WO2004043606A2 - Organic rankine cycle waste heat applications - Google Patents
Organic rankine cycle waste heat applications Download PDFInfo
- Publication number
- WO2004043606A2 WO2004043606A2 PCT/US2003/036004 US0336004W WO2004043606A2 WO 2004043606 A2 WO2004043606 A2 WO 2004043606A2 US 0336004 W US0336004 W US 0336004W WO 2004043606 A2 WO2004043606 A2 WO 2004043606A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- set forth
- vapor
- rankine cycle
- internal combustion
- combustion engine
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/18—Lubricating arrangements
- F01D25/22—Lubricating arrangements using working-fluid or other gaseous fluid as lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/42—Casings; Connections of working fluid for radial or helico-centrifugal pumps
- F04D29/44—Fluid-guiding means, e.g. diffusers
- F04D29/441—Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
- F04D29/444—Bladed diffusers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/50—Inlet or outlet
- F05D2250/52—Outlet
Definitions
- the well known closed rankine cycle comprises a boiler or evaporator for the evaporation of a motive fluid, a turbine fed with vapor from the boiler to drive the generator or other load, a condenser for condensing the exhaust vapors from the turbine and a means, such as a pump, for recycling the condensed fluid to the boiler.
- a boiler or evaporator for the evaporation of a motive fluid
- a turbine fed with vapor from the boiler to drive the generator or other load
- a condenser for condensing the exhaust vapors from the turbine
- a means such as a pump
- rankine cycle systems are commonly used for the purpose of generating electrical power that is provided to a power distribution system, or grid, for residential and commercial use across the country.
- the motive fluid used in such systems is often water, with the turbine then being driven by steam.
- the source of heat to the boiler can be of any form of fossil fuel, e.g. oil, coal, natural gas or nuclear power.
- the turbines in such systems are designed to operate at relatively high pressures and high temperatures and are relatively expensive in their manufacture and use.
- rankine cycle systems have been used to capture the so called "waste heat", that was otherwise being lost to the atmosphere and, as such, was indirectly detrimental to the environment by requiring more fuel for power production than necessary.
- Another object of the present invention is the provision for a rankine cycle turbine that is economical and effective in manufacture and use.
- Yet another obj ect of the present invention is the provision for more effectively using the secondary sources of waste heat.
- Yet another object of the present invention is the pro vision for a rankine cycle system which can operate at relatively low temperatures and pressures.
- Still another object of the present invention is the provision for a rankine cycle system which is economical and practical in use.
- a centrifugal compressor which is designed for compression of refrigerant for purposes of air conditioning, is used in a reverse flow relationship so as to thereby operate as a turbine in a closed organic rankine cycle system.
- an existing hardware system which is relatively inexpensive, is used to effectively meet the requirements of an organic rankine cycle turbine for the effective use of waste heat.
- a centrifugal compressor having a vaned diffuser is effectively used as a power generating turbine with flow directing nozzles when used in a reverse flow arrangement.
- a centrifugal compressor with a pipe diffuser is used as a turbine when operated in a reverse flow relationship, with the individual pipe openings being used as nozzles.
- a compressor/turbine uses an organic refrigerant as a motive fluid with the refrigerant being chosen such that its operating pressure is within the operating range of the compressor/turbme when operating as a compressor.
- FIG. 1 is a schematic illustration of a vapor compression cycle in accordance with the prior art.
- FIG. 2 is a schematic illustration of a rankine cycle system in accordance with the prior art.
- FIG. 3 is a sectional view of a centrifugal compressor in accordance with the prior art.
- FIG. 4 is a sectional view of a compressor/turbine in accordance with a preferred embodiment of the invention.
- FIG. 5 is a perceptive view of a diffuser structure in accordance with the prior art.
- FIG. 6 is a schematic illustration of the nozzle structure in accordance with a preferred embodiment of the invention.
- FIGS. 7 A and 7B are schematic illustrations of R 2 /R] (outside/inside) radius ratios for turbine nozzle arrangements for the prior art and for the present invention, respectively.
- FIG. 8 is a graphical illustration of the temperature and pressure relationships of two motive fluids as used in the compressor/turbine in accordance with a preferred embodiment of the invention.
- FIG. 9 is a perceptive view of a rankine cycle system with its various components in accordance with a preferred embodiment of the invention.
- a typical vapor compression cycle is shown as comprising, in serial flow relationship, a compressor 11, a condenser 12, a throttle valve 13, and an evaporator/cooler 14.
- a refrigerant such as R-11, R-22, or R-134a is caused to flow through the system in a counterclockwise direction as indicated by the arrows.
- the compressor 11 which is driven by a motor 16 receives refrigerant vapor from the evaporator/cooler 14 and compresses it to a higher temperature and pressure, with the relatively hot vapor then passing to the condenser 12 where it is cooled and condensed to a liquid state by a heat exchange relationship with a cooling medium such as air or water.
- the liquid refrigerant then passes from the condenser to a throttle valve wherein the refiigerant is expanded to a low temperature two-phase liquid/vapor state as it passes to the evaporator/cooler 14.
- the evaporator liquid provides a cooling effect to air or water passing through the evaporator/cooler.
- the low pressure vapor then passes to the compressor 11 where the cycle is again commenced.
- the compressor may be a rotary, screw or reciprocating compressor for small systems, or a screw compressor or centrifugal compressor for larger systems.
- a typical centrifugal compressor includes an impeller for accelerating refiigerant vapor to a high velocity, a diffuser for decelerating the refrigerant to a low velocity while converting kinetic energy to pressure energy, and a discharge plenum in the form of a volute or collector to collect the discharge vapor for subsequent flow to a condenser.
- the drive motor 16 is typically an electric motor which is hermetically sealed in the other end of the compressor 11 and which, through a transmission 26, operates to rotate a high speed shaft.
- a typical rankine cycle system as shown in Fig. 2 also includes an evaporator/cooler 17 and a condenser 18 which, respectively, receives and dispenses heat in the same manner as in the vapor compression cycle as described hereinabove.
- the direction of fluid flow within the system is reversed from that of the vapor compression cycle, and the compressor 11 is replaced with a turbine 19 which, rather then being driven by a motor 16 is driven by the motive fluid in the system and in turn drives a generator 21 that produces power.
- the evaporator which is commonly a boiler having a significant heat input, vaporizes the motive fluid, which is commonly water but may also be a-refrigerant, with the.
- the low pressure vapor passes to the condenser 18 where it is condensed by way of heat exchange relationship with a cooling medium.
- the condensed liquid is then circulated to the evaporator by a pump 22 as shown to complete the cycle.
- a typical centrifugal compressor is shown to include an electric drive motor 24 operatively connected to a transmission 26 for driving an impeller 27.
- An oil pump 28 provides for circulation of oil through the transmission 26. With the high speed rotation of the impeller 27, refrigerant is caused to flow into the inlet 29 through the inlet guide vanes 31, through the impeller 27, through the diffuser 32 and to the collector 33 where the discharge vapor is collected to flow to the condenser as described hereinabove.
- the same apparatus shown in Figure 3 is applied to operate as a radial inflow turbine rather then a centrifugal compressor. As such, the motive fluid is introduced into an inlet plenum 34 which had been designed as a collector 33.
- the inlet guide vanes 31 are preferably moved to the fully opened positioned or alternatively, entirely removed from the apparatus.
- the diffuser 32 can be any of the various types, including vaned or vaneless diffusers.
- vaned diffuser is known as a pipe diffuser as shown and described in U.S. Patent No. 5,145,317, assigned to the assignee of the present invention.
- a diffuser is shown at 38 in Fig. 5 as circumferentially surrounding an impeller 27.
- a backswept impeller 27 rotates in the clockwise direction as shown with the high pressure refrigerant flowing radially outwardly through the diffuser 38 as shown by the arrow.
- the diffuser 38 has a plurality of circumferentially spaced tapered sections or wedges 39 with tapered channels 41 therebetween. The compressed refrigerant then passes radially outwardly through the tapered channels 41 as shown.
- a prior art nozzle arrangement is shown with respect to a centrally disposed impeller 42 which receives motive fluid from a plurality of circumferentially disposed nozzle elements 43.
- the radial extent of the nozzles 43 are defined by an inner radius Rj and an outer radius R 2 as shown. It will be seen that the individual nozzle elements 43 are relatively short with quickly narrowing cross sectional areas from the outer radius R 2 to the inner radius Rj. Further, the nozzle elements are substantially curved both on their pressure surface 44 and their suction surface 46, thus causing a substantial turning of the gases flowing therethrough as shown by the arrow.
- nozzle efficiency suffers from the nozzle turning losses and from exit flow non uniformities. These losses are recognized as being relatively small and generally well worth the gain that is obtained from the smaller size machine.
- this type of nozzle cannot be reversed so as to function as a diffuser with the reversal of the flow direction since the flow will separate as a result of the high turning rate and quick deceleration.
- nozzle arrangement of the present invention is shown wherein the impeller 42 is circumferentially surrounded by a plurality of nozzle elements 47.
- the nozzle elements are generally long, narrow and straight.
- Both the pressure surface 48 and the suction surface 49 are linear to thereby provide relatively long and relatively slowly converging flow passage 51. They include a cone-angle « within the boundaries of the passage 51 at preferably less then 9 degrees, and, as will been seen, the center line of these cones as shown by the dashed line, is straight.
- the R 2 Rj ratio is greater then 1.25 and preferably in the range of 1.4.
- a refrigerant R-245fa when applied to a turbine application, will operate in pressure ranges between 40-180 psi as shown in the graph of Fig. 8. This range is acceptable for use in hardware designed for centrifugal compressor applications. Further, the temperature range for . such a turbine system using R-245fa is in the range of 100-200° F, which is acceptable for a hardware system designed for centrifugal compressor operation with temperatures in the range of 40-110°F. It will thus be seen in Figure 8 that air conditioning equipment designed for R-134a can be used in organic rankine cycle power generation applications when using R-245fa. Further, it has been found that the same equipment can be safely and effectively used in higher temperatures and pressure ranges (e.g. 270° and 300 psia are shown by the dashed lines in Fig. 8), thanks to extra safety margins of the existing compressor.
- the turbine which has been discussed hereinabove is shown at 52 as an ORC turbine/generator, which is commercially available as a Carrier 19XR2 centrifugal compressor which is operated in reverse as discussed hereinabove.
- the boiler or evaporator portion of the system is shown at 53 for providing relatively high pressure high temperature R-245fa refrigerant vapor to a turbine/generator 52.
- the needs of such a boiler/evaporator may be provided by a commercially available vapor generator available from Carrier Limited Korea with the commercial name of 16JB.
- the energy source for the boiler/evaporator 53 is shown at 54 and can be of any form of waste heat that may normally be lost to the atmosphere.
- it may be a small gas turbine engine such as a Capstone C60, commonly known as a micro turbine, with the heat being derived from the exhaust gases of the microturbine.
- It may also be a larger gas turbine engine such as a Pratt & Whitney FT8 stationary gas turbine.
- Another practical source of waste heat is from internal combustion engines such as large reciprocating diesel engines that are used to drive large generators and in the process develop a great deal of heat that is given off by way of exhaust gases and coolant liquids that are circulated within a radiator and/or a lubrication system.
- energy may be derived from the heat exchanger used in the turbo-charger intercooler wherein the incoming compressed combustion air is cooled to obtain better efficiency and larger capacity.
- heat energy for the boiler may be derived from geothermal sources or from landfill flare exhausts.
- the burning gases are applied directly to the boiler to produce refrigerant vapor or applied indirectly by first using those resource gases to drive an engine which, in turn, gives off heat which can be used as described hereinabove.
- Condenser 56 may be of any of the well known types. One type that is found to be suitable for this application is the commercially available air cooled condenser available from Carrier Corporation as model number 09DK094. A suitable pump 57 has been found to be the commercially available as the Sundyne P2CZS.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03783329A EP1567750A4 (en) | 2002-11-13 | 2003-11-12 | Organic rankine cycle waste heat applications |
AU2003290745A AU2003290745A1 (en) | 2002-11-13 | 2003-11-12 | Organic rankine cycle waste heat applications |
NZ539413A NZ539413A (en) | 2002-11-13 | 2003-11-12 | Organic rankine cycle waste heat applications by operating a machine designed as a centrifugal compressor in reverse, as a turbine, using R-245fa |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/293,727 US7174716B2 (en) | 2002-11-13 | 2002-11-13 | Organic rankine cycle waste heat applications |
US10/293,727 | 2002-11-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004043606A2 true WO2004043606A2 (en) | 2004-05-27 |
WO2004043606A3 WO2004043606A3 (en) | 2004-11-18 |
Family
ID=32229702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/036004 WO2004043606A2 (en) | 2002-11-13 | 2003-11-12 | Organic rankine cycle waste heat applications |
Country Status (7)
Country | Link |
---|---|
US (1) | US7174716B2 (en) |
EP (1) | EP1567750A4 (en) |
KR (1) | KR20060059856A (en) |
CN (1) | CN100564813C (en) |
AU (1) | AU2003290745A1 (en) |
NZ (1) | NZ539413A (en) |
WO (1) | WO2004043606A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101107425B (en) * | 2004-11-30 | 2010-05-26 | 开利公司 | Method and apparatus for power generation using waste heat |
Families Citing this family (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7017357B2 (en) * | 2003-11-18 | 2006-03-28 | Carrier Corporation | Emergency power generation system |
US7100380B2 (en) * | 2004-02-03 | 2006-09-05 | United Technologies Corporation | Organic rankine cycle fluid |
US7665304B2 (en) | 2004-11-30 | 2010-02-23 | Carrier Corporation | Rankine cycle device having multiple turbo-generators |
US20060236698A1 (en) * | 2005-04-20 | 2006-10-26 | Langson Richard K | Waste heat recovery generator |
US7454911B2 (en) * | 2005-11-04 | 2008-11-25 | Tafas Triantafyllos P | Energy recovery system in an engine |
US7637108B1 (en) | 2006-01-19 | 2009-12-29 | Electratherm, Inc. | Power compounder |
US20100192574A1 (en) * | 2006-01-19 | 2010-08-05 | Langson Richard K | Power compounder |
US20090249779A1 (en) * | 2006-06-12 | 2009-10-08 | Daw Shien Scientific Research & Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20080296906A1 (en) * | 2006-06-12 | 2008-12-04 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
US20090044535A1 (en) * | 2006-06-12 | 2009-02-19 | Daw Shien Scientific Research And Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20090211223A1 (en) * | 2008-02-22 | 2009-08-27 | James Shihfu Shiao | High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures |
US8118895B1 (en) | 2007-03-30 | 2012-02-21 | Bechtel Power Corporation | Method and apparatus for refueling existing natural gas combined cycle plant as a non-integrated gasification combined cycle plant |
CN101970808B (en) * | 2007-07-27 | 2014-08-13 | 联合工艺公司 | Oil recovery from an evaporator of an organic rankine cycle (orc) system |
WO2009017471A1 (en) * | 2007-07-27 | 2009-02-05 | Utc Power Corporation | Oil removal from a turbine of an organic rankine cycle (orc) system |
WO2009017474A1 (en) * | 2007-07-27 | 2009-02-05 | Utc Power Corporation | Method and apparatus for starting a refrigerant system without preheating the oil |
JP2010540837A (en) * | 2007-10-04 | 2010-12-24 | ユナイテッド テクノロジーズ コーポレイション | Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine |
CN103759482B (en) * | 2007-10-31 | 2016-04-20 | 江森自控科技公司 | Control method and the gas compression system of gas compression system capacity |
WO2009082372A1 (en) * | 2007-12-21 | 2009-07-02 | Utc Power Corporation | Operating a sub-sea organic rankine cycle (orc) system using individual pressure vessels |
EP2235331A4 (en) * | 2007-12-28 | 2014-01-08 | United Technologies Corp | Dynamic leak control for system with working fluid |
WO2009136919A1 (en) * | 2008-05-07 | 2009-11-12 | Utc Power Corporation | Passive oil level limiter |
EP2300757B1 (en) * | 2008-05-07 | 2019-07-03 | United Technologies Corporation | Active stress control during rapid shut down |
US7866157B2 (en) * | 2008-05-12 | 2011-01-11 | Cummins Inc. | Waste heat recovery system with constant power output |
US20090293496A1 (en) * | 2008-06-02 | 2009-12-03 | Norris James W | Gas turbine engines generating electricity by cooling cooling air |
US20100045037A1 (en) * | 2008-08-21 | 2010-02-25 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
WO2010030271A1 (en) * | 2008-09-10 | 2010-03-18 | Utc Power Corporation | Refrigerant powered valve for a geothermal power plant |
US8544274B2 (en) * | 2009-07-23 | 2013-10-01 | Cummins Intellectual Properties, Inc. | Energy recovery system using an organic rankine cycle |
US8627663B2 (en) * | 2009-09-02 | 2014-01-14 | Cummins Intellectual Properties, Inc. | Energy recovery system and method using an organic rankine cycle with condenser pressure regulation |
US20110072819A1 (en) | 2009-09-28 | 2011-03-31 | General Electric Company | Heat recovery system based on the use of a stabilized organic rankine fluid, and related processes and devices |
EP2529096A4 (en) | 2010-01-26 | 2017-12-06 | TMEIC Corporation | Energy recovery system and method |
US8713942B2 (en) * | 2010-01-29 | 2014-05-06 | United Technologies Corporation | System and method for equilibrating an organic rankine cycle |
US8800280B2 (en) | 2010-04-15 | 2014-08-12 | Gershon Machine Ltd. | Generator |
US20110311347A1 (en) * | 2010-06-16 | 2011-12-22 | John Marsden | Flash Steam Turbine |
CN103237961B (en) | 2010-08-05 | 2015-11-25 | 康明斯知识产权公司 | Adopt the critical supercharging cooling of the discharge of organic Rankine bottoming cycle |
CN103180553B (en) | 2010-08-09 | 2015-11-25 | 康明斯知识产权公司 | Comprise Waste Heat Recovery System (WHRS) and the internal-combustion engine system of rankine cycle RC subtense angle |
WO2012021757A2 (en) | 2010-08-11 | 2012-02-16 | Cummins Intellectual Property, Inc. | Split radiator design for heat rejection optimization for a waste heat recovery system |
US8683801B2 (en) | 2010-08-13 | 2014-04-01 | Cummins Intellectual Properties, Inc. | Rankine cycle condenser pressure control using an energy conversion device bypass valve |
US8826662B2 (en) | 2010-12-23 | 2014-09-09 | Cummins Intellectual Property, Inc. | Rankine cycle system and method |
DE112011104516B4 (en) | 2010-12-23 | 2017-01-19 | Cummins Intellectual Property, Inc. | System and method for regulating EGR cooling using a Rankine cycle |
DE102012000100A1 (en) | 2011-01-06 | 2012-07-12 | Cummins Intellectual Property, Inc. | Rankine cycle-HEAT USE SYSTEM |
US9021808B2 (en) | 2011-01-10 | 2015-05-05 | Cummins Intellectual Property, Inc. | Rankine cycle waste heat recovery system |
EP3396143B1 (en) | 2011-01-20 | 2020-06-17 | Cummins Intellectual Properties, Inc. | Internal combustion engine with rankine cycle waste heat recovery system |
US8707914B2 (en) | 2011-02-28 | 2014-04-29 | Cummins Intellectual Property, Inc. | Engine having integrated waste heat recovery |
CN102305206A (en) * | 2011-03-30 | 2012-01-04 | 上海本家空调系统有限公司 | Compressor driven by heat energy |
CN102313340A (en) * | 2011-03-30 | 2012-01-11 | 上海本家空调系统有限公司 | Heat energy drive type air conditioner device and control method thereof |
US9540963B2 (en) | 2011-04-14 | 2017-01-10 | Gershon Machine Ltd. | Generator |
WO2013028088A1 (en) | 2011-08-19 | 2013-02-28 | Siemens Aktiengesellschaft | Device for the production of electric current from waste heat |
US9024460B2 (en) | 2012-01-04 | 2015-05-05 | General Electric Company | Waste heat recovery system generator encapsulation |
US8984884B2 (en) | 2012-01-04 | 2015-03-24 | General Electric Company | Waste heat recovery systems |
US9018778B2 (en) | 2012-01-04 | 2015-04-28 | General Electric Company | Waste heat recovery system generator varnishing |
US8893495B2 (en) | 2012-07-16 | 2014-11-25 | Cummins Intellectual Property, Inc. | Reversible waste heat recovery system and method |
US9140209B2 (en) | 2012-11-16 | 2015-09-22 | Cummins Inc. | Rankine cycle waste heat recovery system |
US9845711B2 (en) | 2013-05-24 | 2017-12-19 | Cummins Inc. | Waste heat recovery system |
KR20150017610A (en) * | 2013-08-07 | 2015-02-17 | 삼성테크윈 주식회사 | Compressor system |
US10352237B2 (en) * | 2016-05-26 | 2019-07-16 | Rolls-Royce Corporation | Diffuser having shaped vanes |
CN111226074B (en) | 2017-10-03 | 2022-04-01 | 环境能源公司 | Evaporator with integrated heat recovery |
US11204190B2 (en) | 2017-10-03 | 2021-12-21 | Enviro Power, Inc. | Evaporator with integrated heat recovery |
US10544705B2 (en) | 2018-03-16 | 2020-01-28 | Hamilton Sundstrand Corporation | Rankine cycle powered by bleed heat |
US11333171B2 (en) * | 2018-11-27 | 2022-05-17 | Honeywell International Inc. | High performance wedge diffusers for compression systems |
US10871170B2 (en) * | 2018-11-27 | 2020-12-22 | Honeywell International Inc. | High performance wedge diffusers for compression systems |
US11421663B1 (en) | 2021-04-02 | 2022-08-23 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic Rankine cycle operation |
US11493029B2 (en) | 2021-04-02 | 2022-11-08 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11644015B2 (en) | 2021-04-02 | 2023-05-09 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11293414B1 (en) | 2021-04-02 | 2022-04-05 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power in an organic rankine cycle operation |
US11326550B1 (en) | 2021-04-02 | 2022-05-10 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11480074B1 (en) | 2021-04-02 | 2022-10-25 | Ice Thermal Harvesting, Llc | Systems and methods utilizing gas temperature as a power source |
US11187212B1 (en) | 2021-04-02 | 2021-11-30 | Ice Thermal Harvesting, Llc | Methods for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on working fluid temperature |
US11592009B2 (en) | 2021-04-02 | 2023-02-28 | Ice Thermal Harvesting, Llc | Systems and methods for generation of electrical power at a drilling rig |
US11486370B2 (en) | 2021-04-02 | 2022-11-01 | Ice Thermal Harvesting, Llc | Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations |
US11542892B1 (en) | 2021-11-10 | 2023-01-03 | Ingersoll-Rand Industrial U.S., Inc. | Turbocharged compressor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4458493A (en) | 1982-06-18 | 1984-07-10 | Ormat Turbines, Ltd. | Closed Rankine-cycle power plant utilizing organic working fluid |
US5266002A (en) | 1990-10-30 | 1993-11-30 | Carrier Corporation | Centrifugal compressor with pipe diffuser and collector |
US6393840B1 (en) | 2000-03-01 | 2002-05-28 | Ter Thermal Retrieval Systems Ltd. | Thermal energy retrieval system for internal combustion engines |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3393515A (en) | 1965-09-16 | 1968-07-23 | Israel State | Power generating units |
US3737247A (en) * | 1971-04-12 | 1973-06-05 | Garrett Corp | Composite nozzle |
US3830062A (en) * | 1973-10-09 | 1974-08-20 | Thermo Electron Corp | Rankine cycle bottoming plant |
US4363216A (en) | 1980-10-23 | 1982-12-14 | Lucien Bronicki | Lubricating system for organic fluid power plant |
EP0093990B1 (en) * | 1982-05-11 | 1988-04-27 | A.G. Kühnle, Kopp & Kausch | Steam turbine |
US4590384A (en) | 1983-03-25 | 1986-05-20 | Ormat Turbines, Ltd. | Method and means for peaking or peak power shaving |
JP2746783B2 (en) | 1990-10-30 | 1998-05-06 | キャリア コーポレイション | Centrifugal compressor |
US5252027A (en) | 1990-10-30 | 1993-10-12 | Carrier Corporation | Pipe diffuser structure |
US5145317A (en) | 1991-08-01 | 1992-09-08 | Carrier Corporation | Centrifugal compressor with high efficiency and wide operating range |
US5207565A (en) * | 1992-02-18 | 1993-05-04 | Alliedsignal Inc. | Variable geometry turbocharger with high temperature insert in turbine throat |
US6050083A (en) | 1995-04-24 | 2000-04-18 | Meckler; Milton | Gas turbine and steam turbine powered chiller system |
AU5632396A (en) | 1995-06-06 | 1996-12-24 | Milton Meckler | Gas and steam powered or jet refrigeration chiller and co-ge neration systems |
US5807071A (en) | 1996-06-07 | 1998-09-15 | Brasz; Joost J. | Variable pipe diffuser for centrifugal compressor |
WO1998006791A1 (en) * | 1996-08-14 | 1998-02-19 | Alliedsignal Inc. | Pentafluoropropanes and hexafluoropropanes as working fluids for power generation |
MY115694A (en) | 1996-09-09 | 2003-08-30 | Asahi Glass Co Ltd | Fluorine- containing hydrocarbon composition |
US6041604A (en) | 1998-07-14 | 2000-03-28 | Helios Research Corporation | Rankine cycle and working fluid therefor |
US6233938B1 (en) | 1998-07-14 | 2001-05-22 | Helios Energy Technologies, Inc. | Rankine cycle and working fluid therefor |
US6374629B1 (en) * | 1999-01-25 | 2002-04-23 | The Lubrizol Corporation | Lubricant refrigerant composition for hydrofluorocarbon (HFC) refrigerants |
US6598397B2 (en) * | 2001-08-10 | 2003-07-29 | Energetix Micropower Limited | Integrated micro combined heat and power system |
-
2002
- 2002-11-13 US US10/293,727 patent/US7174716B2/en active Active
-
2003
- 2003-11-12 CN CNB2003801031844A patent/CN100564813C/en not_active Expired - Fee Related
- 2003-11-12 EP EP03783329A patent/EP1567750A4/en not_active Withdrawn
- 2003-11-12 WO PCT/US2003/036004 patent/WO2004043606A2/en not_active Application Discontinuation
- 2003-11-12 NZ NZ539413A patent/NZ539413A/en not_active IP Right Cessation
- 2003-11-12 AU AU2003290745A patent/AU2003290745A1/en not_active Abandoned
- 2003-11-12 KR KR1020057007460A patent/KR20060059856A/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4458493A (en) | 1982-06-18 | 1984-07-10 | Ormat Turbines, Ltd. | Closed Rankine-cycle power plant utilizing organic working fluid |
US5266002A (en) | 1990-10-30 | 1993-11-30 | Carrier Corporation | Centrifugal compressor with pipe diffuser and collector |
US6393840B1 (en) | 2000-03-01 | 2002-05-28 | Ter Thermal Retrieval Systems Ltd. | Thermal energy retrieval system for internal combustion engines |
Non-Patent Citations (1)
Title |
---|
See also references of EP1567750A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101107425B (en) * | 2004-11-30 | 2010-05-26 | 开利公司 | Method and apparatus for power generation using waste heat |
Also Published As
Publication number | Publication date |
---|---|
NZ539413A (en) | 2007-08-31 |
AU2003290745A8 (en) | 2004-06-03 |
WO2004043606A3 (en) | 2004-11-18 |
EP1567750A4 (en) | 2007-11-14 |
AU2003290745A1 (en) | 2004-06-03 |
EP1567750A2 (en) | 2005-08-31 |
US20040088985A1 (en) | 2004-05-13 |
US7174716B2 (en) | 2007-02-13 |
CN100564813C (en) | 2009-12-02 |
CN1714228A (en) | 2005-12-28 |
KR20060059856A (en) | 2006-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7174716B2 (en) | Organic rankine cycle waste heat applications | |
US7735324B2 (en) | Power generation with a centrifugal compressor | |
US7281379B2 (en) | Dual-use radial turbomachine | |
US6892522B2 (en) | Combined rankine and vapor compression cycles | |
US7254949B2 (en) | Turbine with vaned nozzles | |
US6962056B2 (en) | Combined rankine and vapor compression cycles | |
US6880344B2 (en) | Combined rankine and vapor compression cycles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1-2005-500845 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1474/DELNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 539413 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057007460 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038A31844 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003783329 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003783329 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057007460 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |