WO2004043521A1 - Safety shield for medical needles - Google Patents
Safety shield for medical needles Download PDFInfo
- Publication number
- WO2004043521A1 WO2004043521A1 PCT/US2003/032577 US0332577W WO2004043521A1 WO 2004043521 A1 WO2004043521 A1 WO 2004043521A1 US 0332577 W US0332577 W US 0332577W WO 2004043521 A1 WO2004043521 A1 WO 2004043521A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- needle
- shield
- binding member
- binding
- recited
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/01—Introducing, guiding, advancing, emplacing or holding catheters
- A61M25/06—Body-piercing guide needles or the like
- A61M25/0612—Devices for protecting the needle; Devices to help insertion of the needle, e.g. wings or holders
- A61M25/0618—Devices for protecting the needle; Devices to help insertion of the needle, e.g. wings or holders having means for protecting only the distal tip of the needle, e.g. a needle guard
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3205—Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
- A61M5/321—Means for protection against accidental injuries by used needles
- A61M5/3243—Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
- A61M5/3245—Constructional features thereof, e.g. to improve manipulation or functioning
- A61M2005/3247—Means to impede repositioning of protection sleeve from needle covering to needle uncovering position
- A61M2005/325—Means obstructing the needle passage at distal end of a needle protection sleeve
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/178—Syringes
- A61M5/31—Details
- A61M5/32—Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
- A61M5/3205—Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
- A61M5/321—Means for protection against accidental injuries by used needles
- A61M5/3243—Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel
- A61M5/3273—Means for protection against accidental injuries by used needles being axially-extensible, e.g. protective sleeves coaxially slidable on the syringe barrel freely sliding on needle shaft without connection to syringe or needle
Definitions
- the present disclosure generally relates to safety shields for medical needles, and more particularly, to safety shields that protect a needle point of a medical needle.
- Procedures for removing a needle from a patient commonly require a technician to use one hand to place pressure at the wound site where the needle is being withdrawn, while removing the needle device with the other hand. It is also common practice for an attending technician to give higher priority to care for the wound than is given to disposal of a needle. In the case of typical needle devices without safety shields, such priority either requires the convenience of an available sharps container within reach or another means for safe disposal without leaving the patient's side. Providing adequate care while following safety procedures is often compounded by the patient's physical condition and mental state, such as in burn units and psychiatric wards. Under such conditions, it is difficult to properly dispose of a used needle while caring for a patient.
- the present disclosure addresses a need for a medical needle shield apparatus which effectively and inexpensively protects a tip of a medical needle after use.
- the present disclosure resolves related disadvantages and drawbacks experienced in the art.
- the apparatus and method of this invention constitute an important advance in the art of safety needle devices.
- a medical needle shield apparatus in accordance with the principles of the present disclosure.
- the medical needle shield apparatus includes a shield that is extensible from a retracted position to an extended position to enclose a distal end of a needle.
- a binding member is disposed within the shield and defines binding surfaces that form an aperture configured for slidable receipt of the needle between the retracted position and the extended position.
- the binding member includes one or more drag inducing members extending therefrom, such that the one or more drag inducing members engage the needle during slidable receipt of the needle to create a drag force with the needle.
- the drag force causes rotation of the binding member relative to a longitudinal axis of the needle such that the binding surfaces engage the needle to prevent slidable movement of the needle in the extended position of the shield.
- the binding member further includes a retainer extending therefrom such that the retainer is engageable with the needle to prevent rotation of the binding member.
- the shield further includes a hub retainer being configured to engage a catheter hub.
- the binding member includes separate frictional members that are disposed on a proximal side and a distal side of the binding member. The friction members allow sliding of the needle therewith and provide a frictional drag similar to the drag inducing members.
- the drag force causes rotation of the binding member relative to a longitudinal axis of the needle such that the binding surfaces engage the needle to prevent slidable movement of the needle in the extended position of the shield.
- the friction members may form a monolithic member that joins two members. The members engage the needle and binding member to prevent axial movement of the needle.
- FIGURE 1 is a perspective view of one particular embodiment of a medical needle shield apparatus in accordance with the principles of the present invention
- FIGURE 2 is a cross-sectional perspective view of the medical needle shield apparatus shown in FIGURE 1 with a housing section separated therefrom;
- FIGURE 3 is an enlarged perspective cutaway view of the medical needle shield apparatus shown in FIGURE 2;
- FIGURE 3A is an enlarged perspective view of an alternate embodiment of the medical needle shield apparatus shown in FIGURE 2;
- FIGURE 3B is an enlarged perspective view of an alternate embodiment of the medical needle shield apparatus shown in FIGURE 2;
- FIGURE 3C is an enlarged perspective view of an alternate embodiment of the medical needle shield apparatus shown in FIGURE 2;
- FIGURE 4 is a perspective cutaway view of the medical needle shield apparatus shown in FIGURE 3;
- FIGURE 5 is a cross-sectional perspective view of the medical needle shield apparatus shown in FIGURE 2 having a shield thereof extended;
- FIGURE 6 is an enlarged perspective view of a binding member of the medical needle shield apparatus shown in FIGURE 2;
- FIGURE 7 is an alternative cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 3;
- FIGURE 8 is a perspective view of an inner surface of a housing section of the medical needle shield apparatus shown in FIGURE 3;
- FIGURE 9 is a perspective cutaway view of the medical needle shield apparatus shown in FIGURE 3 with the shield in an extended position;
- FIGURE 10 is a perspective view of the medical needle shield apparatus shown in FIGURE 1 with the shield in an extended position;
- FIGURE 11 is an enlarged perspective view of an alternate binding member of the medical needle shield apparatus shown in FIGURE 6;
- FIGURE 12 is an enlarged perspective view of another alternate binding member of the medical needle shield apparatus shown in FIGURE 3;
- FIGURE 13 is an enlarged cross-sectional perspective cutaway view of an alternate embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 14 is an enlarged cross-sectional perspective cutaway view of an alternate embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 15 is an enlarged cross-sectional perspective cutaway view of another embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 16 is an enlarged cross-sectional perspective cutaway view of another embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 17 is a cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 1 with an outer rotatable housing separated therefrom;
- FIGURE 18 is an enlarged cross-sectional perspective cutaway view of a distal end of the medical needle shield apparatus shown in FIGURE 17;
- FIGURE 19 is an enlarged perspective view of the rotatable housing of the medical needle shield apparatus shown in FIGURE 17;
- FIGURE 20 is an enlarged perspective view of a portion of the housing of the medical needle shield apparatus shown in FIGURE 17;
- FIGURE 21 is a cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 17;
- FIGURE 22 is a cross-sectional perspective view of the medical needle shield apparatus shown in FIGURE 21 with a catheter hub removed;
- FIGURE 23 is an enlarged cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 1 with a hub support member separated;
- FIGURE 24 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 23 with the catheter hub removed;
- FIGURE 25 is a cross-sectional perspective cutaway view of another embodiment of the medical needle shield apparatus shown in FIGURE 1 with a rotatable housing separated;
- FIGURE 26 is a cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 27 is a perspective cutaway view of the medical needle shield apparatus shown in FIGURE 26 with the shield in an extended position;
- FIGURE 28 is an enlarged perspective view of the binding member of the medical needle shield apparatus shown in FIGURE 26;
- FIGURE 29 is an enlarged perspective view of the bearing of the medical needle shield apparatus shown in FIGURE 26;
- FIGURE 30 is a cross-sectional perspective cutaway view of another embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 31 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 30;
- FIGURE 32 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 30;
- FIGURE 33 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 30;
- FIGURE 34 is a cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 1 with a housing section separated therefrom;
- FIGURE 35 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 34;
- FIGURE 36 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 34
- FIGURE 37 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 34;
- FIGURE 38 is a cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 39 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 38 in the extended position;
- FIGURE 40 is a cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 41 is a cross-sectional perspective cutaway view of the medical needle shield apparatus shown in FIGURE 40 in the extended position;
- FIGURE 42 is a cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 43 is a cross-sectional view of the medical needle shield apparatus shown in FIGURE 42;
- FIGURE 44 is a cross-sectional perspective view of the medical needle shield apparatus shown in FIGURE 42 in the extended position;
- FIGURE 45 is a cross-sectional view of the medical needle shield apparatus shown in FIGURE 44;
- FIGURE 46 is a cross-sectional view of the medical needle shield apparatus shown in FIGURE 44;
- FIGURE 47 is a cross-sectional perspective view of another embodiment of the medical needle shield apparatus shown in FIGURE 1;
- FIGURE 48 is a cross-sectional view of the medical needle shield apparatus shown in FIGURE 47;
- FIGURE 49 is an enlarged perspective view of the binding member of the medical needle shield apparatus shown in FIGURE 47;
- FIGURE 50 is an enlarged perspective view of the unitary friction member of the medical needle shield apparatus shown in FIGURE 47;
- FIGURE 51 is a cross-sectional perspective view of the medical needle shield apparatus shown in FIGURE 47 in the extended position; and FIGURE 52 is an enlarged perspective view of another embodiment of the binding member of the medical needle shield apparatus shown in FIGURE 47.
- the exemplary embodiments of the medical needle shield apparatus and methods of operation disclosed are discussed in terms of medical needles for infusion of intravenous fluids, medication infusion or fluid collection, and more particularly, in terms of needle shield apparatus employed with a needle cannula that prevent hazardous exposure to a needle tip, including, for example, inadvertent needle sticks.
- the medical needle safety shield apparatus may be utilized for medical needle applications including, but not limited to, fluid infusion, fluid collection, catheters, catheter introducers, guidewire introducers, spinal and epidural, biopsy, aphaeresis, dialysis, blood donor, Veress needles, Huber needles, winged (“butterfly”) needles, etc.
- the present disclosure finds application to a wide variety of cannula needles and devices for the infusion of preventive medications, medicaments, therapeutics, etc. to a subject. It is also envisioned that the present disclosure may be employed for collection of body fluids including those employed during procedures relating to phlebotomy, digestive, intestinal, urinary, veterinary, etc.
- proximal refers to a portion of a structure that is closer to a clinician
- distal refers to a portion that is further from the clinician.
- subject refers to a patient that receives infusions or has blood and/or fluid collected therefrom using the medical needle shield apparatus.
- clinical refers to an individual administering an infusion, performing fluid collection, installing or removing a needle cannula from a medical needle shield apparatus and may include support personnel.
- FIGURES 1-10 there is illustrated a medical needle shield apparatus, constructed in accordance with the principals of the present disclosure.
- the medical needle shield apparatus includes a shield 1 being extensible from a retracted position (FIGURE 1) to an extended position (FIGURE 10) to enclose a distal end 15 of a needle 6.
- a binding member 5 is disposed within shield 1 and defines binding surfaces 22. Binding surfaces 22 form an aperture 21 that is configured for receipt of needle 6.
- Binding member 5 includes one or more drag inducing members, such as, for example, friction members 26 that extend therefrom. Friction members 26 engage needle 6 to facilitate rotation, as will be discussed, of binding member 5 relative to a longitudinal axis x of needle 6. Binding member 5 also includes a retainer 14 extending therefrom. Retainer 14 has a first portion, such as, for example, a needle communicating surface 23 that engages needle 6 to prevent rotation of binding member 5 prior to the extended position. Retainer 14 also has a second portion, such as, for example, a hub retainer 14A. A catheter hub 4 is disposed about needle 6. Catheter hub 4 is releasably mounted with shield 1 via releasable engagement with hub retainer 14A.
- the medical needle shield apparatus is advantageously configured to prevent hazardous exposure to distal end 15 of needle cannula 6, as will be discussed below.
- the components of the medical needle shield apparatus can be fabricated from a material suitable for medical applications, such as, for example, polymerics or metals, such as stainless steel, depending on the particular medical application and/or preference of a clinician.
- Semi-rigid and rigid polymerics are contemplated for fabrication, as well as resilient materials, such as molded medical grade polypropylene.
- resilient materials such as molded medical grade polypropylene.
- a catheter 3 includes catheter hub 4, which forms part of a catheter 3 and introducer assembly that may be employed with the medical needle shield apparatus. Shield 1 and catheter 3 slidably support needle 6 for use thereof. A handle 13 is mounted with needle 6 to facilitate manipulation thereof.
- catheter may also be used to describe the outer needle, sleeve, or tube of a medical needle assembly.
- needle may also be used to describe the inner needle, wire, or stylet, which is generally metallic, but may be made of any suitable material including polymers.
- Catheter hub 4 has a hub slot 24 for receipt and engagement with hub retainer 14A.
- Catheter hub 4 has a finger tab 5 A for urging catheter 3 toward distal end 15 of needle 6, facilitating removal of catheter 3 from shield 1, and use during a catheter application. It is contemplated that finger tab 5A may be alternatively configured and dimensioned according to the needle application or disposed on shield 1.
- Shield 1 includes a housing 2 for disposition of binding member 5.
- Shield 1 includes housing first section 8 and housing second section 9, as shown in FIGURE 2.
- housing sections 8, 9 may be variously configured and dimensioned such as, for example, rectangular, spherical, etc.
- housing sections 8, 9 may be joined by any appropriate process such as, for example, snap fit, adhesive, solvent weld, thermal weld, ultrasonic weld, screw, rivet, etc.
- housing 2 may be monolithically formed or integrally assembled of multiple sections and may be substantially transparent, opaque, etc.
- Housing sections 8, 9 may include ribs, ridges, etc. to facilitate manipulation of the medical needle shield apparatus.
- a flange 4A of catheter hub 4 is concentrically supported by a control surface 10 disposed about an inner surface of housing 2.
- Control surface 10 engages an outer surface 11 of flange 4A for guiding and supporting the extension of catheter hub 4 therefrom. It is contemplated that control surface 10 may engage other portions of catheter hub 4.
- Housing 2 may include hub stop surfaces 12 that facilitate positioning of catheter hub
- Hub stop surfaces 12 prevent proximal movement of catheter hub 4 during mounting with and relative to housing 2. Hub stop surfaces 12 advantageously facilitates control of the degree of insertion with housing 2 according to the requirements of a particular catheter application.
- One or a plurality of hub stop surfaces 12 may be employed. It is contemplated that hub stop surfaces 12 may include springs, clips, etc. to facilitate attachment with catheter hub 4.
- binding member 5 is monolithically formed and includes an aperture plate 18, frictional members 26, and retainer 14, which includes end sensing member 19, needle communicating surface 23 and hub retainer 14A.
- Aperture plate 18 has a rectangular, generally planar configuration with sufficient stiffness to produce forces for binding needle 6, as will be discussed. It is envisioned that aperture plate 18 may have an arcuate surface, undulating, etc. It is further envisioned that aperture plate 18 may have various degrees of stiffness according to the requirements of a particular application.
- Frictional members 26 may be monolithically formed with binding member 5 and extend from aperture plate 18 in association therewith for alignment with aperture 21 and engagement with needle 6. Each frictional member 26 includes a flexible arm 26A, which are spaced apart to facilitate sliding engagement with needle 6.
- Such engagement creates a frictional drag force with needle 6.
- This frictional drag force causes binding member 5 to move with needle 6, which generates a canting force in retainer 14 and inclination of aperture plate 18, discussed below.
- the canting force and inclination urge rotation of binding member 5. It is contemplated that a single friction member may be employed.
- the canting force causes a lever or moment of retainer 14, which is opposed to prevent rotation of binding member 5.
- the canting force is opposed by engagement of needle communicating surface 23 with needle 6 in a non-binding or sliding orientation of binding member 5.
- End sensing member 19 extends distally from aperture plate 18. End sensing member
- end sensing member 19 may be perpendicularly oriented relative to a plane defined by aperture plate 18. This pe ⁇ endicular orientation facilitates inclination of aperture plate 18 for disposal in a binding or non-binding orientation of binding member 5. It is envisioned that end sensing member 19 may be variously oriented with aperture plate 18 and may flexibly extend therefrom.
- Needle communicating surface 23 extends from end sensing member 19 in a substantially pe ⁇ endicular orientation to aperture plate 18 and in alignment with needle 6. In a non-binding or sliding orientation, needle communicating surface 23 extends in substantially parallel alignment with needle 6 for slidable engagement therewith, as shown in FIGURE 5. Needle communicating surface 23 engages needle 6 and maintains the non- binding or sliding orientation of aperture plate 18 by opposing the canting force of end sensing member 19 directed to needle 6. The canting force, as created by the drag force described below, is generated by friction members 26 engaging aperture plate 18, and in cooperation with blocking member 16, causing aperture plate 18 to move to a binding position. Inclination, however, is prevented in the non-binding or sliding orientation because of the engagement of needle communicating surface 23 with needle 6, as shown in FIGURE 5. As needle 6 is retracted proximally and shield is extended distally, needle 6 continues to slideably engage needle communicating surface 23, as shown in FIGURE 5.
- a drag force is created between friction members 26 and needle 6.
- the drag force in conjunction with blocking member 16, cause aperture plate 18 to move to the binding position.
- the force created by blocking member 16 acts in a direction opposite of the drag force. This causes a force couple which moves the aperture plate 18 to the binding position.
- aperture plate 18 and retainer 14 move to the binding position. Rotation is no longer opposed by engagement with needle 6 at needle communicating surface 23.
- aperture plate 18, attached to retainer 14, is subject to inclination into a binding orientation. Rotation of aperture plate 18 causes binding surfaces 22 to frictionally engage needle 6 to prevent movement thereof.
- Blocking members 16, 17 cause aperture plate 18 to move to the binding position as forces are imposed on shield 1 in either direction along longitudinal axis x. This maintains needle 6 within shield 1 to avoid hazardous exposure to distal end 15.
- needle communicating surface 23 may include ribs, projections, cavities, etc. for engagement with needle 6 or that a portion of needle communicating surface 23 engages needle 6.
- binding member 5 may be configured such that aperture 21 does not engage needle 6 until binding occurs.
- blocking members 16 and 17 are configured to initiate rotation of binding member 5 upon which the rotation of aperture plate 18 causes binding surfaces 22 to f ⁇ ctionally engage needle 6 to prevent movement thereof.
- Hub retainer 14A extends transversely from a distal end of needle communicating surface 23. Hub retainer 14A extends a sufficient length for co ⁇ esponding receipt within a hub slot 24 of catheter hub 4, as shown in FIGURE 5. In association with a non-binding or sliding orientation of binding member 5, hub retainer 14A engages catheter hub 4, in hub slot
- hub retainer 14 rotates direction relative to longitudinal axis x due to the canting forces generated by friction members 26.
- Hub retainer 14A disengages from hub slot 24 to release catheter hub 4 from housing 2.
- a clinician may manipulate finger tab 5 A to manipulate catheter 3 distally and apart from shield 1.
- hub retainer 14A may be variously oriented from needle communicating surface 23.
- hub slot 24 may be variously dimensioned and disposed on the circumference of catheter hub 4. Hub slot 24 may include tabs, etc. for retention with hub retainer 14A.
- Aperture 21 is formed within aperture plate 18 for slideable engagement with needle 6 during movement between the retracted position and the extended position of shield 1.
- Aperture 21 includes binding surfaces 22 formed on opposing sides of aperture 21 that engage needle 6 to prevent movement thereof in the extended position of shield 1. It is contemplated that engagement to prevent movement of needle 6 may include penetrating, frictional, interference, etc. It is envisioned that aperture 21 may have various geometric configurations, such as radial, polygonal, etc. It is further envisioned that aperture 21 may define an open cavity within aperture plate 18, such as, for example, "U" shaped and open to one or a plurality of edges of aperture plate 18.
- aperture plate 18 The inclination of aperture plate 18 relative to longitudinal axis x facilitates sliding and binding, via binding surfaces 22 of aperture 21, of needle 6 within shield 1 to prevent hazardous exposure to distal end 15.
- aperture plate 18 is oriented at an angle of approximately 90° relative to longitudinal axis x such that aperture plate 18 is disposed substantially pe ⁇ endicular to needle 6. In this non-binding or sliding orientation, needle 6 is free to slide within aperture 21. Refe ⁇ ing to FIGURE 5, as needle 6 is retracted and shield 1 is extended, needle 6 continues to engage needle communicating surface 23 and aperture plate 18 maintains its pe ⁇ endicular orientation relative to longitudinal axis x.
- shield 1 is manipulated such that friction members 26 cause binding member 5 to rotate relative to longitudinal axis x.
- Aperture plate 18 rotates out of pe ⁇ endicular alignment with needle 6 such that aperture plate is oriented at an angle , which is less than 90° with respect to longitudinal axis x. It is contemplated that angle a may be measured from either side of aperture plate 18.
- Aperture plate 18 rotates to angle a and binding member 5 approaches a binding orientation.
- the binding orientation includes engagement of binding surfaces 22 with needle 6 due to the binding orientation of aperture plate 18. This engagement creates binding frictional forces on needle 6, to prevent movement of needle 6 relative to shield 1 and to maintain distal end 15 within shield 1 to prevent hazardous exposure thereto.
- Blocking members 16, 17 of housing 2 are formed with housing section 8 and are disposed not to interfere with needle 6. Blocking members 16, 17 define surfaces 16A, 17A respectively, that facilitate disposal of aperture plate 18 in a binding orientation.
- shield 1 is in a retracted position and needle 6 is fully extended.
- Binding member 5 and aperture plate 18 are in a non-binding or sliding orientation such that aperture plate 18 is substantially pe ⁇ endicular to longitudinal axis x.
- Blocking members 16, 17 may engage aperture plate 18 to maintain aperture plate 18 in the pe ⁇ endicular orientation. Blocking members 16, 17 may also maintain such orientation during extension of needle 6 or may not engage needle 6.
- friction members 26 create a drag force via engagement with needle 6 on binding member 5, as shown in FIGURE 7, causing aperture plate 18 to rotate to the binding orientation.
- Blocking member surfaces 16A, 17A engage aperture plate 18 to facilitate rotation thereof from the pe ⁇ endicular orientation into the binding orientation such that binding surfaces 22 engage needle 6. This configuration prevents movement of needle 6.
- binding of binding member 5 to needle 6 is facilitated by the friction or binding force generated between binding surfaces 22 and needle 6.
- This frictional engagement prevents axial movement of needle 6 relative to housing 2 when shield 1 is in the extended position.
- binding surfaces 22 may include sha ⁇ edges to increase frictional engagement.
- the friction or binding force may be varied by altering factors, such as, for example, aperture 21 dimension, needle 6 diameter, aperture plate 18 thickness, the dimension from blocking members 16, 17 contact point to the centerline of needle 6 and the coefficient of friction between aperture 21 and needle 6 for any force applied to housing 2 up to the point of material failure, etc., depending on the particular requirements of a needle application.
- binding member 5' includes a drag inducing member, such as, aperture 21 that is formed by binding surfaces 22 (see FIGURE 6). Aperture 21 facilitates sliding engagement with needle cannula 6. Such engagement creates a frictional drag force with needle cannula 6. This frictional drag force causes binding member 5' to move with needle cannula 6. In a non- binding or sliding orientation of binding member 5', aperture plate 18' engages blocking members 16, 17 causing a canting force in end sensing member 19, as discussed.
- a drag inducing member such as, aperture 21 that is formed by binding surfaces 22 (see FIGURE 6). Aperture 21 facilitates sliding engagement with needle cannula 6. Such engagement creates a frictional drag force with needle cannula 6. This frictional drag force causes binding member 5' to move with needle cannula 6.
- aperture plate 18' engages blocking members 16, 17 causing a canting force in end sensing member 19, as discussed.
- FIGURE 3B shows a member 44 having an aperture 45, with member 44 being disposed on aperture plate 18'.
- the diameter of aperture 45 is smaller than the diameter of aperture 21.
- Binding member 5' includes a drag inducing member, such as, aperture 45 that is formed by binding surfaces 46.
- Aperture 45 facilitates sliding engagement with needle cannula 6. Such engagement creates a frictional drag force with needle cannula 6, and in cooperation with blocking member 16, cause aperture plate 18' to move to the binding position.
- FIGURE 3C shows a member 41 having elements 42 defining an opening 40, with member 41 being disposed on aperture plate 18'.
- Binding member 5' includes a drag inducing member, such as, opening 40 that is formed by surfaces 43. The distance between surfaces 43 is smaller than the diameter of aperture 21. Surfaces 43 facilitate sliding engagement with needle cannula 6. Such engagement creates a frictional drag force with needle cannula 6, and in cooperation with blocking member 16, cause aperture plate 18' to move to the binding position. It is contemplated that members 41 and 44 may be fabricated from materials such as polymerics, metals, elastomeric materials, etc.
- binding member 5 has a polygonal geometric configuration and end sensing member 19 has member arms 19A that extend in a uniform axial orientation, parallel to needle 6. Needle communicating surface 23 extends transversely to bridge a cavity 23A between arms 19 A. Binding member 5 includes hub retainers 14A for engagement with hub slot 24, similar to that described. Friction members 26 extend laterally from aperture plate 18. Friction member arms 26A may include a planar engagement surface, as shown in FIGURE 11, or alternatively, may include a curled engagement surface, as shown in FIGURE 12, for engagement with needle 6.
- the medical needle shield apparatus similar to that described in accordance with the principles of the present disclosure is provided for employment with catheter 3.
- the components of the medical needle shield apparatus are fabricated, properly sterilized and otherwise prepared for storage, shipment and use.
- the clinician manipulates handle 13 such that shield 1 is in the retracted position and binding member 5 is in a non-binding or sliding orientation. Needle 6 is fully extended relative to shield 1 such that catheter 3 is disposed about needle 6 and catheter hub 4 is releasably mounted with housing 2. A procedure employing the medical needle shield apparatus with catheter 3 is performed by the clinician to completion.
- Needle 6 is retracted proximally such that shield 1 is extended toward the extended position, as shown in FIGURE 5.
- Binding member 5 is in the non-binding or sliding orientation such needle 6 engages needle communicating surface 23 and binding surfaces 22 facilitate sliding through aperture 21, as discussed.
- Aperture plate 18 rotates relative to longitudinal axis x, from the pe ⁇ endicular orientation to an inclination for a binding orientation as facilitated by blocking members 16, 17, as shown in FIGURE 9. Aperture plate 18 rotates to angle a relative to longitudinal axis x.
- Hub retainer 14A disengages from hub slot 24 such that catheter hub 4 is released from housing 2.
- Catheter 3 can be manipulated distally via finger tab 5A.
- binding surfaces 22 engage needle 6 to bind and prevent axial movement of needle 6 within housing 2.
- Shield 1 is disposed in the extended position to prevent hazardous exposure to distal end 15, as shown in FIGURE 10.
- binding member 5 includes separate frictional members 26' that are disposed on a proximal side and a distal side of aperture plate 18, respectively.
- Friction members 26' are friction fit polymer O-rings, which allow sliding of needle 6 therewith and provide a frictional drag force, similar to that discussed, via engagement with needle 6. The drag force is created as needle 6 slides and friction members 26' engage aperture plate 18. Friction members 26' engage aperture plate 18, and in cooperation with blocking member 16, cause aperture plate 18 to move to the binding position.
- Binding surfaces 22 engage needle 6 to prevent axial movement of needle 6, as discussed.
- friction members 26' may be fabricated from materials such as polymerics, metals, etc. Alternatively, friction members 26' may form a monolithic member that links or joins two members 26", as shown in FIGURE 14. Members 26" engage needle 6 and aperture plate 18 to prevent axial movement of needle 6, similar to that discussed with regard to FIGURE 13. It is envisioned that aperture 21 may create a drag force via engagement with needle 6 to cause rotation of binding member 5, similar to that described. It is further envisioned that materials such as, for example, jells, greases, etc. may be employed to create a frictional drag force with needle 6 to cause rotation of binding member 5.
- housing 2 includes hub support 20.
- Hub support 20 is received by catheter hub 4 to advantageously facilitate removable mounting of catheter hub 4 with shield 1.
- control surface 10 of housing 2 may be cut back or eliminated. This configuration allows hub support 20 to solely facilitate mounting of catheter hub 4 via a concentric relationship therewith.
- FIGURES 17-20 another alternate embodiment of the medical needle safety apparatus is shown.
- a rotatable housing 25, having sections 29, is disposed for rotation and enclosure of shield 1.
- Rotatable housing 25 is mounted within handle 13 and freely rotates relative to shield 1 and needle 6 in the extended position of shield 1. Relative rotation of rotatable housing 25 is facilitated by support at opening 27 and support 30 formed in rotatable housing 25.
- Axles 31, 31A are rotationally supported in openings 30, 27, respectively. In a binding orientation, the bearing configuration supports rotation of rotatable housing 25 relative to shield 1 and needle 6.
- Bearing 40 includes blocking member 16, 17, similar to those discussed. Needle 6 passes through blocking members 16, 17 for slidable movement relative thereto.
- the halves of axle 31 are spaced apart such that needle 6 and retainer 14 may be disposed therein.
- bearing 40 includes a thrust collar 32 mounted to needle 6.
- a co ⁇ esponding thrust base 33 of rotatable housing 25 is configured to support thrust collar 32 and controls relative axial movement between bearing 40 and rotatable housing 25. Thrust collar 32 freely rotates within thrust base 33 to facilitate rotation of needle 6 and limit tilting of shield 1 within rotatable housing 25.
- rotatable housing 25 includes a hub support 20, similar to that discussed with regard to FIGURE 15.
- control surface 10 of bearing 40 may be cut back or eliminated, similar to that discussed with regard to FIGURE 16.
- a rotatable housing 25 is disposed for rotation and enclosure of shield 1.
- Rotatable housing 25 freely rotates relative to shield 1 and needle 6 in the extended position of shield 1.
- Relative rotation of rotatable housing 25 is facilitated by support at opening 27 formed in rotatable housing 25.
- Axles 31, 31A are rotationally supported in opening 27.
- the bearing configuration supports rotation of rotatable housing 25 relative to shield 1 and needle 6.
- Bearing 40 includes blocking member 16, 17, similar to those discussed. Needle 6 passes through blocking members 16, 17 for slidable movement relative thereto.
- the halves of axle 31 are spaced apart such that needle 6 and retainer 14 may be disposed therein.
- This configuration prevents rotation of shield 1 about longitudinal axis x of needle 6 such that binding member 5 is not undesirably rotated to disturb the protective binding engagement with needle 6.
- the length of opening 27 may be increased such that the radial clearance of opening 27 with needle 6 limits tilting of shield 1 within rotatable housing 25. This configuration prevents radial contact of shield 1 with rotatable housing 25 and allows elimination of a front bearing.
- hub retainer 14A may be hingedly connected to bearing 40, such as by a living hinge or the like.
- FIGURES 30 and 31 illustrate shield 1 prior to activation, wherein Hub retainer 14A includes a portion 34 for engagement with retainer 14 for maintaining hub retainer 14A in hub slot 24.
- FIGURES 32 and 33 illustrate shield 1 after activation, wherein the movement of retainer 14 upon activation of shield 1 in the extended position allows portion 34 to move and release hub retainer 14A from hub slot 24.
- FIGURES 34-37 depict a hub retainer 14A hingedly connected to housing 2.
- FIGURES 34 and 35 illustrate shield 1 prior to activation, wherein Hub retainer 14A includes a portion 34 for engagement with retainer 14 for maintaining hub retainer 14A in hub slot 24.
- FIGURES 36 and 37 illustrate shield 1 after activation, wherein the movement of retainer 14 upon activation of shield 1 in the extended position allows portion 34 to move and release hub retainer 14A from hub slot 24.
- FIGURES 38-39 depict a shield having a hub retainer
- FIGURE 38 illustrates shield 1 prior to activation.
- FIGURE 39 illustrates shield 1 after activation, wherein the movement of retainer 14 upon activation of shield 1 in the extended position allows retainer 14 to move and release hub retainer 14A from flange 42.
- Retainer shield 44 protects hub retainer 14A from being inadvertently moved from its intended position.
- FIGURES 40-41 depict a rotatable shield having a hub retainer 14A which engages the catheter hub 4 via flange 42.
- FIGURE 40 illustrates shield 1 prior to activation.
- FIGURE 41 illustrates shield 1 after activation, wherein the movement of retainer 14 upon activation of shield 1 in the extended position allows retainer 14 to move and release hub retainer 14A from flange 42.
- Retainer shield 44 extends circumferentially to provide for rotation of hub retainer 14A about needle 6 and to protect hub retainer 14A from being inadvertently moved from its intended position.
- FIGURES 42-46 another alternate embodiment of the medical needle safety apparatus is shown.
- FIGURES 42 and 43 illustrate shield 1 prior to activation, wherein binding member 46 is disposed within a cavity 54 of sliding member 48.
- Sliding member 48 receives needle 6 for slidable receipt via friction between the retracted position and extended position of shield 1.
- End sensing member 19 extends distally from sliding member 48. It is envisioned that end sensing member 19 may be variously oriented with sliding member 48 and may flexibly extend therefrom, such as by a hinge 52 or the like.
- Needle communicating surface 23 extends from end sensing member 19. In a non-binding or sliding orientation, needle communicating surface 23 slidably engages needle 6, as shown in FIGURES 42 and 43.
- Needle communicating surface 23 engages needle 6 and maintains the non-binding or sliding orientation of binding member 46 by opposing the force of end sensing member 19 directed to needle 6.
- the force, as created by the binding member against end sensing member 19 described below, is generated by ramp surface 50 engaging binding member 46. Binding engagement, however, is prevented in the non-binding or sliding orientation because of the engagement of needle communicating surface 23 with needle 6, as shown in FIGURES 42 and 43.
- needle 6 As needle 6 is retracted proximally and shield is extended distally, needle 6 continues to slideably engage needle communicating surface 23, as shown in FIGURES 42 and 43.
- needle communicating surface 23 may include ribs, projections, cavities, etc. for engagement with needle 6 or that a portion of needle communicating surface 23 engages needle 6.
- ramp surfaces 50 allow binding engagement of binding member 46 to needle 6 as the shield is moved in either axial direction along needle 6.
- Catheter hub 4 has a hub slot 24 for receipt and engagement with hub retainer 14A.
- Hub retainer 14A extends from end sensing member 19. Hence, as needle 6 is released from engagement with needle communicating surface 23 disposed on end sensing member 19, hub retainer 14A is disengaged from catheter hub 4 for release therefrom.
- FIGURES 47-52 another alternate embodiment of the medical needle safety apparatus is shown.
- the illustrated embodiments depict a rotatable shield wherein the binding member 5 rotates about bearing surfaces provided in cavity 56.
- FIGURES 47 and 48 illustrate shield 1 prior to activation.
- Retainer 14 extends from end sensing member 19, wherein retainer 14 supports the needle on opposing sides and maintains binding member 5 in a non-binding position prior to the shield being in the extended position.
- Binding member 5 is disposed in friction member 26" that forms a monolithic member for receiving needle 6 for slidable receipt via friction between the retracted position and extended position of shield 1, as shown in FIGURE 50.
- FIGURE 51 illustrates shield 1 after activation, wherein the movement of retainer 14 upon activation of shield 1 in the extended position allows retainer 14 to move and release hub retainer 14A from slot 24.
- FIGURE 52 illustrates another embodiment of the binding member 5 having friction arms 26 to facilitate rotation of the binding member. It is envisioned that the embodiments including binding member 5 illustrated in FIGURE 25 may have blocking members inco ⁇ orated into the housing as discussed in previously disclosed embodiments.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Pulmonology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT03811231T ATE462465T1 (en) | 2002-11-07 | 2003-10-15 | SAFETY LABEL FOR MEDICAL NEEDLES |
EP03811231A EP1562658B1 (en) | 2002-11-07 | 2003-10-15 | Safety shield for medical needles |
BR0316026-2A BR0316026A (en) | 2002-11-07 | 2003-10-15 | Medical needle protector |
NZ540346A NZ540346A (en) | 2002-11-07 | 2003-10-15 | Safety shield for medical needles |
JP2005507042A JP2006505378A (en) | 2002-11-07 | 2003-10-15 | Safety shield for medical needle |
CA2505516A CA2505516C (en) | 2002-11-07 | 2003-10-15 | Safety shield for medical needles |
MXPA05004575A MXPA05004575A (en) | 2002-11-07 | 2003-10-15 | Safety shield for medical needles. |
DE60331944T DE60331944D1 (en) | 2002-11-07 | 2003-10-15 | SAFETY SIGN FOR MEDICAL NEEDLES |
AU2003277374A AU2003277374B2 (en) | 2002-11-07 | 2003-10-15 | Safety shield for medical needles |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42465502P | 2002-11-07 | 2002-11-07 | |
US60/424,655 | 2002-11-07 | ||
US10/660,083 | 2003-09-11 | ||
US10/660,083 US7458954B2 (en) | 2002-11-07 | 2003-09-11 | Safety shield for medical needles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004043521A1 true WO2004043521A1 (en) | 2004-05-27 |
Family
ID=32314546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/032577 WO2004043521A1 (en) | 2002-11-07 | 2003-10-15 | Safety shield for medical needles |
Country Status (9)
Country | Link |
---|---|
US (1) | US7458954B2 (en) |
EP (1) | EP1562658B1 (en) |
JP (1) | JP2006505378A (en) |
AU (1) | AU2003277374B2 (en) |
BR (1) | BR0316026A (en) |
CA (1) | CA2505516C (en) |
MX (1) | MXPA05004575A (en) |
NZ (1) | NZ540346A (en) |
WO (1) | WO2004043521A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1764127A2 (en) * | 2005-08-08 | 2007-03-21 | Smiths Medical ASD, Inc. | Needle guard clip with heel |
WO2007139740A2 (en) | 2006-05-22 | 2007-12-06 | Becton, Dickinson And Company | Catheter assembly with tip shield closure |
FR2951646A1 (en) * | 2009-10-26 | 2011-04-29 | Vygon | ANTI-PIN CAGE AND PUNCTURE KIT COMPRISING AN ANTI-PIN CAGE |
AU2011203485B2 (en) * | 2005-08-08 | 2012-01-12 | Smiths Medical Asd, Inc. | Needle guard strut wall clip |
US8845584B2 (en) | 2001-03-15 | 2014-09-30 | Specialized Health Products, Inc. | Safety shield for medical needles |
US8844112B2 (en) | 2005-04-18 | 2014-09-30 | Specialized Health Products, Inc. | Methods of manufacturing safety shields for medical needles and related manufacturing devices |
US8864714B2 (en) | 1998-04-09 | 2014-10-21 | Becton, Dickinson And Company | Catheter and introducer needle assembly with needle shield |
US8968240B2 (en) | 2005-03-07 | 2015-03-03 | Erskine Medical Llc | Method of making a needle shielding device |
US9180277B2 (en) | 2010-12-02 | 2015-11-10 | Erskine Medical Llc | Release mechanism for use with needle shielding devices |
US9278195B2 (en) | 2010-12-02 | 2016-03-08 | Erskine Medical Llc | Needle shield assembly with hub engagement member for needle device |
US9408632B2 (en) | 2011-04-07 | 2016-08-09 | Erskine Medical Llc | Needle shielding device |
US9555221B2 (en) | 2014-04-10 | 2017-01-31 | Smiths Medical Asd, Inc. | Constant force hold tip protector for a safety catheter |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6902546B2 (en) * | 2001-03-15 | 2005-06-07 | Specialized Health Products, Inc. | Safety shield for medical needles |
US7226434B2 (en) | 2003-10-31 | 2007-06-05 | Tyco Healthcare Group Lp | Safety shield |
US7988664B2 (en) | 2004-11-01 | 2011-08-02 | Tyco Healthcare Group Lp | Locking clip with trigger bushing |
US7850650B2 (en) | 2005-07-11 | 2010-12-14 | Covidien Ag | Needle safety shield with reset |
US7828773B2 (en) | 2005-07-11 | 2010-11-09 | Covidien Ag | Safety reset key and needle assembly |
US7905857B2 (en) | 2005-07-11 | 2011-03-15 | Covidien Ag | Needle assembly including obturator with safety reset |
US20060276747A1 (en) | 2005-06-06 | 2006-12-07 | Sherwood Services Ag | Needle assembly with removable depth stop |
CN101242868B (en) | 2005-07-06 | 2010-07-28 | 血管途径公司 | Intravenous catheter insertion device and method of use |
US7731692B2 (en) | 2005-07-11 | 2010-06-08 | Covidien Ag | Device for shielding a sharp tip of a cannula and method of using the same |
JP5038308B2 (en) * | 2005-08-08 | 2012-10-03 | スミス・メディカル・エイエスディ・インコーポレーテッド | Needle guard mechanism having a spring member extending beyond the lateral edge of the strut |
US7670317B2 (en) * | 2005-10-25 | 2010-03-02 | Becton, Dickinson And Company | One piece low drag septum |
US7654735B2 (en) | 2005-11-03 | 2010-02-02 | Covidien Ag | Electronic thermometer |
US7798994B2 (en) * | 2005-11-15 | 2010-09-21 | Becton, Dickinson And Company | Needle shield to septum interconnect |
WO2007142746A1 (en) * | 2006-06-08 | 2007-12-13 | Rishi Baid | Safety device to cover the needle tip of intravenous catheter apparatus |
US8308691B2 (en) | 2006-11-03 | 2012-11-13 | B. Braun Melsungen Ag | Catheter assembly and components thereof |
JP4994775B2 (en) | 2006-10-12 | 2012-08-08 | 日本コヴィディエン株式会社 | Needle point protector |
AU2012244299B2 (en) * | 2006-11-03 | 2013-12-05 | B. Braun Melsungen Ag | Catheter assembly and components thereof |
US7744567B2 (en) * | 2006-11-22 | 2010-06-29 | Becton, Dickinson And Company | Reducing withdrawal force in a safety IV catheter |
WO2008092029A2 (en) | 2007-01-24 | 2008-07-31 | Access Scientific, Inc. | Access device |
US8105286B2 (en) | 2007-04-18 | 2012-01-31 | Access Scientific, Inc. | Access device |
WO2008137956A2 (en) | 2007-05-07 | 2008-11-13 | Vascular Pathways, Inc. | Intravenous catheter insertion and blood sample devices and method of use |
WO2009042874A1 (en) * | 2007-09-27 | 2009-04-02 | Tyco Healthcare Group Lp | I.v. catheter assembly and needle safety device |
US7736340B2 (en) * | 2007-09-28 | 2010-06-15 | Becton, Dickinson And Company | Catheter insertion device with automatic safety barrier |
US8357104B2 (en) | 2007-11-01 | 2013-01-22 | Coviden Lp | Active stylet safety shield |
AU2013263723B2 (en) * | 2007-11-21 | 2016-01-14 | Becton, Dickinson And Company | Needle safety device |
BRPI0819279B1 (en) * | 2007-11-21 | 2024-01-30 | Becton, Dickinson And Company | NEEDLE GUARD AND DEVICE INCLUDING THE NEEDLE GUARD |
WO2009067648A1 (en) | 2007-11-21 | 2009-05-28 | Becton, Dickinson And Company | Safety needle guard |
ATE482738T1 (en) * | 2007-12-20 | 2010-10-15 | Tyco Healthcare | CAP ASSEMBLY WITH SPRING-LOADED CUFF |
US8858503B2 (en) * | 2007-12-21 | 2014-10-14 | Becton, Dickinson And Company | Tip shield with gripping surfaces and guard features |
CN101980745A (en) * | 2008-03-31 | 2011-02-23 | 泰尔茂株式会社 | Indwelling needle assembly |
CN101980733B (en) * | 2008-03-31 | 2013-03-27 | 泰尔茂株式会社 | Indwelling needle assembly |
EP2258421B1 (en) * | 2008-03-31 | 2019-09-04 | Terumo Kabushiki Kaisha | Medical instrument |
US7828774B2 (en) * | 2008-05-12 | 2010-11-09 | Harding Weston F | Sleeved clip safety |
US8038647B2 (en) * | 2008-05-21 | 2011-10-18 | Becton, Dickinson And Company | Needle safety deflection device |
DE102009020061A1 (en) | 2009-05-06 | 2010-11-11 | B. Braun Melsungen Ag | Needle protection device for a medical hollow needle |
CN102497901B (en) * | 2009-07-31 | 2015-07-22 | 医疗部件有限公司 | Huber needle with safety tube |
US9872971B2 (en) | 2010-05-14 | 2018-01-23 | C. R. Bard, Inc. | Guidewire extension system for a catheter placement device |
US10384039B2 (en) | 2010-05-14 | 2019-08-20 | C. R. Bard, Inc. | Catheter insertion device including top-mounted advancement components |
US8932258B2 (en) | 2010-05-14 | 2015-01-13 | C. R. Bard, Inc. | Catheter placement device and method |
US11925779B2 (en) | 2010-05-14 | 2024-03-12 | C. R. Bard, Inc. | Catheter insertion device including top-mounted advancement components |
US9950139B2 (en) | 2010-05-14 | 2018-04-24 | C. R. Bard, Inc. | Catheter placement device including guidewire and catheter control elements |
US8690833B2 (en) | 2011-01-31 | 2014-04-08 | Vascular Pathways, Inc. | Intravenous catheter and insertion device with reduced blood spatter |
CN103379937B (en) | 2011-02-25 | 2016-09-07 | C·R·巴德股份有限公司 | Medical component insertion device including retractible pin |
US8764711B2 (en) | 2011-02-28 | 2014-07-01 | Injectimed, Inc. | Needle guard |
US9238104B2 (en) | 2011-02-28 | 2016-01-19 | Injectimed, Inc. | Needle guard |
US8486024B2 (en) | 2011-04-27 | 2013-07-16 | Covidien Lp | Safety IV catheter assemblies |
USD903101S1 (en) | 2011-05-13 | 2020-11-24 | C. R. Bard, Inc. | Catheter |
WO2013048975A1 (en) | 2011-09-26 | 2013-04-04 | Covidien Lp | Safety catheter |
EP2760521B1 (en) | 2011-09-26 | 2016-01-06 | Covidien LP | Safety iv catheter and needle assembly |
US8834422B2 (en) | 2011-10-14 | 2014-09-16 | Covidien Lp | Vascular access assembly and safety device |
EP2705863A1 (en) * | 2012-09-11 | 2014-03-12 | Sanofi-Aventis Deutschland GmbH | Medicament delivery device with needle alignment detection mechanism |
WO2014120741A1 (en) | 2013-01-30 | 2014-08-07 | Vascular Pathways, Inc. | Systems and methods for venipuncture and catheter placement |
WO2014121119A1 (en) | 2013-02-01 | 2014-08-07 | Nxstage Medical, Inc. | Safe cannulation devices, methods, and systems |
US10357635B2 (en) | 2013-03-12 | 2019-07-23 | Teleflex Medical Incorporated | Catheter insertion device |
US9717886B2 (en) | 2013-03-12 | 2017-08-01 | Teleflex Medical Incorporated | Safety clip for a needle |
US11224724B2 (en) | 2013-03-12 | 2022-01-18 | Teleflex Medical Incorporated | Catheter insertion device |
JP6456934B2 (en) | 2013-10-10 | 2019-01-23 | メデイカル コンポーネンツ,インコーポレーテツド | Hoover needle assembly with safety catch |
CU24559B1 (en) | 2014-08-29 | 2021-12-08 | Medical Components Inc | HUBER SAFETY NEEDLE |
WO2016037127A1 (en) | 2014-09-05 | 2016-03-10 | C.R. Bard, Inc. | Catheter insertion device including retractable needle |
WO2016123612A1 (en) | 2015-01-30 | 2016-08-04 | Smiths Medical Asd, Inc. | Releaseable catheter hub retainer |
US20160220805A1 (en) | 2015-01-30 | 2016-08-04 | Smiths Medical Asd, Inc. | Intravenous catheter assembly design |
USD804022S1 (en) | 2015-02-27 | 2017-11-28 | Medical Components, Inc. | Huber safety needle |
USD804021S1 (en) | 2015-02-27 | 2017-11-28 | Medical Components, Inc. | Huber safety needle |
US11027099B2 (en) | 2015-04-30 | 2021-06-08 | Smiths Medical Asd, Inc. | Vascular access device |
USD903100S1 (en) | 2015-05-01 | 2020-11-24 | C. R. Bard, Inc. | Catheter placement device |
BR112017024570B1 (en) | 2015-05-15 | 2022-06-28 | C.R. Bard, Inc | INSERTION DEVICE FOR INSERTING A CATHETER INTO A PATIENT'S BODY |
US10357636B2 (en) | 2015-10-28 | 2019-07-23 | Becton, Dickinson And Company | IV access device having an angled paddle grip |
US10744305B2 (en) | 2015-10-28 | 2020-08-18 | Becton, Dickinson And Company | Ergonomic IV systems and methods |
US10549072B2 (en) | 2015-10-28 | 2020-02-04 | Becton, Dickinson And Company | Integrated catheter with independent fluid paths |
US10245416B2 (en) | 2015-10-28 | 2019-04-02 | Becton, Dickinson And Company | Intravenous catheter device with integrated extension tube |
US10814106B2 (en) | 2015-10-28 | 2020-10-27 | Becton, Dickinson And Company | Soft push tabs for catheter adapter |
US10639455B2 (en) | 2015-10-28 | 2020-05-05 | Becton, Dickinson And Company | Closed IV access device with paddle grip needle hub and flash chamber |
US10525237B2 (en) | 2015-10-28 | 2020-01-07 | Becton, Dickinson And Company | Ergonomic IV systems and methods |
EP3429661A1 (en) | 2016-03-18 | 2019-01-23 | Medical Components, Inc. | Huber safety needle |
EP3509513B1 (en) | 2016-09-12 | 2024-08-07 | C. R. Bard, Inc. | Blood control for a catheter insertion device |
USD819802S1 (en) | 2016-10-05 | 2018-06-05 | Becton, Dickinson And Company | Catheter adapter |
USD835262S1 (en) | 2016-10-05 | 2018-12-04 | Becton, Dickinson And Company | Intravenous catheter assembly |
USD837368S1 (en) | 2016-10-05 | 2019-01-01 | Becton, Dickinson And Company | Catheter adapter grip |
USD844781S1 (en) | 2016-10-05 | 2019-04-02 | Becton, Dickinson And Company | Needle hub |
US10238852B2 (en) | 2016-10-05 | 2019-03-26 | Becton, Dickinson And Company | Septum housing |
EP3512444B1 (en) | 2016-10-18 | 2022-04-27 | Piper Access, LLC | Intraosseous access devices and systems |
EP3528723B1 (en) | 2016-10-27 | 2023-08-16 | C. R. Bard, Inc. | Intraosseous access device |
AU2017401073B2 (en) | 2017-03-01 | 2022-06-02 | C. R. Bard, Inc. | Catheter insertion device |
ES2880417T3 (en) | 2017-03-07 | 2021-11-24 | Piper Access Llc | Safety protection elements for elongated instruments and related systems |
EP3573547B1 (en) | 2017-03-10 | 2024-06-05 | Piper Access, LLC | Securement devices, systems, and methods |
US10946176B2 (en) | 2017-04-06 | 2021-03-16 | Becton, Dickinson And Company | Intravenous catheter assembly with safety clip |
US10737063B2 (en) | 2017-04-13 | 2020-08-11 | Teleflex Medical Incorporated | Catheter insertion device |
ES2953372T3 (en) | 2018-02-20 | 2023-11-10 | Piper Access Llc | Drilling devices and related methods |
US10569059B2 (en) | 2018-03-01 | 2020-02-25 | Asspv, Llc | Guidewire retention device |
EP4364779A3 (en) | 2018-03-07 | 2024-07-31 | Bard Access Systems, Inc. | Guidewire advancement and blood flashback systems for a medical device insertion system |
AU2019282769A1 (en) | 2018-06-08 | 2021-01-07 | Smiths Medical Asd, Inc. | Blood sequestration device and method |
USD921884S1 (en) | 2018-07-27 | 2021-06-08 | Bard Access Systems, Inc. | Catheter insertion device |
US11344704B2 (en) * | 2019-07-11 | 2022-05-31 | Becton, Dickinson And Company | Catheter system facilitating reduced drag force |
JP2022545447A (en) | 2019-08-19 | 2022-10-27 | ベクトン・ディキンソン・アンド・カンパニー | Midline catheter placement device |
CN212879457U (en) | 2019-09-27 | 2021-04-06 | 巴德阿克塞斯系统股份有限公司 | Self-advancing intraosseous access device and intraosseous access device |
WO2021062394A1 (en) | 2019-09-27 | 2021-04-01 | Bard Access Systems, Inc. | Various operating mechanisms for intraosseous access medical devices and methods thereof |
CN112568975A (en) | 2019-09-27 | 2021-03-30 | 巴德阿克塞斯系统股份有限公司 | Constant torque intraosseous access device and method |
US12082843B2 (en) | 2019-09-27 | 2024-09-10 | Bard Access Systems, Inc. | Step needle for intraosseous access device |
US11896264B2 (en) | 2020-04-21 | 2024-02-13 | Bard Access Systems, Inc. | Reusable push-activated intraosseous access device |
US11998237B2 (en) | 2020-06-03 | 2024-06-04 | Bard Access Systems, Inc. | Intraosseous device including a sensing obturator |
CN217960227U (en) | 2021-02-08 | 2022-12-06 | 巴德阿克塞斯系统股份有限公司 | Intraosseous access system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5662610A (en) * | 1989-02-01 | 1997-09-02 | Sircom; Richard C. | Automatic needle guard tip protection |
Family Cites Families (112)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US193745A (en) * | 1877-07-31 | Iwsect-guards | ||
US482696A (en) * | 1892-09-13 | Edward dayton rockwell | ||
US181875A (en) * | 1876-09-05 | Improvement in gas-regulators | ||
US49163A (en) * | 1865-08-01 | Improvement in key-bolt conn ections for car-trucks | ||
US111057A (en) * | 1871-01-17 | Improvement in emery-wheels | ||
US1436707A (en) | 1921-08-10 | 1922-11-28 | American Platinum Works | Adjustable and safety regulating device for hypodermic needles |
SE411516B (en) * | 1977-10-26 | 1980-01-14 | Reenstierna E G B | DEVICE FOR DESTRUCTION OF AN INJECTION SPRAYER |
DE2929425A1 (en) * | 1979-07-20 | 1981-02-12 | Lothar Kling | DEVICE FOR INJECTION SYRINGES FOR INTRAMUSCULAR AND SUBENTANE INJECTION |
US4826490A (en) * | 1985-07-29 | 1989-05-02 | National Research Development Corporation | Safety device for hypodermic needle or the like |
GB8519049D0 (en) * | 1985-07-29 | 1985-09-04 | Bryne P O | Safety device |
US4931048A (en) * | 1986-04-07 | 1990-06-05 | Icu Medical, Inc. | Medical device |
US4846811A (en) * | 1987-01-29 | 1989-07-11 | International Medical Innovators, Inc. | Sliding sheath for medical needles |
US4832696A (en) * | 1987-03-05 | 1989-05-23 | Luther Medical Products, Inc. | Assembly of needle and protector |
US4762516A (en) * | 1987-03-05 | 1988-08-09 | Luther Medical Products, Inc. | Assembly of needle catheter protector |
US4804371A (en) * | 1987-05-06 | 1989-02-14 | Vaillancourt Vincent L | Post-injection needle sheath |
FI872246A (en) * | 1987-05-21 | 1988-11-22 | Betemi Oy | BETONGSPRUTA. |
US4834718A (en) * | 1987-06-01 | 1989-05-30 | Michael McDonald | Safety needle apparatus |
US4944725A (en) * | 1987-06-01 | 1990-07-31 | Mcdonald Michael | Safety needle apparatus |
US4790828A (en) | 1987-08-07 | 1988-12-13 | Dombrowski Mitchell P | Self-capping needle assembly |
US4950252A (en) * | 1987-11-02 | 1990-08-21 | Luther Medical Products, Inc. | Single hand actuated locking safety catheter and method of use |
US4952207A (en) * | 1988-07-11 | 1990-08-28 | Critikon, Inc. | I.V. catheter with self-locating needle guard |
US4929241A (en) * | 1988-08-05 | 1990-05-29 | Kulli John C | Medical needle puncture guard |
US4978344A (en) * | 1988-08-11 | 1990-12-18 | Dombrowski Mitchell P | Needle and catheter assembly |
US4964854A (en) * | 1989-01-23 | 1990-10-23 | Luther Medical Products, Inc. | Intravascular catheter assembly incorporating needle tip shielding cap |
ATE129163T1 (en) * | 1989-02-01 | 1995-11-15 | Sero Guard Corp | SELF-ACTIVE NEEDLE GUARD FOR A DISPOSABLE HYPODERMIC SYRINGE. |
US5458658A (en) | 1989-02-01 | 1995-10-17 | Sero-Guard Corporation | Positive locking needle-mounted needle guard for needle supported catheters |
US4917669A (en) * | 1989-02-08 | 1990-04-17 | Safetyject | Catheter inserter |
US5135504A (en) * | 1989-07-17 | 1992-08-04 | Mclees Donald J | Needle tip guard |
US5059180A (en) | 1989-11-21 | 1991-10-22 | Mclees Donald J | Automatic needle tip guard |
US5007901A (en) * | 1989-11-24 | 1991-04-16 | Shields Jack W | Intravenous catheter insertion device |
US5147327A (en) * | 1990-01-10 | 1992-09-15 | Johnson Gerald W | Hypodermic needle with protective sheath |
US5049136A (en) * | 1990-01-10 | 1991-09-17 | Johnson Gerald W | Hypodermic needle with protective sheath |
US5205829A (en) * | 1990-02-09 | 1993-04-27 | Lituchy Andrew E | Safety disposable intravenous (I.V. assembly) |
US5053017A (en) | 1990-02-28 | 1991-10-01 | Chamuel Steven R | Hypodermic needle safety clip |
US5084023A (en) * | 1990-03-22 | 1992-01-28 | Critikon, Inc. | Bloodless catheter with self-shielding needle |
US5558651A (en) * | 1990-04-20 | 1996-09-24 | Becton Dickinson And Company | Apparatus and method for a needle tip cover |
US5127905A (en) * | 1990-05-02 | 1992-07-07 | Critikon, Inc. | Stickless catheter with manual shut-off valve |
US5051109A (en) * | 1990-07-16 | 1991-09-24 | Simon Alexander Z | Protector for catheter needle |
US5085648A (en) * | 1990-09-13 | 1992-02-04 | Becton Dickinson And Company | Dual diameter needle with a smooth transition |
US5920488A (en) * | 1990-10-01 | 1999-07-06 | American Auto-Matrix, Inc. | Method and system for maintaining a desired air flow through a fume hood |
US5183468A (en) * | 1991-04-02 | 1993-02-02 | Mclees Donald J | Snap ring needle guard |
US5171229A (en) | 1991-04-15 | 1992-12-15 | Mcneil Michael B | Needle tip cover |
GB9120416D0 (en) | 1991-09-25 | 1991-11-06 | Sterimatic Holdings Ltd | Catheter placement units |
US5215528C1 (en) * | 1992-02-07 | 2001-09-11 | Becton Dickinson Co | Catheter introducer assembly including needle tip shield |
US5538508A (en) * | 1992-07-31 | 1996-07-23 | Steyn; Ricardo S. | Needle protective device |
JP3105096B2 (en) * | 1992-10-31 | 2000-10-30 | 日本ケミカルリサーチ株式会社 | Syringe with needle tube storage mechanism |
US5549570A (en) * | 1993-01-27 | 1996-08-27 | Rogalsky; Alena | Medical needle unit |
US5300045A (en) * | 1993-04-14 | 1994-04-05 | Plassche Jr Walter M | Interventional needle having an automatically capping stylet |
US5584809A (en) | 1993-07-20 | 1996-12-17 | Graphic Controls Corporation | Safety catheter |
US5697907A (en) | 1993-07-20 | 1997-12-16 | Graphic Controls Corporation | Safety catheter |
US5601532A (en) * | 1993-07-20 | 1997-02-11 | Graphic Controls Corporation | Locking safety cover for sharp instruments |
US5417659A (en) * | 1993-07-20 | 1995-05-23 | Devon Industries, Inc. | Surgical instrument sharp end foil |
US5411486A (en) * | 1993-07-21 | 1995-05-02 | Zadini; Filiberto | Needle stick protector for automatic cannulation devices |
US5312371A (en) * | 1993-07-27 | 1994-05-17 | Dombrowski Mitchell P | Method of making a needle sleeve assembly |
US5344408A (en) * | 1993-08-06 | 1994-09-06 | Becton, Dickinson And Company | Break-away safety shield for needle cannula |
US5419766A (en) * | 1993-09-28 | 1995-05-30 | Critikon, Inc. | Catheter with stick protection |
US5348544A (en) * | 1993-11-24 | 1994-09-20 | Becton, Dickinson And Company | Single-handedly actuatable safety shield for needles |
US5334158A (en) * | 1993-12-20 | 1994-08-02 | Mclees Donald J | Automatic needle tip guard for standard hypodermic needles |
US6203527B1 (en) * | 1994-03-29 | 2001-03-20 | Filiberto P. Zadini | Bi-directional clamping guard for needle stick protection |
EP0680767A1 (en) | 1994-05-06 | 1995-11-08 | Nardino Righi | Non-reusable safety syringe |
US5478313A (en) | 1994-08-18 | 1995-12-26 | White; Jennifer A. | Needle shield |
US5584818A (en) | 1994-08-22 | 1996-12-17 | Morrison; David | Safety hypodermic needle and shielding cap assembly |
GB2292525B (en) * | 1994-08-24 | 1998-07-01 | Sterimatic Holdings Ltd | Catheter placement units |
US5769827A (en) * | 1994-08-25 | 1998-06-23 | Safeguard Needle International, Inc. | Safety needle apparatus and method |
US5423766A (en) * | 1994-08-26 | 1995-06-13 | Becton, Dickinson And Company | Safety shield having spring tether |
US5487733A (en) * | 1994-09-20 | 1996-01-30 | Becton, Dickinson And Company | Assembly with collapsible sheath and tip guard |
US5823997A (en) | 1995-01-10 | 1998-10-20 | Specialized Health Products, Inc. | Medical needle safety apparatus and methods |
GB9501218D0 (en) * | 1995-01-21 | 1995-03-15 | Boc Group Plc | Medical devices |
US5531704A (en) * | 1995-03-03 | 1996-07-02 | Emk Enterprises, Llc | Needle puncture prevention device |
US5683365A (en) | 1995-06-07 | 1997-11-04 | Johnson & Johnson Medical, Inc. | Tip protection device |
US5853393A (en) | 1995-06-07 | 1998-12-29 | Johnson & Johnson Medical, Inc. | Catheter needle locking and catheter hub unlocking mechanism |
US5599310A (en) * | 1995-06-07 | 1997-02-04 | Johnson & Johnson Medical, Inc. | I.V. catheter assembly with automatic cannula tip guard |
US5882337A (en) * | 1995-06-07 | 1999-03-16 | Johnson & Johnson Medical, Inc. | Tip protection device |
US5584810A (en) | 1995-07-11 | 1996-12-17 | Becton Dickinson And Company | Needle point guard assembly |
US5582597A (en) | 1995-07-11 | 1996-12-10 | Becton Dickinson And Company | Rotary ram collet lock needle point guard |
US5610536A (en) | 1995-09-26 | 1997-03-11 | Xilinx, Inc. | Macrocell architecture with high speed product terms |
US5749856A (en) * | 1995-11-24 | 1998-05-12 | Zadini; Filiberto P. | Needle stick protective apparatus for manual catheter placement devices |
GB9601147D0 (en) * | 1996-01-19 | 1996-03-20 | Smiths Industries Ltd | Spinal epidural needle assemblies |
JP2001502191A (en) * | 1996-02-27 | 2001-02-20 | インジェクタイムド・インコーポレーテッド | Hypodermic needle tip guard |
US5879337A (en) | 1997-02-27 | 1999-03-09 | Injectimed, Inc. | Needle tip guard for hypodermic needles |
GB9605206D0 (en) * | 1996-03-12 | 1996-05-15 | Boc Group Plc | Medical devices |
US5865806A (en) * | 1996-04-04 | 1999-02-02 | Becton Dickinson And Company | One step catheter advancement automatic needle retraction system |
IN189105B (en) | 1996-05-03 | 2002-12-21 | Nordway Ltd | |
US5738665A (en) * | 1996-09-26 | 1998-04-14 | Becton, Dickinson And Company | Shield and actuator for needles |
US6015397A (en) * | 1997-06-20 | 2000-01-18 | Elson; Edward E. | Needle point guard safety cap assembly |
US6117108A (en) * | 1997-08-20 | 2000-09-12 | Braun Melsungen Ag | Spring clip safety IV catheter |
US6616630B1 (en) * | 1997-08-20 | 2003-09-09 | B. Braun Melsungen A.G. | Spring clip safety IV catheter |
US5919168A (en) * | 1997-08-25 | 1999-07-06 | Wheeler; Alton D. | Injection needle protection |
US5964731A (en) | 1997-10-02 | 1999-10-12 | Kovelman; Paul H. | Disposable, disabling safety needle for a syringe, pen-type injector, or the like, and method of making the same |
US5938641A (en) * | 1998-01-07 | 1999-08-17 | Villanueva; George | Safety syringe |
TW515841B (en) * | 1998-01-16 | 2003-01-01 | Dev Center Biotechnology | Novel strain of Streptomyces candidus, and relevant uses thereof |
US6004294A (en) | 1998-04-09 | 1999-12-21 | Becton, Dickinson And Company | Catheter and introducer needle assembly with needle shield |
US6022366A (en) * | 1998-06-11 | 2000-02-08 | Stat Medical Devices Inc. | Lancet having adjustable penetration depth |
US6221047B1 (en) * | 1998-07-31 | 2001-04-24 | Albany Medical College | Safety intravenous catheter assembly and method for use with a needle |
US6689102B2 (en) * | 1998-07-31 | 2004-02-10 | Albany Medical College | Safety intravenous catheter assembly |
US5947936A (en) * | 1998-10-23 | 1999-09-07 | Bonds; Michael F. | Syringe with spring biased needle cover |
US6042570A (en) | 1999-02-11 | 2000-03-28 | Dsu Medical Corporation | Needle point protection sheath |
US6280419B1 (en) * | 1999-08-09 | 2001-08-28 | Arrow International, Inc. | Hypodermic needle guard |
US6406459B1 (en) * | 1999-12-21 | 2002-06-18 | Butch Allmon | Needle safety device |
US6210373B1 (en) * | 1999-12-30 | 2001-04-03 | Ethicon, Inc. | Needle safety cover |
US6855130B2 (en) * | 2000-03-07 | 2005-02-15 | Becton, Dickinson And Company | Passive safety device for needle of IV infusion or blood collection set |
US6537259B1 (en) * | 2000-03-07 | 2003-03-25 | Becton, Dickinson And Company | Passive safety device |
US6585704B2 (en) * | 2001-01-29 | 2003-07-01 | B. Braun Medical, Inc. | Method of retaining a tip protector on a needle with a curved tip |
US6443927B1 (en) * | 2001-02-06 | 2002-09-03 | Daniel J. Cook | Needle enclosing safety catheter |
US7179244B2 (en) * | 2001-03-15 | 2007-02-20 | Specialized Health Products, Inc. | Resettable safety shield for medical needles |
US7004927B2 (en) * | 2001-03-15 | 2006-02-28 | Specialized Health Products, Inc. | Safety shield for medical needles |
US6595955B2 (en) * | 2001-03-15 | 2003-07-22 | Specialized Health Products, Inc. | Safety shield for medical needles |
KR20040039289A (en) * | 2001-08-17 | 2004-05-10 | 벡톤 디킨슨 앤드 컴퍼니 | Blood collection assembly |
US7354422B2 (en) * | 2001-09-26 | 2008-04-08 | B. Braun Melsungen Ag | Spring launched needle safety clip |
US6623458B2 (en) * | 2001-09-26 | 2003-09-23 | B. Braun Melsungen, Ag | Spring launched needle safety clip |
US8066678B2 (en) * | 2001-12-17 | 2011-11-29 | Bard Access Systems, Inc. | Safety needle with collapsible sheath |
US20040049155A1 (en) * | 2002-06-06 | 2004-03-11 | Schramm John B. | Needle tip protector |
-
2003
- 2003-09-11 US US10/660,083 patent/US7458954B2/en active Active
- 2003-10-15 JP JP2005507042A patent/JP2006505378A/en active Pending
- 2003-10-15 BR BR0316026-2A patent/BR0316026A/en active Pending
- 2003-10-15 WO PCT/US2003/032577 patent/WO2004043521A1/en active Application Filing
- 2003-10-15 NZ NZ540346A patent/NZ540346A/en not_active IP Right Cessation
- 2003-10-15 CA CA2505516A patent/CA2505516C/en not_active Expired - Lifetime
- 2003-10-15 AU AU2003277374A patent/AU2003277374B2/en not_active Expired
- 2003-10-15 EP EP03811231A patent/EP1562658B1/en not_active Expired - Lifetime
- 2003-10-15 MX MXPA05004575A patent/MXPA05004575A/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5662610A (en) * | 1989-02-01 | 1997-09-02 | Sircom; Richard C. | Automatic needle guard tip protection |
Non-Patent Citations (1)
Title |
---|
See also references of EP1562658A4 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8864714B2 (en) | 1998-04-09 | 2014-10-21 | Becton, Dickinson And Company | Catheter and introducer needle assembly with needle shield |
US9539398B2 (en) | 2001-03-15 | 2017-01-10 | Specialized Health Products, Inc. | Safety shield for medical needles |
US8845584B2 (en) | 2001-03-15 | 2014-09-30 | Specialized Health Products, Inc. | Safety shield for medical needles |
US8968240B2 (en) | 2005-03-07 | 2015-03-03 | Erskine Medical Llc | Method of making a needle shielding device |
US9174029B2 (en) | 2005-03-07 | 2015-11-03 | Erskine Medical Llc | Catheter introducer with needle shield |
US8844112B2 (en) | 2005-04-18 | 2014-09-30 | Specialized Health Products, Inc. | Methods of manufacturing safety shields for medical needles and related manufacturing devices |
US8251950B2 (en) | 2005-08-08 | 2012-08-28 | Smiths Medical Asd, Inc. | Needle guard clip with heel |
AU2011203485B2 (en) * | 2005-08-08 | 2012-01-12 | Smiths Medical Asd, Inc. | Needle guard strut wall clip |
EP1764127A2 (en) * | 2005-08-08 | 2007-03-21 | Smiths Medical ASD, Inc. | Needle guard clip with heel |
US9126017B2 (en) | 2005-08-08 | 2015-09-08 | Smiths Medical Asd, Inc. | Needle guard clip with heel |
US10092322B2 (en) | 2005-08-08 | 2018-10-09 | Smiths Medical Asd, Inc. | Needle guard clip with heel |
EP1764127A3 (en) * | 2005-08-08 | 2007-03-28 | Smiths Medical ASD, Inc. | Needle guard clip with heel |
US7722569B2 (en) | 2006-05-22 | 2010-05-25 | Becton, Dickinson And Company | Catheter assembly with tip shield closure |
WO2007139740A3 (en) * | 2006-05-22 | 2009-03-05 | Becton Dickinson Co | Catheter assembly with tip shield closure |
WO2007139740A2 (en) | 2006-05-22 | 2007-12-06 | Becton, Dickinson And Company | Catheter assembly with tip shield closure |
WO2011051259A1 (en) * | 2009-10-26 | 2011-05-05 | Vygon | Needle stick guard, and puncturing kit including such a needle stick guard |
US8585650B2 (en) | 2009-10-26 | 2013-11-19 | Vygon | Needle stick guard, and puncturing kit including such a needle stick guard |
KR20120095396A (en) * | 2009-10-26 | 2012-08-28 | 비공 | Needle stick guard, and puncturing kit including such a needle stick guard |
KR101703753B1 (en) | 2009-10-26 | 2017-02-07 | 비공 | Needle stick guard, and puncturing kit including such a needle stick guard |
FR2951646A1 (en) * | 2009-10-26 | 2011-04-29 | Vygon | ANTI-PIN CAGE AND PUNCTURE KIT COMPRISING AN ANTI-PIN CAGE |
US9180277B2 (en) | 2010-12-02 | 2015-11-10 | Erskine Medical Llc | Release mechanism for use with needle shielding devices |
US9278195B2 (en) | 2010-12-02 | 2016-03-08 | Erskine Medical Llc | Needle shield assembly with hub engagement member for needle device |
US9408632B2 (en) | 2011-04-07 | 2016-08-09 | Erskine Medical Llc | Needle shielding device |
US9555221B2 (en) | 2014-04-10 | 2017-01-31 | Smiths Medical Asd, Inc. | Constant force hold tip protector for a safety catheter |
Also Published As
Publication number | Publication date |
---|---|
EP1562658A1 (en) | 2005-08-17 |
BR0316026A (en) | 2005-09-13 |
CA2505516C (en) | 2011-03-15 |
JP2006505378A (en) | 2006-02-16 |
US20040092889A1 (en) | 2004-05-13 |
EP1562658A4 (en) | 2007-07-18 |
CA2505516A1 (en) | 2004-05-27 |
MXPA05004575A (en) | 2005-07-26 |
AU2003277374A1 (en) | 2004-06-03 |
EP1562658B1 (en) | 2010-03-31 |
NZ540346A (en) | 2008-01-31 |
AU2003277374B2 (en) | 2008-12-18 |
US7458954B2 (en) | 2008-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1562658B1 (en) | Safety shield for medical needles | |
US6796962B2 (en) | Safety shield for medical needles | |
AU2003293258B9 (en) | Safety shield for medical needles | |
US9539398B2 (en) | Safety shield for medical needles | |
US7179244B2 (en) | Resettable safety shield for medical needles | |
US8096973B2 (en) | Resettable safety shield for medical needles | |
AU2003256547B2 (en) | Safety shield for medical needles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005507042 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2005/004575 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003277374 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2505516 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038A28292 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 540346 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003811231 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2003811231 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: PI0316026 Country of ref document: BR |