris-Cl (pH 7.5), 5 mM MgCl 2 , 0.32 M sucrose, l% (v / v) Triton X-100], and a final concentration of 100; g / ml proteinase.
  • the solution and the final concentration of 0.5% (w / v) SDS are mixed respectively.
  • peripheral blood is used as cells from which genomic DNA can be collected.
  • Example 9 Analysis of 404 mutation by PCR—SSCP method
  • a forward primer is selected from an oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 7 to 11
  • a reverse primer is obtained from an oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 12 to 16.
  • the 5 'end is modified with the fluorescent substance FITC.
  • 100 ng of the genomic DNA obtained in Example 8 was converted into type II, and the DNA encoding the amino acid sequence of estrogen receptor ⁇ was subjected to PCR using 200 pM of each of the above-mentioned FITC-modified oligonucleotides as primers.
  • the PCR was performed using Ex Taq DNA polymerase (Takara Shuzo) and 200 bases (dATP, dTTP, dGTP, dCTP) and the dedicated buffer attached to the enzyme. Perform 40 cycles of 30 ° C, 30 seconds, then 55 ° C, 30 seconds, and 74 ° C, 30 seconds. After the reaction, incubate 1/20 of the resulting amplified product in 95% formamide at 95 ° C for 5 minutes, then quench. Of these, 2.5 1 is 5 ° /. Run on a native polyacrylamide gel and perform electrophoresis in 180 mM Tris-monophosphate buffer (pH 8.0).
  • the electrophoresis conditions are room temperature, constant power of 40 W, and 5 hours.
  • the amplified nucleic acid fragment is detected by detecting the fluorescent signal in the gel with a fluorescence reading scanner. Wild-type estrogens running side by side Compared with the mobility of the band of the amplified product in DN ⁇ coding for the amino acid sequence of receptor ⁇ , the amplified product in the DNA coding for the amino acid sequence of mutant estrogen receptor c has a different mobility. The presence or absence of can be detected.
  • Example 10 Analysis of 404 mutation by nucleotide sequence analysis
  • a part of the gel at the position corresponding to the DNA band encoding the amino acid sequence of the mutant estrogen receptor c detected in Example 9 was cut into 1 mm squares, and permeated in 400 ⁇ l of sterile water. Elute the DNA. After removing the gel and purifying by ethanol precipitation, dissolve the DNA in 50 ⁇ l of sterile water. Among them, 1 ⁇ l is converted into type ⁇ and PCR is performed using the oligonucleotide used for PCR-SSCP in Example 9 to amplify DN D encoding the amino acid sequence of the estrogen receptor.
  • PCR was performed using Ex Taq DNA Polymerase (Takara Shuzo) in a buffer attached to the enzyme at 94 ° C for 30 seconds, followed by 55 ° C for 30 seconds, and a further cycle at 74 ° C for 30 seconds. Perform 30 cycles. After completion of the reaction, the amplified DNA is confirmed by agarose gel electrophoresis, and cloned into pGEM-T Easy vector (promega). Using the resulting plasmid as a template, determine the nucleotide sequence using the BigDye Terminator cycle sequence ready reaction Kit (available from Applied Biosystems) and an automatic DNA sequencer (available from Applied Biosystems, model 3700). I do.
  • PCR was performed using a primer having the nucleotide sequence of SEQ ID NO: 26 and a primer having the nucleotide sequence of SEQ ID NO: 27, using genomic DNA or cDNA as a rust type, to thereby obtain human estrogen receptor ⁇ . Promote the DNA encoding the amino acid sequence.
  • the above PCR uses Pfu DNA polymerase (manufactured by Stratagene) in a buffer attached to the enzyme, at 94 ° C for 1 minute, then at 55 ° C for 30 seconds, and further at 72 ° C for 1 minute. For 30 cycles.
  • the resulting 100 bp DNA is treated with the restriction enzyme NheI.
  • the DNA encoding the amino acid sequence of wild-type estrogen receptor ⁇ is not digested.
  • DNA encoding the amino acid sequence of the mutant estrogen receptor ⁇ in which the phenylalanine at the 4th position from the amino terminal of the human-derived wild-type estrogen receptor is mutated to leucine has the sequence GCTAGC. Digested with NheI to yield 75 bp DNA and 25 bp DNA. Thus, the DNA encoding the estrogen receptor ⁇ having the mutation can be detected.
  • Example 1 2 (Preparation of Expression Plasmid of DNA Encoding Receptor A405V of the Present Invention) Plasmid pRc / RSV-hERa prepared in Example 1 was made into a type III, a synthetic oligonucleotide for base substitution and a Quickchange Site Using a -directed mutagenesis Kit (manufactured by Stratagene), a mutation was introduced according to the method described in the instruction manual of the kit. First, an oligonucleotide consisting of the base sequence shown by SEQ ID NO: 29 and an oligonucleotide consisting of the base sequence shown by SEQ ID NO: 30 were chemically synthesized.
  • the extension reaction was carried out using pRc / RSV-hERa Kozak as type III, the two oligonucleotides as primers, Pfu Turbo DNA polymerase (Stratagene) and four types of 200 ⁇ M bases (dATP , dTTP, dGTP, dCTP), and in a dedicated buffer attached to the enzyme, 95 ° C, 30 seconds, then 55 ° C, 1 minute, further 68 ° C, 10 minutes incubation as one cycle. This was performed under the condition of performing 16 cycles. Next, a part of this reaction solution was taken and digested with a restriction enzyme Dpn I (Stratagene) at 37 ° C for 1 hour.
  • Dpn I restriction enzyme
  • Escherichia coli XLI-Blue competent cells (Stratagene) were transformed using the digested solution. From each of several colonies of Escherichia coli showing ampicillin resistance, the respective plasmid DNAs were purified and their nucleotide sequences were analyzed. Codon (GCT) encoding alanine represented by amino acid number 405 in the amino acid sequence represented by SEQ ID NO: 1 Plasmid confirmed to have a mutation substituted for valine-encoded codon (GTT) Was named pRc / RSV-hERaA405V Kozak. Example 13 (Reporter assay using stable transformed cells)
  • Estrogen receptor ⁇ gene expression plasmid pRc / RSV-hERaA405V Kozak was introduced. After culturing at 37 ° C for 16 hours, the medium was replaced and the cells were further cultured for 3 hours. Thereafter, the cells were collected, suspended in an E-MEM medium containing FBS, homogenized, and supplemented with various concentrations of antiestrogen-like compound previously dissolved in DMS0 (DMS0 final concentration 0.1%) in a 96-well plate. Seeded. Similarly, the above cells were seeded on a 96-well plate to which various concentrations of an antiestrogenic compound and 10 nM of E2 were simultaneously added (final concentration of DMS0 0.1%).
  • the 96-well plate in which the cells have been seeded is cultured at 37 ° C for about 40 hours. And left for 30 minutes to lyse the cells.
  • cell lysate 10 1 by 96 well white sample plate was taken (manufactured by Berthold), luminometer with substrate automatic injector LB96P (manufactured by Berthold) 50; ul / w e ll by enzyme
  • the substrate solution PGL100 manufactured by Futtsubon Gene was added, and the emitted light was immediately measured for 5 seconds.
  • FIGS. 7 to 9 The measurement results of the estrogenic effect of 4-hydroxytamoxifen, raloxifene or ZM189154 on the wild-type estrogen receptor ⁇ or the receptor A405V of the present invention are shown in FIGS. 7 to 9, respectively.
  • the amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 Detects whether the nucleotide sequence encoding the amino acid at the corresponding position has been replaced with a nucleotide sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor 1 ⁇
  • the region encoding the alanine at position 405 from the amino terminus of the human wild-type estrogen receptor is included in the range of nucleic acid amplification, and the GC content is 30% or more and 70% or less, and about 20 bases.
  • Design oligonucleotides that have a length Create oligonucleotides based on the designed base sequence.
  • Example 15 Analysis of 405 mutation using human tissue as material
  • RNA was converted into type III, oligo dT primer (Amersham Biotech) l / zg was used as a primer for reverse transcription synthesis, and Superscript II (Invitrogen) was used in the attached buffer.
  • the cDNA is synthesized by reacting at ° C for 1 hour.
  • One-fiftieth of the cDNA solution thus obtained was made into type III, and an oligonucleotide having the base sequence of SEQ ID NO: 10 and an oligonucleotide having the base sequence of SEQ ID NO: 16 were separated.
  • a sample for direct sequence was prepared using a dye terminator-sequence kit FS (manufactured by Applied Biosystems) using 5 pM of oligonucleotide having the nucleotide sequence of SEQ ID NO: 11 as a sequence primer. Prepare. This is subjected to nucleotide sequence analysis using an automatic DNA sequencer (Applied Biosystems, Model 3700) to determine the nucleotide sequence. Thus, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 405 in the amino acid sequence represented by SEQ ID NO: 1 is clarified.
  • Example 16 Analysis of 405 mutations by PCR-SSCP method
  • one forward primer is derived from the oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 7 to 11
  • the reverse primer is derived from the oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 12 to 16.
  • the 5 'end is modified with the fluorescent substance FITC.
  • 100 ng of the genomic DNA obtained in Example 8 was converted into type II, and the DNA encoding the amino acid sequence of estrogen receptor ⁇ was subjected to PCR using 200 pM of each of the above-mentioned FITC-modified oligonucleotides as primers.
  • the PCR was performed using Ex Taq DNA polymerase (Takara Shuzo) and 200 bases (dATP, dTTP, dGTP, dCTP) and the dedicated buffer attached to the enzyme. Perform 40 cycles of 30 ° C, 30 seconds, then 55 ° C, 30 seconds, and 74 ° C, 30 seconds. After the reaction, incubate 1/20 of the resulting amplified product in 95% formamide at 95 ° C for 5 minutes, then quench. Among them, 2.5 ⁇ l is applied to a 5% native polyacrylamide gel, and electrophoresed in 180 mM Tris-borate buffer (H8.0). The electrophoresis conditions are room temperature, constant power of 40 W, and 5 hours.
  • the amplified nucleic acid fragment is detected by detecting the fluorescent signal in the gel with a fluorescence reading scanner.
  • the amplified product in the DNA encoding the amino acid sequence of the mutant estrogen receptor is Since the mobilities are different, the presence or absence of a mutation in the amplified sequence can be detected.
  • a part of the gel at a position corresponding to the band of DN ⁇ encoding the amino acid sequence of the mutant estrogen receptor ⁇ detected in Example 16 was cut into 1 mm squares, and permeated in 400 ⁇ of sterile water. Elute the DNA. After removing the gel and purifying by ethanol precipitation, dissolve the DNA in 501 sterile water. Among them, ⁇ is changed to ⁇ , and PCR is performed using the oligonucleotide used in PCR-SSCP in Example 9 to amplify DNA encoding the amino acid sequence of estrogen receptor ⁇ .
  • PCR was performed using Ex Taq DNA Polymerase (Takara Shuzo) in a buffer attached to the enzyme at 94 ° C for 30 seconds, followed by 55 ° C for 30 seconds, and a further cycle at 74 ° C for 30 seconds. Perform 30 cycles. After completion of the reaction, the amplified DNA is confirmed by agarose gel electrophoresis, and the DNA is cloned into pGEM-T Easy vector (promega). Using the obtained plasmid type II, the nucleotide sequence was analyzed using the BigDye Terminator cycle sequence ready reaction kit (manufactured by Nopphid Biosystems) and an automatic DNA sequencer (model 3700 manufactured by Applied Biosystems). decide.
  • nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 405 in the amino acid sequence represented by SEQ ID NO: 1 is clarified.
  • Example 18 Analysis of 405 mutations combining PCR and restriction enzyme digestion
  • PCR was performed using genomic DNA or cDNA as a type I primer having the nucleotide sequence of SEQ ID NO: 31 and a primer having the nucleotide sequence of SEQ ID NO: 32 to encode the amino acid sequence of human estrogen receptor ⁇ .
  • Amplify DNA The above PCR uses Pfu DNA polymerase (manufactured by Stratagene) in a buffer attached to the enzyme, at 94 ° C for 1 minute, then at 55 ° C for 30 seconds and then at 72 ° C for 1 minute for 1 cycle. Perform 30 cycles. 100 base pairs in length DNA obtained is treated with a restriction enzyme Bs P T104 I. The DNA encoding the amino acid sequence of wild-type estrogen receptor ⁇ is not digested.
  • DN DN which encodes the amino acid sequence of receptor ⁇ , has the sequence TTCGAA, and is digested with BspT104I to produce 80 base pairs of DNA and 20 base pairs of DNA.
  • BspT104I digested with BspT104I to produce 80 base pairs of DNA and 20 base pairs of DNA.
  • Mutations were introduced using the Quickchange Site-directed mutagenesis Kit (Stratagene) according to the method described in the kit instructions.
  • an oligonucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 34 and an oligonucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 35 were chemically synthesized.
  • the elongation reaction was performed using pFc / RSV-hERa Kozak as type III, the above two kinds of oligonucleotides as primers, Pfu Turbo DNA polymerase (Stratagene) and four kinds of bases (200 ⁇ M each).
  • amino acid sequence represented by SEQ ID NO: 1 a plasmid in which a mutation in which the codon (ATC) encoding isoleucine represented by amino acid numbers 424 was replaced by a codon (ACC) encoding threonine was confirmed was confirmed.
  • FBS-containing E-MEM medium the daily at 5% C0 2 under 37 ° C Interculture was performed.
  • the cells were treated with 7 g of human wild-type estrogen receptor ⁇ gene expression plasmid pRc / RSV-hER ⁇ Kozak or 7 ⁇ g of human wild-type estrogen receptor ⁇ gene using ribofectamine (Invitrogen) according to the protocol.
  • a mutant pRc / RSV_hERaI424T Kozak was introduced. After culturing at 37 ° C. for 16 hours, the medium was replaced and the cells were further cultured for 3 hours. Thereafter, the cells were collected, suspended and homogenized in E-MEM medium containing FBS, and supplemented with various concentrations of antiestrogen-like compound previously dissolved in DMS0 (final concentration of DMS0 0.1%) in a 96-well plate. Seeded. Similarly, the above cells were seeded on a 96-well plate to which various concentrations of an anti-estrogens-like compound and 10 nM E2 were simultaneously added (DMS0 final concentration: 0.1%).
  • the 96-well plate in which the cells have been seeded is cultured at 37 ° C for about 40 hours, and then the cell lysing agent PGC50 (manufactured by Etsubon Gene) diluted 5 times is calorificized by SO wlZwell at a time, and occasionally lightly shaken at room temperature. The cells were left for 30 minutes to lyse.
  • the cell lysate prepared in this manner was collected in a 96-well white sample plate (Berthold) in a quantity of 10 1 each, and the enzyme substrate solution was fed at 50 / il / well using a luminometer LB96p (Berthold) with an automatic substrate injector.
  • PGL100 manufactured by Futtsubon Gene
  • FIGS. 13 to 15 The measurement results of the estrogen-like effects of 4-hydroxytamoxifen, raloxifene or ZM189154 on the wild-type estrogen receptor ⁇ or the receptor I424T of the present invention are shown in FIGS. 13 to 15, respectively.
  • the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid No. 424 of the amino acid sequence No. 4 of the amino acid sequence represented by SEQ ID No. 1. was used to detect whether or not the nucleotide sequence encoding a different amino acid had been substituted, by inserting a site encoding isoleucine at the 424th position from the amino terminus of the human wild-type estrogen receptor.
  • An oligonucleotide is prepared based on the designed base sequence.
  • nucleotide sequence encoding the amino acid at the position corresponding to the amino acid No. 424 of the amino acid sequence represented by SEQ ID NO: 1 is located at the position corresponding to the amino acid sequence of the wild type estrogen receptor ⁇
  • a mutation substituted with a nucleotide sequence encoding an amino acid different from a certain amino acid may be referred to as a 424 mutation.
  • Example 22 Analysis of 424 mutation using human tissue as material
  • RNA l-5 / xg 1 ⁇ ⁇ ⁇ ⁇ of oligo dT primer (Amersham Biotech) was used as a primer for reverse transcription synthesis, and Superscript II (Invitrogen) was used in the attached buffer.
  • the cDNA is synthesized by reacting at 42 ° C for 1 hour.
  • One-fiftieth of the cDNA solution thus obtained was made into type III, and an oligonucleotide having the base sequence of SEQ ID NO: 10 and an oligonucleotide having the base sequence of SEQ ID NO: 16 were separated.
  • PCR was carried out using Pfu DNA polymerase (manufactured by Stratagene) in a buffer of 94 ° C. in 200 ⁇ L of each of the four types of bases (dATP, dTTP, dGTP, dCTP) and a dedicated buffer attached to the enzyme. C, 1 minute, then 55 ° C, 30 seconds, 72 ° C, 1 minute, 1 cycle, 35 cycles.
  • the amplified DNA is separated by electrophoresis in a gel containing 1% agarose (Agaroses, manufactured by Futaba Gene) and collected.
  • a sample for direct sequence was prepared using a dye terminator-sequence kit FS (manufactured by Applied Biosystems) using 5 pM of oligonucleotide having the nucleotide sequence of SEQ ID NO: 11 as a sequence primer. I do.
  • This is called an automated DNA sequencer (Applied Biosystems, The base sequence is determined by subjecting it to base sequence analysis using Model 3700). In this manner, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 424 of the amino acid sequence represented by SEQ ID NO: 1 is clarified.
  • Example 2 3 Analysis of 424 mutations by PCR-SSCP method
  • a forward primer is selected from an oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 7 to 11
  • a reverse primer is obtained from an oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 12 to 16.
  • the 5 'end is modified with the fluorescent substance FITC.
  • 100 ng of the genomic DNA obtained in Example 8 was transformed into a ⁇ form, and the DNTC encoding the amino acid sequence of estrogen receptor ⁇ was subjected to PCR by using 200 pM of each of the above FITC-modified oligonucleotides as primers.
  • the PCR was performed using Ex Taq DNA polymerase (Takara Shuzo Co., Ltd.) and 200 ⁇ L of each of the four bases (dATP, dTTP, dGTP, dCTP) and the dedicated buffer attached to the enzyme. , 94 ° C, 30 seconds, then 55 ° C, 30 seconds, and further 40 cycles of 74 ° C, 30 seconds. After the reaction, 1/20 amount of the obtained amplified product was 95 ° /. After incubating in formamide at 95 ° C for 5 minutes, cool rapidly. Among them, 2.51 is applied to a 5% non-denaturing polyacrylamide gel, and electrophoresed in 180 mM Tris-borate buffer (pH 8.0).
  • the electrophoresis conditions are room temperature, constant power of 40 W, and 5 hours.
  • the amplified nucleic acid fragment is detected by detecting the fluorescent signal in the gel with a fluorescence reading scanner.
  • the mobility of the amplified product in the DNA encoding the amino acid sequence of the mutant estrogen receptor ⁇ has a lower mobility. Because of the difference, the presence or absence of the mutation in the amplified sequence can be detected.
  • a part of the gel at a position corresponding to the band of the DNA encoding the amino acid sequence of the mutant estrogen receptor ⁇ detected in Example 23 was cut into a square, Permeate in 400 ⁇ l of bacterial water to elute DNA. After removing the gel and purifying by ethanol precipitation, dissolve DNII in 501 sterile water. Among them, ⁇ is changed to ⁇ , and PCR is performed using the oligonucleotide used for PCR-SSCP in Example 9 to widen the DNA encoding the amino acid sequence of estrogen receptor ⁇ .
  • PCR was performed using Ex Taq DNA Polymerase (Takara Shuzo) in a buffer attached to the enzyme, at 94 ° C for 30 seconds, followed by 55 ° C, 30 seconds, and a further cycle at 74 ° C, 30 seconds. Perform 30 cycles. After completion of the reaction, the amplified DNA is confirmed by agarose gel electrophoresis, and cloned into pGEM-T Easy vector (Promega). The obtained plasmid was converted into type III, and the base was prepared using a BigDye Terminator cycle sequence ready reaction kit (/ 7F Biosystems) and an automatic DNA sequencer (Applied Biosystems 3700). Determine the sequence.
  • nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 424 in the amino acid sequence represented by SEQ ID NO: 1 is clarified.
  • Example 25 Analysis of 424 mutations combining PCR and restriction enzyme digestion
  • PCR was performed using genomic DNA or cDNA as a type I primer having the nucleotide sequence of SEQ ID NO: 36 and a primer having the nucleotide sequence of SEQ ID NO: 37 to encode the amino acid sequence of human estrogen receptor ⁇ . Increase the DNA.
  • the above PCR uses Pfu DNA polymerase (manufactured by Stratagene) in a buffer attached to the enzyme, at 94 ° C for 1 minute, then at 55 ° C for 30 seconds and then at 72 ° C for 1 minute for 1 cycle. Perform 30 cycles.
  • the resulting 100 bp DNA is treated with the restriction enzyme AccI.
  • the DNA encoding the amino acid sequence of wild-type estrogen receptor ⁇ is not digested.
  • DN ⁇ which encodes the amino acid sequence of mutant estrogen receptor ⁇ in which the isoleucine at position 424 from the amino terminal of human-derived wild-type estrogen receptor is mutated to threonine, has the sequence GTAGAC. Digestion with Acc I yields 75 base pairs of DNA and 25 base pairs of DNA. Thus, the DNA encoding the estrogen receptor ⁇ having the mutation can be detected.
  • an amino acid at a specific position is substituted with an amino acid different from the amino acid of wild-type estrogen receptor ⁇ , and the amino acid at a specific position has a different reactivity to wild-type estrogen receptor ⁇ from wild-type estrogen receptor ⁇ .
  • Estrogen receptor ⁇ activity regulation method comprising the steps of: estimating an estrogen receptor ⁇ genotype by examining the presence or absence of amino acid substitution at the specific position; and estimating estrogen receptor ⁇ genotype by examining the amino acid substitution. How to determine the effectiveness of treatment with a substance But it is possible to provide. Sequence listing free text
  • Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 18
  • Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 19
  • Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 20
  • Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 21
  • Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 22
  • Oligonucleotide designed to generate promoter DNA SEQ ID NO: 25
  • Oligonucleotide designed to generate promoter DNA SEQ ID NO: 26
  • Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 39
  • Oligonucleotide probes designed for Southern hybridization SEQ ID NO: 40
  • Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 41
  • Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 42

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

It is intended to provide a mutant estrogen receptor-α having the following characteristics, its gene, and so on: (a) in an alignment based on the amino acid sequence homology in the amino acids constituting the receptor, one or more amino acids at the positions corresponding to the amino acids represented by the amino acid numbers 404, 405 and 424 in the amino acid sequence represented by SEQ ID NO:1 being substituted into amino acid(s) different from the corresponding amino acid(s) in the amino acid sequence of the wild type estrogen receptor-α, and the amino acid substitution(s) imparting the following characteristics (b) and (c) to the receptor; (b) upon contact with an anti-estrogen substance which inhibits the function of the transcriptional activation region AF2 of the wild type estrogen receptor-α but not inhibiting the function of the transcriptional activation region AF1 thereof, being capable of activating the transcription of a gene under the transcriptional regulation by the transcriptional regulation region containing an estrogen response sequence; and (c) upon contact with estrogen, being capable of activating the transcription of a gene under the transcriptional regulation by the transcriptional regulation region containing an estrogen response sequence and the activation not being substantially inhibited by a compound capable of activating the transcription of the gene in the above (b).

Description

明細書  Specification
変異型エストロゲンレセプター αおよびその遺伝子 技術分野  Mutant estrogen receptor α and its gene
本発明は、 変異型エストロゲンレセプター αおよびその遺伝子等に関する。 背景技術  The present invention relates to a mutant estrogen receptor α and its gene. Background art
エストロゲンの様々な生理的作用はエストロゲンレセプターを介して引き起こさ れる。 エストロゲンレセプターは、 子宮、 膣、 輸卵管、 肝臓、 乳癌、 骨等の組織中の エストロゲン標的細胞に存在し、 リガンド応答性転写調節因子である。 エストロゲン レセプターは、エストロゲンと結合すると活性化されて染色体上のエストロゲン応答 配列に結合し、 該応答配列の下流に在する標的遺伝子の転写を調節する。 このような エストロゲンとレセプターの活性化における異常は、種々の疾患の原因となる場合が あることが知られており、エストロゲンレセプターに作用して抗エストロゲン活性を 示す物質 (以下、 抗エストロゲン物質と記す) を、 このような疾患の治療薬として使 用する試みがなされている。 例えば、 抗エストロゲン物質であるタモキシフェンは乳 がんの治療薬として使用されている。  Various physiological effects of estrogen are triggered through estrogen receptors. Estrogen receptors are present on estrogen target cells in tissues such as the uterus, vagina, oviduct, liver, breast cancer and bone, and are ligand-responsive transcription factors. The estrogen receptor is activated when bound to estrogen, binds to an estrogen response element on the chromosome, and regulates the transcription of a target gene downstream of the response element. It is known that such abnormalities in estrogen and receptor activation may cause various diseases, and substances that act on estrogen receptors and exhibit antiestrogenic activity (hereinafter referred to as antiestrogenic substances) Attempts have been made to use) as a remedy for such diseases. For example, tamoxifen, an antiestrogen, has been used as a treatment for breast cancer.
ところ力 エストロゲンレセプターを構成するアミノ酸のいずれかが置換されてお り、 抗エストロゲン物質に対する反応性が通常と異なっていると、 上記のような抗ェ ストロゲン物質を用いる治療において、期待される効果が上がらない場合や好ましく ない症状を併発する場合が生じる可能性が危惧される。 そこで、 抗エストロゲン物質 に対する反応性に関わるアミノ酸置換が明らかになれば、 そのようなアミノ酸置換の 有無を調べることにより抗エストロゲン物質投与等の治療の有効性を治療開始前に 判定することが可能となる。 また、 力かるアミノ酸置換を有するエストロゲンレセプ ターに対しても、所望の効果を示す物質を探索するための試験系を構築することも可 能となる。 発明の開示  However, if one of the amino acids constituting the estrogen receptor is substituted and the reactivity to the antiestrogenic substance is different from the usual, the expected effect in the treatment using the antiestrogenic substance as described above will be obtained. It is feared that there is a possibility that it will not go up or may cause undesired symptoms. Therefore, if amino acid substitutions related to the response to antiestrogenic substances become clear, it will be possible to determine the effectiveness of treatment such as administration of antiestrogenic substances before starting treatment by examining the presence or absence of such amino acid substitutions. Become. In addition, it is possible to construct a test system for searching for a substance exhibiting a desired effect even for an estrogen receptor having a powerful amino acid substitution. Disclosure of the invention
本発明者は、 かかる状況の下、 鋭意検討した結果、 特定の位置のアミノ酸が、 野生 型エストロゲンレセプター αのアミノ酸とは異なるアミノ酸に置換されており、 ある 種の抗エストロゲン物質に対して野生型エストロゲンレセプターひとは異なる反応 性を示すエストロゲンレセプターひ、および該レセプターをコードする D N Aを見出 し、 本発明に至った。 Under such circumstances, the present inventors have conducted intensive studies and found that the amino acid at a specific position is The wild-type estrogen receptor, which has been substituted with an amino acid different from the amino acid of type estrogen receptor α , has different reactivity to certain antiestrogenic substances, and DNA encoding the receptor. Thus, the present invention has been achieved.
すなわち、 本発明は、  That is, the present invention
1 . 下記の性質を有するエストロゲンレセプターひ (以下、 本発明レセプターと記す ことがある。 ) :  1. Estrogen receptor having the following properties (hereinafter sometimes referred to as the receptor of the present invention):
( a ) 当該レセプターを構成するアミノ酸のうち、 アミノ酸配列の相同性に基づくァ ラインメントにおいて、 配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸の 1つまた は複数が、野生型エストロゲンレセプター c のアミノ酸配列の相当する位置にあるァ ミノ酸とは異なるアミノ酸に置換されており、 前記のアミノ酸の置換は以下の (b ) および (c ) の性質を当該レセプターに付与する ;  (a) Among the amino acids constituting the receptor, in the alignment based on the homology of the amino acid sequence, the amino acid represented by amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1 One or more of the amino acids at positions corresponding to the amino acid sequence of the wild-type estrogen receptor c has been replaced with an amino acid different from the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor c. Imparting the properties of (b) and (c) to the receptor;
( b ) 野生型エストロゲンレセプター αの転写活性化領域 AF2の機能を抑制するが転 写活性化領域 AF1の機能は抑制しないタイプの抗エストロゲン物質のいずれかと接触 すると、エストロゲン応答配列を含む転写制御領域の転写制御下にある遺伝子の転写 を活性化することができる ;  (b) Transcriptional activation region of wild-type estrogen receptor α Transcriptional activation region that contains an estrogen response element when contacted with any of the antiestrogenic substances that suppresses the function of AF2 but does not suppress the function of AF1 Can activate the transcription of a gene that is under the transcriptional control of
( c ) エストロゲンと接触すると、 エストロゲン応答配列を含む転写制御領域の転写 制御下にある遺伝子の転写を活性化することができ、 該活性化は、 前記 (b ) におい て遺伝子の転写を活性化することができる化合物により実質的に阻害されない;( c ) contacting with an estrogen can activate the transcription of a gene under the transcriptional control of a transcription control region containing an estrogen response element, and the activation activates the transcription of the gene in the above (b). Not substantially inhibited by compounds that can
2 . 前記 (b ) および (c ) において、 エストロゲン応答配列を含む転写制御領域の 転写制御下にある遺伝子が、細胞の染色体に導入された遺伝子である前項 1記載のェ ス トロゲンレセプター α2. The estrogen receptor α according to the above item 1, wherein in (b) and (c), the gene under the transcriptional control of a transcription control region containing an estrogen response element is a gene introduced into a chromosome of a cell;
3 . 前記 (c ) における活性化が、 ピュア抗エス トロゲンにより阻害される活性化で もある前項 1記載のエストロゲンレセプター α ;  3. The estrogen receptor α according to the above 1, wherein the activation in (c) is also an activation inhibited by a pure antiestrogen;
4 . ( b ) 記載の抗エス トロゲン物質が、 タモキシフェン、 4 -ヒ ドロキシタモキシ フェンまたはラロキシフェンである前項 1に記載のエストロゲンレセプター α ; 4. The estrogen receptor α according to 1 above, wherein the antiestrogenic substance according to (b) is tamoxifen, 4-hydroxytamoxifen or raloxifene;
5 . アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 390で示されるアミノ酸に相当する位置にあるアミ ノ酸およびアミノ酸番号 5 78で示されるアミノ酸に相当する位置にあるアミノ酸 、野生型エストロゲンレセプタ一ひのアミノ酸配列の相当する位置にあるアミノ酸 と同一である前項 1記載のエストロゲンレセプタ一 α ; 5. In an alignment based on amino acid sequence homology, represented by SEQ ID NO: 1. The amino acid at the position corresponding to the amino acid represented by amino acid No. 390 and the amino acid at the position corresponding to the amino acid represented by amino acid No. 578 of the amino acid sequence, and the amino acid at the position corresponding to the amino acid sequence of the wild-type estrogen receptor The estrogen receptor-α according to the above 1, which is the same as a certain amino acid;
6. アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 30 3、 309、 390、 39 6、 4 1 5、 494、 5 3 1または 578で示されるアミノ酸に相当する位置にあるアミノ酸のいずれも力 野生型エストロゲンレセプター αのアミノ酸配列の相当する位置にあるアミノ酸と 同一である前項 1記載のエストロゲンレセプター c ; 6. In an alignment based on the homology of amino acid sequences, this corresponds to the amino acid represented by amino acid number 303, 309, 390, 396, 396, 415, 494, 531, or 578 of the amino acid sequence represented by SEQ ID NO: 1. The estrogen receptor c according to item 1, wherein any of the amino acids at the corresponding positions is the same as the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor α;
7. 野生型エストロゲンレセプター αのアミノ酸配列の相当する位置にあるアミノ酸 力 アミノ酸番号 404で示されるアミノ酸に相当する位置においてはフエ二ルァラ ニンであり、アミノ酸番号 405で示されるアミノ酸に相当する位置においてはァラ ニンであり、アミノ酸番号 4 24で示されるアミノ酸に相当する位置においてはイソ ロイシンである前項 1に記載のエストロゲンレセプター α ; 7. Amino acid at the position corresponding to the amino acid sequence of wild-type estrogen receptor α At the position corresponding to the amino acid represented by amino acid number 404, it is phenylalanine and at the position corresponding to the amino acid represented by amino acid number 405 Is estrogen receptor α according to item 1, wherein alanine is isoleucine at a position corresponding to the amino acid represented by amino acid number 424;
8. 野生型エストロゲンレセプター αのアミノ酸配列の相当する位置にあるアミノ酸 とは異なるアミノ酸が、アミノ酸番号 404で示されるアミノ酸に相当する位置にお いてはロイシンであり、アミノ酸番号 40 5で示されるアミノ酸に相当する位置にお いてはバリンであり、 アミノ酸番号 4 24で示されるアミノ酸に相当する位置におい てはスレオニンである前項 1に記載のエストロゲンレセプター α ; 8. The amino acid that differs from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor α is leucine at the position corresponding to the amino acid represented by amino acid number 404, and the amino acid represented by amino acid number 405 The estrogen receptor α according to the above item 1, which is valine at a position corresponding to the amino acid and threonine at a position corresponding to the amino acid represented by amino acid number 424;
9. エストロゲンレセプター ctが、 哺乳類動物由来のエストロゲンレセプター αであ る前項 1に記載のエス トロゲンレセプター α ; 9. The estrogen receptor α according to item 1, wherein the estrogen receptor ct is an estrogen receptor α derived from a mammal;
1 0. 配列番号 2で示されるアミノ酸配列を有するエス トロゲンレセプターひ (以下 、 本発明レセプター F404Lと記すことがある。 ) ;  10. An estrogen receptor having an amino acid sequence represented by SEQ ID NO: 2 (hereinafter sometimes referred to as receptor F404L of the present invention);
1 1. 配列番号 28で示されるアミノ酸配列を有するエストロゲンレセプタ一ひ (以 下、 本発明レセプター A405Vと記すことがある。 ) ;  1 1. An estrogen receptor having the amino acid sequence represented by SEQ ID NO: 28 (hereinafter sometimes referred to as receptor A405V of the present invention);
1 2. 配列番号 3 3で示されるアミノ酸配列を有するエス トロゲンレセプターひ (以 下、 本発明レセプター Ι424Τと記すことがある。 ) ;  1 2. An estrogen receptor having the amino acid sequence represented by SEQ ID NO: 33 (hereinafter sometimes referred to as the receptor {424} of the present invention);
1 3. 前項 1に記載のエス トロゲンレセプター αをコードする単離された DNA (以 下、 本発明 DN Aと記すことがある。 ) ; 1 3. The isolated DNA encoding estrogen receptor α described in 1 above (hereinafter referred to as Below, it may be described as the present invention DNA. );
14. 配列番号 2で示されるアミノ酸配列を有するエストロゲンレセプターひをコ一 ドする単離された DN A;  14. An isolated DNA encoding an estrogen receptor having the amino acid sequence set forth in SEQ ID NO: 2;
1 5. 配列番号 28で示されるアミノ酸配列を有するエストロゲンレセプタ一ひをコ ードする単離された DNA;  1 5. An isolated DNA encoding an estrogen receptor having the amino acid sequence set forth in SEQ ID NO: 28;
1 6. 配列番号 33で示されるアミノ酸配列を有するエストロゲンレセプターひをコ ードする単離された DNA;  1 6. An isolated DNA encoding an estrogen receptor having the amino acid sequence of SEQ ID NO: 33;
1 7. DNAが c DNAである前項 1 3記載の DNA;  1 7. The DNA according to 13 above, wherein the DNA is cDNA;
1 8. プロモーターが機能可能な形で結合されてなる前項 1 3に記載の DNA; 1 9. 前項 1 3に記載の DNAを含有するベクター (以下、 本発明ベクターと記すこ とがある。 ) ;  1 8. The DNA according to the above 13 which is operably linked with a promoter; 1 9. The vector containing the DNA according to the above 13 (hereinafter sometimes referred to as the vector of the present invention). ;
20. 宿主細胞内で複製可能なベクターに前項 1 3に記載の DNAを組込むことを特 徴とするベクターの製造方法;  20. A method for producing a vector, which comprises incorporating the DNA described in the item 13 into a vector capable of replicating in a host cell;
21. 前項 13に記載の DN Aが宿主細胞に導入されてなる形質転換体;  21. A transformant obtained by introducing the DNA according to 13 above into a host cell;
22. 宿主細胞が動物細胞である前項 21に記載の形質転換体; 22. The transformant according to the above item 21, wherein the host cell is an animal cell;
23. 宿主細胞が哺乳類動物細胞である前項 21に記載の形質転換体;  23. The transformant according to the above item 21, wherein the host cell is a mammalian cell;
24. 前項 13に記載の DN Aを宿主細胞に導入することを特徴とする形質転換体の 製造方法;  24. A method for producing a transformant, which comprises introducing the DNA according to item 13 into a host cell;
25. 前項 21に記載の形質転換体を培養してエストロゲンレセプター αを産生させ ることを特徴とするエストロゲンレセプターひの製造方法;  25. A method for producing an estrogen receptor, which comprises culturing the transformant according to item 21 to produce estrogen receptor α;
26. (1) 標識されたリガンドが結合している前項 1記載のエス トロゲンレセプタ 一 αと被験物質とを接触させる工程、 及び  26. (1) contacting the test substance with the estrogen receptor 1α according to the preceding item 1, to which the labeled ligand is bound; and
(2) 前記エストロゲンレセプター αと前記被験物質との結合状態を、 前記標識され たリガンドと当該被験物質との競合により生じる遊離型の標識されたリガンド又は 結合型の標識されたリガンドの量をモニターすることにより間接的に確認する工程 を有することを特徴とするリガンド · レセプターバインディングアツセィ ;  (2) The state of binding between the estrogen receptor α and the test substance is monitored by monitoring the amount of free labeled ligand or bound labeled ligand generated by competition between the labeled ligand and the test substance. A ligand / receptor binding assay, comprising a step of indirectly confirming the activity by performing
27. 被験物質が有するエストロゲンレセプター α活性調節能の評価方法であって、 (1) 前項 1に記載のエス トロゲンレセプター αを産生し、 かつ、 エストロゲン応答 配列を含む転写制御領域の転写制御下にあるレポーター遺伝子が染色体に導入され てなる形質転換体と、 被験物質とを接触させる工程、 27. A method for evaluating the ability of a test substance to regulate estrogen receptor α activity, comprising the steps of: (1) producing the estrogen receptor α according to item 1 above; Contacting a test substance with a transformant in which a reporter gene under the transcriptional control of a transcription control region containing a sequence is introduced into a chromosome;
( 2 )前記形質転換体が有する前記レポータ一遺伝子の発現量又はその量と相関関係 を有する指標値を測定する工程、 及び  (2) measuring the expression level of the reporter gene contained in the transformant or an index value having a correlation with the expression level; and
( 3 )測定された発現量又はその量と相関関係を有する指標値に基づき前記物質のェ ストロゲンレセプター活性調節能力を評価する工程  (3) a step of evaluating the estrogen receptor activity regulating ability of the substance based on the measured expression level or an index value having a correlation with the level.
を有することを特徴とする評価方法 (以下、 本発明評価方法と記すことがある。 ) ; 2 8 . 前項 2 7に記載の方法により、 形質転換体の産生するエストロゲンレセプター aに対する被験物質の活性調節能を評価する工程を含むエストロゲンレセプター α 活性調節物質のスクリ一二ング方法; 28. The activity of a test substance for estrogen receptor a produced by a transformant according to the method described in 27 above; A method of screening for an estrogen receptor α activity modulator, which comprises the step of evaluating a regulatory ability;
2 9 . 試料中の核酸において、 エストロゲンレセプター αを構成するアミノ酸であつ て、 アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプター α のアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩 基配列に置換されているか否かを調べる工程を含むエストロゲンレセプター aの遺 伝子型の判定方法; 29. In the nucleic acid in the sample, the amino acids constituting estrogen receptor α, and the amino acid sequence of amino acid sequence represented by SEQ ID NO: 1 in the alignment based on the homology of the amino acid sequence. Has the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid shown in 24 been replaced with a nucleotide sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor α ? A method for determining the gene type of estrogen receptor a, which comprises the step of determining whether or not the gene is estrogen receptor a;
3 0 . 試料中の核酸において、 エストロゲンレセプター αを構成するアミノ酸であつ て、 アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプター α のアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩 基配列に置換されているか否かを調べることによりエストロゲンレセプター αの遺 伝子型を判定する工程を含むエストロゲンレセプターひ活性調節物質による治療の 有効性の判定方法;  30. In the nucleic acid in the sample, the amino acids constituting estrogen receptor α, and the amino acid sequence of amino acid sequence 404, 405, or 4 of the amino acid sequence represented by SEQ ID NO: 1 in an alignment based on amino acid sequence homology. Has the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid shown in 4 been replaced with a nucleotide sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor α? A method for determining the efficacy of treatment with an estrogen receptor activity modulator comprising the step of determining the gene type of estrogen receptor α by examining the presence or absence of estrogen receptor α;
3 1 . 試料中の核酸において、 エストロゲンレセプター αを構成するアミノ酸であつ て、 アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプター α のアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩 基配列に置換されているか否かを調べることによりエストロゲンレセプター cの遺 伝子型を判定する工程を含む抗エストロゲン物質による治療の有効性の判定方法; 3 2 . 試料中の核酸を鍀型として、 配列番号 1で示されるアミノ酸配列のアミノ酸番 号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸を 含む領域をコ一ドする核酸を増幅し、増幅された核酸の塩基配列を決定する工程を含 む前項 3 0または 3 1のいずれかに記載の方法; 31. In the nucleic acid in the sample, the amino acids that constitute estrogen receptor α, and the amino acid sequence of amino acid sequence represented by SEQ ID NO: 1 in the alignment based on the homology of the amino acid sequence. Equivalent to the amino acid shown in 24 The estrogen receptor is determined by examining whether the nucleotide sequence encoding the amino acid at the position corresponding to the estrogen receptor has been replaced with a base sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor α. a method for determining the efficacy of treatment with an anti-estrogenic substance, including the step of determining the genotype of c; 32. The nucleic acid in the sample is designated as type II, and the amino acid number 40 of the amino acid sequence represented by SEQ ID NO: 1 The preceding item 30 including a step of amplifying a nucleic acid encoding a region containing an amino acid at a position corresponding to the amino acid represented by 4, 405 or 424 and determining the base sequence of the amplified nucleic acid Or the method according to any of 31;
3 3 . 試料中の核酸を铸型として、 配列番号 1で示されるアミノ酸配列のアミノ酸番 号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸を 含む領域をコードする核酸を増幅し、増幅された核酸を電気泳動してその移動度を測 定し、野生型エストロゲンレセプター αの当該領域をコードする核酸の移動度と前記 増幅された核酸の移動度とが異なるか否かを調べる工程を含む前項 3 0または 3 1 のいずれかに記載の方法;  33. Using the nucleic acid in the sample as type III, a region containing an amino acid at a position corresponding to the amino acid No. 404, 405 or 424 of the amino acid sequence shown in SEQ ID NO: 1 The encoding nucleic acid is amplified, the mobility of the amplified nucleic acid is measured by electrophoresis, and the mobility of the nucleic acid encoding the relevant region of wild-type estrogen receptor α and the mobility of the amplified nucleic acid are determined. 30. The method according to any one of the above items 30 or 31, comprising a step of checking whether or not they are different;
3 4 . 野生型エストロゲンレセプター αのアミノ酸配列のうち、 配列番号 1で示され るアミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相 当する位置にあるアミノ酸を含む領域をコードする塩基配列からなるプローブと、試 料中の核酸とのハイプリダイゼーシヨンの効率を調べる工程を含む前項 3 0または 3 1のいずれかに記載の方法; 34. In the amino acid sequence of the wild-type estrogen receptor α, the amino acid at the position corresponding to the amino acid No. 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1 The method according to any one of the above items 30 or 31, comprising a step of examining the efficiency of hybridization between a probe consisting of a nucleotide sequence encoding a region containing the probe and a nucleic acid in the sample;
3 5 . 試料中の核酸を鎵型として、 配列番号 1で示されるアミノ酸配列のアミノ酸番 号 4 0 4、 4 0 5または 4 2 4に相当する位置にあるアミノ酸を含む領域をコードす る核酸を増幅し、増幅された核酸を制限酵素により消化して該制限酵素の認識配列の 有無を調べる工程を含む前項 3 0または 3 1のいずれかに記載の方法; 35. Nucleic acid encoding a region containing an amino acid at a position corresponding to amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1, with the nucleic acid in the sample as type III The method according to any of the above items 30 or 31, comprising a step of amplifying the nucleic acid and digesting the amplified nucleic acid with a restriction enzyme to examine the presence or absence of a recognition sequence of the restriction enzyme;
等を提供するものである。 図面の簡単な説明 And so on. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 レポ一ター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用い たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター F404L (図中 「変異型 F404LJ と示す) に対する 4 -ヒ ドロキシタモキシフエ ンの活性化能を測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「対 照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試験区におけるルシ フェラーゼ活性の値を示した。 1, by the reporter mediation Si using a transformant reporter one coater gene is introduced into a chromosome of a host cell, human wild-type estrogen receptor α or invention Les Fig. 3 shows the results of measuring the activation ability of 4-hydroxytamoxifen to sceptor F404L (indicated as "mutant F404LJ" in the figure). The value of luciferase activity in each test group was shown, assuming that the value of luciferase activity was 100%.
図 2は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用い たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター F404L (図中 「変異型 F404L」 と示す) に対するラロキシフェンの活性化能を 測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「対照」 と示す) に おけるルシフェラーゼ活性の値を 100%として、各試験区におけるルシフェラーゼ活性 の ί直を示した。  FIG. 2 shows that a reporter gene using a transformant in which a reporter gene was introduced into the chromosome of a host cell was used to report human wild-type estrogen receptor α or the receptor of the present invention, F404L (shown as `` mutant F404L '' in the figure). FIG. 9 shows the results of measuring the activation ability of raloxifene against). The luciferase activity in each of the test plots was shown assuming that the value of the luciferase activity in the control plot to which only the solvent was added (indicated as “control” in the figure) was 100%.
図 3は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用い たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター F404L (図中 「変異型 F404LJ と示す) に対する Z M 1 8 9 1 5 4の活性化能 を測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「対照」 と示す。 ) におけるルシフェラーゼ活性の値を 100%として、 各試験区におけるルシフェラーゼ 活十生の ί直を示した。  FIG. 3 shows that the reporter gene using a transformant in which a reporter gene has been introduced into the chromosome of a host cell is used to report human wild-type estrogen receptor α or the present receptor F404L (shown as “mutant F404LJ” in the figure). It is a figure which shows the result of having measured the activation ability of ZM189514 with respect to the luciferase activity value in the control group (only shown as "control" in a figure) which added only the solvent to 100%. The luciferase activity in the test plot was corrected.
図 4は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用い たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター F404L (図中 「変異型 F404L」 と示す) に対する 4—ヒ ドロキシタモキシフエ ンの抗エストロゲン活性を測定した結果を示す図である。 ΙΟΟ ρΜの E2のみを添加した 試験区 (図中 「対照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試 験区におけるルシフェラーゼ活性の値を示した。  FIG. 4 shows that the reporter gene using a transformant in which a reporter gene was introduced into the chromosome of a host cell was used to report on the human wild-type estrogen receptor α or the receptor F404L of the present invention (shown as `` mutant F404L '' in the figure). FIG. 4 shows the results of measuring the anti-estrogenic activity of 4-hydroxytamoxifen with respect to). The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in the test group to which only E2 of {ρ} was added (indicated as “control” in the figure) was 100%.
図 5は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用い たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター F404L (図中 「変異型 F404し」 と示す) に対するラロキシフェンの抗エストロ ゲン活性を測定した結果を示す図である。 100 ρΜの Ε2のみを添加した試験区 (図中 「 対照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試験区におけるル シフェラーゼ活性の値を示した。 図 6は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用い たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター F404L (図中 「変異型 F404し」 と示す) に対する Z M189154の抗エストロゲン 活性を測定した結果を示す図である。 100 pMの Ε2のみを添カ卩した試験区 (図中 「対照 」 と示す) におけるルシフェラーゼ活性め値を 100%として、 各試験区におけるルシフ エラーゼ活性の値を示した。 FIG. 5 shows that the reporter atssii using a transformant in which a reporter gene was introduced into the chromosome of a host cell was used to report on the human wild-type estrogen receptor α or the receptor of the present invention, F404L (in FIG. FIG. 6 shows the results of measuring the anti-estrogenic activity of raloxifene against The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in the test group to which only 100 ρΜ2 was added (indicated as “control” in the figure) was 100%. FIG. 6 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using a human wild-type estrogen receptor α or a receptor of the present invention, F404L (in FIG. FIG. 4 shows the results of measuring the anti-estrogenic activity of ZM189154 against the following. The value of luciferase activity in each test group was shown assuming that the luciferase activity value in the test group supplemented with only 100 pM Ε2 (indicated as “control” in the figure) was 100%.
図 7は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用い たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター A405V (図中 「変異型 A405VJ と示す) に対する 4 -ヒ ドロキシタモキシフエ ンの活性化能を測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「対 照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試験区におけるルシ フエラーゼ活性の値を示した。  FIG. 7 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, by using the human wild-type estrogen receptor α or the receptor A405V of the present invention (shown as “mutant A405VJ” in the figure). The figure shows the results obtained by measuring the activation ability of 4-hydroxytamoxifen with respect to the luciferase activity in the control group to which only the solvent was added (indicated as “control” in the figure), assuming 100%. The values of luciferase activity in each test plot were shown.
図 8は、 レポ一タ一遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用レ、 たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター A405V (図中 「変異型 A405V」 と示す) に対するラロキシフェンの活性化能を 測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「対照」 と示す) に おけるルシフヱラーゼ活性の値を 100%として、各試験区におけるルシフヱラーゼ活性 のィ直を示した。  FIG. 8 shows the results obtained by using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using a human wild-type estrogen receptor α or the receptor A405V of the present invention (mutation in the figure). FIG. 10 shows the results of measuring the activation ability of raloxifene with respect to “type A405V”). The value of luciferase activity in the control group to which only the solvent was added (indicated as “control” in the figure) was taken as 100%, and the luciferase activity in each test group was shown.
図 9は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用い たレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明レ セプター A405V (図中 「変異型 A405V」 と示す) に対する Z M 1 8 9 1 5 4の活性化能 を測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「対照」 と示す。 ) におけるルシフヱラーゼ活性の値を 100%として、 各試験区におけるルシフヱラーゼ 活性の値を示した。  FIG. 9 shows that the reporter gene using a transformant in which the reporter gene was introduced into the chromosome of the host cell was used to report on the human wild-type estrogen receptor α or the receptor A405V of the present invention (shown as `` mutant A405V '' in the figure). FIG. 9 is a view showing the results of measuring the activation ability of ZM18914 with respect to). The value of luciferase activity in each of the test groups was shown assuming that the value of luciferase activity in the control group to which only the solvent was added (indicated as “control” in the figure) was 100%.
図 1 0は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明 レセプター A405V (図中 「変異型 A405VJ と示す) に対する 4ーヒ ドロキシタモキシフ ヱンの抗エストロゲン活性を測定した結果を示す図である。 ΙΟΟ ρΜの Ε2のみを添加し た試験区 (図中 「対照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各 試験区におけるルシフェラーゼ活性の値を示した。 FIG. 10 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell. 5 is a graph showing the results of measuring the anti-estrogenic activity of 4-hydroxy tamoxifen with respect to. The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in each test group (shown as “control” in the figure) was 100%.
図 1 1は、 レポ一ター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エス トロゲンレセプター cまたは本発明 レセプター A405V (図中 「変異型 A405V」 と示す) に対するラロキシフェンの抗ェスト ロゲン活性を測定した結果を示す図である。 100 pMの E2のみを添加した試験区 (図中 「対照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試験区における ルシフヱラーゼ活性の値を示した。  FIG. 11 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using human wild-type estrogen receptor c or receptor A405V of the present invention (in the figure, mutant A405V FIG. 7 shows the results of measuring the antiestrogenic activity of raloxifene against raloxifene. The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in the test group to which only 100 pM E2 was added (indicated as “control” in the figure) was 100%.
図 1 2は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明 レセプター A405V (図中 「変異型 A405V」 と示す) に対する Z M189154の抗エストロゲ ン活性を測定した結果を示す図である。 100 pMの E2のみを添カ卩した試験区 (図中 「対 照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試験区におけるルシ フエラーゼ活性の値を示した。  FIG. 12 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, to obtain human wild-type estrogen receptor α or receptor A405V of the present invention (shown as `` mutant A405V '' in the figure). FIG. 4 shows the results of measuring the anti-estrogenic activity of ZM189154 against). The value of luciferase activity in each test group was shown assuming that the luciferase activity value in the test group supplemented with only 100 pM E2 (indicated as “control” in the figure) was 100%.
図 1 3は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明 レセプター Ι424Τ (図中 「変異型 I424TJ と示す) に対する 4 -ヒ ドロキシタモキシフ ェンの活性化能を測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「 対照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試験区におけるル シフェラーゼ活性の値を示した。  FIG. 13 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, to obtain human wild-type estrogen receptor α or the receptor {424} of the present invention (indicated as “mutant I424TJ” in the figure). Fig. 4 shows the results of measuring the activation ability of 4-hydroxytamoxifen with respect to luciferase activity in a control group to which only a solvent was added (indicated as "control" in the figure), assuming 100%. The values of luciferase activity in each test plot were shown.
図 1 4は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明 レセプター Ι424Τ (図中 「変異型 Ι424Τ」 と示す) に対するラロキシフ ンの活性化能 を測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「対照」 と示す) におけるルシフェラーゼ活性の値を 100%として、各試験区におけるルシフェラーゼ活 性の値を示した。  FIG. 14 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using human wild-type estrogen receptor α or the receptor of the present invention {424} (shown as `` mutant Ι424Τ '' in the figure). FIG. 6 shows the results of measuring the activation ability of raloxifene with respect to). The value of luciferase activity in each test group was shown assuming that the value of luciferase activity in the control group to which only the solvent was added (indicated as “control” in the figure) was 100%.
図 1 5は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプターひまたは本発明 レセプター j424T (図中 「変異型 I424TJ と示す) に対する Z M 1 8 9 1 5 4の活性化 能を測定した結果を示す図である。 溶媒のみを添加した対照区 (図中 「対照」 と示す 。 ) におけるルシフェラ一ゼ活性の値を 100%として、 各試験区におけるルシフェラー ゼ活'性の ί直を示した。 FIG. 15 shows that the reporter gene using the transformant in which the reporter gene was introduced into the chromosome of the host cell was used to obtain the human wild-type estrogen receptor or the present invention. It is a figure which shows the result of having measured the activation ability of ZM1891554 with respect to receptor j424T (it shows as "mutant type I424TJ" in the figure). The value of luciferase activity in) was taken as 100%, and the change in luciferase activity in each test group was shown.
図 1 6は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明 レセプター Ι424Τ (図中 「変異型 I424TJ と示す) に対する 4ーヒ ドロキシタモキシフ ェンの抗エストロゲン活性を測定した結果を示す図である。 ΙΟΟ ρΜの Ε2のみを添加し た試験区 (図中 「対照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各 試験区におけるルシフエラ一ゼ活性の値を示した。  FIG. 16 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, to obtain human wild-type estrogen receptor α or the receptor of the present invention {424} (indicated as “mutant I424TJ” in the figure). The figure shows the results of measuring the antiestrogenic activity of 4-hydroxytamoxifen with respect to luciferase activity in the test group to which only ΜρΜ of Ε2 was added (indicated as “control” in the figure). The value of luciferase activity in each test group was shown as 100%.
図 1 7は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明 レセプター Ι424Τ (図中 「変異型 I424TJ と示す) に対するラロキシフェンの抗ェスト ロゲン活性を測定した結果を示す図である。 100 pMの Ε2のみを添加した試験区 (図中 「対照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試験区における ルシフェラーゼ活性の値を示した。  FIG. 17 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, to obtain human wild-type estrogen receptor α or the present receptor {424} (indicated as “mutant I424TJ” in the figure). Fig. 3 shows the results of measuring the antiestrogenic activity of raloxifene against luciferase, where the value of luciferase activity in the test group to which only 100 pM Ε2 was added (indicated as “control” in the figure) was 100%, The value of luciferase activity was shown.
図 1 8は、 レポーター遺伝子が宿主細胞の染色体に導入されてなる形質転換体を用 いたレポーターアツセィにより、 ヒ ト野生型エストロゲンレセプター αまたは本発明 レセプター Ι424Τ (図中 「変異型 I424TJ と示す) に対する Z M189154の抗エストロゲ ン活性を測定した結果を示す図である。 100 pMの Ε2のみを添カ卩した試験区 (図中 「対 照」 と示す) におけるルシフェラーゼ活性の値を 100%として、 各試験区におけるルシ フェラーゼ活性の値を示した。  FIG. 18 shows the results of reporter assay using a transformant in which a reporter gene has been introduced into the chromosome of a host cell, using human wild-type estrogen receptor α or the receptor {424} of the present invention (indicated as “mutant I424TJ” in the figure). The figure shows the results of measuring the anti-estrogenic activity of ZM189154 against the luciferase activity in the test group to which only 100 pM of Ε2 was added (indicated as “control” in the figure). The values of luciferase activity in each test plot were shown.
図 1 9は、 ヒ ト、 マウスまたはラット由来のエストロゲンレセプター αのアミノ酸 配列のアラインメントを示す図である。 *は、 配列番号 1で示されるアミノ酸配列の アミノ酸番号 4 0 4のアミノ酸に相当する位置にあるアミノ酸を示す。 発明を実施するための最良の形態  FIG. 19 is a view showing alignment of amino acid sequences of estrogen receptor α derived from human, mouse or rat. * Indicates an amino acid at a position corresponding to the amino acid of amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明について詳細に説明する。 本発明において、 Hereinafter, the present invention will be described in detail. In the present invention,
エストロゲンレセプター αの 「アミノ酸配列の相同性に基づくアラインメント」 と は、 種々の生物由来のエストロゲンレセプター αのアミノ酸配列間で同一、 または類 似性の高いアミノ酸配列を揃えるように、 アミノ酸配列を並べて示した表を意味する 。アミノ酸配列の相同性に基づくァラインメントは、例えば、 FASTA [Pearson & Lipman, Proc. Natl. Acad. Sci. USA, 4, 2444-2448 (1988) ] 、 BLAST [Altschulら、 Journal of Molecular Biology, 215, 403-410 (1990) ]、 CLUSTAL W [Thompson, Higgins&Gibson, Nucleic Acid Research, 22, 4673- 4680 (1994a) ] 等のプログラムを用いて相同性解 析を行うことによって作成することができる。上記のプログラムは、例えば、 DNA Data Bank of Japan [国立遺伝学研究所 生命情報 . D D B J研究センター (Center for Information Biology and DNA Data Bank of Japan ; CIB/DDBJ)内で運営される国際 D N Aデータバンク] のホームページ (http:〃 www. ddbj. nig. ac. jp) 等において、 一般的に利用可能である。 また、 かかるアラインメントは、 市販の配列解析ソフトゥ エア、例えば、 GENETYX-WIN (ソフトウエア開発株式会社製) を用い、 Lipman- Pearson 法 [Lipman, D. J. and Pearson, W. R. , Science, 227, 1435-1441, (1985) ] により 相同性解析を行つて作成することもできる。  "Alignment based on amino acid sequence homology" of estrogen receptor alpha refers to the alignment of amino acid sequences of estrogen receptor alpha derived from various organisms so that the amino acid sequences are identical or highly similar. Means table. Alignments based on amino acid sequence homology include, for example, FASTA [Pearson & Lipman, Proc. Natl. Acad. Sci. USA, 4, 2444-2448 (1988)], BLAST [Altschul et al., Journal of Molecular Biology, 215, 403-410 (1990)] and CLUSTAL W [Thompson, Higgins & Gibson, Nucleic Acid Research, 22, 4673-4680 (1994a)] and the like. The above program is, for example, the DNA Data Bank of Japan [National Institute of Genetics Life Information. International DNA Data Bank operated within the Center for Information Biology and DNA Data Bank of Japan (CIB / DDBJ)] Is generally available on the homepage (http: 〃www.ddbj.nig.ac.jp). The alignment was performed using a commercially available sequence analysis software, for example, GENETYX-WIN (manufactured by Software Development Co., Ltd.) using the Lipman-Pearson method [Lipman, DJ and Pearson, WR, Science, 227, 1435-1441, (1985)].
エストロゲンレセプターひの 「アミノ酸配列の相同性に基づくアラインメント」 の 具体例として、 図 1 9に示すようなヒ ト、 マウスまたはラット等由来のエストロゲン レセプター αのアミノ酸配列のァラインメントを挙げることができる。図 1 9におい て、 hERa. TXTは、 ヒ ト由来のエストロゲンレセプター αのアミノ酸配列 (GenBank Accession No. M12674記載のアミノ酸配列のァミノ末端から 400番目のアミノ酸バリン がグリシンに置換されたァミノ酸配列;配列表に配列番号 1で示す。 ) 、 mER. TXTは、 マウス由来のエストロゲンレセプター αのアミノ酸配歹 lj (GenBank Accession No. M38651) 、 ratER (X6) . TXTは、 ラット由来のエストロゲンレセプターひのアミノ酸配 歹 IJ (GenBank Accession No. X61098) 、 ratER (Y0) . TXTは、 ラット由来のエストロゲ ンレセプター αのアミノ酸配列 (GenBank Accession No. Y00102) を、 それぞれアミ ノ酸の 1文字表記で示す。 当該アラインメントは、 市販のソフトウェアである Genetyx-Win SV/R ver. 4. 0 (ソフトウェア開発株式会社) を使用して作成された。 *は、配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4のアミノ酸に相当す る位置にあるアミノ酸を示す。 Specific examples of the "alignment based on amino acid sequence homology" of estrogen receptor include alignment of amino acid sequence of estrogen receptor α derived from human, mouse or rat as shown in FIG. . In FIG. 19, hERa. TXT is the amino acid sequence of human-derived estrogen receptor α (an amino acid sequence in which the amino acid at position 400 from the amino terminal of the amino acid sequence described in GenBank Accession No. M12674 is substituted with glycine; The sequence listing shows SEQ ID NO: 1.), mER.TXT is a mouse-derived estrogen receptor α amino acid sequence (GenBank Accession No. M38651), ratER (X6) .TXT is a rat-derived estrogen receptor The amino acid sequences IJ (GenBank Accession No. X61098) and ratER (Y0) .TXT indicate the amino acid sequence of rat-derived estrogen receptor α (GenBank Accession No. Y00102) in one-letter amino acid notation. The alignment was made using commercially available software Genetyx-Win SV / R ver. 4.0 (Software Development Co., Ltd.). * Indicates an amino acid at a position corresponding to the amino acid of amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1.
「ァミノ酸配列の相同性に基づくァラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4で示されるアミノ酸に相当する位置にあるアミ ノ酸」 とは、 上記のような種々の生物由来のエストロゲンレセプター αのアミノ酸配 列のァラインメントにおいて、配列番号 1で示されるアミノ酸配列と並べて記載した 場合に、配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4で示されるァミノ 酸と同じ位置にくるアミノ酸を意味する。 具体的には例えば、 「アミノ酸配列の相同 性に基づくァラインメントにおいて、配列番号 1で示されるアミノ酸配列のアミノ酸 番号 4 0 4で示されるアミノ酸に相当する位置にあるアミノ酸」 としては、 ヒ ト由来 のエストロゲンレセプター αのアミノ酸配列 (配列番号 1で示す) のァミノ末端から 4 0 4番目のァミノ酸であるフエ二ルァラニン、マウス由来のエストロゲンレセプタ 一 αのアミノ酸配列 (GenBank Accession No. M38651) のァミノ末端から 4 0 8番目 のアミノ酸であるフエ-ルァラニン、 ラット由来のエストロゲンレセプター αのアミ ノ酸配列 (GenBank Accession No. X61098) のァミノ末端から 4 0 9番目のアミノ酸 であるフエ-ルァラニン、 ラット由来のエストロゲンレセプター αのアミノ酸配列 ( GenBank Accession No. Y00102) のァミノ末端から 4 0 9番目のアミノ酸であるフエ 二ルァラニン等を挙げることができる。 “In an alignment based on the homology of the amino acid sequence, the amino acid at a position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1” includes various amino acids as described above. In the alignment of the amino acid sequence of the estrogen receptor α derived from the organism of the present invention, when described alongside the amino acid sequence of SEQ ID NO: 1, the amino acid represented by the amino acid sequence of the amino acid sequence of SEQ ID NO: 1 An amino acid is located at the same position as an acid. Specifically, for example, in the alignment based on the homology of amino acid sequences, the amino acid at the position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1 is human Amino acid sequence of the estrogen receptor α derived from the amino acid sequence (shown in SEQ ID NO: 1), the amino acid sequence of feniralanine, which is the amino acid at the 404th position from the amino terminal, and the amino acid sequence of the estrogen receptor 1α derived from the mouse (GenBank Accession No. M38651) Phenylalanine, which is the 408th amino acid from the amino terminal, phenylalanine, which is the 409th amino acid from the amino acid sequence of the rat estrogen receptor α amino acid sequence (GenBank Accession No. X61098), rat From the amino terminal of the amino acid sequence of estrogen receptor α (GenBank Accession No. Y00102) Mention may be made of Hue two Ruaranin such as a eyes of the amino acid.
「アミノ酸配列の相同性に基づくァライメントにおいて、 配列番号 1で示されるァ ミノ酸配列のアミノ酸番号 4 0 5で示されるアミノ酸に相当する位置にあるアミノ 酸」 とは、 上記のような種々の生物由来のエストロゲンレセプター αのアミノ酸配列 のァライメントにおいて、配列番号 1で示されるァミノ酸配列と並べて記載した場合 に、配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 5で示されるアミノ酸と 同じ位置にくるアミノ酸を意味する。 具体的には例えば、 「アミノ酸配列の相同性に 基づくァライメントにおいて、配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 5で示されるアミノ酸に相当する位置にあるアミノ酸」 としては、 ヒ ト由来のエス トロゲンレセプター αのアミノ酸配列 (配列番号 1で示す) のァミノ末端から 4 0 5 番目のアミノ酸であるァラニン、マウス由来のエストロゲンレセプター αのアミノ酸 配列 (GenBank Accession No. 38651) のァミノ末端から 4 0 9番目のアミノ酸であ るァラニン、 ラット由来のエストロゲンレセプターひのアミノ酸配列 (GenBank Accession No. X61098) のァミノ末端から 4 1 0番目のアミノ酸であるァラニン、 ラ ット由来のエストロゲンレセプター αのアミノ酸配列(GenBank Accession No. Y00102 ) のァミノ末端から 4 1 0番目のアミノ酸であるァラニン等を挙げることができる。 “In an alignment based on amino acid sequence homology, an amino acid at a position corresponding to the amino acid shown by amino acid No. 405 of the amino acid sequence shown by SEQ ID No. 1” refers to various organisms as described above. In the alignment of the amino acid sequence of the derived estrogen receptor α, when described alongside the amino acid sequence represented by SEQ ID NO: 1, the amino acid sequence represented by SEQ ID NO: 1 has the same position as the amino acid represented by amino acid number 405. Comes with the amino acids. Specifically, for example, in the alignment based on the homology of the amino acid sequence, the amino acid at the position corresponding to the amino acid No. 405 of the amino acid sequence represented by SEQ ID NO: 1 405 from the amino end of the amino acid sequence of estrogen receptor α (shown in SEQ ID NO: 1) Alanine, the amino acid sequence of the estrogen receptor α from the mouse (GenBank Accession No. 38651), the alanine amino acid at the 409th amino acid from the amino terminal, and the amino acid sequence of the estrogen receptor from the rat (GenBank Accession No. 38651) No. X61098), alanine, the amino acid at the 410th amino acid from the amino terminal, rat-derived estrogen receptor α, amino acid sequence at the 410th amino acid from the amino acid sequence (GenBank Accession No. Y00102), alanine, etc. Can be mentioned.
「ァミノ酸配列の相同性に基づくァライメントにおいて、 配列番号 1で示されるァ ミノ酸配列のアミノ酸番号 4 2 4で示されるアミノ酸に相当する位置にあるアミノ 酸」 とは、 上記のような種々の生物由来のエストロゲンレセプター ctのアミノ酸配列 のァライメントにおいて、配列番号 1で示されるアミノ酸配列と並べて記載した場合 に、配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 2 4で示されるアミノ酸と 同じ位置にくるアミノ酸を意味する。 具体的には例えば、 「アミノ酸配列の相同性に 基づくァライメントにおいて、配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸」 としては、 ヒ ト由来のエス トロゲンレセプターひのアミノ酸配列 (配列番号 1で示す) のァミノ末端から 4 2 4 番目のアミノ酸であるイソロイシン、マウス由来のエストロゲンレセプター αのアミ ノ酸配列 (GenBank Accession No. M38651) のァミノ末端から 4 2 8番目のアミノ酸 であるイソロイシン、 ラット由来のエストロゲンレセプター αのアミノ酸配列 ( GenBank Accession No. X61098) のァミノ末端から 4 2 9番目のアミノ酸であるイソ ロイシン、 ラット由来のエストロゲンレセプター αのアミノ酸配列 (GenBank "In an alignment based on the homology of the amino acid sequence, the amino acid at a position corresponding to the amino acid shown by amino acid No. 424 of the amino acid sequence shown by SEQ ID NO: 1" includes various amino acids as described above. In the alignment of the amino acid sequence of the estrogen receptor ct derived from the organism, when described alongside the amino acid sequence represented by SEQ ID NO: 1, the amino acid sequence represented by SEQ ID NO: 1 is located at the same position as the amino acid represented by amino acid number 424. Means the amino acid that comes Specifically, for example, in the alignment based on the homology of the amino acid sequence, the amino acid at the position corresponding to the amino acid represented by amino acid number 424 in the amino acid sequence represented by SEQ ID NO: 1 is derived from human. Isoleucine, the 4th and 4th amino acid from the amino acid sequence of the estrogen receptor (shown in SEQ ID NO: 1), and the amino acid sequence of the amino acid sequence of estrogen receptor α from mouse (GenBank Accession No. M38651) Amino acid sequence of isoleucine, amino acid at position 428, isoleucine at amino acid position 429 from amino acid sequence of amino acid sequence of rat estrogen receptor α (GenBank Accession No. X61098), amino acid sequence of estrogen receptor α, rat (GenBank
Accession No. Y00102) のァミノ末端から 4 2 9番目のアミノ酸であるイソロイシン 等を挙げることができる。 And isoleucine which is the 429th amino acid from the amino terminal of Accession No. Y00102).
「野生型エストロゲンレセプター α」 とは、 同一種の生物由来の当該レセプターの アミノ酸配列において天然に最も高頻度にみられるアミノ酸配列からなるエストロ ゲンレセプター αを意味する。例えばヒ ト由来の野生型エストロゲンレセプター αと して、 配列番号 1で示されるアミノ酸配列 (GenBank Accession No. M12674記載のァ ミノ酸配列のァミノ末端から 4 0 0番目のアミノ酸バリンがグリシンに代わったァ ノ酸配列) からなるエストロゲンレセプタ一 αを挙げることができる c エス卜ログン応答酉己歹 IJ (estrogen responsive element) とは、 エス卜ロケンレセ プターによって転写が調節される標的遺伝子の転写制御領域に含まれる特定の塩基 配列であって、 例えばエストロゲンとエストロゲンレセプターとの複合体が、 該配列 を認識しここに結合すると、 該配列の下流に在る標的遺伝子の転写が調節される。 こ のようなエストロゲン応答配列としては、 具体的には例えば、 アフリカッメガエルの ビテロゲニン遺伝子の 5'上流領域の塩基配列 (Cel l.,57, 1139-1146) 等をあげること ができる。 また、 エストロゲン応答配列のコンセンサス配列 [5'- AGGTCAnnnTGACCTT- 3, ; nは A、 G、 Cまたは Tを表す。 ]を 1回以上含む塩基配列をあげることもできる。 尚、 十分な転写制御能を得るには、前記のようなコンセンサス配列は通常 2〜5程度タンデ ムに連結されていることが好ましレ、。 力かる塩基配列を有する D N Αは、 通常の方法 に準じて、 化学合成するか、 または PCRなどにより増幅しクローニングすること等に より調製することができる。 The term “wild-type estrogen receptor α ” means an estrogen receptor α consisting of an amino acid sequence naturally and most frequently found in the amino acid sequence of the receptor derived from the same species of organism. For example, as a human-derived wild-type estrogen receptor α, the amino acid sequence represented by SEQ ID NO: 1 (the amino acid valine at position 400 from the amino terminal of the amino acid sequence described in GenBank Accession No. M12674 was replaced with glycine) A A is c es Bok Rogun response Rooster can be given estrogen receptor one α himself歹IJ (estrogen responsive element) from acid sequence), included in the transcription control region of the target genes regulated transcription by S. Bok Rokenrese Puta When a complex of estrogen and an estrogen receptor, for example, recognizes and binds to the specific base sequence, transcription of a target gene downstream of the sequence is regulated. Specific examples of such an estrogen response element include, for example, the base sequence of the 5 ′ upstream region of the vitellogenin gene of African alfalga (Cell., 57, 1139-1146). In addition, a consensus sequence of an estrogen response element [5′-AGGTCAnnnTGACCTT-3,; n represents A, G, C or T. ] One or more times. In order to obtain a sufficient transcription control ability, it is preferable that the consensus sequence as described above is usually tandemly linked in about 2 to 5 times. DNΑ having a strong nucleotide sequence can be prepared by chemical synthesis or amplification and cloning by PCR or the like according to a conventional method.
「エストロゲンレセプターひの転写活性化領域 AF1」 および 「エス トロゲンレセプ ター αの転写活性化領域 AF2」 とは、 それぞれ、 エストロゲンレセプター αの一部の 領域であって、 エストロゲンレセプター αの転写活性化能に関与する領域である “Estrogen receptor transcription activation region AF1” and “estrogen receptor α transcription activation region AF2” are a part of estrogen receptor α, respectively, and Are involved
[Metzger D et al. , J. Biol. Chem., 270: 9535-9542 (1995)等]。 「野生型エストロ ゲンレセプター αの転写活性化領域 AF2の機能を抑制するが転写活性化領域 AF1の機 能は抑制しないタイプの抗エストロゲン物質」 は、 例えば、 Berry M. et al. , ΕΜΒΟ J. , 9: 2811-2818 (1990)等の記載に準じたレポーターアツセィを行うことによりその 特性を評価することができる。 具体的には例えば、 chicken embryo fibroblastの初 代培養細胞 [Solomon. J. J, Tissue Cult. Assoc. Manual, 1 : 7- 11 (1975)等の記載に 準じて調製することができる。 ]等の転写活性化領域 AF1の活性化能の強い細胞に、 野 生型エストロゲンレセプターひ遺伝子を発現させ、エストロゲン応答配列を含む転写 制御領域の下流に連結されてなるレポ一ター遺伝子を導入する。 得られた細胞 (以下 、 AF1活性評価用細胞と記す) に被験物質を接触させ、 後述のようにしてレポーター ァッセィを行うと、 「野生型エスト口ゲンレセプター αの転写活性化領域 AF2の機能 を抑制し、転写活性化領域 AF1の機能は抑制しないタイプの抗エスト口ゲン物質」は、 転写を活性化しレポーター遺伝子の発現量を増大させる。 一方、 chicken embryo fibroblastの初代培養細胞等の細胞に、 転写活性化領域 AF1をコードする領域を欠損 させた野生型エストロゲンレセプター ct遺伝子を発現させ、エストロゲン応答配列を 含む転写制御領域の下流に連結されてなるレポーター遺伝子を導入する。得られた細 胞 (以下、 AF2活性評価用細胞と記す) に被験物質を接触させ、 後述のようにしてレ ポーターアツセィを行うと、 「野生型エストロゲンレセプター αの転写活性化領域 AF2の機能を抑制するが転写活性化領域 AF1の機能は抑制しないタイプの抗エスト口 ゲン物質」 は、 転写活性化を誘導せずレポーター遺伝子の発現量を変化させない。 こ のような特性を有する 「野生型エスト口ゲンレセプター αの転写活性ィヒ領域 AF2の機 能を抑制するが転写活性化領域 AF1の機能は抑制しないタイプの抗ェス トロゲン物質 」 の具体例としては、 タモキシフェン、 4 -ヒ ドロキシタモキシフェン、 ラロキシフ ェン等を挙げることができる。 [Metzger D et al., J. Biol. Chem., 270: 9535-9542 (1995) and the like]. `` An anti-estrogenic substance that suppresses the function of the transcription activation region AF2 of the wild-type estrogen receptor α but does not suppress the function of the transcription activation region AF1 '' is described, for example, in Berry M. et al., ΕΜΒΟJ. , 9: 2811-2818 (1990), etc., the characteristics of which can be evaluated by performing a reporter assay. Specifically, for example, it can be prepared according to the description in primary culture cells of chicken embryo fibroblast [Solomon. JJ, Tissue Cult. Assoc. Manual, 1: 7-11 (1975) and the like. Expression of wild-type estrogen receptor gene in cells with strong ability to activate AF1 and transfection of a reporter gene linked downstream of the transcription control region containing estrogen response element . A test substance is brought into contact with the obtained cells (hereinafter, referred to as cells for AF1 activity evaluation), and a reporter is used as described below. When the assay is performed, a type of anti-estrogens that suppresses the function of the transcription-activating region AF2 of the wild-type estrogens receptor α, but does not suppress the function of the transcription-activating region AF1, activates transcription and activates the reporter. Increase the expression level of the gene. On the other hand, cells such as primary culture cells of chicken embryo fibroblast express the wild-type estrogen receptor ct gene lacking the transcriptional activation region AF1 coding region, and are linked downstream of the transcription control region containing the estrogen response element. Introduce a new reporter gene. When a test substance is brought into contact with the obtained cells (hereinafter referred to as cells for evaluating AF2 activity) and a reporter assay is performed as described below, the “function of the transcription activation region AF2 of wild-type estrogen receptor α ” is obtained. A type of antiestrogens that suppresses transcription but does not suppress the function of the transcriptional activation region AF1 does not induce transcriptional activation and does not change the expression level of the reporter gene. Specific examples of `` an anti-estrogen substance of the type that suppresses the function of the transcriptionally active region AF2 of the wild-type estrogens receptor α but does not inhibit the function of the transcriptionally activated region AF1 '' having such properties Examples include tamoxifen, 4-hydroxytamoxifen, raloxifene and the like.
「ピュア抗エストロゲン」 とは、 タモキシフェンの有するような部分ァゴニスト活 性を含むエストロゲン活性を実質的に全く示さない物質を意味し、 このような物質は 前述のような AF1活性評価用細胞または AF2活性評価用細胞のいずれを用いてレポ一 ターアツセィを行った場合においても、転写活性化を誘導せずレポータ一遺伝子の発 現量を変化させない。 「ピュア抗エス トロゲン」 の具体例としては、 ICI182780"Pure antiestrogen" refers to a substance that exhibits substantially no estrogen activity including partial agonist activity, such as that of tamoxifen, and such a substance can be used as a cell for assessing AF1 activity or AF2 activity as described above. When the reporter assay is performed using any of the cells for evaluation, transcriptional activation is not induced and the expression level of the reporter gene is not changed. Specific examples of “pure anti-estrogens” include ICI182780
[Wakel ing, A. E. et al. , Cancer Res. , 512: 3867—3873 (1991) ]、 ZM189154 [Dukes, M. et al. , J. Endocrinol. , 141 : 335-341 (1994) ]等を挙げることができる。 本発明レセプターは、 「当該レセプタ一を構成するアミノ酸のうち、 アミノ酸配列 の相同性に基づくアラインメントにおいて、配列番号 1で示されるアミノ酸配列のァ ミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるァ ミノ酸の 1つまたは複数が、野生型エストロゲンレセプターひのァミノ酸配列の相当 する位置にあるアミノ酸とは異なるアミノ酸に置換され」 ているため、 以下の(b )お よび(c )の性質を有する。 [Wakeling, AE et al., Cancer Res., 512: 3867-3873 (1991)], ZM189154 [Dukes, M. et al., J. Endocrinol., 141: 335-341 (1994)] and the like. be able to. The receptor of the present invention is characterized by the fact that, among the amino acids constituting the receptor, the amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 in the alignment based on the homology of the amino acid sequence. One or more of the amino acids at the positions corresponding to the amino acids represented by are replaced with amino acids different from the amino acids at the corresponding positions in the amino acid sequence of the wild-type estrogen receptor. '' (B) And (c).
( b )タモキシフェン、 4 -ヒ ドロキシタモキシフェン、 ラロキシフェン等の、 野生型 エストロゲンレセプターひの転写活性化領域 AF2の機能を抑制するが転写活性化領域 AF1の機能は抑制しないタイプの抗エストロゲン物質のいずれかと接触すると、 エス ト口ゲン応答配列を含む転写制御領域の転写制御下にある遺伝子の転写を活性化す ることができる。  (b) Any of the types of antiestrogens such as tamoxifen, 4-hydroxytamoxifen, and raloxifene, which suppress the function of the transcription activation region AF2 but do not suppress the function of the transcription activation region AF1 of the wild-type estrogen receptor. When contacted with this, transcription of a gene under the transcriptional control of a transcription control region containing an estrogens response element can be activated.
( c )エストロゲンと接触すると、エストロゲン応答配列を含む転写制御領域の下流に 連結されてなる遺伝子の転写を活性化することができ、 該活性化は前記 (b ) におい て遺伝子の転写を活性化することができる化合物により実質的に阻害されない。  (c) upon contact with estrogen, can activate the transcription of a gene linked downstream of a transcription control region containing an estrogen response element, and the activation activates the transcription of the gene in (b) above. And is not substantially inhibited by compounds that can.
「エストロゲン応答配列を含む転写制御領域の転写制御下にある遺伝子の転写を活 性化」 することができるかどうかは、 例えば、 エストロゲン応答配列を含む転写制御 領域の下流に連結されてなるレポーター遺伝子を使用して、後述のレポーターアツセ ィ等の試験方法を行うことにより評価することができる。本発明レセプターとしては The ability to activate transcription of a gene that is under the transcriptional control of a transcription control region containing an estrogen response element can be determined, for example, by determining whether a reporter gene linked downstream of the transcription control region containing an estrogen response element Can be evaluated by performing a test method such as a reporter assay described below. As the receptor of the present invention
、 上記の (b ) および (c ) において、 細胞の染色体に導入された 「エストロゲン応 答配列を含む転写制御領域の転写制御下にある遺伝子」の転写を活性化することがで きるレセプターをあげることができる。 また、 上記 (c ) における 「エストロゲン応 答配列を含む転写制御領域の転写制御下にある遺伝子」 の転写の活性化は、 ピュア抗 エストロゲンにより阻害される活性化であることが好ましい。 In (b) and (c) above, examples of the receptor capable of activating transcription of a “gene under the transcriptional control of a transcription control region containing an estrogen response sequence” introduced into the chromosome of a cell are given. be able to. In addition, the activation of transcription of the “gene under the transcriptional control of a transcription control region containing an estrogen response sequence” in the above (c) is preferably an activation inhibited by a pure anti-estrogen.
上記のようなアミノ酸の置換としては、 具体的には例えば、 配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4で示されるアミノ酸に相当する位置にあるフエ 二ルァラニンのロイシンへの置換、配列番号 1で示されるアミノ酸配列のアミノ酸番 号 4 0 5で示されるアミノ酸に相当する位置にあるァラニンのバリンへの置換、配列 番号 1で示されるアミノ酸配列のアミノ酸番号 4 2 4で示されるアミノ酸に相当す る位置にあるイソロイシンのスレオニンへの置換等を挙げることができる。 一方、 本 発明レセプターにおいて、 「アミノ酸配列の相同性に基づくアラインメントにおいて 、 配列番号 1で示されるアミノ酸配列のアミノ酸番号 3 0 3、 3 0 9、 3 9 0、 3 9 6、 4 1 5、 4 9 4、 5 3 1または 5 7 8で示されるアミノ酸に相当する位置にある アミノ酸」 は、 いずれも、 野生型エストロゲンレセプター αのアミノ酸配列の相当す る位置にあるアミノ酸と同一であってもよい。 Examples of the amino acid substitution as described above include, for example, substitution of phenylalanine with leucine at a position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1, sequence Substitution of alanine for valine at a position corresponding to the amino acid shown by amino acid No. 405 in the amino acid sequence shown by No. 1; Substitution of isoleucine at the corresponding position with threonine can be mentioned. On the other hand, in the receptor of the present invention, "in the alignment based on the homology of the amino acid sequences, the amino acid numbers 303, 309, 390, 396, 415, 4 of the amino acid sequence represented by SEQ ID NO: 1 Any amino acid at a position corresponding to the amino acid represented by 94, 531, or 5778 corresponds to the amino acid sequence of the wild-type estrogen receptor α. May be the same as the amino acid at a certain position.
本発明レセプターとしては、 ヒ ト、 サル、 ゥサギ、 ラット、 マウスなどの哺乳類等 の動物に由来するレセプターが好ましい。本発明レセプターのより具体的な例として は、 配列番号 2で示されるアミノ酸配列を有するエストロゲンレセプター α、 配列番 号 2 8で示されるアミノ酸配列を有するエストロゲンレセプター α、配列番号 3 3で 示されるアミノ酸配列を有するエストロゲンレセプターひ等を挙げることができる。 本発明 D N Aは、上記のような本発明レセプターをコードする単離された D N Aで ある。 本発明 D N Aとしては、 天然から単離された D N Aであってもよいし、 例えば 、 部位特異的変異導入法や突然変異処理等によって、 天然から単離された D N Aに変 異を導入することにより作出された D N Αであってもよい。  The receptor of the present invention is preferably a receptor derived from an animal such as a mammal such as a human, a monkey, a rabbit, a rat, and a mouse. More specific examples of the receptor of the present invention include an estrogen receptor α having an amino acid sequence represented by SEQ ID NO: 2, an estrogen receptor α having an amino acid sequence represented by SEQ ID NO: 28, and an amino acid represented by SEQ ID NO: 33. Estrogen receptor having a sequence can be mentioned. The DNA of the present invention is an isolated DNA encoding the receptor of the present invention as described above. The DNA of the present invention may be DNA isolated from nature, for example, by introducing a mutation into DNA isolated from nature by site-directed mutagenesis, mutagenesis, or the like. It may be the created DN Α.
本発明 D N Aは、 例えば、 野生型エストロゲンレセプター ctをコードする c D N A から以下のようにして調製することができる。  The DNA of the present invention can be prepared, for example, from cDNA encoding the wild-type estrogen receptor ct as follows.
野生型エストロゲンレセプターひをコードする c D N Aを取得するには、 まず、 GenBank等の遺伝子データベースや文献などに記載されている塩基配列に基づき、 ヒ ト、 サル、 ゥサギ、 ラット、 マウスなどの哺乳類等の動物由来の野生型エストロゲン レセプター αをコードする DNAをポリメラーゼ連鎖反応 (以下、 PCRと記す) で増幅す るためのプライマーを設計し、 合成する。 具体的には例えば、 ヒ ト由来の野生型エス トロゲンレセプター αをコードする c D N Aを取得するためには、 GenBank Accession No. M12674に記載されている塩基配列に基づいて設計されたプライマー、 例えば、 配 列番号 3で示される塩基配列からなるフォヮ一ドプライマ一および、配列番号 4で示 される塩基配列からなるリバースプライマーを化学合成する。 To obtain cDNA encoding the wild-type estrogen receptor, first, a mammal such as a human, monkey, monkey, rat, mouse, etc. should be Design and synthesize primers to amplify the DNA encoding wild-type estrogen receptor α from the animal by polymerase chain reaction (hereinafter referred to as PCR). Specifically, for example, in order to obtain a cDNA encoding human-derived wild-type estrogen receptor α , a primer designed based on the nucleotide sequence described in GenBank Accession No.M12674, for example, A formal primer consisting of the nucleotide sequence represented by SEQ ID NO: 3 and a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 4 are chemically synthesized.
一方、 例えば、 ヒ ト、 サル、 ゥサギ、 ラット、 マウスなどの哺乳類等の動物の組織 から、 Sambrook, J. , and Zrussel l, D. W. ;モレキュラー クローニング第 3版 ( Molecular Cloning 3rd edition) 、 コーノレドスプリング ノヽーバー ラボラトリー ( Cold Spring Harbor Laboratory) (2001年) 等に記載の遺伝子工学的方法に準じて RNAを抽出し、 一本鎖 c D N Aを合成する。 具体的には、 まず、 ヒ ト、 サル、 ゥサギ、 ラット、 マウスなどの哺乳類等の動物組織から全 R N Aを調製する。 例えば肝臓等の 組織を塩酸グァニジンゃチオシアン酸グァニジン等の蛋白質変性剤を含む溶液中で 粉碎し、 さらに該粉砕物にフエノ一ル、 クロ口ホルム等を加えることにより蛋白質を 変性させる。 変性蛋白質を遠心分離等により除去した後、 回収された上清画分から塩 酸グァニジン Zフエノール法、 SDS -フエノール法、 グァニジンチオシァネートノ塩化 セシウム-超遠心法等の方法により全 R N Aを抽出する。 なお、 これらの方法に基づ いた市販のキットとしては、 例えば IS0GEN (二ツボンジーン社製) 、 TRIZ0L試薬 (ィ ンビトロジェン社製) がある。 次に、 得られた全 R NAを铸型として、 該 R NAに含 まれる m R N Aのポリ A配列にオリゴ dTプライマーをァニールさせ、 次いで逆転写酵 素を作用させた後、 該酵素を失活させる。 例えば、 RnaseH- Superscript II Reverse Transcriptase (インビトロジェン社製)、 該酵素に添付されたバッファー、 オリゴ dT プライマー及び全 R N Aを混合し、 42 °Cで 1時間反応させた後、 99 °Cで 5分間加熱する 。 なお、 これらの方法に基づいた市販のキットとしては、 例えば cDNA合成システムプ ラス (アマシャムバイオテク社製) や TimeSaver cDNA合成キット (アマシャムバイオ テク社製) 等が挙げられる。 On the other hand, for example, Sambrook, J., and Zrussel, DW; Molecular Cloning 3rd edition, Cornole Red Spring RNA is extracted and single-stranded cDNA is synthesized according to the genetic engineering method described in Nover Laboratory (Cold Spring Harbor Laboratory) (2001). Specifically, first, total RNA is prepared from animal tissues of mammals such as humans, monkeys, egrets, rats and mice. For example, liver The tissue is ground in a solution containing a protein denaturing agent such as guanidine hydrochloride / guanidine thiocyanate, and the protein is denatured by adding phenol, croperform, etc. to the ground material. After removing denatured proteins by centrifugation or the like, total RNA is extracted from the collected supernatant fraction by methods such as guanidine hydrochloride Z-phenol method, SDS-phenol method, guanidine thiocyanoate cesium chloride-ultracentrifugation method, etc. I do. Commercially available kits based on these methods include, for example, IS0GEN (manufactured by Futtsubon Gene) and TRIZ0L reagent (manufactured by Invitrogen). Next, using the obtained total RNA as a 铸 type, an oligo dT primer was annealed to the poly A sequence of mRNA contained in the RNA, followed by a reverse transcription enzyme, followed by loss of the enzyme. Activate. For example, RnaseH-Superscript II Reverse Transcriptase (manufactured by Invitrogen), a buffer attached to the enzyme, oligo dT primer and total RNA are mixed, reacted at 42 ° C for 1 hour, and then heated at 99 ° C for 5 minutes. To Commercially available kits based on these methods include, for example, a cDNA synthesis system plus (Amersham Biotech) and a TimeSaver cDNA synthesis kit (Amersham Biotech).
次に、 前記のようにして合成された一本鎖 c D N Aを铸型にして、 前記のプライマ 一をそれぞれ 200 nMになるように添加し、 例えば LA Taq DNAポリメラーゼ (宝酒造社 製) および該酵素に添付されたバッファーを用いて PCRを行う。 かかる PCRとしては、 例えば、 PCR System9700 (アプライドバイオシステムズ社製) 等の市販の PCR用サー マルサイクラ一を用いて、 95 °C、 1分間、 次いで 68 °C、 3分間を 1サイクルとして 35サイクル程度行う。 ここで、 前記のようにして合成された c D N Aに替えて、 クロ ンテック社製クイッククローン c D N A等の市販の各種動物由来の c D N Aを用い てもよレ、。 得られた反応液の一部を、 ァガロース (ァガロース L:二ツボンジーン) を用いたゲル電気泳動に供する。 電気泳動したゲル上にて既知配列から予想される大 きさの野生型エストロゲンレセプターひをコードする D N Aの存在を確認後、 ゲルか ら該 D N Aを回収する。 回収された D N Aの塩基配列は、 回収された D N Aとダイタ ーミネーターシークェンスキット FS (アプライ ドバイオシステムズ社製) 等の市販の 蛍光シークェンス用試薬とを用いてダイレク トシークェンス用のサンプルを調製し、 アプライ ドバイオシステムズ社製、モデル 3700等の自動 D NAシークェンサ一を用い た塩基配列解析を行うことにより決定することができ、 その結果、 回収された D N A が目的とする D N Aであることを確認することができる。 このようにして取得された 野生型エストロゲンレセプター αをコードする DNAを、 大腸菌等において複製可能な ベクターにクローニングする。 具体的には例えば、 回収された DNA約 l gを用いて、 DNA Blunting Kit (宝酒造社製) 等によりその末端を平滑化し、 次に T4ポリヌクレオ チドキナーゼを反応させてその末端をリン酸化する。該 D N Aをフエノール処理した 後、 エタノール沈殿法により精製する。 精製された D N Aを大腸菌等において複製可 能なベクターに導入することにより、野生型エストロゲンレセプターひをコードする D N Aを保有するベクターを得ることができる。 Next, the single-stranded cDNA synthesized as described above is converted into a type II, and the above-mentioned primers are added to each at 200 nM. For example, LA Taq DNA polymerase (manufactured by Takara Shuzo) and the enzyme are added. Perform PCR using the buffer attached to. For example, using a commercially available thermal cycler for PCR such as PCR System9700 (manufactured by Applied Biosystems), the PCR is performed at 95 ° C. for 1 minute, and then at 68 ° C. for 3 minutes for about 35 cycles. Do. Here, instead of the cDNA synthesized as described above, commercially available cDNAs derived from various animals, such as Clontech Quick Clone cDNA, may be used. A part of the obtained reaction solution is subjected to gel electrophoresis using agarose (agarose L: Futaba Gene). After confirming the presence of the DNA encoding the wild-type estrogen receptor of the size expected from the known sequence on the electrophoresed gel, the DNA is recovered from the gel. The nucleotide sequence of the recovered DNA was determined by preparing a sample for direct sequence using the recovered DNA and a commercially available fluorescent sequence reagent such as Dye Terminator Sequence Kit FS (manufactured by Applied Biosystems). Using an automatic DNA sequencer such as model 3700 manufactured by Applied Biosystems It can be determined by performing a base sequence analysis, and as a result, it can be confirmed that the recovered DNA is the target DNA. The DNA encoding the wild-type estrogen receptor α thus obtained is cloned into a vector capable of replicating in E. coli or the like. Specifically, for example, using about lg of the recovered DNA, its end is blunted with a DNA Blunting Kit (manufactured by Takara Shuzo) or the like, and then the end is phosphorylated by reacting with T4 polynucleotide kinase. After the DNA is treated with phenol, it is purified by the ethanol precipitation method. By introducing the purified DNA into a replicable vector in E. coli or the like, a vector having a DNA encoding a wild-type estrogen receptor can be obtained.
次いで、 このようにして作製された野生型エストロゲンレセプター αをコードする D N Αを保有するベクターの DNAを調製する。調製された DNAを铸型にして、 Sambrook, J., and Zrussel l, D. W. ;モレキュラー クローニング第 3版 (Molecular Cloning 3rd edition) 、 コーノレドスプリング ハーバー ラボラトリー (Cold Spring Harbor Laboratory) (2001年) 等に記載された部位特異的変異導入法等に準じて、 目的のァ ミノ酸置換を行うための塩基置換を野生型エストロゲンレセプター c をコードする D N Aに導入する。 このような方法に用いることができる市販のキットとしては、 例 えば、 Stratagene社製の QuickChange Site-Directed Mutagenesi s Kit等力挙げられ る。 目的の塩基置換を行うために設計され合成された 2種のプライマーを用いて、 前 記のようなキッ卜の説明書の記載に準じて部位特異的変異を導入する。 ヒ ト由来野生 型エストロゲンレセプター c のァミノ末端から 4 0 4番目のアミノ酸であるフエ二 ルァラニンをコードするコドン TTTを、 ロイシンをコードするコドン CTTへ置換するた めのプライマーとしては、 例えば、 配列番号 5で示される塩基配列からなるフォヮ一 ドプライマ一、および配列番号 6で示される塩基配列からなるリバースプライマーを 使用することができる。 ヒ ト由来野生型エストロゲンレセプター αのァミノ末端から 4 0 5番目のアミノ酸であるァラニンをコードするコドン GCTを、 バリンをコードす るコドン GTTへ置換するためのプライマーとしては、 例えば、 配列番号 2 9で示され る塩基配列からなるフォワードプライマー、および配列番号 3 0で示される塩基配列 からなるリバースプライマーを使用することができる。 ヒ ト由来野生型エストロゲン レセプター αのァミノ末端から 4 2 4番目のアミノ酸であるィソロイシンをコード するコドン ATCを、 スレオニンをコードするコドン ACCへ置換するためのプライマーと しては、 例えば、 配列番号 3 4で示される塩基配列からなるフォワードプライマー、 および配列番号 3 5で示される塩基配列からなるリバースプライマーを使用するこ とができる。 Next, DNA of a vector carrying DNΑ encoding wild-type estrogen receptor α thus prepared is prepared. The prepared DNA was converted into type III, and it was published in Sambrook, J., and Zrussel l, DW; Molecular Cloning 3rd edition, Cold Spring Harbor Laboratory (2001), etc. In accordance with the site-directed mutagenesis method and the like described, a base substitution for performing the desired amino acid substitution is introduced into DNA encoding wild-type estrogen receptor c. Commercially available kits that can be used for such a method include, for example, the QuickChange Site-Directed Mutagenesis Kit manufactured by Stratagene. Using two kinds of primers designed and synthesized for performing the desired base substitution, a site-specific mutation is introduced according to the description of the kit as described above. Primers for replacing codon TTT encoding phenylalanine, which is the fourth amino acid from the amino terminus of human-derived wild-type estrogen receptor c, with codon CTT encoding leucine include, for example, SEQ ID NO: A forward primer consisting of the base sequence represented by SEQ ID NO: 5 and a reverse primer consisting of the base sequence represented by SEQ ID NO: 6 can be used. Primers for replacing codon GCT encoding alanine, which is the amino acid at position 450 from the amino terminus of human-derived wild-type estrogen receptor α, with codon GTT encoding valine include, for example, SEQ ID NO: 29 And a reverse primer consisting of the base sequence represented by SEQ ID NO: 30. Human estrogen The primer for replacing the codon ATC encoding isoloisin, which is the 424th amino acid from the amino terminus of the receptor α , with the codon ACC encoding threonine is, for example, a nucleotide sequence represented by SEQ ID NO: 34 And a reverse primer consisting of the nucleotide sequence represented by SEQ ID NO: 35.
得られた D N Αの塩基配列を決定することにより、 目的通りの塩基置換が行われた ことを確認することができる。 このようにして取得された本発明 D N Aを、形質転換させる宿主細胞において利用 可能なベクター、 例えば、 宿主細胞中で複製可能な遺伝情報を含み、 自律複製可能な ベクターであって、 宿主細胞からの単離、 精製が可能であり、 検出可能なマーカーを もつベクター (以下、 基本ベクターと記す) に、 通常の遺伝子工学的手法に準じて組 み込むことにより本発明ベクターを構築することができる。  By determining the nucleotide sequence of the obtained DN N, it can be confirmed that the intended base substitution has been performed. A vector that can be used in a host cell to be transformed with the DNA of the present invention thus obtained, for example, a vector that contains genetic information that can be replicated in the host cell and is autonomously replicable, The vector of the present invention can be constructed by incorporating it into a vector that can be isolated and purified and has a detectable marker (hereinafter, referred to as a basic vector) according to ordinary genetic engineering techniques.
本発明ベクターの構築に用いることができる基本ベクターとしては、具体的には微 生物である大腸菌を宿主細胞とする場合、 例えばプラスミ ド pUC19 (宝酒造社製)や、 ファージミ ド pBluescript iKStratagene社)等を挙げることができる。 出芽酵母を宿 主細胞とする場合は、 プラスミ ド pGBT9、 pGAD404、 pACT2 (クロンテック社製)などを 挙げることができる。また、哺乳類動物細胞を宿主細胞とする場合は PRc/RSV、pRc/CMV (インビトロジェン社)等のプラスミ ド、 ゥシパピローマウィルスプラスミ ド pBPV (ァ マシャムバイオテック社)、 EBウィルスプラスミ ド PCEP4 (インビトロジヱン社)等のゥ ィルス由来の自律複製起点(ori)を含むベクター、 ワクシニアウィルス等のウィルス などを挙げることができ、 昆虫細胞を宿主細胞とする場合には、 バキュロウィルス等 の昆虫ウィルスを挙げることができる。 As a basic vector that can be used for the construction of the vector of the present invention, specifically, when Escherichia coli which is a microorganism is used as a host cell, for example, plasmid pUC19 (manufactured by Takara Shuzo), phagemid pBluescript iKStratagene, etc. Can be mentioned. When budding yeast is used as the host cell, plasmids pGBT9, pGAD404, pACT2 (manufactured by Clontech) and the like can be mentioned. In addition, P Rc / RSV is the case of a mammalian cell is used as the host cell, pRc / CMV (Invitrogen), and the like plasmid of, © Shea papilloma virus plus Mi de pBPV (§ Ma Siam Biotech), EB virus plus Mi-de-P Vectors containing a virus-derived autonomous origin of replication (ori) such as CEP4 (Invitrogen), viruses such as vaccinia virus, and the like. When insect cells are used as host cells, insect viruses such as baculovirus. Can be mentioned.
自律複製起点を含むベクター、 例えば、 上記の酵母用プラスミ ド PACT2や、 ゥシパ ピローマウィルスプラスミ ド pBPV、 ェプスタイン-バ一ノレウィルスプラスミ ド pCEP4な どに本発明 D N Aを組み込むと、得られたベクターは宿主細胞に導入された際にェピ ソームとして細胞内に保持され得る。 Vectors containing autonomous replication origin, for example, and the above-mentioned yeast for plasmid P ACT2, Ushipa pillow Ma virus plus mi de pBPV, Epusutain - incorporation of bar one Honoré virus plus Mi de pCEP4, etc. In the present invention DNA, resulting vector Can be retained intracellularly as an episome when introduced into a host cell.
バキュロウィルスゃヮクシニァウイルス等のゥィルスに本発明 D N Aを組み込む には、使用しようとするウィルスのゲノムと相同な塩基配列を含有するトランスファ 一ベクターを用いることができる。 このようなトランスファ一ベクターの具体的例と しては、 pVL1392、 pVL1393 (Smith, G. E. , Summers M. D. et al.: ol. Cell. Biol. , 3, 2156- 2165(1983)) (インビトロジェン社)、 pSFB5 (Funahashi, S. et al.: J. Virol. , 65, 5584- 5588(1991)) (ファーミンジェン社)などのプラスミ ドを挙げることができる。 本発明 DN Aを前記のようなトランスファーベクターに挿入し、該トランスファーベクター とウィルスゲノムとを同時に宿主細胞に導入すると、 トランスファーベクターとウイ ルスゲノムとの間で相同組換えが起こり、本発明 DN Aがゲノム上に組み込まれた組 換えウィルスを得ることができる。 ウィルスゲノムとしては、 バキュロウィルス、 ァ デノウィルス、 ワクシニアウィルスなどのゲノムを用いることができる。 Incorporating the DNA of the present invention into viruses such as baculovirus vaccinia virus For this purpose, a transfer vector containing a nucleotide sequence homologous to the genome of the virus to be used can be used. Specific examples of such transfer vectors include pVL1392, pVL1393 (Smith, GE, Summers MD et al .: ol. Cell. Biol., 3, 2156-2165 (1983)) (Invitrogen), Plasmids such as pSFB5 (Funahashi, S. et al .: J. Virol., 65, 5584-5588 (1991)) (Pharmingen) can be mentioned. When the DNA of the present invention is inserted into the transfer vector as described above, and the transfer vector and the viral genome are simultaneously introduced into a host cell, homologous recombination occurs between the transfer vector and the viral genome, and the DNA of the present invention becomes A recombinant virus integrated on the genome can be obtained. As the virus genome, genomes of baculovirus, adenovirus, vaccinia virus and the like can be used.
より具体的には、 例えばバキュロウィルスに本発明 DNAを組み込む場合、 トラン スファ一べクタ一 pVL1392、 pVL1393等のマルチク口一二ング部位に本発明 D N Aを挿 入した後、 該トランスファーベクターの DNAとバキュロウィルスのゲノム DNA [ 例えば、 BaculoGold (ファーミンジヱン社製) 」 とを昆虫細胞 Sf21株 (ATCCから入手 可能) にリン酸カルシウム法等により導入し、 該細胞を培養する。 前記の Baculogold DNAを用いると、本発明 DNAが挿入されたウィルス DNAを含有するウィルス粒子のみ が宿主細胞の培養液中へ放出される。 力、かる組換えウィルス粒子を培養液から回収し 、 これをフ-ノール等で除蛋白処理することにより、 本発明 DNAを含有するウィル ス DNAを得ることができる。 さらに、 該ウィルスの DNAを、 昆虫細胞 Sf21株など のウィルス粒子形成能を有する宿主細胞にリン酸カルシウム法等により導入し、該細 胞を培養することにより、 前記組換えウィルス粒子を增やすことができる。  More specifically, for example, when the DNA of the present invention is incorporated into a baculovirus, the DNA of the present invention is inserted into a multiple access site of a transfer vector such as pVL1392 or pVL1393, and then the DNA of the transfer vector is used. Baculovirus genomic DNA [for example, BaculoGold (Pharmingin)] is introduced into insect cell strain Sf21 (available from ATCC) by a calcium phosphate method or the like, and the cells are cultured. When the Baculogold DNA is used, only the virus particles containing the virus DNA into which the DNA of the present invention has been inserted are released into the culture medium of the host cell. Viral DNA containing the DNA of the present invention can be obtained by collecting the recombinant virus particles from the culture solution and subjecting them to deproteinization with phenol or the like. Furthermore, the recombinant virus particles can be recovered by introducing the DNA of the virus into a host cell capable of forming virus particles, such as insect cell strain Sf21, by the calcium phosphate method or the like and culturing the cells. .
一方、 マウス白血病レトロウイルスなどの比較的小さなゲノムへは、 トランスファ 一ベクターを利用せずに、 本発明 DNAを直接組み込むこともできる。 例えばウィル スベクタ- DC(X) (Eli Gilboa et al. , BioTechniques, 4: 504-512(1986)) などは、 該ベクター上のクローユング部位に本発明 DNAを組み込むとよい。 このようにして 構築した組換えウィルスを、 例えば、 Ampli- GPE (J. Virol., 66: 3755(1992)) など のパッケージング細胞に導入すれば、 本発明 D N Aの挿入されたウイルス DNAを含有 するウィルス粒子を得ることができる。 本発明 D N Aの上流に、宿主細胞で機能可能なプロモーターを機能可能な形で結合 させ、 これを上述のような基本ベクターに組み込むことにより、 本発明 D N Aを宿主 細胞で発現させることの可能な本発明ベクターを構築することができる。 ここで、 「 機能可能な形で結合させる」 とは、 本発明 D N Aが導入される宿主細胞において、 プ 口モーターの制御下に本発明 DNAが発現されるように、 該プロモーターと本発明 D N Aとを結合させることを意味する。 使用されるプロモータ一は、 形質転換する宿主細 胞内でプロモーター活性を示すものであって、 例えば、 宿主細胞が大腸菌である場合 には、 大腸菌のラク トースォペロンのプロモーター (lacP) 、 トリプトファンオペ口 ンのプロモーター(trpP)、 アルギニンオペロンのプロモーター(argP)、 ガラク トース オペロンのプロモーター(galP)、 tacプロモーター、 T7プロモーター、 T3プロモータ 一、 えファージのプロモーター(ぇ-pL、 え- pR)等をあげることができ、 宿主細胞が動 物細胞や分裂酵母である場合には、例えば、ラウス肉腫ウィルス(RSV)プロモーター、 サイ トメガロウィルス(CMV)プロモーター、 シミアンウィルス(SV40)の初期または後 期プロモーター、マウス乳頭腫ウィルス(MMTV)プロモーター等を挙げることができる 。 宿主細胞が出芽酵母である場合にはアルコール脱水素酵素 (ADH) l遺伝子プロモー ターなどを挙げることができる。 On the other hand, the DNA of the present invention can be directly integrated into a relatively small genome such as a mouse leukemia retrovirus without using a transfer vector. For example, virus vector-DC (X) (Eli Gilboa et al., BioTechniques, 4: 504-512 (1986)) may incorporate the DNA of the present invention into the clawing site on the vector. When the recombinant virus thus constructed is introduced into a packaging cell such as Ampli-GPE (J. Virol., 66: 3755 (1992)), the virus containing the DNA of the present invention is contained. Virus particles can be obtained. A promoter capable of functioning in a host cell is operably linked to the upstream of the DNA of the present invention, and this is integrated into the above-described basic vector, whereby a DNA capable of expressing the DNA of the present invention in the host cell can be obtained. Invention vectors can be constructed. Here, the term "functionally linked" means that the promoter and the DNA of the present invention are combined so that the DNA of the present invention is expressed under the control of a promoter in a host cell into which the DNA of the present invention is introduced. Means to combine. The promoter used exhibits a promoter activity in the host cell to be transformed. For example, when the host cell is Escherichia coli, the E. coli lactose operon promoter (lacP) and tryptophan operatin are used. raising etc. - of the promoter (trpP), promoter of arginine operon (argP), the promoter of the galactose operon (g alP), tac promoter, T7 promoter, T3 promoter and foremost, promoter of example phage (pR tut -pL, e) When the host cell is a animal cell or fission yeast, for example, the Rous sarcoma virus (RSV) promoter, the cytomegalovirus (CMV) promoter, the simian virus (SV40) early or late promoter, Mouse papilloma virus (MMTV) promoter and the like can be mentioned. When the host cell is a budding yeast, examples thereof include an alcohol dehydrogenase (ADH) l gene promoter.
また、宿主細胞において機能するプロモーターをあらかじめ保有する基本ベクター を使用する場合には、ベクタ一保有のプ口モーターと本発明 D N Aとが機能可能な形 で結合するように、 該プロモーターの下流に本発明 D N Aを挿入すればよい。 例えば 、 前述のプラスミ ド pRc/RSV、 PRc/CMV等は、 動物細胞で機能可能なプロモーターの下 流にクローニング部位が設けられており、該クローニング部位に本発明 D N Aを揷入 し動物細胞へ導入すれば、 本発明 D N Aを発現させることができる。 これらのプラス ミ ドにはあらかじめ SV40の自律複製起点 (ori)が組み込まれているため、 ori (-)の SV40ゲノムで形質転換された培養細胞、 例えば COS細胞等に該プラスミ ドを導入する と、 細胞内でプラスミ ドのコピ一数が非常に増大し、 結果として該プラスミ ドに組み 込まれた本発明 D N Aを大量発現させることもできる。 また前述の酵母用プラスミ ド PACT2は ADH1プロモーターを有しており、 該プラスミ ドまたはその誘導体の ADH1プロ モーターの下流に本発明 D N Aを揷入すれば、 本発明 D N Aを例えば CG1945株(ク口 ンテック社製)等の出芽酵母内で大量発現させることが可能な本発明ベクターが構築 できる。 本発明 D N Aまたは本発明ベクターを宿主細胞に導入することにより、本発明形質 転換体を取得することができる。本発明 D N Aまたは本発明ベクターを宿主細胞へ導 入する方法としては、形質転換される宿主細胞に応じた通常の導入方法を適用するこ とができる。 例えば、 微生物である大腸菌を宿主細胞とする場合は、 モレキュラー ' クローニング第 3版 (Sambrook, J. , and Russell, D. W.、 コールド .スプリング ' ハーバー、 2001年) 等に記載される塩化カルシウム法やエレクトロポレーシヨン法等 の通常の方法を用いることができる。 また、 哺乳類動物細胞または昆虫類細胞を宿主 細胞とする場合は、 例えば、 リン酸カルシウム法、. DEAEデキストラン法、 エレク トロ ポレーション法、 またはリポフエクション法等の一般的な遺伝子導入法により前記細 胞に導入することができる。 酵母を宿主細胞とする場合は、 例えば塩化リチウム法を 基にした Yeast Transformation Kit (クロンテック社製)などを用いて導入することが できる。 When a basic vector having a promoter that functions in a host cell is used in advance, the promoter is placed downstream of the promoter so that the DNA of the present invention and the DNA of the present invention can be operably linked to the promoter of the vector. The invention DNA may be inserted. For example, the aforementioned plasmid pRc / RSV, P Rc / CMV and the like, under flow promoter operable in animal cells cloning sites is provided in the present invention DNA in the cloning sites揷入and into animal cells When introduced, the DNA of the present invention can be expressed. Since these plasmids contain the autonomous replication origin (ori) of SV40 in advance, when the plasmid is introduced into cultured cells transformed with the ori (-) SV40 genome, for example, COS cells, etc. On the other hand, the number of copies of the plasmid is greatly increased in the cell, and as a result, the DNA of the present invention incorporated in the plasmid can be expressed in a large amount. In addition, the above-mentioned yeast plasmid PACT2 has an ADH1 promoter, and the ADH1 promoter of the plasmid or a derivative thereof is used. If the DNA of the present invention is inserted downstream of the motor, the vector of the present invention can be constructed that allows the DNA of the present invention to be expressed in large amounts in budding yeast such as CG1945 strain (manufactured by Kuguchi Tech). The transformant of the present invention can be obtained by introducing the DNA of the present invention or the vector of the present invention into a host cell. As a method for introducing the DNA of the present invention or the vector of the present invention into a host cell, a usual method for introduction depending on the host cell to be transformed can be applied. For example, when a host cell is a microorganism, Escherichia coli, the calcium chloride method described in Molecular 'Cloning 3rd edition (Sambrook, J., and Russell, DW, Cold Spring' Harbor, 2001), etc. An ordinary method such as a deposition method can be used. When a mammalian cell or an insect cell is used as the host cell, for example, the cell may be prepared by a common gene transfer method such as the calcium phosphate method, the DEAE dextran method, the electroporation method, or the lipofection method. Can be introduced. When yeast is used as a host cell, it can be introduced using, for example, a Yeast Transformation Kit (manufactured by Clontech) based on the lithium chloride method.
尚、 ウィルスをベクターに用いる場合には、 上述のように一般的な遺伝子導入法に よりウィルス D N Aを宿主細胞に導入できるほか、 ウィルス D NAを含有する組み換 えウィルス粒子を、宿主細胞へ感染させることによつてもウィルス D N Aを宿主細胞 に導入することができる。 本発明形質転換体を選抜するには、 例えば、 本発明 D N Aまたは本発明ベクターを 宿主細胞へ導入する際に、 同時に選抜マーカー遺伝子を宿主細胞へ導入し、 得られた 細胞を、 導入された選抜マーカー遺伝子の性質に応じた条件で培養するとよい。 例え ば、 選抜マーカー遺伝子が、 宿主細胞に致死活性を示す選抜薬剤に対する薬剤耐性を 付与する遺伝子である場合には、 該薬剤を添加した培地を用いて、 本発明 D N Aまた は本発明ベクターと選抜マーカー遺伝子とが導入された宿主細胞を培養すればよレ、。 薬剤耐性付与遺伝子と選抜薬剤の組み合わせとしては、 例えば、 ネオマイシン耐性付 与遺伝子とネオマイシンとの組み合わせ、ハイグロマイシン耐性付与遺伝子とハイグ ロマイシンとの組み合わせ、ブラストサイジン S耐性付与遺伝子とブラストサイジン Sとの組み合わせなどを挙げることができる。 また、 選抜マーカー遺伝子が宿主細胞 の栄養要求性を相補する遺伝子である場合には、該栄養素を含まない最少培地を用い て、本発明 D N Aまたは本発明ベクターと選抜マーカー遺伝子とが導入された宿主細 胞を培養すればよい。 さらに、 本発明 D N Aを宿主細胞で発現させることの可能な本 発明ベクターを導入した場合には、エストロゲン結合活性に基づく検出方法を用いる こともできる。 When a virus is used as a vector, viral DNA can be introduced into host cells by a general gene transfer method as described above, and recombinant virus particles containing viral DNA can be transmitted to host cells. By doing so, the viral DNA can be introduced into the host cell. In order to select the transformant of the present invention, for example, when the DNA of the present invention or the vector of the present invention is introduced into a host cell, a selectable marker gene is simultaneously introduced into the host cell, and the obtained cell is subjected to the introduced selection. It is preferable to culture under conditions according to the properties of the marker gene. For example, when the selectable marker gene is a gene that confers drug resistance to a selective drug exhibiting lethal activity on host cells, the DNA of the present invention or the vector of the present invention is selected using a medium containing the drug. A host cell into which the marker gene has been introduced may be cultured. Examples of combinations of drug resistance imparting genes and selected drugs include neomycin resistance Examples of the combination include a combination of a given gene and neomycin, a combination of a hygromycin resistance imparting gene and hygromycin, and a combination of a blasticidin S resistance imparting gene and blasticidin S. When the selectable marker gene is a gene that complements the auxotrophy of the host cell, the host into which the DNA of the present invention or the vector of the present invention and the selectable marker gene have been introduced using a minimal medium not containing the nutrient. The cells may be cultured. Furthermore, when the vector of the present invention capable of expressing the DNA of the present invention in a host cell is introduced, a detection method based on estrogen binding activity can also be used.
本発明 D N Aが宿主細胞の染色体に導入されてなる本発明形質転換体を取得する には、 例えば、 本発明ベクターを制限酵素等で消化することにより直鎖状にした後、 これを選抜マーカー遺伝子とともに前述の方法で宿主細胞へ導入して該細胞を通常 数週間培養し、導入された選抜マーカー遺伝子の形質発現を指標にして目的とする形 質転換体を選抜すればよい。 例えば、 上記のような選抜薬剤に対する耐性付与遺伝子 を選抜マーカー遺伝子として、本発明ベクターとともに前述の方法で宿主細胞に導入 し、 該細胞を選抜薬剤が添加された培地で数週間以上継代培養して、 コロニー状に生 き残った選抜薬剤耐性クローンを純化培養することにより、本発明 D N Aが宿主細胞 の染色体に導入されてなる本発明形質転換体を選抜することができる。該形質転換体 は、 凍結保存が可能であり必要に応じて起眠して使用することができるので、 一過性 に本発明 D N Aを導入した株と比較して、実験毎の形質転換体作製の手間を省くこと ができ、 また、 あらかじめ性質や取扱い条件の確認された形質転換体を用いて試験を 実施することが可能となる。 上述のようにして得られた本発明形質転換体を培養することにより本発明レセプ ターを産生させることができる。  In order to obtain the transformant of the present invention in which the DNA of the present invention has been introduced into the chromosome of a host cell, for example, the vector of the present invention is linearized by digestion with a restriction enzyme or the like, and then this is selected as a selection marker gene. At the same time, the cells may be introduced into host cells by the above-described method, and the cells are usually cultured for several weeks, and the transformant of interest may be selected using the expression of the introduced selectable marker gene as an index. For example, a gene conferring resistance to a selection drug as described above is introduced as a selection marker gene into a host cell together with the vector of the present invention by the method described above, and the cell is subcultured for several weeks or more in a medium to which the selection drug has been added. Then, the transformant of the present invention, in which the DNA of the present invention has been introduced into the chromosome of a host cell, can be selected by purifying and culturing the selected drug-resistant clone remaining in a colony. Since the transformant can be cryopreserved and awakened when necessary, it can be used to prepare a transformant for each experiment as compared with a strain into which the DNA of the present invention has been transiently introduced. This makes it possible to save time and labor, and to conduct tests using transformants whose properties and handling conditions have been confirmed in advance. By culturing the transformant of the present invention obtained as described above, the receptor of the present invention can be produced.
例えば、 本発明形質転換体が微生物である場合、 該形質転換体は、 一般微生物にお ける通常の培養に使用される炭素源や窒素源、有機ないし無機塩等を適宜含む各種の 培地を用いて培養される。 培養は、 一般微生物における通常の方法に準じて行い、 固 体培養、 液体培養 (試験管振とう式培養、 往復式振とう培養、 ジャーフアーメンター (Jar Fermenter) 培養、 タンク培養等) などが可能である。 培養温度は、 微生物が 生育する範囲で適宜変更できるが、 例えば、 約 15 °C〜約 40 °Cの培養温度、 pHが約 6 〜約 8の培地において培養するのが一般的である。 培養時間は、 培養条件によって異 なるが、 通常約 1 日間〜約 5日間である。 温度シフト型ゃィソプロピル β — D—ガラ ク トピラノシド(IPTG)誘導型等の誘導型のプロモーターを有する発現ベクターを用 いた場合には誘導時間は 1日以内が望ましく、 通常数時間である。 For example, when the transformant of the present invention is a microorganism, the transformant may be prepared by using various media appropriately containing a carbon source, a nitrogen source, organic or inorganic salts, etc., which are used for ordinary culture in a general microorganism. And cultured. Cultivation is carried out according to the usual method for general microorganisms, and solid culture, liquid culture (test tube shaking culture, reciprocating shaking culture, jar armamenter (Jar Fermenter) culture, tank culture, etc.). The culture temperature can be appropriately changed within a range in which the microorganism grows. For example, culture is generally performed in a culture temperature of about 15 ° C. to about 40 ° C. and a medium having a pH of about 6 to about 8. The culturing time varies depending on the culturing conditions, but is usually about 1 day to about 5 days. In the case of using an expression vector having an inducible promoter such as a temperature-shifted disopropyl β-D-galactopyranoside (IPTG) -inducible type, the induction time is desirably within one day, usually several hours.
また、 上記形質転換体が哺乳類、 昆虫類等の動物細胞である場合、 該形質転換体は 一般の培養細胞における通常の培養に使用される培地を用いて培養することができ る。 選抜薬剤を利用して当該形質転換体を作製した場合は、 該選抜薬剤の存在下に培 養するのが望ましい。 哺乳類動物細胞の場合、 例えば終濃度が 10%となるよう牛胎児 血清 (Fetal Bovine Serum; FBS) を添加したダルベッコ改変イーグル (DMEM) 培地 (日水製薬社製等) を用いて 37 °C、 5% C02存在下等の条件で数日ごとに新しい培養 液に交換しながら培養すればよい。 細胞がコンフルェントになるまで増殖したら、 例 えば 0. 25% (v/v)程度のトリプシン/ PBS溶液を加えて個々の細胞に分散させ、数倍に希 釈して新しいシャーレに播種し培養を続ける。 昆虫類細胞の場合も同様に、 例えば 10% (v/v) FBSおよび 2% (w/v) Yeast lateを含む Grace培地等の昆虫細胞用培養液を用レ、 て培養温度 25 °Cから 35 °Cで培養すればよい。 この際、 Sf21細胞などのシャーレから はがれやすい細胞の場合は、 トリプシン溶液を用いずに、 ピベッティング等により分 散させ継代培養を行うことができる。 また、 バキュロウィルス等のウィルスベクター を含む形質転換体の場合は、 培養時間は細胞質効果が現れて細胞が死滅する前、 例え ばウィルス感染後 72時間までとするのが好ましい。 When the transformant is an animal cell such as a mammal or an insect, the transformant can be cultured using a medium used for ordinary culture of general cultured cells. When the transformant is prepared using a selective drug, it is preferable to culture the transformant in the presence of the selective drug. For mammalian cells, use a Dulbecco's Modified Eagle (DMEM) medium (such as Nissui Pharmaceutical) supplemented with fetal bovine serum (FBS) to a final concentration of 10% at 37 ° C. 5% C0 may be cultured while exchanging the fresh medium every few days in conditions such as 2 presence. When the cells have grown to confluence, add 0.25% (v / v) trypsin / PBS solution to disperse them into individual cells, dilute them several times, inoculate them into new dishes, and culture them. to continue. Similarly, in the case of insect cells, use a culture medium for insect cells such as Grace's medium containing 10% (v / v) FBS and 2% (w / v) yeast late at a culture temperature of 25 ° C. Culture may be performed at 35 ° C. At this time, when cells such as Sf21 cells are easily detached from a petri dish, subculture can be performed by dispersing the cells by pipetting or the like without using a trypsin solution. In the case of a transformant containing a virus vector such as baculovirus, the culturing time is preferably up to 72 hours after the virus infection, for example, before the cells are killed due to the cytoplasmic effect.
本発明形質転換体により産生された本発明レセプター蛋白質の回収は、 適宜、 通常 の単離、 精製の方法を組み合わせて行えばよく、 例えば、 培養終了後、 形質転換体の 細胞を遠心分離等で集め、 集められた該細胞を通常のバッファー、 例えば 20mM HEPES (pH 7. 0) , 1 mM EDTA, 1 mM DTT, 0. 5 mM PMSFからなるバッファーに懸濁した後、 ポ リ トロン、 超音波処理、 ダウンスホモジナイザー等で破砕し、 破砕液を 100, 000 X g で数十分間から 1時間程度超遠心分離し、 上清画分を回収することにより、 エストロ ゲンレセプターを含む画分を得ることができる。 さらに、 前記上清画分をイオン交換 、 疎水、 ゲルろ過、 アブイ二ティ等の各種クロマトグラフィーに供することにより、 より精製されたエストロゲンレセプターを回収することもできる。 この際、 エストロ ゲン応答配列すなわちエストロゲンレセプターが結合する塩基配列を含む 15 bpから 200 bp程度の長さのオリゴヌクレオチドをプローブとした D N Aバインディングアツ セィなどにより、 本発明レセプターを含む画分を見分けることもできる。 The receptor protein of the present invention produced by the transformant of the present invention may be appropriately collected by a combination of ordinary isolation and purification methods.For example, after culturing, the cells of the transformant are centrifuged or the like. The cells are collected, and the collected cells are suspended in a normal buffer, for example, a buffer composed of 20 mM HEPES (pH 7.0), 1 mM EDTA, 1 mM DTT, 0.5 mM PMSF. Processing, crushing with a Dounce homogenizer, etc., ultracentrifugation of the crushed liquid at 100,000 Xg for several tens of minutes to about 1 hour, and collection of the supernatant fraction to obtain a fraction containing estrogen receptor be able to. Further, the supernatant fraction is subjected to ion exchange. A more purified estrogen receptor can be recovered by subjecting it to various types of chromatography such as chromatography, hydrophobicity, gel filtration, and abundance. At this time, the fraction containing the receptor of the present invention is identified by a DNA binding assay using an estrogen response element, ie, an oligonucleotide having a length of about 15 bp to 200 bp containing the base sequence to which the estrogen receptor binds. Can also.
このようにして製造された本発明レセプターは、 例えば、 被験物質の本発明レセプ ターに対する結合能や結合量などを評価するためのリガンド' レセプターバインディ ングアツセィ等に用いることができる。 本発明レセプターを用いたリガンド' レセプターバインディングアツセィは、 該レ セプターに対する化学物質の結合能の測定や結合量の定量のほか、 結合特異性、 結合 力の分析などが可能な試験方法である。 例えば、 上述のようにして本発明形質転換体 から回収された本発明レセプターに、 標識されたリガンド (以下、 標識リガンドと記 す) が結合しているところへ、 被験物質を共存させると、 被験物質と標識リガンドと の競合から、 両者のレセプターへの親和性に応じて、 標識リガンドがレセプターから 遊離し、 レセプターに結合した標識リガンドの量が減少し、 よってレセプターに結合 した標識量が減少する。 従って、 遊離型の標識リガンドの標識量または結合型の標識 リガンドの標識量をモニターすることにより、被験物質のレセプターへの結合能が間 接的に分かる。  The receptor of the present invention thus produced can be used, for example, as a ligand 'receptor binding assay for evaluating the binding ability and amount of a test substance to the receptor of the present invention. The ligand-receptor binding assay using the receptor of the present invention is a test method capable of measuring the binding ability of a chemical substance to the receptor, quantifying the amount of binding, and analyzing the binding specificity and binding strength. For example, when a test substance is allowed to coexist with a labeled ligand (hereinafter referred to as a labeled ligand) bound to the receptor of the present invention recovered from the transformant of the present invention as described above, Due to the competition between the substance and the labeled ligand, the labeled ligand is released from the receptor according to the affinity of both for the receptor, and the amount of the labeled ligand bound to the receptor decreases, and therefore, the amount of the label bound to the receptor decreases. . Therefore, by monitoring the amount of the free labeled ligand or the amount of the bound labeled ligand, the ability of the test substance to bind to the receptor can be determined indirectly.
標識リガンドとしては、 例えば、 トリチウム標識された 1 7 /3—エストラジオール (以下、 E 2と記す) 等を用いることができる。 標識リガンドの結合型 遊離型の分 離はヒ ドロキシァパタイ ト法ゃグリセロール密度勾配超遠心法などで行うことがで きる。 反応系は大きく 3群に分けられる。 一つの系は、 本発明レセプターに標識リガ ンドが結合しているところへ溶媒のみが添加される群であり、被験物質の濃度がゼロ の系に相当する。 この系から得られる結合型の標識リガンドの標識量は、 標識リガン ドのエストロゲンレセプターに対する総結合量を示す。 もう一つの系は、 本発明レセ プターに標識リガンドが結合しているところへ、 例えば、 標識されていない E2が、 レ セプタ一を十分飽和し標識リガンドが結合できなくなるだけの濃度 (例えば 10 μ Μ) となるよう添加された系である。 この 2番目の系から得られる結合型の標識リガンド の標識量は、標識リガンドの本発明レセプターに対する非特異的な結合量と判断され る。 従って、 本発明レセプタ一^ ·の標識リガンドの特異的結合量は、 総結合量からこ の非特異的結合量を引いた値となる。 3番目の系は、 本発明レセプターに標識リガン ドが結合しているところへ、 被験物質が、 例えば最終濃度 ΙΟ μ Μ (この濃度は目的に より任意に変更する。 ) となるよう添加された系である。 被験物質が本発明レセプタ 一への結合能を有する場合は、 この系から得られる結合型の標識リガンドの標識量は 、上記のようにして求めた被験物質濃度がゼロの時の本発明レセプターへの標識リガ ンドの特異的結合量より小さくなる。 このようにしてリガンド · レセプターバインデ イングアツセィを行うことにより、本発明レセプターに対する被験物質の結合能を調 ベることができ、被験物質が複数の物質を含む場合にはその中に本発明レセプターに 親和性を示す物質が存在するかどうかを調べることもできる。 さらに、 本発明レセプ ターに対する被験物質の結合能をより詳細に評価するには、例えば前記の 3番目の系 における被験物質の添加濃度を変えて同様にアツセィを行い結合型の標識リガンド の標識量を測定する。 該測定値に基づき、 各アツセィにおける結合型と遊離型のリガ ンド量を算出して、 例えばスキャッチヤード解析を行うことにより、 被験物質と本発 明レセプターとの結合親和性、 結合特異性、 結合容量等を評価することができる。 本発明評価方法は、 例えば、 本発明 D N Aを用いて被験物質のレポーターアツセィ を行うことにより実施することができる。エストロゲンレセプター α活性調節能とし ては、 エストロゲンレセプター αに対するァゴニスト活性、 アンタゴニスト活性等を 挙げることができ、 より具体的には例えばェストロゲン様活性、 抗エストロゲン活性 が挙げられる。 As the labeled ligand, for example, tritium-labeled 17 / 3-estradiol (hereinafter referred to as E2) or the like can be used. Separation of the bound and free forms of the labeled ligand can be performed by the hydroxyapatite method ゃ glycerol density gradient ultracentrifugation method or the like. The reaction system is roughly divided into three groups. One system is a group in which only the solvent is added to the site where the labeled ligand is bound to the receptor of the present invention, and corresponds to a system where the concentration of the test substance is zero. The labeling amount of the bound labeled ligand obtained from this system indicates the total binding amount of the labeled ligand to the estrogen receptor. In another system, the concentration of the labeled ligand bound to the receptor of the present invention, for example, such that unlabeled E2 sufficiently saturates the receptor to prevent the labeled ligand from binding (eg, 10 μm). Μ) It is a system added so that The amount of the labeled labeled ligand obtained from the second system is determined to be the amount of nonspecific binding of the labeled ligand to the receptor of the present invention. Therefore, the specific binding amount of the labeled ligand of the receptor of the present invention is a value obtained by subtracting this non-specific binding amount from the total binding amount. In the third system, the test substance was added to the receptor of the present invention where the labeled ligand was bound so that the test substance had a final concentration of, for example, ΙΟμΜ (this concentration may be arbitrarily changed depending on the purpose). System. If the test substance has the ability to bind to the receptor of the present invention, the amount of the labeled labeled ligand obtained from this system will be the same as that of the receptor of the present invention when the test substance concentration obtained as described above is zero. Is smaller than the specific binding amount of the labeled ligand. By performing ligand / receptor binding as described above, the binding ability of the test substance to the receptor of the present invention can be determined. When the test substance contains a plurality of substances, the test substance can be incorporated into the receptor of the present invention. It is also possible to check whether a substance exhibiting affinity exists. Further, in order to evaluate the binding ability of the test substance to the receptor of the present invention in more detail, for example, by changing the concentration of the test substance in the third system and performing the same assay, the amount of the Is measured. Based on the measured values, the amounts of bound and free ligands in each assay were calculated, for example, by performing Scatchard analysis to determine the binding affinity and specificity between the test substance and the receptor of the present invention. The coupling capacity and the like can be evaluated. The evaluation method of the present invention can be carried out, for example, by conducting a reporter assay of a test substance using the DNA of the present invention. Examples of the ability to regulate estrogen receptor α activity include agonist activity and antagonist activity for estrogen receptor α , and more specifically, for example, estrogen-like activity and antiestrogenic activity.
本発明評価方法において使用される 「エストロゲン応答配列を含む転写制御領域の 転写制御下にあるレポーター遺伝子」 とは、 具体的には、 例えばエス トロゲン応答配 列を含むァフリカッメガエルのビテ口ジェニン遺伝子の転写制御領域等の下流にレ ポーター蛋白質をコードする D N Aが連結されてなるレポーター遺伝子、 またはエス トロゲン応答配列の下流に転写開始に必要な塩基配列とレポーター蛋白質をコード する D N Aとが連結されてなるレポーター遺伝子などであり、宿主細胞内でのエスト ロゲンレセプターの転写調節能をモニターするために利用される遺伝子である。 この ようなレポ一ター遺伝子作製に用いられる 「レポーター蛋白質をコードする D NAJ としては、 ルシフェラーゼをコードする D N A、 分泌型アルカリフォスファターゼを コードする D N A、 ]3—ガラク トシダーゼをコードする D N A、 クロラムフエニコー ルァセチノレトランスフェラーゼをコ一ドする D N A、成長ホノレモンをコードする D N Aなどを利用することができ、宿主細胞における安定性が比較的高いレポーター蛋白 質をコードする D N Aが好ましい。 The “reporter gene under the transcriptional control of a transcription control region containing an estrogen response element” used in the evaluation method of the present invention is, for example, specifically, A reporter gene in which DNA encoding a reporter protein is linked downstream of the transcription control region of the genin gene, or a base sequence and a reporter protein required for transcription initiation downstream of an estrogen response element This is a reporter gene linked to DNA which is used to monitor the ability of estrogen receptor to regulate transcription in host cells. DNAs encoding luciferase, DNA encoding secretory alkaline phosphatase, DNA encoding 3-galactosidase, and chloramphene used as DNAs encoding reporter proteins used for the production of such reporter genes. A DNA encoding a Nicol acetylenotransferase, a DNA encoding a growing honoremon, and the like can be used, and a DNA encoding a reporter protein having relatively high stability in host cells is preferable.
本発明評価方法に使用される形質転換体を取得するには、 例えば、 本発明 D NAと 、 上記レポーター遺伝子とを、 例えばエストロゲンレセプター非内在性宿主細胞、 具 体的には例えば HeLa細胞、 CV- 1細胞、 Hepal細胞、 NIH3T3細胞、 HepG2細胞、 C0S1細胞 、 BF- 2細胞、 CHH-1細胞等に導入し形質転換体を作製する。 ここで、本発明 D N Aは、 例えば、宿主細胞で機能可能なプロモーターと機能可能な形で結合させて基本べクタ 一に組み込み、 前記のような細胞に導入するとよい。 上記レポーター遺伝子も、 基本 ベクターに組み込んで用いるとよい。 例えば、 本発明 D N Aが組み込まれたベクター 、 上記レポーター遺伝子が組み込まれたベクター、 および選抜マーカー遺伝子を含有 するベクターとを同時に宿主細胞に導入し、選抜マーカー遺伝子の発現を指標にして 形質転換体を選抜することにより、上記レポータ一遺伝子と本発明 D N Aとが宿主細 胞の染色体に導入されてなる形質転換体を取得する。該形質転換体は凍結保存が可能 であり必要に応じて起眠して使用することができるので、 これをいつたん取得すると 、 アツセィを行う毎に、 これらの遺伝子を宿主細胞に導入して新たな形質転換体を取 得する必要がなく、 また、 形質転換体の性能も一定に保つことができることから、 例 えばき動化されたロボットによる大規模スクリーニングを実施する際にも有用であ る。  In order to obtain the transformant used in the evaluation method of the present invention, for example, the DNA of the present invention and the above-described reporter gene are combined with, for example, an estrogen receptor non-endogenous host cell, specifically, for example, a HeLa cell, CV -Transform 1 cells, Hepal cells, NIH3T3 cells, HepG2 cells, C0S1 cells, BF-2 cells, CHH-1 cells, etc. to prepare transformants. Here, the DNA of the present invention may be, for example, operably linked to a promoter operable in a host cell, incorporated into a basic vector, and introduced into the above-described cells. The above reporter gene may also be used by incorporating it into a basic vector. For example, a vector incorporating the DNA of the present invention, a vector incorporating the reporter gene, and a vector containing a selectable marker gene are simultaneously introduced into a host cell, and the transformant is expressed using the expression of the selectable marker gene as an index. By selecting, a transformant in which the reporter gene and the DNA of the present invention have been introduced into the chromosome of the host cell is obtained. Since the transformant can be cryopreserved and can be used after awakening as needed, once it is obtained, these genes are introduced into a host cell and newly renewed every time the assay is performed. Since it is not necessary to obtain a suitable transformant and the performance of the transformant can be kept constant, it is useful, for example, when performing a large-scale screening by an immobilized robot.
上述のように作製された形質転換体を、 例えば約 1日間から数日間培養する間に、 被験物質を培地中に加えて前記形質転換体と接触させ、該形質転換体における前記レ ポーター遺伝子の発現量を測定する。該形質転換体が産生する本発明レセプターが被 験物質の結合により活性化された場合は、 レポーター遺伝子の転写が促進され、 レポ 一タ一遺伝子にコードされたレポ一タ一蛋白質が形質転換体の細胞内などに蓄積さ れるかもしくは培地中に分泌される。 この蛋白質の量を測定することにより、 該形質 転換体細胞あたりのレポーター遺伝子の発現量を測定する。 具体的には、 例えば、 レ ポーター蛋白質としてルシフェラーゼを用いた場合は、細胞粗抽出物にルシフェラー ゼの基質であるルシフェリンを加えると、細胞抽出物中のルシフェラーゼ量に比例し た強度で発光する。 従って、 この発光強度をルミノメーターなどの測定装置で測定す ることにより、 ルシフェラーゼの量、 ひいては、 ルシフェラーゼレポーター遺伝子の 発現量を知ることができる。 同様にして、 形質転換体に被験物質を接触させない条件 下におけるレポーター遺伝子の発現量を測定し、 該発現量と、 被験物質を接触させた 条件下におけるレポーター遺伝子発現量とを比較する。形質転換体に被験物質を接触 させない条件下におけるレポーター遺伝子の発現量と比較して、被験物質を接触させ た条件下におけるレポーター遺伝子の発現量が高ければ、 この被験物質は、 本発明レ セプターに対するァゴニスト活性、 すなわち、 該レセプターの活性化能を有すると評 価することができる。 また、 例えば、 上記の形質転換体に E2等のエス トロゲンを接触 させた条件下、 および、 該エストロゲンと被験物質とを同時に接触させた条件下にそ れぞれ上記と同様の方法でレポーター遺伝子の発現量を測定する。形質転換体にエス トロゲンを接触させた条件下におけるレポーター遺伝子の発現量と比較して、エスト ロゲンと被験物質とを接触させた条件下におけるレポーター遺伝子の発現量が低け れば、 この被験物質は本発明レセプターに対するアンタゴニスト活性、 すなわち、 該 レセプターに対する抗エストロゲン活性を有すると評価することができる。 このよう にして、 例えば、 エス トロゲン応答配列を含む転写制御領域の転写制御下にあるレポ 一タ一遺伝子と本発明 D N Aとが宿主細胞の染色体に導入されてなる形質転換体を 用いてレポーターアツセィを行い、被験物質の抗エストロゲン活性を評価することに より、本発明レセプターに対して抗エストロゲン活性を示す物質を選び出すことがで きる。 While culturing the transformant prepared as described above, for example, for about 1 to several days, a test substance is added to the medium and brought into contact with the transformant, and the reporter gene in the transformant is The expression level is measured. When the receptor of the present invention produced by the transformant is activated by binding of a test substance, transcription of a reporter gene is promoted, The reporter protein encoded by the gene is accumulated in the cells of the transformant or secreted into the medium. By measuring the amount of this protein, the expression level of the reporter gene per transformant cell is measured. Specifically, for example, when luciferase is used as the reporter protein, when luciferin which is a substrate of luciferase is added to the crude cell extract, light is emitted at an intensity proportional to the amount of luciferase in the cell extract. Therefore, by measuring the luminescence intensity with a measuring device such as a luminometer, the amount of luciferase and, consequently, the expression level of the luciferase reporter gene can be determined. Similarly, the expression level of the reporter gene is measured under the condition that the test substance is not brought into contact with the transformant, and the expression level is compared with the expression level of the reporter gene under the condition that the test substance is brought into contact. If the expression level of the reporter gene under the condition in which the test substance is contacted is higher than the expression level of the reporter gene under the condition in which the test substance is not contacted with the transformant, the test substance is It can be evaluated as having agonist activity, that is, having the ability to activate the receptor. Further, for example, the reporter gene may be prepared in the same manner as described above under the conditions in which the above-mentioned transformant is contacted with an estrogen such as E2, and the condition in which the estrogen and the test substance are simultaneously contacted. Is measured. If the expression level of the reporter gene under the condition of contacting the estrogen with the test substance is lower than the expression level of the reporter gene under the condition of contacting the estrogen with the transformant, Can be evaluated as having antagonist activity against the receptor of the present invention, that is, antiestrogenic activity against the receptor. In this manner, for example, a reporter assay is performed using a transformant in which a reporter gene under the transcriptional control of a transcription control region containing an estrogen response element and the DNA of the present invention are introduced into the chromosome of a host cell. By conducting the test and evaluating the anti-estrogenic activity of the test substance, a substance exhibiting anti-estrogenic activity with respect to the receptor of the present invention can be selected.
上記のような本発明評価方法によれば、 例えば、 タモキシフェン、 ラロキシフェン 等の、野生型エストロゲンレセプターひの転写活性化領域 AF2の機能を抑制するが AF1 の機能は抑制しないタイプの抗エストロゲン物質であって、本発明レセプターに対し てァゴニスト活性を示し抗エストロゲン活性を示さない物質を見出すことができる。 また、 反対に、 かかる評価方法により、 本発明レセプタ一に対してァゴニスト活性を 示さず、 かつ、 抗エストロゲン活性を示す物質を選び出すこともできることから、 該 評価方法に基づく被験物質のスクリーニングは、エストロゲン活性を実質的に全く示 さないピュア抗エストロゲンの開発に有用である。 ヒ ト等の動物個体の細胞で産生されるエストロゲンレセプターひが本発明レセプ ターであるか否かを調べるには、 例えば、 該個体の有するエストロゲンレセプター α 遺伝子が、 本発明レセプターをコードするか否かを調べるとよい。 According to the evaluation method of the present invention as described above, for example, anti-estrogens such as tamoxifen and raloxifene, which suppress the function of the transcription activation region AF2 of the wild-type estrogen receptor, but do not suppress the function of AF1. To the receptor of the present invention Thus, a substance having agonist activity and no antiestrogenic activity can be found. Conversely, a substance that does not exhibit agonist activity with respect to the receptor of the present invention and that exhibits antiestrogenic activity can be selected by such an evaluation method. Therefore, screening of a test substance based on the evaluation method requires estrogen. Useful for the development of pure antiestrogens that show virtually no activity. To determine whether or not the estrogen receptor produced by cells of an animal individual such as a human is the receptor of the present invention, for example, whether or not the estrogen receptor α gene of the individual encodes the receptor of the present invention You should find out.
まず、 ヒ ト等の動物個体から試料を採取し、 該試料からゲノム DNAまたは c DN Αを調製する。 例えば、 毛根、 末梢血、 口腔上皮細胞などのゲノム DNAの抽出が可 能な細胞組織の試料から、 例えば村松正寶、 " ラボマニュアル遺伝子工学" (丸善; 1988) や TAKARA PCR Technical news No. 2, 宝酒造 (1991) 等に記載される通常の 方法に準じてゲノム D N A調製することができる。 具体的には例えば、試料が毛髪の 場合は、毛根のついた毛髪 1本を滅菌水、エタノールで洗浄した後、これに BCL- Buffer  First, a sample is collected from an animal individual such as a human, and genomic DNA or cDNA is prepared from the sample. For example, Masataka Muramatsu, "Lab Manual Genetic Engineering" (Maruzen; 1988) and TAKARA PCR Technical news No. 2 from samples of cell tissues from which genomic DNA such as hair roots, peripheral blood, and oral epithelial cells can be extracted. Genomic DNA can be prepared according to the usual method described in Takara Shuzo (1991). Specifically, for example, if the sample is hair, wash one hair with hair follicles with sterile water and ethanol, then add BCL-Buffer
[10 mM Tris-Cl(pH7.5), 5 mM MgCl2 , 0.32 M Sucrose, l%(v/v) Triton X- 100] 200 μΐを加え、 さらにプロティナーゼ Kを最終濃度 100 il/ml、 SDSを最終濃度 0.5%(w/v) になるようにそれぞれカ卩ぇ混合する。 この混合物を 70°Cで 1時間保温した後、 フエノ 一ル クロロホルム抽出を行うことによりゲノム DN Aを得ることができる。 また、 試料が末梢血の場合は、 DNA- Extraction Kit (Stratagene社製)等を用いて該試料を 処理することによりゲノム DNAを得ることができる。 また、 試料が手術あるいは生 検により得られた組織サンプルである場合は、 該試料が新鮮なうちに、 例えば TRIZOL 試薬 (インビトロジヱン社製) 等を用いて RNAを調製し、 調製された RNAを踌型 にして逆転写酵素により c DNAを合成すれば、合成された c DNAをゲノム DNA の替わりに検査に使用することができる。 このようにして調製されたゲノム DNAまたは c DNA中に存在するエストロゲ ンレセプター α遺伝子が、 本発明レセプターをコードするか否かを調べるには、 例え ば、該遺伝子にコードされるエストロゲンレセプタ一 αを構成するアミノ酸であって 、 アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示されるァ ミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当す る位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプターひの アミノ酸配列のうちの前記アミノ酸と相当する位置にあるアミノ酸とは異なるアミ ノ酸をコードする塩基配列に置換されているか否かを調べるとよい。 そのための方法 としては、 例えば、 前記の 「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸」 を含む 領域をコードする核酸を、 試料中の核酸を铸型として増幅し、 増幅された核酸の塩基 配列を決定する方法を挙げることができる。 [10 mM Tris-Cl (pH 7.5), 5 mM MgCl 2 , 0.32 M Sucrose, l% (v / v) Triton X-100] 200 μΐ was added, and proteinase K was added to a final concentration of 100 il / ml, SDS Are mixed with each other to a final concentration of 0.5% (w / v). After keeping this mixture at 70 ° C. for 1 hour, genomic DNA can be obtained by performing phenol / chloroform extraction. When the sample is peripheral blood, genomic DNA can be obtained by treating the sample with a DNA-Extraction Kit (Stratagene) or the like. When the sample is a tissue sample obtained by surgery or biopsy, while the sample is fresh, RNA is prepared using, for example, TRIZOL reagent (manufactured by Invitrogen), and the prepared RNA is analyzed. If cDNA is synthesized using reverse transcriptase as a template, the synthesized cDNA can be used for testing instead of genomic DNA. To examine whether the estrogen receptor α gene present in the genomic DNA or cDNA prepared in this way encodes the receptor of the present invention, for example, For example, the amino acids constituting the estrogen receptor alpha encoded by the gene, which are based on the homology of the amino acid sequences, are identified by the amino acid numbers 404, 405 of the amino acid sequence represented by SEQ ID NO: 1. Or a nucleotide sequence encoding an amino acid at a position corresponding to the amino acid represented by 424 is different from the amino acid at a position corresponding to the amino acid in the amino acid sequence of the wild-type estrogen receptor. It is advisable to check whether or not the nucleotide sequence is replaced by the coding base sequence. As a method therefor, for example, a region containing the above-mentioned `` amino acid at a position corresponding to the amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1 '' is encoded. A method of amplifying a nucleic acid to be amplified with the nucleic acid in the sample as type III and determining the base sequence of the amplified nucleic acid can be mentioned.
「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4 で示されるアミノ酸に相当する位置にあるアミノ酸」 を含む領域をコードする核酸は 、 例えば PCRにより増幅することができる。  A nucleic acid encoding a region including "an amino acid at a position corresponding to the amino acid represented by amino acid No. 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1" may be amplified by, for example, PCR. Can be.
かかる PCRに使用することのできるプライマーとしては、 「配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当 する位置にあるアミノ酸」 を含む領域をコードする核酸を PCRにより増幅する能力を 有し、 GC含量が約 30%以上約約 70%以下、 好ましくは約 35%以上約約 60%以下であり、 か つ 8塩基〜 50塩基、 好ましくは約 15塩基〜約 40塩基からなるオリゴヌクレオチドをぁ げることができる。 より具体的には、 例えば、 フォワードプライマー用オリゴヌタレ ォチドとして、配列番号 7〜1 1のいずれかで示される塩基配列からなるオリゴヌク レオチドを挙げることができ、 リバースプライマー用オリゴヌクレオチドとして、 配 列番号 1 2〜1 6のいずれかで示される塩基配列からなるオリゴヌクレオチドをあ げることができる。  As a primer that can be used for such PCR, a region containing `` the amino acid at a position corresponding to the amino acid shown by amino acid No. 404, 405 or 424 of the amino acid sequence shown by SEQ ID NO: 1 '' Has the ability to amplify the nucleic acid encoding by PCR, has a GC content of about 30% to about 70%, preferably about 35% to about 60%, and 8 to 50 bases, preferably Can produce an oligonucleotide consisting of about 15 bases to about 40 bases. More specifically, for example, as the oligonucleotide for the forward primer, an oligonucleotide consisting of the nucleotide sequence represented by any one of SEQ ID NOs: 7 to 11 can be mentioned, and as the oligonucleotide for the reverse primer, SEQ ID NO: 1 An oligonucleotide having a base sequence represented by any one of 2 to 16 can be used.
上記のようなオリゴヌクレオチドをプライマーとして用いて PCRを行う場合、 一般 にはフォヮ一ド用とリバース用の二種類のオリゴヌクレオチドを組み合わせて用い る。 これらのオリゴヌクレオチドは、 例えば3—シァノエチルホスホアミダイ ト法ゃ チォホスフアイ ト法によって化学合成することができる。  When PCR is performed using the above-described oligonucleotides as primers, two types of oligonucleotides, one for forward and one for reverse, are generally used in combination. These oligonucleotides can be chemically synthesized, for example, by a 3-cyanoethylphosphoramidite method or a thiophosphite method.
PCRは、 例えば Saiki, R. K. et al. , Science, 230: 1350-1354 (1985)等に記載の 方法に準じて行うことができる。 例えば、 プライマーとして用いられるオリゴヌクレ ォチド、 D N Aポリメラーゼ、 4種類の塩基 (dATP, dTTP, dGTP, dCTP) 、 約 1. 5 mM から約 3. 0 mMの塩化マグネシウム等及びゲノム D N Aを含有する増幅用緩衝液を調製 する。 調製された増幅用緩衝液を用いて、 例えば以下の条件による 3工程の増幅サイ クルを繰返して行う。 まず変性工程として、 たとえば、 約 90 °Cから約 95 °C、 好まし くは約 94 °Cから約 95 °Cで、 約 1分間から約 5分間、 好ましくは約 1分間から約 2分間の 保温が行われる。 次にプライマーのアニーリング工程として、 たとえば、 約 30 でか ら約 70 °C、 好ましく約は 40 °Cから約 60でで、 約 3秒間から約 3分間、 好ましくは約 5 秒間から約 2分間の保温が行われる。 さらに DNAポリメラーゼによる伸長工程として、 たとえば、 約 70 °Cから約 75 °C、 好ましくは約 72 °Cから約 74 °Cで、 約 15秒間から約 5分間、 好ましくは約 30秒間から約 4分間の保温が行われる。 この 3工程からなる増幅 サイクルを、 約 20回から約 50回、 好ましくは約 25回から約 40回行う。 PCR is described in, for example, Saiki, RK et al., Science, 230: 1350-1354 (1985). It can be performed according to the method. For example, an amplification buffer containing oligonucleotides used as primers, DNA polymerase, four types of bases (dATP, dTTP, dGTP, dCTP), about 1.5 mM to about 3.0 mM magnesium chloride, and genomic DNA Prepare solution. Using the prepared amplification buffer, for example, a three-step amplification cycle under the following conditions is repeated. First, as a denaturation step, for example, at about 90 ° C. to about 95 ° C., preferably about 94 ° C. to about 95 ° C., for about 1 minute to about 5 minutes, preferably about 1 minute to about 2 minutes Insulation is performed. Next, as a step of annealing the primer, for example, at about 30 to about 70 ° C, preferably about 40 ° C to about 60, for about 3 seconds to about 3 minutes, preferably for about 5 seconds to about 2 minutes. Insulation is performed. Further, as an extension step by DNA polymerase, for example, about 70 ° C. to about 75 ° C., preferably about 72 ° C. to about 74 ° C., for about 15 seconds to about 5 minutes, preferably for about 30 seconds to about 4 minutes Is kept warm. The amplification cycle consisting of three steps is carried out about 20 to about 50 times, preferably about 25 to about 40 times.
このような PCRで增幅された核酸をァガロース電気泳動等に供して回収した後、 回 収された核酸についてダイレクトシークェンス [BioTechniques, 7, 494 (1989) ]を行う ことにより該 D N Aの塩基配列を確認することができる。塩基配列は、 Maxam Gilbert 法 (例えば、 Maxam, A. M and Gilbert, W. , Proc. Natl. Acad. Sci. USA. , 74; 560, 1977 ) や Sanger法 (例えば Sanger, F. and Coulson, A. R. , J. ol. Biol. , 94; 441, 1975. , Sanger, F., Nicklen, S. and Coulson, A. R., Proc. Natl. Acad. Sci. USA. , 74; 5463, 1977) に準じて解析すればよい。 アプライドバイオシステムズ社製モデル 3700等の自 動 D N Aシークェンサ一を用いる場合には、 対応する D N Aシークェンスキット、 例 えばァプフィ ドノヽづ シスァムズ社製の BigDye terminator cycle sequencing ready reaction kit等を用いることができる。 試料中の核酸において、 エストロゲンレセプター αを構成するアミノ酸であって、 アミノ酸配列の相同性に基づくアラインメントにおいて、配列番号 1で示されるアミ ノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当する 位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプター αのァ ミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩基配 列に置換されているか否かを調べるための方法としては、 例えば、 上記の 「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるァ ミノ酸に相当する位置にあるアミノ酸」 を含む領域をコードする核酸を、 試料中の核 酸を錶型として増幅し、 増幅された核酸を電気泳動して該核酸の移動度を測定し、 野 生型エストロゲンレセプター αの当該領域をコードする核酸の移動度と前記核酸の 移動度とが異なるか否かを調べる方法をあげることもできる。 After the nucleic acid amplified by such PCR is subjected to agarose electrophoresis and collected, the nucleotide sequence of the DNA is confirmed by performing a direct sequence [BioTechniques, 7, 494 (1989)] on the collected nucleic acid. can do. The nucleotide sequence can be determined by the Maxam Gilbert method (eg, Maxam, A.M. and Gilbert, W., Proc. Natl. Acad. Sci. USA., 74; 560, 1977) or the Sanger method (eg, Sanger, F. and Coulson, AR, J. ol. Biol., 94; 441, 1975., Sanger, F., Nicklen, S. and Coulson, AR, Proc. Natl. Acad. Sci. USA., 74; 5463, 1977). You only need to analyze it. When using an automatic DNA sequencer such as model 3700 manufactured by Applied Biosystems, a corresponding DNA sequence kit, for example, BigDye terminator cycle sequencing ready reaction kit manufactured by AFP Systems Co., Ltd. can be used. In the nucleic acid in the sample, the amino acids constituting the estrogen receptor α, and the alignment based on the homology of the amino acid sequence, the amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 The nucleotide sequence encoding the amino acid at the position corresponding to the amino acid shown in 4 is different from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor α. As a method for checking whether or not the amino acid is substituted in the column, for example, the amino acid sequence represented by the amino acid sequence represented by the amino acid sequence represented by SEQ ID NO: 1 A nucleic acid encoding a region containing `` the amino acid at the corresponding position '' is amplified with the nucleic acid in the sample as type 、, and the amplified nucleic acid is subjected to electrophoresis to measure the mobility of the nucleic acid. A method of examining whether or not the mobility of the nucleic acid encoding the relevant region of the receptor α is different from the mobility of the nucleic acid may be mentioned.
例えばヒ ト試料中のエストロゲンレセプター c遺伝子について調べる場合には、 ま ず、 例えば上記の、 配列番号 7〜 1 6のいずれかで示される塩基配列からなるオリゴ ヌクレオチドの末端を FITCなどの蛍光物質で標識した後、 これをプライマーとして前 述のように PCRを行い、 「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸」 を含む領域 をコードする核酸を増幅する。 また、 野生型エストロゲンレセプター αの相当する領 域をコードする核酸も同様にして増幅する。 For example, when examining the estrogen receptor c gene in a human sample, first, for example, the end of the oligonucleotide having the nucleotide sequence represented by any one of SEQ ID NOs: 7 to 16 is treated with a fluorescent substance such as FITC. After labeling, use this as a primer and perform PCR as described above, and confirm that `` at a position corresponding to the amino acid represented by amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1. Amplify nucleic acids that encode regions containing "amino acids." In addition, a nucleic acid encoding the corresponding region of the wild-type estrogen receptor α is amplified in the same manner.
増幅された核酸を、 例えば Hum. Mutation, 2; 338に記載される SSCP (single strand conformation polymorphism) 法などに準じて電気泳動する。 具体的には、 蛍光標識 されたプライマーを用いて PCRを行い、増幅された核酸を加熱変性して一本鎖とし、非 変性ポリアクリルアミ ド電気泳動に供して一本鎖を各々分離する。電気泳動に用いら れる緩衝液としては、 トリス-リン酸系 (pH 7. 5-8. 0) 、 トリス-酢酸系 (pH 7. 5-8. 0 ) 、 トリス-ホウ酸系(pH 7. 5- 8. 3)などが挙げられ、 好ましくはトリス一ホウ酸系を あげることができる。 また必要に応じて、 ゲルにグリセロール等を添加する。 電気泳 動の条件としては、 例えば、 定電力 30W〜40 W、 室温 (約 20 °Cから約 25 °C) または 4 °Cにて、 約 4時間〜約 8時間泳動する条件を挙げることができる。 次いで、 蛍光を読み 取ることができるスキャナ一により、 電気泳動後のゲル中の蛍光シグナルを検出し、 試料由来の 「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5また は 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸」 を含む領域をコードす る核酸と、野生型エストロゲンレセプターひの当該領域をコードする核酸の移動度を 比較する。 これらの核酸の移動度が異なる場合には、 「配列番号 1で示されるァミノ 酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位 置にあるアミノ酸」 を含む領域をコードする塩基配列に、 野生型エストロゲンレセプ ター αの当該領域をコードする塩基配列とは異なる塩基配列が含まれると判定する ことができる。 さらに、 この移動度の異なる核酸を含むゲルからそこに含まれる核酸 を滅菌水中に抽出し、 これを錄型にして PCRにより該核酸を増幅し、 増幅産物を ΤΑク ローニングシステムにより pGEM-T Easy vector (インビトロジェン社製)等のベクタ 一にクローニングした後、クローユングされた該核酸の塩基配列を確認することがで きる。 このようにして野生型エストロゲンレセプター をコードする塩基配列とは異 なる塩基配列を特定することができる。 試料中の核酸において、 エストロゲンレセプター αを構成するアミノ酸であって、 ァミノ酸配列の相同性に基づくァラインメントにおいて、配列番号 1で示される Τミ ノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当する 位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプターひのァ ミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩基配 列に置換されているか否かを調べるための方法としては、 例えば、 野生型エストロゲ ンレセプター αのアミノ酸配列のうちの前記アミノ酸と相当する位置にあるアミノ 酸を含む領域をコードする塩基配列からなるプローブと、試料中の核酸とのハイブリ ダイゼーシヨンの効率を調べる方法をあげることもできる。 The amplified nucleic acid is subjected to electrophoresis according to, for example, the SSCP (single strand conformation polymorphism) method described in Hum. Mutation, 2; 338. Specifically, PCR is performed using a fluorescently labeled primer, and the amplified nucleic acid is denatured by heating to form a single strand, which is subjected to non-denaturing polyacrylamide electrophoresis to separate the single strands. Buffers used for electrophoresis include tris-phosphate (pH 7.5-8.0), tris-acetic acid (pH 7.5-8.0), and tris-boric acid (pH 7.0). 5-8.3) and the like, and preferably a tris-borate-based compound. If necessary, add glycerol to the gel. The conditions of the electric swimming include, for example, electrophoresis at a constant power of 30 W to 40 W, at room temperature (about 20 ° C. to about 25 ° C.) or at about 4 ° C. for about 4 hours to about 8 hours. it can. Next, the fluorescence signal in the gel after electrophoresis is detected by a scanner capable of reading fluorescence, and the amino acid number of the amino acid sequence represented by SEQ. The mobility of a nucleic acid encoding a region containing an amino acid at a position corresponding to the amino acid represented by 424 is compared with the mobility of a nucleic acid encoding the region of the wild-type estrogen receptor. When these nucleic acids have different mobilities, the amino acid sequence represented by the amino acid sequence represented by SEQ ID NO: 1 corresponds to the amino acid sequence represented by amino acid number 404, 405 or 424. It can be determined that the nucleotide sequence encoding the region containing the “amino acid at the position” contains a nucleotide sequence different from the nucleotide sequence encoding the region of the wild-type estrogen receptor α. Furthermore, the nucleic acid contained in the gel containing nucleic acids having different mobilities is extracted into sterilized water, the nucleic acid is converted into a 錄 form, the nucleic acid is amplified by PCR, and the amplified product is pGEM-T Easy After cloning into a vector such as a vector (manufactured by Invitrogen), the nucleotide sequence of the cleaved nucleic acid can be confirmed. Thus, a nucleotide sequence different from the nucleotide sequence encoding the wild-type estrogen receptor can be specified. In the nucleic acid in the sample, the amino acids constituting the estrogen receptor α, and in an alignment based on the homology of the amino acid sequence, the amino acid numbers of the amino acid sequence represented by SEQ ID NO: 1 A nucleotide sequence encoding an amino acid at a position corresponding to the amino acid represented by 5 or 4 24 is different from an amino acid at an amino acid position corresponding to the amino acid sequence of the wild-type estrogen receptor A method for examining whether or not the amino acid sequence has been substituted includes, for example, a probe consisting of a nucleotide sequence encoding a region containing an amino acid at a position corresponding to the amino acid in the amino acid sequence of wild-type estrogen receptor α. And a method for examining the efficiency of hybridization with a nucleic acid in a sample.
野生型エストロゲンレセプタ のアミノ酸配列のうち、配列番号 1で示されるァ ミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当す る位置にあるアミノ酸を含む領域をコードする塩基配列からなるプローブとしては、 力かる塩基配列からなり GC含量が約 30%以上約 60%以下のオリゴヌクレオチドを挙げ ることができる。ハイブリダィゼーシヨンによる検出に適するようにオリゴヌクレオ チドを構成する塩基数として約 15個以上約 40個以下が好ましい。 具体的には、'ヒ ト由 来野生型エストロゲンレセプター αのアミノ酸配列のうち、配列番号 1で示されるァ ミノ酸配列のアミノ酸番号 4 0 4で示されるアミノ酸に相当する位置にあるフエ二 ルァラニンを含む領域をコードする塩基配列からなるプローブとしては、配列番号 1 7〜2 1のいずれかで示される塩基配列からなるプローブなどが挙げられる。 ヒ ト由 来野生型エストロゲンレセプター αのアミノ酸配列のうち、配列番号 1で示されるァ ミノ酸配列のアミノ酸番号 4 0 5で示されるアミノ酸に相当する位置にあるァラニ ンを含む領域をコードする塩基配列からなるプローブとしては、 配列番号 1 7、 1 8 、 2 0または 2 1で示される塩基配列からなるプローブなどが挙げられる。 ヒ ト由来 野生型エストロゲンレセプター αのアミノ酸配列のうち、配列番号 1で示されるアミ ノ酸配列のアミノ酸番号 4 2 4で示されるアミノ酸に相当する位置にあるイソロイ シンを含む領域をコードする塩基配列からなるプローブとしては、配列番号 3 8〜4 2のいずれかで示される塩基配列からなるプローブなどがあげられる。 In the amino acid sequence of the wild-type estrogen receptor, a region containing an amino acid at a position corresponding to the amino acid No. 404, 405 or 424 of the amino acid sequence shown in SEQ ID NO: 1 Examples of the probe consisting of the base sequence to encode include oligonucleotides consisting of a strong base sequence and having a GC content of about 30% or more and about 60% or less. The number of bases constituting the oligonucleotide is preferably about 15 or more and about 40 or less so as to be suitable for detection by hybridization. Specifically, in the amino acid sequence of human-derived wild-type estrogen receptor α, phenylalanine at a position corresponding to the amino acid shown by amino acid number 404 in the amino acid sequence shown by SEQ ID NO: 1 Examples of a probe consisting of a base sequence encoding a region including a nucleotide include a probe consisting of the base sequence represented by any one of SEQ ID NOS: 17 to 21. Human Of the amino acid sequence of the wild-type estrogen receptor α, which comprises an alanine-containing region at a position corresponding to the amino acid No. 405 of the amino acid sequence No. 1 shown in SEQ ID NO: 1. Examples of the probe include a probe having a base sequence represented by SEQ ID NO: 17, 18, 18, 20 or 21. Nucleotide sequence encoding a region containing isoleucine at a position corresponding to the amino acid shown by amino acid No. 424 in the amino acid sequence shown by SEQ ID No. 1 in the amino acid sequence of human-derived wild-type estrogen receptor α Examples of the probe consisting of: a probe consisting of the nucleotide sequence represented by any one of SEQ ID NOs: 38 to 42, and the like.
上記のようなオリゴヌクレオチドは、 一般的に、 オリゴヌクレオチドを構成する塩基 数が約 100個以下の場合には、 例えば j3—シァノエチルホスホアミダイド法やチォホ スフアイ ト法にいより化学合成することができる。 Generally, when the number of bases constituting the oligonucleotide is about 100 or less, the oligonucleotide as described above is chemically synthesized by, for example, the j3-cyanoethylphosphamidide method or the thiophosphite method. be able to.
上述のようにしてヒ ト等の動物個体の試料から調製されたゲノム D NAまたは c D N A等の核酸と、 上記のプローブとを混合して、 通常、 ストリンジェントな条件下 にハイブリダィゼーシヨンを行う。 必要に応じて、 試料中の核酸から、 例えば、 配列 番号 7〜1 1のいずれかで示される塩基配列からなるオリゴヌクレオチドと配列番 号 1 2〜1 6のいずれかで示される塩基配列からなるオリゴヌクレオチドとをブラ イマ一として用いた PCRにより、 「配列番号 1で示されるアミノ酸配列のアミノ酸番 号 4 0 5、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸」 を含む領域をコードする核酸を増幅した後、上記のプローブと混合してハイブリダィ ゼーシヨンを行うこともできる  A nucleic acid such as genomic DNA or cDNA prepared from a sample of an animal individual such as a human as described above is mixed with the above-described probe, and the mixture is usually hybridized under stringent conditions. I do. If necessary, the nucleic acid in the sample comprises, for example, an oligonucleotide consisting of the nucleotide sequence represented by any of SEQ ID NOs: 7 to 11 and a nucleotide sequence represented by any of the SEQ ID NOs: 12 to 16 By PCR using an oligonucleotide as a primer, the `` amino acid at a position corresponding to the amino acid No. 405, 405 or 424 of the amino acid sequence shown in SEQ ID NO: 1 '' was obtained. After amplifying the nucleic acid encoding the containing region, hybridization with the above-described probe can be performed.
ハイブリダィゼーシヨンのス トリンジェントな条件としては、 例えば、 プレハイブ リダィゼーシヨンおよびハイブリダィゼーシヨンを、 6 X SSC (0. 9M NaCl、 0. 09Mクェ ン酸ナトリウム) 、 5 Xデンハルト溶液 (0. l% (w/v) フィコール 400、 0. l% (w/v) ポリ ビ-ルピロリ ドン、 0. 1%BSA) 、 0. 5% (w/v) SDS及び 100 g/ml変性サケ精子 DNA存在下 に行う力 または lOO i g/ml変性サケ精子 DNAを含む DIG EASY Hyb溶液 (ベーリンガー マンハイム社) 中で行い、 洗浄工程として、 1 X SSC (0. 15M NaCl、 0. 015Mクェン酸 ナトリウム) および 0. 5%SDS存在下に、 室温で 15分間の保温を 2回行い、 さらに 0. 1 X S SC (0. 015M NaCl, 0. 0015Mクェン酸ナトリウム) および 0. 5%SDS存在下に、 30分間保 温する条件をあげることができる。 、 プレハイブリダィゼーシヨン、 ハイブリダィゼ ーシヨンおよび洗浄工程における保温温度は、使用されるプローブの長さと組成によ つて変更することができ、 一般的には、 プローブの Tm値と同じ力 Tm値よりも若干低 い温度に設定される。 具体的には例えば、 ハイブリダィゼーシヨンにおいて、 プロ一 ブと試料中の核酸との間に塩基間水素結合が形成される際の塩基対を想定し、 Aと丁の 塩基対 1つにつき 2°C、 Gと Cの塩基対 1つにつき 4°Cとして、 水素結合を形成するすべ ての塩基対の値を合計してこれを Tm値とする。 プレハイブリダィゼーシヨン、 ハイブ リダイゼーションおよび洗浄工程における保温温度としては、 このようにして算出さ れる Tm値と同じ温度か、 およそ 2 °C〜 3 °C程度低レ、温度が選択される。 As stringent conditions for hybridization, for example, prehybridization and hybridization may be performed using 6 × SSC (0.9 M NaCl, 0.09 M sodium citrate), 5 × Denhardt solution (0 l% (w / v) Ficoll 400, 0.1% (w / v) polyvinylpyrrolidone, 0.1% BSA), 0.5% (w / v) SDS and 100 g / ml denatured salmon Force in the presence of sperm DNA or in a DIG EASY Hyb solution (Boehringer Mannheim) containing lOOig / ml denatured salmon sperm DNA, and wash with 1X SSC (0.15M NaCl, 0.015M sodium citrate) ) And 0.5% SDS in the presence of 0.5X SSC (0.15M NaCl, 0.0015M sodium citrate) and 0.5% SDS. , Keep for 30 minutes The conditions for heating can be increased. The incubation temperature in the prehybridization, hybridization and washing steps can be varied according to the length and composition of the probe used, and is generally based on the same Tm value as the Tm value of the probe. Is also set to a slightly lower temperature. Specifically, for example, in hybridization, assuming base pairs when an interbase hydrogen bond is formed between a probe and a nucleic acid in a sample, one base pair of A and one base is assumed. Assuming 2 ° C, 4 ° C for each G and C base pair, sum the values of all base pairs that form hydrogen bonds and use this as the Tm value. For the pre-hybridization, hybridization, and washing steps, the temperature is selected to be the same as the Tm value calculated in this way or a temperature lower by about 2 ° C to 3 ° C. .
ドットブロットハイブリダィゼーシヨン法の具体的な手順としては、 例えば、 まず 、 ヒ ト等の動物個体の試料から調製されたゲノム D NAもしくは c D N A、または PCR により増幅された 「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸」 を含む領域をコ ードする核酸を、 例えば、 90 °Cから 100 °Cで、 3分間〜 5分間保温した後、 ナイロン フィルター [Hybond N+ (アマシャムバイオテック社製) 等]にスポッ トし、 スポッ ト されたフィルターを濾紙上で乾燥後、 これに紫外線照射することにより核酸をフィル ターに固定する。 次いで、 得られた D N A固定フィルターと上記のプローブとを、 例 えば、 40°C〜50 °Cで、 10時間〜 20時間ィンキュベートすることによりハイブリダイ ズさせ、 通常の方法に準じてプローブを含むハイプリッドを検出する。 プローブとし て3 2 P等の放射性同位元素で標識した放射性プローブを用いる場合は、ハイブリダィ ズ後のフィルターを X線フィルムに感光させることによりプローブを含むハイブリ ッドを検出することができる。 ピオチン化ヌクレオチドで標識した非放射性プローブ を用いる場合は、ストレプトアビジンを介してピオチン化アルカリ性フォスファタ一 ゼ等により該プローブを含むハイプリッドを酵素標識し、酵素反応による基質の呈色 あるいは発光を検出することによりプローブを含むハイプリッドを検出することが できる。 また、 アルカリ性フォスファターゼあるいはペルォキシダーゼ等の酵素でス ぺーサ一を介して直接標識した非放射性プローブを用いることもできる。被験試料に ついて、 プローブを含むハイブリッドが検出されないか、 または野生型エストロゲン レセプター αをコードする D N Aを含む核酸について検出されるハイプリッドの量 よりも、 被験試料において検出されるハイプリッドの量の方が少ない場合には、 被験 試料中の核酸に、使用したプローブの塩基配列とは異なる塩基配列が含まれると判定 することができる。 Specific procedures of the dot blot hybridization method include, for example, first, genomic DNA or cDNA prepared from a sample of an animal individual such as a human, or `` SEQ ID NO: 1 amplified by PCR. A nucleic acid encoding a region containing `` the amino acid at a position corresponding to the amino acid number 404, 405 or 424 of the amino acid sequence shown '', for example, at 90 ° C. to 100 ° C. After keeping it warm for 3 to 5 minutes, spot it on a nylon filter [Hybond N + (Amersham Biotech) etc.], dry the spotted filter on filter paper, and irradiate it with ultraviolet light. To the filter. Next, the obtained DNA-immobilized filter and the above-mentioned probe are hybridized by incubating, for example, at 40 ° C. to 50 ° C. for 10 to 20 hours, and the hybrid containing the probe is subjected to a conventional method. To detect. In the case of using a radioactive probe labeled with a radioactive isotope such as 3 2 P as a probe, it is possible to detect the hybrid comprising the probe by photosensitive filter after Haiburidi's the X-ray film. When using a non-radioactive probe labeled with a biotinylated nucleotide, the hybrid containing the probe is enzymatically labeled with streptavidin using a biotinylated alkaline phosphatase, etc., and the color or luminescence of the substrate due to the enzyme reaction is detected. Thus, a hybrid containing a probe can be detected. A non-radioactive probe directly labeled with an enzyme such as alkaline phosphatase or peroxidase via a spacer can also be used. No hybrid containing the probe is detected in the test sample or wild-type estrogen When the amount of the hybrid detected in the test sample is smaller than the amount of the hybrid detected in the nucleic acid containing the DNA encoding the receptor α, the nucleotide sequence of the probe used for the nucleic acid in the test sample is used. Can be determined to contain a different base sequence.
ミスマッチハイブリダィゼーシヨン部位に結合する酵素である Taq MutSという酵素 を利用したミスマッチ検出方法を利用する場合には、 熱 (0〜75 °C) に対して安定で 、 高い温度でも活性を維持して D N Aのミスマッチ塩基対を認識して結合可能な Taq MutSの結合特性を利用して、未変性ポリアクリルアミ ドゲルを利用したゲルシフトァ ッセィ、 またはナイ口ンフィルターや二トロセルロースフィルターなどの固相上での ドットブロッテイング法等にてミスマッチ塩基対を検出することができる。 ミスマツ チが検出された場合には、 「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸」 を含む 領域をコードする核酸に、使用したプローブの塩基配列と異なる塩基配列が含まれる と判定することができる。 試料中の核酸において、 エストロゲンレセプター c を構成するアミノ酸であって、 アミノ酸配列の相同性に基づくァラインメントにおいて、配列番号 1で示されるアミ ノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当する 位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプターひのァ ミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩基配 列に置換されているか否かを調べるための方法としては、 例えば、 前記の 「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるァ ミノ酸に相当する位置にあるアミノ酸」 を含む領域をコードする核酸を試料中の遺伝 子から増幅し、 増幅された核酸を、 塩基配列の置換によりその認識配列が出現するか もしくは消失する制限酵素により消ィヒして、該制限酵素の認識配列の有無を調べる方 法をあげることもできる。  When using a mismatch detection method that uses an enzyme called Taq MutS, which is an enzyme that binds to the mismatch hybridization site, it is stable against heat (0 to 75 ° C) and maintains its activity even at high temperatures. Utilizes the binding characteristics of Taq MutS, which can recognize and bind to mismatched base pairs in DNA, and use gel shift assays using native polyacrylamide gels or solid phases such as nylon filters and nitrocellulose filters. The mismatched base pair can be detected by the dot blotting method described above. If a mismatch is detected, encode a region containing `` the amino acid at a position corresponding to the amino acid No. 404, 405 or 424 of the amino acid sequence shown by SEQ ID NO: 1 '' Can be determined to contain a base sequence different from the base sequence of the probe used. In the nucleic acid in the sample, the amino acids constituting the estrogen receptor c, and in an alignment based on the homology of the amino acid sequences, the amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 in the amino acid sequence of SEQ ID NO: 1; 4 The nucleotide sequence encoding the amino acid at the position corresponding to the amino acid shown in 4 is replaced with a nucleotide sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor. As a method for examining whether or not the amino acid is represented by the position corresponding to the amino acid represented by amino acid No. 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1 A nucleic acid encoding a region containing an amino acid in the sample is amplified from a gene in the sample, and the amplified nucleic acid is replaced with a base sequence to produce a recognition sequence for the nucleic acid. A method of examining the presence or absence of a recognition sequence for the restriction enzyme by extinguishing with a restriction enzyme that appears or disappears can also be used.
例えばヒ ト試料中のエストロゲンレセプターひ遺伝子について調べる場合には、 ま ず、 該試料から調製されるゲノム D N Aまたは c D N Aを铸型とし、 例えば配列番号 7〜16のいずれかで示される塩基配列からなるオリゴヌクレオチドをプライマーと して上述のように PCRを行い、 「配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸」 を 含む領域をコードする核酸を増幅する。 また、 野生型エストロゲンレセプターひの相 当する領域をコードする核酸も同様にして増幅する。 増幅された核酸を、 塩基置換に よりその認識配列が出現するかもしくは消失する制限酵素を用いて消化する。得られ た核酸消化物を、 ァガロースやポリアクリルアミ ド等を用いたゲル電気泳動に供すれ ば、 被験試料由来の核酸消化物と、 野生型エストロゲンレセプター αの相当する領域 をコードする塩基配列を有する核酸の消化物とのフラグメントパターンの異同に基 づき、 試料中の核酸が、 野生型エストロゲンレセプターひをコードする塩基配列とは 異なる塩基配列を有するか否かを判定することができる。 For example, when examining the estrogen receptor gene in a human sample, first, genomic DNA or cDNA prepared from the sample is referred to as type III, for example, SEQ ID NO: PCR was performed as described above using an oligonucleotide consisting of the nucleotide sequence represented by any one of 7 to 16 as a primer, and `` amino acid number 404, 405 or 42 of the amino acid sequence represented by SEQ ID NO: 1 '' A nucleic acid encoding a region containing an amino acid at a position corresponding to the amino acid indicated by 4 is amplified. In addition, a nucleic acid encoding a region corresponding to the wild-type estrogen receptor is similarly amplified. The amplified nucleic acid is digested with a restriction enzyme whose recognition sequence appears or disappears due to base substitution. When the obtained nucleic acid digest is subjected to gel electrophoresis using agarose, polyacrylamide, or the like, the nucleic acid digest from the test sample and the nucleotide sequence encoding the region corresponding to wild-type estrogen receptor α can be obtained. Based on the difference in the fragment pattern from the digested nucleic acid, it can be determined whether or not the nucleic acid in the sample has a nucleotide sequence different from the nucleotide sequence encoding the wild-type estrogen receptor.
上述のようにして行うことができるヒ ト等の動物個体に由来する試料中のエスト ロゲンレセプター α遺伝子型の判定は、該個体の有するエストロゲンレセプター αの 、 抗エストロゲン物質等のエストロゲン活性調節物質に対する反応性を予測し、 該物 質投与等の治療の有効性を治療開始前に予測するうえで非常に有用である。 また、 抗 エストロゲン物質等のエストロゲン活性調節物質投与期間中、 または投与後に、 特定 組織の該レセプターの遺伝子型の判定を行うことにより、投与物質による治療の ¾i続 、 有効性を判断するにも有用である。 実施例 The determination of the estrogen receptor α genotype in a sample derived from an animal individual such as a human, which can be performed as described above, is based on the determination of the estrogen receptor α of the individual with respect to estrogen activity modulators such as antiestrogenic substances. It is very useful in predicting reactivity and predicting the efficacy of treatment such as administration of the substance before starting treatment. In addition, by determining the genotype of the receptor in a specific tissue during or after administration of an estrogen activity modulator such as an anti-estrogen substance, it is also useful for determining the duration and efficacy of treatment with the administered substance. It is. Example
以下、 実施例により本発明を更に詳細に説明するが、 本発明はこれら実施例によつ て限定されるものではない。 実施例 1 (ヒ ト野生型エストロゲンレセプター αをコードする D N Aの発現プラスミ ドの作製)  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Example 1 (Preparation of Expression Plasmid for DNA Encoding Human Wild-Type Estrogen Receptor α)
まず、 ヒ ト野生型エストロゲンレセプターひをコードする c D N Aを取得した。 配 列番号 3で示される塩基配列からなるオリゴヌクレオチド、および配列番号 4で示さ れる塩基配列からなるオリゴヌクレオチドを化学合成した。 ヒ ト肝臓由来 c D N A ( クイッククローン cDNA # 7113-l;クロンテック社製) 10 ngを铸型にし、 配列番号 3 で示される塩基配列からなるオリゴヌクレオチドと配列番号 4で示される塩基配列 からなるオリゴヌクレオチドとをそれぞれ 10 pmol添加し、 LA Taq DNAポリメラーゼ (宝酒造社製) および該酵素に添付されたバッファーを用いて PCRを行った。 該 PCRに おいて反応液の保温は、 PCR System9700 (アプライドバイオシステムズ社製) を用い て、 95 °C、 1分間次いで 68 °C、 3分間を 1サイクルとしてこれを 35サイクル行った。 次に、反応液全量をァガロース (Agarose S:二ツボンジーン) を用いたァガロースゲ ル電気泳動に供した。 約 1. 8 kbの D N Aが増幅されていることを確認した後、 該 D N Aを回収した。 回収された D N Aの一部とダイターミネータ一シークェンスキット FS (アプライドバイオシステムズ社製) とを用いてダイレク トシークェンス用のサンプ ルを調製し、 これを自動 D N Aシークェンサ一 (アプライ ドバイオシステムズ社製、 モデル 3700) に供して塩基配列解析を行った。 その結果、 回収された D N Aが、 配列 番号 1で示されるァミノ酸配列をコードする塩基配列を有することが確認された。 次に、 上記のようにして取得された D N A約 100 ngを铸型にして、 配列番号 2 2で 示される塩基配列からなるオリゴヌクレオチドと配列番号 4で示される塩基配列か らなるオリゴヌクレオチドとを用いて上記と同様の条件にて PCRを行い、 コザックの コンセンサス配列の直後にヒ ト野生型エストロゲンレセプターひをコードする塩基 配列が連結されてなる塩基配列を有する D N Aを増幅した。 得られた DNAを低融点ァ ガロースゲル電気泳動法により分離し、 約 1. 8 kbの D N Aを回収した。 その約 l // gを 、 DNA Blunting Kit (宝酒造社製) を用いて処理することにより、 その末端を平滑化 し、 さらにこれに T4ポリヌクレオチドキナーゼを反応させてその末端をリン酸ィ匕した 。 得られた D N Aをフエノール処理した後、 エタノール沈殿法により精製し、 その全 量を下記の発現プラスミ ド作製用のインサート D N Aとして用いた。 プラスミ ド pRc/RSV (インビトロジェン社製) を制限酵素 Hind IIIで消化した後、 フエノール処 理した後、 エタノール沈殿することにより DNAを回収した。 回収された DNAを DNAFirst, cDNA encoding human wild-type estrogen receptor was obtained. An oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 3 and an oligonucleotide having the nucleotide sequence represented by SEQ ID NO: 4 were chemically synthesized. Human liver-derived cDNA ( Quick clone cDNA # 7113-l; manufactured by Clontech) 10 ng was made into type III, and 10 pmol of each of the oligonucleotide having the nucleotide sequence of SEQ ID NO: 3 and the oligonucleotide having the nucleotide sequence of SEQ ID NO: 4 were added. Then, PCR was performed using LA Taq DNA polymerase (Takara Shuzo) and a buffer attached to the enzyme. In the PCR, the reaction solution was maintained at a temperature of 95 ° C. for 1 minute, followed by 68 ° C. for 3 minutes for 35 cycles using PCR System 9700 (manufactured by Applied Biosystems). Next, the entire amount of the reaction solution was subjected to agarose gel electrophoresis using agarose (Agarose S: Futaba Gene). After confirming that about 1.8 kb of DNA was amplified, the DNA was recovered. A sample for the direct sequence is prepared using a part of the recovered DNA and a dye terminator-sequence kit FS (manufactured by Applied Biosystems), and the sample is prepared using an automatic DNA sequencer (manufactured by Applied Biosystems, Inc.). Model 3700) was used for nucleotide sequence analysis. As a result, it was confirmed that the recovered DNA had a nucleotide sequence encoding the amino acid sequence represented by SEQ ID NO: 1. Next, about 100 ng of the DNA obtained as described above was converted into a type II, and an oligonucleotide consisting of the base sequence shown in SEQ ID NO: 22 and an oligonucleotide consisting of the base sequence shown in SEQ ID NO: 4 were separated. PCR was performed under the same conditions as described above to amplify DNA having a nucleotide sequence in which a nucleotide sequence encoding human wild-type estrogen receptor was ligated immediately after the Kozak consensus sequence. The obtained DNA was separated by low melting point agarose gel electrophoresis, and a DNA of about 1.8 kb was recovered. Approximately l / g was treated with a DNA Blunting Kit (manufactured by Takara Shuzo Co., Ltd.) to blunt its ends, and then reacted with T4 polynucleotide kinase to phosphorylate the ends. . After the obtained DNA was treated with phenol, it was purified by an ethanol precipitation method, and the entire amount was used as the insert DNA for preparing the following expression plasmid. Plasmid pRc / RSV (manufactured by Invitrogen) was digested with a restriction enzyme HindIII, phenol-treated, and then precipitated with ethanol to recover DNA. Recovered DNA into DNA
Blunting Kit (宝酒造社製) で処理して末端を平滑化し、 低融点ァガロース(二ッポ ンジーン社製; Agarose L)を用いたァガロースゲル電気泳動に供し、 ゲルからバンド 部分の D NAを回収した。 回収された D N A約 100 ngに Bacterial alkaline phosphatase (BAP)を加えて 65 °Cで 1時間保温した後、 上記のィンサート D N A全量と 混合し、 T4リガーゼを添加して連結反応を行つた。得られた反応液を用レ、て大腸菌 DH5 ひコンビテントセル (東洋紡社製) を形質転換し、 アンピシリン耐性を示したコロニ —からプラスミ ド D N Aを調製し、 その塩基配列を自動 D N Aシークェンサ一(ァプ ライ ドバイオシステムズ社製、 モデル 3700) を用いてダイターミネータ一法により決 定した。 得られた塩基配列を、 上述のダイレク トシークェンスで得られた塩基配列と 比較して、翻訳領域の塩基配列が完全に一致していることが確認されたプラスミ ドを 選択し、 pRc/RSV-hERaコザックと名づけた。 実施例 2 (本発明レセプター F404Lをコードする D N Aの発現プラスミ ドの作製) 実施例 1で作製されたプラスミ ド pRc/RSV- hERaコザックを鎵型にし、塩基置換用の 合成オリコヌクレオチドと Quickchange Site - directed mutagenesis Kit (Stratagene 社製)を用いて、 該キットの説明書に記載の方法に準じて変異を導入した。 まず、 配 列番号 5で示される塩基配列からなるオリゴヌクレオチド、および配列番号 6で示さ れる塩基配列からなるオリゴヌクレオチドを化学合成した。伸長反応は、 pRc/RSV-hER aコザックを铸型とし、 前記 2種のオリゴヌクレオチドをプライマーとして用いて、 Pfu Turbo DNAポリメラーゼ (Stratagene社) および各々 200 μ Mの 4種類の塩基 (dATP, dTTP, dGTP, dCTP) を添加し、 前記酵素に添付された専用バッファ一中で、 95 °C、 30秒間次いで 55 °C、 1 分間さらに 68 °C、 10分間の保温を 1サイクルとしてこれを 16 サイクル行う条件で実施した。 次に、 この反応液の一部を取り、制限酵素 Dpn I (The ends were blunted by treatment with a Blunting Kit (Takara Shuzo) and subjected to agarose gel electrophoresis using a low-melting point agarose (Nippon Gene; Agarose L), and DNA in a band portion was recovered from the gel. Bacterial alkaline to about 100 ng of recovered DNA After adding phosphatase (BAP) and incubating at 65 ° C for 1 hour, the mixture was mixed with the whole amount of the insert DNA, and T4 ligase was added to carry out a ligation reaction. The resulting reaction solution was used to transform E. coli DH5 recombinant cells (manufactured by Toyobo Co., Ltd.), plasmid DNA was prepared from ampicillin-resistant colonies, and its base sequence was automatically sequenced using an automatic DNA sequencer. It was determined by the Dye Terminator method using Applied Biosystems, Model 3700). The obtained nucleotide sequence is compared with the nucleotide sequence obtained by the above-mentioned direct sequence, and a plasmid having a confirmed that the nucleotide sequence of the translation region is completely identical is selected, and pRc / RSV- Named hERa Kozak. Example 2 (Preparation of Expression Plasmid of DNA Encoding Receptor of the Present Invention F404L) Plasmid pRc / RSV-hERa Kozak prepared in Example 1 was made into type III, and a synthetic oriconucleotide for base substitution and Quickchange Site- Mutations were introduced using a directed mutagenesis Kit (manufactured by Stratagene) according to the method described in the kit instructions. First, an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 5 and an oligonucleotide consisting of the base sequence represented by SEQ ID NO: 6 were chemically synthesized. The extension reaction was carried out using pRc / RSV-hER a Kozak as a 铸 type, and using the two oligonucleotides as primers, Pfu Turbo DNA polymerase (Stratagene) and four types of bases (dATP, dTTP, 200 μM each). , dGTP, dCTP), and in a dedicated buffer attached to the enzyme, 95 ° C, 30 seconds, then 55 ° C, 1 minute, and further 68 ° C, 10 minutes as one cycle. The test was carried out under a cycle condition. Next, a part of this reaction solution is taken and the restriction enzyme Dpn I (
Stratagene社) で 37 °Cにて 1 時間消化した。 該消化液を用いて大腸菌 XLI-Blueコン ピテントセル (Stratagene社) を形質転換した。 アンピシリン耐性を示した大腸菌の コロニー数個からそれぞれの保有するプラスミ ド D N Aを精製し、 これらの塩基配列 を解祈した。配列番号 1で示されるァミノ酸配列においてァミノ酸番号 4 0 4で示さ れるフエ二ルァラニンをコードするコドン (TTT) がロイシンをコードするコドン ( CTT)に置換される変異の導入が確認されたプラスミ ドを pRc/RSV - hERaF404Lコザック と名づけた。 実施例 3 (レポーター遺伝子と選抜マーカー遺伝子とを含むプラスミ ドの作製) エストロゲン応答配列を含むァフリカツメガエル由来ビテロゲニン遺伝子上流の 塩基配列 (配列番号 23で示される塩基配列) からなるオリゴヌクレオチドおよび該 塩基配列と相補的な塩基配列からなるオリゴヌクレオチドを DNA合成機にて合成 した。 これらをアニーリングさせて二本鎖 DNA (該 DNAを、 以下、 ERE DN Aと記す)とした後、 T4リガーゼを作用させて ERE DNAをタンデムに結合させ、 これに T4ポリヌクレオチドキナーゼを作用させてその両末端をリン酸化した。 (Stratagene) at 37 ° C for 1 hour. Escherichia coli XLI-Blue competent cells (Stratagene) were transformed using the digested solution. From each of several colonies of E. coli that showed ampicillin resistance, the plasmid DNAs possessed by each were purified, and their nucleotide sequences were deciphered. In the amino acid sequence represented by SEQ ID NO: 1, it was confirmed that a mutation in which the codon (TTT) encoding phenylalanine represented by amino acid number 404 was replaced with a codon (CTT) encoding leucine was identified. The name was pRc / RSV-hERaF404L Kozak. Example 3 (Preparation of Plasmid Containing Reporter Gene and Selectable Marker Gene) Oligonucleotide consisting of a base sequence (base sequence represented by SEQ ID NO: 23) upstream of Afat Xenopus vitellogenin gene containing an estrogen response element and said base An oligonucleotide consisting of a nucleotide sequence complementary to the sequence was synthesized using a DNA synthesizer. These are annealed to form double-stranded DNA (the DNA is hereinafter referred to as ERE DNA), and then T4 ligase is actuated to bind the ERE DNA to tandem, which is then acted upon by T4 polynucleotide kinase. Both ends were phosphorylated.
また、 マウスメタロチォネィン I遺伝子の TATAボックス近傍の塩基配列とリーダー 配列に由来する塩基配列からなる 2本のオリゴヌクレオチド、 すなわち配列番号 24 で示される塩基配列からなるオリゴヌクレオチドと配列番号 25で示される塩基配 列からなるオリゴヌクレオチドとをァユーリングさせて二本鎖 DNAとし、 これに T 4ポリヌクレオチドキナーゼを作用させてその両末端をリン酸化した (該 DNAを、 以下、 TATA DNAと記す) 。 一方、 ホタルルシフェラーゼ遺伝子を含むプラス ミ ド PGL3 (プロメガ社製) を制限酵素 Bgl IIおよび Hind IIIで消化した後、 これに細 菌由来アルカリフォスファタ-ゼ (BAP)を加えて 65 °Cで 1時間保温した。 次いで、 該 保温液を低融点ァガロース (Agarose L;二ツボンジーン社製) を用いた電気泳動に 供し、 バンド部分のゲルから DNAを回収した。 約 100 ngの該 DNAと、 前記の TATA DNA 1 / gとを混合し、 T4リガーゼで結合させることによりプラスミ ド pGL3-TATAを 作製した。  In addition, two oligonucleotides consisting of the nucleotide sequence near the TATA box of the mouse metallothionein I gene and the nucleotide sequence derived from the leader sequence, that is, an oligonucleotide consisting of the nucleotide sequence represented by SEQ ID NO: 24 and SEQ ID NO: 25, An oligonucleotide having the base sequence shown was subjected to a double-stranded DNA reaction, and T4 polynucleotide kinase was acted thereon to phosphorylate both ends of the double-stranded DNA (the DNA is hereinafter referred to as TATA DNA). . On the other hand, plasmid PGL3 (promega) containing the firefly luciferase gene was digested with restriction enzymes Bgl II and Hind III, and bacterial alkaline phosphatase (BAP) was added thereto. Incubated for hours. Next, the heat-retained solution was subjected to electrophoresis using low-melting point agarose (Agarose L; manufactured by Futatsu Gene Co., Ltd.), and DNA was recovered from the gel at the band portion. Approximately 100 ng of the DNA was mixed with 1 / g of the TATA DNA and bound with T4 ligase to prepare plasmid pGL3-TATA.
次に、 pGL3- TATAを制限酵素 Sma Iで消化した後、 BAPを加えて 65 °Cで 1時間保温し た。 該保温液を低融点ァガロースゲル電気泳動に供し、 バンド部分のゲルから DNA を回収した。 該 DNA約 lOOngと、 上記のタンデムに結合させ末端をリン酸化した E RE DNA約 とを混合して T4リガーゼを反応させた後、 該反応液を用いて大腸 菌 DH5aコンビテントセル (東洋紡社製) を形質転換した。 アンピシリン耐性を示した 大腸菌のコロニー数個からそれぞれの保有するプラスミ ドの DNAを精製し、 これら を制限酵素 Kpn Iおよび Xho Iで消化して該消化液をァガロースゲル電気泳動で分析し た。 pGL3-TATAの Sma I部位に ERE D N Aがタンデムに 5コピー導入された構造を有 するプラスミ ドを選択し、 これをプラスミ ド pGL3-TATA_EREx5と名づけた。 次いで、 プラスミ ド pUCSV-BSD (フナコシ社) を BamH Iで消化し、 ブラストサイジ ン Sデァミナーゼ遺伝子発現カセットをコ一ドする D N Aを調製した。 該 D N Aと、 前記プラスミ ド pGL3- TATA-EREx5を BamH Iで消化し BAP処理して得られた D N Aとを混 合して、 T4リガーゼを反応させた後、該反応液を用いて大腸菌 DH50コンビテントセル (東洋紡社製) を形質転換した。 アンピシリン耐性を示した大腸菌からプラスミ ド D N Aを調製し、 それぞれを制限酵素 Bam HIで消化して該消化液をァガロースゲル電気 泳動で分析した。 ブラストサイジン Sデァミナーゼ遺伝子発現カセットが BamH I部位 に導入された構造を有するプラスミ ドを選択し、 プラスミ ド pGL3-TATA_EREx5- BSDと 名づけた。 実施例 4 (レポーターアツセィ用安定形質転換細胞の作製) Next, pGL3-TATA was digested with a restriction enzyme SmaI, BAP was added thereto, and the mixture was incubated at 65 ° C for 1 hour. The incubation solution was subjected to low-melting point agarose gel electrophoresis, and DNA was recovered from the gel in the band portion. After mixing about 100 ng of the DNA and about the ERE DNA bound to the tandem and phosphorylated at the end to react with T4 ligase, the reaction solution is used to form a DH5a competent cell of Escherichia coli (Toyobo Co., Ltd.). ) Was transformed. From several colonies of Escherichia coli showing ampicillin resistance, the DNA of each plasmid was purified, digested with restriction enzymes KpnI and XhoI, and the digested solution was analyzed by agarose gel electrophoresis. A plasmid having a structure in which five copies of ERE DNA were introduced in tandem at the SmaI site of pGL3-TATA was selected, and named plasmid pGL3-TATA_EREx5. Next, the plasmid pUCSV-BSD (Funakoshi) was digested with BamHI to prepare a DNA encoding the blasticidin S deaminase gene expression cassette. The DNA is mixed with the DNA obtained by digesting the plasmid pGL3-TATA-EREx5 with BamHI and treating with BAP, and reacting with T4 ligase. Tent cells (Toyobo) were transformed. Plasmid DNA was prepared from Escherichia coli showing ampicillin resistance, each was digested with the restriction enzyme BamHI, and the digested solution was analyzed by agarose gel electrophoresis. A plasmid having a structure in which the blasticidin S deaminase gene expression cassette was introduced into the BamHI site was selected and named plasmid pGL3-TATA_EREx5-BSD. Example 4 (Preparation of Stable Transformed Cells for Reporter Atsushi)
ヒ ト由来の HeLa細胞に、 前述のように作製されたプラスミ ド pGL3- TATA_EREx5-BSD の D N Aを直鎖化して導入し、 安定形質転換細胞を作製した。  The DNA of the plasmid pGL3-TATA_EREx5-BSD prepared as described above was linearized and introduced into human-derived HeLa cells to prepare stable transformed cells.
まず、 プラスミ ド pGL3- TATA-EREx5- BSDの D N Aを Sal Iで消化した。  First, DNA of plasmid pGL3-TATA-EREx5-BSD was digested with SalI.
一方、 約 5 x lO5の細胞の HeLa細胞を、 10°/。 FBSを含む DMEM培地 (日水製薬社製) を 用いて 37 °Cにて 5% C02存在下に、 直径約 10 cmのシャーレ (ファルコン社製) を用い て 24時間培養した。 該細胞に、 リポフエクトァミン (インビトロジェン社製) を用い たリポフエクシヨン法により、 上記の直鎖化されたプラスミ ド pGL3- TATA- EREx5- BSD の D N Aを導入した。 リボフヱクション法の条件はリボフェクトァミンに添付された マニュアルの記載に従って、 処理時間は 5時間、 直鎖化されたプラスミ ド D N Aの総 量は T gZシャーレとし、 リボフヱク トァミン量は 21 / 1 シャーレとした。 リボフ ェクション処理後、 培地を 10°/。 FBSを含む DMEM培地に交換して約 36時間培養した。 次 いで、 該細胞をトリプシン処理によりシャーレから剥がして回収し、 終濃度 mlのブラストサイジン Sが添加された培地の入った培養容器に移し、培地を 3日から 4 日ごとに新しい培地 (ブラストサイジン Sを含む) に交換しながら約 1ヶ月間培養し た。 出現した直径 1 誦から数 mmの細胞コロニーを、 あらかじめ培地を分注しておいた 96穴ビュープレート (ベルトールド社製) にコ口-—ごと移し、 さらに培養した。 細 胞がゥエルの底面の半分以上を占める程度までに増殖したら (移植から約 5日後) 、 トリプシン処理により細胞を剥がして回収し、 2等分して 2枚の新しい 96穴ビュープレ ートに播種した。 1枚はそのまま継代と培養を続け、 マスタープレートとした。 残り 1枚は 2日間培養した後、 ゥエルから培地を除き、 器壁に接着している細胞を PBS (-) で 2回洗浄した後、 5倍に希釈した PGC50 (東洋インキ社製) をゥエルあたり 20 μ 1ずつ 加えて室温に 30分間放置した。 該プレートを、 酵素基質自動インジェクター付きルミ ノメーター LB96p (ベルトールド社製) にそれぞれセットし、 50 μ 1の基質液 PGL100 ( 東洋インキ社製) を自動分注して、 ルシフェラーゼ活性を測定した。 この中で高いル シフェラーゼ活性を示す細胞を 10個選択して保存した。 さらに前記細胞をそれぞれ 10 cmプレート上で拡大培養した。 この 10種の細胞に実施例 1で作製した野生型エスト口 ゲンレセプター ct発現プラスミ ドをリポフエクトァミン (インビトロジェン社製) を 用いたリポフエクシヨン法で、 添付されたマニュアルの記載に従って導入した。 得ら れた細胞に、 DMS0に溶解した E2を培地中の終濃度が 10 nMとなるように加えて 2日間培 養し、 前述した方法に従いルシフヱラーゼ活性を測定した。 E2を添加した系で最も高 レ、活性誘導を示した細胞に対応する野生型エストロゲンレセプターひ発現ブラスミ ド導入前の細胞を、 レポーター遺伝子の導入されたレポーターアツセィ用安定形質転 換細胞として選択した。 実施例 5 (安定形質転換細胞を用いたレポーターアツセィ) On the other hand, the HeLa cell of approximately 5 x lO 5 cells, 10 ° /. The cells were cultured in a DMEM medium containing FBS (manufactured by Nissui Pharmaceutical Co., Ltd.) at 37 ° C. in the presence of 5% CO 2 for 24 hours using a petri dish having a diameter of about 10 cm (manufactured by Falcon). The linearized plasmid pGL3-TATA-EREx5-BSD DNA was introduced into the cells by a lipofection method using lipofectamine (manufactured by Invitrogen). The conditions for the ribofecting method were as described in the manual attached to the ribofectamine, the processing time was 5 hours, the total amount of linearized plasmid DNA was TgZ Petri dish, and the amount of ribofectamine was 21/1 Petri dish. did. After ribofection, remove the medium at 10 ° /. The medium was replaced with a DMEM medium containing FBS and cultured for about 36 hours. Next, the cells are detached from the Petri dish by trypsinization and collected, transferred to a culture vessel containing a medium containing a final concentration of blasticidin S at a final concentration of ml, and the medium is cultivated every 3 to 4 days. The cells were cultured for about one month while exchanging them for Scidin S. A cell colony of several mm from the appearing cell was transferred to a 96-well view plate (manufactured by Berthold) into which the medium had been previously dispensed, and further cultured. Once the cells have grown to cover more than half of the bottom of the well (about 5 days after transplantation), Cells were detached and collected by trypsinization, divided into two equal parts, and seeded on two new 96-well view plates. Subculture and culturing were continued for one sheet as it was, and used as a master plate. After culturing the remaining one for 2 days, remove the medium from the wells, wash the cells adhering to the vessel wall twice with PBS (-), and dilute PGC50 (manufactured by Toyo Ink Co., Ltd.) diluted 5 times with the wells. 20 μl each and left at room temperature for 30 minutes. Each of the plates was set on a luminometer LB96p (manufactured by Berthold) with an automatic enzyme substrate injector, and 50 μl of a substrate solution PGL100 (manufactured by Toyo Ink) was automatically dispensed to measure luciferase activity. Among them, 10 cells showing high luciferase activity were selected and stored. Further, each of the cells was expanded and cultured on a 10 cm plate. The wild-type estogen receptor ct expression plasmid prepared in Example 1 was introduced into these 10 cells by a lipofection method using lipofectamine (manufactured by Invitrogen) according to the description of the attached manual. E2 dissolved in DMS0 was added to the obtained cells so that the final concentration in the medium was 10 nM, and the cells were cultured for 2 days, and luciferase activity was measured according to the method described above. Select the cells before the introduction of the wild-type estrogen receptor-expressing plasmid corresponding to the cells that showed the highest level of activity induction in the system to which E2 was added, as the stable transfected cells with the reporter gene introduced for the reporter assay. did. Example 5 (Reporter assay using stable transformed cells)
実施例 4で選択されたレポーターアツセィ用安定形質転換細胞の約 2 X 106細胞を、 10 cmプレートに播種し、 チヤコールデキストラン処理済み FBSが 10%となるよう添加 された E - MEM培地 (以下、 FBS含有 E-MEM培地と記す) で、 5% C02条件下 37 °Cにて 1日 間培養を行った。 該細胞に、 リボフヱクトァミン (Ir itrogen社製) を用いてそのプ 口トコールに従い、 7 i gのヒ ト野生型エストロゲンレセプターひ遺伝子発現プラスミ ド PRc/RSV_hER aコザックまたは のヒ ト変異型エストロゲンレセプターひ遺伝子 発現プラスミ ド pRc/RSV- hERaF404Lコザックを導入した。 37 °Cにて 16時間培養した後 、 培地を交換しさらに 3時間培養した。 その後、 細胞を集めて FBS含有 E- MEM培地に懸 濁して均一化し、予め DMS0で溶解した様々な濃度の抗エストロゲン様化合物を添加し た (DMS0終濃度 0. 1%) 96穴プレートに播種した。 また、 同様に様々な濃度の抗エス トロゲン様化合物と 10 nMの E 2とを同時に添カ卩した (DMS0終濃度 0. 1%) 96穴プレー 卜に上記細胞を播種した。 細胞が播種された 96穴プレートは 37 °Cにて約 40時間培養 した後、 5倍に希釈した細胞溶解剤 PGC50 (二ツボンジーン社製) を 50 / lZwel lずつ 加えて、 時々軽くゆすりながら室温にて 30分間放置して細胞を溶解させた。 このよう に調製された細胞溶解液を 10 μ 1ずつ 96穴白色サンプルプレート (ベルトールドネ土製 ) に採取し、 基質自動インジェクター付きのルミノメーター LB96p (ベルトールド社 製) で 50 μ ΐ/wellずつ酵素基質液 PGL100 (二ツボンジーン社製) を添加し、 直ちに発 光量を 5秒間測定した。 Approximately 2 × 10 6 cells of the reporter stable transfected cells selected in Example 4 were seeded on a 10-cm plate, and E-MEM medium supplemented with 10% of charcoal dextran-treated FBS was added. (hereinafter referred to as FBS-containing E-MEM medium), the was one day culture at 5% C0 2 under 37 ° C. To the cell, Lvov We accordance with the flop port tocol using transfected § Min (Ir itrogen Inc.), 7 human wild-type estrogen receptor ig shed gene expression plasmid P Rc / RSV_hER a Kozak or human mutant estrogen Receptor gene expression plasmid pRc / RSV-hERaF404L Kozak was introduced. After culturing at 37 ° C for 16 hours, the medium was replaced and the cells were further cultured for 3 hours. The cells were then collected, suspended and homogenized in E-MEM medium containing FBS, and seeded in a 96-well plate containing various concentrations of antiestrogenic compounds previously dissolved in DMS0 (DMS0 final concentration 0.1%). did. Similarly, various concentrations of anti-s The cells were seeded on a 96-well plate in which a trogen-like compound and 10 nM E2 were simultaneously added (DMS0 final concentration: 0.1%). The 96-well plate in which the cells have been seeded is cultured at 37 ° C for about 40 hours, and the cell lysing agent PGC50 (manufactured by Futtsubon Gene), diluted 5 times, is added at 50 / l Zwell at a time, and then shaken occasionally at room temperature. And left for 30 minutes to lyse the cells. 10 μl of the cell lysate prepared in this manner was collected into a 96-well white sample plate (Berthold), and the enzyme substrate solution was added at 50 μΐ / well using a luminometer LB96p (Berthold) with an automatic substrate injector. PGL100 (manufactured by Futtsubon Gene) was added, and the light emission was measured immediately for 5 seconds.
野生型エストロゲンレセプター αもしくは本発明レセプター F404Lに対する、 4— ヒ ドロキシタモキシフェン、 ラロキシフェンまたは ZM189154のエストロゲン様作用の 測定結果をそれぞれ図 1〜図 3に示した。  The results of measuring the estrogenic effect of 4-hydroxytamoxifen, raloxifene or ZM189154 on the wild-type estrogen receptor α or the receptor F404L of the present invention are shown in FIGS. 1 to 3, respectively.
また、野生型エストロゲンレセプター αもしくは本発明レセプター F404Lに対する、 4—ヒ ドロキシタモキシフェン、 ラロキシフェンまたは ZM189154の抗エストロゲン作 用の測定結果をそれぞれ図 4〜図 6に示した。 実施例 6 (増幅用オリゴヌクレオチドの作製)  4 to 6 show the results of measuring the antiestrogenic action of 4-hydroxytamoxifen, raloxifene or ZM189154 on wild-type estrogen receptor α or the receptor F404L of the present invention, respectively. Example 6 (Preparation of amplification oligonucleotide)
配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4で示されるアミノ酸に 相当する位置にあるアミノ酸をコードする塩基配列力 S、野生型エストロゲンレセプタ 一 αのアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードす る塩基配列に置換されているか否かを検出するために、 ヒ ト由来野生型エストロゲン レセプターのァミノ末端から 4 0 4番目のフエ-ルァラニンをコードする部位を核 酸の増幅範囲内に含め、 そして G C含量が 30%以上 70%以下で、 かつ約 20塩基の長さを 有するオリゴヌクレオチドを設計する。設計された塩基配列に基づきオリゴヌクレオ チドを作製する。 (以下、 配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4 で示されるアミノ酸に相当する位置にあるアミノ酸をコードする塩基配列力 野生型 エストロゲンレセプター αのアミノ酸配列の相当する位置にあるアミノ酸とは異な るアミノ酸をコードする塩基配列に置換されている変異を 404変異と記すことがある。 ) . 実施例 7 (ヒ ト組織を材料にした 404変異の解析) The nucleotide sequence S encoding the amino acid at the position corresponding to the amino acid No. 404 of the amino acid sequence represented by SEQ ID NO: 1, the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor α In order to detect whether or not the amino acid sequence has been replaced with a nucleotide sequence encoding a different amino acid, amplification of the nucleic acid at the 404th phenylalanine-encoding site from the amino terminal of the human wild-type estrogen receptor is performed. Design oligonucleotides that fall within the range and have a GC content between 30% and 70% and a length of about 20 bases. An oligonucleotide is prepared based on the designed nucleotide sequence. (Hereinafter, the amino acid at the corresponding position of the base sequence forces the wild-type amino acid sequence of the estrogen receptor α encoding the amino acid at the position corresponding to amino acid represented by amino acid numbers 4 0 4 of the amino acid sequence shown in SEQ ID NO: 1 May be referred to as a 404 mutation when the mutation is replaced by a nucleotide sequence encoding a different amino acid.) Example 7 (Analysis of 404 mutation using human tissue as material)
ヒト肝臓凍結サンプル 100 mg分を [4 M グァ-ジンチオシァネート, 0. 1 M Tris-Cl (pH 7. 5) 1% /3 _メルカプトエタノール] 5 m lに加え、 ポリ トロンホモジ ナイザーで粉砕する。 これをあらかじめ超遠心用チューブに入れておいた 25 mlの 5. 7 M塩化セシウム溶液に重層し、 90, 000 X gで 24時間密度勾配超遠心分離を行うことに より R NAを分離する。 この R N Aを回収し、 70%エタノールでリンスした後、 室温で 風乾する。 これを滅菌水 10 に溶解し、 濃度測定する。 この R N A 1〜5 §を鎳型 にして、 オリゴ dTプライマー (アマシャムバイオテック社製) l // gを逆転写合成の際 のプライマーとして用い、 Superscript II (インビトロジェン社製) により添付バッ ファー中で 42 °Cで 1時間反応させることにより c D N Aを合成する。 このようにして 得られた c D N A溶液の 50分の 1を铸型にして、 配列番号 1 0で示される塩基配列を 有するオリゴヌクレオチドと配列番号 1 6で示される塩基配列を有するオリゴヌク レオチドとを用いて PCRを行う。 該 PCRは、 Pfu DNAポリメラーゼ (Stratagene社製) を使用し、 200 μ Μの 4種類の各々の塩基 (dATP, dTTP, dGTP, dCTP) および前記酵素 に添付された専用バッファ一中で、 94 °C、 1分間次いで 55 °C、 30秒間さらに 72 °C、 1分間を 1サイクルとして 35サイクル実施する。 増幅された D N Aを、 1°/。のァガロー ス (Agarose S、 二ツボンジーン社製) を含むゲル中で電気泳動して分離し、回収する 。 この全量を鎳型にして、 配列番号 11で示される塩基配列を有するオリゴヌクレオチ ド 5 pMをシークェンスプライマーとして用いダイターミネータ一シークェンスキット FS (アプライ ドバイオシステムズ社製) によりダイレク トシークェンス用のサンプル を調製する。 これを、 自動 DNAシークェンサ一 (アプライドバイオシステムズ社製、 モデル 3700) を用いた塩基配列解析に供し塩基配列を決定する。 このようにして、 配 列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列を明らかにする。 実施例 8 (検体中に含まれるゲノム D N Aの抽出) Add 100 mg of frozen human liver sample to 5 ml of [4 M guar-zine thiosinate, 0.1 M Tris-Cl (pH 7.5) 1% / 3_mercaptoethanol], and grind with a polytron homogenizer. . This is overlaid on 25 ml of a 5.7 M cesium chloride solution previously placed in an ultracentrifuge tube, and RNA is separated by performing a density gradient ultracentrifugation at 90,000 X g for 24 hours. Collect the RNA, rinse with 70% ethanol, and air-dry at room temperature. Dissolve this in sterile water 10 and measure the concentration. And the RNA 1 to 5 § to鎳型, oligo dT primer (Amersham Biotech) using l // g as a primer during reverse transcription synthesis, in the accompanying buffer by Superscript II (Invitrogen) The cDNA is synthesized by reacting at 42 ° C for 1 hour. One-fiftieth of the cDNA solution thus obtained was made into type III, and an oligonucleotide having the base sequence of SEQ ID NO: 10 and an oligonucleotide having the base sequence of SEQ ID NO: 16 were separated. Perform PCR using The PCR uses the Pfu DNA Polymerase (Stratagene Co., Ltd.), 200 mu 4 kinds of each of the bases of Μ (dATP, dTTP, dGTP, dCTP) and in only buffer one attached to the enzyme, 94 ° C, 1 minute, then 55 ° C, 30 seconds, 72 ° C, 1 minute, 1 cycle, 35 cycles. Amplified DNA at 1 ° /. Separate by electrophoresis in a gel containing Agarose S (Agarose S, manufactured by Futaba Gene) and collect. Using this total amount as a type I, a sample for direct sequence was prepared using a dye terminator-sequence kit FS (manufactured by Applied Biosystems) using 5 pM of oligonucleotide having the nucleotide sequence of SEQ ID NO: 11 as a sequence primer. Prepare. This is subjected to nucleotide sequence analysis using an automatic DNA sequencer (Applied Biosystems, Model 3700) to determine the nucleotide sequence. In this manner, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1 is clarified. Example 8 (extraction of genomic DNA contained in specimen)
毛根のついた 1本の毛髪をプラスチック製チューブに移し、 BCL buffer [10 mM Tris-Cl (pH 7. 5) , 5 mM MgCl2 , 0. 32 M sucrose, l% (v/v) Triton X- 100] を 200 μ 1 加え、 さらに最終濃度 100 ; g/mlのプロティナーゼ Κ溶液および最終濃度 0. 5% (w/v)の SDSをそれぞれ混合する。 この混合物を 70 °Cにて 1時間保温した後、 等量のフヱノー ル //クロ口ホルムを加え、 激しく振とうした後、 遠心分離 (15,000 rpm, 5分間, 4 °C) する。 水層を回収し、 もう一度フエノール抽出を行う。 回収された水層に等量の クロ口ホルムを加え、 激しく振とうした後、 遠心分離により水層を回収する。 これに 500 μ 1の 100°/。エタノールを加え、 - 80 °Cにて 20分間保温した後、 遠心分離する。 得ら れたペレッ トを乾燥した後、 滅菌水に溶解させる。 Transfer one hair with hair follicle to a plastic tube and add BCL buffer [10 mM 200 µl of Tris-Cl (pH 7.5), 5 mM MgCl 2 , 0.32 M sucrose, l% (v / v) Triton X-100], and a final concentration of 100; g / ml proteinase. The solution and the final concentration of 0.5% (w / v) SDS are mixed respectively. Incubate the mixture at 70 ° C for 1 hour, add an equal volume of chloroform // shake the form, shake vigorously, and centrifuge (15,000 rpm, 5 minutes, 4 ° C). Collect the aqueous layer and perform another phenol extraction. Add an equal volume of black-mouthed form to the collected aqueous layer, shake vigorously, and collect the aqueous layer by centrifugation. This is 500 μl of 100 ° /. Add ethanol, incubate at -80 ° C for 20 minutes, and centrifuge. After drying the obtained pellet, dissolve it in sterile water.
この他、 ゲノム D N Aの採取可能な細胞として末梢血を用いる。 10 mlの血液を採 取し、 DNA Extraction kit (Stratagene社製) を用いて、 キット添付の説明書に従い ゲノム D N Aを抽出する。 実施例 9 ( P C R— S S C P法による 404変異の解析)  In addition, peripheral blood is used as cells from which genomic DNA can be collected. Collect 10 ml of blood, and extract genomic DNA using a DNA Extraction kit (Stratagene) according to the instructions attached to the kit. Example 9 (Analysis of 404 mutation by PCR—SSCP method)
まず、配列番号 7〜1 1のいずれかに示される塩基配列からなるオリゴヌクレオチ ドからフォワードプライマーを 1種、 配列番号 1 2〜1 6のいずれかに示される塩基 配列からなるオリゴヌクレオチドからリバースプライマーを 1種選択し、 D N A合成 機にて化学合成する。 この際、 5'末端を蛍光物質 FITCで修飾しておく。次に実施例 8で 得られるゲノム D N A 100 ngを铸型にして、 FITC修飾された上記オリゴヌクレオチ ド各 200 pMをプライマーとして用いた PCRにより、 エストロゲンレセプター αのアミ ノ酸配列をコードする D N Aを増幅する。 該 PCRは、 Ex Taq DNAポリメラーゼ (宝酒 造社製) を使用し、 200 の 4種類の各々の塩基 (dATP, dTTP, dGTP, dCTP) および 前記酵素に添付された専用バッファーを用いて、 94 °C、 30秒間次いで 55 °C、 30秒間 さらに 74 °C、 30秒間を 1サイクルとして 40サイクル実施する。 反応後、 得られる増 幅産物の 1/20量を 95%ホルムアミ ド中で 95°C、 5分間保温した後、 急冷させる。 そのう ち、 2. 5 1を 5°/。未変性ポリアクリルアミ ドゲルに供し、 180 mMトリス一ホゥ酸緩衝液 (pH 8. 0) 中で電気泳動を行う。 電気泳動の条件は、 室温、 定電力 40 W、 5時間で実 施する。 泳動終了後、 蛍光読み取りスキャナーでゲル中の蛍光シグナルを検出するこ とにより、 増幅核酸断片を検出する。 隣り合わせて泳動しておく野生型エストロゲン レセプター αのアミノ酸配列をコードする D N Αにおける増幅産物のバンドの移動 度と比較して、変異型エストロゲンレセプター c のアミノ酸配列をコードする D N A における増幅産物は移動度が異なるため、増幅配列中における変異の存在の有無が検 定可能である。 実施例 1 0 (塩基配列解析による 404変異の解析) First, a forward primer is selected from an oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 7 to 11, and a reverse primer is obtained from an oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 12 to 16. And chemically synthesize it with a DNA synthesizer. At this time, the 5 'end is modified with the fluorescent substance FITC. Next, 100 ng of the genomic DNA obtained in Example 8 was converted into type II, and the DNA encoding the amino acid sequence of estrogen receptor α was subjected to PCR using 200 pM of each of the above-mentioned FITC-modified oligonucleotides as primers. Amplify. The PCR was performed using Ex Taq DNA polymerase (Takara Shuzo) and 200 bases (dATP, dTTP, dGTP, dCTP) and the dedicated buffer attached to the enzyme. Perform 40 cycles of 30 ° C, 30 seconds, then 55 ° C, 30 seconds, and 74 ° C, 30 seconds. After the reaction, incubate 1/20 of the resulting amplified product in 95% formamide at 95 ° C for 5 minutes, then quench. Of these, 2.5 1 is 5 ° /. Run on a native polyacrylamide gel and perform electrophoresis in 180 mM Tris-monophosphate buffer (pH 8.0). The electrophoresis conditions are room temperature, constant power of 40 W, and 5 hours. After the electrophoresis, the amplified nucleic acid fragment is detected by detecting the fluorescent signal in the gel with a fluorescence reading scanner. Wild-type estrogens running side by side Compared with the mobility of the band of the amplified product in DNΑ coding for the amino acid sequence of receptor α, the amplified product in the DNA coding for the amino acid sequence of mutant estrogen receptor c has a different mobility. The presence or absence of can be detected. Example 10 (Analysis of 404 mutation by nucleotide sequence analysis)
実施例 9において検出される変異型エス トロゲンレセプター c のアミノ酸配列を ' コードする D N Aのバンドに対応する位置のゲルの一部を 1 mm角に切り取り、 滅菌 水 400 μ ΐ中でー晚浸透し、 D N Aを溶出させる。 ゲルを除去し、エタノール沈殿によ り精製後、 D N Aを 50 μ 1の滅菌水に溶解する。 そのうち、 1 μ 1を铸型にして、 実施例 9において PCR- SSCPに用いたオリゴヌクレオチドを使用して PCRを行い、 エストロゲ ンレセプターひのアミノ酸配列をコードする D N Αを増幅する。 PCRは、 Ex Taq DNA ポリメラーゼ (宝酒造社製) を用い、 該酵素に添付されたバッファ一中で、 94 °C、 30秒間次いで 55 °C、 30秒間さらに 74 °C、 30秒間を 1サイクルとして 30サイクル実施 する。 反応終了後、 増幅された D N Aをァガロースゲル電気泳動により確認した後、 これを pGEM-T Easy vector (プロメガ社製) にクローニングする。 得られたプラスミ 卜を 型にして、 BigDye Terminator cycle sequence ready reaction Ki t (ァプフ ィ ドバイオシステムズ社製) と自動 D N Aシークェンサ一 (アプライドバイオシステ ムズ社製モデル 3700) を使用して塩基配列を決定する。 このようにして、 配列番号 1 で示されるアミノ酸配列のアミノ酸番号 4 0 4で示されるアミノ酸に相当する位置 にあるアミノ酸をコードする塩基配列を明らかにする。 実施例 1 1 (PCRと制限酵素消化を組み合わせた 404変異の解析)  A part of the gel at the position corresponding to the DNA band encoding the amino acid sequence of the mutant estrogen receptor c detected in Example 9 was cut into 1 mm squares, and permeated in 400 μl of sterile water. Elute the DNA. After removing the gel and purifying by ethanol precipitation, dissolve the DNA in 50 μl of sterile water. Among them, 1 μl is converted into type 、 and PCR is performed using the oligonucleotide used for PCR-SSCP in Example 9 to amplify DN D encoding the amino acid sequence of the estrogen receptor. PCR was performed using Ex Taq DNA Polymerase (Takara Shuzo) in a buffer attached to the enzyme at 94 ° C for 30 seconds, followed by 55 ° C for 30 seconds, and a further cycle at 74 ° C for 30 seconds. Perform 30 cycles. After completion of the reaction, the amplified DNA is confirmed by agarose gel electrophoresis, and cloned into pGEM-T Easy vector (promega). Using the resulting plasmid as a template, determine the nucleotide sequence using the BigDye Terminator cycle sequence ready reaction Kit (available from Applied Biosystems) and an automatic DNA sequencer (available from Applied Biosystems, model 3700). I do. Thus, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 404 in the amino acid sequence represented by SEQ ID NO: 1 is clarified. Example 1 1 (Analysis of 404 mutation by combining PCR and restriction enzyme digestion)
ゲノム D NAあるいは cD N Aを銹型として配列番号 2 6で示される塩基配列を有 するプライマーと配列番号 2 7で示される塩基配列を有するプライマーとを用いて PCRを行い、 ヒ トエストロゲンレセプター αのアミノ酸配列をコードする D N Aを增 幅する。 上記の PCRは、 Pfu DNAポリメラーゼ (Stratagene社製) を使用し、 該酵素に 添付されたバッファ一中で、 94 °C、 1分間次いで 55 °C、 30秒間さらに 72 °C、 1分間 を 1サイクルとして 30サイクル実施する。 得られた 100塩基対の長さの D N Aを制限 酵素 Nhe Iで処理する。 野生型エス トロゲンレセプター αのアミノ酸配列をコードす る D N Aの場合は消化されない。 一方、 ヒ ト由来野生型エストロゲンレセプターひの ァミノ末端から 4 0 4番目のフエ二ルァラニンがロイシンに変異した変異型エスト ロゲンレセプター αのアミノ酸配列をコードする D N Aの場合は、 GCTAGCという配列 を有するため、 Nhe Iにより消化され、 75塩基対の D N Aと 25塩基対の D N Aとが生 ずる。 このようにして該変異を有するエストロゲンレセプター αをコードする D N A を検出することができる。 実施例 1 2 (本発明レセプター A405Vをコードする D N Aの発現プラスミ ドの作製) 実施例 1で作製されたプラスミ ド pRc/RSV- hERaコザックを铸型にし、塩基置換用の 合成オリゴヌクレオチドと Quickchange Site-directed mutagenesis Kit (Stratagene 社製)を用いて、 該キットの説明書に記載の方法に準じて変異を導入した。 まず、 配 列番号 2 9で示される塩基配列からなるオリゴヌクレオチド、および配列番号 3 0で 示される塩基配列からなるオリゴヌクレオチドを化学合成した。 伸長反応は、 pRc/RSV-hER aコザックを铸型とし、 前記 2種のオリゴヌクレオチドをプライマーと して用いて、 Pfu Turbo DNAポリメラーゼ (Stratagene社) および各々 200 μ Mの 4種類 の塩基 (dATP, dTTP, dGTP, dCTP) を添カ卩し、 前記酵素に添付された専用バッファー 中で、 95 °C、 30秒間次いで 55 °C、 1 分間さらに 68 °C、 10分間の保温を 1サイクル としてこれを 16サイクル行う条件で実施した。 次に、 この反応液の一部を取り、制限 酵素 Dpn I (Stratagene社) で 37 °Cにて 1 時間消化した。 該消化液を用いて大腸菌 XLI- Blueコンビテントセル (Stratagene社) を形質転換した。 アンピシリン耐性を示 した大腸菌のコロニー数個からそれぞれの保有するプラスミ ド D N Aを精製し、 これ らの塩基配列を解析した。配列番号 1で示されるァミノ酸配列においてァミノ酸番号 4 0 5で示されるァラニンをコードするコドン (GCT) 力 バリンをコードするコド ン (GTT) に置換される変異の導入が確認されたプラスミ ドを pRc/RSV - hERaA405Vコザ ックと名づけた。 実施例 1 3 (安定形質転換細胞を用いたレポ一ターアツセィ) PCR was performed using a primer having the nucleotide sequence of SEQ ID NO: 26 and a primer having the nucleotide sequence of SEQ ID NO: 27, using genomic DNA or cDNA as a rust type, to thereby obtain human estrogen receptor α. Promote the DNA encoding the amino acid sequence. The above PCR uses Pfu DNA polymerase (manufactured by Stratagene) in a buffer attached to the enzyme, at 94 ° C for 1 minute, then at 55 ° C for 30 seconds, and further at 72 ° C for 1 minute. For 30 cycles. The resulting 100 bp DNA is treated with the restriction enzyme NheI. The DNA encoding the amino acid sequence of wild-type estrogen receptor α is not digested. On the other hand, DNA encoding the amino acid sequence of the mutant estrogen receptor α in which the phenylalanine at the 4th position from the amino terminal of the human-derived wild-type estrogen receptor is mutated to leucine has the sequence GCTAGC. Digested with NheI to yield 75 bp DNA and 25 bp DNA. Thus, the DNA encoding the estrogen receptor α having the mutation can be detected. Example 1 2 (Preparation of Expression Plasmid of DNA Encoding Receptor A405V of the Present Invention) Plasmid pRc / RSV-hERa prepared in Example 1 was made into a type III, a synthetic oligonucleotide for base substitution and a Quickchange Site Using a -directed mutagenesis Kit (manufactured by Stratagene), a mutation was introduced according to the method described in the instruction manual of the kit. First, an oligonucleotide consisting of the base sequence shown by SEQ ID NO: 29 and an oligonucleotide consisting of the base sequence shown by SEQ ID NO: 30 were chemically synthesized. The extension reaction was carried out using pRc / RSV-hERa Kozak as type III, the two oligonucleotides as primers, Pfu Turbo DNA polymerase (Stratagene) and four types of 200 μM bases (dATP , dTTP, dGTP, dCTP), and in a dedicated buffer attached to the enzyme, 95 ° C, 30 seconds, then 55 ° C, 1 minute, further 68 ° C, 10 minutes incubation as one cycle. This was performed under the condition of performing 16 cycles. Next, a part of this reaction solution was taken and digested with a restriction enzyme Dpn I (Stratagene) at 37 ° C for 1 hour. Escherichia coli XLI-Blue competent cells (Stratagene) were transformed using the digested solution. From each of several colonies of Escherichia coli showing ampicillin resistance, the respective plasmid DNAs were purified and their nucleotide sequences were analyzed. Codon (GCT) encoding alanine represented by amino acid number 405 in the amino acid sequence represented by SEQ ID NO: 1 Plasmid confirmed to have a mutation substituted for valine-encoded codon (GTT) Was named pRc / RSV-hERaA405V Kozak. Example 13 (Reporter assay using stable transformed cells)
実施例 4で選択されたレポーターアツセィ用安定形質転換細胞の約 2 X 106細胞を、 10 cmプレートに播種し、 チヤコールデキス トラン処理済み FBSが 10%となるよう添加 された E - MEM培地 (以下、 FBS含有 E - MEM培地と記す) で、 5% C02条件下 37 °Cにて 1日 間培養を行った。 該細胞に、 リポフエクトァミン (Invitrogen社製) を用いてそのプ 口トコールに従い、 のヒ ト野生型エストロゲンレセプター α遺伝子発現プラスミ ド pRc/RSV- hER aコザックまたは 7 // gのヒ ト変異型エストロゲンレセプター α遺伝子 発現プラスミ ド pRc/RSV-hERaA405Vコザックを導入した。 37 °Cにて 16時間培養した後 、 培地を交換しさらに 3時間培養した。 その後、 細胞を集めて FBS含有 E-MEM培地に懸 濁して均一化し、予め DMS0で溶解した様々な濃度の抗エストロゲン様化合物を添カロし た (DMS0終濃度 0. 1%) 96穴プレートに播種した。 また、 同様に様々な濃度の抗エス トロゲン様化合物と 10 nMの E 2とを同時に添加した (DMS0終濃度 0. 1%) 96穴プレー トに上記細胞を播種した。 細胞が播種された 96穴プレートは 37 °Cにて約 40時間培養 した後、 5倍に希釈した細胞溶解剤 PGC50 (二ツボンジーン社製) を 50 UZwel lずつ 加えて、 時々軽くゆすりながら室温にて 30分間放置して細胞を溶解させた。 このよう に調製された細胞溶解液を 10 1ずつ 96穴白色サンプルプレート (ベルトールド社製 ) に採取し、 基質自動インジェクター付きのルミノメーター LB96p (ベルトールド社 製) で 50 ;u l/wellずつ酵素基質液 PGL100 (二ツボンジーン社製) を添加し、 直ちに発 光量を 5秒間測定した。 Approximately 2 × 10 6 cells of the stable transformant for the reporter assay selected in Example 4 were seeded on a 10-cm plate, and an E-MEM medium (10%) supplemented with charcoal dextran-treated FBS was added at 10%. In the following, the cells were cultured in an E-MEM medium containing FBS at 37 ° C. under 5% CO 2 for 1 day. According to the protocol, lipofectamine (manufactured by Invitrogen) was used to prepare the human wild-type estrogen receptor α gene expression plasmid pRc / RSV-hER a Kozak or 7 // g human mutation. Estrogen receptor α gene expression plasmid pRc / RSV-hERaA405V Kozak was introduced. After culturing at 37 ° C for 16 hours, the medium was replaced and the cells were further cultured for 3 hours. Thereafter, the cells were collected, suspended in an E-MEM medium containing FBS, homogenized, and supplemented with various concentrations of antiestrogen-like compound previously dissolved in DMS0 (DMS0 final concentration 0.1%) in a 96-well plate. Seeded. Similarly, the above cells were seeded on a 96-well plate to which various concentrations of an antiestrogenic compound and 10 nM of E2 were simultaneously added (final concentration of DMS0 0.1%). The 96-well plate in which the cells have been seeded is cultured at 37 ° C for about 40 hours. And left for 30 minutes to lyse the cells. In thus prepared cell lysate 10 1 by 96 well white sample plate was taken (manufactured by Berthold), luminometer with substrate automatic injector LB96P (manufactured by Berthold) 50; ul / w e ll by enzyme The substrate solution PGL100 (manufactured by Futtsubon Gene) was added, and the emitted light was immediately measured for 5 seconds.
野生型エストロゲンレセプター αもしくは本発明レセプター A405Vに対する、 4— ヒ ドロキシタモキシフェン、 ラロキシフェンまたは ZM189154のエストロゲン様作用の 測定結果をそれぞれ図 7〜図 9に示した。  The measurement results of the estrogenic effect of 4-hydroxytamoxifen, raloxifene or ZM189154 on the wild-type estrogen receptor α or the receptor A405V of the present invention are shown in FIGS. 7 to 9, respectively.
また、野生型エス トロゲンレセプターひもしくは本発明レセプター A405Vに対する、 4—ヒ ドロキシタモキシフェン、 ラロキシフェンまたは ZM189154の抗エス トロゲン作 用の測定結果をそれぞれ図 1 0〜図 1 2に示した。 実施例 1 4 (増幅用オリゴヌクレオチドの作製)  In addition, the measurement results of the antiestrogenic action of 4-hydroxytamoxifen, raloxifene or ZM189154 on the wild-type estrogen receptor or the receptor A405V of the present invention are shown in FIGS. 10 to 12, respectively. Example 14 (Preparation of oligonucleotide for amplification)
配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 5で示されるアミノ酸に 相当する位置にあるアミノ酸をコードする塩基配列が、野生型エス トロゲンレセプタ 一 αのアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードす る塩基配列に置換されているか否かを検出するために、 ヒ ト由来野生型エストロゲン レセプターのァミノ末端から 4 0 5番目のァラニンをコードする部位を核酸の増幅 範囲内に含め、 そして G C含量が 30%以上 70%以下で、 かつ約 20塩基の長さを有するォ リゴヌクレオチドを設計する。設計された塩基配列に基づきオリゴヌクレオチドを作 製する。 (以下、 配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 5で示され るアミノ酸に相当する位置にあるアミノ酸をコードする塩基配列が、野生型エストロ ゲンレセプターひのアミノ酸配列の相当する位置にあるアミノ酸とは異なるァミノ 酸をコードする塩基配列に置換されている変異を 405変異と記すことがある。 ) 実施例 1 5 (ヒ ト組織を材料にした 405変異の解析) The amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 Detects whether the nucleotide sequence encoding the amino acid at the corresponding position has been replaced with a nucleotide sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor 1α For this purpose, the region encoding the alanine at position 405 from the amino terminus of the human wild-type estrogen receptor is included in the range of nucleic acid amplification, and the GC content is 30% or more and 70% or less, and about 20 bases. Design oligonucleotides that have a length. Create oligonucleotides based on the designed base sequence. (Hereinafter, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid No. 405 of the amino acid sequence shown by SEQ ID No. 1 is A mutation substituted with a nucleotide sequence encoding an amino acid different from a certain amino acid may be referred to as a 405 mutation.) Example 15 (Analysis of 405 mutation using human tissue as material)
ヒ ト肝臓凍結サンプル 100 mg分を [4 M グァニジンチオシァネート, 0. 1 M Tris-Cl (pH 7. 5) 1% 3—メルカプトエタノール] 5 m lに加え、 ポリ トロンホモジ ナイザーで粉砕する。 これをあらかじめ超遠心用チューブに入れておいた 25 mlの 5. 7 M塩化セシウム溶液に重層し、 90, 000 X gで 24時間密度勾配超遠心分離を行うことに より R N Aを分離する。 この R N Aを回収し、 70%エタノールでリンスした後、 室温で 風乾する。 これを滅菌水 10 x lに溶解し、 濃度測定する。 この R N A l〜5 gを铸型 にして、 オリゴ dTプライマー (アマシャムバイオテック社製) l /z gを逆転写合成の際 のプライマーとして用い、 Superscript II (インビトロジェン社製) により添付バッ ファー中で 42 °Cで 1時間反応させることにより c D N Aを合成する。 このようにして 得られた c D N A溶液の 50分の 1を铸型にして、 配列番号 1 0で示される塩基配列を 有するオリゴヌクレオチドと配列番号 1 6で示される塩基配列を有するオリゴヌク レオチドとを用いて PCRを行う。 該 PCRは、 Pfu DNAポリメラーゼ (Stratagene社製) を使用し、 200 の 4種類の各々の塩基 (dATP, dTTP, dGTP, dCTP) および前記酵素 に添付された専用バッファ一中で、 94 °C、 1分間次いで 55 °C、 30秒間さらに 72 °C、 1分間を 1サイクルとして 35サイクル実施する。 増幅された D N Aを、 1°/。のァガロー ス (Agarose S、 二ツボンジーン社製) を含むゲル中で電気泳動して分離し、回収する 。 この全量を铸型にして、 配列番号 11で示される塩基配列を有するオリゴヌクレオチ ド 5 pMをシークェンスプライマーとして用いダイターミネータ一シークェンスキット FS (アプライ ドバイオシステムズ社製) によりダイレク トシークェンス用のサンプル を調製する。 これを、 自動 DNAシークェンサ一 (アプライ ドバイオシステムズ社製、 モデル 3700) を用いた塩基配列解析に供し塩基配列を決定する。 このようにして、 配 列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 5で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列を明らかにする。 実施例 1 6 ( P C R— S S C P法による 405変異の解析) Add 100 mg of the frozen human liver sample to 5 ml of [4 M guanidine thiocyanate, 0.1 M Tris-Cl (pH 7.5) 1% 3-mercaptoethanol], and grind with a polytron homogenizer. This is layered on 25 ml of a 5.7 M cesium chloride solution previously placed in an ultracentrifuge tube, and RNA is isolated by performing density gradient ultracentrifugation at 90,000 X g for 24 hours. Collect the RNA, rinse with 70% ethanol, and air-dry at room temperature. Dissolve this in 10 xl of sterile water and measure the concentration. This l ~ 5 g of RNA was converted into type III, oligo dT primer (Amersham Biotech) l / zg was used as a primer for reverse transcription synthesis, and Superscript II (Invitrogen) was used in the attached buffer. The cDNA is synthesized by reacting at ° C for 1 hour. One-fiftieth of the cDNA solution thus obtained was made into type III, and an oligonucleotide having the base sequence of SEQ ID NO: 10 and an oligonucleotide having the base sequence of SEQ ID NO: 16 were separated. Perform PCR using The PCR was performed using Pfu DNA polymerase (manufactured by Stratagene) at 200 ° C. in a dedicated buffer attached to each of the four bases (dATP, dTTP, dGTP, dCTP) and the enzyme at 94 ° C. Perform 35 cycles of 1 minute, followed by 55 ° C, 30 seconds, and 72 ° C, 1 minute, 1 cycle. Amplified DNA at 1 ° /. Separation and recovery by electrophoresis in a gel containing Agarose S (Agarose S, manufactured by Futatsu Gene) . Using this total amount as a type I, a sample for direct sequence was prepared using a dye terminator-sequence kit FS (manufactured by Applied Biosystems) using 5 pM of oligonucleotide having the nucleotide sequence of SEQ ID NO: 11 as a sequence primer. Prepare. This is subjected to nucleotide sequence analysis using an automatic DNA sequencer (Applied Biosystems, Model 3700) to determine the nucleotide sequence. Thus, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 405 in the amino acid sequence represented by SEQ ID NO: 1 is clarified. Example 16 (Analysis of 405 mutations by PCR-SSCP method)
まず、配列番号 7〜 1 1のいずれかに示される塩基配列からなるオリゴヌクレオチ ドからフォワードプライマーを 1種、 配列番号 1 2〜 1 6のいずれかに示される塩基 配列からなるオリゴヌクレオチドからリバースプライマーを 1種選択し、 D N A合成 機にて化学合成する。 この際、 5'末端を蛍光物質 FITCで修飾しておく。次に実施例 8で 得られるゲノム D N A 100 ngを铸型にして、 FITC修飾された上記オリゴヌクレオチ ド各 200 pMをプライマーとして用いた PCRにより、 エストロゲンレセプター αのアミ ノ酸配列をコードする D N Aを増幅する。 該 PCRは、 Ex Taq DNAポリメラーゼ (宝酒 造社製) を使用し、 200 の 4種類の各々の塩基 (dATP, dTTP, dGTP, dCTP) および 前記酵素に添付された専用バッファーを用いて、 94 °C、 30秒間次いで 55 °C、 30秒間 さらに 74 °C、 30秒間を 1サイクルとして 40サイクル実施する。 反応後、 得られる増 幅産物の 1/20量を 95%ホルムアミ ド中で 95°C、 5分間保温した後、 急冷させる。 そのう ち、 2. 5 μ 1を 5%未変性ポリアクリルアミ ドゲルに供し、 180 mMトリス—ホウ酸緩衝液 ( H 8. 0) 中で電気泳動を行う。 電気泳動の条件は、 室温、 定電力 40 W、 5時間で実 施する。 泳動終了後、 蛍光読み取りスキャナーでゲル中の蛍光シグナルを検出するこ とにより、 増幅核酸断片を検出する。 隣り合わせて泳動しておく野生型エス トロゲン レセプター αのアミノ酸配列をコードする D N Αにおける増幅産物のバンドの移動 度と比較して、変異型エストロゲンレセプタ一ひのアミノ酸配列をコードする D N A における増幅産物は移動度が異なるため、増幅配列中における変異の存在の有無が検 定可能である。 実施例 17 (塩基配列解析による 405変異の解析) First, one forward primer is derived from the oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 7 to 11, and the reverse primer is derived from the oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 12 to 16. And chemically synthesize it with a DNA synthesizer. At this time, the 5 'end is modified with the fluorescent substance FITC. Next, 100 ng of the genomic DNA obtained in Example 8 was converted into type II, and the DNA encoding the amino acid sequence of estrogen receptor α was subjected to PCR using 200 pM of each of the above-mentioned FITC-modified oligonucleotides as primers. Amplify. The PCR was performed using Ex Taq DNA polymerase (Takara Shuzo) and 200 bases (dATP, dTTP, dGTP, dCTP) and the dedicated buffer attached to the enzyme. Perform 40 cycles of 30 ° C, 30 seconds, then 55 ° C, 30 seconds, and 74 ° C, 30 seconds. After the reaction, incubate 1/20 of the resulting amplified product in 95% formamide at 95 ° C for 5 minutes, then quench. Among them, 2.5 μl is applied to a 5% native polyacrylamide gel, and electrophoresed in 180 mM Tris-borate buffer (H8.0). The electrophoresis conditions are room temperature, constant power of 40 W, and 5 hours. After the electrophoresis, the amplified nucleic acid fragment is detected by detecting the fluorescent signal in the gel with a fluorescence reading scanner. Compared with the band mobility of the amplified product in DNΑ encoding the amino acid sequence of wild-type estrogen receptor α, which is run side by side, the amplified product in the DNA encoding the amino acid sequence of the mutant estrogen receptor is Since the mobilities are different, the presence or absence of a mutation in the amplified sequence can be detected. Example 17 (Analysis of 405 mutations by nucleotide sequence analysis)
実施例 16において検出される変異型エストロゲンレセプター αのアミノ酸配列 をコードする DN Αのバンドに対応する位置のゲルの一部を 1 mm角に切り取り、 滅 菌水 400 μΐ中でー晚浸透し、 DNAを溶出させる。 ゲルを除去し、エタノール沈殿に より精製後、 DNAを 50 1の滅菌水に溶解する。 そのうち、 Ιμΐを铸型にして、 実施 例 9において PCR- SSCPに用いたオリゴヌクレオチドを使用して PCRを行い、 エストロ ゲンレセプター αのアミノ酸配列をコードする DNAを増幅する。 PCRは、 Ex Taq DNA ポリメラーゼ (宝酒造社製) を用い、 該酵素に添付されたバッファ一中で、 94 °C、 30秒間次いで 55 °C、 30秒間さらに 74 °C、 30秒間を 1サイクルとして 30サイクル実施 する。 反応終了後、 増幅された DNAをァガロースゲル電気泳動により確認した後、 これを pGEM-T Easy vector (プロメガ社製) にクローユングする。 得られたプラスミ ド 錄型 ίこして、 BigDye Terminator cycle sequence ready reaction kit (ノプフ ィドバイオシステムズ社製) と自動 DNAシークェンサ一(アプライ ドバイオシステ ムズ社製モデル 3700) を使用して塩基配列を決定する。 このようにして、 配列番号 1 で示されるアミノ酸配列のアミノ酸番号 405で示されるアミノ酸に相当する位置 にあるアミノ酸をコードする塩基配列を明らかにする。 実施例 18 (PCRと制限酵素消化を組み合わせた 405変異の解析)  A part of the gel at a position corresponding to the band of DNΑ encoding the amino acid sequence of the mutant estrogen receptor α detected in Example 16 was cut into 1 mm squares, and permeated in 400 μΐ of sterile water. Elute the DNA. After removing the gel and purifying by ethanol precipitation, dissolve the DNA in 501 sterile water. Among them, Ιμΐ is changed to 铸, and PCR is performed using the oligonucleotide used in PCR-SSCP in Example 9 to amplify DNA encoding the amino acid sequence of estrogen receptor α. PCR was performed using Ex Taq DNA Polymerase (Takara Shuzo) in a buffer attached to the enzyme at 94 ° C for 30 seconds, followed by 55 ° C for 30 seconds, and a further cycle at 74 ° C for 30 seconds. Perform 30 cycles. After completion of the reaction, the amplified DNA is confirmed by agarose gel electrophoresis, and the DNA is cloned into pGEM-T Easy vector (promega). Using the obtained plasmid type II, the nucleotide sequence was analyzed using the BigDye Terminator cycle sequence ready reaction kit (manufactured by Nopphid Biosystems) and an automatic DNA sequencer (model 3700 manufactured by Applied Biosystems). decide. Thus, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 405 in the amino acid sequence represented by SEQ ID NO: 1 is clarified. Example 18 (Analysis of 405 mutations combining PCR and restriction enzyme digestion)
ゲノム DNAあるいは cDNAを铸型として配列番号 31で示される塩基配列を有 するプライマーと配列番号 32で示される塩基配列を有するプライマーとを用いて PCRを行い、 ヒ トエストロゲンレセプター αのアミノ酸配列をコードする DNAを増 幅する。 上記の PCRは、 PfuDNAポリメラーゼ (Stratagene社製) を使用し、 該酵素に 添付されたバッファ一中で、 94 °C、 1分間次いで 55 °C、 30秒間さらに 72 °C、 1分間 を 1サイクルとして 30サイクル実施する。 得られた 100塩基対の長さの DNAを制限 酵素 BsPT104 Iで処理する。 野生型エス トロゲンレセプター αのアミノ酸配列をコー ドする DNAの場合は消化されない。 一方、 ヒ ト由来野生型エストロゲンレセプター αのァミノ末端から 405番目のァラエンがバリンに変異した変異型エストロゲン レセプター αのアミノ酸配列をコ一ドする D N Αの場合は、 TTCGAAという配列を有す るため、 BspT104 Iにより消化され、 80塩基対の D N Aと 20塩基対の D N Aとが生ず る。 このようにして該変異を有するエストロゲンレセプター αをコードする D N Aを 検出することができる。 実施例 1 9 (本発明レセプター Ι424Τをコードする D N Aの発現プラスミ ドの作製) 実施例 1で作製されたプラスミ ド pRc/RSV- hERaコザックを铸型にし、塩基置換用の 合成オリゴヌクレオテ卜と Quickchange Site-directed mutagenesis Kit (Stratagene 社製)を用いて、 該キットの説明書に記載の方法に準じて変異を導入した。 まず、 配 列番号 3 4で示される塩基配列からなるオリゴヌクレオチド、および配列番号 3 5で 示される塩基配列からなるオリゴヌクレオチドを化学合成した。 伸長反応は、 pRc/RSV-hER aコザックを铸型とし、 前記 2種のオリゴヌクレオチドをプライマーと して用いて、 Pf u Turbo DNAポリメラーゼ (Stratagene社) および各々 200 μ Mの 4種類 の塩基 (dATP, dTTP, dGTP, dCTP) を添力 []し、 前記酵素に添付された専用バッファー 中で、 95 °C、 30秒間次いで 55 。C、 1 分間さらに 68 °C、 10分間の保温を 1サイクル としてこれを 16サイクル行う条件で実施した。 次に、 この反応液の一部を取り、制限 酵素 Dpn I (Stratagene社) で 37 °Cにて 1 時間消化した。 該消化液を用いて大腸菌 XLI- Blueコンビテントセル (Stratagene社) を形質転換した。 アンピシリン耐性を示 した大腸菌のコロニー数個からそれぞれの保有するプラスミ ド D NAを精製し、 これ らの塩基配列を解析した。配列番号 1で示されるアミノ酸配列においてアミノ酸番号 4 2 4で示されるイソロイシンをコードするコドン (ATC) がスレオニンをコードす るコドン (ACC) に置換される変異の導入が確認されたプラスミ ドを PCR was performed using genomic DNA or cDNA as a type I primer having the nucleotide sequence of SEQ ID NO: 31 and a primer having the nucleotide sequence of SEQ ID NO: 32 to encode the amino acid sequence of human estrogen receptor α. Amplify DNA. The above PCR uses Pfu DNA polymerase (manufactured by Stratagene) in a buffer attached to the enzyme, at 94 ° C for 1 minute, then at 55 ° C for 30 seconds and then at 72 ° C for 1 minute for 1 cycle. Perform 30 cycles. 100 base pairs in length DNA obtained is treated with a restriction enzyme Bs P T104 I. The DNA encoding the amino acid sequence of wild-type estrogen receptor α is not digested. On the other hand, a mutant estrogen in which the 405th araene from the amino terminal of human-derived wild-type estrogen receptor α is mutated to valine. DN DN, which encodes the amino acid sequence of receptor α, has the sequence TTCGAA, and is digested with BspT104I to produce 80 base pairs of DNA and 20 base pairs of DNA. Thus, the DNA encoding the estrogen receptor α having the mutation can be detected. Example 19 (Preparation of Expression Plasmid of DNA Encoding Receptor {424} of the Present Invention) Plasmid pRc / RSV-hERa produced in Example 1 was made into type III, and a synthetic oligonucleotate for base substitution was prepared. Mutations were introduced using the Quickchange Site-directed mutagenesis Kit (Stratagene) according to the method described in the kit instructions. First, an oligonucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 34 and an oligonucleotide consisting of the nucleotide sequence shown by SEQ ID NO: 35 were chemically synthesized. The elongation reaction was performed using pFc / RSV-hERa Kozak as type III, the above two kinds of oligonucleotides as primers, Pfu Turbo DNA polymerase (Stratagene) and four kinds of bases (200 μM each). dATP, dTTP, dGTP, dCTP) [], and in a dedicated buffer attached to the enzyme, at 95 ° C for 30 seconds and then 55. C, 1 minute, 68 ° C for 10 minutes, and 10 minutes of incubation as one cycle. Next, a part of this reaction solution was taken and digested with a restriction enzyme Dpn I (Stratagene) at 37 ° C for 1 hour. Escherichia coli XLI-Blue competent cells (Stratagene) were transformed using the digested solution. From each of several colonies of Escherichia coli showing ampicillin resistance, plasmid DNAs possessed by each were purified, and their nucleotide sequences were analyzed. In the amino acid sequence represented by SEQ ID NO: 1, a plasmid in which a mutation in which the codon (ATC) encoding isoleucine represented by amino acid numbers 424 was replaced by a codon (ACC) encoding threonine was confirmed was confirmed.
PRc/RSV-hERaI424Tコザックと名づけた。 実施例 2 0 (安定形質転換細胞を用いたレポーターアツセィ) It was named PRc / RSV-hERaI424T Kozak. Example 20 (Reporter assay using stable transformed cells)
実施例 4で選択されたレポーターアツセィ用安定形質転換細胞の約 2 X 106細胞を、 10 eraプレートに播種し、 チヤコールデキストラン処理済み FBSが 10%となるよう添カロ された E - MEM培地 (以下、 FBS含有 E-MEM培地と記す) で、 5% C02条件下 37 °Cにて 1日 間培養を行った。 該細胞に、 リボフヱク トァミン (Invitrogen社製) を用いてそのプ 口 トコールに従レ、、 7 gのヒ ト野生型エストロゲンレセプター α遺伝子発現プラスミ ド pRc/RSV- hER αコザックまたは 7 μ gのヒ ト変異型ェス トロゲンレセプター α遺伝子 発現プラスミ ド pRc/RSV_hERaI424Tコザックを導入した。 37 °C.にて 16時間培養した後 、 培地を交換しさらに 3時間培養した。 その後、 細胞を集めて FBS含有 E- MEM培地に懸 濁して均一化し、予め DMS0で溶解した様々な濃度の抗エストロゲン様化合物を添カロし た (DMS0終濃度 0. 1%) 96穴プレートに播種した。 また、 同様に様々な濃度の抗エス ト口ゲン様化合物と 10 nMの E 2とを同時に添加した (DMS0終濃度 0. 1%) 96穴プレー トに上記細胞を播種した。 細胞が播種された 96穴プレートは 37 °Cにて約 40時間培養 した後、 5倍に希釈した細胞溶解剤 PGC50 (エツボンジーン社製) を SO w lZwellずつ カロえて、 時々軽くゆすりながら室温にて 30分間放置して細胞を溶解させた。 このよう に調製された細胞溶解液を 10 1ずつ 96穴白色サンプルプレート (ベルトールド社製 ) に採取し、 基質自動インジェクター付きのルミノメーター LB96p (ベルトールド社 製) で 50 /i l/wellずつ酵素基質液 PGL100 (二ツボンジーン社製) を添加し、 直ちに発 光量を 5秒間測定した。 Approximately 2 × 10 6 cells of the reporter-assembly-stable transformed cells selected in Example 4 were seeded on a 10 era plate, and E-MEM supplemented with charcoal dextran-treated FBS so that the FBS became 10%. medium (hereinafter referred to as FBS-containing E-MEM medium), the daily at 5% C0 2 under 37 ° C Interculture was performed. The cells were treated with 7 g of human wild-type estrogen receptor α gene expression plasmid pRc / RSV-hER α Kozak or 7 μg of human wild-type estrogen receptor α gene using ribofectamine (Invitrogen) according to the protocol. A mutant pRc / RSV_hERaI424T Kozak was introduced. After culturing at 37 ° C. for 16 hours, the medium was replaced and the cells were further cultured for 3 hours. Thereafter, the cells were collected, suspended and homogenized in E-MEM medium containing FBS, and supplemented with various concentrations of antiestrogen-like compound previously dissolved in DMS0 (final concentration of DMS0 0.1%) in a 96-well plate. Seeded. Similarly, the above cells were seeded on a 96-well plate to which various concentrations of an anti-estrogens-like compound and 10 nM E2 were simultaneously added (DMS0 final concentration: 0.1%). The 96-well plate in which the cells have been seeded is cultured at 37 ° C for about 40 hours, and then the cell lysing agent PGC50 (manufactured by Etsubon Gene) diluted 5 times is calorificized by SO wlZwell at a time, and occasionally lightly shaken at room temperature. The cells were left for 30 minutes to lyse. The cell lysate prepared in this manner was collected in a 96-well white sample plate (Berthold) in a quantity of 10 1 each, and the enzyme substrate solution was fed at 50 / il / well using a luminometer LB96p (Berthold) with an automatic substrate injector. PGL100 (manufactured by Futtsubon Gene) was added, and the light emission was measured immediately for 5 seconds.
野生型エストロゲンレセプター αもしくは本発明レセプター I424Tに対する、 4— ヒ ドロキシタモキシフェン、 ラロキシフェンまたは ZM189154のエストロゲン様作用の 測定結果をそれぞれ図 1 3〜図 1 5に示した。 The measurement results of the estrogen-like effects of 4-hydroxytamoxifen, raloxifene or ZM189154 on the wild-type estrogen receptor α or the receptor I424T of the present invention are shown in FIGS. 13 to 15, respectively.
また、野生型エストロゲンレセプター αもしくは本発明レセプター Ι424Τに対する、 4—ヒ ドロキシタモキシフェン、 ラロキシフェンまたは ZM189154の抗エス トロゲン作 用の測定結果をそれぞれ図 1 6〜図 1 8に示した。 実施例 2 1 (増幅用オリゴヌクレオチドの作製)  In addition, the measurement results of the antiestrogenic action of 4-hydroxytamoxifen, raloxifene or ZM189154 on the wild-type estrogen receptor α or the receptor {424} of the present invention are shown in FIGS. 16 to 18, respectively. Example 21 (Preparation of oligonucleotide for amplification)
配列番号 1で示されるァミノ酸配列のァミノ酸番号 4 2 4で示されるアミノ酸に 相当する位置にあるアミノ酸をコードする塩基配列力 野生型エストロゲンレセプタ 一 αのアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードす る塩基配列に置換されているか否かを検出するために、 ヒ ト由来野生型エストロゲン レセプターのァミノ末端から 4 2 4番目のイソロイシンをコードする部位を核酸の 増幅範囲内に含め、 そして G C含量が 30%以上 70%以下で、 かつ約 20塩基の長さを有す るオリゴヌクレオチドを設計する。設計された塩基配列に基づきオリゴヌクレオチド を作製する。 (以下、 配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 2 4で示 されるアミノ酸に相当する位置にあるアミノ酸をコードする塩基配列が、野生型エス トロゲンレセプター αのアミノ酸配列の相当する位置にあるアミノ酸とは異なるァ ミノ酸をコードする塩基配列に置換されている変異を 424変異と記すことがある。 ) 実施例 2 2 (ヒ ト組織を材料にした 424変異の解析) The nucleotide sequence encoding the amino acid at the position corresponding to the amino acid No. 424 of the amino acid sequence No. 4 of the amino acid sequence represented by SEQ ID No. 1. Was used to detect whether or not the nucleotide sequence encoding a different amino acid had been substituted, by inserting a site encoding isoleucine at the 424th position from the amino terminus of the human wild-type estrogen receptor. Design an oligonucleotide that is within the amplification range, has a GC content of 30% or more and 70% or less, and has a length of about 20 bases. An oligonucleotide is prepared based on the designed base sequence. (Hereinafter, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid No. 424 of the amino acid sequence represented by SEQ ID NO: 1 is located at the position corresponding to the amino acid sequence of the wild type estrogen receptor α A mutation substituted with a nucleotide sequence encoding an amino acid different from a certain amino acid may be referred to as a 424 mutation.) Example 22 (Analysis of 424 mutation using human tissue as material)
ヒ ト肝臓凍結サンプル 100 mg分を [4 M グァニジンチオシァネート, 0. 1 M Tris-Cl (pH 7. 5) 1% ]3 _メルカプトエタノール] 5 m lに加え、 ポリ トロンホモジ ナイザーで粉碎する。 これをあらかじめ超遠心用チューブに入れておいた 25 mlの 5. 7 M塩化セシウム溶液に重層し、 90, 000 X gで 24時間密度勾配超遠心分離を行うことに より R NAを分離する。 この R N Aを回収し、 70%エタノールでリンスした後、 室温で 風乾する。 これを滅菌水 ΙΟ μ Ιに溶解し、 濃度測定する。 この R N A l〜5 /x gを踌型 にして、 オリゴ dTプライマー (アマシャムバイオテック社製) 1 μ §を逆転写合成の際 のプライマーとして用い、 Superscript II (インビトロジェン社製) により添付バッ ファー中で 42 °Cで 1時間反応させることにより c D N Aを合成する。 このようにして 得られた c D N A溶液の 50分の 1を铸型にして、 配列番号 1 0で示される塩基配列を 有するオリゴヌクレオチドと配列番号 1 6で示される塩基配列を有するオリゴヌク レオチドとを用いて PCRを行う。 該 PCRは、 Pfu DNAポリメラーゼ (Stratagene社製) を使用し、 200 μ Μの 4種類の各々の塩基 (dATP, dTTP, dGTP, dCTP) および前記酵素 に添付された専用バッファ一中で、 94 °C、 1分間次いで 55 °C、 30秒間さらに 72 °C、 1分間を 1サイクルとして 35サイクル実施する。 増幅された D N Aを、 1%のァガロー ス (Agarose s, 二ツボンジーン社製) を含むゲル中で電気泳動して分離し、回収する 。 この全量を铸型にして、 配列番号 11で示される塩基配列を有するオリゴヌクレオチ ド 5 pMをシークェンスプライマーとして用いダイターミネータ一シークェンスキット FS (アプライ ドバイオシステムズ社製) によりダイレクトシークェンス用のサンプル を調製する。 これを、 自動 DNAシークェンサ一 (アプライ ドバイオシステムズ社製、 モデル 3700) を用いた塩基配列解析に供し塩基配列を決定する。 このようにして、 配 列番号 1で示されるアミノ酸配列のアミノ酸番号 4 2 4で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列を明らかにする。 実施例 2 3 ( P C R— S S C P法による 424変異の解析) Add 100 mg of the frozen human liver sample to 5 ml of [4 M guanidine thiocyanate, 0.1 M Tris-Cl (pH 7.5) 1%] 3_mercaptoethanol, and grind with a polytron homogenizer. . This is overlaid on 25 ml of a 5.7 M cesium chloride solution previously placed in an ultracentrifuge tube, and RNA is separated by performing a density gradient ultracentrifugation at 90,000 X g for 24 hours. Collect the RNA, rinse with 70% ethanol, and air-dry at room temperature. Dissolve this in sterile water (ΙΟμΙ) and measure the concentration. Using this RNA l-5 / xg as type III, 1 μ オ リ ゴ of oligo dT primer (Amersham Biotech) was used as a primer for reverse transcription synthesis, and Superscript II (Invitrogen) was used in the attached buffer. The cDNA is synthesized by reacting at 42 ° C for 1 hour. One-fiftieth of the cDNA solution thus obtained was made into type III, and an oligonucleotide having the base sequence of SEQ ID NO: 10 and an oligonucleotide having the base sequence of SEQ ID NO: 16 were separated. Perform PCR using The PCR was carried out using Pfu DNA polymerase (manufactured by Stratagene) in a buffer of 94 ° C. in 200 μL of each of the four types of bases (dATP, dTTP, dGTP, dCTP) and a dedicated buffer attached to the enzyme. C, 1 minute, then 55 ° C, 30 seconds, 72 ° C, 1 minute, 1 cycle, 35 cycles. The amplified DNA is separated by electrophoresis in a gel containing 1% agarose (Agaroses, manufactured by Futaba Gene) and collected. Using this whole amount as type III, a sample for direct sequence was prepared using a dye terminator-sequence kit FS (manufactured by Applied Biosystems) using 5 pM of oligonucleotide having the nucleotide sequence of SEQ ID NO: 11 as a sequence primer. I do. This is called an automated DNA sequencer (Applied Biosystems, The base sequence is determined by subjecting it to base sequence analysis using Model 3700). In this manner, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 424 of the amino acid sequence represented by SEQ ID NO: 1 is clarified. Example 2 3 (Analysis of 424 mutations by PCR-SSCP method)
まず、配列番号 7〜1 1のいずれかに示される塩基配列からなるオリゴヌクレオチ ドからフォワードプライマーを 1種、 配列番号 1 2〜1 6のいずれかに示される塩基 配列からなるオリゴヌクレオチドからリバースプライマーを 1種選択し、 D N A合成 機にて化学合成する。 この際、 5'末端を蛍光物質 FITCで修飾しておく。 次に実施例 8で 得られるゲノム D N A 100 ngを铸型にして、 FITC修飾された上記オリゴヌクレオチ ド各 200 pMをプライマーとして用いた PCRにより、 エストロゲンレセプター αのアミ ノ酸配列をコードする D N Αを増幅する。 該 PCRは、 Ex Taq DNAポリメラーゼ (宝酒 造社製) を使用し、 200 μ Μの 4種類の各々の塩基 (dATP, dTTP, dGTP, dCTP) および 前記酵素に添付された専用バッファーを用いて、 94 °C、 30秒間次いで 55 °C、 30秒間 さらに 74 °C、 30秒間を 1サイクルとして 40サイクル実施する。 反応後、 得られる増 幅産物の 1/20量を 95°/。ホルムアミ ド中で 95°C、 5分間保温した後、 急冷させる。 そのう ち、 2. 5 1を 5%未変性ポリアクリルアミ ドゲルに供し、 180 mMトリス—ホウ酸緩衝液 (pH 8. 0) 中で電気泳動を行う。 電気泳動の条件は、 室温、 定電力 40 W、 5時間で実 施する。 泳動終了後、 蛍光読み取りスキャナーでゲル中の蛍光シグナルを検出するこ とにより、 増幅核酸断片を検出する。 隣り合わせて泳動しておく野生型エストロゲン レセプターひのアミノ酸配列をコードする D N Aにおける増幅産物のバンドの移動 度と比較して、変異型エストロゲンレセプター αのアミノ酸配列をコードする D N A における増幅産物は移動度が異なるため、増幅配列中における変異の存在の有無が検 定可能である。 実施例 2 4 (塩基配列解析による 424変異の解析)  First, a forward primer is selected from an oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 7 to 11, and a reverse primer is obtained from an oligonucleotide consisting of the nucleotide sequence shown in any of SEQ ID NOs: 12 to 16. And chemically synthesize it with a DNA synthesizer. At this time, the 5 'end is modified with the fluorescent substance FITC. Next, 100 ng of the genomic DNA obtained in Example 8 was transformed into a 铸 form, and the DNTC encoding the amino acid sequence of estrogen receptor α was subjected to PCR by using 200 pM of each of the above FITC-modified oligonucleotides as primers. To amplify. The PCR was performed using Ex Taq DNA polymerase (Takara Shuzo Co., Ltd.) and 200 μL of each of the four bases (dATP, dTTP, dGTP, dCTP) and the dedicated buffer attached to the enzyme. , 94 ° C, 30 seconds, then 55 ° C, 30 seconds, and further 40 cycles of 74 ° C, 30 seconds. After the reaction, 1/20 amount of the obtained amplified product was 95 ° /. After incubating in formamide at 95 ° C for 5 minutes, cool rapidly. Among them, 2.51 is applied to a 5% non-denaturing polyacrylamide gel, and electrophoresed in 180 mM Tris-borate buffer (pH 8.0). The electrophoresis conditions are room temperature, constant power of 40 W, and 5 hours. After the electrophoresis, the amplified nucleic acid fragment is detected by detecting the fluorescent signal in the gel with a fluorescence reading scanner. Compared to the mobility of the band of the amplified product in the DNA encoding the amino acid sequence of the wild-type estrogen receptor, which is run side by side, the mobility of the amplified product in the DNA encoding the amino acid sequence of the mutant estrogen receptor α has a lower mobility. Because of the difference, the presence or absence of the mutation in the amplified sequence can be detected. Example 24 (Analysis of 424 mutations by nucleotide sequence analysis)
実施例 2 3において検出される変異型エストロゲンレセプター αのアミノ酸配列 をコードする D N Aのバンドに対応する位置のゲルの一部を 1 瞧角に切り取り、 滅 菌水 400μ1中でー晚浸透し、 DNAを溶出させる。 ゲルを除去し、エタノール沈殿に より精製後、 DN Αを 50 1の滅菌水に溶解する。 そのうち、 Ιμΐを铸型にして、 実施 例 9において PCR- SSCPに用いたオリゴヌクレオチドを使用して PCRを行い、 エストロ ゲンレセプター αのアミノ酸配列をコードする DNAを增幅する。 PCRは、 Ex Taq DNA ポリメラーゼ (宝酒造社製) を用い、 該酵素に添付されたバッファ一中で、 94 °C、 30秒間次いで 55 °C、 30秒間さらに 74 °C、 30秒間を 1サイクルとして 30サイクル実施 する。 反応終了後、 増幅された DNAをァガロースゲル電気泳動により確認した後、 これを pGEM-T Easy vector (プロメガ社製) にクローニングする。 得られたプラスミ ドを铸型にして、 BigDye Terminator cycle sequence ready reaction kit (/ 7フ ィ ドバイオシステムズ社製) と自動 DNAシークェンサ一(アプライ ドバイオシステ ムズ社製モデル 3700) を使用して塩基配列を決定する。 このようにして、 配列番号 1 で示されるアミノ酸配列のアミノ酸番号 424で示されるアミノ酸に相当する位置 にあるアミノ酸をコードする塩基配列を明らかにする。 実施例 25 (PCRと制限酵素消化を組み合わせた 424変異の解析) A part of the gel at a position corresponding to the band of the DNA encoding the amino acid sequence of the mutant estrogen receptor α detected in Example 23 was cut into a square, Permeate in 400 μl of bacterial water to elute DNA. After removing the gel and purifying by ethanol precipitation, dissolve DNII in 501 sterile water. Among them, Ιμΐ is changed to 铸, and PCR is performed using the oligonucleotide used for PCR-SSCP in Example 9 to widen the DNA encoding the amino acid sequence of estrogen receptor α. PCR was performed using Ex Taq DNA Polymerase (Takara Shuzo) in a buffer attached to the enzyme, at 94 ° C for 30 seconds, followed by 55 ° C, 30 seconds, and a further cycle at 74 ° C, 30 seconds. Perform 30 cycles. After completion of the reaction, the amplified DNA is confirmed by agarose gel electrophoresis, and cloned into pGEM-T Easy vector (Promega). The obtained plasmid was converted into type III, and the base was prepared using a BigDye Terminator cycle sequence ready reaction kit (/ 7F Biosystems) and an automatic DNA sequencer (Applied Biosystems 3700). Determine the sequence. Thus, the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid represented by amino acid number 424 in the amino acid sequence represented by SEQ ID NO: 1 is clarified. Example 25 (Analysis of 424 mutations combining PCR and restriction enzyme digestion)
ゲノム DNAあるいは cDNAを铸型として配列番号 36で示される塩基配列を有 するプライマーと配列番号 37で示される塩基配列を有するプライマーとを用いて PCRを行い、 ヒ トエストロゲンレセプター αのアミノ酸配列をコードする DN Aを増 幅する。 上記の PCRは、 PfuDNAポリメラーゼ (Stratagene社製) を使用し、 該酵素に 添付されたバッファ一中で、 94 °C、 1分間次いで 55 °C、 30秒間さらに 72 °C、 1分間 を 1サイクルとして 30サイクル実施する。 得られた 100塩基対の長さの DNAを制限 酵素 Acc Iで処理する。 野生型エストロゲンレセプター αのアミノ酸配列をコードす る DNAの場合は消化されない。 一方、 ヒ ト由来野生型エストロゲンレセプターひの ァミノ末端から 424番目のイソロイシンがスレオニンに変異した変異型エストロ ゲンレセプター αのアミノ酸配列をコ一ドする DN Αの場合は、 GTAGACという配列を 有するため、 Acc Iにより消化され、 75塩基対の DN Aと 25塩基対の DN Aとが生ず る。 このようにして該変異を有するエストロゲンレセプター αをコードする DNAを 検出することができる。 産業上の利用の可能性 PCR was performed using genomic DNA or cDNA as a type I primer having the nucleotide sequence of SEQ ID NO: 36 and a primer having the nucleotide sequence of SEQ ID NO: 37 to encode the amino acid sequence of human estrogen receptor α. Increase the DNA. The above PCR uses Pfu DNA polymerase (manufactured by Stratagene) in a buffer attached to the enzyme, at 94 ° C for 1 minute, then at 55 ° C for 30 seconds and then at 72 ° C for 1 minute for 1 cycle. Perform 30 cycles. The resulting 100 bp DNA is treated with the restriction enzyme AccI. The DNA encoding the amino acid sequence of wild-type estrogen receptor α is not digested. On the other hand, DNΑ, which encodes the amino acid sequence of mutant estrogen receptor α in which the isoleucine at position 424 from the amino terminal of human-derived wild-type estrogen receptor is mutated to threonine, has the sequence GTAGAC. Digestion with Acc I yields 75 base pairs of DNA and 25 base pairs of DNA. Thus, the DNA encoding the estrogen receptor α having the mutation can be detected. Industrial potential
本発明により、 特定の位置のアミノ酸が、 野生型エストロゲンレセプター αのアミ ノ酸とは異なるアミノ酸に置換されており、 ある種の抗エストロゲン物質に対して野 生型エストロゲンレセプター αとは異なる反応性を示すエストロゲンレセプタ一ひ、 該レセプターをコードする DNA、前記特定位置のアミノ酸が野生型レセプターのァ ミノ酸とは異なるアミノ酸に置換されてなるエストロゲンレセプター αを利用する 被験物質のエストロゲンレセプター α活性調節能の評価方法、前記特定位置のァミノ 酸置換の有無を調べるエストロゲンレセプター α遺伝子型の判定方法、前記アミノ酸 置換の有無を調べてエストロゲンレセプター α遺伝子型を判定する工程を含むエス トロゲンレセプター α活性調節物質による治療の有効性の判定方法等が提供可能と なる。 配列表フリーテキスト According to the present invention, an amino acid at a specific position is substituted with an amino acid different from the amino acid of wild-type estrogen receptor α, and the amino acid at a specific position has a different reactivity to wild-type estrogen receptor α from wild-type estrogen receptor α. Using an estrogen receptor α, a DNA encoding the receptor, and an estrogen receptor α in which the amino acid at the specific position is substituted with an amino acid different from the amino acid of the wild-type receptor. Estrogen receptor α activity regulation method comprising the steps of: estimating an estrogen receptor α genotype by examining the presence or absence of amino acid substitution at the specific position; and estimating estrogen receptor α genotype by examining the amino acid substitution. How to determine the effectiveness of treatment with a substance But it is possible to provide. Sequence listing free text
配列番号 3 SEQ ID NO: 3
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 4 SEQ ID NO: 4
PCRのために設計されたオリゴヌクレオチドプライマー  Oligonucleotide primers designed for PCR
配列番号 5 SEQ ID NO: 5
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 6 SEQ ID NO: 6
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 7 SEQ ID NO: 7
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 8 SEQ ID NO: 8
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 9 SEQ ID NO: 9
PCRのために設計されたオリゴヌクレオチドプライマ一 配列番号 10 Oligonucleotide primers designed for PCR SEQ ID NO: 10
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 1 1 SEQ ID NO: 1 1
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 12 SEQ ID NO: 12
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 13 SEQ ID NO: 13
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 14 SEQ ID NO: 14
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 15 SEQ ID NO: 15
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 16 SEQ ID NO: 16
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 17 SEQ ID NO: 17
サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ 配列番号 18  Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 18
サザンハイブリダィゼーションのために設計されたオリゴヌクレオチドプローブ 配列番号 19  Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 19
サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ 配列番号 20  Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 20
サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ 配列番号 21  Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 21
. サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ 配列番号 22  Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 22
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 23 SEQ ID NO: 23
エストロゲン応答配列を作製するために設計されたオリゴヌクレオチド 配列番号 24 Oligonucleotides designed to create estrogen responsive elements SEQ ID NO: 24
プロモーター DNAを作製するために設計されたオリゴヌクレオチド 配列番号 25  Oligonucleotide designed to generate promoter DNA SEQ ID NO: 25
プロモーター DNAを作製するために設計されたオリゴヌクレオチド 配列番号 26  Oligonucleotide designed to generate promoter DNA SEQ ID NO: 26
PCRのために設計されたオリゴヌクレオチドプライマー  Oligonucleotide primers designed for PCR
配列番号 27 SEQ ID NO: 27
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 29 SEQ ID NO: 29
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 30 SEQ ID NO: 30
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 31 SEQ ID NO: 31
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 32 SEQ ID NO: 32
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 34 SEQ ID NO: 34
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 35 SEQ ID NO: 35
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 36 SEQ ID NO: 36
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 37 SEQ ID NO: 37
PCRのために設計されたオリゴヌクレオチドプライマ一  Oligonucleotide primers designed for PCR
配列番号 38 SEQ ID NO: 38
サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ 配列番号 39  Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 39
サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ 配列番号 4 0 Oligonucleotide probes designed for Southern hybridization SEQ ID NO: 40
サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ 配列番号 4 1  Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 41
サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ 配列番号 4 2  Oligonucleotide probe designed for Southern hybridization SEQ ID NO: 42
サザンハイブリダィゼーシヨンのために設計されたオリゴヌクレオチドプローブ  Oligonucleotide probes designed for Southern hybridization

Claims

請求の範囲 The scope of the claims
1 . 下記の性質を有するエストロゲンレセプターひ。  1. Estrogen receptor having the following properties:
( a ) 当該レセプターを構成するアミノ酸のうち、 アミノ酸配列の相同性に基づくァ ラインメントにおいて、 配列番号 1で示されるアミノ酸配列のアミノ酸番号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸の 1つまた は複数が、野生型エストロゲンレセプター αのアミノ酸配列の相当する位置にあるァ ミノ酸とは異なるアミノ酸に置換されており、 前記のアミノ酸の置換は以下の (b ) および (c ) の性質を当該レセプターに付与する。  (a) Among the amino acids constituting the receptor, in an alignment based on the homology of the amino acid sequence, the amino acid represented by amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1 One or more of the amino acids at positions corresponding to the amino acid sequence has been substituted with an amino acid different from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor α. Impart the properties of (b) and (c) to the receptor.
( b ) 野生型エスト口ゲンレセプター αの転写活性化領域 AF2の機能を抑制するが転 写活性化領域 AF1の機能は抑制しないタイプの抗エストロゲン物質のいずれかと接触 すると、エストロゲ2ン応答配列を含む転写制御領域の転写制御下にある遺伝子の転写 を活性化することができる。 (B) contacting the one of the anti-estrogen agent types wildtype Est port plasminogen receptor α inhibits the function of the transcriptional activation region AF2 of not suppressed transcriptional function of the active region AF1 Then, the estrogen 2 emissions responsive element It can activate the transcription of a gene that is under the transcriptional control of the included transcriptional control region.
( c ) エストロゲンと接触すると、 エストロゲン応答配列を含む転写制御領域の転写 制御下にある遺伝子の転写を活性化することができ、 該活性化は、 前記 (b ) におい て遺伝子の転写を活性化することができる化合物により実質的に阻害されない。  (c) contacting with an estrogen can activate transcription of a gene under the transcriptional control of a transcription control region containing an estrogen response element, and the activation activates the transcription of the gene in the above (b). And is not substantially inhibited by compounds that can.
2 . 前記 (b ) および (c ) において、 エストロゲン応答配列を含む転写制御領域の 転写制御下にある遺伝子が、細胞の染色体に導入された遺伝子である請求項 1記載の エストロゲンレセプター α。 2. The estrogen receptor α according to claim 1, wherein in (b) and (c), the gene under the transcriptional control of a transcription control region containing an estrogen response element is a gene introduced into a chromosome of a cell.
3 . 前記 (c ) における活性化が、 ピュア抗エス トロゲンにより阻害される活性化で もある請求項 1記載のエストロゲンレセプター α。 3. The estrogen receptor α according to claim 1, wherein the activation in (c) is also an activation inhibited by a pure antiestrogen.
4 . ( b ) 記載の抗エス トロゲン物質が、 タモキシフェン、 4 -ヒ ドロキシタモキシ フェンまたはラロキシフェンである請求項 1に記載のエストロゲンレセプター α。 4. The estrogen receptor α according to claim 1, wherein the antiestrogenic substance according to (b) is tamoxifen, 4-hydroxytamoxifen or raloxifene.
5 . アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 3 9 0で示されるアミノ酸に相当する位置にあるアミ ノ酸およびアミノ酸番号 5 7 8で示されるアミノ酸に相当する位置にあるアミノ酸 力 野生型エストロゲンレセプタ一 αのアミノ酸配列の相当する位置にあるアミノ酸 と同一である請求項 1記載のエストロゲンレセプタ一 α。 5. In an alignment based on amino acid sequence homology, the amino acid at the position corresponding to the amino acid shown by amino acid No. 390 in the amino acid sequence shown by SEQ ID NO: 1 2. The estrogen receptor-α according to claim 1, which is the same as the amino acid at the position corresponding to the amino acid sequence of the wild-type estrogen receptor-α.
6 . アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 3 0 3、 3 0 9、 3 9 0、 3 9 6、 4 1 5、 4 9 4、 5 3 1または 5 7 8で示されるアミノ酸に相当する位置にあるアミノ酸のいずれも力、 野生型エストロゲンレセプターひのアミノ酸配列の相当する位置にあるアミノ酸と 同一である請求項 1記載のエストロゲンレセプター ct。 6. In the alignment based on the homology of the amino acid sequences, the amino acid numbers 303, 309, 390, 396, 415, 494, 531 of the amino acid sequence represented by SEQ ID NO: 1 Or the estrogen receptor ct according to claim 1, wherein any of the amino acids at positions corresponding to the amino acid represented by 578 is the same as the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor.
7 . 野生型エストロゲンレセプター αのアミノ酸配列の相当する位置にあるアミノ酸 力 アミノ酸番号 4 0 4で示されるアミノ酸に相当する位置においてはフエ二ルァラ ニンであり、アミノ酸番号 4 0 5で示されるアミノ酸に相当する位置においてはァラ ニンであり、アミノ酸番号 4 2 4で示されるアミノ酸に相当する位置においてはィソ ロイシンである請求項 1に記載のエストロゲンレセプター α。 7. Amino acid at a position corresponding to the amino acid sequence of wild-type estrogen receptor α At a position corresponding to the amino acid represented by amino acid number 404, it is phenylalanine, and the amino acid represented by amino acid number 2. The estrogen receptor α according to claim 1, wherein alanine is present at a corresponding position, and isoleucine is present at a position corresponding to the amino acid represented by amino acid number 424.
8 . 野生型エストロゲンレセプターひのアミノ酸配列の相当する位置にあるアミノ酸 とは異なるアミノ酸が、アミノ酸番号 4 0 4で示されるアミノ酸に相当する位置にお いてはロイシンであり、アミノ酸番号 4 0 5で示されるアミノ酸に相当する位置にお いてはバリンであり、アミノ酸番号 4 2 4で示されるアミノ酸に相当する位置におい てはスレオニンである請求項 1に記載のエストロゲンレセプター α。 8. The amino acid that differs from the amino acid at the corresponding position in the amino acid sequence of the wild-type estrogen receptor is leucine at the position corresponding to the amino acid indicated by amino acid number 404, and 2. The estrogen receptor α according to claim 1, wherein the position corresponding to the amino acid shown is valine, and the position corresponding to the amino acid shown by amino acid number 424 is threonine.
9 . エストロゲンレセプター α力 哺乳類動物由来のエストロゲンレセプター αであ る請求項 1に記載のエストロゲンレセプターひ。 9. The estrogen receptor α power according to claim 1, which is an estrogen receptor α derived from a mammal.
1 0 . 配列番号 2で示されるアミノ酸配列を有するエストロゲンレセプター α。 10. An estrogen receptor α having the amino acid sequence represented by SEQ ID NO: 2.
1 1 . 配列番号 2 8で示されるアミノ酸配列を有するエストロゲンレセプター α。 11. An estrogen receptor α having the amino acid sequence represented by SEQ ID NO: 28.
1 2. 配列番号 33で示されるアミノ酸配列を有するエストロゲンレセプターひ。 1 2. An estrogen receptor having the amino acid sequence of SEQ ID NO: 33.
1 3. 請求項 1に記載のエストロゲンレセプター αをコードする単離された DNA。 1 3. An isolated DNA encoding the estrogen receptor α according to claim 1.
14. 配列番号 2で示されるアミノ酸配列を有するエストロゲンレセプター ctをコー ドする単離された DNA。 14. An isolated DNA encoding an estrogen receptor ct having the amino acid sequence shown in SEQ ID NO: 2.
15. 配列番号 28で示されるアミノ酸配列を有するエストロゲンレセプター αをコ ードする単離された DNA。 15. An isolated DNA encoding an estrogen receptor α having the amino acid sequence represented by SEQ ID NO: 28.
16. 配列番号 33で示されるアミノ酸配列を有するエストロゲンレセプターひをコ 一ドする単離された DNA。 16. An isolated DNA encoding an estrogen receptor having the amino acid sequence of SEQ ID NO: 33.
1 7. DNAが c DNAである請求項 13記載の DNA。 17. The DNA according to claim 13, wherein the DNA is cDNA.
18. プロモーターが機能可能な形で結合されてなる請求項 13に記載の DNA。 18. The DNA according to claim 13, wherein the promoter is operably linked.
19. 請求項 1 3に記載の DNAを含有するベクター。 19. A vector containing the DNA according to claim 13.
20. 宿主細胞内で複製可能なベクターに請求項 13に記載の DNAを組込むことを 特徴とするベクタ一の製造方法。 20. A method for producing a vector, comprising incorporating the DNA according to claim 13 into a vector capable of replicating in a host cell.
21. 請求項 1 3に記載の DNAが宿主細胞に導入されてなる形質転換体。 21. A transformant obtained by introducing the DNA according to claim 13 into a host cell.
22. 宿主細胞が動物細胞である請求項 21に記載の形質転換体。 22. The transformant according to claim 21, wherein the host cell is an animal cell.
23. 宿主細胞が哺乳類動物細胞である請求項 2 1に記載の形質転換体。 23. The transformant according to claim 21, wherein the host cell is a mammalian cell.
24. 請求項 1 3に記載の DNAを宿主細胞に導入することを特徴とする形質転換体 の製造方法。 24. A method for producing a transformant, which comprises introducing the DNA according to claim 13 into a host cell.
25. 請求項 2 1に記載の形質転換体を培養してエストロゲンレセプター αを産生さ せることを特徴とするエストロゲンレセプター αの製造方法。 25. A method for producing estrogen receptor α, comprising culturing the transformant according to claim 21 to produce estrogen receptor α.
26. (1) 標識されたリガンドが結合している請求項 1記載のエストロゲンレセプ タ一ひと被験物質とを接触させる工程、 及び 26. (1) contacting the estrogen receptor of claim 1 with a test substance, wherein the labeled ligand is bound; and
(2) 前記エストロゲンレセプタ一 αと前記被験物質との結合状態を、 前記標識され たリガンドと当該被験物質との競合により生じる遊離型の標識されたリガンド又は 結合型の標識されたリガンドの量をモニターすることにより間接的に確認する工程 を有することを特徴とするリガンド ' レセプターバインディングァッセィ。  (2) The binding state between the estrogen receptor α and the test substance is determined by measuring the amount of free labeled ligand or bound labeled ligand produced by competition between the labeled ligand and the test substance. A ligand 'receptor binding assay, comprising a step of indirectly confirming by monitoring.
27. 被験物質が有するエス トロゲンレセプター α活性調節能の評価方法であって、27. A method for evaluating the ability of a test substance to regulate estrogen receptor α activity,
(1) 請求項 1に記載のエストロゲンレセプター αを産生し、 かつ、 エストロゲン応 答配列を含む転写制御領域の転写制御下にあるレポーター遺伝子が染色体に導入さ れてなる形質転換体と、 被験物質とを接触させる工程、 (1) a transformant which produces the estrogen receptor α according to claim 1 and has a reporter gene under the transcriptional control of a transcription control region containing an estrogen response sequence, which is introduced into a chromosome; and a test substance. Contacting with
(2)前記形質転換体が有する前記レポーター遺伝子の発現量又はその量と相関関係 を有する指標値を測定する工程、 及び  (2) measuring the expression level of the reporter gene of the transformant or an index value having a correlation with the level, and
(3)測定された発現量又はその量と相関関係を有する指標値に基づき前記物質のェ ストロゲンレセプター活性調節能力を評価する工程  (3) a step of evaluating the ability of the substance to regulate estrogen receptor activity based on the measured expression level or an index value having a correlation with the level.
を有することを特徴とする評価方法。 An evaluation method comprising:
28. 請求項 2 7に記載の方法により、 形質転換体の産生するエストロゲンレセプタ 一ひに対する被験物質の活性調節能を評価する工程を含むエストロゲンレセプター α活性調節物質のスクリーニング方法。 28. A method for screening for an estrogen receptor α-activity modulator, which comprises the step of evaluating the activity-modulating ability of a test substance on an estrogen receptor produced by a transformant according to the method of claim 27.
2 9 . 試料中の核酸において、 エストロゲンレセプターひを構成するアミノ酸であつ て、 アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプター α のアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩 基配列に置換されているか否かを調べる工程を含むエストロゲンレセプター αの遺 伝子型の判定方法。 29. In the nucleic acid in the sample, the amino acids constituting the estrogen receptor, and the alignment based on the homology of the amino acid sequence, the amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1, 4, 4, 5, or 4 Has the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid shown in 24 been replaced with a nucleotide sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor α ? A method for determining the gene type of estrogen receptor α, comprising the step of determining whether or not the gene is estrogen receptor α.
3 0 . 試料中の核酸において、 エス トロゲンレセプター αを構成するアミノ酸であつ て、 アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列力 野生型エストロゲンレセプター α のアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩 基配列に置換されているか否かを調べることによりエストロゲンレセプター αの遺 伝子型を判定する工程を含むエストロゲンレセプターひ活性調節物質による治療の 有効性の判定方法。 30. In the nucleic acid in the sample, the amino acids that constitute estrogen receptor α, and in the alignment based on the homology of the amino acid sequence, the amino acid number of the amino acid sequence represented by SEQ ID NO: 1 4 24 The nucleotide sequence encoding the amino acid at the position corresponding to the amino acid indicated by 4 4 Has the amino acid sequence of the wild-type estrogen receptor α been substituted with a base sequence encoding an amino acid different from the amino acid at the corresponding position? A method for determining the efficacy of treatment with an estrogen receptor activity modulator comprising the step of determining the genotype of estrogen receptor α by examining the presence or absence of estrogen receptor α.
3 1 . 試料中の核酸において、 エストロゲンレセプター αを構成するアミノ酸であつ て、 アミノ酸配列の相同性に基づくアラインメントにおいて、 配列番号 1で示される アミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相当 する位置にあるアミノ酸をコードする塩基配列が、野生型エストロゲンレセプター α のアミノ酸配列の相当する位置にあるアミノ酸とは異なるアミノ酸をコードする塩 基配列に置換されているか否かを調べることによりエストロゲンレセプター αの遺 伝子型を判定する工程を含む抗エストロゲン物質による治療の有効性の判定方法。 31. In the nucleic acid in the sample, the amino acid constituting estrogen receptor α, and the amino acid sequence of amino acid sequence represented by SEQ ID NO: 1 in the alignment based on the homology of the amino acid sequence. Has the nucleotide sequence encoding the amino acid at the position corresponding to the amino acid indicated by 24 been replaced with a nucleotide sequence encoding an amino acid different from the amino acid at the corresponding position in the amino acid sequence of wild-type estrogen receptor α ? A method for judging the efficacy of treatment with an anti-estrogen substance, comprising the step of judging the gene type of estrogen receptor α by examining the presence or absence of the estrogen receptor α.
3 2 . 試料中の核酸を铸型として、 配列番号 1で示されるアミノ酸配列のアミノ酸番 号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸を 含む領域をコードする核酸を増幅し、増幅された核酸の塩基配列を決定する工程を含 む請求項 3 0または 3 1のいずれかに記載の方法。 32. With the nucleic acid in the sample as type III, a region containing an amino acid at a position corresponding to the amino acid No. 404, 405 or 424 of the amino acid sequence shown in SEQ ID NO: 1 Amplifying the encoding nucleic acid and determining the base sequence of the amplified nucleic acid. 30. The method according to claim 30 or 31.
3 3 . 試料中の核酸を铸型として、 配列番号 1で示されるアミノ酸配列のアミノ酸番 号 4 0 4、 4 0 5または 4 2 4で示されるアミノ酸に相当する位置にあるアミノ酸を 含む領域をコードする核酸を増幅し、増幅された核酸を電気泳動してその移動度を測 定し、野生型エストロゲンレセプター αの当該領域をコードする核酸の移動度と前記 増幅された核酸の移動度とが異なるか否かを調べる工程を含む請求項 3 0または 3 1のいずれかに記載の方法。 33. Using the nucleic acid in the sample as type III, a region containing an amino acid at a position corresponding to the amino acid No. 404, 405 or 424 of the amino acid sequence shown in SEQ ID NO: 1 The encoding nucleic acid is amplified, the mobility of the amplified nucleic acid is measured by electrophoresis, and the mobility of the nucleic acid encoding the relevant region of wild-type estrogen receptor α and the mobility of the amplified nucleic acid are determined. 32. The method according to claim 30, further comprising a step of checking whether or not they are different.
3 4 . 野生型エストロゲンレセプター αのアミノ酸配列のうち、 配列番号 1で示され るアミノ酸配列のアミノ酸番号 4 0 4 , 4 0 5または 4 2 4で示されるアミノ酸に相 当する位置にあるアミノ酸を含む領域をコードする塩基配列からなるプローブと、試 料中の核酸とのハイブリダィゼーシヨンの効率を調べる工程を含む請求項 3 0また は 3 1のいずれかに記載の方法。 34. In the amino acid sequence of the wild-type estrogen receptor α, the amino acid at the position corresponding to the amino acid No. 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1 32. The method according to claim 30, further comprising a step of examining the efficiency of hybridization between a probe consisting of a nucleotide sequence encoding a region containing the nucleic acid and a nucleic acid in the sample.
3 5 . 試料中の核酸を铸型として、 配列番号 1で示されるアミノ酸配列のアミノ酸番 号 4 0 4、 4 0 5または 4 2 4に相当する位置にあるアミノ酸を含む領域をコードす る核酸を増幅し、増幅された核酸を制限酵素により消化して該制限酵素の認識配列の 有無を調べる工程を含む請求項 3 0または 3 1のいずれかに記載の方法。 35. Nucleic acid encoding a region containing an amino acid at a position corresponding to amino acid number 404, 405 or 424 of the amino acid sequence represented by SEQ ID NO: 1, with the nucleic acid in the sample as type III 32. The method according to claim 30, further comprising a step of amplifying the nucleic acid, and digesting the amplified nucleic acid with a restriction enzyme to examine the presence or absence of a recognition sequence of the restriction enzyme.
PCT/JP2003/014494 2002-11-15 2003-11-14 MUTANT ESTROGEN RECEPTOR-α AND GENE THEREOF WO2004046352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003280793A AU2003280793A1 (en) 2002-11-15 2003-11-14 MUTANT ESTROGEN RECEPTOR-Alpha AND GENE THEREOF

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-331994 2002-11-15
JP2002331996 2002-11-15
JP2002331994 2002-11-15
JP2002-331995 2002-11-15
JP2002331995 2002-11-15
JP2002-331996 2002-11-15

Publications (1)

Publication Number Publication Date
WO2004046352A1 true WO2004046352A1 (en) 2004-06-03

Family

ID=32329640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014494 WO2004046352A1 (en) 2002-11-15 2003-11-14 MUTANT ESTROGEN RECEPTOR-α AND GENE THEREOF

Country Status (2)

Country Link
AU (1) AU2003280793A1 (en)
WO (1) WO2004046352A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042307A1 (en) * 1999-12-07 2001-06-14 Sumitomo Chemical Company, Limited MUTANT ERα AND TEST SYSTEMS FOR TRANSACTIVATION

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042307A1 (en) * 1999-12-07 2001-06-14 Sumitomo Chemical Company, Limited MUTANT ERα AND TEST SYSTEMS FOR TRANSACTIVATION

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DE HAAN G. ET AL.: "Estrogen receptor-KRAB chimeras are potent ligand-dependent repressors of estrogen-regulated gene expression", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 275, no. 18, 5 May 2000 (2000-05-05), pages 13493 - 13501, XP002977190 *
LI C. ET AL.: "Requirement of Sp1 and estrogen receptor alpha interaction in 17beta-estradiol-mediated transcriptional activation of the low density lipoprotein receptor gene expression", ENDOCRINOLOGY, vol. 142, no. 4, April 2001 (2001-04-01), pages 1546 - 1553, XP002977187 *
LIU H. ET AL.: "Silencing and reactivation of the selective estrogen receptor modulator-estrogen receptor alpha complex", CANCER RESEARCH, vol. 61, no. 9, 1 May 2001 (2001-05-01), pages 3632 - 3639, XP002977186 *
MACGREGOR SCHAFER J. ET AL.: "Allosteric silencing of activating function 1 in the 4-hydroxytamoxifen estrogen receptor complex is induced by substituting glycine for aspartate at amino acid 351", CANCER RESEARCH, vol. 60, no. 18, 15 September 2000 (2000-09-15), pages 5097 - 5105, XP002977188 *
YOON K. ET AL.: "Differential activation of wild-type and variant forms of estrogen receptor alpha by synthetic and natural estrogenic compounds using a promoter containing three estrogen-reponsive elements", JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, vol. 78, no. 1, July 2001 (2001-07-01), pages 25 - 32, XP002977185 *
YOON K. ET AL.: "Ligand structure-dependent differences in activation of estrogen receptor alpha in human HepG2 liver and U2 osteogenic cancer cell lines", MOLECULAR AND CELLULAR ENDOCRINOLOGY, vol. 162, no. 1-2, 25 April 2000 (2000-04-25), pages 211 - 220, XP002977189 *

Also Published As

Publication number Publication date
AU2003280793A1 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
US7582476B2 (en) Artificial cell comprising mutant estrogen receptor
JP2966093B2 (en) Human dopamine D 4 lower receptor and its use
CA2381066A1 (en) Polymorphisms in the human hpxr gene and their use in diagnostic and therapeutic applications
JP4400183B2 (en) Mutant estrogen receptor α and its gene
JP4400182B2 (en) Mutant estrogen receptor α and its gene
JP4400181B2 (en) Mutant estrogen receptor α and its gene
WO2004046352A1 (en) MUTANT ESTROGEN RECEPTOR-α AND GENE THEREOF
JP2004254600A (en) Variant androgen receptor and cell for evaluating its activity
JP2004008140A (en) Variant androgen receptor and cell for evaluating its activity
JP2004008141A (en) Variant androgen receptor and cell for evaluating its activity
JP2004254601A (en) Variant androgen receptor and cell for evaluating its activity
EP1354889B1 (en) Transcription activation complex and utilization thereof
US5460942A (en) The catalytic moiety of the glucose-6-phosphatase system: the gene and protein and related mutations
JP4078481B2 (en) Estrogen receptor gene and use thereof
JP2004254602A (en) Variant androgen receptor and cell for evaluating its activity
JP4622086B2 (en) Estrogen receptor gene and use thereof
Beischlag et al. A polymorphic dinucleotide repeat in the human dopamine D5 receptor gene promoter
JP2004008142A (en) Variant androgen receptor and cell for evaluating its activity
JP2000354494A (en) Dioxin receptor gene and its utilization
JP2002045188A (en) Dioxin receptor gene and its use
JP4423834B2 (en) Transcriptional activation complex and use thereof
JP2001078782A (en) Dioxin receptor gene and its use
JP4161569B2 (en) bHLH-PAS protein, gene thereof and use thereof
JP2006306781A (en) Transcription-activating complex and use thereof
CA2343572C (en) Marker at the vitamin d receptor gene for determining breast cancer susceptibility

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase