WO2004042437A1 - Observation device comprising an antiglare means - Google Patents

Observation device comprising an antiglare means Download PDF

Info

Publication number
WO2004042437A1
WO2004042437A1 PCT/FR2003/003289 FR0303289W WO2004042437A1 WO 2004042437 A1 WO2004042437 A1 WO 2004042437A1 FR 0303289 W FR0303289 W FR 0303289W WO 2004042437 A1 WO2004042437 A1 WO 2004042437A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
optical device
zone
reflection
constituted
Prior art date
Application number
PCT/FR2003/003289
Other languages
French (fr)
Inventor
Jean-Loup Chretien
Original Assignee
Tietronix Optics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tietronix Optics filed Critical Tietronix Optics
Priority to AU2003292334A priority Critical patent/AU2003292334A1/en
Priority to EP03767901A priority patent/EP1570302A1/en
Priority to BR0306664-9A priority patent/BR0306664A/en
Publication of WO2004042437A1 publication Critical patent/WO2004042437A1/en
Priority to US11/121,246 priority patent/US20050207036A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J2001/0276Protection

Definitions

  • the present invention relates to the field of optical equipment for the observation of scenes having an area of very high luminosity.
  • optical equipment for solar observation, or for industrial imaging, in environments using a laser beam.
  • Observing scenes with a very bright area produces a dazzling effect when used by a human operator or a photosensitive sensor, or even irreversible degradation of the sensor -
  • a large number of optical systems (eye, cameras , sensors) undergo performance disturbances, or even irreparable alterations, in situations of high light contrast in the presence of one or more high intensity light sources.
  • the sun is an example, as well as laser beams for military users.
  • the natural reaction of any sensor is to close the diaphragm (iris of the human eye) as much as possible in order to protect itself. In return for this protection, the weak light sources are no longer perceived, and affect the performance of the sensor to the point of rendering it possibly unusable.
  • PCT patent application WO0023833A1 has also proposed a device and a method for suppressing bright lights by means of holographic techniques.
  • This prior art device includes a plurality of switchable holographic elements (SHOEs), a plurality of detectors, as well as a processing circuit coupled to SHOEs and detectors.
  • SHOEs switchable holographic elements
  • Each SHOE has a field of vision.
  • Each SHOE can have a detector with a visual coverage field covering practically the same points as the corresponding visualization field.
  • the processing circuit activates the corresponding SHOE, which diffracts part of the incident light with respect to the SHOE in order to distance this light from an individual likely to perceive it.
  • SHOEs can be made of a liquid crystal material dispersed in a polymer. The efficiency of this device is limited, and the disturbances in low light areas remain too high for certain applications requiring high image fidelity.
  • a dynamic filtration system consisting in slaving the opacity of a filter element as a function of the light intensity detected by a sensor receiving part of the incident signal has also been proposed in American patent application US2000000988855.
  • the object of the present invention is to provide a device ensuring that the incident beam containing the source (s) exceeding an adjustable threshold is rid of the amount of excess light coming from these sources, without altering the rest of the beam. The user therefore receives this modified beam and perceives the light coming from its initial source and not from a transformed image (electronic image for example). Besides other advantages, the main reason for this choice is that many users or security services do not accept to use electronic images instead of real images in any manned mobile system.
  • the system according to the present invention consists of an input optic (objective), an active filter controlled through a detection / selection / control loop, a possible additional active filtration stage where can also be superimposed various information, and finally an output target adapted to the use.
  • the invention relates, in its most general sense, to an optical device comprising a means of dynamic filtration of a source of very high luminosity, characterized in that said means of filtration consists of a mirror having a zone of least reflection and means for controlling the position of said mirror as a function of the position of the very high light source in the image formed on said mirror.
  • said zone of least reflection consists of a hole.
  • said zone of least reflection is constituted by a diaphragm of variable section.
  • the zone of least reflection is constituted by a semi-reflecting zone.
  • the device comprises an image analyzer receiving part of the incident beam and delivering a servo signal from the mirror.
  • FIG. 1 represents a view of an exemplary embodiment of the invention. This example corresponds to a situation where the source of very high luminosity is the sun, and constitutes the only source of glare.
  • the device comprises a mirror (1) having a non-reflecting central zone (2).
  • the image is formed on the mirror by a lens (3) whose field and magnification are determined in a known manner.
  • the section of the non-reflecting area (2) is determined so as to correspond substantially to the section of the image of the glare source.
  • a beam splitter (5) sends an image conforming to the unprocessed incident image to a CCD sensor (4).
  • the sensor (4) delivers a signal to a computer determining the position of the center of the image of the glare source.
  • the beam splitter (5) is by example constituted by a semi-transparent mirror having a very high transmission rate, so that the sensor (4) receives a light signal from the glare source compatible with its sensitivity.
  • This servo signal can also be delivered by a camera (7) integral with the support of the mirror (1) and receiving an image with a constant orientation relative to the optical axis (10) of the device.
  • the processed image is then directed to an eyepiece (6) for direct observation or by shooting equipment such as a camera or photographic device.
  • FIG. 2 represents the optical diagram of the device described.
  • the observer S (the user's eye, a camera, a photographic device or even a metrology instrument) observes a scene at infinity with an optical field Cl.
  • This optical field Cl has an active area C2 in which is located the dazzling element, for example the sun.
  • the observer S and the field Cl on the one hand, and the field C2 on the other hand, define two cones.
  • the plane P perpendicular to the optical axis intersects the two cones.
  • the intersection forms two surfaces Ccl and Cc2 which are homothetic to Cl and C2 respectively. These two surfaces are real surfaces, surface C2 being designated by "eclipsed surface”.
  • a second series of cones are formed between a sensor S 'and the fields Cl and C2. The intersection with the plane P of these two cones results in surfaces respectively C'cl and C'c2; the latter surface being designated by "the dazzling surface”.
  • the surface Cc2 is eliminated and replaced by an equivalent surface coming from the cone Cl.
  • the sources of glare are multiple.
  • FIG. 3 represents a schematic view of an alternative embodiment, for the production of a compact optical unit. It comprises an assembly of lenses and a diaphragm forming an objective (20) of the “Ed und system” type.
  • the objective has a focal length of 50 millimeters and includes a doublet with a diameter of 25 millimeters, referenced M32-323 in the catalog Edmund Industrial Optics (trade name).
  • the incident beam is reflected by a mirror
  • a group of lenses (22) reverses the image and works in 2f-2f assembly.
  • the holey mirror (23) is placed in the focal plane of the lens.
  • This perforated mirror (23) is a plane mirror having a diameter of 10 millimeters and a conical bore of 1.5 millimeters in its center. It is mounted on a motorized stage along two X-Y axes perpendicular to the optical axis.
  • the conical hole in the bottom of the mirror has the shape of a cone with an angle at the top between 40 ° and 60 ° and a hole with an opening between 1.2 and 2.5 millimeters.
  • the movement of the holey mirror (23) is controlled by a computer as a function of the signal delivered by a CCD (charge transfer camera) matrix.
  • the signal from output from this matrix is coded for each pixel on 2 bytes, the first being reserved for blue, and the second being shared between red and green.
  • the computer performs threshold detection based on a fixed threshold for each of the two bytes. If a pixel has a value greater than the threshold value for one of the two bytes, the computer defines it as belonging to the zone of points Mi for forming the high intensity light spot. The computer then determines the barycenter G of this area, as well as the coordinates of the center of the area.
  • the threshold can also be determined dynamically.
  • the coordinates of the center of the area are used to control the movement of the positioning motors of the holey mirror. This movement can be performed pixel by pixel. In this case, the position of the hole mirror is recalculated each time the position of the center of the spot is changed. The displacement is calculated according to a reference change formula allowing to pass from the frame of reference of the image to the frame of reference of the holey mirror.
  • Displacement can also be calculated within a virtual grid corresponding to a division of the image in boxes. In this case, as long as the image of the center of the bright area remains in the same box, the position of the mirror is unchanged.
  • the device described in FIG. 3 also comprises a field lens (24), a deflection mirror (25) and a group of lenses (26) forming an eyepiece.
  • This eyepiece has the same focal length as the objective (20).
  • the holey mirror can be replaced by equivalent means, and in particular by a matrix mirror formed by a matrix of square micro mirrors with 16 micrometers per side. These micro-mirrors are mounted on actuators ensuring an orientation of ⁇ 10 °.
  • the zone corresponding to the light spot is controlled so that the corresponding micro-mirrors return the light in a direction different from that corresponding to the optical axis.
  • Such matrix mirrors make it possible to manage a plurality of sources of very high luminosity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

The invention concerns an optical device comprising means for dynamic filtration of a very high luminosity source, characterized in that said filtering means consists of a mirror (1) including a zone (2) of less reflection and means for automatic control of the position of the mirror based on the position of the source of very high luminosity in the image formed on said mirror (1).

Description

DISPOSITIF D'OBSERVATION COMPORTANT UN MOYEN ANTI- OBSERVATION DEVICE COMPRISING AN ANTI-
EBLOUISSEMENT La présente invention concerne le domaine des équipements optiques pour l'observation de scènes présentant une zone de très forte luminosité.GLARE The present invention relates to the field of optical equipment for the observation of scenes having an area of very high luminosity.
Elle concerne notamment, mais non limitativement, des équipements optiques pour l'observation solaire, ou pour l'imagerie industrielle, dans des environnements mettant en œuvre un faisceau laser. L'observation de scènes présentant une zone de très forte luminosité produit un effet d'éblouissement en cas d'utilisation par un opérateur humain ou par un capteur photosensible, voire de dégradation irréversible du capteur- Un grand nombre de systèmes optiques (oeil, caméras, senseurs) subissent des perturbations de performances, voire des altérations irrémédiables, dans des situations de grand contraste lumineux en présence d'une ou plusieurs sources de lumière de grande intensité. Le soleil en est un exemple, ainsi que les faisceaux laser pour les utilisateurs militaires. Dans de telles situations, la réaction naturelle de tout capteur est de clore au maximum le diaphragme (iris de l'oeil humain) afin de se protéger. En contrepartie de cette protection, les sources de lumière faible ne sont plus perçues, et affectent les performances du capteur au point de le rendre éventuellement inutilisable.It relates in particular, but not limited to, optical equipment for solar observation, or for industrial imaging, in environments using a laser beam. Observing scenes with a very bright area produces a dazzling effect when used by a human operator or a photosensitive sensor, or even irreversible degradation of the sensor - A large number of optical systems (eye, cameras , sensors) undergo performance disturbances, or even irreparable alterations, in situations of high light contrast in the presence of one or more high intensity light sources. The sun is an example, as well as laser beams for military users. In such situations, the natural reaction of any sensor is to close the diaphragm (iris of the human eye) as much as possible in order to protect itself. In return for this protection, the weak light sources are no longer perceived, and affect the performance of the sensor to the point of rendering it possibly unusable.
On a proposé dans l'état de la technique différentes solutions pour limiter les effets d'éblouissements. La solution la plus simple consiste à utiliser des filtres ou un diaphragme réduisant la luminosité de la source d'éblouissement. Cette solution n'est pas très satisfaisante car elle réduit le niveau global de luminosité et occulte les parties observées de faible luminosité.Various solutions have been proposed in the prior art to limit the effects of glare. The simplest solution is to use filters or a diaphragm that reduces the brightness of the glare source. This solution is not very satisfactory because it reduces the overall level of luminosity and obscures the observed parts of low luminosity.
On a également proposé dans la demande de brevet PCT WO0023833A1 un dispositif et un procédé servant à supprimer les lumières brillantes au moyen de techniques holographiques. Ce dispositif de l'art antérieur comprend une pluralité d'éléments holographiques commutables (SHOEs), une pluralité de détecteurs, ainsi qu'un circuit de traitement couplé aux SHOEs et aux détecteurs . Chaque SHOE possède un champ de visualisation. A chaque SHOE peut correspondre un détecteur possédant un champ de couverture visuelle couvrant pratiquement les mêmes points que le champ de visualisation correspondant. Quand une lumière émise par une source brillante est incidente par rapport à un détecteur, celui-ci émet un signal de sortie vers le circuit de traitement. Ce dernier active le SHOE correspondant, ce qui diffracte une partie de la lumière incidente par rapport au SHOE afin d'éloigner cette lumière d'un individu susceptible de la percevoir. Quand aucune lumière n'est incidente par rapport à un détecteur, le circuit de traitement arrête l'activation du SHOE correspondant, ce qui permet au SHOE de transmettre la totalité de la lumière incidente sans modification importante. Ces SHOEs peuvent être fabriqués en un matériau de cristaux liquides dispersés dans un polymère. L'efficacité de ce dispositif est limitée, et les perturbations des zones de faibles luminosité restent trop élevées pour certaines applications nécessitant une grande fidélité de l'image. On a également proposé dans la demande de brevet américain US2000000988855 un système de filtration dynamique consistant à asservir l'opacité d'un élément filtrant en fonction de l'intensité lumineuse détectée par un capteur recevant une partie du signal incident. Le but de la présente invention est de proposer un dispositif garantissant que le faisceau incident contenant la (les) source(s) dépassant un seuil ajustable est débarrassé de la quantité de lumière en excès provenant de ces sources, sans altération du reste du faisceau. L'utilisateur reçoit donc ce faisceau modifié et perçoit la lumière en provenance de sa source initiale et non d'une image transformée (image électronique par exemple). Outre d'autres avantages, la raison essentielle de ce choix est que de nombreux utilisateurs ou services de sécurité n'acceptent pas d'utiliser des images électroniques à la place des images réelles dans tout système mobile habité.PCT patent application WO0023833A1 has also proposed a device and a method for suppressing bright lights by means of holographic techniques. This prior art device includes a plurality of switchable holographic elements (SHOEs), a plurality of detectors, as well as a processing circuit coupled to SHOEs and detectors. Each SHOE has a field of vision. Each SHOE can have a detector with a visual coverage field covering practically the same points as the corresponding visualization field. When light emitted by a bright source is incident on a detector, the latter emits an output signal to the processing circuit. The latter activates the corresponding SHOE, which diffracts part of the incident light with respect to the SHOE in order to distance this light from an individual likely to perceive it. When no light is incident relative to a detector, the processing circuit stops the activation of the corresponding SHOE, which allows the SHOE to transmit all of the incident light without significant modification. These SHOEs can be made of a liquid crystal material dispersed in a polymer. The efficiency of this device is limited, and the disturbances in low light areas remain too high for certain applications requiring high image fidelity. A dynamic filtration system consisting in slaving the opacity of a filter element as a function of the light intensity detected by a sensor receiving part of the incident signal has also been proposed in American patent application US2000000988855. The object of the present invention is to provide a device ensuring that the incident beam containing the source (s) exceeding an adjustable threshold is rid of the amount of excess light coming from these sources, without altering the rest of the beam. The user therefore receives this modified beam and perceives the light coming from its initial source and not from a transformed image (electronic image for example). Besides other advantages, the main reason for this choice is that many users or security services do not accept to use electronic images instead of real images in any manned mobile system.
Le système selon la présente invention est constitué d'une optique d'entrée (objectif), d'un filtre actif commande à travers une boucle détection/sélection/asservissement, d'un éventuel étage de filtration active complémentaire où peuvent également se superposer des informations diverses, et enfin d'un objectif de sortie adapté à l'utilisation.The system according to the present invention consists of an input optic (objective), an active filter controlled through a detection / selection / control loop, a possible additional active filtration stage where can also be superimposed various information, and finally an output target adapted to the use.
L'invention concerne, selon son acception la plus générale, un dispositif optique comprenant un moyen de filtration dynamique d'une source de très forte luminosité, caractérisé en ce que ledit moyen de filtration est constitué par un miroir présentant une zone de moindre réflexion et un moyen d'asservissement de la position dudit miroir en fonction de la position de la source de très forte luminosité dans l'image formée sur ledit miroir. Selon une première variante, ladite zone de moindre réflexion est constituée par un trou.The invention relates, in its most general sense, to an optical device comprising a means of dynamic filtration of a source of very high luminosity, characterized in that said means of filtration consists of a mirror having a zone of least reflection and means for controlling the position of said mirror as a function of the position of the very high light source in the image formed on said mirror. According to a first variant, said zone of least reflection consists of a hole.
Selon une deuxième variante, ladite zone de moindre réflexion est constituée par un diaphragme de section variable. Selon une troisième variante, la zone de moindre réflexion est constituée par une zone semi-réfléchissante.According to a second variant, said zone of least reflection is constituted by a diaphragm of variable section. According to a third variant, the zone of least reflection is constituted by a semi-reflecting zone.
De préférence, le dispositif comprend un analyseur d'image recevant une partie du faisceau incident et délivrant un signal d'asservissement du miroir.Preferably, the device comprises an image analyzer receiving part of the incident beam and delivering a servo signal from the mirror.
L'invention sera mieux comprise à la lecture de la description qui suit, se référant aux dessins annexés correspondant à des exemples non limitatifs de réalisation où : - la figure 1 représente une vue schématique d'un exemple de réalisation d'un dispositif selon 1' invention ; la figure 2 représente le schéma de principe de l'invention ; - la figure 3 représente une vue schématique d'une variante de réalisation d'un dispositif selon 1 ' invention.The invention will be better understood on reading the description which follows, referring to the appended drawings corresponding to nonlimiting exemplary embodiments where: - Figure 1 represents a schematic view of an exemplary embodiment of a device according to 1 invention; Figure 2 shows the block diagram of the invention; - Figure 3 shows a schematic view of an alternative embodiment of a device according to the invention.
La figure 1 représente une vue d'un exemple de réalisation de l'invention. Cet exemple correspond à une situation où la source de très forte luminosité est le soleil, et constitue l'unique source d'éblouissement.FIG. 1 represents a view of an exemplary embodiment of the invention. This example corresponds to a situation where the source of very high luminosity is the sun, and constitutes the only source of glare.
Le dispositif comprend un miroir (1) présentant une zone centrale (2) non réfléchissante. L'image est formée sur le miroir par un objectif (3) dont le champ et le grossissement sont déterminés de façon connue. La section de la zone non réfléchissante (2) est déterminée de façon à correspondre sensiblement à la section de l'image de la source d'éblouissement. Un diviseur de faisceau (5) renvoie vers un capteur CCD (4) une image conforme à l'image incidente non traitée. Le capteur (4) délivre un signal à un calculateur déterminant la position du centre de l'image de la source d'éblouissement. Le diviseur de faisceau (5) est par exemple constitué par un miroir semi-transparent présentant un taux de transmission très élevé, de façon à ce que le capteur (4) reçoive un signal lumineux de la source d'éblouissement compatible avec sa sensibilité. Ce signal d'asservissement peut également être délivré par une caméra (7) solidaire du support du miroir ( 1 ) et recevant une image avec une orientation constante par rapport à l'axe optique (10) du dispositif.The device comprises a mirror (1) having a non-reflecting central zone (2). The image is formed on the mirror by a lens (3) whose field and magnification are determined in a known manner. The section of the non-reflecting area (2) is determined so as to correspond substantially to the section of the image of the glare source. A beam splitter (5) sends an image conforming to the unprocessed incident image to a CCD sensor (4). The sensor (4) delivers a signal to a computer determining the position of the center of the image of the glare source. The beam splitter (5) is by example constituted by a semi-transparent mirror having a very high transmission rate, so that the sensor (4) receives a light signal from the glare source compatible with its sensitivity. This servo signal can also be delivered by a camera (7) integral with the support of the mirror (1) and receiving an image with a constant orientation relative to the optical axis (10) of the device.
L'analyse du signal délivré par le capteur permet de générer les signaux d'asservissement de la position du miroir (1) par rapport à l'axe optique (10). Le déplacement est assuré selon deux axes X-Y perpendiculaires à l'axe optique (10), de façon à ce que l'image de la source d'éblouissement se forme dans la zone de faible réflexion (2), sur l'axe optique lorsque cette zone est centrée par rapport au miroir ( 1 ) .Analysis of the signal delivered by the sensor makes it possible to generate the signals for controlling the position of the mirror (1) relative to the optical axis (10). The movement is ensured along two XY axes perpendicular to the optical axis (10), so that the image of the glare source is formed in the zone of low reflection (2), on the optical axis when this area is centered relative to the mirror (1).
L'image traitée est ensuite dirigée vers un oculaire (6) pour une observation directe ou par un équipement de prise de vue tel qu'une caméra ou un appareil photographique.The processed image is then directed to an eyepiece (6) for direct observation or by shooting equipment such as a camera or photographic device.
La figure 2 représente le schéma optique du dispositif décrit.FIG. 2 represents the optical diagram of the device described.
L'observateur S (l'oeil de l'utilisateur, une caméra, un appareil photographique ou encore un instrument de métrologie) observe une scène à l'infini avec un champ optique Cl. Ce champ optique Cl présente une zone active C2 dans laquelle est situé l'élément éblouissant, par exemple le soleil.The observer S (the user's eye, a camera, a photographic device or even a metrology instrument) observes a scene at infinity with an optical field Cl. This optical field Cl has an active area C2 in which is located the dazzling element, for example the sun.
L'observateur S et le champ Cl d'une part, et le champ C2 d'autre part, définissent deux cônes.The observer S and the field Cl on the one hand, and the field C2 on the other hand, define two cones.
Le plan P perpendiculaire à l'axe optique coupe les deux cônes. L'intersection forme deux surfaces Ccl et Cc2 homothétiques respectivement à Cl et C2. Ces deux surfaces sont des surfaces réelles, la surface C2 étant désigné par «surface d'éclipsé ». Une deuxième série de cônes sont formés entre un capteur S' et les champs Cl et C2. L'intersection avec le plan P de ces deux cônes se traduit par des surfaces respectivement C'cl et C'c2 ; cette dernière surface étant désignée par « la surface d'éblouissement » .The plane P perpendicular to the optical axis intersects the two cones. The intersection forms two surfaces Ccl and Cc2 which are homothetic to Cl and C2 respectively. These two surfaces are real surfaces, surface C2 being designated by "eclipsed surface". A second series of cones are formed between a sensor S 'and the fields Cl and C2. The intersection with the plane P of these two cones results in surfaces respectively C'cl and C'c2; the latter surface being designated by "the dazzling surface".
Pour la majeure partie des applications, la surface Cc2 est supprimée et remplacée par une surface équivalente provenant du cône Cl. Pour certaines applications, les sources d'éblouissement sont multiples.For most of the applications, the surface Cc2 is eliminated and replaced by an equivalent surface coming from the cone Cl. For certain applications, the sources of glare are multiple.
La figure 3 représente une vue schématique d'une variante de réalisation, pour la réalisation d'un bloc optique compact. Il comprend un assemblage de lentilles et un diaphragme formant un objectif (20) du type « système de Ed und » .FIG. 3 represents a schematic view of an alternative embodiment, for the production of a compact optical unit. It comprises an assembly of lenses and a diaphragm forming an objective (20) of the “Ed und system” type.
A titre d'exemple, l'objectif présente une focale de 50 millimètres et comporte un doublet de diamètre de 25 millimètres, référencé M32-323 dans le catalogue Edmund Industrial Optics (nom commercial). Le faisceau incident est réfléchi par un miroirAs an example, the objective has a focal length of 50 millimeters and includes a doublet with a diameter of 25 millimeters, referenced M32-323 in the catalog Edmund Industrial Optics (trade name). The incident beam is reflected by a mirror
(21) pour réduire l'encombrement longitudinal du dispositif. Un groupe de lentilles (22) assure l'inversion de l'image et travaille en montage 2f-2f.(21) to reduce the longitudinal dimensions of the device. A group of lenses (22) reverses the image and works in 2f-2f assembly.
Le miroir troué (23) est placé dans le plan focal de l'objectif. Ce miroir troué (23) est un miroir plan présentant un diamètre de 10 millimètres et un perçage conique de 1,5 millimètres en son centre. Il est monté sur une platine motorisée selon deux axes X-Y perpendiculaires à l'axe optique. Le perçage conique du fond du miroir présente la forme d'un cône d'angle au sommet compris entre 40° et 60° et un trou présentant une ouverture comprise entre 1,2 et 2,5 millimètres.The holey mirror (23) is placed in the focal plane of the lens. This perforated mirror (23) is a plane mirror having a diameter of 10 millimeters and a conical bore of 1.5 millimeters in its center. It is mounted on a motorized stage along two X-Y axes perpendicular to the optical axis. The conical hole in the bottom of the mirror has the shape of a cone with an angle at the top between 40 ° and 60 ° and a hole with an opening between 1.2 and 2.5 millimeters.
Le déplacement du miroir troué (23) est commandé par un calculateur en fonction du signal délivré par une matrice CCD (Caméra à transfert de charges). Le signal de sortie de cette matrice est codé pour chaque pixel sur 2 octets, le premier étant réservé au bleu, et le second étant partagé entre le rouge et le vert. Le calculateur réalise une détection de seuil à partir d'un seuil fixe pour chacun des deux octets. Si un pixel présente pour un des deux octets une valeur supérieure à la valeur seuil, le calculateur le défini comme appartenant à la zone de points Mi de formation de la tache lumineuse de forte intensité. Le calculateur détermine ensuite le barycentre G de cette zone, ainsi que les coordonnées du centre de la zone.The movement of the holey mirror (23) is controlled by a computer as a function of the signal delivered by a CCD (charge transfer camera) matrix. The signal from output from this matrix is coded for each pixel on 2 bytes, the first being reserved for blue, and the second being shared between red and green. The computer performs threshold detection based on a fixed threshold for each of the two bytes. If a pixel has a value greater than the threshold value for one of the two bytes, the computer defines it as belonging to the zone of points Mi for forming the high intensity light spot. The computer then determines the barycenter G of this area, as well as the coordinates of the center of the area.
Le seuil peut également être déterminé de façon dynamique.The threshold can also be determined dynamically.
Les coordonnées du centre de la zone sont utilisées pour commander le déplacement des moteurs de positionnement du miroir troué. Ce déplacement peut être réalisé pixel par pixel. Dans ce cas, la position du miroir troué est recalculée chaque fois que la position du centre de la tache est modifiée. Le déplacement est calculé selon une formule de changement de repère permettant de passer du référentiel de l'image au référentiel du miroir troué.The coordinates of the center of the area are used to control the movement of the positioning motors of the holey mirror. This movement can be performed pixel by pixel. In this case, the position of the hole mirror is recalculated each time the position of the center of the spot is changed. The displacement is calculated according to a reference change formula allowing to pass from the frame of reference of the image to the frame of reference of the holey mirror.
Le déplacement peut également être calculé à l'intérieur d'une grille virtuelle correspondant à une division de l'image en cases. Dans ce cas, tant que l'image du centre de la zone de forte luminosité reste dans la même case, la position du miroir est inchangée.Displacement can also be calculated within a virtual grid corresponding to a division of the image in boxes. In this case, as long as the image of the center of the bright area remains in the same box, the position of the mirror is unchanged.
Lorsque la position du centre de la tache change de case, le miroir est déplacé. La taille des cases est choisie de manière à ce que le déplacement de la source lumineuse à l'intérieur de la case n'éblouisse pas l'utilisateur. Une taille voisine de celle de l'ouverture du trou du miroir troué constitue un bon compromis. Le dispositif décrit en figure 3 comporte en outre une lentille de champ (24), un miroir de renvoi (25) et un groupement de lentilles (26) formant un oculaire. Cet oculaire présente la même focale que l'objectif (20). De façon générale, le miroir troué peut être remplacé par un moyen équivalent, et notamment par un miroir matriciel formé par une matrice de micro miroirs carrés de 16 micromètres de côté. Ces micro-miroirs sont montés sur des actionneurs assurant une orientation de ±10°.When the position of the center of the spot changes boxes, the mirror is moved. The size of the boxes is chosen so that the movement of the light source inside the box does not dazzle the user. A size close to that of the opening of the hole in the perforated mirror is a good compromise. The device described in FIG. 3 also comprises a field lens (24), a deflection mirror (25) and a group of lenses (26) forming an eyepiece. This eyepiece has the same focal length as the objective (20). In general, the holey mirror can be replaced by equivalent means, and in particular by a matrix mirror formed by a matrix of square micro mirrors with 16 micrometers per side. These micro-mirrors are mounted on actuators ensuring an orientation of ± 10 °.
La zone correspondant à la tache lumineuse est commandée de façon à ce que les micro-miroirs correspondants renvoient la lumière dans une direction différente de celle correspondant à l'axe optique. De tels miroirs matriciels permettent de gérer une pluralité de sources de très forte luminosité. The zone corresponding to the light spot is controlled so that the corresponding micro-mirrors return the light in a direction different from that corresponding to the optical axis. Such matrix mirrors make it possible to manage a plurality of sources of very high luminosity.

Claims

REVENDICATIONS
1 — Dispositif optique comprenant un moyen de filtration dynamique d'une source de très forte luminosité, caractérisé en ce que ledit moyen de filtration est constitué par un miroir ( 1 ) présentant une zone (2) de moindre réflexion et un moyen d'asservissement de la position dudit miroir ( 1 ) en fonction de la position de la source de très forte luminosité dans l'image formée sur ledit miroir ( 1) .1 - Optical device comprising a dynamic filtration means from a source of very high luminosity, characterized in that said filtration means is constituted by a mirror (1) having a zone (2) of least reflection and a servo means the position of said mirror (1) as a function of the position of the very high light source in the image formed on said mirror (1).
2 — Dispositif optique selon la revendication 1, caractérisé en ce que ladite zone (2) de moindre réflexion est constituée par un trou.2 - Optical device according to claim 1, characterized in that said zone (2) of least reflection is constituted by a hole.
3 — Dispositif optique selon la revendication 2, caractérisé en ce que ledit trou est formé par un perçage conique du fond du miroir.3 - Optical device according to claim 2, characterized in that said hole is formed by a conical bore in the bottom of the mirror.
4 — Dispositif optique selon la revendication 3, caractérisé en ce que ledit perçage conique du fond du miroir présente la forme d'un cône d'angle au sommet compris entre 40° et 60°.4 - Optical device according to claim 3, characterized in that said conical hole in the bottom of the mirror has the shape of a cone with an angle at the top between 40 ° and 60 °.
5 — Dispositif optique selon la revendication 3, caractérisé en ce que ledit trou présente une ouverture comprise entre 1,2 et 2,5 millimètres.5 - Optical device according to claim 3, characterized in that said hole has an opening between 1.2 and 2.5 millimeters.
6 — Dispositif optique selon la revendication 2, caractérisé en ce que ladite zone (2) de moindre réflexion est constituée par un diaphragme de section variable.6 - Optical device according to claim 2, characterized in that said zone (2) of least reflection is constituted by a diaphragm of variable section.
7 — Dispositif optique selon la revendication 1, caractérisé en ce que le miroir ( 1 ) est constitué par une matrice de micro-miroirs orientables commandée pour former une zone où la réflexion se fait selon une direction différente de la direction de réflexion du faisceau principal.7 - Optical device according to claim 1, characterized in that the mirror (1) consists of a matrix of orientable micro-mirrors controlled to form an area where the reflection takes place in a direction different from the direction of reflection of the main beam.
8 — Dispositif optique selon la revendication 1, caractérisé en ce que ladite zone (2) de moindre réflexion est constituée par une zone semi-réfléchissante.8 - Optical device according to claim 1, characterized in that said zone (2) of least reflection is constituted by a semi-reflecting zone.
9 — Dispositif optique selon la revendication 1, caractérisé en ce qu'il comprend un analyseur d'image (4) recevant une partie du faisceau incident et délivrant un signal d'asservissement du miroir (1). 9 - Optical device according to claim 1, characterized in that it comprises an image analyzer (4) receiving part of the incident beam and delivering a servo signal from the mirror (1).
PCT/FR2003/003289 2002-11-04 2003-11-04 Observation device comprising an antiglare means WO2004042437A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003292334A AU2003292334A1 (en) 2002-11-04 2003-11-04 Observation device comprising an antiglare means
EP03767901A EP1570302A1 (en) 2002-11-04 2003-11-04 Observation device comprising an antiglare means
BR0306664-9A BR0306664A (en) 2002-11-04 2003-11-04 Observation device comprising anti-glare means
US11/121,246 US20050207036A1 (en) 2002-11-04 2005-05-03 Optical observation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0213779A FR2846754B1 (en) 2002-11-04 2002-11-04 OBSERVATION DEVICE COMPRISING AN ANTI-GLOWING
FR02/13779 2002-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/121,246 Continuation US20050207036A1 (en) 2002-11-04 2005-05-03 Optical observation device

Publications (1)

Publication Number Publication Date
WO2004042437A1 true WO2004042437A1 (en) 2004-05-21

Family

ID=32104426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003289 WO2004042437A1 (en) 2002-11-04 2003-11-04 Observation device comprising an antiglare means

Country Status (6)

Country Link
EP (1) EP1570302A1 (en)
AU (1) AU2003292334A1 (en)
BR (1) BR0306664A (en)
FR (1) FR2846754B1 (en)
RU (1) RU2005112200A (en)
WO (1) WO2004042437A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198953A (en) * 1960-11-16 1965-08-03 Bolkow Entwicklungen Kg Automatically positioned sun mask for sighting devices
FR1604114A (en) * 1965-04-07 1971-07-12
DE3314113A1 (en) * 1983-04-19 1984-10-25 Alfred 4047 Dormagen Schüßler Protective shield for the dazzle-free observation of the region of highly dazzling light sources, especially in welding work
FR2627292A1 (en) * 1988-02-13 1989-08-18 Zeiss Carl Fa PARTIAL ZONE DIAPHRAGM OPTICAL SYSTEM
US20020071185A1 (en) * 2000-12-07 2002-06-13 Jean-Loup Chretien System and method for dynamic optical filtration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198953A (en) * 1960-11-16 1965-08-03 Bolkow Entwicklungen Kg Automatically positioned sun mask for sighting devices
FR1604114A (en) * 1965-04-07 1971-07-12
DE3314113A1 (en) * 1983-04-19 1984-10-25 Alfred 4047 Dormagen Schüßler Protective shield for the dazzle-free observation of the region of highly dazzling light sources, especially in welding work
FR2627292A1 (en) * 1988-02-13 1989-08-18 Zeiss Carl Fa PARTIAL ZONE DIAPHRAGM OPTICAL SYSTEM
US20020071185A1 (en) * 2000-12-07 2002-06-13 Jean-Loup Chretien System and method for dynamic optical filtration

Also Published As

Publication number Publication date
AU2003292334A1 (en) 2004-06-07
FR2846754A1 (en) 2004-05-07
EP1570302A1 (en) 2005-09-07
RU2005112200A (en) 2005-09-20
FR2846754B1 (en) 2005-01-14
BR0306664A (en) 2004-12-07

Similar Documents

Publication Publication Date Title
EP0433145A1 (en) Optical arrangement for the visualisation of luminous data collimated to infinity
JP2021509556A (en) Single optical component for low and high light level imaging
FR3040798A1 (en) PLENOPTIC CAMERA
FR2818393A1 (en) Head up display visor manufacturing procedure includes regulation of combiner's angle of inclination and compensation for resulting abberations
EP1984772B1 (en) Long-distance image capture device
KR20090064459A (en) Lens arrangement
FR2634907A1 (en) MULTISPECTRAL MIRROR OPTICAL DEVICE
CA2701151A1 (en) Imaging system with wavefront modification and method of increasing the depth of field of an imaging system
EP3489152B1 (en) Observation instrument comprising an auto-collimator with mirror mounted on a star tracker
WO2004042437A1 (en) Observation device comprising an antiglare means
WO2017207563A1 (en) Drone designed for viewing a distant scene
FR2864740A1 (en) Anti-glaring equipment e.g. active sun-visor, has computer controlling filter for alternatively displaying captured and filtered images, where filter is controlled by reference image with level adjusted by image intensities analysis
WO2010106289A1 (en) Fluorescence microscopy device and associated observation method
WO1990005319A1 (en) Opto-mechanical device for three-dimensional viewing and image projection
WO1993019376A1 (en) Method and device for optically measuring the size or speed of an object moving through a fluid
EP3797510B1 (en) Panoramic observation system for platform
EP0610635B1 (en) Optical device for calibrating a thermal camera
EP2704415A1 (en) Imaging device with wide viewing angle
FR2787566A1 (en) Aiming system for infantry small arms, comprises synchronized narrow field and wide field sensors generating reticle on a projected image on a headset worn by the soldier
CA2999799A1 (en) Optical system for thermal imager
US20050207036A1 (en) Optical observation device
FR2472762A1 (en) BINOCULAR DAY VISION DEVICE
FR2892588A1 (en) GENERIC ANTI-GLARE SURVEILLANCE CAMERA
CH626454A5 (en) Aligned optical device for looking through a chamber wall
WO2023037062A1 (en) Device for detecting and tracking objects in a zone of interest

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2005112200

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11121246

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003767901

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003767901

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP