WO2004040122A1 - High flow rate fuel valve and fuel supply pump with the valve - Google Patents

High flow rate fuel valve and fuel supply pump with the valve Download PDF

Info

Publication number
WO2004040122A1
WO2004040122A1 PCT/JP2003/013687 JP0313687W WO2004040122A1 WO 2004040122 A1 WO2004040122 A1 WO 2004040122A1 JP 0313687 W JP0313687 W JP 0313687W WO 2004040122 A1 WO2004040122 A1 WO 2004040122A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
valve
valve body
flow rate
suction
Prior art date
Application number
PCT/JP2003/013687
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuo Aoki
Kazuya Kubota
Takeshi Terada
Takeshi Ichinose
Original Assignee
Bosch Automotive Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002313763A external-priority patent/JP2004150290A/en
Priority claimed from JP2002381008A external-priority patent/JP2004211580A/en
Application filed by Bosch Automotive Systems Corporation filed Critical Bosch Automotive Systems Corporation
Priority to AU2003275676A priority Critical patent/AU2003275676A1/en
Priority to EP03758922A priority patent/EP1557559A4/en
Publication of WO2004040122A1 publication Critical patent/WO2004040122A1/en
Priority to US11/018,218 priority patent/US20050106035A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/464Inlet valves of the check valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/04Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/40Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the present invention relates to a large flow rate type fuel valve and a fuel supply pump provided with the same.
  • large-flow type fuel suitable for the fuel supply pump used in the Accumulated Fuel Injection System (APCRS), which uses a pressurizing piston to boost large-flow fuel.
  • APCRS Accumulated Fuel Injection System
  • the present invention relates to a valve and a fuel supply pump provided with the valve.
  • CRS Common Rail System
  • accumulators common rails
  • the first accumulator 236 in charge of the main injection and A pressure-accumulation type fuel injection device has been proposed, which includes second pressure accumulators 278 in charge of pilot injection, and switches between these pressure accumulators 23.6 and 278 by a switching device 286 to perform fuel injection.
  • Japanese Patent No. 2885076 discloses a booster piston and a cylinder for boosting fuel between an accumulator and a fuel injection valve in order to obtain an optimum injection pressure for engine performance.
  • An accumulator type fuel injection device provided with a chamber has been proposed. More specifically, as shown in FIG. 21, the pressure accumulator 395, the fuel supply oil passage 360, the control oil passage 361, the fuel injection control switching valve 362, and the booster piston 378 are housed therein.
  • a fuel injection valve having a fuel swirling member and limiting an angle formed by a fuel swirling flow path and an annular flow path is disclosed. Proposed. More specifically, the fuel, which has been given a swirling force by the fuel swirling member on the upstream side of the valve seat, flows between the distal end of the valve body and the valve seat toward the fuel injection hole, and the fuel flow is swirled. There is disclosed a fuel injection valve in which a hollow portion is formed in a flow path between a valve body tip and a fuel injection hole.
  • Japanese Patent Application Laid-Open No. H10-47208 proposes a fuel injection valve which gives swirling energy to a fuel flow to inject the fuel flow as shown in FIG. More specifically, the number of the outer peripheral surface of the revolving body, the flow path portion, and the number of the revolving grooves is changed from four to eight, and each revolving groove is eccentric with a certain distance from the valve shaft.
  • a fuel injection valve is disclosed in which a side surface of a swirl groove away from a valve shaft is tangentially connected to an outer periphery of an annular groove, and opposed groove side surfaces of the swirl groove are formed parallel to each other.
  • the accumulator type fuel injection device disclosed in Japanese Patent Application Laid-Open No. 6-93939 needs to be provided with two types of accumulators and a switching device therefor, which makes the accumulator type fuel injection device complicated. There was a problem that it would be larger and larger. Also, in such an accumulator type fuel injection device, when the cam and the plunger of the fuel supply pump are driven at a high speed, it is difficult for the fuel to flow quickly to the fuel injection valve, and the flow rate is restricted. There was a problem that the fuel at the flow rate could not be sufficiently pressurized.
  • a low pressure piston is provided between the pressure accumulator and the fuel injection valve to perform multi-stage pressure injection.
  • a pressurized pump for supplying high-pressure fuel to the accumulator has been proposed.
  • the pressurized pump is a conventional pressurized pump for the accumulator type fuel injection device, and a large amount of pressure is supplied to the booster piston. No mention is made of fuel injection valves suitable for pressurized pumps intended to supply high pressure fuel.
  • the ratio of the length of the injection hole to the diameter of the injection hole is determined. Within a predetermined range It was difficult to use it as a high-flow fuel valve because of its fundamentally different structure, such as restrictions and revolving structures.
  • the inventors of the present invention have conducted intensive studies, and as a result, provided a plurality of suction holes and arranged the suction holes non-radially with respect to the suction chamber, so that fuel can be quickly and quantitatively passed. It has been found that even when the cam and the plunger are driven at high speed, a large amount of fuel oil can be sufficiently pressurized.
  • the fuel and the plunger of the fuel supply pump are driven at a high speed to cope with the APCRS, and even when the fuel discharge amount is large, the fuel is quickly supplied to the pressurizing chamber of the high-pressure pump. It is an object of the present invention to provide a fuel supply pump capable of sufficiently pressurizing the fuel through a fuel supply pump, and a high flow rate fuel valve suitable for the pump. Disclosure of the invention
  • a valve body a valve body operably mounted inside the valve body, a suction chamber provided inside the valve body, a suction hole, and a part of the valve body and the valve body are provided.
  • a high flow rate fuel valve comprising: a seat portion that is in contact with each other; and a plurality of suction holes, wherein a plurality of suction holes are provided, and the suction holes are arranged non-radially with respect to the suction chamber.
  • the horizontal cross-sectional shape of the suction chamber is substantially circular and the suction holes are arranged along the tangential direction of the suction chamber.
  • the suction hole so as to be vertically inclined with respect to the suction chamber.
  • the fuel can be introduced into the suction chamber as a more controlled one-way rotational flow by utilizing gravity. Further, the mutual collision of the fuel flows from a plurality of tangential directions is reduced, and the fuel flows can be easily combined as a unidirectional rotational flow.
  • the diameter of the suction hole is set to a value within a range of 2 to 12 mm.
  • the seat diameter of the valve body is set to a value of 8 mm or more.
  • a fuel with a flow rate per unit time of about 500 to 1,500 liters Z hours can be easily secured, and a large amount of high-pressure processing can be performed in the fuel supply pump. Becomes possible.
  • a pressure accumulating fuel injection device using a pressure-intensifying piston connected to such a fuel supply pump it becomes easy to achieve an ultra-high pressure condition of 1 SOMPa or more.
  • the passage area of the fuel in the suction hole be larger than the passage area of the fuel in the seat portion.
  • the fuel can be introduced into the suction chamber without largely changing the flow direction, and can be easily passed. Therefore, the residence time in the suction chamber can be shortened. Therefore, even high flow rate fuel can be quickly and quantitatively passed through the high flow rate fuel valve.
  • FIG. 7 Another aspect of the present invention is a fuel supply pump provided with a fuel intake valve and a fuel discharge valve, wherein the fuel intake valve is operably mounted inside the valve body and the inside thereof.
  • a fuel supply pump characterized in that the suction hole is a non-radial arrangement with respect to the suction chamber for a large flow rate fuel / lube.
  • the suction hole is a non-radial arrangement with respect to the suction chamber for a large flow rate fuel / lube.
  • a fuel having a flow rate per unit time of about 500 to 1,500 liters Z hours is pressurized to a value of 50 MPa or more.
  • FIGURES 1 (a) and 1 (b) are cross-sectional views of the high flow rate fuel valve of the present invention.
  • FIG. 2 is a cross-sectional view showing a mounted state of the high flow rate fuel valve of the present invention.
  • FIG. 3 is a sectional view of another high flow rate fuel valve according to the present invention.
  • FIG. 4 is a diagram provided to explain a large flow valve provided with a second valve spring (spring).
  • FIG. 5 is a diagram provided to explain a large flow valve provided with a second valve spring (plate panel).
  • FIG. 6 is a diagram provided to explain a large flow valve using a non-linear spring.
  • FIG. 7 is a characteristic diagram showing a relationship between a lift amount and a flow rate per unit time in a high flow rate fuel pulp.
  • FIGS. 8A and 8B are cross-sectional views of a conventional fuel valve.
  • FIGS. 9A and 9B are sectional views of another conventional fuel valve.
  • FIGS. 10 (a) and (b) are cross-sectional views for explaining the throttle position in a conventional fuel valve.
  • FIGS. 11 (a) and 11 (b) are cross-sectional views for explaining the throttle position in another conventional fuel pulp.
  • FIGS. 12 (a) and 12 (b) are cross-sectional views for explaining the throttle position in the high flow rate fuel valve of the present invention.
  • FIG. 13 is a cross-sectional view of a fuel supply pump provided with a high flow rate fuel valve as a fuel intake valve or a fuel discharge valve.
  • FIG. 14 is a cross-sectional view of an IO valve including a fuel intake valve and a fuel discharge valve.
  • FIG. 15 is a diagram provided to explain a system of a pressure accumulating fuel injection device (APCRS) of a piston pressure increasing system.
  • APCRS pressure accumulating fuel injection device
  • FIG. 16 is a diagram illustrating the operation of the proportional control valve (FMU) attached to the fuel supply pump.
  • FMU proportional control valve
  • FIG. 17 is a diagram provided to explain the structure of a pressure accumulating fuel injection device (APCRS) of the piston pressure increasing type.
  • FIG. 18 is a diagram conceptually showing a method of depressurizing fuel using a pressure accumulating fuel injection device (APCRS) of a piston pressure increasing type.
  • FIG. 19 is a diagram provided to explain a high-pressure fuel injection timing chart.
  • FIG. 20 is a diagram provided to explain the structure of a conventional pressure-accumulation fuel injection device.
  • FIG. 21 is a diagram provided to explain the structure of another conventional accumulator type fuel injection device.
  • FIG. 22 is a diagram provided to explain the structure of a conventional fuel injection device.
  • FIG. 23 is a diagram provided to explain the structure of another conventional fuel injection device. BEST MODE FOR CARRYING OUT THE INVENTION
  • a valve body 19, a valve body 20 operably mounted therein, and an inside of the valve body 19 are provided.
  • a high flow rate fuel valve comprising: a suction chamber 19 a provided in the fuel cell; a suction hole 19 c; and a seat 23 in which a part of the valve body 20 and a part of the valve body 19 are in contact with each other.
  • the shape of the valve body is not particularly limited as long as the valve body holds the valve body and the valve body can perform a predetermined operation.For example, as shown in FIG. It is preferably in the form of a cap that is open to the outside.
  • the outer shape of the valve main body 19 be substantially cylindrical, and that the valve main body 19 be substantially smooth without a projection or a flange.
  • a collar portion 33 is provided at the upper portion of the valve body 19 and the Although the position of the main body was fixed, there were problems that the manufacture of the valve main body became difficult and the cost increased. Therefore, as shown in FIG. 2, by adjusting the inner diameter of the valve holding portion 71 and the outer diameter of the valve 73, the valve is centered, and the valve body is not provided with a valve portion or the like, so that the valve is not provided. A problem in manufacturing the main body can be solved. Further, it is preferable that a valve body to be described later is attached to the valve body, and that the valve body be operable inside. That is, it is preferable to configure a poppet type valve structure.
  • the method of driving the valve body attached to the valve body is not particularly limited.
  • a valve provided above the valve body 19 is provided. It is also preferable to use a spring 21 for mechanical drive, or to employ an electromagnetic drive method.
  • the seat diameter of the valve body is set to a value of 8 mm or more.
  • the reason for this is that, with this configuration, for example, a twisting rate of about 500 to 1,500 liters per unit time can be ensured, and the feed rate to the fuel supply pump can be increased. By doing so, high-pressure processing of a large amount of fuel becomes possible. Further, even when the fuel supply pump is connected to a pressure-accumulation type fuel injection device using a low pressure piston, it is easy to achieve ultra-high pressure injection of 18 OMPa or more. It is because it becomes.
  • the seat diameter of the valve body becomes excessively large, the large flow rate fuel valve itself becomes large, making it difficult to install it and operate the valve body with high accuracy.
  • the target strength may be reduced.
  • valve diameter of the valve element it is more preferable to set the valve diameter of the valve element to a value in the range of 8 to 15 mm, and it is more preferable to set the valve diameter to a value in the range of 8 to 12 mm.
  • the first embodiment is characterized in that a plurality of suction holes 19c are provided. That is, an extremely large amount of fuel can be sucked into the suction chamber through the plurality of suction holes. Therefore, the number of such suction holes may be two or more, but is more preferably a value in the range of 3 to 5, and more preferably 3 or 4.
  • the plurality of suction holes 19c are non-radial with respect to the suction chamber 19a, that is, in the suction chamber 19a. It is characterized in that the flow direction of the fuel flowing from the suction hole 19c is shifted from the imaginary line toward the center.
  • the reason for this is that fuel can be introduced into the suction chamber through a plurality of non-radially arranged suction holes without changing the flow direction.
  • fuel flows in from multiple directions, since fuel flows in from a non-radial direction, mutual collision in the suction chamber can be reduced.
  • the horizontal cross-sectional shape of the suction chamber 19a is substantially circular, and the suction holes 19c are arranged along the tangential direction of the suction chamber 19a. This is preferred.
  • the reason for this is that, by arranging the suction holes in this way, fuel can be introduced into the suction chamber as a unidirectional rotational flow.
  • fuel flows in from multiple directions, it flows in the tangential direction, which reduces collisions in the suction chamber and facilitates the formation of a unidirectional rotating flow.
  • the arrangement of the suction holes does not necessarily have to be along the tangential direction. For example, if the arrangement is within ⁇ 20 ° with respect to the tangential direction, it is acceptable.
  • the suction holes 19c are arranged obliquely with respect to the suction chamber 19a.
  • the fuel flow from the suction hole is arranged obliquely at an angle () with respect to the horizontal plane in which the fuel flows into the suction chamber.
  • the suction holes 19c By arranging the suction holes in such an inclined manner, the mutual collision of the fuel flows from a plurality of tangential directions is reduced, and furthermore, the fuel flows can be easily combined as a unidirectional rotational flow.
  • the suction hole 19c When the suction hole 19c is tilted vertically with respect to the suction chamber 19a in this way, as shown in FIG. 3, the tilt angle ( ⁇ ) with respect to the horizontal direction is in the range of 1 to 45 °. Value within Door is preferable.
  • the reason for this is that if the angle of inclination of the suction hole is less than 1 °, the effect of tilting may not be exhibited. On the other hand, if the angle of inclination of the suction hole exceeds 45 °, conversely, the inflow of fuel into the suction chamber may be reduced. Therefore, it is more preferable to set the inclination angle of the suction hole to a value in the range of 5 to 30 °, and more preferably to a value in the range of 10 to 25 °.
  • the diameter of the suction hole is preferably set to a value within the range of 2 to 12 mm.
  • the reason for this is that if the diameter of the suction hole is less than 2 mm, for example, it is not possible to secure fuel with a flow rate per unit time of about 500 to 1,500 liter hours, This is because it may be difficult to perform a large amount of high pressure processing in the fuel supply pump. Therefore, the booster screw connected to the fuel supply pump This is because it becomes difficult to achieve an ultra-high pressure condition of, for example, 180 MPa or more in a pressure-accumulation type fuel injection device using a ton.
  • the mechanical strength of the suction hole may be reduced or the durability may be reduced.
  • the diameter of the suction hole is more preferably set to a value within a range of 2.5 to 11.5 mm, and further preferably set to a value within a range of 3 to 11 mm.
  • the area of the suction holes (the sum of the opening areas), that is, the fuel passage area in the plurality of suction holes is larger than the fuel passage area in the sheet portion.
  • the reason for this is that by considering the passage area of the fuel in the plurality of suction holes, it is possible to introduce fuel into the suction chamber without significantly changing the flow direction, and to shorten the residence time in the suction chamber. This is because it can be done. Therefore, even a large amount of fuel can be quickly and quantitatively passed through such a high-flow fuel valve.
  • the area of one suction hole is specifically set to a value within a range of 15 to 250 mm2.
  • the reason for this is that if the area of the suction hole becomes less than 15 mm2, for example, it is necessary to secure fuel with a flow rate per unit time of about 500 to 1,500 liters per hour. This is because it may be difficult to carry out a large amount of high pressure processing in the fuel supply pump. Therefore, in the pressure accumulating type fuel injection device using the pressure-intensifying piston connected to the fuel supply pump in some cases, it may be difficult to achieve an ultra-high pressure condition of, for example, 180 MPa or more.
  • the mechanical strength of the suction hole may be reduced and the durability may be reduced.
  • the area of the suction hole is preferably set to a value in the range of 20 to 20 Omm2, and more preferably to a value in the range of 25 to 15 Omm2.
  • the area of one suction hole means the area of one opening 19b opened toward the suction chamber 19a in the plurality of suction holes 19c shown in FIG. 1 (a). .
  • a part of the valve body 20 and a part of the valve body 19 are in contact with each other, and a system as a passage point for accurately controlling the amount of fuel passage is provided. It is characterized in that a separate part 23 is provided.
  • the valve element is moved up and down by a valve spring or the like, and the valve element and a part of the valve body come into contact with each other, so that such a seat is formed. This is because it can be done.
  • the passage area of the fuel in the seat portion is smaller than the area of the suction hole.
  • valve spring (first spring) 21 for driving the valve body 20 is provided above the valve body 19.
  • valve body can be moved up and down by the valve spring, so that the valve body and the valve body can be easily brought into contact with each other, and a seating shock when the valve body is lifted can be absorbed. That's why.
  • a second valve spring 24 together with the first valve spring (first spring) 21. That is, together with the first spring 21 having a relatively low panel constant, which is provided so as to be in contact with the valve body 20 from the initial stage of lifting the valve body 20, the valve body 20 is lifted from the middle of the lift. It is preferable to provide a second valve spring 24 having a relatively high panel constant so as to be in contact with the second valve spring.
  • the valve body in the early stage of valve opening, the valve body can be lifted easily, the efficiency of fuel intake to the plunger can be improved, and as the valve opening progresses.
  • the second valve spring reduces the lift speed that rises as a result, and the impact force during a full lift can be reduced. Therefore, even with a high-flow fuel pulp, it is possible to prevent a decrease in durability and strength and to reduce an impact sound when the valve body is seated.
  • the second valve spring may be a spring 24 as shown in FIG. 4 or a plate panel 25 as shown in FIGS. 5 (a) to 5 (c).
  • the spring constant can be made variable by forming a conical spring and increasing the diameter of the spring steel itself as it moves downward, so that the number of valve springs can be changed. It is possible to obtain the same effect as providing the first and second valve springs without increasing the number.
  • the flow rate of fuel per unit time is 500 to 1 with respect to the fuel passage amount (flow velocity) when the lift amount of the valve body is approximately 1 mm. , Preferably within a range of 500 liters / hour, more preferably within a range of 800 to 1,300 liters time.
  • the high flow rate fuel valve of the first embodiment more preferably has a characteristic curve shown in FIG. That is, in FIG. 7, the horizontal axis shows the valve lift (relative value), and the vertical axis shows the fuel flow rate per unit time, that is, the flow velocity (relative value).
  • line A corresponds to a conventional fuel valve, and as shown in FIG. 8, the seat diameter is 7.6 mm, and three suction holes 19 c are provided in the circular suction chamber 1.
  • the fuel valve 32 has a configuration radially arranged along the outer circumference of the fuel cell 8 (type 1).
  • line B corresponds to a modified example in which the seat diameter of the conventional fuel valve is increased, and as shown in FIG. 9, the seat diameter is 1 Omm, and three suction holes 19 c
  • the fuel valve 34 has a configuration arranged radially along the outer periphery of the chamber 18 (type 2).
  • the line C corresponds to an example of the high flow rate fuel valve of the present invention.
  • the seat diameter is 1 Omm, and the three suction holes 19 c force circular.
  • FIGS. 10 (a) and (b) to Figures 12 (a) and (b) show the throttle position determined from the fuel velocity distribution at each fuel valve (lift small and large).
  • FIGS. 10 (a) and (b) are diagrams showing the throttle position in the conventional fuel valve shown in FIG. 8, and are diagrams corresponding to the type 1 valve described above.
  • FIGS. 11 (a) and 11 (b) are diagrams showing throttle positions in a modification of the conventional fuel valve shown in FIG. 9, and correspond to the type 2 valve described above.
  • FIGS. 12 (a) and 12 (b) are views showing the throttle position in the high flow rate fuel valve of the present invention shown in FIG. 1, and correspond to the above-mentioned type 3 valve.
  • the throttle position is confirmed near the seat portion regardless of the lift amount.
  • the flow characteristics as shown by line A in FIG. 7, it has been confirmed that a predetermined flow rate cannot be obtained even if the lift is increased due to insufficient sheet diameter.
  • the suction hole is arranged tangentially and the sheet diameter is enlarged, so that the throttle position exists only in the seat part regardless of the lift amount, and compared to type 2 However, it has been confirmed that the restriction of the suction chamber 18 has been improved.
  • the second embodiment is, as exemplified in FIG. 13, a fuel supply pump 50 provided with a fuel intake valve 73 and a fuel discharge valve.
  • a fuel supply pump 50 characterized by being a high-flow fuel valve radially arranged.
  • the fuel supply pump 50 will be specifically described by dividing it into components and the like.
  • the second embodiment is characterized in that the large flow rate fuel valve described in the first embodiment is used as a fuel intake valve. Therefore, it is preferable to configure an IO valve 70 including the fuel intake valve 73 and the fuel discharge valve 60 as shown in FIG.
  • the flow rate per unit time is applied to the fuel supply pump. Even fuel with a volume of about 500 to 1,500 liters Z hours can be supplied extremely accurately and quantitatively.
  • the form of the fuel supply pump is not particularly limited, for example, it is preferable to include a fuel supply pump 50 as shown in FIG. That is, the fuel supply pump includes, for example, a pump housing 52, a barrel (cylinder) 53, a plunger 54, a fuel compression chamber 74, a tappet 58, and a cam 60. It is preferred that
  • a plunger 54 slides inside the barrel 53 housed in the pump housing 52 to form a fuel compression chamber 74 for pressurizing the fuel.
  • the plunger 54 includes a cam 6. It is preferable that it is configured to reciprocate in response to zero rotational movement. Therefore, the fuel pumped from the feed pump 64 can be efficiently pressurized to high-pressure fuel by the plunger 54 in the fuel compression chamber 74.
  • two sets of barrels (cylinders) 53 and plungers 54 are provided in the pump housing 52. In order to achieve this, it is also preferable to increase the number to two or more sets.
  • APCRS Accumulator type fuel injection system
  • the fuel supply pump of the second embodiment is a part of a pressure accumulating fuel injection device of the biston pressure increasing type having the following configuration.
  • the fuel supply pump 103 is composed of a fuel tank 102 and a feed pump for supplying the fuel of the fuel tank 102.
  • Fuel tank (Low pressure pump) 104, Fuel supply pump (High pressure pump) 103, Common rail as accumulator for accumulating fuel pumped from the fuel supply pump 103 And a piston pressure increasing device 108 and a fuel injection device 110.
  • Fuel tank (Low pressure pump) 104, Fuel supply pump (High pressure pump) 103, Common rail as accumulator for accumulating fuel pumped from the fuel supply pump 103 And a piston pressure increasing device 108 and a fuel injection device 110.
  • the volume and configuration of the fuel tank 102 illustrated in FIG. 15 take into account, for example, that a fuel flow rate of about 500 to 1,500 liters per hour per unit time can be circulated. It is preferable to determine
  • the feed pump 104 pumps the fuel (light oil) in the fuel tank 102 to the fuel supply pump 103 as shown in FIG. 15, and the feed pump 104 and the fuel supply It is preferable that a filter 105 is interposed between the filter and the pump 103.
  • the feed pump 104 has, for example, a gear pump structure, is attached to an end of a cam, and is directly connected to a cam shaft via a gear drive or through an appropriate gear ratio. It is preferred that
  • the fuel supply pump 103 is a device for pressurizing the fuel supplied from the feed pump 104 to a high pressure. After the fuel is pressurized, the fuel is supplied to the common rail 104 via the high-pressure passage 107. 6 is configured to be pumped.
  • the fuel pumped through the feed pump 104 and the filter 105 is further operated by a proportional control valve (FMU) 120 that adjusts the amount of squirt as shown in FIG.
  • FMU proportional control valve
  • the fuel is supplied to the fuel supply pump 103 via the above.
  • the proportional control valve 120 proportionally controls the position of the anchor 125 by adjusting the amount of current flowing through the coil 124 under the control of the ECU. That is, by controlling the position of the piston 127 at the distal end of the anchor 125 in accordance with the position of the anchor 125, the slit 122 provided in the piston 127 is controlled.
  • the fuel supplied to a suction valve (not shown) of the fuel supply pump 103 can be controlled.
  • the fuel supplied from the feed pump 104 is pumped to the proportional control valve 120 and the fuel supply pump 103 as well as the proportional control valve. It is preferable that the fuel tank is returned to the fuel tank 102 through an overflow valve (OFV) 134 provided in parallel with the fuel tank 120. And Further, a portion of the fuel is preferably pumped to a bearing (not shown) of the fuel supply pump 103 through an orifice 136 attached to the overflow valve 134, and is preferably used as a fuel lubricant for the bearing. .
  • OFV overflow valve
  • the fuel supply pump 103 is a device for pressurizing the fuel supplied from the feed pump 104 to a high pressure, as described above. After the fuel is pressurized, the fuel is supplied to the common rail 106 via the high pressure passage 107. Preferably, it is configured to be pumped to
  • a one-way valve (not shown) at the outlet of the fuel supply pump 103 or at the common rail 106 described later and the fuel supply pump 103.
  • a plurality of injectors (injection valves) 110 are connected to the common rail 106, and the fuel stored at a high pressure by the common rail 106 is supplied from each injector 110 to an internal combustion engine (not shown). It is preferred that the fuel be injected inside.
  • each of these injectors 110 has an IDU (IDU:
  • the IDU is an electronic control unit (ECU:
  • the side edge of the common rail 106 are pressure sensors 1 17 force "connection, sending a pressure detection signal obtained by such a pressure detector 1 17 to the ECU is preferably c That is, when receiving the pressure detection signal from the pressure detector 117, the ECU preferably controls an electromagnetic control valve (not shown) and controls the drive of the IDU according to the detected pressure. .
  • the piston pressure increasing device (pressure intensifying piston) includes a cylinder 15 55, a mechanical piston 15 54, a pressurizing chamber 15 58, and a solenoid valve 17. 0, a circulation path 1557, and a mechanical piston 1554 having a pressure receiving section 152 having a relatively large area, and a pressurizing section 1556 having a relatively small area. Is preferred.
  • the mechanical piston 154 housed in the cylinder 155 is moved by being pressed by the fuel having the common rail pressure in the pressure receiving portion 152, and the common rail pressure of the pressurizing chamber 158, for example,
  • the fuel having a pressure of about 5 OMPa is pressurized by the pressurizing section 156 having a relatively small area, and the fuel pressure is set to a value within the range of 150 MPa to 300 MPa. Is preferred.
  • a large amount of fuel having a common rail pressure is used to pressurize the mechanical piston 154, but after pressurization, the fuel is returned to the fuel tank, etc. via the electromagnetically driven overflow valve 170.
  • the fuel having the common rail pressure is returned to the fuel tank or the like together with the fuel flowing out of the electromagnetic valve 180 of the fuel injection device after pressurizing the mechanical piston 154, and is returned to the mechanical type again. It is preferably used to pressurize piston 154.
  • the fuel whose pressure has been increased by the pressurizing section 156 is sent to a fuel injection device (fuel injection nozzle) 163, where it is efficiently injected and burned.
  • the mechanical piston can be effectively pressed by the fuel having the common rail pressure without excessively increasing the size of the common rail.
  • a mechanical piston is provided with a relatively large area pressure receiving section and a relatively small area pressurizing section, and a mechanical piston is provided. Pressure loss can be reduced by considering the piston stroke. In addition, the fuel having the common rail pressure can be efficiently increased to a desired value.
  • the fuel (pressure: p1, volume: V1, work: W1) from the common rail is received by the pressure receiving section having a relatively large area, and the pressurizing section having a relatively small area.
  • higher pressure fuel pressure: p2, volume: V2, work: W2
  • the form of the fuel injection device (fuel injection nozzle) 110 is not particularly limited.
  • a seating surface 1 on which the needle valve element 16 2 is seated And a nozzle body 163 having a nozzle hole 16 formed downstream of the seating surface 16 4 of the valve body abutting portion. It is preferable that fuel supplied from the upstream side of the seating surface 164 be guided to the injection hole 165.
  • the needle valve body 16 2 is constantly urged toward the seating surface 16 4 by a spring 16 1 or the like, and the needle valve body 16 2 It is preferable to use a solenoid valve that opens and closes by switching between energization and non-energization of the solenoid 180.
  • the two-stage injection timing chart can be achieved by the combination of the common rail pressure and the pressure increase in the piston pressure booster ( ⁇ pressure piston), thereby increasing the fuel combustion efficiency. At the same time, it is possible to purify exhaust gas. Further, according to the present invention, the combination of the common rail pressure and the pressure boosting in the piston pressure booster (pressure boosting piston) may show a fuel injection channel as shown by a dotted line B in FIG. preferable.
  • the conventional injection timing chart is a one-stage injection timing chart with a low injection amount as shown by a dotted line C in FIG. .
  • the pressure is accumulated to about 50 MPa by the common rail 106, and further, between the fuel injection valve 110 and the piston pressure increase device (pressure increase piston) 108 It is preferable to pressurize under ultra-high pressure conditions of 180 MPa or more. Also, when operating the low pressure piston 108, an extremely large flow rate of fuel is used. For this reason, in the example shown in FIG. 17, the large flow rate fuel provided in the fuel supply pump 103 is used. Valve (not shown) is functioning effectively.
  • the suction holes are arranged non-radially with respect to the suction chamber as a fuel suction valve of the fuel supply pump 103, For example, even a fuel having a flow rate per unit time of about 500 to 1,500 liters can be passed quickly and quantitatively, and furthermore, a fuel supply pump 103 and With the common rail 106, large-scale processing can be performed for each.
  • Industrial applicability According to the high flow rate fuel valve of the present invention, by providing a plurality of suction holes and arranging the suction holes non-radially with respect to the suction chamber, for example, the flow rate per unit time can be reduced to 50%. Even fuels of about 0 to 1,500 liters Z hours can be passed quickly and quantitatively.
  • the large flow rate fuel valve of the present invention even if the lift amount of the valve body is relatively low, a large flow rate fuel having a flow rate per unit time of 1,000 liter hours or more can be used. Since the valve can pass through, the position change of the valve body is reduced, and the impact at the time of sitting can be reduced.
  • a large amount of fuel can be passed quickly and quantitatively without excessively increasing the diameter and the sectional area of the suction hole. It has become possible to control the durability and strength of the device itself.
  • the large flow rate fuel valve of the present invention is suitably used as a high flow rate fuel valve of a fuel supply pump used in a pressure accumulating fuel injection device (APCRS) that uses a piston to increase a large flow rate of fuel. Can be used.
  • APCRS pressure accumulating fuel injection device
  • the fuel supply pump provided with the high flow rate fuel valve of the present invention a plurality of suction holes are provided, and the large flow rate fuel having a non-radially arranged suction hole with respect to the suction chamber is provided.
  • a valve for example, it is possible to quickly and quantitatively permeate even a very large flow rate of fuel with a flow rate per unit time of 500 to 1,500 liters Z hours. Was.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A high flow rate fuel valve and a fuel supply pump with the valve that are suitable for an accumulated pressure-type fuel injection device (APCRS) that intensifies the pressure of a large amount of fuel using a piston. In a fuel supply pump with a fuel inlet valve and fuel outlet valve, the fuel inlet valve has a valve main body, a valve body received in the valve main body, an inlet chamber provided inside the valve main body, inlet holes, a seat portion where the valve body and part of the valve main body are in contact with each other. The inlet holes are arranged in a non-radial pattern relative to the inlet chamber.

Description

明 細 書 大流量燃料用バルブおよびそれを備えた燃料供給用ポンプ 技術分野  Description High flow fuel valve and fuel supply pump equipped with the same
本発明は、 大流量タイプの燃料用バルブおよびそれを備えた燃料供給用ポンプ に関する。 特に、 加圧用ピストンを利用して、 大流量の燃料を増圧する蓄圧式燃 料噴射装置 (APCRS: Atnpl ified Piston Common Rail System) に使用される燃料 供給用ポンプに適した大流量タイプの燃料用バルブ、 およびそれを備えた燃料供 給用ポンプに関する。 背景技術  The present invention relates to a large flow rate type fuel valve and a fuel supply pump provided with the same. In particular, for large-flow type fuel suitable for the fuel supply pump used in the Accumulated Fuel Injection System (APCRS), which uses a pressurizing piston to boost large-flow fuel. The present invention relates to a valve and a fuel supply pump provided with the valve. Background art
従来、 ディーゼルエンジン等において、 高圧の燃料を効率良く噴射するために、 蓄圧器 (コモンレール) を用いた蓄圧式燃料噴射装置 (CRS: Common Rail System) が各種提案されている。  Conventionally, various types of pressure accumulating fuel injection devices (CRS: Common Rail System) using accumulators (common rails) have been proposed in diesel engines and the like to inject high-pressure fuel efficiently.
例えば、 特開平 6— 93936号公報においては、 図 20に示すように、 ェン ジンの運転条件に応じて、 蓄圧器の圧力を容易に切り替えるべく、 メイン噴射を 担当する第 1蓄圧器 236およびパイロット噴射を担当する第 2蓄圧器 278を それぞれ備え、 切り替え装置 286によって、 これらの蓄圧器 23.6、 278を 切り替えて燃料噴射を実施する蓄圧式燃料噴射装置が提案されている。  For example, in Japanese Patent Application Laid-Open No. Hei 6-93936, as shown in FIG. 20, in order to easily switch the pressure of the accumulator according to the engine operating conditions, the first accumulator 236 in charge of the main injection and A pressure-accumulation type fuel injection device has been proposed, which includes second pressure accumulators 278 in charge of pilot injection, and switches between these pressure accumulators 23.6 and 278 by a switching device 286 to perform fuel injection.
また、 特許第 2885076号公報においては、 エンジン性能の最適な噴射圧 力を得られることを目的として、 蓄圧器と、 燃料噴射弁との間に、 燃料を増圧す るための増圧ビストンおよびシリンダ室が設けられた蓄圧式燃料噴射装置が提案 されている。 より具体的には、 図 21に示すように、 蓄圧器 395と、 燃料の供 給油路 360と、 制御油路 361と、 燃料噴射制御用切り替え弁 362と、 増圧 ピストン 378を収容するためのシリンダ室 383と、 70〜120MPa (約 700〜1200 kg fZcm2) 程度に燃料圧力を上げるための増圧ピストン 378と、 液圧回路 363と、 ピストン作動用切り替え弁 (増圧装置用三方電磁 弁) 3 6 4と、 コントローラ (図示せず。 ) と、 を備えた蓄圧式燃料噴射装置 3 8 0が開示されている。 Japanese Patent No. 2885076 discloses a booster piston and a cylinder for boosting fuel between an accumulator and a fuel injection valve in order to obtain an optimum injection pressure for engine performance. An accumulator type fuel injection device provided with a chamber has been proposed. More specifically, as shown in FIG. 21, the pressure accumulator 395, the fuel supply oil passage 360, the control oil passage 361, the fuel injection control switching valve 362, and the booster piston 378 are housed therein. Cylinder chamber 383, booster piston 378 to increase fuel pressure to about 70 to 120MPa (about 700 to 1200 kg fZcm2), hydraulic circuit 363, and piston operation switching valve (three-way solenoid for booster) A pressure-accumulation type fuel injection device 380 including a valve 364 and a controller (not shown) is disclosed.
一方、 特開平 6— 1 0 1 5 9 7号公報においては、 図 2 2に示すように、 燃料 旋回部材を備えるとともに、 燃料旋回流路および環状流路のなす角度を制限した 燃料噴射弁が提案されている。 より具体的には、 弁座の上流側の燃料旋回部材に よつて旋回力を与えられた燃料が、 弁体先端部と弁座の間を燃料噴射孔へ向けて 流れ、 燃料流の旋回によリ弁体先端部と燃料噴射孔の間の流路に空洞部が形成さ れる燃料噴射弁が開示されている。  On the other hand, in Japanese Patent Application Laid-Open No. H6-1019797, as shown in FIG. 22, a fuel injection valve having a fuel swirling member and limiting an angle formed by a fuel swirling flow path and an annular flow path is disclosed. Proposed. More specifically, the fuel, which has been given a swirling force by the fuel swirling member on the upstream side of the valve seat, flows between the distal end of the valve body and the valve seat toward the fuel injection hole, and the fuel flow is swirled. There is disclosed a fuel injection valve in which a hollow portion is formed in a flow path between a valve body tip and a fuel injection hole.
同様に、 特開平 1 0— 4 7 2 0 8号公報においては、 図 2 3に示すように、 燃 料流に旋回エネルギーを与えて噴射する燃料噴射弁が提案されている。 よリ具体 的には、 旋回体の外周面部と、 流路部分と、 旋回溝の個数を、 4個から 8個にし、 各旋回溝を弁軸に対して一定距離を持って偏心させ、 この旋回溝の弁軸から離れ た側の側面が環状溝の外周に接線方向につながっているようにし、 旋回溝の対向 する溝側面を相互に平行に形成した燃料噴射弁が開示されている。  Similarly, Japanese Patent Application Laid-Open No. H10-47208 proposes a fuel injection valve which gives swirling energy to a fuel flow to inject the fuel flow as shown in FIG. More specifically, the number of the outer peripheral surface of the revolving body, the flow path portion, and the number of the revolving grooves is changed from four to eight, and each revolving groove is eccentric with a certain distance from the valve shaft. A fuel injection valve is disclosed in which a side surface of a swirl groove away from a valve shaft is tangentially connected to an outer periphery of an annular groove, and opposed groove side surfaces of the swirl groove are formed parallel to each other.
しかしながら、 特開平 6— 9 3 9 3 6号公報に開示された蓄圧式燃料噴射装置 では、 2種類の蓄圧器およびその切り替え装置等を備える必要があり、 そのため に、 蓄圧式燃料噴射装置が複雑化、 大型化するという問題が見られた。 また、 か かる蓄圧式燃料噴射装置において、 燃料供給用ポンプのカムおよびプランジャを 高速駆動させた場合、 燃料噴射弁に対して燃料が迅速に流れにくく、 その流量が 制限されてしまうために、 大流量の燃料を十分に加圧処理ができないという問題 が見られた。  However, the accumulator type fuel injection device disclosed in Japanese Patent Application Laid-Open No. 6-93939 needs to be provided with two types of accumulators and a switching device therefor, which makes the accumulator type fuel injection device complicated. There was a problem that it would be larger and larger. Also, in such an accumulator type fuel injection device, when the cam and the plunger of the fuel supply pump are driven at a high speed, it is difficult for the fuel to flow quickly to the fuel injection valve, and the flow rate is restricted. There was a problem that the fuel at the flow rate could not be sufficiently pressurized.
また、 特許第 2 8 8 5 0 7 6号公報に開示された蓄圧式燃料噴射装置において は、 蓄圧器と、 燃料噴射弁との間に、 增圧ピストンを設けて、 多段階圧力噴射を 意図しているとともに、 蓄圧器へ高圧燃料を供給する加圧ポンプが提案されてい るが、 当該加圧ポンプは、 蓄圧式燃料噴射装置の従来どおりの加圧ポンプであつ て、 増圧ビストンに大量の高圧燃料を供給することを目的とした加圧ポンプに適 応した燃料噴射弁については触れられていない。  Also, in the pressure accumulating fuel injection device disclosed in Japanese Patent No. 2885076, a low pressure piston is provided between the pressure accumulator and the fuel injection valve to perform multi-stage pressure injection. And a pressurized pump for supplying high-pressure fuel to the accumulator has been proposed. The pressurized pump is a conventional pressurized pump for the accumulator type fuel injection device, and a large amount of pressure is supplied to the booster piston. No mention is made of fuel injection valves suitable for pressurized pumps intended to supply high pressure fuel.
さらに、 特開平 6— 1 0 1 5 9 7号公報ゃ特開平 1 0— 4 7 2 0 8号公報に開 示された燃料噴射弁では、 噴射孔の長さと、 噴射孔の直径の比率を所定範囲内に 制限したり、 旋回体を含んだりするなど基本的に構造が異なるため、 大流量燃料 用バルブとして使用することは困難であった。 Further, in the fuel injection valve disclosed in Japanese Patent Application Laid-Open No. H6-110977 and Japanese Patent Application Laid-Open No. H10-47208, the ratio of the length of the injection hole to the diameter of the injection hole is determined. Within a predetermined range It was difficult to use it as a high-flow fuel valve because of its fundamentally different structure, such as restrictions and revolving structures.
そこで、 本発明の発明者らは鋭意検討した結果、 吸入孔を複数個設けるととも に、 当該吸入孔を吸入室に対して、 非放射状に配置することにより、 燃料を迅速 かつ定量的に通過させることができるようになって、 カムおよびプランジャを高 速駆動させた場合であっても、 大量の燃料油を十分に加圧処理できることを見出 した。  Accordingly, the inventors of the present invention have conducted intensive studies, and as a result, provided a plurality of suction holes and arranged the suction holes non-radially with respect to the suction chamber, so that fuel can be quickly and quantitatively passed. It has been found that even when the cam and the plunger are driven at high speed, a large amount of fuel oil can be sufficiently pressurized.
すなわち、 本発明は、 A P C R Sに対応すべく、 燃料供給用ポンプにおける力 ムおよびプランジャを高速駆動させて、 燃料吐出量を大量にした場合であっても、 燃料が迅速に高圧ポンプの加圧室を通過し、 燃料を十分に加圧処理することがで きる燃料供給用ポンプ、 およびそれに適した大流量燃料用バルブを提供すること を目的とする。 発明の開示  That is, according to the present invention, the fuel and the plunger of the fuel supply pump are driven at a high speed to cope with the APCRS, and even when the fuel discharge amount is large, the fuel is quickly supplied to the pressurizing chamber of the high-pressure pump. It is an object of the present invention to provide a fuel supply pump capable of sufficiently pressurizing the fuel through a fuel supply pump, and a high flow rate fuel valve suitable for the pump. Disclosure of the invention
[ 1 ] 本発明によれば、 弁本体と、 その内部において稼動可能に取り付けられ た弁体と、 弁本体内部に設けられた吸入室と、 吸入孔と、 弁体および弁本体の一 部が相互に接するシート部と、 を備えた大流量燃料用バルブであって、 吸入孔を 複数個設けるとともに、 当該吸入孔を吸入室に対して、 非放射状に配置すること を特徴とする大流量燃料用バルブ力提供され、 上述した問題点を解決することが できる。  [1] According to the present invention, a valve body, a valve body operably mounted inside the valve body, a suction chamber provided inside the valve body, a suction hole, and a part of the valve body and the valve body are provided. A high flow rate fuel valve comprising: a seat portion that is in contact with each other; and a plurality of suction holes, wherein a plurality of suction holes are provided, and the suction holes are arranged non-radially with respect to the suction chamber. The valve force is provided, and the above-mentioned problems can be solved.
すなわち、 このように構成することにより、 吸入室内に、 流れ方向を大きく変 えることなく燃料を導入することができる。 また、 非放射状の複数方向から燃料 が流入するものの、 吸入室内での相互衝突を少なくすることができる。 したがつ て、 かかる大流量燃料用バルブを介して、 極めて大量の燃料であっても、 迅速か つ定量的に通過させることができる。  That is, with this configuration, fuel can be introduced into the suction chamber without largely changing the flow direction. In addition, although fuel flows in from non-radial directions, mutual collision in the suction chamber can be reduced. Therefore, even a very large amount of fuel can be quickly and quantitatively passed through such a large-flow fuel valve.
[ 2 ] また、 本発明の大流量燃料用バルブを構成するにあたり、 吸入室の水平 断面形状を実質的に円形とするとともに、 吸入孔を、 吸入室の接線方向に沿って 配置することが好ましい。 このように構成することにより、 吸入室内に、 一方向の回転流として燃料を導 入することができる。 また、 接線方向の複数方向から燃料が流入するものの、 吸 入室内での相互衝突が少なくなるとともに、 一方向の回転流として容易にまとま リ、 流れを円滑にすることができる。 [2] Further, in configuring the high flow rate fuel valve of the present invention, it is preferable that the horizontal cross-sectional shape of the suction chamber is substantially circular and the suction holes are arranged along the tangential direction of the suction chamber. . With this configuration, fuel can be introduced into the suction chamber as a unidirectional rotational flow. In addition, although fuel flows in from a plurality of tangential directions, mutual collision in the suction chamber is reduced, and the flow can be easily and smoothly collected as a unidirectional rotating flow.
[ 3 ] また、 本発明の大流量燃料用バルブを構成するにあたり、 吸入孔を、 吸 入室に対して、 垂直方向に傾けて配置することが好ましい。 [3] Further, in configuring the high flow rate fuel valve of the present invention, it is preferable to arrange the suction hole so as to be vertically inclined with respect to the suction chamber.
このように構成することにより、 重力を利用して、 吸入室内に、 さらに制御さ れた一方向の回転流として燃料を導入することができる。 また、 接線方向の複数 方向からの燃料流同士の相互衝突が少なくなるとともに、 さらに一方向の回転流 として容易にまとまることができる。  With this configuration, the fuel can be introduced into the suction chamber as a more controlled one-way rotational flow by utilizing gravity. Further, the mutual collision of the fuel flows from a plurality of tangential directions is reduced, and the fuel flows can be easily combined as a unidirectional rotational flow.
[ 4 ] また、 本発明の大流量燃料用バルブを構成するにあたり、 吸入孔の直径 を 2〜 1 2 mmの範囲内の値とすることが好ましい。 [4] Further, in configuring the high flow rate fuel valve of the present invention, it is preferable that the diameter of the suction hole is set to a value within a range of 2 to 12 mm.
このように構成することにより、 例えば、 単位時間当たりの流量が 5 0 0〜 1 、 5 0 0リツトルノ時間程度の燃料を容易に確保することができ、 燃料供給用ボン プにおいて大量の高圧処理が可能となる。 また、 かかる燃料供給用ポンプに連 された増圧ビストンを併用した蓄圧式燃料噴射装置においても、 1 8 O M P a以 上の超高圧条件を達成することが容易になる。  With this configuration, for example, it is possible to easily secure fuel having a flow rate per unit time of about 50,000 to 1,500 liters, and a large amount of high-pressure processing can be performed in the fuel supply pump. It becomes possible. In addition, even in a pressure-accumulation type fuel injection device using a booster biston connected to such a fuel supply pump, it becomes easy to achieve an ultra-high pressure condition of 18 OMPa or more.
[ 5 ] また、 本発明の大流量燃料用バルブを構成するにあたり、 弁体のシート 径を 8 mm以上の値とすることが好ましい。 [5] In configuring the high flow rate fuel valve of the present invention, it is preferable that the seat diameter of the valve body is set to a value of 8 mm or more.
このように構成することにより、 例えば、 単位時間当たりの流量が 5 0 0 ~ 1 、 5 0 0リツトル Z時間程度の燃料を容易に確保することができ、 燃料供給用ボン プにおいて大量の高圧処理が可能となる。 また、 かかる燃料供給用ポンプに連結 された増圧ピストンを併用した蓄圧式燃料噴射装置においても、 1 S O M P a以 上の超高圧条件を達成することが容易になる。 [ 6 ] また、 本発明の大流量燃料用バルブを構成するにあたり、 吸入孔におけ る燃料の通過面積を、 シート部における燃料の通過面積よリも大きくすることが 好ましい。 With this configuration, for example, a fuel with a flow rate per unit time of about 500 to 1,500 liters Z hours can be easily secured, and a large amount of high-pressure processing can be performed in the fuel supply pump. Becomes possible. In addition, even in a pressure accumulating fuel injection device using a pressure-intensifying piston connected to such a fuel supply pump, it becomes easy to achieve an ultra-high pressure condition of 1 SOMPa or more. [6] Further, in configuring the high flow rate fuel valve of the present invention, it is preferable that the passage area of the fuel in the suction hole be larger than the passage area of the fuel in the seat portion.
このように構成することにより、 吸入室内に、 流れ方向を大きく変えることな ぐ燃料を導入できるとともに、 容易に通過させることができるため、 吸入室内で の滞留時間を短くすることができる。 したがって、 大流量燃料用バルブを介して、 大流量の燃料であっても、 迅速かつ定量的に通過させることができる。  With this configuration, the fuel can be introduced into the suction chamber without largely changing the flow direction, and can be easily passed. Therefore, the residence time in the suction chamber can be shortened. Therefore, even high flow rate fuel can be quickly and quantitatively passed through the high flow rate fuel valve.
[ 7 ] また、 本発明の別の態様は、 燃料吸入用バルブおよび燃料吐出用バルブ を備えた燃料供給用ポンプであって、 燃料吸入用バルブが、 弁本体と、 その内部 において稼動可能に取リ付けられた弁体と、 弁本体内部に設けられた吸入室と、 吸入孔と、 弁体および弁本体の一部が相互に接するシート部と、 を備え、 かつ、 吸入孔を複数個設けるとともに、 当該吸入孔を吸入室に対して、 非放射状に配置 してある大流量燃料用/くルブであることを特徴とする燃料供給用ポンプである。 すなわち、 このように構成することにより、 大流量燃料用バルブを介して、 極 めて大流量の燃料であっても、 迅速かつ定量的に通過させることができ、 燃料供 給用ポンプにおいて、 かかる燃料に対する高圧処理が可能となる。 また、 このよ うに構成することにより、 かかる燃料供給用ポンプに連結された増圧ピストンを 併用した蓄圧式燃料噴射装置において、 1 8 0 M P a以上の超高圧条件を達成す ることが容易になる。 [7] Another aspect of the present invention is a fuel supply pump provided with a fuel intake valve and a fuel discharge valve, wherein the fuel intake valve is operably mounted inside the valve body and the inside thereof. A valve body attached thereto, a suction chamber provided inside the valve body, a suction hole, and a seat portion in which the valve body and a part of the valve body are in contact with each other, and a plurality of suction holes are provided. A fuel supply pump characterized in that the suction hole is a non-radial arrangement with respect to the suction chamber for a large flow rate fuel / lube. In other words, with this configuration, even a very high flow rate fuel can be quickly and quantitatively passed through the high flow rate fuel valve. High pressure processing of the fuel becomes possible. In addition, with this configuration, it is easy to achieve an ultra-high pressure condition of 180 MPa or more in a pressure accumulating fuel injection device that uses a pressure-intensifying piston connected to the fuel supply pump. Become.
[ 8 ] また、 本発明の燃料供給用ポンプを構成するにあたり、 単位時間当たり の流量が 5 0 0〜1、 5 0 0リツトル Z時間程度の燃料を、 5 0 M P a以上の値 に加圧するための蓄圧式燃料噴射装置に使用されることが好ましい。 [8] Further, in configuring the fuel supply pump of the present invention, a fuel having a flow rate per unit time of about 500 to 1,500 liters Z hours is pressurized to a value of 50 MPa or more. Is preferably used for a pressure accumulating type fuel injection device.
このような蓄圧式燃料噴射装置に用いることにより、 容易に大流量の燃料の加 圧処理ができるため、 燃料噴射装置における燃焼効率を高めたり、 エロ一ジョン の発生を容易に防止したり、 あるいは耐久性を向上させたりすることができる。 図面の簡単な説明 図 1 (a) および (b) は、 本発明の大流量燃料用バルブの断面図である。 図 2は、 本発明の大流量燃料用バルブの取り付け状態を示す断面図である。 図 3は、 本発明の別の大流量燃料用バルブの断面図である。 By using such a pressure-accumulation type fuel injection device, it is possible to easily pressurize a large flow rate of fuel, thereby increasing the combustion efficiency of the fuel injection device, easily preventing erosion, or Durability can be improved. BRIEF DESCRIPTION OF THE FIGURES 1 (a) and 1 (b) are cross-sectional views of the high flow rate fuel valve of the present invention. FIG. 2 is a cross-sectional view showing a mounted state of the high flow rate fuel valve of the present invention. FIG. 3 is a sectional view of another high flow rate fuel valve according to the present invention.
図 4は、 第 2の弁ばね (スプリング) を設けた大流量バルブを説明するために 供する図である。  FIG. 4 is a diagram provided to explain a large flow valve provided with a second valve spring (spring).
図 5は、 第 2の弁ばね (板パネ) を設けた大流量バルブを説明するために供す る図である。  FIG. 5 is a diagram provided to explain a large flow valve provided with a second valve spring (plate panel).
図 6は、 非線形スプリングを使用した大流量バルブを説明するために供する図 である。  FIG. 6 is a diagram provided to explain a large flow valve using a non-linear spring.
図 7は、 大流量燃料用パルプにおけるリフト量と、 単位時間当たりの流量との 関係を示す特性図である。  FIG. 7 is a characteristic diagram showing a relationship between a lift amount and a flow rate per unit time in a high flow rate fuel pulp.
図 8 (a) および (b) は、 従来の燃料用バルブの断面図である。  FIGS. 8A and 8B are cross-sectional views of a conventional fuel valve.
図 9 (a) および (b) は、 従来の別の燃料用バルブの断面図である。  FIGS. 9A and 9B are sectional views of another conventional fuel valve.
図 1 0 (a) および (b) は、 従来の燃料用バルブにおける絞り位置を説明す るための断面図である。  FIGS. 10 (a) and (b) are cross-sectional views for explaining the throttle position in a conventional fuel valve.
図 1 1 (a) および (b) は、 従来の別の燃料用パルプにおける絞り位置を説 明するための断面図である。  FIGS. 11 (a) and 11 (b) are cross-sectional views for explaining the throttle position in another conventional fuel pulp.
図 1 2 (a) および (b) は、 本発明の大流量燃料用バルブにおける絞り位置 を説明するための断面図である。  FIGS. 12 (a) and 12 (b) are cross-sectional views for explaining the throttle position in the high flow rate fuel valve of the present invention.
図 1 3は、 大流量燃料用バルブを、 燃料吸入用バルブまたは燃料吐出用バルブ として備えた燃料供給用ポンプの断面図である。  FIG. 13 is a cross-sectional view of a fuel supply pump provided with a high flow rate fuel valve as a fuel intake valve or a fuel discharge valve.
図 1 4は、 燃料吸入用バルブおよび燃料吐出用バルブからなる I Oバルブの断 面図である。  FIG. 14 is a cross-sectional view of an IO valve including a fuel intake valve and a fuel discharge valve.
図 1 5は、 ピストン増圧方式の蓄圧式燃料噴射装置 (APCRS) のシステム を説明するために供する図である。  FIG. 15 is a diagram provided to explain a system of a pressure accumulating fuel injection device (APCRS) of a piston pressure increasing system.
図 1 6は、 燃料供給用ポンプに取り付けた比例制御弁 (FMU) の作用を説明 する図である。  FIG. 16 is a diagram illustrating the operation of the proportional control valve (FMU) attached to the fuel supply pump.
図 1 7は、 ピストン増圧方式の蓄圧式燃料噴射装置 (APCRS) の構造を説 明するために供する図である。 図 1 8は、 ピストン増圧方式の蓄圧式燃料噴射装置 (A P C R S ) による燃料 の增圧方法を概念的に示す図である。 FIG. 17 is a diagram provided to explain the structure of a pressure accumulating fuel injection device (APCRS) of the piston pressure increasing type. FIG. 18 is a diagram conceptually showing a method of depressurizing fuel using a pressure accumulating fuel injection device (APCRS) of a piston pressure increasing type.
図 1 9は、 高圧燃料の噴射タイミングチャート説明するために供する図である。 図 2 0は、 従来の蓄圧式燃料噴射装置の構造を説明するために供する図である。 図 2 1は、 従来の別の蓄圧式燃料噴射装置の構造を説明するために供する図で あ 。  FIG. 19 is a diagram provided to explain a high-pressure fuel injection timing chart. FIG. 20 is a diagram provided to explain the structure of a conventional pressure-accumulation fuel injection device. FIG. 21 is a diagram provided to explain the structure of another conventional accumulator type fuel injection device.
図 2 2は、 従来の燃料噴射装置の構造を説明するために供する図である。  FIG. 22 is a diagram provided to explain the structure of a conventional fuel injection device.
図 2 3は、 従来の別の燃料噴射装置の構造を説明するために供する図である。 発明を実施するための最良の形態  FIG. 23 is a diagram provided to explain the structure of another conventional fuel injection device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を適宜参照しつつ、 本発明の大流量燃料用バルブおよびそれを備え た燃料供給用ポンプに関する実施形態を具体的に説明する。  Hereinafter, with reference to the drawings, embodiments of the high flow rate fuel valve of the present invention and a fuel supply pump including the same will be described in detail.
[第 1の実施形態] [First Embodiment]
第 1の実施形態は、 図 1 ( a ) および (b ) に例示されるように、 弁本体 1 9 と、 その内部において稼動可能に取り付けられた弁体 2 0と、 弁本体 1 9の内部 に設けられた吸入室 1 9 aと、 吸入孔 1 9 cと、 弁体 2 0およぴ弁本体 1 9の一 部が相互に接するシート部 2 3と、 を備えた大流量燃料用バルブ 7 3であって、 吸入孔 1 9 cを複数個設けるとともに、 当該吸入孔 1 9 cを吸入室 1 9 aに対し て、 非放射状に配置することを特徴とする大流量燃料用パルプ 7 3である。  In the first embodiment, as illustrated in FIGS. 1 (a) and (b), a valve body 19, a valve body 20 operably mounted therein, and an inside of the valve body 19 are provided. A high flow rate fuel valve comprising: a suction chamber 19 a provided in the fuel cell; a suction hole 19 c; and a seat 23 in which a part of the valve body 20 and a part of the valve body 19 are in contact with each other. Pulp for high flow rate fuel pulp 7 3, wherein a plurality of suction holes 19 c are provided and the suction holes 19 c are arranged non-radially with respect to the suction chamber 19 a. It is.
以下、 かかる大流量燃料用バルブ 7 3を、 構成要件等に分けて、 具体的に説明 する。  Hereinafter, such a large-flow fuel valve 73 will be specifically described by dividing it into components and the like.
1 . 弁本体 1. Valve body
弁本体は、 弁体を保持するとともに、 弁体が所定の動作を行えるものであれば, その形状は特に制限されるものでは無いが、 例えば、 図 1 ( b ) に示すように、 下側に開放したキヤップ状であることが好ましい。  The shape of the valve body is not particularly limited as long as the valve body holds the valve body and the valve body can perform a predetermined operation.For example, as shown in FIG. It is preferably in the form of a cap that is open to the outside.
また、 図 1 ( b ) に示すように、 弁本体 1 9の外形を実質的に円筒形とすると ともに、 突起部やつば部等を設けずに、 実質的に平滑とすることが好ましい。 す なわち、 従来は、 心出しをするために、 図 8 ( b ) に示すように、 弁本体 1 9の 上部に、 つば部 3 3を設けるとともに、 それを利用してバレル等に対して弁本体 を位置固定していたが、 弁本体の製造が困難になつたり、 コストが高くなつたり するという問題が見られた。 そこで、 図 2に示すように弁保持部 7 1の内径と、 バルブ 7 3の外径とを調整することにより、 心出しするとともに、 弁本体にはつ ぱ部等を設けないことにより、 弁本体の製造上の問題を解決することができる。 また、 弁本体には、 後述する弁体が取り付けてあり、 その内部において稼動可 能であることが好ましい。 すなわち、 ポペット型の弁構造を構成することが好ま しい。 Further, as shown in FIG. 1 (b), it is preferable that the outer shape of the valve main body 19 be substantially cylindrical, and that the valve main body 19 be substantially smooth without a projection or a flange. You That is, conventionally, as shown in FIG. 8 (b), in order to perform centering, a collar portion 33 is provided at the upper portion of the valve body 19 and the Although the position of the main body was fixed, there were problems that the manufacture of the valve main body became difficult and the cost increased. Therefore, as shown in FIG. 2, by adjusting the inner diameter of the valve holding portion 71 and the outer diameter of the valve 73, the valve is centered, and the valve body is not provided with a valve portion or the like, so that the valve is not provided. A problem in manufacturing the main body can be solved. Further, it is preferable that a valve body to be described later is attached to the valve body, and that the valve body be operable inside. That is, it is preferable to configure a poppet type valve structure.
ここで、 弁本体に取り付けられた弁体の駆動方法は特に制限されるものではな いが、 例えば、 図 1 ( b ) および図 2に示すように、 弁本体 1 9の上方に設けた 弁ばね 2 1を利用して、 機械的駆動とすることも好ましいし、 あるいは、 電磁式 の駆動方法を採用することも好ましい。  Here, the method of driving the valve body attached to the valve body is not particularly limited. For example, as shown in FIGS. 1 (b) and 2, a valve provided above the valve body 19 is provided. It is also preferable to use a spring 21 for mechanical drive, or to employ an electromagnetic drive method.
2 . 弁体 2. Valve body
また、 弁体のシート径を 8 mm以上の値とすることが好ましい。 この理由は、 このように構成することにより、 例えば、 単位時間当たりの流量が 5 0 0〜 1、 5 0 0リツトル Z時間程度の撚料を確保することができ、 燃料供給用ポンプに供 給することにより、 大量燃料の高圧処理が可能となるためである。 また、 さらに 燃料供給用ポンプに対して、 增圧ビストンを併用した蓄圧式燃料噴射装置が連結 されている場合であっても、 1 8 O M P a以上の超高圧噴射を達成することが容 易になるためである。  Further, it is preferable that the seat diameter of the valve body is set to a value of 8 mm or more. The reason for this is that, with this configuration, for example, a twisting rate of about 500 to 1,500 liters per unit time can be ensured, and the feed rate to the fuel supply pump can be increased. By doing so, high-pressure processing of a large amount of fuel becomes possible. Further, even when the fuel supply pump is connected to a pressure-accumulation type fuel injection device using a low pressure piston, it is easy to achieve ultra-high pressure injection of 18 OMPa or more. It is because it becomes.
ただし、 弁体のシート径が過度に大きくなると、 大流量燃料用バルブ自体が大 型になって、 その取り付けや、 弁体の精度良い動作が困難になつたり、 弁体の耐 久性ゃ機械的強度が低下したりする場合がある。  However, if the seat diameter of the valve body becomes excessively large, the large flow rate fuel valve itself becomes large, making it difficult to install it and operate the valve body with high accuracy. The target strength may be reduced.
したがって、 弁体のシート径を 8〜 1 5 mmの範囲内の値とすることがより好 ましく、 8〜1 2 mmの範囲内の値とすることがさらに好ましい。  Therefore, it is more preferable to set the valve diameter of the valve element to a value in the range of 8 to 15 mm, and it is more preferable to set the valve diameter to a value in the range of 8 to 12 mm.
3 . 吸入孔 ( 1 ) 数 3. Suction hole (1) Number
また、 図 1 ( a ) に示すように、 第 1の実施形態では、 吸入孔 1 9 cを複数個 設けることを特徴とする。 すなわち、 かかる複数個の吸入孔を介して、 極めて大 量の燃料を、 吸入室に吸入可能とするためである。 したがって、 かかる吸入孔 の数は 2個以上であれば良いが、 3〜 5個の範囲内の値とすることがより好まし く、 3個または 4個とすることがさらに好ましい。  Further, as shown in FIG. 1 (a), the first embodiment is characterized in that a plurality of suction holes 19c are provided. That is, an extremely large amount of fuel can be sucked into the suction chamber through the plurality of suction holes. Therefore, the number of such suction holes may be two or more, but is more preferably a value in the range of 3 to 5, and more preferably 3 or 4.
( 2 ) 配置 1 (2) Arrangement 1
また、 複数の吸入孔に配置に関して、 図 1 ( a ) に示すように、 当該複数の吸 入孔 1 9 cを吸入室 1 9 aに対して、 非放射状、 すなわち、 吸入室 1 9 aの中心 に向かう仮想線に対して、 吸入孔 1 9 cから流入する燃料の流れ方向がずれるよ うに配置することを特徴とする。  In addition, regarding the arrangement in the plurality of suction holes, as shown in FIG. 1 (a), the plurality of suction holes 19c are non-radial with respect to the suction chamber 19a, that is, in the suction chamber 19a. It is characterized in that the flow direction of the fuel flowing from the suction hole 19c is shifted from the imaginary line toward the center.
この理由は、 非放射状に配置された複数個の吸入孔を介して、 吸入室内に、 流 れ方向を大きく変えることなぐ燃料を導入することができるためである。 また、 複数方向から燃料が流入するものの、 非放射状の方向から流入するため、 吸入室 内での相互衝突を少なくすることができるためである。  The reason for this is that fuel can be introduced into the suction chamber through a plurality of non-radially arranged suction holes without changing the flow direction. In addition, although fuel flows in from multiple directions, since fuel flows in from a non-radial direction, mutual collision in the suction chamber can be reduced.
したがって、 このように複数の吸入孔が非放射状に配置された大流量燃料用バ ルブであれば、 単位時間当たりの流量が 5 0 0〜 1、 5 0 0リツトル 時間程度 の極めて大量の燃料であっても、 リフト量を比較的小さくしたまま、 迅速かつ定 量的に通過させることができる。  Therefore, in the case of such a high flow rate fuel valve in which a plurality of suction holes are arranged non-radially, a very large amount of fuel having a flow rate per unit time of about 500 to 1,500 liter hours can be used. Even with this, it is possible to pass through quickly and quantitatively while keeping the lift amount relatively small.
また、 図 1 ( a ) に示すように、 吸入室 1 9 aの水平断面形状を実質的に円形 とするとともに、 吸入孔 1 9 cを、 吸入室 1 9 aの接線方向に沿って配置するこ とが好ましい。  In addition, as shown in FIG. 1 (a), the horizontal cross-sectional shape of the suction chamber 19a is substantially circular, and the suction holes 19c are arranged along the tangential direction of the suction chamber 19a. This is preferred.
この理由は、 吸入孔の配置をこのように構成することにより、 吸入室内に、一 方向の回転流として燃料を導入することができるためである。 また、 複数方向か ら燃料が流入するものの、 接線方向から流入するため、 吸入室内での相互衝突が 少なくなるとともに、 一方向の回転流として容易にまとまることができるためで οδる o ただし、 吸入孔の配置は、 必ずしも接線方向に沿う必要はなく、 例えば、 接線 方向に対して、 ± 2 0 ° の範囲内であれば許容範囲である。 The reason for this is that, by arranging the suction holes in this way, fuel can be introduced into the suction chamber as a unidirectional rotational flow. In addition, although fuel flows in from multiple directions, it flows in the tangential direction, which reduces collisions in the suction chamber and facilitates the formation of a unidirectional rotating flow. However, the arrangement of the suction holes does not necessarily have to be along the tangential direction. For example, if the arrangement is within ± 20 ° with respect to the tangential direction, it is acceptable.
( 3 ) 配置 2 (3) Arrangement 2
また、 本発明の大流量燃料用バルブによれば、 図 3に示すように、 吸入孔 1 9 cを、 吸入室 1 9 aに対して、 斜め方向に傾けて配置することが好ましい。 すな わち、 吸入孔から流入する燃料の流れ方向に関し、 燃料が流入する吸入室が存在 する水平面に対して、 角度 ( をつけて斜め方向に配置することが好ましい。 この理由は、 このように吸入孔を傾けて配置することにより、 吸入室内に、 さ らに加速された燃料を流入させることができ、 その結果、 さらに大量の燃料を容 易に導入することができるためである。 また、 このように吸入孔を傾けて配置す ることにより、 接線方向の複数方向からの燃料流同士の相互衝突が少なくなると ともに、 さらに一方向の回転流として容易にまとまることができるためである。 また、 このように吸入孔 1 9 cを吸入室 1 9 aに対して垂直方向に傾けた場合、 図 3に示されるように、 水平方向に対する傾き角度 ( Θ ) を 1〜4 5 ° の範囲内 の値とすることが好ましい。  In addition, according to the high flow rate fuel valve of the present invention, as shown in FIG. 3, it is preferable that the suction holes 19c are arranged obliquely with respect to the suction chamber 19a. In other words, it is preferable that the fuel flow from the suction hole is arranged obliquely at an angle () with respect to the horizontal plane in which the fuel flows into the suction chamber. By arranging the suction hole at an angle, the fuel further accelerated can flow into the suction chamber, and as a result, a larger amount of fuel can be easily introduced. By arranging the suction holes in such an inclined manner, the mutual collision of the fuel flows from a plurality of tangential directions is reduced, and furthermore, the fuel flows can be easily combined as a unidirectional rotational flow. When the suction hole 19c is tilted vertically with respect to the suction chamber 19a in this way, as shown in FIG. 3, the tilt angle (Θ) with respect to the horizontal direction is in the range of 1 to 45 °. Value within Door is preferable.
この理由は、 かかる吸入孔の傾き角度が 1 ° 未満の値になると、 傾け効果が発 現しない場合があるためである。 一方、 かかる吸入孔の傾き角度が、 4 5 ° を超 えると、 逆に、 吸入室内への燃料の流入性が低下する場合があるためである。 したがって、 吸入孔の傾き角度を 5〜3 0 ° の範囲内の値とすることがより好ま しく、 1 0〜2 5 ° の範囲内の値とすることがさらに好ましい。  The reason for this is that if the angle of inclination of the suction hole is less than 1 °, the effect of tilting may not be exhibited. On the other hand, if the angle of inclination of the suction hole exceeds 45 °, conversely, the inflow of fuel into the suction chamber may be reduced. Therefore, it is more preferable to set the inclination angle of the suction hole to a value in the range of 5 to 30 °, and more preferably to a value in the range of 10 to 25 °.
( 4 ) 直径 (4) Diameter
また、 吸入孔の直径を 2〜1 2 mmの範囲内の値とすることが好ましい。 この 理由は、 かかる吸入孔の直径が 2 mm未満の値になると、 例えば、 単位時間当た りの流量が 5 0 0 ~ 1、 5 0 0リツトル 時間程度の燃料を確保することができ ず、 燃料供給用ポンプにおいて大量の高圧処理を実施することが困難となる場合 があるためである。 したがって、 かかる燃料供給用ポンプに連結された増圧ビス トンを併用した蓄圧式燃料噴射装置において、 例えば、 1 8 0 M P a以上の超高 圧条件を達成することが困難になるためである。 Further, the diameter of the suction hole is preferably set to a value within the range of 2 to 12 mm. The reason for this is that if the diameter of the suction hole is less than 2 mm, for example, it is not possible to secure fuel with a flow rate per unit time of about 500 to 1,500 liter hours, This is because it may be difficult to perform a large amount of high pressure processing in the fuel supply pump. Therefore, the booster screw connected to the fuel supply pump This is because it becomes difficult to achieve an ultra-high pressure condition of, for example, 180 MPa or more in a pressure-accumulation type fuel injection device using a ton.
一方、 かかる吸入孔の直径が 1 2 mmを超えると、 吸入孔の機械的強度が低下 したり、 耐久性が低下したりする場合があるためである。  On the other hand, if the diameter of the suction hole exceeds 12 mm, the mechanical strength of the suction hole may be reduced or the durability may be reduced.
したがって、 かかる吸入孔の直径を 2 . 5〜 1 1 . 5 mmの範囲内の値とする ことがより好ましく、 3〜 1 1 mmの範囲内の値とすることがさらに好ましい。  Therefore, the diameter of the suction hole is more preferably set to a value within a range of 2.5 to 11.5 mm, and further preferably set to a value within a range of 3 to 11 mm.
( 5 ) 吸入孔の面積 (5) Area of suction port
また、 吸入孔の面積 (開口部面積の総和) 、 すなわち、 複数の吸入孔における 燃料の通過面積を、 シー卜部における燃料の通過面積よリも大きくすることが好 ましい。  In addition, it is preferable that the area of the suction holes (the sum of the opening areas), that is, the fuel passage area in the plurality of suction holes is larger than the fuel passage area in the sheet portion.
この理由は、 このように複数の吸入孔における燃料の通過面積を考慮すること により、 吸入室内に、 流れ方向を大きく変えることなぐ燃料を導入できるととも に、 吸入室内での滞留時間を短くすることができるためである。 したがって、 か かる大流量燃料用バルブを介して、 大量の燃料であっても、 迅速かつ定量的に通 過させることができる。  The reason for this is that by considering the passage area of the fuel in the plurality of suction holes, it is possible to introduce fuel into the suction chamber without significantly changing the flow direction, and to shorten the residence time in the suction chamber. This is because it can be done. Therefore, even a large amount of fuel can be quickly and quantitatively passed through such a high-flow fuel valve.
また、 一つの吸入孔の面積 (開口部面積) を、 具体的に、 1 5〜2 5 0 mm2 の範囲内の値とすることが好ましい。  Further, it is preferable that the area of one suction hole (opening area) is specifically set to a value within a range of 15 to 250 mm2.
この理由は、 かかる吸入孔の面積が、 1 5 mm2未満の値になると、 例えば、 単位時間当たリの流量が 5 0 0〜 1、 5 0 0リツトル Z時間程度の燃料を確保す ることができず、 燃料供給用ポンプにおいて大量の高圧処理を実施することが困 難となる場合があるためである。 したがって、 かかる燃料供給用ポンプに連結さ れた増圧ピストンを併用した蓄圧式燃料噴射装置において、 例えば、 1 8 0 M P a以上の超高圧条件を達成することが困難になる場合がある。  The reason for this is that if the area of the suction hole becomes less than 15 mm2, for example, it is necessary to secure fuel with a flow rate per unit time of about 500 to 1,500 liters per hour. This is because it may be difficult to carry out a large amount of high pressure processing in the fuel supply pump. Therefore, in the pressure accumulating type fuel injection device using the pressure-intensifying piston connected to the fuel supply pump in some cases, it may be difficult to achieve an ultra-high pressure condition of, for example, 180 MPa or more.
—方、 かかる吸入孔の面積が、 2 5 0 mm2を超えると、 吸入孔の機械的強度 が低下したリ、 耐久性が低下したりする場合があるためである。  On the other hand, if the area of the suction hole exceeds 250 mm2, the mechanical strength of the suction hole may be reduced and the durability may be reduced.
したがって、 吸入孔の面積を 2 0〜 2 0 O mm2の範囲内の値とすることがよ リ好ましく、 2 5〜1 5 O mm2の範囲内の値とすることがさらに好ましい。 なお、 一つの吸入孔の面積とは、 図 1 ( a ) に示す複数の吸入孔 1 9 cにおい て、 吸入室 1 9 aに向かって開いた一つの開口部 1 9 bの面積を意味する。 Therefore, the area of the suction hole is preferably set to a value in the range of 20 to 20 Omm2, and more preferably to a value in the range of 25 to 15 Omm2. The area of one suction hole means the area of one opening 19b opened toward the suction chamber 19a in the plurality of suction holes 19c shown in FIG. 1 (a). .
4 . シート部 4. Seat
第 1の実施形態では、 図 1 ( b ) に示すように、 弁体 2 0および弁本体 1 9の 一部が相互に接し、 燃料の通過量を正確に制御するための通過箇所としてのシ一 卜部 2 3を設けることを特徴とする。 すなわち、 弁体が弁ばね等によって上下動 して、 弁体および弁本体の一部が接することにより、 このようなシート部が形成 され、 大量の燃料であっても、 迅速かつ定量的に通過させることができるためで ある。  In the first embodiment, as shown in FIG. 1 (b), a part of the valve body 20 and a part of the valve body 19 are in contact with each other, and a system as a passage point for accurately controlling the amount of fuel passage is provided. It is characterized in that a separate part 23 is provided. In other words, the valve element is moved up and down by a valve spring or the like, and the valve element and a part of the valve body come into contact with each other, so that such a seat is formed. This is because it can be done.
なお、 上述したように、 かかるシート部における燃料の通過面積を、 吸入孔の 面積よリも小さくすることがより好ましい構成である。  As described above, it is a more preferable configuration that the passage area of the fuel in the seat portion is smaller than the area of the suction hole.
5 . 弁ばね 5. Valve spring
( 1 ) 第 1の弁ばね  (1) First valve spring
また、 図 1 ( b ) に示すように、 弁本体 1 9の上方に、 弁体 2 0を駆動させる ための弁ばね (第 1のスプリング) 2 1を備えていることが好ましい。  Further, as shown in FIG. 1 (b), it is preferable that a valve spring (first spring) 21 for driving the valve body 20 is provided above the valve body 19.
このように構成することにより、 弁ばねによって弁体を上下動させ、 弁本体と、 弁体とを接触させやすくすることができるとともに、 弁体のリフト時における、 着座衝撃を吸収させることができるためである。  With this configuration, the valve body can be moved up and down by the valve spring, so that the valve body and the valve body can be easily brought into contact with each other, and a seating shock when the valve body is lifted can be absorbed. That's why.
( 2 ) 第 2の弁ばね (2) Second valve spring
また、 図 4に示すように、 第 1の弁ばね (第 1のスプリング) 2 1とともに、 第 2の弁ばね 2 4を設けることが好ましい。 すなわち、 弁体 2 0をリフトする初 期段階から弁体 2 0に接するように設けられている、 パネ常数が比較的低い第 1 のスプリング 2 1とともに、 リフトする途中段階から弁体 2 0に接するように、 パネ常数が比較的高い第 2の弁ばね 2 4を設けることが好ましい。  As shown in FIG. 4, it is preferable to provide a second valve spring 24 together with the first valve spring (first spring) 21. That is, together with the first spring 21 having a relatively low panel constant, which is provided so as to be in contact with the valve body 20 from the initial stage of lifting the valve body 20, the valve body 20 is lifted from the middle of the lift. It is preferable to provide a second valve spring 24 having a relatively high panel constant so as to be in contact with the second valve spring.
このように構成することにより、 開弁初期には、 弁体をリフトしやすくなリ、 ブランジャへの燃料吸入効率を向上することができるとともに、 開弁が進むにつ れて上昇するリフトスピードを第 2の弁ばねによって低減し、 フルリフト時の衝 撃力を低減させることができる。 したがって、 大流量燃料用パルプであっても、 耐久性や強度低下を防止することができるとともに、 弁体の着座時における衝撃 音を軽減することができる。 With this configuration, in the early stage of valve opening, the valve body can be lifted easily, the efficiency of fuel intake to the plunger can be improved, and as the valve opening progresses. The second valve spring reduces the lift speed that rises as a result, and the impact force during a full lift can be reduced. Therefore, even with a high-flow fuel pulp, it is possible to prevent a decrease in durability and strength and to reduce an impact sound when the valve body is seated.
なお、 第 2の弁ばねとしては、 図 4に示すようなスプリング 2 4でもよく、 図 5 ( a ) 〜 (c ) に示すような板パネ 2 5でもよい。  The second valve spring may be a spring 24 as shown in FIG. 4 or a plate panel 25 as shown in FIGS. 5 (a) to 5 (c).
( 3 ) 非線形スプリング (3) Non-linear spring
また、 第 1および第 2の弁ばねを併用する代わりに、 図 6に示すような非線形 スプリング 2 6とすることも好ましい。 すなわち、 例えば、 円錐状のスプリング にするとともに、 下方に移動するにつれ、 スプリングの鋼自体の直径が大きくな るように構成することによって、 ばね常数を可変とすることができ、 弁ばねの数 を増やすことなく、 第 1および第 2の弁ばねを設けたのと同様の効果を得ること ができる。  It is also preferable to use a non-linear spring 26 as shown in FIG. 6 instead of using the first and second valve springs together. That is, for example, the spring constant can be made variable by forming a conical spring and increasing the diameter of the spring steel itself as it moves downward, so that the number of valve springs can be changed. It is possible to obtain the same effect as providing the first and second valve springs without increasing the number.
6 . 性能 6. Performance
( 1 ) 燃料通過量 (流速)  (1) Fuel passage (flow velocity)
また、 第 1実施形態の大流量燃料用バルブによれば、 燃料通過量 (流速) に関 し、 弁体のリフト量が略 1 mmにおいて、 燃料における単位時間当たりの流量を 5 0 0〜1、 5 0 0リットル/時間の範囲内の値とすることが好ましく、 8 0 0 〜 1、 3 0 0リツトル 時間の範囲内の値とすることがより好ましい。  Further, according to the high flow rate fuel valve of the first embodiment, the flow rate of fuel per unit time is 500 to 1 with respect to the fuel passage amount (flow velocity) when the lift amount of the valve body is approximately 1 mm. , Preferably within a range of 500 liters / hour, more preferably within a range of 800 to 1,300 liters time.
この理由は、 このように構成することにより、 比較的小さなリフト量において、 大流量を確保することができるとともに、 小型かつ、 高さが低い大流量燃料用バ ルブを提供することができるためである。  The reason for this is that with such a configuration, it is possible to secure a large flow rate with a relatively small lift amount, and to provide a small, low-height, high-flow fuel valve. is there.
ここで、 第 1実施形態の大流量燃料用バルブは、 図 7に示す特性曲線を有する ことがより好ましい。 すなわち、 図 7は、 横軸に弁体のリフト量 (相対値) を採 つて示してあり、 縦軸に燃料の単位時間当たりの流量、 すなわち、 流速 (相対 値) を採って示してある。 また、 図 7中、 ライン Aが、 従来の燃料用バルブに対応し、 図 8に示すように、 シート径が 7. 6 mmであり、 3つの吸入孔 1 9 cが、 円形の吸入室 1 8の外周 に沿って放射状に配置された構成の燃料用バルブ 32である (タイプ 1 ) 。 Here, the high flow rate fuel valve of the first embodiment more preferably has a characteristic curve shown in FIG. That is, in FIG. 7, the horizontal axis shows the valve lift (relative value), and the vertical axis shows the fuel flow rate per unit time, that is, the flow velocity (relative value). In FIG. 7, line A corresponds to a conventional fuel valve, and as shown in FIG. 8, the seat diameter is 7.6 mm, and three suction holes 19 c are provided in the circular suction chamber 1. The fuel valve 32 has a configuration radially arranged along the outer circumference of the fuel cell 8 (type 1).
同様に、 ライン Bは、 従来の燃料用バルブにおけるシート径を拡大した変形例 に対応し、 図 9に示すように、 シート径が 1 Ommであり、 3つの吸入孔 1 9 c 力 円形の吸入室 1 8の外周に沿って放射状に配置された構成の燃料用バルブ 3 4である (タイプ 2) 。  Similarly, line B corresponds to a modified example in which the seat diameter of the conventional fuel valve is increased, and as shown in FIG. 9, the seat diameter is 1 Omm, and three suction holes 19 c The fuel valve 34 has a configuration arranged radially along the outer periphery of the chamber 18 (type 2).
また、 ライン Cは、 本発明の大流量燃料用バルブの一例に対応したものであつ て、 図 1に示すように、 シート径が 1 Ommであり、 3つの吸入孔 1 9 c力 円 形の吸入室 1 8の接線に沿って配置された構成の大流量燃料用バルブ 73である (タイプ 3) 。  The line C corresponds to an example of the high flow rate fuel valve of the present invention. As shown in FIG. 1, the seat diameter is 1 Omm, and the three suction holes 19 c force circular. A large flow fuel valve 73 arranged along the tangent line of the suction chamber 18 (type 3).
(2) 絞りと特性 (2) Aperture and characteristics
また、 図 1 0 (a) および (b) 〜図 1 2 (a) および (b) に、 各燃料用バ ルブ (リフト小およぴ大) における燃料の速度分布から判断した絞り位置を示す。 すなわち、 図 1 0 (a) および (b) は、 図 8に示す従来の燃料用バルブにお ける絞り位置を示す図であって、 上述したタイプ 1のバルブに対応する図である。 また、 図 1 1 (a) および (b) は、 図 9に示す従来の燃料用バルブの変形例に おける絞り位置を示す図であって、 上述したタイプ 2のバルブに対応する図であ る。 また、 図 1 2 (a) および (b) は、 図 1に示す本発明の大流量燃料用バル ブにおける絞り位置を示す図であって、 上述したタイプ 3のバルブに対応する図 である。  Figures 10 (a) and (b) to Figures 12 (a) and (b) show the throttle position determined from the fuel velocity distribution at each fuel valve (lift small and large). . That is, FIGS. 10 (a) and (b) are diagrams showing the throttle position in the conventional fuel valve shown in FIG. 8, and are diagrams corresponding to the type 1 valve described above. FIGS. 11 (a) and 11 (b) are diagrams showing throttle positions in a modification of the conventional fuel valve shown in FIG. 9, and correspond to the type 2 valve described above. . FIGS. 12 (a) and 12 (b) are views showing the throttle position in the high flow rate fuel valve of the present invention shown in FIG. 1, and correspond to the above-mentioned type 3 valve.
これらの図から理解されるように、 タイプ 1のバルブでは、 リフト量に関わら ずシート部近傍に絞り位置が確認されている。 そして、 その流量特性に関しては、 図 7中のライン Aに示すとおり、 シート径の不足から /くルブリフトを増大しても 所定の流量を得ることができないこと力確認されている。  As can be understood from these figures, in the type 1 valve, the throttle position is confirmed near the seat portion regardless of the lift amount. Regarding the flow characteristics, as shown by line A in FIG. 7, it has been confirmed that a predetermined flow rate cannot be obtained even if the lift is increased due to insufficient sheet diameter.
また、 シート径を大きくしたタイプ 2のバルブにおいては、 リフト量の増大に 伴って、 絞り位置がシート部から吸入室 1 8に向かって移動していることが確認 されている。 但し、 その流量特性に関しては、 図 7中のライン Bに示すとおり、 タイプ 1に比べて、 流量は増加したものの、 所定の流量が得られまでには至って いない。 すなわち、 タイプ 2のバルブは、 シート径を大きくしたにも関わらず、 吸入室の絞りによって、 流量が規制されていたためである。 Further, it has been confirmed that in the type 2 valve having a larger seat diameter, the throttle position moves from the seat portion toward the suction chamber 18 as the lift amount increases. However, as for the flow characteristics, as shown in line B in Fig. 7, Although the flow rate has increased compared to Type 1, the required flow rate has not yet been achieved. In other words, the flow rate of the type 2 valve was regulated by the throttle of the suction chamber despite the increased seat diameter.
一方、 タイプ 3のバルブにおいては、 吸入孔が接線状に配置され、 しかもシー ト径が拡大されたことにより、 リフト量に関わらず、 絞り位置が、 シート部のみ に存在し、 タイプ 2に比べても、 吸入室 1 8の絞りが改善されていることが確認 されている。  On the other hand, in the type 3 valve, the suction hole is arranged tangentially and the sheet diameter is enlarged, so that the throttle position exists only in the seat part regardless of the lift amount, and compared to type 2 However, it has been confirmed that the restriction of the suction chamber 18 has been improved.
また、 その流量特性に関しても、 図 7中のライン Cに示すとおり、 吸入室での 絞りが改善されたことによって、 所定のリフト量において、 所定の流量が得られ ることが確認されている。  Regarding the flow characteristics, as shown by the line C in FIG. 7, it has been confirmed that a predetermined flow rate can be obtained at a predetermined lift amount by improving the throttle in the suction chamber.
[第 2の実施形態] [Second embodiment]
第 2の実施形態は、 図 1 3に例示されるように、 燃料吸入用バルブ 7 3および 燃料吐出用バルブを備えた燃料供給用ポンプ 5 0であって、 かかる燃料吸入用バ ルブ 7 3力 弁本体 1 9と、 その内部において稼動可能に取り付けられた弁体 2 0と、 弁本体 1 9の内部に設けられた吸入室 1 9 aと、 吸入孔 1 9 cと、 弁体 2 0および弁本体 1 9の一部が相互に接するシート部 2 3と、 を備え、 かつ、 吸入 孔 1 9 cを複数個設けるとともに、 当該吸入孔 1 9 cを吸入室 1 9 aに対して、 非放射状に配置してある大流量燃料用バルブであることを特徴とする燃料供給用 ポンプ 5 0である。 以下、 かかる燃料供給用ポンプ 5 0を、 構成要件等に分けて、 具体的に説明する。  The second embodiment is, as exemplified in FIG. 13, a fuel supply pump 50 provided with a fuel intake valve 73 and a fuel discharge valve. A valve body 19, a valve body 20 operably mounted therein, a suction chamber 19a provided inside the valve body 19, a suction hole 19c, a valve body 20 and And a seat part 23 in which a part of the valve body 19 is in contact with each other. Further, a plurality of suction holes 19c are provided, and the suction holes 19c are not connected to the suction chamber 19a. A fuel supply pump 50 characterized by being a high-flow fuel valve radially arranged. Hereinafter, the fuel supply pump 50 will be specifically described by dividing it into components and the like.
1 . 燃料吸入用バルブ 1. Fuel intake valve
第 2の実施形態では、 第 1の実施形態で説明した大流量燃料用バルブを燃料吸 入用バルブとして使用することを特徴としている。 したがって、 図 1 4に示すよ うな燃料吸入用バルブ 7 3および燃料吐出用バルブ 6 0からなる I Oバルブ 7 0 を構成することが好ましい。  The second embodiment is characterized in that the large flow rate fuel valve described in the first embodiment is used as a fuel intake valve. Therefore, it is preferable to configure an IO valve 70 including the fuel intake valve 73 and the fuel discharge valve 60 as shown in FIG.
なお、 第 1の実施形態で説明した大流量燃料用バルブを燃料吸入用パルプとし て使用する場合には、 燃料供給用ポンプに対して、 例えば、 単位時間当た.りの流 量が 5 0 0〜 1、 5 0 0リツトル Z時間程度の燃料であっても、 極めて正確かつ 定量的に供給することができる。 When the high flow rate fuel valve described in the first embodiment is used as the fuel suction pulp, for example, the flow rate per unit time is applied to the fuel supply pump. Even fuel with a volume of about 500 to 1,500 liters Z hours can be supplied extremely accurately and quantitatively.
2 . 燃料供給用ポンプ 2. Fuel supply pump
燃料供給用ポンプの形態は特に制限されるものでは無いが、 例えば、 図 1 3に 示すような燃料供給用ポンプ 5 0を備えることが好ましい。 すなわち、 かかる燃 料供給用ポンプは、 例えば、 ポンプハウジング 5 2と、 バレル (シリンダ) 5 3 と、 プランジャ 5 4と、 燃料圧縮室 7 4と、 タペット 5 8と、 カム 6 0と、 から 構成してあることが好ましい。  Although the form of the fuel supply pump is not particularly limited, for example, it is preferable to include a fuel supply pump 50 as shown in FIG. That is, the fuel supply pump includes, for example, a pump housing 52, a barrel (cylinder) 53, a plunger 54, a fuel compression chamber 74, a tappet 58, and a cam 60. It is preferred that
そして、 ポンプハウジング 5 2に収容されたバレル 5 3の内側をプランジャ 5 4が摺動して燃料を加圧するための燃料圧縮室 7 4が形成されており、 かかるプ ランジャ 5 4は、 カム 6 0の回転運動に対応して、 往復動するように構成してあ ることが好ましい。 したがって、 フィードポンプ 6 4から圧送された燃料を、 燃料圧縮室 7 4において、 プランジャ 5 4によって、 高圧の燃料に効率的に加圧 することができる。  A plunger 54 slides inside the barrel 53 housed in the pump housing 52 to form a fuel compression chamber 74 for pressurizing the fuel. The plunger 54 includes a cam 6. It is preferable that it is configured to reciprocate in response to zero rotational movement. Therefore, the fuel pumped from the feed pump 64 can be efficiently pressurized to high-pressure fuel by the plunger 54 in the fuel compression chamber 74.
なお、 この燃料供給用ポンプ 5 0の例では、 ポンプハウジング 5 2内に、 例え ば二組のバレル (シリンダ) 5 3およびプランジャ 5 4を備えているが、 ょリ大 容量の燃料を高圧処理するために、 二組以上の数に増加することも好ましい。  In this example of the fuel supply pump 50, for example, two sets of barrels (cylinders) 53 and plungers 54 are provided in the pump housing 52. In order to achieve this, it is also preferable to increase the number to two or more sets.
3 . 蓄圧式燃料噴射装置 (A P C R S ) 3. Accumulator type fuel injection system (APCRS)
また、 第 2の実施形態の燃料供給用ポンプは、 以下のような構成を有するビス トン増圧方式の蓄圧式燃料噴射装置の一部であることが好ましい。  Further, it is preferable that the fuel supply pump of the second embodiment is a part of a pressure accumulating fuel injection device of the biston pressure increasing type having the following configuration.
すなわち、 図 1 5に例示されるように、 燃料供給用ポンプ 1 0 3は、 燃料タン ク 1 0 2と、 かかる燃料タンク 1 0 2の燃料を供給するためのフィードポンプ That is, as exemplified in FIG. 15, the fuel supply pump 103 is composed of a fuel tank 102 and a feed pump for supplying the fuel of the fuel tank 102.
(低圧ポンプ) 1 0 4と、 燃料供給用ポンプ (高圧ポンプ) 1 0 3と、 かかる燃 料供給用ポンプ 1 0 3から圧送された燃料を蓄圧するための蓄圧器としてのコモ ンレール 1 0 6と、 ピストン増圧装置 1 0 8、 および燃料噴射装置 1 1 0と、 か ら構成されていることが好ましい。 ( 1 ) 燃料タンク (Low pressure pump) 104, Fuel supply pump (High pressure pump) 103, Common rail as accumulator for accumulating fuel pumped from the fuel supply pump 103 And a piston pressure increasing device 108 and a fuel injection device 110. (1) Fuel tank
図 1 5に例示される燃料タンク 1 0 2の容積や形態は、 例えば、 単位時間当た リの流量が 5 0 0〜 1、 5 0 0リツトル Z時間程度の燃料を循環できることを考 慮して定めることが好ましい。  The volume and configuration of the fuel tank 102 illustrated in FIG. 15 take into account, for example, that a fuel flow rate of about 500 to 1,500 liters per hour per unit time can be circulated. It is preferable to determine
( 2 ) フィードポンプおよび燃料供給用ポンプ (2) Feed pump and fuel supply pump
フィードポンプ 1 0 4は、 図 1 5に示すように、 燃料タンク 1 0 2内の燃料 (軽油) を燃料供給用ポンプ 1 0 3に圧送するものであり、 フィードポンプ 1 0 4と、 燃料供給用ポンプ 1 0 3との間にはフィルタ一 1 0 5が介在されているこ とが好ましい。 そして、 このフィードポンプ 1 0 4は、 一例ではあるが、 ギヤポ ンプ構造を有し、 カムの端部に取付け、 ギヤの駆動を介して、 カム軸と直結また は適当なギヤ比を介して駆動されていることが好ましい。  The feed pump 104 pumps the fuel (light oil) in the fuel tank 102 to the fuel supply pump 103 as shown in FIG. 15, and the feed pump 104 and the fuel supply It is preferable that a filter 105 is interposed between the filter and the pump 103. The feed pump 104 has, for example, a gear pump structure, is attached to an end of a cam, and is directly connected to a cam shaft via a gear drive or through an appropriate gear ratio. It is preferred that
また、 燃料供給用ポンプ 1 0 3は、 フィードポンプ 1 0 4から供給された燃料 を高圧に加圧処理する装置であり、 燃料を加圧した後、 高圧通路 1 0 7を介して コモンレール 1 0 6に圧送するように構成されている。  The fuel supply pump 103 is a device for pressurizing the fuel supplied from the feed pump 104 to a high pressure. After the fuel is pressurized, the fuel is supplied to the common rail 104 via the high-pressure passage 107. 6 is configured to be pumped.
また、 フィードポンプ 1 0 4力、ら、 フィルタ一 1 0 5を介して圧送された燃料 は、 図 1 6に示すような噴身す量調整を行う比例制御弁 (F M U ) 1 2 0をさらに 経由して、 燃料供給用ポンプ 1 0 3に供給されることが好ましい。 かかる比例制 御弁 1 2 0は、 例えば、 E C Uの制御を受けて、 コイル 1 2 4に流す電流量を調 整することにより、 アンカー 1 2 5の位置を比例的に制御することが好ましい。 すなわち、 アンカー 1 2 5の位置に対応させて、 アンカー 1 2 5の先端部におけ るピストン 1 2 7の位置を制御することにより、 かかるピストン 1 2 7に設置さ れたスリット 1 2 2と、 燃料供給部 1 2 9との間の、 燃料通過面積を変化させ、 燃料供給用ポンプ 1 0 3における吸入バルブ (図示せず) に供給する燃料を制御 することができる。  In addition, the fuel pumped through the feed pump 104 and the filter 105 is further operated by a proportional control valve (FMU) 120 that adjusts the amount of squirt as shown in FIG. It is preferable that the fuel is supplied to the fuel supply pump 103 via the above. For example, it is preferable that the proportional control valve 120 proportionally controls the position of the anchor 125 by adjusting the amount of current flowing through the coil 124 under the control of the ECU. That is, by controlling the position of the piston 127 at the distal end of the anchor 125 in accordance with the position of the anchor 125, the slit 122 provided in the piston 127 is controlled. By changing the fuel passage area between the fuel supply unit 129 and the fuel supply unit 129, the fuel supplied to a suction valve (not shown) of the fuel supply pump 103 can be controlled.
また、 図 1 6に示すように、 フィードポンプ 1 0 4から供給された燃料は、 比 例制御弁 1 2 0および燃料供給用ポンプ 1 0 3に対して圧送される他に、 かかる 比例制御弁 1 2 0と並列的に設けられたオーバーフローバルブ (O F V ) 1 3 4 を介して、 燃料タンク 1 0 2に戻されるように構成することが好ましい。 そして、 さらに、 一部の燃料は、 オーバーフローバルブ 1 34に取付けられたオリフィス 136を介して、 燃料供給用ポンプ 103の軸受 (図示せず) に圧送され、 軸受 の燃料潤滑油として使用されることが好ましい。 As shown in FIG. 16, the fuel supplied from the feed pump 104 is pumped to the proportional control valve 120 and the fuel supply pump 103 as well as the proportional control valve. It is preferable that the fuel tank is returned to the fuel tank 102 through an overflow valve (OFV) 134 provided in parallel with the fuel tank 120. And Further, a portion of the fuel is preferably pumped to a bearing (not shown) of the fuel supply pump 103 through an orifice 136 attached to the overflow valve 134, and is preferably used as a fuel lubricant for the bearing. .
なお、 燃料供給用ポンプ 103は、 上述したように、 フィードポンプ 104か ら供給された燃料を高圧に加圧処理する装置であり、 燃料を加圧した後、 高圧通 路 107を介してコモンレール 106に圧送するように構成されていることが好 ましい。  The fuel supply pump 103 is a device for pressurizing the fuel supplied from the feed pump 104 to a high pressure, as described above. After the fuel is pressurized, the fuel is supplied to the common rail 106 via the high pressure passage 107. Preferably, it is configured to be pumped to
(3) 一方向弁 (3) One-way valve
また、 図 15に示すように、 燃料供給用ポンプ 103の出口、 あるいは、 後述 するコモンレール 106と、 燃料供給用ポンプ 103とに、 一方向弁 (図示せ ず) を設けることが好ましい。  Further, as shown in FIG. 15, it is preferable to provide a one-way valve (not shown) at the outlet of the fuel supply pump 103 or at the common rail 106 described later and the fuel supply pump 103.
この理由は、 このように構成することにより、 燃料供給用ポンプ 103からコ モンレール 106への燃料の送液のみを可能とできるためである。 したがって、 電磁制御弁を開いた際の逆流を有効に防止して、 コモンレール 106内の圧力が 低下するのを有効に防止することができる。  The reason for this is that with this configuration, it is possible to feed only the fuel from the fuel supply pump 103 to the common rail 106. Therefore, backflow when the electromagnetic control valve is opened can be effectively prevented, and the pressure in the common rail 106 can be effectively prevented from lowering.
(4) コモンレール (4) Common rail
また、 図 15に示すように、 コモンレール 106には、 複数のインジェクタ (噴射弁) 1 10が接続されており、 コモンレール 106で高圧に蓄圧された燃 料を各インジェクタ 1 10から内燃機関 (図示せず) 内に噴射することが好まし い。  Further, as shown in FIG. 15, a plurality of injectors (injection valves) 110 are connected to the common rail 106, and the fuel stored at a high pressure by the common rail 106 is supplied from each injector 110 to an internal combustion engine (not shown). It is preferred that the fuel be injected inside.
また、 これらの各インジェクタ 1 10は、 図示しないが、 I DU (IDU:  Although not shown, each of these injectors 110 has an IDU (IDU:
Injector Driving Unit) を介してその吐出量が制御されていることが好ましい c かかる I DUは、 後述する制御装置としての電子制御ュニッ卜 (ECU: It is preferable that the discharge amount is controlled through an injector driving unit ( c) . The IDU is an electronic control unit (ECU:
Electrical Controlling Unit) に接続されており、 この ECUの駆動信号によ リ駆動されている。 Electrical Controlling Unit) and is driven by the drive signal of this ECU.
また、 コモンレール 106の側端には、 圧力検知器 1 17力《接続されており、 かかる圧力検知器 1 17で得られた圧力検知信号を ECUに送ることが好ましい c すなわち、 E C Uは、 圧力検知器 1 1 7からの圧力検知信号を受けると、 電磁制 御弁 (図示せず。 ) を制御するとともに、 検知した圧力に応じて I D Uの駆動を 制御することが好ましい。 Further, the side edge of the common rail 106, are pressure sensors 1 17 force "connection, sending a pressure detection signal obtained by such a pressure detector 1 17 to the ECU is preferably c That is, when receiving the pressure detection signal from the pressure detector 117, the ECU preferably controls an electromagnetic control valve (not shown) and controls the drive of the IDU according to the detected pressure. .
( 5 ) ピストン增圧装置 (5) Piston pressure device
また、 ピストン增圧装置 (増圧ピストン) としては、 図 1 7に例示されるよう に、 シリンダ 1 5 5と、 機械式ピストン 1 5 4と、 加圧室 1 5 8と、 電磁弁 1 7 0と、 循環路 1 5 7とを含むとともに、 機械式ピストン 1 5 4が比較的大面積を 有する受圧部 1 5 2と、 比較的小面積を有する加圧部 1 5 6と、 を備えているこ とが好ましい。  As illustrated in FIG. 17, the piston pressure increasing device (pressure intensifying piston) includes a cylinder 15 55, a mechanical piston 15 54, a pressurizing chamber 15 58, and a solenoid valve 17. 0, a circulation path 1557, and a mechanical piston 1554 having a pressure receiving section 152 having a relatively large area, and a pressurizing section 1556 having a relatively small area. Is preferred.
すなわち、 シリンダ 1 5 5内に収容された機械式ピストン 1 5 4が、 当該受圧 部 1 5 2において、 コモンレール圧を有する燃料により押圧されて移動し、 加圧 室 1 5 8のコモンレール圧、 例えば、 5 O M P a程度の圧力を有する燃料を、 さ らに比較的小面積を有する加圧部 1 5 6によって加圧し、 1 5 0 M P a〜3 0 0 M P aの範囲内の値とすることが好ましい。  That is, the mechanical piston 154 housed in the cylinder 155 is moved by being pressed by the fuel having the common rail pressure in the pressure receiving portion 152, and the common rail pressure of the pressurizing chamber 158, for example, The fuel having a pressure of about 5 OMPa is pressurized by the pressurizing section 156 having a relatively small area, and the fuel pressure is set to a value within the range of 150 MPa to 300 MPa. Is preferred.
また、 機械式ピストン 1 5 4を加圧するために、 コモンレール圧を有する燃料 を大量に使用するが、 加圧後には、 電磁駆動式のオーバーフロー弁 1 7 0を介し て、 燃料タンク等に還流させることが好ましい。 すなわち、 コモンレール圧を有 する燃料の大部分は、 機械式ピストン 1 5 4を加圧した後、 燃料噴射装置の電磁 弁 1 8 0から流出した燃料とともに燃料タンク等に還流され、 再び、 機械式ピス トン 1 5 4を加圧するために使用されることが好ましい。  In addition, a large amount of fuel having a common rail pressure is used to pressurize the mechanical piston 154, but after pressurization, the fuel is returned to the fuel tank, etc. via the electromagnetically driven overflow valve 170. Is preferred. That is, most of the fuel having the common rail pressure is returned to the fuel tank or the like together with the fuel flowing out of the electromagnetic valve 180 of the fuel injection device after pressurizing the mechanical piston 154, and is returned to the mechanical type again. It is preferably used to pressurize piston 154.
—方、 加圧部 1 5 6によって増圧された燃料は、 燃料噴射装置 (燃料噴射ノズ ル) 1 6 3に送液され、 効率的に噴射されて、 燃焼されることになる。  On the other hand, the fuel whose pressure has been increased by the pressurizing section 156 is sent to a fuel injection device (fuel injection nozzle) 163, where it is efficiently injected and burned.
したがって、 このようにピストン増圧装置を設けることにより、 コモンレール を過度に大型化することなく、 コモンレール圧を有する燃料によって、 効果的に 機械式ビストンを押圧することができる。  Therefore, by providing the piston pressure increasing device in this way, the mechanical piston can be effectively pressed by the fuel having the common rail pressure without excessively increasing the size of the common rail.
すなわち、 図 1 8に模式図を示すように、 A P C R Sシステムによれば、 機械 式ピストンに、 比較的大面積の受圧部と、 比較的小面積の加圧部と、 を備えると ともに、 機械式ピストンのストローク量を考慮することにより、 加圧損失を少な く、 コモンレール圧を有する燃料を、 所望値に効率的に増圧することが可能であ る。 That is, as shown in a schematic diagram in FIG. 18, according to the APCRS system, a mechanical piston is provided with a relatively large area pressure receiving section and a relatively small area pressurizing section, and a mechanical piston is provided. Pressure loss can be reduced by considering the piston stroke. In addition, the fuel having the common rail pressure can be efficiently increased to a desired value.
よリ具体的には、 コモンレールからの燃料 (圧力: p 1、 体積: V 1、 仕事 量: W 1 ) を、 比較的大面積を有する受圧部により受け、 比較的小面積を有する 加圧部を備えた機械式ピストンにより、 より高圧の燃料 (圧力: p 2、 体積: V 2、 仕事量: W 2 ) とするとすることができる。  More specifically, the fuel (pressure: p1, volume: V1, work: W1) from the common rail is received by the pressure receiving section having a relatively large area, and the pressurizing section having a relatively small area. With a mechanical piston equipped with, higher pressure fuel (pressure: p2, volume: V2, work: W2) can be obtained.
( 6 ) 燃料噴射装置 (6) Fuel injection device
①基本的構造  ① Basic structure
また、 燃料噴射装置 (燃料噴射ノズル) 1 1 0の形態は特に制限されるもので は無いが、 例えば、 図 1 7に例示されるように、 ニードル弁体 1 6 2が着座する 着座面 1 6 4と、 この着座面 1 6 4の弁体当接部位よりも下流側に形成される噴 孔 1 6 5と、 を有するノズルボディ 1 6 3を備え、 ニードル弁体 1 6 2のリフト 時に着座面 1 6 4の上流側から供給される燃料を噴孔 1 6 5へ導く構成であるこ とが好ましい。  The form of the fuel injection device (fuel injection nozzle) 110 is not particularly limited. For example, as shown in FIG. 17, a seating surface 1 on which the needle valve element 16 2 is seated And a nozzle body 163 having a nozzle hole 16 formed downstream of the seating surface 16 4 of the valve body abutting portion. It is preferable that fuel supplied from the upstream side of the seating surface 164 be guided to the injection hole 165.
また、 このような燃料噴射ノズルシステム 1 6 6は、 スプリング 1 6 1等によ つてニードル弁体 1 6 2を着座面 1 6 4に向かって常時付勢しておき、 ニードル 弁体 1 6 2をソレノイド 1 8 0の通電 非通電の切り替えによって開閉する電磁 弁型であることが好ましい。  Further, in such a fuel injection nozzle system 16 6, the needle valve body 16 2 is constantly urged toward the seating surface 16 4 by a spring 16 1 or the like, and the needle valve body 16 2 It is preferable to use a solenoid valve that opens and closes by switching between energization and non-energization of the solenoid 180.
②噴射タイミングチャート ② Injection timing chart
また、 高圧燃料の噴射タイミングチャートに関し、 図 1 9に例示するように、 実線 Aで示されるような、 二段階の噴射状態を有する燃料噴射チャートを示すこ とが好ましい。  Regarding the high-pressure fuel injection timing chart, as shown in FIG. 19, it is preferable to show a fuel injection chart having a two-stage injection state as shown by a solid line A.
この理由は、 コモンレール圧と、 ピストン増圧装置 (增圧ピストン) における 増圧の組み合わせによリ、 かかる二段階の噴射タイミングチャートを達成するこ とができ、 それによつて燃料の燃焼効率を高めるとともに、 排気ガス浄化させる ことができるためである。 また、 本発明によれば、 コモンレール圧と、 ピストン増圧装置 (増圧ピスト ン) における増圧の組み合わせにより、 図 1 9中、 点線 Bで示されるような燃料 噴射チヤ一卜を示すことも好ましい。 The reason is that the two-stage injection timing chart can be achieved by the combination of the common rail pressure and the pressure increase in the piston pressure booster (增 pressure piston), thereby increasing the fuel combustion efficiency. At the same time, it is possible to purify exhaust gas. Further, according to the present invention, the combination of the common rail pressure and the pressure boosting in the piston pressure booster (pressure boosting piston) may show a fuel injection channel as shown by a dotted line B in FIG. preferable.
なお、 ピストン増圧装置 (増圧ピストン) を使用しない場合、 すなわち従来の 噴射タイミングチャートは、 図 1 9中、 点線 Cで示されるように、 低噴射量の一 段階の噴射タィミングチヤ一トとなる。  When the piston pressure booster (pressure boosting piston) is not used, that is, the conventional injection timing chart is a one-stage injection timing chart with a low injection amount as shown by a dotted line C in FIG. .
( 7 ) 動作 (7) Operation
次に、 第 2の実施形態における燃料供給用ポンプ 1 0 3、 ピストン增圧装置 (増圧ピストン) 1 0 8および燃料噴射弁 1 1 0の作用を説明する。 すなわち、 図 1 5に示すように、 燃料噴射装置 (燃料噴射ノズルシステム) 1 1 0の運転時 には、 燃料タンク 1 0 2の燃料を、 フィードポンプ 1 0 4から燃料供給用ポンプ 1 0 3に供給し、 次いで、 燃料供給用ポンプ 1 0 3から高圧燃料を高圧通路 1 0 7に対して圧送する。 Next, operations of the fuel supply pump 103, the piston pressure increasing device (pressure increasing piston) 108 and the fuel injection valve 110 in the second embodiment will be described. That is, as shown in FIG. 1 5, the fuel injection device (fuel injection nozzle system) 1 1 0 During operation, the fuel in the fuel tank 1 0 2, the feed pump 1 0 4 fuel supply pump 1 0 3 Then, high-pressure fuel is supplied from the fuel supply pump 103 to the high-pressure passage 107 under pressure.
次いで、 図 1 7に示すように、 コモンレール 1 0 6で 5 0 M P a程度に蓄圧さ れ、 さらに、 燃料噴射弁 1 1 0との間に、 ピストン増圧装置 (増圧ピストン) 1 0 8が設けてあり、 1 8 0 M P a以上の超高圧条件に加圧することが好ましい。 また、 增圧ピストン 1 0 8を動作させる上で、 極めて大流量の燃料を用いてお リ、 そのために、 図 1 7に示す例では、 燃料供給用ポンプ 1 0 3に設けられた大 流量燃料用バルブ (図示せず) が有効に機能している。  Next, as shown in Fig. 17, the pressure is accumulated to about 50 MPa by the common rail 106, and further, between the fuel injection valve 110 and the piston pressure increase device (pressure increase piston) 108 It is preferable to pressurize under ultra-high pressure conditions of 180 MPa or more. Also, when operating the low pressure piston 108, an extremely large flow rate of fuel is used. For this reason, in the example shown in FIG. 17, the large flow rate fuel provided in the fuel supply pump 103 is used. Valve (not shown) is functioning effectively.
すなわち、 吸入孔を複数個設けるとともに、 当該吸入孔を吸入室に対して、 非 放射状に配置した大流量燃料用バルブを、 燃料供給用ポンプ 1 0 3の燃料吸入用 バルブとして、 使用することにより、 例えば、 単位時間当たりの流量が 5 0 0〜 1、 5 0 0リツトル 時間程度の燃料であっても、 迅速かつ定量的に通過させる ことができ、 さらには、 燃料供給用ポンプ 1 0 3およびコモンレール 1 0 6によ つて、 それぞれ大量処理を実施することができる。 産業上の利用可能性 本発明の大流量燃料用バルブによれば、 吸入孔を複数個設けるとともに、 当該 吸入孔を吸入室に対して、 非放射状に配置することにより、 例えば、 単位時間当 たリの流量が 5 0 0〜 1、 5 0 0リツトル Z時間程度の燃料であっても、 迅速か つ定量的に通過させることができるになった。 That is, by providing a plurality of suction holes and using a high flow rate fuel valve in which the suction holes are arranged non-radially with respect to the suction chamber as a fuel suction valve of the fuel supply pump 103, For example, even a fuel having a flow rate per unit time of about 500 to 1,500 liters can be passed quickly and quantitatively, and furthermore, a fuel supply pump 103 and With the common rail 106, large-scale processing can be performed for each. Industrial applicability According to the high flow rate fuel valve of the present invention, by providing a plurality of suction holes and arranging the suction holes non-radially with respect to the suction chamber, for example, the flow rate per unit time can be reduced to 50%. Even fuels of about 0 to 1,500 liters Z hours can be passed quickly and quantitatively.
また、 本発明の大流量燃料用バルブによれば、 弁体のリフト量が比較的低い場 合であっても、 単位時間当たりの流量が 1、 0 0 0リツトル 時間以上の大流量 の燃料を通過させることができるため、 弁体の位置変化が少なくなリ、 着座時の 衝撃を緩和することができるようになった。  Further, according to the large flow rate fuel valve of the present invention, even if the lift amount of the valve body is relatively low, a large flow rate fuel having a flow rate per unit time of 1,000 liter hours or more can be used. Since the valve can pass through, the position change of the valve body is reduced, and the impact at the time of sitting can be reduced.
さらに、 本発明の大流量燃料用バルブによれば、 吸入孔の直径や断面積を過度 に大きくすることなく、 大量の燃料を迅速かつ定量的に通過させることができる ため、 大流量燃料用バルブ自体の耐久性や強度低下を抑制することができるよう になった。  Further, according to the high flow rate fuel valve of the present invention, a large amount of fuel can be passed quickly and quantitatively without excessively increasing the diameter and the sectional area of the suction hole. It has become possible to control the durability and strength of the device itself.
したがって、 本発明の大流量燃料用バルブは、 ピストンを利用して大流量の燃 料を増圧する蓄圧式燃料噴射装置 ( A P C R S ) に使用される燃料供給用ポンプ の大流量燃料用バルブとして好適に使用することができる。  Therefore, the large flow rate fuel valve of the present invention is suitably used as a high flow rate fuel valve of a fuel supply pump used in a pressure accumulating fuel injection device (APCRS) that uses a piston to increase a large flow rate of fuel. Can be used.
また、 本発明の大流量燃料用バルブを備えた燃料供給用ポンプによれば、 吸入 孔を複数個設けるとともに、 吸入室に対して、 非放射状に配置された吸入孔を有 する大流量燃料用バルブを備えることにより、 例えば、 単位時間当たりの流量が 5 0 0〜1、 5 0 0リツトル Z時間の極めて大流量の燃料であっても、 迅速かつ 定量的に透過させることができるようになった。  Further, according to the fuel supply pump provided with the high flow rate fuel valve of the present invention, a plurality of suction holes are provided, and the large flow rate fuel having a non-radially arranged suction hole with respect to the suction chamber is provided. By providing a valve, for example, it is possible to quickly and quantitatively permeate even a very large flow rate of fuel with a flow rate per unit time of 500 to 1,500 liters Z hours. Was.

Claims

請 求 の 範 囲 The scope of the claims
1 . 弁本体と、 その内部において稼動可能に取り付けられた弁体と、 弁本体内 部に設けられた吸入室と、 吸入孔と、 弁体および弁本体の一部が相互に接するシ 一卜部と、 を備えた大流量燃料用バルブにおいて、 1. A valve body, a valve body operably mounted inside the valve body, a suction chamber provided inside the valve body, a suction hole, and a seat part where the valve body and a part of the valve body are in contact with each other. And a high flow fuel valve comprising:
前記吸入孔を複数個設けるとともに、 当該吸入子しを前記吸入室に対して、 非放 射状に配置することを特徴とする大流量燃料用バルブ。  A large flow rate fuel valve, wherein a plurality of the suction holes are provided, and the suction piece is disposed in a non-radiative manner with respect to the suction chamber.
2 . 前記吸入室の水平断面形状を実質的に円形とするとともに、 前記吸入孔を、 前記吸入室の接線方向に沿って配置することを特徴とする請求の範囲第 1項に記 載の大流量燃料用バルブ。 2. The horizontal cross-sectional shape of the suction chamber is substantially circular, and the suction holes are arranged along a tangential direction of the suction chamber. Flow valve for fuel.
3 . 前記吸入孔を、 前記吸入室に対して、 垂直方向に傾けて配置することを特 徴とする請求の範囲第 1項または第 2項に記載の大流量燃料用バルブ。 3. The high flow rate fuel valve according to claim 1, wherein the suction hole is disposed so as to be vertically inclined with respect to the suction chamber.
4 . 前記吸入孔の直径を 2〜1 2 m mの範囲内の値とすることを特徴とする請 求の範囲第 1項〜第 3項のいずれか一項に記載の大流量燃料用バルブ。 4. The high flow rate fuel valve according to any one of claims 1 to 3, wherein the diameter of the suction hole is set to a value within a range of 2 to 12 mm.
5 . 前記弁体のシート径を 8 mm以上の値とすることを特徴とする請求の範囲 第 1項〜第 4項のいずれか一項に記載の大流量燃料用バルブ。 5. The large flow rate fuel valve according to any one of claims 1 to 4, wherein the valve diameter of the valve body is 8 mm or more.
6 . 前記吸入孔における燃料の通過面積を、 前記シート部における燃料の通過 面積よりも大きくすることを特徴とする請求の範囲第 1項〜第 5項のいずれか一 項に記載の大流量燃料用バルブ。 6. The high flow rate fuel according to any one of claims 1 to 5, wherein the passage area of the fuel in the suction hole is made larger than the passage area of the fuel in the seat portion. For valves.
7 . 燃料吸入用バルブおよび燃料吐出用バルブを備えた燃料供給用ポンプにお いて、 前記燃料吸入用バルブが、 弁本体と、 その内部において稼動可能に取り付けら れた弁体と、 弁本体内部に設けられた吸入室と、 吸入孔と、 弁体および弁本体の 一部が相互に接するシート部と、 を備え、 7. In a fuel supply pump equipped with a fuel intake valve and a fuel discharge valve, The fuel intake valve includes a valve body, a valve body operably mounted inside the valve body, a suction chamber provided inside the valve body, a suction hole, and a part of the valve body and the valve body. And a seat part in contact with
かつ、 前記吸入孔を複数個設けるとともに、 当該吸入孔を前記吸入室に対して、 非放射状に配置された大流量燃料用バルブであることを特徴とする燃料供給用ポ ンプ。  A fuel supply pump, wherein a plurality of the suction holes are provided, and the suction holes are high-flow-rate fuel valves arranged non-radially with respect to the suction chamber.
8 . 単位時間当たリの流量が 5 0 0 ~ 1、 5 0 0リツ卜ル 時間である燃料を、 5 0 M P a以上の値に加圧するための蓄圧式燃料噴射装置に使用されることを特 徴とする請求の範囲第 7項に記載の燃料供給用ポンプ。 8. To be used in a pressure-accumulation type fuel injection device to pressurize fuel with a flow rate of 500 to 1,500 liters per unit time to a value of 50 MPa or more. The fuel supply pump according to claim 7, wherein the fuel supply pump is characterized in that:
PCT/JP2003/013687 2002-10-29 2003-10-27 High flow rate fuel valve and fuel supply pump with the valve WO2004040122A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003275676A AU2003275676A1 (en) 2002-10-29 2003-10-27 High flow rate fuel valve and fuel supply pump with the valve
EP03758922A EP1557559A4 (en) 2002-10-29 2003-10-27 High flow rate fuel valve and fuel supply pump with the valve
US11/018,218 US20050106035A1 (en) 2002-10-29 2004-12-21 High flow rate fuel valve and fuel supply pump with the valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-313763 2002-10-29
JP2002313763A JP2004150290A (en) 2002-10-29 2002-10-29 Pump for supplying fuel and tappet structure
JP2002-381008 2002-12-27
JP2002381008A JP2004211580A (en) 2002-12-27 2002-12-27 Valve for high flow fuel and fuel supply pump provide with the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/018,218 Continuation US20050106035A1 (en) 2002-10-29 2004-12-21 High flow rate fuel valve and fuel supply pump with the valve

Publications (1)

Publication Number Publication Date
WO2004040122A1 true WO2004040122A1 (en) 2004-05-13

Family

ID=32232636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013687 WO2004040122A1 (en) 2002-10-29 2003-10-27 High flow rate fuel valve and fuel supply pump with the valve

Country Status (4)

Country Link
EP (1) EP1557559A4 (en)
KR (1) KR100709867B1 (en)
AU (1) AU2003275676A1 (en)
WO (1) WO2004040122A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028073B3 (en) * 2004-06-09 2005-08-04 Siemens Ag No-return valve for fuel injection system has inflow via at least one inflow groove in valve body and at least one inflow boring in valve body
EP1715177A1 (en) * 2005-04-21 2006-10-25 Dell'orto S.P.A. Piezoelectric actuator for the operation of an injection pump for internal-combustion engines, and injector-pump assembly employing said actuator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120492A (en) 2005-09-29 2007-05-17 Denso Corp High pressure fuel pump
DE102007052753A1 (en) * 2007-11-06 2009-05-07 Robert Bosch Gmbh Fuel injector with optimized Absteuerstoss
DE102008048450B4 (en) 2008-09-23 2014-10-30 Continental Automotive Gmbh Suction valve for a cylinder of the high pressure fuel pump of a common rail injection system
EP2184491A1 (en) * 2008-11-07 2010-05-12 Delphi Technologies Holding S.à.r.l. Pump head for fuel pump assembly
ITMI20130569A1 (en) * 2013-04-10 2014-10-11 Bosch Gmbh Robert PUMPING GROUP FOR FUEL SUPPLEMENTATION, PREFERABLY GASOIL, TO AN INTERNAL COMBUSTION ENGINE
DE102013210036A1 (en) 2013-05-29 2014-12-04 Robert Bosch Gmbh High pressure pump for a fuel injection system
US11591994B2 (en) 2017-11-22 2023-02-28 Hitachi Astemo, Ltd. Fuel injection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140972A (en) * 1983-01-31 1984-08-13 Yamatake Honeywell Co Ltd Cage valve
JPH01125862U (en) * 1988-02-22 1989-08-28
GB2352780A (en) * 1999-03-23 2001-02-07 Nachi Fujikoshi Corp High pressure plunger pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB431140A (en) * 1933-12-22 1935-06-24 Simms Motor Units Ltd Improvements relating to liquid fuel injection pumps
DE2261726C2 (en) * 1972-12-16 1985-10-10 Klöckner-Humboldt-Deutz AG, 5000 Köln Fuel injection valve for internal combustion engines
DE2841986A1 (en) * 1978-09-27 1980-04-10 Daimler Benz Ag Direct injection compression ignition engine - has injection holes tangential to blind nozzle needle valve bore
US5540564A (en) * 1993-11-12 1996-07-30 Stanadyne Automotive Corp. Rotary distributor type fuel injection pump
JP3525883B2 (en) * 1999-12-28 2004-05-10 株式会社デンソー Fuel injection pump
DE10132246A1 (en) * 2001-07-04 2003-01-23 Bosch Gmbh Robert Fuel injector with high pressure resistant inlet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140972A (en) * 1983-01-31 1984-08-13 Yamatake Honeywell Co Ltd Cage valve
JPH01125862U (en) * 1988-02-22 1989-08-28
GB2352780A (en) * 1999-03-23 2001-02-07 Nachi Fujikoshi Corp High pressure plunger pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1557559A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028073B3 (en) * 2004-06-09 2005-08-04 Siemens Ag No-return valve for fuel injection system has inflow via at least one inflow groove in valve body and at least one inflow boring in valve body
EP1715177A1 (en) * 2005-04-21 2006-10-25 Dell'orto S.P.A. Piezoelectric actuator for the operation of an injection pump for internal-combustion engines, and injector-pump assembly employing said actuator

Also Published As

Publication number Publication date
EP1557559A1 (en) 2005-07-27
KR100709867B1 (en) 2007-04-23
KR20050042080A (en) 2005-05-04
AU2003275676A1 (en) 2004-05-25
EP1557559A4 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
CN1590752B (en) Fuel injection pump having filter
JP5742428B2 (en) Control method of direct injection type fuel injection pump
CN100348859C (en) Safety fuel injection pump
EP1832739A1 (en) Integrated fuel supply module
JPH11501383A (en) High pressure fuel generator for fuel injection mechanism used in internal combustion engine
WO2004040122A1 (en) High flow rate fuel valve and fuel supply pump with the valve
EP2044321B1 (en) Fuel injection system
US20060185648A1 (en) Common rail fuel pump
US20060013701A1 (en) High-pressure fuel pump with a ball valve in the low-pressure inlet
US6959694B2 (en) Fuel injection system for an internal combustion engine
JP2001165017A (en) Fuel injection nozzle
JP2004211580A (en) Valve for high flow fuel and fuel supply pump provide with the same
US20050106035A1 (en) High flow rate fuel valve and fuel supply pump with the valve
WO2004063559A1 (en) Fuel feed pump
CN1664349A (en) Co-rail ejector
JP4861958B2 (en) High pressure fuel pump
US20030010319A1 (en) Fuel injection device
KR101687036B1 (en) Suction valve of a fuel supply system of an internal combustion engine
JP4672637B2 (en) Engine fuel injector
CN1070997C (en) High speed fuel injector
JP4120113B2 (en) Fuel injection device
JPH11343945A (en) Fuel pump
CN1639458A (en) Installation for the pressure-modulated formation of the injection behavior
JP2005517864A (en) Fuel injection device for an internal combustion engine
JP2008507653A (en) Hydraulically driven pump injector with control mechanism for an internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A04372

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047017618

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11018218

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003758922

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047017618

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003758922

Country of ref document: EP