WO2004040384A1 - Numerical control method and device therefor - Google Patents

Numerical control method and device therefor Download PDF

Info

Publication number
WO2004040384A1
WO2004040384A1 PCT/JP2002/011295 JP0211295W WO2004040384A1 WO 2004040384 A1 WO2004040384 A1 WO 2004040384A1 JP 0211295 W JP0211295 W JP 0211295W WO 2004040384 A1 WO2004040384 A1 WO 2004040384A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
coordinate system
joint
data
link mechanism
Prior art date
Application number
PCT/JP2002/011295
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Yamada
Kouji Terada
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2002/011295 priority Critical patent/WO2004040384A1/en
Publication of WO2004040384A1 publication Critical patent/WO2004040384A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a numerically controlled machine tool in which the feed direction of a control axis is not fixed by the length of a shaft driven by a drive source of its own axis or another axis (for example, motor shaft), for example, the feed mechanism of the machine is a parallel link mechanism,
  • the present invention relates to a numerical control method for controlling a numerically controlled machine tool in which a feed direction of a control axis does not form a rectangular coordinate system, and an apparatus therefor.
  • the numerical control device executes numerical control processing based on a processing program input from a magnetic storage medium or the like, drives a machine tool based on the processing result, and performs work on the workpiece as instructed.
  • FIG. 11 is a block diagram of a main part showing a conventional general numerical control device, which is an example of a configuration in which a servo axis has three axes and a main axis has two axes.
  • the numerical control device 100 has a memory 110, a setting input unit 101, a screen processing unit 102, an external input / output interface unit 103, and a machine control signal.
  • Processing unit 105 PLC (programmable logic controller) circuit 104, Analysis processing unit 121, Interpolation processing unit 122, Acceleration / deceleration processing unit 131, 1 3 2, 1 3 3 And a spindle control section 141, 142 and a communication control section 150.
  • PLC programmable logic controller
  • the numerical controller 100 is connected to the servo drive units 201, 202, 203, and the spindle drive units 301, 302 via the communication control unit 150, Servo motors to drive each numerical control axis 2 1 1, 2 1 2, 2 1 3 Control the moving spindle motors 3 1 1 and 312.
  • the memory 110 stores a machining program 111 input from a magnetic storage medium or a screen, various parameters 112, and the like.
  • the analysis processing unit 121 When executing the machining program 111 and performing numerical control operation, the analysis processing unit 121 reads the machining program 111 from the memory 110 and performs the analysis process one block at a time. Next, the interpolation processing unit 122 receives the code analyzed for each block, and performs interpolation control, spindle control, auxiliary function control, and the like for each block according to the analysis code. The interpolation data of each axis output by the interpolation control is subjected to acceleration / deceleration processing by a first-axis acceleration / deceleration processing unit 131, a second-axis acceleration / deceleration processing unit 132, and a third-axis acceleration / deceleration processing unit 133.
  • the machine control signal processing unit 105 controls the spindle rotation command, forward / reverse rotation Z stop signal, chuck open / close, coolant ON / OFF, etc. according to the processing of the PLC circuit 104.
  • Machine control signal processing is performed.
  • the spindle rotation command is passed to the first spindle control unit 141 and the second spindle control unit 142, and is output to the first spindle drive unit 301 and the second spindle drive unit 302 via the communication control unit 150, respectively.
  • the first spindle drive section 301 and the second spindle drive section 302 control the rotation of the first spindle motor 311 and the second spindle motor 312 in accordance with the given commands.
  • machine control signals such as opening / closing of the chuck and ON / OFF of the coolant are processed via the external input / output IF unit 103.
  • a conventional numerical controller inputs a machining program 111 for instructing a coordinate value on a rectangular coordinate system as shown in FIG. It outputs numerical control data to move the servomotors 2 1 1, 2 1 2, 2 13 driving the feed axis to the commanded coordinate values.
  • reference numeral 200 denotes a work.
  • the position command given to the servo drive units 201, 202, 203 of each axis is as follows: between the servo motors 211, 212, 213 and the machine to be driven. Based on the setting conditions such as the gear ratio and ball screw pitch, the amount of rotation of the servomotors 2 1 1, 2 1 2, 2 13 is calculated, and position control is performed.
  • the direction of the program coordinate axes of the machine tool to be operated is generally the same as the direction of operation of the machine driven by the motor according to the program command, that is, the feed direction of the control axis. The orientation had to be fixed.
  • a numerically controlled machine tool in which the feed direction of the control axis is not fixed by the length of the axis driven by the motor of the own axis or another axis, for example, the feed mechanism of the machine is a parallel link
  • a numerically controlled machine tool that is mechanized and whose control axis feed direction does not form a rectangular coordinate system cannot be operated with a machining program that commands the rectangular coordinate system.
  • the programmed command axis and the control axis are not the same, and the movement of another axis occurs due to the movement of one control axis according to the movement command of the programmed command axis. .
  • Disclosure of the invention The present invention has been made to solve the above-described problem, and is directed to a machine having a structure in which a feed direction of a control shaft is not fixed by a length of a shaft driven by a drive source of a self-shaft or another shaft.
  • Another object of the present invention is to obtain a numerical control method and a numerical control method capable of operating with a machining program commanded in a rectangular coordinate system. It is another object of the present invention to provide a numerical control device that can easily realize numerical control that matches the machine configuration even if the configuration of the machine to be controlled changes.
  • the present invention has been made to achieve the above object, and a link mechanism for driving a controlled object such as a turret, in which a feed direction of a control axis does not form a rectangular coordinate system, is commanded in a rectangular coordinate system.
  • a joint axis definition for determining the configuration of the joint axis of the link mechanism
  • a link mechanism dimension definition for defining a positional relationship between the joint points of the joint axis
  • the parameters of the mechanism including the joint axis length offset amount that defines the dimensions of the joint axis are set in advance, and the program coordinates commanded in the orthogonal system are analyzed and processed.
  • the controlled data is converted into the numerical control data in the direction of the joint axis of the link mechanism based on the mechanism parameters based on the mechanism parameters.
  • body Is controlled in accordance with a machining program command specified in the rectangular coordinate system.
  • the present invention provides a method for numerically controlling a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not form an orthogonal coordinate system, using a machining program commanded in the orthogonal coordinate system.
  • the definition of the joint axis that determines the configuration of the joint axis of the mechanism, the link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and the joint axis length offset amount that defines the joint axis dimension at the origin establishment position In advance, a set of mechanical parameters including the definition of the rotation center size that determines the rotation center of the drive unit and are analyzed, and the program coordinate commands specified in the orthogonal system are analyzed and interpolated in each axis direction of the orthogonal coordinate system. De After generating one night, the interpolated data in each axis direction of the Cartesian coordinate system is converted into numerical control data in the joint axis direction of the link mechanism based on the mechanism parameters, thereby making the controlled object orthogonal. Movement control is performed as specified by the machining program specified in the coordinate system.
  • the present invention also provides an apparatus for numerically controlling a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not form an orthogonal coordinate system, by a machining program commanded in the orthogonal coordinate system.
  • the definition of the joint axis that determines the configuration of the joint axis of the mechanism, the link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and the joint axis length offset amount that defines the joint axis dimension at the origin establishment position A storage unit for storing a set of mechanism parameters including a coordinate system, an analysis processing unit for analyzing and processing a program coordinate command instructed by an orthogonal system, and An interpolation processing unit that generates interpolation data in each axis direction; and an interpolation data of each axis direction of the orthogonal coordinate system generated by the interpolation processing unit based on the mechanism parameters. And a numerical control de conversion to Isseki machine configuration axis data evening converting unit, wherein and controls move as commanded machining program commanded by an orthogonal coordinate system the controlled.
  • the present invention also provides an apparatus for numerically controlling a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not form an orthogonal coordinate system, by a machining program commanded in the orthogonal coordinate system.
  • a storage unit that stores a set of mechanical parameters including a rotation center dimension definition that determines the rotation center of the drive unit, an analysis processing unit that analyzes and processes a program coordinate command issued in an orthogonal system, and an analysis processing unit.
  • An axis data conversion unit is provided to move and control the controlled object in accordance with a command of a machining program specified in a rectangular coordinate system.
  • the machine component axis data conversion unit includes a mechanism parameter table definition table for defining a mechanism parameter to be actually used, and the machine component axis data converter is provided with a mechanical component data conversion unit. It is provided with a machine component axis data conversion unit update unit that replaces with another conversion module according to the specifications, and outputs such information when required.
  • FIG. 1 is a main block diagram showing a numerical control device according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the mechanism parameters of a machine controlled by the numerical controller according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a configuration of a machine controlled by the numerical controller according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing an operation of a machine controlled by the numerical controller according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing a mechanism parameter setting screen of the numerical controller according to Embodiment 1 of the present invention.
  • FIG. 6 is a main block diagram showing a numerical control device according to Embodiment 2 of the present invention.
  • FIG. 7 is a state transition diagram of a mechanism parameter display process of the numerical controller according to Embodiment 2 of the present invention.
  • FIG. 8 is a view showing a mechanism parameter display and setting screen of the numerical controller according to Embodiment 2 of the present invention.
  • FIG. 9 is a diagram showing a mechanism parameter setting screen of the numerical controller according to Embodiment 2 of the present invention.
  • FIG. 10 is a diagram for explaining a mechanical component axis data conversion unit updating unit that replaces the mechanical component axis data converter of the numerical control device according to Embodiment 2 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a conventional numerical control device.
  • FIG. 12 is an explanatory diagram showing a coordinate system of a conventional numerical controller. BEST MODE FOR CARRYING OUT THE INVENTION ''
  • FIG. 1 is a block diagram of a main part showing a configuration of a numerical control device according to Embodiment 1 of the present invention.
  • a storage unit that stores a mechanical parameter 180, which will be described later, and a machine configuration axis data conversion unit 160, which are secured only in a specific area on the memory 110, are added.
  • the feature is that '
  • data corresponding to the machine configuration to be controlled is input from the setting input unit 101 using the screen shown in Fig. 5 (for example, axlname is entered in the # 10001 column).
  • axlname is entered in the # 10001 column.
  • FIG. 3 shows the configuration of a numerically controlled machine tool controlled by the numerical control device of the present invention.
  • This machine has high mechanical rigidity, and three sub-boats are assembled.
  • the length of the axl axis, ax2 axis, and ax3 axis expands and contracts by connecting the two axes and the ax3 axis with the ball screw on the way.
  • the evening let T1 which holds tools such as bytes, is mounted on the base supported by J12, J22, and J32 by axl axis, ax2 axis, and ax3 axis. Installed.
  • connection points Jll, J12, J21, J22, J31, and J32 have a structure that rotates flexibly, and the control axis is connected at points J11 and J12. ax l, the control axis ax 2 connected at the J2 1 point and the J 2 2 point, and the control axis ax 3 connected at the J 3 1 point and the J 32 point expand and contract, respectively. It is configured to move in the X, Z, and B axial directions on one plane.
  • the ax1 axis and the ax2 axis are based on a state in which the connection points J11, J12, J21, and J22 are arranged in parallel so that they form a parallelogram.
  • axl axis, ax2 axis, and ax3 axis move while expanding and contracting, they operate according to the movement command specified on the rectangular coordinate system.
  • the ax 3 axis is extended, and the axl axis and ax 2 axis are also extended by a predetermined amount, so that the state shown in FIG. Move to the processing start position.
  • the ax3 axis is further extended, and the axl axis and ax2 axis are further extended by a predetermined amount, so that the state of (b) is changed to the state of (c), and the tool moves in the Z-axis direction and the workpiece is moved.
  • FIG. 2 is an explanatory diagram of the mechanical parameters 180 of a numerically controlled machine tool controlled by the numerical control device according to Embodiment 1 of the present invention. Based on this figure, the interpolation data conversion processing of the machine configuration axis data converter 160 will be described.
  • the first axis, the second axis, and the joint axis definition parameter are set using the mechanism parameter, the parameter setting screen, and the keyboard as shown in FIG.
  • the third axis is set as the axis for controlling the driving modes of ax1, ax2, and ax3 in FIG. 2 in the storage section of the mechanism parameter 180 of the memory 110, respectively.
  • the link mechanism dimension definition parameters the L1, L2, L3, L4, L5, L8, and L9 dimensions based on the Zp point are stored in the memory 110. Input into the storage section of the parameter 180, and set the positional relationship between the joint points J11, J12, J21, J22, J31, J32 of each joint axis. You.
  • the joint axis J 11 is located on a straight line connecting the Zp point and the joint axis J 21, it is not necessary to input the dimension L 9. Since an assembly error may occur at the time of assembling, the dimension L9 is input in consideration of the assembly error. Of course, if the assembly error is "0", the input of the dimension L9 will be "0".
  • L6, L7 are input to the storage section of the mechanism parameter 180 of the memory 110, and the rotation center point in the rotation command of the evening rate T1 is set.
  • L7 and L8 may be input.
  • the origin is the Zp point where the X axis that intersects the connection point J31 of the control axis ax3 and the Z axis that intersects the connection point J21 of the control axis ax2 are orthogonal to each other. It is created based on the mechanical coordinate system of the orthogonal coordinate system obtained as a reference point at the time of establishment, and rotates the evening T1 around the G point in Fig. 2 by the B axis command.
  • the X axis and Z A command is issued for the axis and the B axis that rotates the evening T1.
  • X, Z, B coordinates on the rectangular coordinate system so that the position of the cutting edge of the tool with respect to point G, which is the center of rotation of the B axis, becomes the coordinate position programmed on the rectangular coordinate system.
  • the interpolation data is output to the machine configuration axis data converter 160, the interpolation data output in the Cartesian coordinate system is converted to ax l based on the data of the mechanism parameter 180
  • the axes are converted to the joint axis lengths (La, Lb, and Lc) of axes ax2 and ax3, for example, using the following conversion formula, and the converted command data is sent to each servo drive unit 2 1 By giving the values to 1, 2 12 and 2 13, each axis is driven to perform interpolation control to the optimal position.
  • Lc (X + (Sh7-L5) * cos (B)-(L8-L6 + L4) * sin (B) — 1_1 ⁇ 2 + ( ⁇ - (1_7—Sh5) * sin (B)-(L8-L6 + L4) * cos (B) hiro 2 -L12
  • “” means “square”.
  • L 1 to L 12 are mechanism parameters set by the length between the connection points shown in FIG. 2, and
  • L 1 is the length between the Z p and J 3 1 points
  • L 2 is the length between the Z p point and J 2 1 point
  • L 3 is the length between J 2 1 point and J 1 1 point
  • L 4 indicates the point between J 2 2 and J 32 points in the Z-axis direction.
  • L 5 indicates the point between J 2 2 and J 3 2 points, the length in the X-axis direction
  • L 6 indicates the distance between the J 1 2 point and the G point, the length in the Z axis direction
  • L 7 indicates the distance between the J 1 2 point and the G point, the length in the X-axis direction
  • L 8 is the length between J 1 2 and J 2 2 points
  • L 9 is the perpendicular distance from J 1 point to the Z axis
  • L10 is the joint axis length offset amount at the origin (0 point) of ax1
  • L 1 1 is the joint axis length offset amount at the origin (0 point) of a x 2
  • L12 represents the joint axis length offset amount at the origin (point 0) of ax3.
  • X, Z, and B are values specified by the machining program.
  • the mechanical component axis data converter 160 operates as described above.
  • Embodiment 2
  • FIG. 6 is a main block diagram showing the configuration of a numerical controller according to Embodiment 2 of the present invention.
  • the feature is that a mechanism parameter overnight definition table 163 is added to 60 and a machine component axis data conversion unit update unit 170 is added.
  • the mechanism parameter definition table 163 added to the machine configuration axis data conversion unit 1660 can be defined by defining the contents of the mechanism parameter configuration 180 according to the machine configuration.
  • the machine configuration axis data conversion unit 160 is used to refer to this and perform processing according to the machine configuration.
  • the machine configuration axis data conversion unit updating unit 1700 reads the module of the machine configuration axis data conversion unit 160 stored in the external storage device 191 from the screen shown in FIG.
  • the input / output IF section 190 replaces the machine configuration axis data conversion section 160 with the machine configuration.
  • FIG. 7 is a diagram showing the state transition of the main block for the display of the mechanism parameters
  • Fig. 8 is the first display example of the mechanism parameters screen
  • Fig. 9 is the mechanism parameters screen.
  • FIG. 10 shows a machine configuration axis data conversion unit update screen of the machine configuration axis data conversion unit update unit 170.
  • the module of the machine configuration axis data conversion unit 160 including the mechanical parameter overnight definition table 163 is based on the configuration of the machine in which the numerical control device is built using C language or the like outside the numerical control device. Is created and stored in the external storage device 19 1. Then, the machine configuration axis data conversion unit updating unit 1 ⁇ 0 is stored in advance in the numerical control device from the external storage device 191 via the input / output unit 190 in accordance with an instruction from the setting input unit 101. The machine configuration axis data conversion section 160 including the existing mechanical parameter definition table 16 3 is replaced (overwritten), and the mechanism parameter definition table according to the mechanism of the machine in which the numerical control device is incorporated. Change to machine configuration axis data conversion section 160, including 163. Fig.
  • FIG. 10 shows an example of the replacement screen.
  • the machine configuration axis data including the mechanical parameter definition table 16 3 stored in the numerical controller is displayed.
  • the evening conversion unit 160 relates to the machine B, and is stored in the memory directory; / module as a file name; trans, o.
  • the directory of the external storage device 19 1 (device; D); the machine configuration including the mechanism parameter overnight definition table 16 3 relating to the machine A stored in / data as the file name; trans.o This shows a screen where the axis is converted to a data conversion unit 160.
  • the screen processing unit 102 issues a request to confirm the specifications of the mechanical parameters to the mechanical component axis data conversion unit 160 at the first time of device startup.
  • the machine configuration axis data conversion unit 1.60 responds to the request by the machine configuration axis data conversion unit update unit 170 and stores the mechanism parameters set in advance.
  • Parameter specifications according to the definition table 1 63 (number of parameters required by the machine configuration axis data converter 1650, parameter name, number, data type, setting range, etc.) Reply.
  • the number of mechanical parameters used in the second embodiment is 15, and in response to a specification check request from the screen processing unit 102, the configuration of the joint axis of the link mechanism that drives the turret device etc.
  • Axlname, ax2name, ax3name that sets the joint axis that determines the position of the link mechanism that defines the positional relationship between the joint points of the joint axis, Ll, L2, L3, L4, L5, L8, L9, and the origin establishment
  • Set the joint axis dimension at the position Set the joint axis length offset amount L10, Lll, L12 and 'Set the rotation center dimension to determine the rotation center of the drive L6, L7 Overnight specifications return it.
  • the screen processing unit 102 displays each parameter item corresponding to the number of received parameters as shown in FIG. 8 in accordance with the content of the response.
  • this display example is a display example in a case where the value of the mechanical parameter 180 is not stored in the storage section of the mechanical parameter 180 of the memory 110, that is, the so-called cleared state. Then, the operator inputs the mechanical parameters 180 of the machine to be controlled to the respective parameter items displayed on this screen from the setting input section 101 as shown in FIG.
  • the mechanism parameters 180 stored in the memory 110 follow the arrangement defined in the mechanism parameter definition table 163 incorporated in the mechanical component axis data converter 160. . In the case of the second embodiment, they are set on the memory 110 so that # 1001 to # 1005 can be sequentially allocated.
  • the machine configuration axis data conversion unit is started. 160 is expressed in the Cartesian coordinate system.
  • the mechanism parameter overnight definition table 163 which defines the contents of the mechanism parameter night 180 in accordance with the machine configuration, the input interpolation data is described.
  • the joint axis lengths (L a, L b, L c) of the axl axis, ax 2 axis, and ax 3 axis are converted, for example, by the above conversion formula, and the converted command data is By giving it to the servo drive units 211, 212, and 213, each axis is driven to perform interpolation control to an optimal position.
  • the machine specifications are changed, the new machine component axis data conversion unit 160 that matches the machine specifications is changed by the machine component axis data conversion unit update unit 170, and the This is an example of the case where the value of the mechanism parameter 1800 is not stored in the storage section of the mechanism parameter 1180, so-called cleared.
  • the screen processing unit 102 is operated while the numerical values of the mechanical parameters 180 are stored in the storage unit of the mechanical parameters 0, 180, the definition table of the mechanical parameters is set.
  • the screen shown in Fig. 9 is displayed according to 163, so that the operator can check the mechanism parameters stored in the numerical controller. For example, in Fig.
  • the dimension of # 10004 L1 is displayed as 10.000, but if the L1 dimension of the mechanical configuration in which the numerical controller is incorporated is 11.000, the setting input section 101 Change the dimensions to 11.000. In this case, it is not necessary to update the machine component axis data converter 160 only by changing the L1 dimension. This changed data is stored in a predetermined area of the storage unit of the mechanism parameter data 180 in accordance with the mechanism parameter data definition table 1663.
  • the second embodiment even if the machine specifications are significantly changed, it is sufficient to simply replace the mechanical component axis data conversion unit and change the data of the mechanism parameters. There is no need to develop a new numerical controller according to the specifications.
  • the command specified in the rectangular coordinate system In a general-purpose numerical control device operated by a computer program, a numerical control machine tool in which the feed mechanism of the machine is a parallel link mechanism as shown in FIG. 3 and the feed direction of the control axis does not constitute a rectangular coordinate system is used. If you want to control it, simply replace the mechanical configuration axis data conversion unit according to the machine specifications and change the data of the mechanism parameters. It can be easily changed to a numerical control device that can control various machines.
  • a mechanism parameter definition table is integrated with the machine configuration axis data conversion unit that matches the machine configuration, and the screen display and settings can be performed according to the parameter settings obtained from the machine configuration axis data conversion unit. Therefore, when using another machine configuration axis data conversion unit with a different machine configuration, there is no need to create a dedicated parameter screen that matches the setting specifications.
  • a link mechanism for driving a controlled object such as a tool post in which a feed direction of a control axis does not form a rectangular coordinate system, is numerically controlled by a machining program commanded in the rectangular coordinate system.
  • a joint axis definition that determines the configuration of the joint axis of the link mechanism, a link mechanism dimension definition that defines the positional relationship between the joint points of the joint axis, and a joint axis dimension at the origin establishment position.
  • the controlled object is commanded in the Cartesian coordinate system.
  • the movement control is performed as instructed by the machining program, so even if the machine has a structure in which the feed direction of the control axis is not fixed depending on the length of the axis driven by the own axis or the drive source of the other axis, the orthogonal coordinates It is possible to obtain a numerical control method that can be operated with a machining program commanded by the system.
  • a method for numerically controlling a link mechanism for driving a controlled object such as a tool post in which a feed direction of a control axis does not constitute an orthogonal coordinate system, using a machining program instructed in the orthogonal coordinate system.
  • a joint axis definition that determines the configuration of the joint axis of the link mechanism, a link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and a joint axis length offset that defines the joint axis dimension at the origin establishment position A set of mechanical parameters including the quantity and the definition of the rotation center dimension that determines the rotation center of the drive unit is set in advance, and the program coordinate commands specified in the orthogonal system are analyzed and processed, and each of the orthogonal coordinate systems is analyzed. After generating the interpolation data in the axial direction, the interpolation data in each axis direction of the rectangular coordinate system is converted into numerical control data in the joint axis direction of the link mechanism based on the mechanism parameters.
  • the feed direction of the control axis depends on the length of the axis driven by the drive source of the own axis or the other axis. Even if the machine does not have a fixed structure, it is possible to obtain a numerical control method that can be operated by a machining program commanded in a rectangular coordinate system. ( Also, according to the present invention, the feed direction of the control axis does not form a rectangular coordinate system, and a link mechanism for driving a controlled object such as a tool post is commanded in a rectangular coordinate system.
  • a joint axis definition that determines the configuration of the joint axis of the link mechanism, a link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and an origin
  • a storage unit for storing the mechanical parameters including the joint axis length offset amount defining the joint axis dimensions at the position, and an analysis processing unit for analyzing and processing the program coordinate command issued in the orthogonal system.
  • An interpolation processing unit that generates interpolation data for each axis of the orthogonal coordinate system based on the analysis data analyzed by the analysis processing unit of The interpolation is performed based on the mechanism parameters.
  • a mechanical component axis data conversion unit for converting the link mechanism into numerical control data in the joint axis direction, and the movement of the controlled object is controlled according to a command of a machining program commanded in a rectangular coordinate system.
  • Numerical control that can be operated with a machining program commanded in the Cartesian coordinate system even if the feed direction of the control axis is not fixed depending on the length of the axis driven by the own axis or another axis drive source A device can be obtained.
  • an apparatus for numerically controlling a link mechanism for driving a controlled object such as a tool post in which a feed direction of a control axis does not constitute an orthogonal coordinate system, using a machining program instructed in the orthogonal coordinate system.
  • a joint axis definition that determines the configuration of the joint axis of the link structure, a link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and a joint axis length offset that defines the joint axis dimension at the origin establishment position
  • a storage unit that stores mechanical parameters including a rotation amount and a rotation center dimension definition that determines the rotation center of the drive unit; and an analysis processing unit that analyzes and processes a program coordinate command issued in an orthogonal system.
  • An interpolation processing unit that generates interpolation data in each axis direction of the rectangular coordinate system based on the analysis data analyzed by the processing unit; and an interpolation data unit in each axis direction of the rectangular coordinate system generated by the interpolation processing unit.
  • a machine configuration axis data conversion unit for converting the control object into numerical control data in the direction of the joint axis of the link mechanism based on the mechanism parameters, and a machining program commanding the controlled object in a rectangular coordinate system. Movement control is performed according to the command of (1), so even if the feed direction of the control axis is not fixed depending on the length of the axis driven by the own axis or the drive source of the other axis, the command is executed in the Cartesian coordinate system. In particular, according to the present invention, it becomes possible not only to move the tool rest or the like in the axial direction but also to rotate the tool post.
  • the machine configuration axis data conversion unit including the mechanism parameter overnight definition table is replaced with another conversion module according to the machine specifications.
  • the numerical control method and apparatus provide a numerically controlled machine tool, for example, a machine, in which the feed direction of the control axis is not fixed by the length of its own axis or the axis of the other axis driven by the motor.
  • This feed mechanism is a parallel link mechanism, and is suitable for being used as a numerical control method and a device for controlling a numerically controlled machine tool in which the feed direction of the control axis does not form a rectangular coordinate system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Numerical Control (AREA)

Abstract

A numerical control device capable of optimally controlling a machine having a parallel link mechanism, and a special configuration in which the control axis feeding direction is changed as other axes are moved, so that no orthogonal system is obtained by using a working program of the orthogonal coordinate system. A memory (110) contains Mechanism parameters (180) including the hinge axis definition for determining the configuration of the hinge axis of the link mechanism, the link mechanism dimension definition for defining the positional relationship of each connection point of the hinge axis, and the hinge axial length offset quantity for defining the dimension of the hinge axis at the origin establishing position. The program coordinate command given by the orthogonal system is analyzed by an analyzing unit (121) and interpolation data in each axial direction of the orthogonal coordinate system is generated by an interpolation unit (122), after which interpolation data in each axial direction of the orthogonal coordinate system is converted into numerical control data of the hinge axial direction of the link mechanism according to the mechanism parameters (180) by a machine component axis data conversion unit (160).

Description

明 細 書 数値制御方法及びその装置 技術分野  Description Numerical control method and device
この発明は、 自軸もしくは他軸の駆動源 (例えばモー夕) で駆動する 軸の長さによって制御軸の送り方向が固定されない数値制御工作機械、 例えば機械の送り機構が平行リンク機構化され、 制御軸の送り方向が直 交座標系を構成しない数値制御工作機械を制御する数値制御方法及び その装置に関するものである。 背景技術  The present invention relates to a numerically controlled machine tool in which the feed direction of a control axis is not fixed by the length of a shaft driven by a drive source of its own axis or another axis (for example, motor shaft), for example, the feed mechanism of the machine is a parallel link mechanism, The present invention relates to a numerical control method for controlling a numerically controlled machine tool in which a feed direction of a control axis does not form a rectangular coordinate system, and an apparatus therefor. Background art
数値制御装置は、 磁気記憶媒体等より入力される加工プログラムに基 づいて数値制御処理を実行し、 該処理結果により工作機械を駆動してヮ —クに指令どおりの加工を施すものである。  The numerical control device executes numerical control processing based on a processing program input from a magnetic storage medium or the like, drives a machine tool based on the processing result, and performs work on the workpiece as instructed.
第 1 1図は従来の一般的な数値制御装置を示す要部プロック図で、 サ ーボ軸が 3軸、 主軸が 2軸の場合の一構成例である。 数値制御装置 1 0 0は、 メモリ 1 1 0と、 設定入力部 1 0 1と、 画面処理部 1 0 2と、 外 部入出力ィン夕フヱ一ス部 1 0 3と、 機械制御信号処理部 1 0 5と、 P L C (プログラマブルロジックコントローラ) 回路 1 0 4と, 解析処理 部 1 2 1と、 補間処理部 1 2 2と、 加減速処理部 1 3 1、 1 3 2、 1 3 3と、 主軸制御部 1 4 1、 1 4 2と、 通信制御部 1 5 0とから構成され ている。  FIG. 11 is a block diagram of a main part showing a conventional general numerical control device, which is an example of a configuration in which a servo axis has three axes and a main axis has two axes. The numerical control device 100 has a memory 110, a setting input unit 101, a screen processing unit 102, an external input / output interface unit 103, and a machine control signal. Processing unit 105, PLC (programmable logic controller) circuit 104, Analysis processing unit 121, Interpolation processing unit 122, Acceleration / deceleration processing unit 131, 1 3 2, 1 3 3 And a spindle control section 141, 142 and a communication control section 150.
また、 数値制御装置 1 0 0は、 通信制御部 1 5 0を介してサ一ボ駆動 部 2 0 1、 2 0 2、 2 0 3、 主軸駆動部 3 0 1、 3 0 2と結合し、 各数 値制御軸を駆動するサーボモ一夕 2 1 1、 2 1 2、 2 1 3、 各主軸を駆 動する主軸モー夕 3 1 1、 312を制御する。 なお、 メモリ 1 10には、 磁気記憶媒体や画面より入力される加工プログラム 1 1 1や、 各種パラ メ一夕 1 1 2などが記憶される。 Further, the numerical controller 100 is connected to the servo drive units 201, 202, 203, and the spindle drive units 301, 302 via the communication control unit 150, Servo motors to drive each numerical control axis 2 1 1, 2 1 2, 2 1 3 Control the moving spindle motors 3 1 1 and 312. The memory 110 stores a machining program 111 input from a magnetic storage medium or a screen, various parameters 112, and the like.
加工プログラム 1 1 1を実行し数値制御運転する時には、 解析処理部 12 1が、 加工プログラム 1 1 1をメモリ 1 10から読み出し、 1プロ ックずつ解析処理を行う。 次いで、 補間処理部 122が、 1プロック毎 に解析されたコードを受け取り、 解析コードに従い、 1ブロック毎の補 間制御、 主軸制御、 補助機能制御等を行う。 補間制御により出力される 各軸の補間データは、 第 1軸加減速処理部 13 1、 第 2軸加減速処理部 132、 第 3軸加減速処理部 133にて、 加減速処理が施され、 通信制 御部 150を介して、 それぞれ、 第 1軸サーボ駆動部 201、 第 2軸サ —ボ駆動部 202、 第 3軸サ一ボ駆動部 203へ指令デ一夕を出力する c 第 1軸サーボ駆動部 20 1、 第 2軸サーボ駆動部 202、 第 3軸サーボ 駆動部 203は、 各々、 与えられた指令データに従って位置制御を行い、 第 1軸サーボモー夕 2 1 1、 第 2軸サーボモ一夕 2 12、 第 3軸サ一ボ モニタ 213をそれそれ駆動する。  When executing the machining program 111 and performing numerical control operation, the analysis processing unit 121 reads the machining program 111 from the memory 110 and performs the analysis process one block at a time. Next, the interpolation processing unit 122 receives the code analyzed for each block, and performs interpolation control, spindle control, auxiliary function control, and the like for each block according to the analysis code. The interpolation data of each axis output by the interpolation control is subjected to acceleration / deceleration processing by a first-axis acceleration / deceleration processing unit 131, a second-axis acceleration / deceleration processing unit 132, and a third-axis acceleration / deceleration processing unit 133. Outputs command data to the first axis servo drive unit 201, the second axis servo drive unit 202, and the third axis servo drive unit 203 via the communication control unit 150, respectively. C First axis The servo drive unit 201, the second-axis servo drive unit 202, and the third-axis servo drive unit 203 perform position control in accordance with the given command data, respectively. E2, 12, Axis 3 servo monitor 213 is driven.
また、 主軸機能指令、 補助機能指令の場合、 PL C回路 104の処理 に従い、 機械制御信号処理部 105にて、 主軸回転指令、 正転/逆転 Z 停止信号、 チャック開閉、 クーラント ON/OFF等の機械制御用信号 処理が施される。 主軸の回転指令は、 第 1主軸制御部 141、 第 2主軸 制御部 142に渡され、 通信制御部 150を介して、 それそれ、 第 1主 軸駆動部 301、 第 2主軸駆動部 302へ出力され、 第 1主軸駆動部 3 0 1、 第 2主軸駆動部 302は、 与えられた指令に従い、 それそれ、 第 1主軸モ一夕 3 1 1、 第 2主軸モータ 3 12の回転制御を行う。 またチ ャヅク開閉、 クーラント ON/OFF等の機械制御用信号は、 外部入出 力 I F部 1 03を介して処理される。 ところで、 従来の数値制御装置は、 第 1 2図に示すような直交座標系 上の座標値を指令する加工プログラム 1 1 1を入力し、 前記直交座標系 の軸方向に設置された送り軸及び該送り軸を駆動するサーボモー夕 2 1 1, 2 1 2 , 2 1 3を、 指令された座標値に移動させる数値制御デー 夕を出力するものである。 なお、 第 1 2図において 2 0 0はワークであ る。 In the case of the spindle function command and auxiliary function command, the machine control signal processing unit 105 controls the spindle rotation command, forward / reverse rotation Z stop signal, chuck open / close, coolant ON / OFF, etc. according to the processing of the PLC circuit 104. Machine control signal processing is performed. The spindle rotation command is passed to the first spindle control unit 141 and the second spindle control unit 142, and is output to the first spindle drive unit 301 and the second spindle drive unit 302 via the communication control unit 150, respectively. Then, the first spindle drive section 301 and the second spindle drive section 302 control the rotation of the first spindle motor 311 and the second spindle motor 312 in accordance with the given commands. Also, machine control signals such as opening / closing of the chuck and ON / OFF of the coolant are processed via the external input / output IF unit 103. By the way, a conventional numerical controller inputs a machining program 111 for instructing a coordinate value on a rectangular coordinate system as shown in FIG. It outputs numerical control data to move the servomotors 2 1 1, 2 1 2, 2 13 driving the feed axis to the commanded coordinate values. In FIG. 12, reference numeral 200 denotes a work.
各軸のサ一ボ駆動部 2 0 1 , 2 0 2 , 2 0 3に与える位置指令は、 サ 一ボモ一夕 2 1 1, 2 1 2 , 2 1 3と、 駆動する機械の間の、 ギヤ比、 ボールねじピッチ等の設定条件から、 サーボモ一夕 2 1 1 , 2 1 2 , 2 1 3の回転量を算出して、 位置制御を行うため、 前記に示す従来の数値 制御装置によって実現される工作機械は、 プ口グラム座標軸の方向と、 該プログラム指令によってモ一夕が駆動する機械の動作する方向、 即ち 制御軸の送り方向とは一般には同じであり、 少なくとも制御軸の送り方 向は固定されていなければならなかった。  The position command given to the servo drive units 201, 202, 203 of each axis is as follows: between the servo motors 211, 212, 213 and the machine to be driven. Based on the setting conditions such as the gear ratio and ball screw pitch, the amount of rotation of the servomotors 2 1 1, 2 1 2, 2 13 is calculated, and position control is performed. The direction of the program coordinate axes of the machine tool to be operated is generally the same as the direction of operation of the machine driven by the motor according to the program command, that is, the feed direction of the control axis. The orientation had to be fixed.
このため、 第 3図に示すような、 自軸もしくは他軸のモー夕で駆動す る軸の長さによって制御軸の送り方向が固定されない数値制御工作機 械、 例えば機械の送り機構が平行リンク機構化され、 制御軸の送り方向 が直交座標系を構成しない数値制御工作機械を、 直交座標系で指令する 加工プログラムで運転ができない問題があった。  For this reason, as shown in Fig. 3, a numerically controlled machine tool in which the feed direction of the control axis is not fixed by the length of the axis driven by the motor of the own axis or another axis, for example, the feed mechanism of the machine is a parallel link There has been a problem that a numerically controlled machine tool that is mechanized and whose control axis feed direction does not form a rectangular coordinate system cannot be operated with a machining program that commands the rectangular coordinate system.
また、 第 3図に示すような工作機械の場合、 プログラム指令軸と制御 軸が同一でなく、 プログラム指令軸の移動指令に伴い、 ある制御軸の送 りにより、 他の軸の移動が発生する。 このため、 機械構成が変わる度に、 機械構成に合わせた専用の制御を行う数値制御装置を開発しなければ ならない課題があった。 発明の開示 この発明は上記のような問題点を解決するためのもので、 自軸もしく は他軸の駆動源で駆動する軸の長さによって、 制御軸の送り方向が固定 されない構造の機械にあっても、 直交座標系で指令する加工プログラム で運転ができる数値制御方法及びその装置を得ることを目的とする。 また、 制御する機械の構成が変わっても、 その機械構成に合致する数 値制御を容易に実現できる数値制御装置を得ることを目的とする。 Also, in the case of a machine tool as shown in Fig. 3, the programmed command axis and the control axis are not the same, and the movement of another axis occurs due to the movement of one control axis according to the movement command of the programmed command axis. . For this reason, there has been a problem that every time the machine configuration changes, it is necessary to develop a numerical control device that performs dedicated control according to the machine configuration. Disclosure of the invention The present invention has been made to solve the above-described problem, and is directed to a machine having a structure in which a feed direction of a control shaft is not fixed by a length of a shaft driven by a drive source of a self-shaft or another shaft. Another object of the present invention is to obtain a numerical control method and a numerical control method capable of operating with a machining program commanded in a rectangular coordinate system. It is another object of the present invention to provide a numerical control device that can easily realize numerical control that matches the machine configuration even if the configuration of the machine to be controlled changes.
この発明は上記目的を達成させるためになされたもので、 制御軸の送 り方向が直交座標系を構成しない、 刃物台等の被制御体を駆動するリン ク機構を、 直交座標系で指令される加工プログラムにより数値制御する 方法において、前記.リンク機構の関節軸の構成を決める関節軸定義と、 関節軸の各連結点の位置関係を定義するリンク機構寸法定義と、 原点確 立位置での関節軸の寸法を定義する関節軸長オフセッ ト量とを含む機 構パラメ一夕を予め設定しておき、 直交系で指令されるプログラム座標 指令を解析処理するとともに直交座標系の各軸方向の補間データを生 成した後、 前記直交座標系の各軸方向の補間データを前記機構パラメ一 夕に基づいてリンク機構の関節軸方向の数値制御デ一夕へ変換するこ とにより、 前記被制御体を直交座標系で指令される加工プログラムの指 令通りに移動制御するものである。  The present invention has been made to achieve the above object, and a link mechanism for driving a controlled object such as a turret, in which a feed direction of a control axis does not form a rectangular coordinate system, is commanded in a rectangular coordinate system. In the method of numerical control using a machining program, a joint axis definition for determining the configuration of the joint axis of the link mechanism, a link mechanism dimension definition for defining a positional relationship between the joint points of the joint axis, and a The parameters of the mechanism including the joint axis length offset amount that defines the dimensions of the joint axis are set in advance, and the program coordinates commanded in the orthogonal system are analyzed and processed. After generating the interpolation data, the controlled data is converted into the numerical control data in the direction of the joint axis of the link mechanism based on the mechanism parameters based on the mechanism parameters. body Is controlled in accordance with a machining program command specified in the rectangular coordinate system.
またこの発明は、 制御軸の送り方向が直交座標系を構成しない、 刃物 台等の被制御体を駆動するリンク機構を、 直交座標系で指令される加工 プログラムにより数値制御する方法において、前記リンク機構の関節軸 の構成を決める関節軸定義と、 関節軸の各連結点の位置関係を定義する リンク機構寸法定義と、 原点確立位置での関節軸の寸法を定義する関節 軸長オフセッ ト量と、 駆動装置の回転中心を決める回転中心寸法定義と を含む機構パラメ一夕を予め設定しておき、直交系で指令されるプログ ラム座標指令を解析処理するとともに直交座標系の各軸方向の補間デ 一夕を生成した後、 前記直交座標系の各軸方向の補間データを前記機構 パラメ一夕に基づいてリンク機構の関節軸方向の数値制御データへ変 換することにより、 前記被制御体を直交座標系で指令される加工プログ ラムの指令通りに移動制御するものである。 Further, the present invention provides a method for numerically controlling a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not form an orthogonal coordinate system, using a machining program commanded in the orthogonal coordinate system. The definition of the joint axis that determines the configuration of the joint axis of the mechanism, the link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and the joint axis length offset amount that defines the joint axis dimension at the origin establishment position In advance, a set of mechanical parameters including the definition of the rotation center size that determines the rotation center of the drive unit and are analyzed, and the program coordinate commands specified in the orthogonal system are analyzed and interpolated in each axis direction of the orthogonal coordinate system. De After generating one night, the interpolated data in each axis direction of the Cartesian coordinate system is converted into numerical control data in the joint axis direction of the link mechanism based on the mechanism parameters, thereby making the controlled object orthogonal. Movement control is performed as specified by the machining program specified in the coordinate system.
またこの発明は、制御軸の送り方向が直交座標系を構成しない、 刃物 台等の被制御体を駆動するリンク機構を、 直交座標系で指令される加工 プログラムにより数値制御する装置において、前記リンク機構の関節軸 の構成を決める関節軸定義と、 関節軸の各連結点の位置関係を定義する リンク機構寸法定義と、 原点確立位置での関節軸の寸法を定義する関節 軸長オフセッ ト量とを含む機構パラメ一夕を記憶する記憶部と、直交系 で指令されるプログラム座標指令を解析処理する解析処理部と、 この解 析処理部にて解析された解析データに基づいて直交座標系の各軸方向 の補間データを生成する補間処理部と、 この補間処理部にて生成された 直交座標系の各軸方向の補間データを前記機構パラメ一夕に基づいて リンク機構の関節軸方向の数値制御デ一夕へ変換する機械構成軸デー 夕変換部とを備え、前記被制御体を直交座標系で指令される加工プログ ラムの指令通りに移動制御するものである。  The present invention also provides an apparatus for numerically controlling a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not form an orthogonal coordinate system, by a machining program commanded in the orthogonal coordinate system. The definition of the joint axis that determines the configuration of the joint axis of the mechanism, the link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and the joint axis length offset amount that defines the joint axis dimension at the origin establishment position A storage unit for storing a set of mechanism parameters including a coordinate system, an analysis processing unit for analyzing and processing a program coordinate command instructed by an orthogonal system, and An interpolation processing unit that generates interpolation data in each axis direction; and an interpolation data of each axis direction of the orthogonal coordinate system generated by the interpolation processing unit based on the mechanism parameters. And a numerical control de conversion to Isseki machine configuration axis data evening converting unit, wherein and controls move as commanded machining program commanded by an orthogonal coordinate system the controlled.
またこの発明は、制御軸の送り方向が直交座標系を構成しない、 刃物 台等の被制御体を駆動するリンク機構を、 直交座標系で指令される加工 プログラムにより数値制御する装置において、前記リンク機構の関節軸 の構成を決める関節軸定義と、 関節軸の各連結点の位置関係を定義する リンク機構寸法定義と、 原点確立位置での関節軸の寸法を定義する関節 軸長オフセッ ト量と、 駆動装置の回転中心を決める回転中心寸法定義と を含む機構パラメ一夕を記憶する記憶部と、直交系で指令されるプログ ラム座標指令を解析処理する解析処理部と、 この解析処理部にて解析さ れた解析データに基づいて直交座標系の各軸方向の補間データを生成 する補間処理部と、 この補間処理部にて生成された直交座標系の各軸方 向の補間データを前記機構パラメ一夕に基づいてリンク機構の関節軸 方向の数値制御データへ変換する機械構成軸データ変換部とを備え、前 記被制御体を直交座標系で指令される加工プログラムの指令通りに移 動制御するものである。 The present invention also provides an apparatus for numerically controlling a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not form an orthogonal coordinate system, by a machining program commanded in the orthogonal coordinate system. The definition of the joint axis that determines the configuration of the joint axis of the mechanism, the link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and the joint axis length offset amount that defines the joint axis dimension at the origin establishment position A storage unit that stores a set of mechanical parameters including a rotation center dimension definition that determines the rotation center of the drive unit, an analysis processing unit that analyzes and processes a program coordinate command issued in an orthogonal system, and an analysis processing unit. Generates interpolated data for each axis of the Cartesian coordinate system based on the analyzed data And a mechanical configuration for converting the interpolation data in each axis direction of the orthogonal coordinate system generated by the interpolation processing unit into numerical control data in the joint axis direction of the link mechanism based on the mechanism parameters. An axis data conversion unit is provided to move and control the controlled object in accordance with a command of a machining program specified in a rectangular coordinate system.
更にまた、この発明は、前記機械構成軸データ変換部に、 実際に使用す る機構パラメ一夕を定義する機構パラメ一夕定義テーブルを含ませる とともに、 この機械構成軸デ一夕変換部を機械仕様に合わせて別の変換 モジュールへ入れ替えを行う機械構成軸データ変換部更新部を、 備え、 且つ所要時にこれらの情報を出力するものである。 図面の簡単な説'明  Still further, according to the present invention, the machine component axis data conversion unit includes a mechanism parameter table definition table for defining a mechanism parameter to be actually used, and the machine component axis data converter is provided with a mechanical component data conversion unit. It is provided with a machine component axis data conversion unit update unit that replaces with another conversion module according to the specifications, and outputs such information when required. Brief explanation of drawings
第 1図はこの発明の実施の形態 1に係わる数値制御装置を示す要部 プロック図である。  FIG. 1 is a main block diagram showing a numerical control device according to Embodiment 1 of the present invention.
第 2図はこの発明の実施の形態 1に係わる数値制御装置で制御を行 う機械の機構パラメ一夕を示す図である。  FIG. 2 is a diagram showing the mechanism parameters of a machine controlled by the numerical controller according to Embodiment 1 of the present invention.
第 3図はこの発明の実施の形態 1に係わる数値制御装置で制御を行 う機械の構成を示す図である。  FIG. 3 is a diagram showing a configuration of a machine controlled by the numerical controller according to Embodiment 1 of the present invention.
第 4図はこの発明の実施の形態 1に係わる数値制御装置で制御を行 う機械の動作を示す図である。  FIG. 4 is a diagram showing an operation of a machine controlled by the numerical controller according to Embodiment 1 of the present invention.
第 5図はこの発明の実施の形態 1に係わる数値制御装置の機構パラ メータ設定画面を示す図である。  FIG. 5 is a diagram showing a mechanism parameter setting screen of the numerical controller according to Embodiment 1 of the present invention.
第 6図はこの発明の実施の形態 2に係わる数値制御装置を示す要部 ブロック図である。  FIG. 6 is a main block diagram showing a numerical control device according to Embodiment 2 of the present invention.
第 7図はこの発明の実施の形態 2に係わる数値制御装置の機構パラ メータ表示処理の状態遷移図である。 第 8図はこの発明の実施の形態 2に係わる数値制御装置の機構パラ メータ表示,設定画面を示す図である。 FIG. 7 is a state transition diagram of a mechanism parameter display process of the numerical controller according to Embodiment 2 of the present invention. FIG. 8 is a view showing a mechanism parameter display and setting screen of the numerical controller according to Embodiment 2 of the present invention.
第 9図はこの発明の実施の形態 2に係わる数値制御装置の機構パラ メータ設定画面を示す図である。  FIG. 9 is a diagram showing a mechanism parameter setting screen of the numerical controller according to Embodiment 2 of the present invention.
第 1 0図はこの発明の実施の形態 2に係わる数値制御装置の機械構 成軸データ変換部を入れ替える機械構成軸データ変換部更新部を説明 するための図である。  FIG. 10 is a diagram for explaining a mechanical component axis data conversion unit updating unit that replaces the mechanical component axis data converter of the numerical control device according to Embodiment 2 of the present invention.
第 1 1図は従来の数値制御装置の構成を示すプロック図である。  FIG. 11 is a block diagram showing a configuration of a conventional numerical control device.
第 1 2図は従来の数値制御装置の座標系を示す説明図である。 発明を実施するための最良の形態 '  FIG. 12 is an explanatory diagram showing a coordinate system of a conventional numerical controller. BEST MODE FOR CARRYING OUT THE INVENTION ''
実施の形態 1 . Embodiment 1
以下、 この発明の実施の形態 1を第 1図〜第 5図に基づいて説明する c 第 1図はこの発明の実施の形態 1による数値制御装置の構成を示す 要部プロック図であり、 従来の数値制御装置に対し、 メモリ 1 1 0上に 特定領域だけ確保された、 後述する機構パラメ一夕 1 8 0を格納する格 納部と、 機械構成軸データ変換部 1 6 0とが追加されていることが特徴 である。 '  Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5. c FIG. 1 is a block diagram of a main part showing a configuration of a numerical control device according to Embodiment 1 of the present invention. For the numerical control device, a storage unit that stores a mechanical parameter 180, which will be described later, and a machine configuration axis data conversion unit 160, which are secured only in a specific area on the memory 110, are added. The feature is that '
なお、 機構パラメ一夕 1 8 0は、 第 5図のような画面を用い設定入力 部 1 0 1より、 制御する機械構成に応じたデータが入力される (例えば、 #10001の欄には axlname Xが、 #10002の欄には ax2name Yが、 #10003 の欄には ax3name Zが、 #10004の欄には L1 10. 000が入力され、 #10005 以降も同様に入力される) 。  For the mechanism parameters 180, data corresponding to the machine configuration to be controlled is input from the setting input unit 101 using the screen shown in Fig. 5 (for example, axlname is entered in the # 10001 column). X, ax2name Y in the # 10002 field, ax3name Z in the # 10003 field, L1 10.000 in the # 10004 field, and so on from # 10005).
第 3図は、 この発明の数値制御装置により制御を行う数値制御工作機 械の構成を示す。 本機械は機械剛性が大きいもので、 3つのサ一ボモ一 夕が組み付けられ、 各モー夕が駆動することによって、 a x l軸、 a x 2軸、 ax 3軸がそれそれ途中でボールネジ結合されていることにより、 ax l軸、 ax 2軸、 a x 3軸の長さがそれそれ伸縮する。 バイ ト等の 工具を保持する夕レット T 1は、 ax l軸、 ax 2軸、 ax 3軸によつ て、 J 1 2点、 J 2 2点、 J 3 2点で支えられたベースに取り付けられ ている。 連結点 J l l, J 1 2 , J 2 1 , J 2 2 , J 3 1 , J 3 2はフ レキシブルに回転する構造になっており、 J 1 1点と J 12点で結合し た制御軸 ax lと、 J 2 1点と J 2 2点で結合した制御軸 ax 2と、 J 3 1点と J 32点で結合した制御軸 ax 3とが、 各々伸縮することで、 夕レッ トが一平面上の X, Z , Bの各軸方向に移動する構成になってい る。 FIG. 3 shows the configuration of a numerically controlled machine tool controlled by the numerical control device of the present invention. This machine has high mechanical rigidity, and three sub-boats are assembled. The length of the axl axis, ax2 axis, and ax3 axis expands and contracts by connecting the two axes and the ax3 axis with the ball screw on the way. The evening let T1, which holds tools such as bytes, is mounted on the base supported by J12, J22, and J32 by axl axis, ax2 axis, and ax3 axis. Installed. The connection points Jll, J12, J21, J22, J31, and J32 have a structure that rotates flexibly, and the control axis is connected at points J11 and J12. ax l, the control axis ax 2 connected at the J2 1 point and the J 2 2 point, and the control axis ax 3 connected at the J 3 1 point and the J 32 point expand and contract, respectively. It is configured to move in the X, Z, and B axial directions on one plane.
ax 1軸、 ax 2軸は、 連結点 J 1 1, J 1 2 , J 2 1 , J 2 2が平 行四辺形を構成するように、 平行な方向に配置された状態を基本形とし、 第 4図に示すように、 ax l軸, ax 2軸, ax 3軸が伸縮しながら動 作することで、 直交座標系上で指令された移動指令通りに動作を行う。 なお、 第 4図において、 ax 3軸が伸長し、 また ax l軸, ax 2軸 も所定量だけ伸長することにより(a)の状態から (b) の状態となり、ェ 具がヮ一グの加工開始位置まで移動する。 そして、 ax 3軸が更に伸長 し、 また ax l軸, ax 2軸も所定量だけ更に伸長することにより(b) の状態から ( c ) の状態となり、工具が Z軸方向に移動してワークを加 ェする。  The ax1 axis and the ax2 axis are based on a state in which the connection points J11, J12, J21, and J22 are arranged in parallel so that they form a parallelogram. As shown in Fig. 4, when the axl axis, ax2 axis, and ax3 axis move while expanding and contracting, they operate according to the movement command specified on the rectangular coordinate system. In FIG. 4, the ax 3 axis is extended, and the axl axis and ax 2 axis are also extended by a predetermined amount, so that the state shown in FIG. Move to the processing start position. Then, the ax3 axis is further extended, and the axl axis and ax2 axis are further extended by a predetermined amount, so that the state of (b) is changed to the state of (c), and the tool moves in the Z-axis direction and the workpiece is moved. Add.
また、 第 2図に、 この発明の実施の形態 1に係る数値制御装置により 制御を行う数値制御工作機械の機構パラメ一夕 1 80の説明図を示す。 本図を基に、 機械構成軸デ一夕変換部 1 6 0の補間データ変換処理につ いて説明する。  FIG. 2 is an explanatory diagram of the mechanical parameters 180 of a numerically controlled machine tool controlled by the numerical control device according to Embodiment 1 of the present invention. Based on this figure, the interpolation data conversion processing of the machine configuration axis data converter 160 will be described.
本実施の形態 1の場合、 第 5図に示すような機構パラ,メ一夕設定画面 及びキーボードを用い、関節軸定義パラメ一夕として、 第 1軸、 第 2軸、 第 3軸をそれそれ、 第 2図の ax 1、 ax 2、 ax 3の駆動モ一夕を制 御する軸としてメモリ 1 1 0の機構パラメ一夕 1 8 0の格納部に設定 する。 また、 リンク機構寸法定義パラメ一夕として、 Z p点を基準とす る、 L l, L 2, L 3 , L 4, L 5, L 8 , L 9の各寸法をメモリ 1 1 0の機構パラメ一夕 1 8 0の格納部に入力して、 各関節軸の連結点 J 1 1 , J 1 2 , J 2 1 , J 2 2 , J 3 1 , J 3 2の間の位置関係を設定す る。 なお、 関節軸の連結点 J 1 1が、 Z p点と関節軸の連結点 J 2 1と を結ぶ直線上に位置すれば寸法 L 9を入力する必要がないが、 第 3図に 示す機械の組立て時に組立て誤差が生じることがあるので、 この組立て 誤差を考慮して寸法 L 9を入力するようにしている。 勿論のこと、 その 組立て誤差が 「0」 であれば、 寸法 L 9の入力が 「0」 になる。 In the case of the first embodiment, the first axis, the second axis, and the joint axis definition parameter are set using the mechanism parameter, the parameter setting screen, and the keyboard as shown in FIG. The third axis is set as the axis for controlling the driving modes of ax1, ax2, and ax3 in FIG. 2 in the storage section of the mechanism parameter 180 of the memory 110, respectively. Also, as the link mechanism dimension definition parameters, the L1, L2, L3, L4, L5, L8, and L9 dimensions based on the Zp point are stored in the memory 110. Input into the storage section of the parameter 180, and set the positional relationship between the joint points J11, J12, J21, J22, J31, J32 of each joint axis. You. Note that if the joint axis J 11 is located on a straight line connecting the Zp point and the joint axis J 21, it is not necessary to input the dimension L 9. Since an assembly error may occur at the time of assembling, the dimension L9 is input in consideration of the assembly error. Of course, if the assembly error is "0", the input of the dimension L9 will be "0".
また、 原点確立位置 (L a= 0 , L b = 0, L c = 0の状態) の各関 節軸の寸法を示す関節軸長オフセッ ト量パラメ一夕として、 L 1 0 , L 1 1, L 1 2の各寸法を入力して、 関節軸 ax 1 , ax 2, ax 3の基 準長をメモリ 1 1 0の機構パラメ一夕 1 8 0の格納部に設定する。 また、 夕レツ 卜 T 1を斜め方向に回転動作させる場合、 回転中心を決める回転 中心寸法定義 (アームにより移動させる機械ュニッ ト上の連結点の座標 関係) パラメ一夕として、 L 6 , L 7の各寸法をメモリ 1 1 0の機構パ ラメ一夕 1 8 0の格納部に入力して、 夕レヅ ト T 1の回転指令における 回転中心点を設定する。 なお、 この場合、 L 7、 L 8を入力してもよい。 加工プログラムで指令される直交座標系は、 制御軸 ax 3の連結点 J 3 1と交わる X軸と、 制御軸 ax 2の連結点 J 2 1と交わる Z軸が互いに 直交する Z p点を原点確立時の基準点として得られる直交座標系の機 械座標系をもとに作られ、 また、 B軸指令によって、 第 2図の G点を中 心に夕レッ ト T 1を回転する。  In addition, the joint axis length offset amount parameter indicating the dimension of each joint axis at the origin establishment position (in the state of La = 0, Lb = 0, Lc = 0) is defined as L10, L11. , L1 and 2 are set, and the reference lengths of the joint axes ax1, ax2, and ax3 are set in the storage section of the mechanism parameters 180 of the memory 110. When rotating the sunset T1 in an oblique direction, the definition of the center of rotation that determines the center of rotation (the coordinate relationship of the connection points on the machine unit that is moved by the arm) L6, L7 Are input to the storage section of the mechanism parameter 180 of the memory 110, and the rotation center point in the rotation command of the evening rate T1 is set. In this case, L7 and L8 may be input. In the Cartesian coordinate system specified by the machining program, the origin is the Zp point where the X axis that intersects the connection point J31 of the control axis ax3 and the Z axis that intersects the connection point J21 of the control axis ax2 are orthogonal to each other. It is created based on the mechanical coordinate system of the orthogonal coordinate system obtained as a reference point at the time of establishment, and rotates the evening T1 around the G point in Fig. 2 by the B axis command.
加工プログラム 1 1 1では、 第 3図に示す、 直交座標系の X軸及び Z 軸と、 夕レッ ト T 1を回転する B軸の指令がなされる。 B軸の回転中心 となる G点を基準とした工具の刃先位置が、 直交座標系上でプログラム 指令された座標位置になるように、 直交座標系上にて、 X, Z , Bの座 標への補間データが出力されたとすると、 機械構成軸データ変換部 1 6 0は、 直交座標系で出力された補間データを、 機構パラメ一夕 1 8 0の デ一夕を基にして、 ax l軸と ax 2軸と ax 3軸の各関節軸長 (L a, Lb, L c) へ、 例えば下記の変換式で変換を行い、 変換した指令デー 夕を、 各サ一ボ駆動部 2 1 1 , 2 1 2 , 2 1 3に与えることによって、 各軸を駆動して、 最適な位置へ補間制御を行う。 In the machining program 1 1 1, the X axis and Z A command is issued for the axis and the B axis that rotates the evening T1. X, Z, B coordinates on the rectangular coordinate system so that the position of the cutting edge of the tool with respect to point G, which is the center of rotation of the B axis, becomes the coordinate position programmed on the rectangular coordinate system. If the interpolation data is output to the machine configuration axis data converter 160, the interpolation data output in the Cartesian coordinate system is converted to ax l based on the data of the mechanism parameter 180 The axes are converted to the joint axis lengths (La, Lb, and Lc) of axes ax2 and ax3, for example, using the following conversion formula, and the converted command data is sent to each servo drive unit 2 1 By giving the values to 1, 2 12 and 2 13, each axis is driven to perform interpolation control to the optimal position.
La= (X+L7*cos(B)+L6*sin(B)-L9)"2+(Z+L7*sin(B)+L6*cos(B)-L2-L3r2 -L10 La = (X + L7 * cos (B) + L6 * sin (B) -L9) "2+ (Z + L7 * sin (B) + L6 * cos (B) -L2-L3r2 -L10
L^= A (X+L7*cos(BHL8-L6)*sin(B)r2 + (Z-L7*sin(B)-(L8-L6)*cos(B)-L2r2 - L11 L ^ = A (X + L7 * cos (BHL8-L6) * sin (B) r2 + (Z-L7 * sin (B)-(L8-L6) * cos (B) -L2r2-L11
Lc= (X+ (し 7-L5)*cos(B) - (L8 - L6+L4)*sin(B)— 1_1Γ2+(Ζ-(1_7—し 5)*sin(B)-(L8 - L6+L4)*cos(B)广 2 -L12 なお、. また上記式で 「 」 は 「2乗」 の意味である。 Lc = (X + (Sh7-L5) * cos (B)-(L8-L6 + L4) * sin (B) — 1_1Γ2 + (Ζ- (1_7—Sh5) * sin (B)-(L8-L6 + L4) * cos (B) hiro 2 -L12 In addition, in the above formula, “” means “square”.
また L 1〜L 1 2は、 第 2図に示される連結点の間の長さで設定され る機構パラメ一夕であり、  L 1 to L 12 are mechanism parameters set by the length between the connection points shown in FIG. 2, and
L 1は Z p点と J 3 1点の間の長さ、  L 1 is the length between the Z p and J 3 1 points,
L 2は Z p点と J 2 1点の間の長さ、  L 2 is the length between the Z p point and J 2 1 point,
L 3は J 2 1点と J 1 1点の間の長さ、  L 3 is the length between J 2 1 point and J 1 1 point,
L 4は J 2 2点と J 32点の間を示す、 Z軸方向の.長さ、 L 4 indicates the point between J 2 2 and J 32 points in the Z-axis direction.
L 5は J 2 2点と J 3 2点の間を示す、 X軸方向の長さ、  L 5 indicates the point between J 2 2 and J 3 2 points, the length in the X-axis direction,
L 6は J 1 2点と G点の間を示す、 Z軸方向の長さ、  L 6 indicates the distance between the J 1 2 point and the G point, the length in the Z axis direction,
L 7は J 1 2点と G点の間を示す、 X軸方向の長さ、  L 7 indicates the distance between the J 1 2 point and the G point, the length in the X-axis direction,
L 8は J 1 2点と J 2 2点の間の長さ、 L 9は Z軸に対する J 1 1点からの垂線距離、 L 8 is the length between J 1 2 and J 2 2 points, L 9 is the perpendicular distance from J 1 point to the Z axis,
L 1 0は、 a x 1の原点 ( 0点) 位置での関節軸長オフセッ ト量 L10 is the joint axis length offset amount at the origin (0 point) of ax1
L 1 1は、 a x 2の原点 ( 0点) 位置での関節軸長オフセッ ト量 L 1 1 is the joint axis length offset amount at the origin (0 point) of a x 2
L 1 2は、 a x 3の原点 ( 0点) 位置での関節軸長オフセッ ト量 を表す。 L12 represents the joint axis length offset amount at the origin (point 0) of ax3.
また X、 Z、 Bは、 加工プログラムより指令される値である。  X, Z, and B are values specified by the machining program.
機械構成軸デ一夕変換部 1 6 0は、 以上説明したように作用する。 実施の形態 2 .  The mechanical component axis data converter 160 operates as described above. Embodiment 2
次に、 この発明の実施の形態 2を第 6図〜第 1 0図に基づいて説明す る。  Next, a second embodiment of the present invention will be described with reference to FIGS. 6 to 10.
第 6図はこの発明の実施の形態 2による数値制御装置の構成を示す 要部ブロック図であり、 実施の形態 1で示す数値制御装置に対し、 主に、 機械構成軸デ一夕変換部 1 6 0に機構パラメ一夕定義テーブル 1 6 3 が追加されていること、 及び機械構成軸データ変換部更新部 1 7 0が追 加されていることが特徴である。  FIG. 6 is a main block diagram showing the configuration of a numerical controller according to Embodiment 2 of the present invention. The feature is that a mechanism parameter overnight definition table 163 is added to 60 and a machine component axis data conversion unit update unit 170 is added.
なお、 機械構成軸データ変換部 1 6 0に追加された機構パラメ一夕定 義テーブル 1 6 3は、 機構パラメ一夕 1 8 0のデ一夕の内容を機械構成 に合わせて定義することで、 機械構成軸データ変換部 1 6 0がこれを参 照し、 機械構成に合わせた処理を行うために使用されるものである。  The mechanism parameter definition table 163 added to the machine configuration axis data conversion unit 1660 can be defined by defining the contents of the mechanism parameter configuration 180 according to the machine configuration. The machine configuration axis data conversion unit 160 is used to refer to this and perform processing according to the machine configuration.
また、 機械構成軸データ変換部更新部 1 7 0は、 第 1 0図に示すよう な画面から、 外部記憶装置 1 9 1に格納されている機械構成軸データ変 換部 1 6 0のモジュールを、 入出力 I F部 1 9 0を介して機械構成に合 わせた機械構成軸データ変換部 1 6 0に入れ替えるものである。  In addition, the machine configuration axis data conversion unit updating unit 1700 reads the module of the machine configuration axis data conversion unit 160 stored in the external storage device 191 from the screen shown in FIG. The input / output IF section 190 replaces the machine configuration axis data conversion section 160 with the machine configuration.
次に設定入力部 1 0 1、 画面処理部 1 0 2及び機械構成軸デ一夕変換 部更新部 1 7 0の作用について説明する。 なお、 第 7図は機構パラメ一夕表示のための要部プロックの状態遷移 を示す図、 第 8図は機構パラメ一夕画面の第 1の表示例、 第 9図は機構 パラメ一夕画面の第 2の表示例、 第 1 0図は機械構成軸デ一夕変換部更 新部 1 7 0の機械構成軸データ変換部更新画面ある。 Next, the operation of the setting input unit 101, the screen processing unit 102, and the machine component axis data conversion unit updating unit 170 will be described. Fig. 7 is a diagram showing the state transition of the main block for the display of the mechanism parameters, Fig. 8 is the first display example of the mechanism parameters screen, and Fig. 9 is the mechanism parameters screen. Second display example, FIG. 10 shows a machine configuration axis data conversion unit update screen of the machine configuration axis data conversion unit update unit 170.
機構パラメ一夕定義テーブル 1 6 3を含む機械構成軸データ変換部 1 6 0のモジュールは、 数値制御装置外部で C言語等を用いて、 数値制 御装置が組み込まれる機械の構成に応じたものが作成され、 外部記憶装 置 1 9 1に格納される。 そして、 機械構成軸データ変換部更新部 1 Ί 0 は、 設定入力部 1 0 1からの指示により、 外部記憶装置 1 9 1から入出 力部 1 9 0を介して、 予め数値制御装置に格納されている機構パラメ一 夕定義テーブル 1 6 3を含む機械構成軸データ変換部 1 6 0を入れ替 え (上書し) 、 数値制御装置が組み込まれる機械の機構に応じた機構パ ラメ一夕定義テーブル 1 6 3を含む機械構成軸データ変換部 1 6 0に 変更する。 第 1 0図はその入れ替え画面の一例を示し、 「転送 A B」 に対応するファンクションキーを押すことにより、 数値制御装置に格納 されている機構パラメ一夕定義テーブル 1 6 3を含む機械構成軸デー 夕変換部 1 6 0が、 機械装置 Bに係るもので、 メモリのディレク トリ ; /module にファイル名; trans , o として格納されているが、 この機械構 成軸データ変換部 1 6 0を、 外部記憶装置 1 9 1 (デバイス ; D ) のデ ィレク トリ ; /data にファイル名; trans . o として格納されている、 機 械装置 Aに係る機構パラメ一夕定義テーブル 1 6 3を含む機械構成軸 デ一夕変換部 1 6 0に入れ替える画面を示している。  The module of the machine configuration axis data conversion unit 160 including the mechanical parameter overnight definition table 163 is based on the configuration of the machine in which the numerical control device is built using C language or the like outside the numerical control device. Is created and stored in the external storage device 19 1. Then, the machine configuration axis data conversion unit updating unit 1Ί0 is stored in advance in the numerical control device from the external storage device 191 via the input / output unit 190 in accordance with an instruction from the setting input unit 101. The machine configuration axis data conversion section 160 including the existing mechanical parameter definition table 16 3 is replaced (overwritten), and the mechanism parameter definition table according to the mechanism of the machine in which the numerical control device is incorporated. Change to machine configuration axis data conversion section 160, including 163. Fig. 10 shows an example of the replacement screen. By pressing the function key corresponding to "Transfer AB", the machine configuration axis data including the mechanical parameter definition table 16 3 stored in the numerical controller is displayed. The evening conversion unit 160 relates to the machine B, and is stored in the memory directory; / module as a file name; trans, o. The directory of the external storage device 19 1 (device; D); the machine configuration including the mechanism parameter overnight definition table 16 3 relating to the machine A stored in / data as the file name; trans.o This shows a screen where the axis is converted to a data conversion unit 160.
また第 7図において、画面処理部 1 0 2は、 装置起動の初回に、 機械 構成軸デ一夕変換部 1 6 0に対し、 機構パラメ一夕の仕様確認要求を出 す。 機械構成軸データ変換部 1 .6 0は、 前記要求に対し、 機械構成軸デ 一夕変換部更新部 1 7 0により予め格納されている機構パラメ一夕定 義テーブル 1 6 3に従い、 パラメ一夕の仕様 (機械構成軸デ一夕変換部 1 6 0が必要とするパラメ一夕個数、 各パラメ一夕項目の名称、 番号、 データ型、 設定範囲等) を返答する。 Also, in FIG. 7, the screen processing unit 102 issues a request to confirm the specifications of the mechanical parameters to the mechanical component axis data conversion unit 160 at the first time of device startup. The machine configuration axis data conversion unit 1.60 responds to the request by the machine configuration axis data conversion unit update unit 170 and stores the mechanism parameters set in advance. Parameter specifications according to the definition table 1 63 (number of parameters required by the machine configuration axis data converter 1650, parameter name, number, data type, setting range, etc.) Reply.
本実施の形態 2において使用している機構パラメ一夕は 1 5個で、 画 面処理部 1 0 2からの仕様確認要求に対し、 刃物台装置等を駆動するリ ンク機構の関節軸の構成を決める関節軸を設定する axlname、 ax2name、 ax3name と、 関節軸の各連結点の位置関係を定義するリンク機構寸法を 設定する、 Ll、 L2、 L3、 L4、 L5、 L8、 L9と、 原点確立位置での関節軸の 寸法を設定する関節軸長オフセッ ト量を設定する L10、 Lll、 L12と、'駆 動装置の回転中心を決める回転中心寸法を設定する L6、 L7 の各パラメ 一夕仕様を返す。  The number of mechanical parameters used in the second embodiment is 15, and in response to a specification check request from the screen processing unit 102, the configuration of the joint axis of the link mechanism that drives the turret device etc. Axlname, ax2name, ax3name that sets the joint axis that determines the position of the link mechanism that defines the positional relationship between the joint points of the joint axis, Ll, L2, L3, L4, L5, L8, L9, and the origin establishment Set the joint axis dimension at the position Set the joint axis length offset amount L10, Lll, L12 and 'Set the rotation center dimension to determine the rotation center of the drive L6, L7 Overnight specifications return it.
画面処理部 1 0 2は、 返答を受けた内容に従い、 第 8図のように、 受 け取ったパラメ一夕個数分の各パラメ一夕項目を表示する。 なおこの表 示例は、 メモリ 1 1 0の機構パラメ一夕 1 8 0の格納部に機構パラメ一 夕 1 8 0の数値等が格納されていない、 所謂クリアされている場合の表 示例である。 そしてオペレ一夕は、この画面に表示された各パラメ一夕 項目に制御対象となる機械の機構パラメ一夕 1 8 0を、 設定入力部 1 0 1より第 9図に示すように入力する。  The screen processing unit 102 displays each parameter item corresponding to the number of received parameters as shown in FIG. 8 in accordance with the content of the response. Note that this display example is a display example in a case where the value of the mechanical parameter 180 is not stored in the storage section of the mechanical parameter 180 of the memory 110, that is, the so-called cleared state. Then, the operator inputs the mechanical parameters 180 of the machine to be controlled to the respective parameter items displayed on this screen from the setting input section 101 as shown in FIG.
なお、 メモリ 1 1 0上に格納される機構パラメ一夕 1 8 0は、 機械構 成軸デ一夕変換部 1 6 0に組み込まれる機構パラメ一夕定義テーブル 1 6 3で定義される配置に従う。 本実施の形態 2の場合、 順に # 1 0 0 0 1から # 1 0 0 1 5まで割り付けられるようにメモリ 1 1 0上に設 定される。  The mechanism parameters 180 stored in the memory 110 follow the arrangement defined in the mechanism parameter definition table 163 incorporated in the mechanical component axis data converter 160. . In the case of the second embodiment, they are set on the memory 110 so that # 1001 to # 1005 can be sequentially allocated.
また、 このように機構パラメ一夕 1 8 0を設定した後、第 3図に示す ような機械を駆動する直交座標系の加工プログラムを入力し数値制御 装置を起動すると、機械構成軸データ変換部 1 6 0は、 直交座標系で出 力された補間デ一夕を、 機構パラメ一夕 1 8 0のデ一夕の内容を機械構 成に合わせて定義した機構パラメ一夕定義テーブル 1 6 3を基にして、 実施の形態 1で説明した通り、 a x l軸と a x 2軸と a x 3軸の各関節 軸長 (L a , L b , L c ) へ、 例えば上記の変換式で変換を行い、 変換 した指令デ一夕を、 各サ一ボ駆動部 2 1 1 , 2 1 2 , 2 1 3に与えるこ とによって、 各軸を駆動して、 最適な位置へ補間制御を行う。 Also, after setting the mechanism parameters 180 as described above, when the machining program of the orthogonal coordinate system for driving the machine as shown in FIG. 3 is input and the numerical controller is started, the machine configuration axis data conversion unit is started. 160 is expressed in the Cartesian coordinate system. In the first embodiment, based on the mechanism parameter overnight definition table 163 which defines the contents of the mechanism parameter night 180 in accordance with the machine configuration, the input interpolation data is described. As described, the joint axis lengths (L a, L b, L c) of the axl axis, ax 2 axis, and ax 3 axis are converted, for example, by the above conversion formula, and the converted command data is By giving it to the servo drive units 211, 212, and 213, each axis is driven to perform interpolation control to an optimal position.
なお上記の説明は、 機械仕様が変更になり、 その機械仕様に合致する 新たな機械構成軸データ変換部 1 6 0を、 機械構成軸データ変換部更新 部 1 7 0にて変更し、 且つメモリ 1 1 0の機構パラメ一夕 1 8 0の格納 部に機構パラメ一夕 1 8 0の数値等が格納されていない、 所謂クリアさ れている場合の例についての説明であるが、 メモリ 1 1 0の機構パラメ 一夕 1 8 0の格納部に機構パラメ一夕 1 8 0の数値等が格納されてい る状態で、画面処理部 1 0 2が動作した場合、機構パラメ一夕定義テ一 ブル 1 6 3に従い第 9図に示すような画面が表示されるので、 ォパレ- 夕は、 数値制御装置に格納されている機構パラメ一夕を確認できる。 例えば、 .第 9図において、 # 10004 L1の寸法が 10.000と表示されて いるが、 数値制御装置が組み込まれる機械構成の L1寸法が 11.000であ る場合、設定入力部 1 0 1によりその個所の寸法を 11.000に変更する。 この場合、 L1 寸法の変更のみで、 機械構成軸データ変換部 1 6 0を更新 する必要がない。 なお、 この変更されたデ一夕は、機構パラメ一夕定義 テーブル 1 6 3に従い機構パラメ一夕 1 8 0の格納部の所定ェリァに 格納される。  In the above explanation, the machine specifications are changed, the new machine component axis data conversion unit 160 that matches the machine specifications is changed by the machine component axis data conversion unit update unit 170, and the This is an example of the case where the value of the mechanism parameter 1800 is not stored in the storage section of the mechanism parameter 1180, so-called cleared. When the screen processing unit 102 is operated while the numerical values of the mechanical parameters 180 are stored in the storage unit of the mechanical parameters 0, 180, the definition table of the mechanical parameters is set. The screen shown in Fig. 9 is displayed according to 163, so that the operator can check the mechanism parameters stored in the numerical controller. For example, in Fig. 9, the dimension of # 10004 L1 is displayed as 10.000, but if the L1 dimension of the mechanical configuration in which the numerical controller is incorporated is 11.000, the setting input section 101 Change the dimensions to 11.000. In this case, it is not necessary to update the machine component axis data converter 160 only by changing the L1 dimension. This changed data is stored in a predetermined area of the storage unit of the mechanism parameter data 180 in accordance with the mechanism parameter data definition table 1663.
従って、この実施の形態 2によれば、 機械仕様が大幅変更になっても、 機械構成軸デ一夕変換部を入れ替え及び機構パラメ一夕のデータ変更 を行うだけで足りるようになり、よって機械仕様に合わせて新たに数値 制御装置を開発する必要がなくなる。 特に、 直交座標系で指令される加 ェプログラムで動作する汎用の数値制御装置において、 前記第 3図に示 すような、機械の送り機構が平行リンク機構化され、 制御軸の送り方向 が直交座標系を構成しない数値制御工作機械を制御したい場合、その機 械仕様に応じた機械構成軸デ一夕変換部に入れ替えるとともに、 機構パ ラメ一夕のデ一夕変更を行うだけで、 汎用の数値制御装置を、 上述のよ うな特殊な機械を制御できる数値制御装置に簡単に変更できる。 Therefore, according to the second embodiment, even if the machine specifications are significantly changed, it is sufficient to simply replace the mechanical component axis data conversion unit and change the data of the mechanism parameters. There is no need to develop a new numerical controller according to the specifications. In particular, the command specified in the rectangular coordinate system In a general-purpose numerical control device operated by a computer program, a numerical control machine tool in which the feed mechanism of the machine is a parallel link mechanism as shown in FIG. 3 and the feed direction of the control axis does not constitute a rectangular coordinate system is used. If you want to control it, simply replace the mechanical configuration axis data conversion unit according to the machine specifications and change the data of the mechanism parameters. It can be easily changed to a numerical control device that can control various machines.
また、 機械構成に合わせた機械構成軸データ変換部に機構パラメ一夕 定義テーブルを一体とし、 機械構成軸データ変換部から取得したパラメ 一夕の設定仕様に従い、 画面表示、 及び設定をできるようにしたので、 機械構成が異なる別の機械構成軸データ変換部を使用する場合に、 設定 仕様に合わせた専用のパラメ一夕画面を作成しなくてよい。  In addition, a mechanism parameter definition table is integrated with the machine configuration axis data conversion unit that matches the machine configuration, and the screen display and settings can be performed according to the parameter settings obtained from the machine configuration axis data conversion unit. Therefore, when using another machine configuration axis data conversion unit with a different machine configuration, there is no need to create a dedicated parameter screen that matches the setting specifications.
以上のようにこの発明によれば、 制御軸の送り方向が直交座標系を構 成しない、 刃物台等の被制御体を駆動するリンク機構を、 直交座標系で 指令される加工プログラムにより数値制御する方法において、前記リン ク機構の関節軸の構成を決める関節軸定義と、 関節軸の各連結点の位置 関係を定義するリンク機構寸法定義と、 原点確立位置での関節軸の寸法 を定義する関節軸長オフセッ ト量とを含む機構パラメ一夕を予め設定 しておき、 直交系で指令されるプログラム座標指令を解析処理するとと もに直交座標系の各軸方向の補間データを生成した後、 前記直交座標系 の各軸方向の補間データを前記機構パラメ一夕に基づいてリンク機構 の関節軸方向の数値制御データへ変換することにより、 前記被制御体を 直交座標系で指令される加工プログラムの指令通りに移動制御するよ うにしたので、 自軸もしくは他軸の駆動源で駆動する軸の長さによって、 制御軸の送り方向が固定されない構造の機械にあっても、 直交座標系で 指令する加工プログラムで運転ができる数値制御方法を得ることがで ぎる。 またこの発明によれば、 制御軸の送り方向が直交座標系を構成しない、 刃物台等の被制御体を駆動するリンク機構を、 直交座標系で指令される 加工プログラムにより数値制御する方法において、前記リンク機構の関 節軸の構成を決める関節軸定義と、 関節軸の各連結点の位置関係を定義 するリンク機構寸法定義と、 原点確立位置での関節軸の寸法を定義する 関節軸長オフセット量と、 駆動装置の回転中心を決める回転中心寸法定 義とを含む機構パラメ一夕を予め設定しておき、直交系で指令されるプ 口グラム座標指令を解析処理するとともに直交座標系の各軸方向の補 間デ一夕を生成した後、 前記直交座標系の各軸方向の補間データを前記 機構パラメ一夕に基づいてリンク機構の関節軸方向の数値制御データ へ変換することにより、 前記被制御体を直交座標系で指令される加工プ ログラムの指令通りに移動制御するようにしたので、 自軸もしくは他軸 の駆動源で駆動する軸の長さによって、 制御軸の送り方向が固定されな い構造の機械にあっても、 直交座標系で指令する加工プログラムで運転 ができる数値制御方法を得ることができ、 特にこの発明によれば刃物台 等を軸方向移動ばかりでなく、 回転移動させることもできるようになる ( またこの発明によれば、 制御軸の送り方向が直交座標系を構成しない、 刃物台等の被制御体を駆動するリンク機構を、 直交座標系で指令される 加工プログラムにより数値制御する装置において、前記リンク機構の関 節軸の構成を決める関節軸定義と、 関節軸の各連結点の位置関係を定義 するリンク機構寸法定義と、 原点確立位置での関節軸の寸法を定義する 関節軸長オフセッ ト量とを含む機構パラメ一夕を記憶する記憶部と、直 交系で指令されるプログラム座標指令を解析処理する解析処理部と、 こ の解析処理部にて解析された解析データに基づいて直交座標系の各軸 方向の補間データを生成する補間処理部と、 この補間処理部にて生成さ れた直交座標系の各軸方向の補間デ一夕を前記機構パラメ一夕に基づ いてリンク機構の関節軸方向の数値制御データへ変換する機械構成軸 データ変換部とを備え、前記被制御体を直交座標系で指令される加工プ ログラムの指令通りに移動制御するようにしたので、 自軸もしくは他軸 の駆動源で駆動する軸の長さによって、 制御軸の送り方向が固定されな い構造の機械にあっても、 直交座標系で指令する加工プログラムで運転 ができる数値制御装置を得ることができる。 As described above, according to the present invention, a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not form a rectangular coordinate system, is numerically controlled by a machining program commanded in the rectangular coordinate system. A joint axis definition that determines the configuration of the joint axis of the link mechanism, a link mechanism dimension definition that defines the positional relationship between the joint points of the joint axis, and a joint axis dimension at the origin establishment position. After setting the mechanism parameters including the joint axis length offset amount in advance, analyze the program coordinate command issued in the orthogonal system, and generate the interpolation data in each axis direction of the orthogonal coordinate system. By converting the interpolation data in each axis direction of the Cartesian coordinate system into numerical control data in the joint axis direction of the link mechanism based on the mechanism parameters, the controlled object is commanded in the Cartesian coordinate system. The movement control is performed as instructed by the machining program, so even if the machine has a structure in which the feed direction of the control axis is not fixed depending on the length of the axis driven by the own axis or the drive source of the other axis, the orthogonal coordinates It is possible to obtain a numerical control method that can be operated with a machining program commanded by the system. According to the present invention, there is provided a method for numerically controlling a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not constitute an orthogonal coordinate system, using a machining program instructed in the orthogonal coordinate system. A joint axis definition that determines the configuration of the joint axis of the link mechanism, a link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and a joint axis length offset that defines the joint axis dimension at the origin establishment position A set of mechanical parameters including the quantity and the definition of the rotation center dimension that determines the rotation center of the drive unit is set in advance, and the program coordinate commands specified in the orthogonal system are analyzed and processed, and each of the orthogonal coordinate systems is analyzed. After generating the interpolation data in the axial direction, the interpolation data in each axis direction of the rectangular coordinate system is converted into numerical control data in the joint axis direction of the link mechanism based on the mechanism parameters. Since the movement of the controlled object is controlled in accordance with the command of the machining program commanded in the orthogonal coordinate system, the feed direction of the control axis depends on the length of the axis driven by the drive source of the own axis or the other axis. Even if the machine does not have a fixed structure, it is possible to obtain a numerical control method that can be operated by a machining program commanded in a rectangular coordinate system. ( Also, according to the present invention, the feed direction of the control axis does not form a rectangular coordinate system, and a link mechanism for driving a controlled object such as a tool post is commanded in a rectangular coordinate system. In a device that is numerically controlled by a machining program, a joint axis definition that determines the configuration of the joint axis of the link mechanism, a link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and an origin A storage unit for storing the mechanical parameters including the joint axis length offset amount defining the joint axis dimensions at the position, and an analysis processing unit for analyzing and processing the program coordinate command issued in the orthogonal system. An interpolation processing unit that generates interpolation data for each axis of the orthogonal coordinate system based on the analysis data analyzed by the analysis processing unit of The interpolation is performed based on the mechanism parameters. And a mechanical component axis data conversion unit for converting the link mechanism into numerical control data in the joint axis direction, and the movement of the controlled object is controlled according to a command of a machining program commanded in a rectangular coordinate system. Numerical control that can be operated with a machining program commanded in the Cartesian coordinate system even if the feed direction of the control axis is not fixed depending on the length of the axis driven by the own axis or another axis drive source A device can be obtained.
またこの発明によれば、 制御軸の送り方向が直交座標系を構成しない、 刃物台等の被制御体を駆動するリンク機構を、 直交座標系で指令される 加工プログラムにより数値制御する装置において、前記リンク 構の関 節軸の構成を決める関節軸定義と、 関節軸の各連結点の位置関係を定義 するリンク機構寸法定義と、 原点確立位置での関節軸の寸法を定義する 関節軸長オフセッ ト量と、 駆動装置の回転中心を決める回転中心寸法定 義とを含む機構パラメータを記憶する記憶部と、直交系で指令されるプ 口グラム座標指令を解析処理する解析処理部と、 この解析処理部にて解 析された解析データに基づいて直交座標系の各軸方向の補間データを 生成する補間処理部と、 この補間処理部にて生成された直交座標系の各 軸方向の補間データを前記機構パラメ一夕に基づいてリンク機構の関 節軸方向の数値制御データへ変換する機械構成軸デ一夕変換部とを備 え、前記被制御体を直交座標系で指令される加工プログラムの指令通り に移動制御するようにしたので、 自軸もしくは他軸の駆動源で駆動する 軸の長さによって、 制御軸の送り方向が固定されない構造の機械にあつ ても、 直交座標系で指令する加工プログラムで運転ができる数値制御装 置を得ることができ、 特にこの発明によれば刃物台等を軸方法移動ばか りでなく、回転移動させることもできるようになる。  According to the present invention, there is provided an apparatus for numerically controlling a link mechanism for driving a controlled object such as a tool post, in which a feed direction of a control axis does not constitute an orthogonal coordinate system, using a machining program instructed in the orthogonal coordinate system. A joint axis definition that determines the configuration of the joint axis of the link structure, a link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and a joint axis length offset that defines the joint axis dimension at the origin establishment position A storage unit that stores mechanical parameters including a rotation amount and a rotation center dimension definition that determines the rotation center of the drive unit; and an analysis processing unit that analyzes and processes a program coordinate command issued in an orthogonal system. An interpolation processing unit that generates interpolation data in each axis direction of the rectangular coordinate system based on the analysis data analyzed by the processing unit; and an interpolation data unit in each axis direction of the rectangular coordinate system generated by the interpolation processing unit. A machine configuration axis data conversion unit for converting the control object into numerical control data in the direction of the joint axis of the link mechanism based on the mechanism parameters, and a machining program commanding the controlled object in a rectangular coordinate system. Movement control is performed according to the command of (1), so even if the feed direction of the control axis is not fixed depending on the length of the axis driven by the own axis or the drive source of the other axis, the command is executed in the Cartesian coordinate system. In particular, according to the present invention, it becomes possible not only to move the tool rest or the like in the axial direction but also to rotate the tool post.
またこの発明によれば、 機構パラメ一夕定義テーブルを含む機械構成 軸データ変換部を機械仕様に合わせて別の変換モジュールへ入れ替え を行う機械構成軸デ一夕変換部更新部を、 備えるとともに、 前記機構パ ラメ一夕定義テーブルの情報を出力するように構成したので、 機械仕様 が大幅変更になっても、 機構パラメ一夕のデ一夕変更及び機械構成軸デ 一夕変換部の入れ替えを行うだけで足りるようになり、よつて機械仕様 に合わせて新たに数値制御装置を開発する必要がなくなる。 産業上の利用可能性 According to the invention, the machine configuration axis data conversion unit including the mechanism parameter overnight definition table is replaced with another conversion module according to the machine specifications. And an output unit for updating the mechanical parameter conversion table, and outputs the information of the mechanism parameter definition table. Therefore, even if the machine specifications change significantly, the mechanism parameter It is only necessary to change the data and change the machine configuration axis data and data conversion unit, so that it is not necessary to develop a new numerical controller according to the machine specifications. Industrial applicability
以上のようにこの発明に係る数値制御方法及びその装置は、 自軸もし くは他軸のモー夕で駆動する軸の長さによって制御軸の送り方向が固 定されない数値制御工作機械、 例えば機械の送り機構が平行リンク機構 化され、 制御軸の送り方向が直交座標系を構成しない数値制御工作機械 を制御する数値制御方法及びその装置として用いられるのに適してい る。  As described above, the numerical control method and apparatus according to the present invention provide a numerically controlled machine tool, for example, a machine, in which the feed direction of the control axis is not fixed by the length of its own axis or the axis of the other axis driven by the motor. This feed mechanism is a parallel link mechanism, and is suitable for being used as a numerical control method and a device for controlling a numerically controlled machine tool in which the feed direction of the control axis does not form a rectangular coordinate system.

Claims

請 求 の 範 囲 The scope of the claims
1 . 制御軸の送り方向が直交座標系を構成しない、 刃物台等の被制御体 を駆動するリンク機構を、 直交座標系で指令される加工プログラムによ り数値制御する方法において、前記リンク機構の関節軸の構成を決める 関節軸定義と、 関節軸の各連結点の位置関係を定義するリンク機構寸法 定義と、 原点確立位置での関節軸の寸法を定義する関節軸長オフセッ ト 量とを含む機構パラメータを予め設定しておき、 直交系で指令されるプ ログラム座標指令を解析処理するとともに直交座標系の各軸方向の補 間データを生成した後、 前記直交座標系の各軸方向の補間データを前記 機構パラメ一夕に基づいてリンク機構の関節軸方向の数値制御デ一夕 へ変換することにより、 前記被制御体を直交座標系で指令される加工プ ログラムの指令通りに移動制御することを特徴とする数値制御方法。1. A method of numerically controlling a link mechanism for driving a controlled object such as a turret, in which a feed direction of a control axis does not form a rectangular coordinate system, by a machining program commanded by a rectangular coordinate system, The joint axis definition, the link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, and the joint axis length offset amount that defines the joint axis dimension at the origin establishment position After pre-setting the mechanism parameters including the above, analyzing the program coordinate command instructed in the orthogonal system and generating interpolation data in each axis direction of the orthogonal coordinate system, By converting the interpolation data into a numerical control data in the direction of the joint axis of the link mechanism based on the mechanism parameters, the controlled object can be converted in accordance with a machining program command in a rectangular coordinate system. A numerical control method comprising controlling movement.
2 . 制御軸の送り方向が直交座標系を構成しない、 刃物台等の被制御体 を駆動するリンク機構を、 直交座標系で指令される加工プログラムによ り数値制御する方法において、前記リンク機構の関節軸の構成を決める 関節軸定義と、 関節軸の各連結点の位置関係を定義するリンク機構寸法 定義と、 原点確立位置での関節軸の寸法を定義する関節軸長オフセッ ト 量と、 駆動装置の回転中心を決める回転中心寸法定義とを含む機構パラ メ一夕を予め設定しておき、直交系で指令されるプログラム座標指令を 解析処理するとともに直交座標系の各軸方向の補間データを生成した 後、 前記直交座標系の各軸方向の補間データを前記機構パラメ一夕に基 づいてリンク機構の関節軸方向の数値制御データへ変換することによ り、 前記被制御体を直交座標系で指令される加工プログラムの指令通り に移動制御することを特徴とする数値制御方法。 2. A method of numerically controlling a link mechanism for driving a controlled object such as a turret, in which a feed direction of a control axis does not form a rectangular coordinate system, by a machining program commanded in a rectangular coordinate system, The joint axis definition, the link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, the joint axis length offset amount that defines the joint axis dimension at the origin establishment position, A set of mechanical parameters including the definition of the rotation center dimension that determines the rotation center of the drive device is set in advance, and the program coordinate commands specified by the orthogonal system are analyzed and interpolated in each direction of the orthogonal coordinate system. Then, the controlled object is directly converted by converting the interpolation data in each axis direction of the orthogonal coordinate system into numerical control data in the joint axis direction of the link mechanism based on the mechanism parameters. A numerical control method characterized by performing movement control according to a machining program command in a cross coordinate system.
3 . 制御軸の送り方向が直交座標系を構成しない、 刃物台等の被制御体 を駆動するリンク機構を、 直交座標系で指令される加工プログラムによ •り数値制御する装置において、前記リンク機構め関節軸の構成を決める 関節軸定義と、 関節軸の各連結点の位置関係を定義するリンク機構寸法 定義と、 原点確立位置での関節軸の寸法を定義する関節軸長オフセッ ト 量とを含む機構パラメ一夕を記憶する記憶部と、直交系で指令されるプ ログラム座標指令を解析処理する解析処理部と、 この解析処理部にて解 析された解析データに基づ.いて直交座標系の各軸方向の補間デ一夕を 生成する補間処理部と、 この補間処理部にて生成された直交座標系の各 軸方向の補間データを前記機構パラメ一夕に基づいてリンク機構の関 節軸方向の数値制御データへ変換する機械構成軸データ変換部とを備 え、前記被制御体を直交座標系で指令される加工プログラムの指令通り に移動制御することを特徴とする数値制御装置。 3. Controlled object such as a turret, in which the feed direction of the control axis does not form a rectangular coordinate system In a device that numerically controls a link mechanism that drives a joint by a machining program commanded in a rectangular coordinate system, the joint axis definition that determines the configuration of the link mechanism and the joint axis, and the positional relationship between the joint points of the joint axis Linkage dimensions that define the parameters and a joint axis length offset amount that defines the dimensions of the joint axis at the origin establishment position, and a storage unit that stores the mechanism parameters, and the program coordinates commanded by the orthogonal system An analysis processing unit that analyzes the command, an interpolation processing unit that generates interpolation data in each axis direction of the orthogonal coordinate system based on the analysis data analyzed by the analysis processing unit, and an interpolation processing A mechanical component axis data conversion unit that converts the interpolation data in each axis direction of the rectangular coordinate system generated by the unit into numerical control data in the joint axis direction of the link mechanism based on the mechanism parameters. The controlled object Numerical control device, characterized in that the movement control as commanded in the machining program to be commanded by the intersection coordinate system.
4 . 制御軸の送り方向が直交座標系を構成しない、 刃物台等の被制御体 を駆動するリンク機構を、 直交座標系で指令される加工プログラムによ り数値制御する装置において、前記リンク機構の関節軸の構成を決める 関節軸定義と、 関節軸の各連結点の位置関係を定義するリンク機構寸法 定義と、 原点確立位置での関節軸の寸法を定義する関節軸長オフセッ ト 量と、 駆動装置の回転中心を決める回転中心寸法定義とを含む機構パラ メ一夕を記憶する記憶部と、直交系で指令されるプログラム座標指令を 解析処理する解析処理部と、 この解析処理部にて解析された解析データ に基づいて直交座標系の各軸方向の補間データを生成する補間処理部 と、 この補間処理部にて生成された直交座標系の各軸方向の補間デ一夕 を前記機構パラメ一夕に基づいてリンク機構の関節軸方向の数値制御 データへ変換する機械構成軸データ変換部とを備え、前記被制御体を直 交座標系で指令される加工プログラムの指令通りに移動制御すること を特徴とする数値制御装置。 4. An apparatus for numerically controlling a link mechanism for driving a controlled object such as a turret, in which a feed direction of a control axis does not form a rectangular coordinate system, by a machining program commanded in a rectangular coordinate system, The joint axis definition, the link mechanism dimension definition that defines the positional relationship between each joint point of the joint axis, the joint axis length offset amount that defines the joint axis dimension at the origin establishment position, A storage unit for storing a set of mechanical parameters including a rotation center dimension definition for determining the rotation center of the drive unit, an analysis processing unit for analyzing and processing a program coordinate command instructed by an orthogonal system; An interpolation processing unit that generates interpolation data in each axis direction of a rectangular coordinate system based on the analyzed data; and an interpolation unit that generates interpolation data in each axis direction of the rectangular coordinate system generated by the interpolation processing unit. Parameter A mechanical component axis data conversion unit for converting into numerical control data in the direction of the joint axis of the link mechanism based on the evening, and controlling the movement of the controlled object as instructed by a machining program instructed in a Cartesian coordinate system. Numerical control device characterized by the above.
5 . 前記機械構成軸データ変換部には実際に使用する機構パラメ一夕を 定義する機構パラメ一夕定義テーブルを含むとともに、 この機械構成軸 データ変換部を機械仕様に合わせて別の変換モジュールへ入れ替えを 行う機械構成軸データ変換部更新部を、 備え、 且つ所要時にこれらの情 報を出力することを特徴とする請求の範囲第 3項または第 4項に記載 の数値制御装置。 5. The machine component axis data conversion unit includes a mechanism parameter definition table that defines the mechanism parameters actually used, and the machine component axis data conversion unit is converted to another conversion module according to the machine specifications. 5. The numerical control device according to claim 3, further comprising a machine component axis data conversion unit updating unit that performs replacement, and outputting such information when required.
PCT/JP2002/011295 2002-10-30 2002-10-30 Numerical control method and device therefor WO2004040384A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/011295 WO2004040384A1 (en) 2002-10-30 2002-10-30 Numerical control method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/011295 WO2004040384A1 (en) 2002-10-30 2002-10-30 Numerical control method and device therefor

Publications (1)

Publication Number Publication Date
WO2004040384A1 true WO2004040384A1 (en) 2004-05-13

Family

ID=32260013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011295 WO2004040384A1 (en) 2002-10-30 2002-10-30 Numerical control method and device therefor

Country Status (1)

Country Link
WO (1) WO2004040384A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375432A (en) * 2010-07-28 2012-03-14 发那科株式会社 Numerical Control Device For Multi-axis Processing Machine Used For Processing Inclined Plane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850504A (en) * 1994-08-05 1996-02-20 Yaskawa Electric Corp Numerical controller for performing speed control of polar coordinate interpolation
JPH0863210A (en) * 1994-08-18 1996-03-08 Kobe Steel Ltd Method and device for calibrating manipulator
JPH11320302A (en) * 1998-05-16 1999-11-24 Yamage Techno:Kk Positionning for table
JP2000176779A (en) * 1998-12-07 2000-06-27 Yamage Techno:Kk Positioning method for moving section held by link structure
JP2002178237A (en) * 2000-12-14 2002-06-25 Toyoda Mach Works Ltd Control method for parallel link mechanism
JP2002263973A (en) * 2001-03-14 2002-09-17 Toyoda Mach Works Ltd Machine tool
JP2002273676A (en) * 2001-03-14 2002-09-25 Toyoda Mach Works Ltd Control method for machine tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850504A (en) * 1994-08-05 1996-02-20 Yaskawa Electric Corp Numerical controller for performing speed control of polar coordinate interpolation
JPH0863210A (en) * 1994-08-18 1996-03-08 Kobe Steel Ltd Method and device for calibrating manipulator
JPH11320302A (en) * 1998-05-16 1999-11-24 Yamage Techno:Kk Positionning for table
JP2000176779A (en) * 1998-12-07 2000-06-27 Yamage Techno:Kk Positioning method for moving section held by link structure
JP2002178237A (en) * 2000-12-14 2002-06-25 Toyoda Mach Works Ltd Control method for parallel link mechanism
JP2002263973A (en) * 2001-03-14 2002-09-17 Toyoda Mach Works Ltd Machine tool
JP2002273676A (en) * 2001-03-14 2002-09-25 Toyoda Mach Works Ltd Control method for machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102375432A (en) * 2010-07-28 2012-03-14 发那科株式会社 Numerical Control Device For Multi-axis Processing Machine Used For Processing Inclined Plane

Similar Documents

Publication Publication Date Title
JP2013134786A (en) Execution of numerical control program by robot
US20060113392A1 (en) Laser processing robot system and method for controlling the same
EP1308809A2 (en) Synchronization control method and synchronization control device
CN103348295B (en) Numerical control device
US20110238204A1 (en) Numerical control device, method of controlling the same, and system program therefor
CN104635624A (en) Control method and control system for controlling numerical control system of four-axis processing equipment
JP7022260B1 (en) Numerical control system
JPH03196310A (en) Display system for numerical controller
JPH09212227A (en) Method for setting operation information of machine controlled and driven by numerical controller
JP3959482B2 (en) Numerical control method and apparatus
US6999844B2 (en) Numerical controller
WO2004040384A1 (en) Numerical control method and device therefor
US4766546A (en) Numerically controlled apparatus including functions of synchronous-simultaneous transaction and independent-simultaneous translation
Xu et al. Development of a G-code free, STEP-compliant CNC lathe
CN114365048B (en) Numerical control device
US20020193906A1 (en) Method for setting a moving position in a machine tool
JP4606658B2 (en) Machine tool, numerical control device and control method thereof
JP7495499B2 (en) Numerical Control System
Li et al. Reconfigurable mechanisms for application control (RMAC): applications
JPH05274021A (en) Machining system
WO2023053349A1 (en) Numerical control device
WO2021187487A1 (en) Program analysis device and control system
JP7121221B1 (en) Numerical controller and numerical control system
US20240160181A1 (en) Motion-path generation device, numerical control device, numerical control system, and non-transitory computer-readable medium storing computer program
US20230249337A1 (en) Numerical control system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP