WO2004038485A1 - Optical switch and optical device - Google Patents

Optical switch and optical device Download PDF

Info

Publication number
WO2004038485A1
WO2004038485A1 PCT/JP2003/013484 JP0313484W WO2004038485A1 WO 2004038485 A1 WO2004038485 A1 WO 2004038485A1 JP 0313484 W JP0313484 W JP 0313484W WO 2004038485 A1 WO2004038485 A1 WO 2004038485A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
film
groove
mirror
optical waveguide
Prior art date
Application number
PCT/JP2003/013484
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhiko Kurumada
Toshiaki Tamamura
Masatoshi Kanaya
Tohru Ishizuya
Original Assignee
Ntt Electronics Corporation
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Electronics Corporation, Nikon Corporation filed Critical Ntt Electronics Corporation
Priority to AU2003275584A priority Critical patent/AU2003275584A1/en
Priority to JP2004546443A priority patent/JPWO2004038485A1/en
Publication of WO2004038485A1 publication Critical patent/WO2004038485A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Definitions

  • the present invention relates to an optical switch and an optical device having an optical element formed by a thin film.
  • An optical switch that switches an optical path by moving a minute mirror into an optical path by moving a minute mirror in Japanese Patent Application Laid-Open No. 2000-142223 (Patent Document 1). Is disclosed.
  • This optical switch forms a movable electrode plate with a micro mirror mounted by micro-machining technology. The reflection surface of the minute mirror is perpendicular to the main plane of the movable electrode plate.
  • a fixed electrode is disposed at a position facing the movable electrode plate, and the movable electrode plate is moved by electrostatic force by applying a voltage between the movable electrode plate and the fixed electrode. With this structure, a very small mirror is inserted into the optical path or taken out of the optical path.
  • a photo resist film having a thickness equivalent to the height of a mirror is formed on a thin film to be a movable electrode plate in order to form a mirror on the movable electrode plate.
  • a mirror-shaped etching hole is provided in the photoresist film, a metal film is grown in the etching hole by plating, and the photoresist film is removed.
  • Patent Document 2 An optical switch is disclosed in which a mirror is mounted on an actuator and the mirror is moved into the optical path by the actuator to switch the optical path.
  • Non-Patent Document 1 a film serving as a plate is formed on a substrate, and this plate is applied to the substrate. It is disclosed that by raising vertically, a plate perpendicular to the substrate is formed. In the process of forming a film serving as a plate, a hinge structure for connecting one end of the plate to the substrate is formed. The plate is raised around the hinge to form a fine vertical structure.
  • the micro mirror of the optical switch described in Patent Literature 1 is provided with an etching hole in a photo resist film formed thick by the height of a mirror, and plating the etching hole with a plating method. It is formed by filling a metal film with a metal. Therefore, the mirror surface has a shape obtained by inverting the surface shape of the side surface of the etching hole.
  • the current photoresist film etching technology it is difficult to control the angle of the side surface of the etching hole with respect to the main plane, and it is also difficult to smooth the surface roughness of the side surface. For this reason, it was difficult to manufacture a mirror having a high reflectance with a reflecting surface perpendicular to the movable electrode plate by the method described in Patent Document 1.
  • Patent Document 2 does not describe in detail the minute mirror structure and the manufacturing method.
  • Non-Patent Document 1 it is conceivable to apply the configuration described in Non-Patent Document 1 in which the plate is vertically raised and supported by a hinge to a mirror of an optical switch, but a plate formed by a thin film process is considered.
  • the three-dimensional structure formed by the thin film process Since the structure is supported vertically by a hinge made of steel, it is easy to generate gas and it is difficult to obtain strength. This makes it difficult to keep the plate perpendicular to the substrate surface.
  • An object of the present invention is to provide an optical switch using a mirror having a high reflectivity and being resistant to vibration.
  • the following optical switch is provided.
  • it has an optical waveguide substrate, a mirror portion, and a movable portion on which the mirror portion is mounted,
  • the mirror unit includes: a light reflection unit; and a support unit that supports the light reflection unit on the movable unit.
  • the optical waveguide substrate includes a groove into which the light reflecting portion is inserted by the movable portion for switching an optical path, and a groove formed by the supporting portion when the light reflecting portion is inserted into the groove.
  • An optical switch having a concave portion into which a part enters.
  • the light reflecting portion and the supporting portion can be constituted by respective films, and at this time, the supporting portion has one end fixed to the movable portion and the other end.
  • the portion is connected to the light reflecting portion directly or via another member, and is curved from the one end to the other end to form a main plane of a film constituting the light reflecting portion. Can be supported non-parallel to the main plane of the optical waveguide substrate.
  • the other end of the supporting portion is located at a position higher than a lower end of the light reflecting portion, and suspends the light reflecting portion directly or via the other member.
  • the concave portion of the optical waveguide substrate has the support.
  • the other end of the holding portion may be configured to enter.
  • the support portion may be disposed on both sides of the light reflection portion, and may be configured to support the light reflection portion from both sides.
  • the concave portion of the optical waveguide substrate may include: It is possible to arrange on both sides of the groove corresponding to the support parts on both sides of the light reflection part.
  • the groove and the concave portion may be continuous, and the groove and the concave portion may be filled with oil for refractive index matching.
  • FIG. 1A is a cross-sectional view taken along the line AA of the optical switch according to the embodiment of the present invention in a state where a voltage is applied and the movable plate 2 31 is lowered
  • FIG. FIG. 3 is a sectional view taken along line AA of FIG.
  • FIG. 2 is a top view of the optical switch according to the embodiment of the present invention.
  • FIG. 3 is a cutaway perspective view of the optical waveguide substrate 240 of the optical switch according to the embodiment of the present invention.
  • FIG. 4 is a cutaway perspective view of the mirror structure substrate 230 of the optical switch according to the embodiment of the present invention.
  • FIG. 5A is a cross-sectional view of a mirror 118 used in the optical switch according to the embodiment of the present invention
  • FIG. 5B is a view taken in the direction of arrow B in FIG. 5A.
  • FIG. 6 is a perspective view of a mirror 118 used for the optical switch according to the embodiment of the present invention.
  • FIG. 7 is a top view showing the arrangement of the movable plate 231 on the mirror structure substrate 230 in the optical switch according to the embodiment of the present invention.
  • FIGS. 8A to 8C are cross-sectional views of the optical switch according to the embodiment of the present invention, showing the manufacturing steps of the mirror-structured substrate 230 taken along the line CC.
  • 9 (a) to 9 (c) are cross-sectional views of the optical switch according to the embodiment of the present invention, taken along the line C-C, each showing a step of manufacturing the mirror structure substrate 230.
  • FIG. 10 is a top view showing the optical switch according to the embodiment of the present invention, in a state before the final asshing step is performed in the manufacturing process of the mirror-structured substrate 230.
  • FIG. 11 (a) is a D-D cross-sectional view showing the shape of another mirror 117 that can be mounted on the optical switch according to the embodiment of the present invention
  • FIG. 11 (b) is FIG. 7 is a front view of the reflecting portion 101 of the mirror 111 viewed from the back side.
  • the optical switch according to the present embodiment is fixed by sandwiching an optical waveguide substrate 240 and a mirror structure substrate 230 with a spacer (not shown). Are arranged at intervals.
  • the space between the optical waveguide substrate 240 and the mirror structure substrate 230 is filled with a matching oil (refractive index matching liquid) that matches the refractive index of the optical waveguide of the optical waveguide substrate 240. I have.
  • the optical waveguide substrate 240 has optical waveguides 21, 24, 24, etc., and optical waveguides 244, 245, 246, etc. in advance. They are arranged so that they intersect at a defined angle. These optical waveguides 241 to 246 are embedded in an optical waveguide substrate 240.
  • the mirror 1 1 8 of the mirror structure substrate 2 3 0
  • a groove 247 is provided for insertion of a groove. The opening direction of the groove 247 is shown in Fig. 1 (a) and Fig. 3. As described above, it is directed to the mirror structure substrate 230 side (lower side).
  • one of the intersecting optical waveguides is transmitted.
  • the light to be conveyed is reflected and made incident on the other optical waveguide to perform a switching operation.
  • the U moving plate 2 31 is mounted on the mirror structure substrate 230, and the mirror 1 18 is mounted on the movable plate 2 31.
  • the movable plate 2 3 1 is composed of a three-layer film in which a silicon nitride film, an A 1 film, and a silicon nitride film are sequentially laminated, and has a rectangular mirror mounting plate 2 3 1 b for mounting the mirror 1 18.
  • two strip-shaped support plates 2311c connected to the ends of the mirror mounting plate 2311b.
  • the support plate 2311c has at each end a leg 2311a.
  • the leg 2 31 a is fixed to the substrate 230.
  • the movable plate 231 is a mirror-structured substrate at room temperature due to the internal stress generated by the difference in thermal expansion coefficient between the silicon nitride film and the A1 film, and the internal stress generated during film formation. Is formed so as to be curved upward. As a result, the movable plate 2 31 lifts up the mirror mounting plate 2 3 1 b side with the leg 23 la as a fulcrum, as shown in FIG. Can be inserted into the groove 2 4 7.
  • the A1 film constituting the movable plate 231 is connected to the wiring in the substrate 230 through the leg 23la. Further, electrodes (not shown) are arranged in the substrate 230 so as to face the movable plate 231. Therefore, by applying a voltage between the A1 film of the movable plate 23 1 and an electrode (not shown) inside the substrate 230, the movable plate 2 31 is attracted to the substrate 230 by electrostatic force. Then, as shown in FIG. 1 (a), it comes into close contact with the substrate 230. As a result, the mirror 118 can be taken out of the groove 247 of the optical waveguide substrate 240.
  • FIG. 1 and 4 show a state in which only one movable plate 231 is mounted on the mirror structure substrate 230, the optical waveguides 241, etc. in FIG.
  • a plurality of movable plates 2 3 1 are arranged side by side vertically and horizontally.
  • Mirror 1 1 1 8 is mounted on 2 3 1.
  • the mirror mounting plate 23 lb of the movable plate 231, which is in contact with the movable plate 231, is disposed between the support plate 231c of the movable plate 231 and the inside thereof.
  • the mirrors 118 can be arranged on the substrate 230 with high density.
  • the mirror 1 18 has two strip-shaped support portions 102, two connection portions 104, and two strip-shaped portions. , A reflecting portion 101, and a reflecting portion supporting portion 105. Both the support portion 102 and the support portion 103 are curved in an arc shape in the longitudinal direction.
  • the connecting portion 104, the reflecting portion supporting portion 105 and the reflecting portion 101 have a step (return) at an edge in order to increase rigidity.
  • each of the two support portions 102 is fixed to the movable plate 231 by a leg portion 102c.
  • the upper ends of the support portions 103 are connected to the tips of the two support portions 102 via the connection portions 104, respectively.
  • the two support portions 103 hang downward, and the tips support both ends of the reflection portion support portion 105.
  • the reflecting portion 101 is mounted on the reflecting portion supporting portion 105. Therefore, the reflecting portion support portion 105 on which the reflecting portion 101 is mounted is configured to be suspended by the two supporting portions 103.
  • the support 102 is a two-layer film in which a silicon nitride film 102a and an A1 film 102b are stacked as shown in FIG.
  • Support part 103 is A 1 membrane
  • This is a two-layer film in which 103 a and a silicon nitride film 103 b are stacked.
  • Each of the supporting portions 102 and 103 is curved in an arc shape by the stress generated by the difference in the thermal expansion coefficient between the A1 film and the silicon nitride film and the stress generated during the film formation. At this time, as shown in FIGS.
  • the support portion 102 is formed so as to be curved upward with respect to the movable plate 231, whereas the support portion 1 Numeral 03 is formed so as to be curved downward, opposite to the supporting portion 102.
  • the support portion 102 is laminated in the order of the silicon nitride film 102 a and the A 1 film 102 b from the movable plate 23 1 side, and the support portion 103 is formed of the movable plate 23
  • the A1 film 103a and the silicon nitride film 103b are stacked in this order from the first side.
  • the position where the reflecting portion 101 is supported is moved to the movable plate 23.
  • the reflecting portion 101 can be supported at a position close to the leg portion 102c of the supporting portion 102.
  • the reflecting portion 101 is less likely to vibrate, and the position of the reflecting portion 101 is stabilized.
  • the structure of the mirror 111 has an advantage that the reflecting portion 101 is hard to vibrate, but the structure in which the reflecting portion supporting portion 105 is suspended by the supporting portion 103 is provided.
  • the connecting portion 104 exists at a high position near the upper end of the reflecting portion 101. Therefore, as shown in FIG. 1 (b), when the mirror 1 18 is lifted by the movable plate 2 3 1 and the reflecting portion 101 is inserted into the groove 2 47 of the optical waveguide substrate 240, There is a possibility that the connecting portion 104 and the supporting portions 102 and 103 come into contact with the optical waveguide substrate 230 and hinder insertion of the reflecting portion 101 into the groove 247.
  • the contact is provided on both sides of the groove 247 of the optical waveguide substrate 240.
  • a concave portion 250 into which the connecting portion 104 and the supporting portions 102 and 103 can enter is formed.
  • the concave portions 250 are provided on both sides of the groove 247, at least in the regions where the connecting portions 104 and the supporting portions 102 and 103 are inserted.
  • a wide area is provided inside the rhombic region surrounded by the optical waveguides 241 on both sides of the groove 247.
  • the concave portion 250 does not affect the propagation light of the optical waveguide 241 and the like.
  • the depth of the concave portion 250 is designed according to the height of the connecting portion 104.
  • the groove is formed so as to have the same depth as the groove 247.
  • the reflecting portion 101 is not sufficiently provided in the groove 247 of the optical waveguide substrate 240. Can be inserted to depth. Therefore, a high-performance optical switch having a large extinction ratio can be provided as the optical switch.
  • the groove 247 is formed so as to be continuous with the concave portions 250 on both sides thereof.
  • the adjacent grooves 247 are continuous by the concave portions 250.
  • the operation of the optical switch according to the present embodiment will be described using a mirror 118 at a position where the optical waveguides 242 and 245 intersect as an example.
  • the movable plate 2 31 is moved by the electrostatic force to the substrate 2 as shown in Fig. 1 (a).
  • the mirror 110 is attracted to 30 and the reflecting portion 101 of the mirror 118 is located below the groove 247 of the optical waveguide substrate 240. Therefore, for example, the optical waveguide 242
  • the light to be carried propagates through the optical waveguide 242 as it is across the groove 247.
  • the movable plate 231 bends as shown in FIG.
  • the reflecting portion 101 of 118 is inserted into the groove 247, and the connecting portion 104 and the supporting portions 102, 103 are inserted into the concave portions 250 on both sides of the groove.
  • the light propagating through the optical waveguide 242 is reflected by the reflecting portion 101 in the groove 247, and is turned back, enters the optical waveguide 245, and Propagate 5.
  • light propagating through the optical waveguide 242 can be extracted from the optical waveguide 245, and switching in the light propagation direction can be realized.
  • the surface facing the substrate 230 side at the time of manufacturing has a higher reflectance, and is suitable for use as a reflecting surface. . Therefore, the direction in which the mirror 1 18 is mounted on the movable plate 2 3 1 is adjusted so that the surface in FIG. 6 of the reflection section 101 becomes the reflection surface according to the direction of light propagation of the optical waveguide substrate 240. It is desirable to determine
  • 2 4 1 like optical waveguides of the optical waveguide substrate 2 4 0 is formed by S i 0 2 with increased refractive index by doping impurities. Further, clad portion around the optical waveguide path is formed by S i 0 2.
  • a manufacturing procedure first, an Si substrate is prepared, a lower cladding layer is formed by depositing glass particles on the Si substrate by a flame deposition method, and impurities are doped thereon by a flame deposition method. The formed optical waveguide layer of the glass fine particles is formed. Thereafter, heat treatment is performed to make the lower cladding layer and the optical waveguide layer into a transparent glass state.
  • the optical waveguide layer is subjected to dry etching to form the optical waveguides 241 to 246 as shown in FIG.
  • glass particles are deposited again by the flame deposition method, forming an upper cladding layer, The optical waveguides 241 to 246 are covered. Further heat treatment turns the upper clad layer into a transparent glass state.
  • a groove 247 and a recess 250 are formed by dry etching or wet etching. As described above, the optical waveguide substrate 240 can be manufactured.
  • FIGS. 8 (&) to ( 0 ) and FIGS. 9 (&) to (0) This will be described with reference to FIG.
  • the movable plate 23 1 is formed on the substrate 230.
  • a resist layer 28 1 is formed on a substrate 230 on which electrodes and wirings (not shown) are formed in advance, and the positions where the legs 2 31 a of the movable plate 2 31 are to be formed are located.
  • An opening (not shown) is formed by photolithography (FIG. 8 (a)).
  • This resist layer 281, which is a sacrificial layer, is removed in the last step.
  • a silicon nitride film is formed on the upper surface of the resist layer 281, and an opening is provided in the silicon nitride film at the bottom of the opening. Further, an A1 film is formed, and a silicon nitride film is stacked thereon.
  • the three-layered film of the silicon nitride film, the A1 film, and the silicon nitride film becomes the movable plate 231.
  • the thickness and the film forming conditions of the silicon nitride film and the A1 film are set to predetermined film thickness and film forming conditions so that the movable plate 231 is warped upward.
  • the silicon nitride film, the A1 film, and the silicon nitride film formed in the above-described process are transferred to the shape of the movable plate 231 shown in FIG. 7 by photolithography and etching. To synchronize.
  • the movable plate 231 in which the A1 film is connected to the wiring of the substrate 230 at the position of the leg 231a can be formed.
  • a mirror 1 18 is formed on the movable plate 2 3 1.
  • the support portions 102, 103, the connection portion 104, the reflection portion support portion 105, and the reflection portion 101 of the mirror 118 are arranged on the movable plate 231 as shown in FIG. It is formed into a shape.
  • FIGS. 8 (a) to (c) and FIGS. 9 (a) to (c) show C-C of FIG. The manufacturing procedure of the mirror 118 in the cross section is shown.
  • a resist layer 81 is formed on the entire surface of the substrate 230 on which the movable plate 231 is formed, and an opening 8 la is formed at a position where the leg 102 c of the support 102 is to be formed. It is formed by photolithography (Fig. 8 (a)).
  • a resist island 201 is formed at a position where the connecting portion 104 and the reflecting portion supporting portion 105 are to be formed (FIG. 8B).
  • the connecting portion 104 and the reflecting portion supporting portion 105 can be formed into a shape having a step around the periphery.
  • An A1 film 103a of the support portion 103 is formed on the entire surface of the substrate 230 in this state, and the support portion 103 shown in FIG.
  • FIG. 10 is formed by photolithography and etching.
  • a silicon nitride film and an A1 film 102b are sequentially formed on the entire surface (FIG. 9A).
  • the silicon nitride film formed in the above process is changed to the support portion 102, the connection portion 104, The support portion 103 and the reflective portion support portion 105 are patterned into a shape (FIG. 9B).
  • the silicon nitride film 103b of the support portion 103, the connection portion 104, and the reflection portion support portion 105 are formed at a time.
  • a resist layer 141 is formed on the entire surface of the substrate 230 in the state shown in FIG. An opening is formed (Fig. 9 (c)).
  • a resist layer 82 is further formed thereon, and the resist layer is removed except for the reflecting portion 101, thereby forming a resist island.
  • the reflecting portion 101 can be formed into a shape having a step 101 a around the reflecting portion 101.
  • An opening is also formed in the resist layer 82 of the resist island at a position to be the connection portion 105b.
  • An A1 film 101 is formed on the entire surface of the substrate 230 in this state, and is patterned into the shape of the reflecting portion 101 (FIG. 9 (c)). This allows As shown in FIG.
  • the movable plate 231, the support portions 102, 103, the connection portion 104, and the reflection portion support portion sandwiching the sacrificial layers 281, 81, 141, etc. 105 and the reflecting portion 101 can form a laminated substrate 230.
  • the resist layers 281, 81, 141, 82 of the sacrificial layer are removed by asshing.
  • the supporting portions 102 and 103 are curved and rise up on the movable plate 231, as shown in FIG. 6, to have the shape of the mirror 118 in FIG.
  • the movable plate 2 31 also curves, rises with respect to the substrate 230 as shown in FIG. 1 (b), and is brought into a state in which the mirror 1 18 can be moved up and down.
  • the mirror structure substrate 230 can be manufactured.
  • the optical waveguide substrate 240 and the mirror structure substrate 230 are aligned, and the spacers are interposed and fixed. Then, a matching oil is injected into a space between the optical waveguide substrate 240 and the mirror structure substrate 230 to seal the space. As a result, the optical switch according to the present embodiment can be manufactured.
  • the optical switch according to the present embodiment has a configuration in which a mirror 111 is formed by vertically raising a reflecting portion 101 formed of a thin film by supporting portions 102 and 103. Therefore, the main plane of the thin film can be used as the reflecting surface of the reflecting portion 101. Therefore, since the reflecting surface can be easily formed smoothly, a high reflectance can be obtained.
  • the mirror 118 can support the reflecting portion 101 at a low position close to the movable plate 231, by suspending the reflecting portion supporting portion 105. Hard to vibrate.
  • the concave portion 250 is provided in the optical waveguide substrate 240, even when the hanging mirror 110 is used, the connecting portion 104 and the supporting portions 102, 100 are used.
  • the reflecting portion 101 can be inserted all the way into the groove 247 without the 3 hitting the optical waveguide substrate 240. Therefore, it is strong against vibration and extinction ratio It is possible to provide a large optical switch.
  • the mirror that can be used for the optical switch according to the above-described embodiment is not limited to the above-mentioned mirror 118.
  • the optical waveguide substrate provided with the concave portion 250 as in the present embodiment is effective when the mirror supporting the reflecting portion uses a mirror having a structure present on both sides of the reflecting portion. For example, as shown in Figs. 11 (a) and (b), the reflector 101 is suspended downward from the two supports 102 on both sides (movable plate 2 31 side). Can be used.
  • This mirror 117 also has the advantage that the height of the reflecting portion 101 from the movable plate 231 is low, and the reflecting portion 101 is unlikely to vibrate even when the movable plate 231 moves. Since the upper end of the supporting portion 102 is the same height as the upper end of the reflecting portion 101, the depth of the concave portion 250 is equal to or greater than that of the groove 247. Formed.
  • the groove 247 of the optical waveguide substrate 240 and the concave portions 250 on both sides are made continuous, but it is not always necessary to make them continuous. Further, depending on the arrangement of the mirror support, it is possible to provide the concave portion 250 only in the portion where the mirror support collides with the optical waveguide substrate 240.
  • the concave portion 250 of the optical waveguide substrate 240 is formed by etching, but it is also possible to form the concave portion 250 by other methods such as mechanical addition without being limited to etching. It is.
  • the reflecting portion 101 of the mirror 118 is stopped in the middle of the optical path.
  • it can be stopped at a height that blocks a desired amount of light, such as half or 1/3 of the light flux.
  • this implementation It can be used as a light attenuator (attenuator) that allows only the desired amount of light to pass through the optical switch.
  • it is possible to mount a film having a low light reflectance as a light-shielding portion instead of the reflecting portion 101 of the mirror 118.
  • a polarizing film having a polarization characteristic or an optical thin film having a light wavelength filter characteristic By mounting these on the movable plate 231, optical devices such as a polarizer and a wavelength selector can be configured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

An optical switch using a vibration-resistant mirror having a high reflectance. The optical switch comprises an optical waveguide substrate (230), a mirror portion (118) and a movable portion (231) on which the mirror portion (118) is mounted. The mirror portion (118) has a light-reflecting portion (101) and a supporting portion (102) for supporting the light-reflecting portion (101) on the movable portion (231). The optical waveguide substrate (230) has a groove (247) into which the light-reflecting portion (101) is inserted by the movable portion (231) for switching over the optical path, and a recess (250) for receiving a part of the supporting portion (102) when the light-reflecting portion (101) is inserted into the groove (247).

Description

光スィ ツチ及び光学装置 技術分野 本発明は、 薄膜により形成された光学素子を備えた光スィ ツチ及び光 学装置に関する。 背景技術 特開 2 0 0 1— 4 2 2 3 3号公報 (特許文献 1 ) に、 微小なミラーを ァクチユエ一夕により移動させて光路中に揷入することにより、 光路を 切り換える光スィ ッチが開示されている。 この光スィ ッチは、 マイクロ マシニング技術によって、 微小なミラーを搭載した可動電極板を形成し ている。 微小なミラーは、 反射面が可動電極板の主平面に対して垂直で ある。 可動電極板と対向する位置には、 固定電極が配置され、 可動電極 板と固定電極との間に電圧を印加することにより、 静電力により、 可動 電極板を移動させる。 これにより、 微小なミラ一を光路中に挿入したり、 光路中から取り出したりする構造である。  TECHNICAL FIELD The present invention relates to an optical switch and an optical device having an optical element formed by a thin film. 2. Description of the Related Art An optical switch that switches an optical path by moving a minute mirror into an optical path by moving a minute mirror in Japanese Patent Application Laid-Open No. 2000-142223 (Patent Document 1). Is disclosed. This optical switch forms a movable electrode plate with a micro mirror mounted by micro-machining technology. The reflection surface of the minute mirror is perpendicular to the main plane of the movable electrode plate. A fixed electrode is disposed at a position facing the movable electrode plate, and the movable electrode plate is moved by electrostatic force by applying a voltage between the movable electrode plate and the fixed electrode. With this structure, a very small mirror is inserted into the optical path or taken out of the optical path.
また、 この光スィ ッチでは、 可動電極板上にミラーを形成するために、 可動電極板となる薄膜上に、 ミラ一の高さ分の厚さを有するフォ トレジ ス ト膜を形成し、 フォ トレジス ト膜にミラーの形状のエッチングホール を設け、 エッチングホール内にめっき法により金属膜を成長させた後、 フォ トレジス ト膜を除去している。  In addition, in this optical switch, a photo resist film having a thickness equivalent to the height of a mirror is formed on a thin film to be a movable electrode plate in order to form a mirror on the movable electrode plate. A mirror-shaped etching hole is provided in the photoresist film, a metal film is grown in the etching hole by plating, and the photoresist film is removed.
また、 特開 2 0 0 1— 1 4 2 0 0 8号公報 (特許文献 2 ) にも、 微小 なミラ一をァクチユエ一夕上に搭載し、 ァクチユエ一夕により ミ ラ一を 光路中に移動させて、 光路を切り換える光スィ ッチが開示されている。 Also, Japanese Patent Application Laid-Open No. 2001-142008 (Patent Document 2) An optical switch is disclosed in which a mirror is mounted on an actuator and the mirror is moved into the optical path by the actuator to switch the optical path.
また、 Sensors and Actuators A, 33 ( 1992 )249- 256、 "Microf abricate d Hinges" (非特許文献 1 ) には、 基板上にプレー ト となる膜を成膜し、 このプレートを基板に対して垂直に起こすことにより、 基板に垂直なプ レー トを形成することが開示されている。 プレー トとなる膜の形成プロ セスにおいて、 プレートの一方の端部と、 基板とを接続するヒンジ構造 を形成している。 このヒンジを中心にプレートを起こし、 微細な垂直構 造体を形成している。 発明の開示 特許文献 1記載の光スイ ッチの微小なミラーは、 上述のように、 ミラ —の高さ分だけ厚く形成されたフォ ト レジス ト膜にエッチングホールを 設け、 このェヅチングホールにめっき法によ.り金属膜を充填することに より形成される。 このため、 ミラー面は、 エッチングホールの側面の表 面形状を反転した形状となる。 現状のフォ トレジス ト膜のエッチング技 術では、 エツチングホールの側面の主平面に対する角度を制御すること は難しく、 しかも、 側面の表面粗さを滑らかにすることも難しい。 この ため、 特許文献 1記載の方法で、 可動電極板に対して反射面が垂直で、 反射率の高いミラーを製造することは困難であった。  In Sensors and Actuators A, 33 (1992) 249-256, "Microfabricated Hinges" (Non-Patent Document 1), a film serving as a plate is formed on a substrate, and this plate is applied to the substrate. It is disclosed that by raising vertically, a plate perpendicular to the substrate is formed. In the process of forming a film serving as a plate, a hinge structure for connecting one end of the plate to the substrate is formed. The plate is raised around the hinge to form a fine vertical structure. DISCLOSURE OF THE INVENTION As described above, the micro mirror of the optical switch described in Patent Literature 1 is provided with an etching hole in a photo resist film formed thick by the height of a mirror, and plating the etching hole with a plating method. It is formed by filling a metal film with a metal. Therefore, the mirror surface has a shape obtained by inverting the surface shape of the side surface of the etching hole. With the current photoresist film etching technology, it is difficult to control the angle of the side surface of the etching hole with respect to the main plane, and it is also difficult to smooth the surface roughness of the side surface. For this reason, it was difficult to manufacture a mirror having a high reflectance with a reflecting surface perpendicular to the movable electrode plate by the method described in Patent Document 1.
また、 特許文献 2には、 微小なミ ラー構造および製造方法についての 詳しい記載はなされていない。  In addition, Patent Document 2 does not describe in detail the minute mirror structure and the manufacturing method.
また、 非特許文献 1 に記載のプレー トをヒンジによ り垂直に起こ して 支える構成を、 光スィ ッチのミラーに応用することが考えられるが、 薄 膜プロセスで形成されたプレー トを、 薄膜プロセスで形成された立体構 造のヒンジにより垂直に支える構成であるため、 ガ夕が生じやすく、 強 度も得にくい。 このため、 基板面に対してプレートを垂直に維持するこ とは難しい。 In addition, it is conceivable to apply the configuration described in Non-Patent Document 1 in which the plate is vertically raised and supported by a hinge to a mirror of an optical switch, but a plate formed by a thin film process is considered. The three-dimensional structure formed by the thin film process Since the structure is supported vertically by a hinge made of steel, it is easy to generate gas and it is difficult to obtain strength. This makes it difficult to keep the plate perpendicular to the substrate surface.
本発明は、 反射率が高く、 振動に強いミラーを用いた光スィ ッチを提 供することを目的とする。  SUMMARY OF THE INVENTION An object of the present invention is to provide an optical switch using a mirror having a high reflectivity and being resistant to vibration.
上記目的を達成するために、 本発明によれば、 以下のような光スイ ツ チが提供される。  To achieve the above object, according to the present invention, the following optical switch is provided.
すなわち、 光導波路基板と、 ミラー部と、 前記ミラー部を搭載した可 動部とを有し、  That is, it has an optical waveguide substrate, a mirror portion, and a movable portion on which the mirror portion is mounted,
前記ミラー部は、 光反射部と、 前記光反射部を前記可動部上に支持す る支持部とを含み、  The mirror unit includes: a light reflection unit; and a support unit that supports the light reflection unit on the movable unit.
前記光導波路基板は、 光路をスィ ツチングするために前記可動部によ つて前記光反射部が挿入されるための溝と、 前記光反射部が前記溝に揷 入される際に前記支持部の一部が入り込むための凹部とを有することを 特徴とする光スィ ヅチである。  The optical waveguide substrate includes a groove into which the light reflecting portion is inserted by the movable portion for switching an optical path, and a groove formed by the supporting portion when the light reflecting portion is inserted into the groove. An optical switch having a concave portion into which a part enters.
上記光スィ ッチにおいて、 前記光反射部および支持部は、 それそれ膜 によって構成することが可能であり、 このとき前記支持部は、 一方の端 部が前記可動部に固定され、 他方の端部は、 直接または他の部材を介し て前記光反射部と接続され、 前記一方の端部から前記他方の端部に向か つて湾曲することにより、 前記光反射部を構成する膜の主平面を、 前記 光導波路基板の主平面に対して非平行に支持する構成にすることができ る。  In the above-mentioned optical switch, the light reflecting portion and the supporting portion can be constituted by respective films, and at this time, the supporting portion has one end fixed to the movable portion and the other end. The portion is connected to the light reflecting portion directly or via another member, and is curved from the one end to the other end to form a main plane of a film constituting the light reflecting portion. Can be supported non-parallel to the main plane of the optical waveguide substrate.
上記光スィ ッチにおいて、 前記支持部の前記他方の端部は、 前記光反 射部の下端よりも高い位置に位置し、 直接または前記他の部材を介して、 前記光反射部を吊り下げた構成にすることが可能であり、 前記光反射部 が前記溝に挿入される際に、 前記光導波路基板の前記凹部には、 前記支 03 013484 In the above optical switch, the other end of the supporting portion is located at a position higher than a lower end of the light reflecting portion, and suspends the light reflecting portion directly or via the other member. When the light reflecting portion is inserted into the groove, the concave portion of the optical waveguide substrate has the support. 03 013484
4  Four
持部の前記他方の端部が入り込む構成にすることができる。 The other end of the holding portion may be configured to enter.
上記光スィッチにおいて、 前記支持部は、 前記光反射部の両脇にそれ それ配置され、 前記光反射部を両側から支持する構成にすることが可能 であり、 前記光導波路基板の前記凹部は、 前記光反射部の両側の前記支 持部に対応して、 前記溝の両側に配置することが可能である。  In the optical switch, the support portion may be disposed on both sides of the light reflection portion, and may be configured to support the light reflection portion from both sides. The concave portion of the optical waveguide substrate may include: It is possible to arrange on both sides of the groove corresponding to the support parts on both sides of the light reflection part.
上記光スィ ッチにおいて、 前記溝と前記凹部とは連続しており、 前記 溝および前記凹部には、 屈折率整合のためのオイルが充填されている構 成にすることが可能である。 図面の簡単な説明  In the above optical switch, the groove and the concave portion may be continuous, and the groove and the concave portion may be filled with oil for refractive index matching. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( a ) は、 本発明の実施の形態の光スイ ッチにおいて、 電圧を印 加して可動板 2 3 1を下げた状態の A— A断面図であり、 図 1 ( b ) は、 電圧を印加していない状態の A— A断面図である。  FIG. 1A is a cross-sectional view taken along the line AA of the optical switch according to the embodiment of the present invention in a state where a voltage is applied and the movable plate 2 31 is lowered, and FIG. FIG. 3 is a sectional view taken along line AA of FIG.
図 2は、 本発明の実施の形態の光スィ ッチの上面図である。  FIG. 2 is a top view of the optical switch according to the embodiment of the present invention.
図 3は、 本発明の実施の形態の光スィ ツチの光導波路基板 2 4 0の切 り欠き斜視図である。  FIG. 3 is a cutaway perspective view of the optical waveguide substrate 240 of the optical switch according to the embodiment of the present invention.
図 4は、 本発明の実施の形態の光スィ ツチのミラー構造体基板 2 3 0 の切り欠き斜視図である。  FIG. 4 is a cutaway perspective view of the mirror structure substrate 230 of the optical switch according to the embodiment of the present invention.
図 5 ( a ) は、 本発明の実施の形態の光スイ ッチに用いられるミラー 1 1 8の断面図であり、 図 5 ( b ) は、 図 5 ( a ) の B矢視図である。 図 6は、 本発明の実施の形態の光スィ ツチに用いられるミラ一 1 1 8 の斜視図である。  FIG. 5A is a cross-sectional view of a mirror 118 used in the optical switch according to the embodiment of the present invention, and FIG. 5B is a view taken in the direction of arrow B in FIG. 5A. . FIG. 6 is a perspective view of a mirror 118 used for the optical switch according to the embodiment of the present invention.
図 7は、 本発明の実施の形態の光スィ ッチにおいて、 ミラ一構造体基 板 2 3 0上の可動板 2 3 1の配置を示す上面図である。  FIG. 7 is a top view showing the arrangement of the movable plate 231 on the mirror structure substrate 230 in the optical switch according to the embodiment of the present invention.
図 8 ( a ) 〜 ( c ) は、 本発明の実施の形態の光スィ ツチにおいて、 ミラ一構造体基板 2 3 0の製造工程を示す C— C断面図である。 図 9 ( a) ~ ( c ) は、 本発明の実施の形態の光スィ ツチにおいて、 ミラ一構造体基板 2 3 0の製造工程を示す C一 C断面図である。 FIGS. 8A to 8C are cross-sectional views of the optical switch according to the embodiment of the present invention, showing the manufacturing steps of the mirror-structured substrate 230 taken along the line CC. 9 (a) to 9 (c) are cross-sectional views of the optical switch according to the embodiment of the present invention, taken along the line C-C, each showing a step of manufacturing the mirror structure substrate 230.
図 1 0は、 本発明の実施の形態の光スィ ッチにおいて、 ミラ一構造体 基板 2 3 0の製造工程で最終のアツシング工程を行う前の状態を示す上 面である。  FIG. 10 is a top view showing the optical switch according to the embodiment of the present invention, in a state before the final asshing step is performed in the manufacturing process of the mirror-structured substrate 230.
図 1 1 ( a) は、 本発明の実施の形態の光スイ ッチに搭載可能な別の ミラ一 1 1 7の形状を示す D— D断面図であり、 図 1 1 (b ) は、 ミラ — 1 1 7の反射部 1 0 1を裏面側から見た正面図である。 発明を実施するための最良の形態 以下、 .本発明の一実施の形態の光スィ ツチについて図面を用いて説明 する。  FIG. 11 (a) is a D-D cross-sectional view showing the shape of another mirror 117 that can be mounted on the optical switch according to the embodiment of the present invention, and FIG. 11 (b) is FIG. 7 is a front view of the reflecting portion 101 of the mirror 111 viewed from the back side. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an optical switch according to an embodiment of the present invention will be described with reference to the drawings.
本実施の形態の光スィ ッチは、 図 1 ( a) のように、 光導波路基板 2 4 0 と、 ミラー構造体基板 2 3 0とを、 不図示のスぺーサを挟むことに より一定の間隔を開けて重ね合わせた構成である。 光導波路基板 2 4 0 とミラー構造体基板 2 3 0 との間の空間には、 光導波路基板 2 4 0の光 導波路の屈折率に合わせたマッチングオイル (屈折率整合液) が満たさ れている。  As shown in FIG. 1A, the optical switch according to the present embodiment is fixed by sandwiching an optical waveguide substrate 240 and a mirror structure substrate 230 with a spacer (not shown). Are arranged at intervals. The space between the optical waveguide substrate 240 and the mirror structure substrate 230 is filled with a matching oil (refractive index matching liquid) that matches the refractive index of the optical waveguide of the optical waveguide substrate 240. I have.
光導波路基板 2 4 0には、 図 2、 図 3に示したように光導波路 2 1 , 2 4 2 , 2 4 3等と、 光導波路 2 44 , 2 4 5 , 2 4 6等とが予め定め た角度で交差するように配置されている。 これら光導波路 2 4 1〜2 4 6は、 光導波路基板 2 4 0に埋め込まれている。 光導波路 2 4 1 , 2 4 2 , 2 4 3等と、 光導波路 2 4 4, 2 4 5, 2 4 6等とが交差する部分 には、 ミラー構造体基板 2 3 0のミラー 1 1 8を挿入するための溝 2 4 7が設けられている。 溝 2 4 7の開口方向は、 図 1 ( a) 、 図 3に示し たようにミラー構造体基板 2 3 0側 (下側) に向けられている。 この溝 2 4 7に、 図 1 ( b ) のように、 ミラ一構造体基板 2 3 0のミラ一 1 1 8の反射部 1 0 1 を挿入することにより、 交差する光導波路の一方を伝 搬する光を反射して、 他方の光導波路に入射させ、 スイ ッチング動作を 行うことができる。 As shown in FIGS. 2 and 3, the optical waveguide substrate 240 has optical waveguides 21, 24, 24, etc., and optical waveguides 244, 245, 246, etc. in advance. They are arranged so that they intersect at a defined angle. These optical waveguides 241 to 246 are embedded in an optical waveguide substrate 240. At the intersection of the optical waveguides 2 4 1, 2 4 2, 2 4 3, etc. with the optical waveguides 2 4 4, 2 4 5, 2 4 6, etc., the mirror 1 1 8 of the mirror structure substrate 2 3 0 A groove 247 is provided for insertion of a groove. The opening direction of the groove 247 is shown in Fig. 1 (a) and Fig. 3. As described above, it is directed to the mirror structure substrate 230 side (lower side). By inserting the reflecting portion 101 of the mirror 110 of the mirror structure substrate 230 into the groove 247 as shown in FIG. 1B, one of the intersecting optical waveguides is transmitted. The light to be conveyed is reflected and made incident on the other optical waveguide to perform a switching operation.
ミラー構造体基板 2 3 0には、 図 1 ( a ) , 図 4のように U動板 2 3 1が搭載され、 可動板 2 3 1上に、 ミラー 1 1 8が搭載されている。 可 動板 2 3 1は、 窒化シリコン膜と A 1膜と窒化シリコン膜とを順に積層 した 3層膜からなり、 ミラー 1 1 8を搭載するための長方形のミラ一搭 載板 2 3 1 bと、 ミラー搭載板 2 3 1 bの端部に接続された 2本の帯状 の支持板 2 3 1 cとを含む。 支持板 2 3 1 cは、 端部にそれそれ脚部 2 3 1 aを有している。 脚部 2 3 1 aは基板 2 3 0に固定されている。 可 動板 2 3 1は、 窒化シリコン膜と A 1膜との熱膨張係数の差によって生 じる内部応力、 ならびに、 成膜時に生じた内部応力により、 常温でミラ 一構造体基板 2 3 0に対して上向きに湾曲するように形成されている。 これにより、 可動板 2 3 1は、 脚部 2 3 l aを支点として、 図 1 ( b ) のようにミラー搭載板 2 3 1 b側が持ち上がり、 ミラ一 1 1 8を光導波 路基板 2 4 0の溝 2 4 7に挿入することができる。  As shown in FIGS. 1 (a) and 4, the U moving plate 2 31 is mounted on the mirror structure substrate 230, and the mirror 1 18 is mounted on the movable plate 2 31. The movable plate 2 3 1 is composed of a three-layer film in which a silicon nitride film, an A 1 film, and a silicon nitride film are sequentially laminated, and has a rectangular mirror mounting plate 2 3 1 b for mounting the mirror 1 18. And two strip-shaped support plates 2311c connected to the ends of the mirror mounting plate 2311b. The support plate 2311c has at each end a leg 2311a. The leg 2 31 a is fixed to the substrate 230. The movable plate 231 is a mirror-structured substrate at room temperature due to the internal stress generated by the difference in thermal expansion coefficient between the silicon nitride film and the A1 film, and the internal stress generated during film formation. Is formed so as to be curved upward. As a result, the movable plate 2 31 lifts up the mirror mounting plate 2 3 1 b side with the leg 23 la as a fulcrum, as shown in FIG. Can be inserted into the groove 2 4 7.
また、 可動板 2 3 1を構成する A 1膜は、 脚部 2 3 l aを介して、 基 板 2 3 0内の配線に接続されている。 また、 基板 2 3 0内には、 可動板 2 3 1 と向き合うように不図示の電極が配置されている。 よって、 可動 板 2 3 1の A 1膜と、 基板 2 3 0内部の不図示の電極との間に電圧を印 加することにより、 可動板 2 3 1は静電力により基板 2 3 0に引き寄せ られ、 図 1 ( a ) のように基板 2 3 0に密着する。 これにより、 ラー 1 1 8を光導波路基板 2 4 0の溝 2 4 7から取り出した状態にすること ができる。 なお、 図 1および図 4では、 ミラー構造体基板 2 3 0上に可動板 2 3 1がーつのみ搭載されている状態を図示しているが、 図 2の光導波路 2 4 1等が交差する点の溝 2 4 7のそれそれにミラー 1 1 8を挿入するた めに、 実際は図 7のように、 複数の可動板 2 3 1が縦横に隣接するよう に並べて配置され、 それぞれの可動板 2 3 1にミラ一 1 1 8が搭載され ている。 その際、 可動板 2 3 1の支持板 2 3 1 cの間に、 瞵接する可動 板 2 3 1のミラー搭載板 2 3 l bが、 入り込むように配置されている。 このような配置にすることにより、 基板 2 3 0上にミラ一 1 1 8を高密 度に配置できるようにしている。 Further, the A1 film constituting the movable plate 231, is connected to the wiring in the substrate 230 through the leg 23la. Further, electrodes (not shown) are arranged in the substrate 230 so as to face the movable plate 231. Therefore, by applying a voltage between the A1 film of the movable plate 23 1 and an electrode (not shown) inside the substrate 230, the movable plate 2 31 is attracted to the substrate 230 by electrostatic force. Then, as shown in FIG. 1 (a), it comes into close contact with the substrate 230. As a result, the mirror 118 can be taken out of the groove 247 of the optical waveguide substrate 240. Although FIGS. 1 and 4 show a state in which only one movable plate 231 is mounted on the mirror structure substrate 230, the optical waveguides 241, etc. in FIG. In order to insert the mirror 1 18 into that of the groove 2 4 7 at the point where the movable plate 2 3 1 is actually arranged, as shown in Fig. 7, a plurality of movable plates 2 3 1 are arranged side by side vertically and horizontally. Mirror 1 1 1 8 is mounted on 2 3 1. At that time, the mirror mounting plate 23 lb of the movable plate 231, which is in contact with the movable plate 231, is disposed between the support plate 231c of the movable plate 231 and the inside thereof. With such an arrangement, the mirrors 118 can be arranged on the substrate 230 with high density.
つぎに、 可動板 2 3 1に搭載されたミラー 1 1 8の構成について説明 する。  Next, the configuration of the mirror 118 mounted on the movable plate 231 will be described.
ミラ一 1 1 8は、 図 5 ( a) , (b ) 、 図 6に示したように、 2本の 帯状の支持部 1 0 2 と、 2つの接続部 1 0 4と、 2本の帯状の支持部 1 0 3 と、 反射部 1 0 1 と、 反射部支持部 1 0 5 とを有している。 支持部 1 0 2 と支持部 1 0 3は、 いずれも長手方向に円弧状に湾曲している。 接続部 1 0 4と反射部支持部 1 0 5 と反射部 1 0 1は、 剛性を高めるた めに、 縁に段差 (折り返し) を有している。  As shown in FIGS. 5 (a), (b) and FIG. 6, the mirror 1 18 has two strip-shaped support portions 102, two connection portions 104, and two strip-shaped portions. , A reflecting portion 101, and a reflecting portion supporting portion 105. Both the support portion 102 and the support portion 103 are curved in an arc shape in the longitudinal direction. The connecting portion 104, the reflecting portion supporting portion 105 and the reflecting portion 101 have a step (return) at an edge in order to increase rigidity.
2本の支持部 1 0 2の一方の端部は、 脚部 1 0 2 cにより可動板 2 3 1に固定されている。 2本の支持部 1 0 2の先端には、 それぞれ接続部 1 0 4を介して支持部 1 0 3の上端が接続されている。 2本の支持部 1 0 3は下向きに垂れ下がり、 その先端は、 反射部支持部 1 0 5の両端を 支持している。 反射部支持部 1 0 5には、 反射部 1 0 1が搭載されてい る。 よって、 反射部 1 0 1を搭載した反射部支持部 1 0 5は、 2本の支 持部 1 0 3によって吊り下げられた構成である。  One end of each of the two support portions 102 is fixed to the movable plate 231 by a leg portion 102c. The upper ends of the support portions 103 are connected to the tips of the two support portions 102 via the connection portions 104, respectively. The two support portions 103 hang downward, and the tips support both ends of the reflection portion support portion 105. The reflecting portion 101 is mounted on the reflecting portion supporting portion 105. Therefore, the reflecting portion support portion 105 on which the reflecting portion 101 is mounted is configured to be suspended by the two supporting portions 103.
支持部 1 0 2は、 図 5 ( a) に示したように窒化シリコン膜 1 0 2 a と A 1膜 1 0 2 bとを積層した 2層膜である。 支持部 1 0 3は、 A 1膜 1 0 3 aと窒化シリコン膜 1 0 3 bとを積層した 2層膜である。 支持部 1 0 2 , 1 0 3は、 いずれも、 A 1膜と窒化シリコン膜との熱膨張係数 の差異によって生じる応力ならびに成膜時に生じる応力によって円弧状 に湾曲している。 このとき、 図 5 ( a ) 、 図 6に示したように、 支持部 1 0 2は、 可動板 2 3 1に対して上向きに湾曲するように形成されてい るのに対して、 支持部 1 0 3は、 支持部 1 0 2 とは逆に、 下向きに湾曲 するように形成されている。 このために、 支持部 1 0 2は、 可動板 2 3 1側から窒化シリコン膜 1 0 2 a、 A 1膜 1 0 2 bの順に積層され、 支 持部 1 0 3は、 可動板 2 3 1側から A 1膜 1 0 3 a、 窒化シリコン膜 1 0 3 bの順に積層されている。 The support 102 is a two-layer film in which a silicon nitride film 102a and an A1 film 102b are stacked as shown in FIG. Support part 103 is A 1 membrane This is a two-layer film in which 103 a and a silicon nitride film 103 b are stacked. Each of the supporting portions 102 and 103 is curved in an arc shape by the stress generated by the difference in the thermal expansion coefficient between the A1 film and the silicon nitride film and the stress generated during the film formation. At this time, as shown in FIGS. 5 (a) and 6, the support portion 102 is formed so as to be curved upward with respect to the movable plate 231, whereas the support portion 1 Numeral 03 is formed so as to be curved downward, opposite to the supporting portion 102. For this purpose, the support portion 102 is laminated in the order of the silicon nitride film 102 a and the A 1 film 102 b from the movable plate 23 1 side, and the support portion 103 is formed of the movable plate 23 The A1 film 103a and the silicon nitride film 103b are stacked in this order from the first side.
このように支持部 1 0 3を支持部 1 0 2に対して逆向きに湾曲させる ことにより、 図 5 ( a) のように、 反射部 1 0 1が支持される位置を、 可動板 2 3 1 に近い低い位置にすることができるとともに、 水平方向に ついては、 支持部 1 0 2の脚部 1 0 2 cに近い位置に反射部 1 0 1を支 持することができる。 これにより、 ミラー 1 1 8は、 反射部 1 0 1が振 動しにく く、 反射部 1 0 1の位置が安定する。  By bending the supporting portion 103 in the opposite direction to the supporting portion 102 in this way, as shown in FIG. 5 (a), the position where the reflecting portion 101 is supported is moved to the movable plate 23. In the horizontal direction, the reflecting portion 101 can be supported at a position close to the leg portion 102c of the supporting portion 102. As a result, in the mirror 118, the reflecting portion 101 is less likely to vibrate, and the position of the reflecting portion 101 is stabilized.
このように、 ミラ一 1 1 8の構造は、 反射部 1 0 1が振動しにくいと いう利点を有するが、 支持部 1 0 3により反射部支持部 1 0 5を吊り下 げた構造であるため、 接続部 1 0 4が反射部 1 0 1の上端近くの高い位 置に存在する。 このため、 図 1 ( b) のように、 可動板 2 3 1により ミ ラー 1 1 8を持ち上げて、 光導波路基板 2 4 0の溝 2 4 7に反射部 1 0 1を挿入する際に、 接続部 1 0 4および支持部 1 0 2、 1 0 3が光導波 路基板 2 3 0に接触して、 反射部 1 0 1の溝 2 4 7への挿入を妨げる虞 れがある。  As described above, the structure of the mirror 111 has an advantage that the reflecting portion 101 is hard to vibrate, but the structure in which the reflecting portion supporting portion 105 is suspended by the supporting portion 103 is provided. The connecting portion 104 exists at a high position near the upper end of the reflecting portion 101. Therefore, as shown in FIG. 1 (b), when the mirror 1 18 is lifted by the movable plate 2 3 1 and the reflecting portion 101 is inserted into the groove 2 47 of the optical waveguide substrate 240, There is a possibility that the connecting portion 104 and the supporting portions 102 and 103 come into contact with the optical waveguide substrate 230 and hinder insertion of the reflecting portion 101 into the groove 247.
この問題を解決するため、 本実施の形態では、 図 1 ( a) 、 ( b) お よび図 2に示したように、 光導波路基板 2 4 0の溝 2 4 7の両脇に、 接 続部 1 0 4および支持部 1 0 2、 1 0 3が入り込むことができる凹部 2 5 0を形成している。 凹部 2 5 0は、 溝 2 4 7の両脇の領域であって、 少なく とも接続部 1 0 4および支持部 1 0 2、 1 0 3が挿入される領域 に設けられる。 図 1, 図 2では、 溝 2 4 7の両脇の光導波路 2 4 1等に よって囲まれた菱形の領域の内側の全体に広く設けている。 ただし、 凹 部 2 5 0が光導波路 2 4 1等の伝搬光に影響を与えないように、 光導波 路 2 4 1からは一定の距離をあけている。 凹部 2 5 0の深さは、 接続部 1 0 4の高さに合わせて設計する。 図 1では、 溝 2 4 7 と同程度の深さ を持つように形成している。 これにより、 反射部 1 0 1が振動しにくい 吊り下げ型のミラー 1 1 8を用いた場合であっても、 反射部 1 0 1を光 導波路基板 2 4 0の溝 2 4 7に十分な深さまで挿入することができる。 よって、 光スィ ッチとして、 消光比の大きな高性能の光スィ ッチを提供 できる。 In order to solve this problem, according to the present embodiment, as shown in FIGS. 1 (a) and 1 (b) and FIG. 2, the contact is provided on both sides of the groove 247 of the optical waveguide substrate 240. A concave portion 250 into which the connecting portion 104 and the supporting portions 102 and 103 can enter is formed. The concave portions 250 are provided on both sides of the groove 247, at least in the regions where the connecting portions 104 and the supporting portions 102 and 103 are inserted. In FIGS. 1 and 2, a wide area is provided inside the rhombic region surrounded by the optical waveguides 241 on both sides of the groove 247. However, a certain distance is provided from the optical waveguide 241 so that the concave portion 250 does not affect the propagation light of the optical waveguide 241 and the like. The depth of the concave portion 250 is designed according to the height of the connecting portion 104. In FIG. 1, the groove is formed so as to have the same depth as the groove 247. As a result, even when the reflecting portion 101 is hard to vibrate and the hanging mirror 118 is used, the reflecting portion 101 is not sufficiently provided in the groove 247 of the optical waveguide substrate 240. Can be inserted to depth. Therefore, a high-performance optical switch having a large extinction ratio can be provided as the optical switch.
また、 図 1、 図 2では、 溝 2 4 7 と、 その両脇の凹部 2 5 0とが連続 するように形成している。 これにより、 隣り合う溝 2 4 7が凹部 2 5 0 によって、 連続している。 このような構成にすることにより、 マツチン グオイルが満たされた溝 2 4 7にミラー 1 1 8の反射部 1 0 1が挿入さ れる際に、 マッチングオイルが左右の広い空間である凹部 2 5 0に移動 することができるため、 反射部 1 0 1を溝 2 4 7に挿入する際の抵抗が 小さくなるという効果が得られる。  In FIGS. 1 and 2, the groove 247 is formed so as to be continuous with the concave portions 250 on both sides thereof. As a result, the adjacent grooves 247 are continuous by the concave portions 250. By adopting such a configuration, when the reflecting portion 101 of the mirror 118 is inserted into the groove 247 filled with the matching oil, the matching oil is formed in the concave portion 250, which is a wide left and right space. Therefore, the effect of reducing the resistance when the reflecting portion 101 is inserted into the groove 247 can be obtained.
本実施の形態の光スィ ツチの動作について、 光導波路 2 4 2 と光導波 路 2 4 5の交差する位置のミラー 1 1 8を例にとって説明する。 可動板 2 3 1の A 1膜と基板 2 3 0内部の電極との間に電圧を印加している状 態では、 図 1 ( a ) のように可動板 2 3 1が静電力により基板 2 3 0に 引き寄せられ、 ミラー 1 1 8の反射部 1 0 1は、 光導波路基板 2 4 0の 溝 2 4 7よりも下側に位置する。 よって、 例えば、 光導波路 2 4 2を伝 搬する光は、 溝 2 4 7を横切ってそのまま光導波路 2 4 2を伝搬する。 一方、 可動板 2 3 1の A 1膜と基板 2 3 0内部の電極との間に電圧を 印加していない状態では、 図 1 ( b ) のように可動板 2 3 1が湾曲し、 ミラー 1 1 8の反射部 1 0 1は、 溝 2 4 7に挿入され、 接続部 1 0 4お よび支持部 1 0 2、 1 0 3は溝の両脇の凹部 2 5 0に挿入される。 これ により、 例えば、 光導波路 2 4 2を伝搬する光は、 溝 2 4 7において反 射部 1 0 1によって反射されることにより、 折り返され、 光導波路 2 4 5に入射し、 光導波路 2 4 5を伝搬する。 これにより、 光導波路 2 4 2 を伝搬する光を光導波路 2 4 5から取り出すことが可能になり、 光の伝 搬方向のスィ ツチングを実現できる。 The operation of the optical switch according to the present embodiment will be described using a mirror 118 at a position where the optical waveguides 242 and 245 intersect as an example. In a state in which a voltage is applied between the A1 film of the movable plate 23 1 and the electrode inside the substrate 230, the movable plate 2 31 is moved by the electrostatic force to the substrate 2 as shown in Fig. 1 (a). The mirror 110 is attracted to 30 and the reflecting portion 101 of the mirror 118 is located below the groove 247 of the optical waveguide substrate 240. Therefore, for example, the optical waveguide 242 The light to be carried propagates through the optical waveguide 242 as it is across the groove 247. On the other hand, when no voltage is applied between the A1 film of the movable plate 231 and the electrode inside the substrate 230, the movable plate 231 bends as shown in FIG. The reflecting portion 101 of 118 is inserted into the groove 247, and the connecting portion 104 and the supporting portions 102, 103 are inserted into the concave portions 250 on both sides of the groove. Thus, for example, the light propagating through the optical waveguide 242 is reflected by the reflecting portion 101 in the groove 247, and is turned back, enters the optical waveguide 245, and Propagate 5. Thus, light propagating through the optical waveguide 242 can be extracted from the optical waveguide 245, and switching in the light propagation direction can be realized.
なお、 ミラー 1 1 8の反射部 1 0 1は、 図 6に示したように製造時に 基板 2 3 0側を向いていた面の方が反射率が高く、 反射面として用いる のに適している。 したがって、 光導波路基板 2 4 0の光の伝搬の向きに 合わせて、 反射部 1 0 1の図 6の面が反射面となるように、 可動板 2 3 1にミラー 1 1 8を搭載する向きを定めることが望ましい。  As for the reflecting portion 101 of the mirror 118, as shown in FIG. 6, the surface facing the substrate 230 side at the time of manufacturing has a higher reflectance, and is suitable for use as a reflecting surface. . Therefore, the direction in which the mirror 1 18 is mounted on the movable plate 2 3 1 is adjusted so that the surface in FIG. 6 of the reflection section 101 becomes the reflection surface according to the direction of light propagation of the optical waveguide substrate 240. It is desirable to determine
つぎに、 光導波路基板 2 4 0の製造方法について説明する。 本実施の 形態では、 光導波路基板 2 4 0の光導波路 2 4 1等は、 不純物を ドープ することにより屈折率を高めた S i 0 2により形成する。 また、 光導波 路の周囲のクラッ ド部分は S i 0 2により形成している。 製造手順とし ては、 まず、 S i基板を用意し、 S i基板上に火炎堆積法によりガラス 微粒子を堆積することにより下部クラッ ド層を形成し、 その上に火炎堆 積法により不純物がドープされたガラス微粒子の光導波路層を形成する。 その後熱処理を施すことにより、 下部クラッ ド層と光導波路層とを透明 ガラス状態にする。 つぎに、 光導波路層を ドライエッチングにより図 2 のように光導波路 2 4 1〜 2 4 6の形状にパ夕一ニングする。 この上に、 再び火炎堆積法によりガラス微粒子を堆積し、 上部クラッ ド層を形成し、 光導波路 24 1〜 246を覆う。 さらに熱処理を施すことにより、 上部 クラッ ド層を透明ガラス状態にする。 最後に、 ドライエツチングまたは ウエッ トエッチングにより、 溝 247および凹部 2 5 0を形成する。 以 上により、 光導波路基板 240を製造することができる。 Next, a method of manufacturing the optical waveguide substrate 240 will be described. In the present embodiment, 2 4 1 like optical waveguides of the optical waveguide substrate 2 4 0 is formed by S i 0 2 with increased refractive index by doping impurities. Further, clad portion around the optical waveguide path is formed by S i 0 2. As a manufacturing procedure, first, an Si substrate is prepared, a lower cladding layer is formed by depositing glass particles on the Si substrate by a flame deposition method, and impurities are doped thereon by a flame deposition method. The formed optical waveguide layer of the glass fine particles is formed. Thereafter, heat treatment is performed to make the lower cladding layer and the optical waveguide layer into a transparent glass state. Next, the optical waveguide layer is subjected to dry etching to form the optical waveguides 241 to 246 as shown in FIG. On top of this, glass particles are deposited again by the flame deposition method, forming an upper cladding layer, The optical waveguides 241 to 246 are covered. Further heat treatment turns the upper clad layer into a transparent glass state. Finally, a groove 247 and a recess 250 are formed by dry etching or wet etching. As described above, the optical waveguide substrate 240 can be manufactured.
つぎに、 ミラ一構造体基板 2 3 0上に、 可動板 2 3 1およびミラ一 1 1 8を形成する製造方法を図 8 ( &) 〜 ( 0 ) 、 図 9 ( &) 〜 ( 0 ) 、 図 1 0を用いて説明する。 Next, the manufacturing method of forming the movable plate 2 31 and the mirror 118 on the mirror structure substrate 230 will be described with reference to FIGS. 8 (&) to ( 0 ) and FIGS. 9 (&) to (0). This will be described with reference to FIG.
まず、 基板 2 30上に可動板 2 3 1を形成する。 不図示の電極および 配線が予め形成された基板 2 3 0上に、 レジス ト層 2 8 1を形成し、 可 動板 2 3 1の脚部 2 3 1 aを形成するべき位置に、 それそれ開口 (不図 示) をフォ ト リソグラフィ一により形成する (図 8 ( a ) ) o このレジ ス ト層 2 8 1は、 犠牲層であり、 最後の工程で除去される。 つぎに、 レ ジス ト層 2 8 1の上面に窒化シリコン膜を成膜し、 開口の底部の窒化シ リコン膜に開口を設ける。 さらに、 A 1膜を成膜し、 その上に窒化シリ コン膜を積層する。 この窒化シリコン膜、 A 1膜、 窒化シリコン膜の 3 層膜が可動板 2 3 1となる。 窒化シリコン膜および A 1膜の膜厚および 成膜条件は、 可動板 2 3 1が上向きに反るように予め定めた膜厚および 成膜条件とする。 この後、 上記工程で成膜した窒化シリコン膜、 A 1膜、 窒化シリコン膜の 3層膜を、 フォ ト リソグラフィ とエツチングの手法に より、 図 7の可動板 2 3 1の形状にパ夕一ニングする。 これにより、 脚 部 2 3 1 aの位置で A 1膜が基板 2 3 0の配線と接続された可動板 2 3 1を形成することができる。  First, the movable plate 23 1 is formed on the substrate 230. A resist layer 28 1 is formed on a substrate 230 on which electrodes and wirings (not shown) are formed in advance, and the positions where the legs 2 31 a of the movable plate 2 31 are to be formed are located. An opening (not shown) is formed by photolithography (FIG. 8 (a)). O This resist layer 281, which is a sacrificial layer, is removed in the last step. Next, a silicon nitride film is formed on the upper surface of the resist layer 281, and an opening is provided in the silicon nitride film at the bottom of the opening. Further, an A1 film is formed, and a silicon nitride film is stacked thereon. The three-layered film of the silicon nitride film, the A1 film, and the silicon nitride film becomes the movable plate 231. The thickness and the film forming conditions of the silicon nitride film and the A1 film are set to predetermined film thickness and film forming conditions so that the movable plate 231 is warped upward. Thereafter, the silicon nitride film, the A1 film, and the silicon nitride film formed in the above-described process are transferred to the shape of the movable plate 231 shown in FIG. 7 by photolithography and etching. To synchronize. Thus, the movable plate 231 in which the A1 film is connected to the wiring of the substrate 230 at the position of the leg 231a can be formed.
つぎに、 可動板 2 3 1の上に、 ミラ一 1 1 8を形成する。 ミラ一 1 1 8の支持部 1 02 , 1 03、 接続部 1 04、 反射部支持部 1 0 5、 反射 部 1 0 1は、 可動板 2 3 1上に、 図 1 0のような配置および形状に形成 される。 図 8 (a) 〜 ( c ) 、 図 9 ( a) 〜 ( c) は、 図 1 0の C一 C 断面における ミ ラー 1 1 8の製造手順を示している。 Next, a mirror 1 18 is formed on the movable plate 2 3 1. The support portions 102, 103, the connection portion 104, the reflection portion support portion 105, and the reflection portion 101 of the mirror 118 are arranged on the movable plate 231 as shown in FIG. It is formed into a shape. FIGS. 8 (a) to (c) and FIGS. 9 (a) to (c) show C-C of FIG. The manufacturing procedure of the mirror 118 in the cross section is shown.
まず、 可動板 2 3 1が形成された基板 2 3 0の全面にレジス ト層 8 1 を形成し、 支持部 1 0 2の脚部 1 0 2 cを形成するべき位置に、 開口 8 l aをフォ ト リ ソグラフィ一により形成する (図 8 ( a) ) 。 つぎに、 接続部 1 0 4ならびに反射部支持部 1 0 5を形成すべき位置に、 レジス トアイラン ド 2 0 1を形成する (図 8 ( b ) ) 。 レジス トアイラン ド 2 0 1を形成することによ り、 接続部 1 0 4および反射部支持部 1 0 5を、 周囲に段差のある形状にすることができる。 この状態の基板 2 3 0の全 面に、 支持部 1 0 3の A 1膜 1 0 3 aを成膜し、 フォ ト リソグラフィ と エッチングの手法によ り図 1 0に示した支持部 1 0 3の形状にパ夕一二 ングする (図 8 ( c ) ) 。 つぎに、 全面に窒化シリコン膜と A 1膜 1 0 2 bを順に成膜する (図 9 ( a) ) 。 成膜した A 1膜 1 0 2 bを図 1 ◦ の支持部 1 0 2の形状にパターニングした後、 上記工程で成膜した窒化 シリコン膜を、 支持部 1 0 2、 接続部 1 0 4、 支持部 1 0 3、 反射部支 持部 1 0 5の形状にパターニングする (図 9 ( b ) ) 。 これにより、 支 持部 1 0 3の窒化シリコン膜 1 0 3 bと、 接続部 1 0 4と、 反射部支持 部 1 0 5 とが一度に形成される。  First, a resist layer 81 is formed on the entire surface of the substrate 230 on which the movable plate 231 is formed, and an opening 8 la is formed at a position where the leg 102 c of the support 102 is to be formed. It is formed by photolithography (Fig. 8 (a)). Next, a resist island 201 is formed at a position where the connecting portion 104 and the reflecting portion supporting portion 105 are to be formed (FIG. 8B). By forming the resist island 201, the connecting portion 104 and the reflecting portion supporting portion 105 can be formed into a shape having a step around the periphery. An A1 film 103a of the support portion 103 is formed on the entire surface of the substrate 230 in this state, and the support portion 103 shown in FIG. 10 is formed by photolithography and etching. Figure 3 (c). Next, a silicon nitride film and an A1 film 102b are sequentially formed on the entire surface (FIG. 9A). After patterning the formed A1 film 102b into the shape of the support portion 102 of FIG. 1 ◦, the silicon nitride film formed in the above process is changed to the support portion 102, the connection portion 104, The support portion 103 and the reflective portion support portion 105 are patterned into a shape (FIG. 9B). Thus, the silicon nitride film 103b of the support portion 103, the connection portion 104, and the reflection portion support portion 105 are formed at a time.
図 9 (b) の状態の基板 2 3 0の全面にレジス ト層 1 4 1を形成し、 反射部 1 0 1 と反射部支持部 1 0 5 との接続部 1 0 5 bとなる位置に開 口を形成する (図 9 ( c ) ) 。 この上にさらに、 レジス ト層 8 2を形成 し、 反射部 1 0 1の部分を残して除去し、 レジス トアイラン ドを形成す る。 このレジス トアイラン ドを形成することによ り、 反射部 1 0 1を、 周囲に段差 1 0 1 aをもつ形状に形成することができる。 レジス トアイ ラン ドのレジス ト層 8 2についても、 接続部 1 0 5 bとなる位置に開口 を形成する。 この状態の基板 2 3 0の全面に A 1膜 1 0 1を成膜して、 反射部 1 0 1の形状にパターニングする (図 9 ( c ) ) 。 これによ り、 図 1 0に示したように、 犠牲層 2 8 1, 8 1 , 14 1等を挟んで、 可動 板 2 3 1 , 支持部 1 0 2、 1 0 3、 接続部 1 04、 反射部支持部 1 0 5, 反射部 1 0 1が、 積層された基板 2 3 0を形成することができる。 A resist layer 141 is formed on the entire surface of the substrate 230 in the state shown in FIG. An opening is formed (Fig. 9 (c)). A resist layer 82 is further formed thereon, and the resist layer is removed except for the reflecting portion 101, thereby forming a resist island. By forming the resist island, the reflecting portion 101 can be formed into a shape having a step 101 a around the reflecting portion 101. An opening is also formed in the resist layer 82 of the resist island at a position to be the connection portion 105b. An A1 film 101 is formed on the entire surface of the substrate 230 in this state, and is patterned into the shape of the reflecting portion 101 (FIG. 9 (c)). This allows As shown in FIG. 10, the movable plate 231, the support portions 102, 103, the connection portion 104, and the reflection portion support portion sandwiching the sacrificial layers 281, 81, 141, etc. 105 and the reflecting portion 101 can form a laminated substrate 230.
最後に、 アツシングによ り、 犠牲層のレジス ト層 2 8 1 , 8 1 , 1 4 1, 8 2を除去する。 これによ り、 支持部 1 0 2および支持部 1 0 3が 湾曲して図 6のように可動板 2 3 1上に立ち上がり、 図 6のミラ一 1 1 8の形状となる。 また、 可動板 2 3 1も湾曲して、 図 1 (b) のように 基板 2 30に対して立ち上がり、 ミラ一 1 1 8を上下動することが可能 な状態となる。 以上によ り、 ミラー構造体基板 2 3 0を製造することが できる。  Finally, the resist layers 281, 81, 141, 82 of the sacrificial layer are removed by asshing. As a result, the supporting portions 102 and 103 are curved and rise up on the movable plate 231, as shown in FIG. 6, to have the shape of the mirror 118 in FIG. Further, the movable plate 2 31 also curves, rises with respect to the substrate 230 as shown in FIG. 1 (b), and is brought into a state in which the mirror 1 18 can be moved up and down. As described above, the mirror structure substrate 230 can be manufactured.
最後に光導波路基板 240とミラー構造体基板 2 3 0とを位置合わせ し、 スぺーサを挟んで重ね合わせて固定する。 そして、 光導波路基板 2 40とミラ一構造体基板 2 3 0との間の空間にマッチングオイルを注入 し、 封止する。 これによ り、 本実施の形態の光スィ ッチを製造すること ができる。  Finally, the optical waveguide substrate 240 and the mirror structure substrate 230 are aligned, and the spacers are interposed and fixed. Then, a matching oil is injected into a space between the optical waveguide substrate 240 and the mirror structure substrate 230 to seal the space. As a result, the optical switch according to the present embodiment can be manufactured.
上述してきたように、 本実施の形態の光スィ ツチは、 ミラ一 1 1 8と して、 薄膜で形成した反射部 1 0 1を、 支持部 1 02、 1 0 3で垂直に 持ち上げた構成であるため、 反射部 1 0 1の反射面として、 薄膜の主平 面を用いることができる。 よって、 反射面を容易に滑らかに形成できる ため、 高い反射率を得ることができる。 また、 ミラー 1 1 8は、 反射部 支持部 1 0 5を吊り下げることにより、 反射部 1 0 1を可動板 2 3 1に 近い低い位置に支持することができるため、 反射部 1 0 1が振動しにく い。 しかも、 光導波路基板 240に凹部 2 5 0を設けたことによ り、 吊 り下げ型のミラ一 1 1 8を用いた場合であっても、 接続部 1 04および 支持部 1 02, 1 0 3が光導波路基板 240にぶつかることなく、 反射 部 1 0 1を溝 2 47の奥まで挿入できる。 よって、 振動に強く、 消光比 の大きな光スィ ツチを提供することができる。 As described above, the optical switch according to the present embodiment has a configuration in which a mirror 111 is formed by vertically raising a reflecting portion 101 formed of a thin film by supporting portions 102 and 103. Therefore, the main plane of the thin film can be used as the reflecting surface of the reflecting portion 101. Therefore, since the reflecting surface can be easily formed smoothly, a high reflectance can be obtained. In addition, the mirror 118 can support the reflecting portion 101 at a low position close to the movable plate 231, by suspending the reflecting portion supporting portion 105. Hard to vibrate. Moreover, since the concave portion 250 is provided in the optical waveguide substrate 240, even when the hanging mirror 110 is used, the connecting portion 104 and the supporting portions 102, 100 are used. The reflecting portion 101 can be inserted all the way into the groove 247 without the 3 hitting the optical waveguide substrate 240. Therefore, it is strong against vibration and extinction ratio It is possible to provide a large optical switch.
また、 上述の実施の形態の光スィ ツチに用いることのできるミラーと しては、 上述したミラ一 1 1 8に限定されるものではない。 本実施の形 態のように凹部 2 5 0を設けた光導波路基板は、 反射部を支持する部材 が、 反射部の両脇に存在する構造のミラ一を用いた場合に有効である。 例えば、 図 1 1 ( a ) 、 ( b ) に示したように、 反射部 1 0 1を両脇の 2本の支持部 1 0 2から下向き (可動板 2 3 1側) につり下げた形状で あるミラ一 1 1 7を用いることができる。 このミラー 1 1 7も、 反射部 1 0 1の可動板 2 3 1からの高さが低く、 可動板 2 3 1が移動した場合 にも反射部 1 0 1が振動しにくいという利点がある。 ミラー 1 1 7は、 支持部 1 0 2の上端が、 反射部 1 0 1の上端と同じ高さであるため、 凹 部 2 5 0の深さとしては、 溝 2 4 7と同等もしくはそれ以上に形成する。  Further, the mirror that can be used for the optical switch according to the above-described embodiment is not limited to the above-mentioned mirror 118. The optical waveguide substrate provided with the concave portion 250 as in the present embodiment is effective when the mirror supporting the reflecting portion uses a mirror having a structure present on both sides of the reflecting portion. For example, as shown in Figs. 11 (a) and (b), the reflector 101 is suspended downward from the two supports 102 on both sides (movable plate 2 31 side). Can be used. This mirror 117 also has the advantage that the height of the reflecting portion 101 from the movable plate 231 is low, and the reflecting portion 101 is unlikely to vibrate even when the movable plate 231 moves. Since the upper end of the supporting portion 102 is the same height as the upper end of the reflecting portion 101, the depth of the concave portion 250 is equal to or greater than that of the groove 247. Formed.
また、 上述してきた実施の形態では、 光導波路基板 2 4 0の溝 2 4 7 と両脇の凹部 2 5 0 とを連続させているが、 必ずしも連続させる必要は ない。 また、 ミラーの支持部の配置に応じて、 ミラーの支持部が光導波 路基板 2 4 0 とぶつかる部分のみに凹部 2 5 0を設けることも可能であ る。  Further, in the above-described embodiment, the groove 247 of the optical waveguide substrate 240 and the concave portions 250 on both sides are made continuous, but it is not always necessary to make them continuous. Further, depending on the arrangement of the mirror support, it is possible to provide the concave portion 250 only in the portion where the mirror support collides with the optical waveguide substrate 240.
また、 上述してきた実施の形態では、 光導波路基板 2 4 0の凹部 2 5 0をエッチングにより形成しているが、 エッチングに限らず機械的な加 ェ等の他の方法により形成することも可能である。  Further, in the above-described embodiment, the concave portion 250 of the optical waveguide substrate 240 is formed by etching, but it is also possible to form the concave portion 250 by other methods such as mechanical addition without being limited to etching. It is.
以上説明したように、 本発明によれば、 反射率が高く、 振動に強いミ ラーを用いた光スィ ッチを提供することができる。  As described above, according to the present invention, it is possible to provide an optical switch using a mirror having a high reflectance and a high resistance to vibration.
なお、 図 1において、 可動板 2 3 1の位置を所望の高さで停止させる ことにより、 本実施の形態の構成では、 ミラー 1 1 8の反射部 1 0 1を 光路の途中で停止させることができる。 例えば、 光束の半分や 1 / 3等 所望の光量を遮る高さで停止させることができる。 これにより、 本実施 形態の光スィ ツチを所望の光量のみを通過させる、 光量減衰器 (アツテ ネー夕) として用いることが可能である。 この場合、 ミラ一 1 1 8の反 射部 1 0 1に代えて、 光反射率の低い膜を遮光部として搭載することが 可能である。 さらに、 反射部 1 0 1に代えて、 偏光特性を有する偏光膜 や、 光波長フィル夕特性を有する光学薄膜を搭載することも可能である。 これらを可動板 2 3 1に搭載するこにより、 偏光器、 波長選択器等の光 学装置を構成することができる。 In FIG. 1, by stopping the position of the movable plate 2 31 at a desired height, in the configuration of the present embodiment, the reflecting portion 101 of the mirror 118 is stopped in the middle of the optical path. Can be. For example, it can be stopped at a height that blocks a desired amount of light, such as half or 1/3 of the light flux. As a result, this implementation It can be used as a light attenuator (attenuator) that allows only the desired amount of light to pass through the optical switch. In this case, it is possible to mount a film having a low light reflectance as a light-shielding portion instead of the reflecting portion 101 of the mirror 118. Further, instead of the reflecting portion 101, it is also possible to mount a polarizing film having a polarization characteristic or an optical thin film having a light wavelength filter characteristic. By mounting these on the movable plate 231, optical devices such as a polarizer and a wavelength selector can be configured.

Claims

請求の範囲 The scope of the claims
1 . 光導波路基板と、 ミラー部と、 前記ミラ一部を搭載した可動部とを 有し、 1. It has an optical waveguide substrate, a mirror portion, and a movable portion on which a part of the mirror is mounted,
前記ミラー部は、 光反射部と、 前記光反射部を前記可動部上に支持す る支持部とを含み、  The mirror unit includes: a light reflection unit; and a support unit that supports the light reflection unit on the movable unit.
前記光導波路基板は、 光路をスィ ツチングするために前記可動部によ つて前記光反射部が挿入されるための溝と、 前記光反射部が前記溝に揷 入される際に前記支持部の一部が入り込むための凹部とを有することを 特徴とする光スィ ツチ。  The optical waveguide substrate includes a groove into which the light reflecting portion is inserted by the movable portion for switching an optical path, and a groove formed by the supporting portion when the light reflecting portion is inserted into the groove. An optical switch characterized by having a recess into which a part enters.
2 . 請求項 1に記載の光スィ ッチにおいて、 2. The optical switch according to claim 1,
前記光反射部および支持部は、 それそれ膜によって構成され、 前記支持部は、 一方の端部が前記可動部に固定され、 他方の端部は、 直接または他の部材を介して前記光反射部と接綜され、 前記一方の端部 から前記他方の端部に向かって湾曲することにより、 前記光反射部を構 成する膜の主平面を、 前記光導波路基板の主平面に対して非平行に支持 する構成であることを特徴とする光スィ ツチ。  The light reflecting portion and the supporting portion are each formed of a film, and the supporting portion has one end fixed to the movable portion, and the other end connected to the light reflecting portion directly or through another member. The main surface of the film constituting the light reflecting portion is non-aligned with respect to the main surface of the optical waveguide substrate by being curved from the one end to the other end. An optical switch characterized in that it is configured to be supported in parallel.
3 . 請求項 2に記載の光スィ ッチにおいて、 3. The optical switch according to claim 2,
前記支持部の前記他方の端部は、 前記光反射部の下端よりも高い位置 に位置し、 直接または前記他の部材を介して、 前記光反射部を吊り下げ た構成であり、  The other end of the support portion is located at a position higher than a lower end of the light reflection portion, and the light reflection portion is suspended directly or via the other member,
前記光反射部が前記溝に挿入される際に、 前記光導波路基板の前記凹 部には、 前記支持部の前記他方の端部が入り込むことを特徴とする光ス イ ッチ。 The optical switch, wherein when the light reflecting portion is inserted into the groove, the other end of the support portion enters the concave portion of the optical waveguide substrate.
4 . 請求項 2または 3に記載の光スイ ッチにおいて、 4. The optical switch according to claim 2 or 3,
前記支持部は、 前記光反射部の両脇にそれそれ配置され、 前記光反射 部を両側から支持する構成であり、  The support portion is disposed on both sides of the light reflection portion, and is configured to support the light reflection portion from both sides,
前記光導波路基板の前記凹部は、 前記光反射部の両側の前記支持部に 対応して、 前記溝の両側に配置されていることを特徴とする光スィ ツチ。  The optical switch, wherein the concave portion of the optical waveguide substrate is disposed on both sides of the groove, corresponding to the support portions on both sides of the light reflecting portion.
5 . 請求項 1、 2、 3または 4に記載の光スイ ッチにおいて、 5. The optical switch according to claim 1, 2, 3, or 4,
前記溝と前記凹部とは連続しており、 前記溝および前記凹部には、 屈 折率整合のためのオイルが充填されていることを特徴とする光スィ ツチ。  The groove and the recess are continuous, and the groove and the recess are filled with oil for refractive index matching.
6 . 光導波路基板と、 光学素子と、 前記光学素子を搭載した可動部とを 有し、 6. It has an optical waveguide substrate, an optical element, and a movable part on which the optical element is mounted,
前記光学素子は、 所望の光学特性を持つ光学膜と、 前記光学膜を前記 可動部上に支持する支持部とを含み、  The optical element includes: an optical film having desired optical characteristics; and a support unit that supports the optical film on the movable unit.
前記光導波路基板は、 前記可動部によって前記光学膜が挿入されるた めの溝と、 前記光学膜が前記溝に挿入される際に前記支持部の一部が入 り込むための凹部とを有することを特徴とする光学装置。  The optical waveguide substrate includes a groove into which the optical film is inserted by the movable portion, and a recess into which a part of the support portion enters when the optical film is inserted into the groove. An optical device, comprising:
7 . 請求項 6に記載の光学装置において、 7. The optical device according to claim 6, wherein
前記支持部は、 膜によって構成され、 一方の端部が前記可動部に固定 され、 他方の端部が直接または他の部材を介して前記光学膜と接続され、 前記一方の端部から前記他方の端部に向かって湾曲することにより、 前 記光学膜の主平面を、 前記光導波路基板の主平面に対して非平行に支持 する構成であることを特徴とする光学装置。 The support portion is formed of a film, one end is fixed to the movable portion, the other end is connected to the optical film directly or through another member, and the other end is connected to the other end. An optical device having a configuration in which the main plane of the optical film is supported non-parallel to the main plane of the optical waveguide substrate by curving toward the end of the optical waveguide.
8 . 請求項 7に記載の光学装置において、 8. The optical device according to claim 7,
前記支持部の前記他方の端部は、 前記光学膜の下端よりも高い位置に 位置し、 直接または前記他の部材を介して、 前記光学膜を吊り下げた構 成であり、  The other end of the support portion is located at a position higher than a lower end of the optical film, and has a configuration in which the optical film is suspended directly or through the other member.
前記光学膜が前記溝に挿入される際に、 前記光導波路基板の前記凹部 には、 前記支持部の前記他方の端部が入り込むことを特徴とする光学装 置。  The optical device, wherein when the optical film is inserted into the groove, the other end of the support portion enters the concave portion of the optical waveguide substrate.
9 . 請求項 7または 8に記載の光学装置において、 9. The optical device according to claim 7 or 8,
前記支持部は、 前記光学膜の両脇にそれそれ配置され、 前記光学膜を 両側から支持する構成であり、  The support portion is disposed on each side of the optical film, and supports the optical film from both sides.
前記光導波路基板の前記凹部は、 前記光学膜の両側の前記支持部に対 応して、 前記溝の両側に配置されていることを特徴とする光学装置。  The optical device according to claim 1, wherein the concave portion of the optical waveguide substrate is disposed on both sides of the groove, corresponding to the support portions on both sides of the optical film.
1 0 . 請求項 6、 7、 8または 9に記載の光学装置において、 10. The optical device according to claim 6, 7, 8, or 9,
前記溝と前記凹部とは連続しており、 前記溝および前記凹部には、 屈 折率整合のためのオイルが充填されていることを特徴とする光学装置。  The optical device, wherein the groove and the concave portion are continuous, and the groove and the concave portion are filled with oil for refractive index matching.
1 1 . 請求項 6、 7、 8、 9または 1 0に記載の光学装置において、 前記光学膜が光を遮る膜で形成され、 光量減衰器として機能すること を特徴とする光学装置。 11. The optical device according to claim 6, 7, 8, 9, or 10, wherein the optical film is formed of a film that blocks light, and functions as a light amount attenuator.
PCT/JP2003/013484 2002-10-22 2003-10-22 Optical switch and optical device WO2004038485A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003275584A AU2003275584A1 (en) 2002-10-22 2003-10-22 Optical switch and optical device
JP2004546443A JPWO2004038485A1 (en) 2002-10-22 2003-10-22 Optical switch and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-306684 2002-10-22
JP2002306684 2002-10-22

Publications (1)

Publication Number Publication Date
WO2004038485A1 true WO2004038485A1 (en) 2004-05-06

Family

ID=32170904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013484 WO2004038485A1 (en) 2002-10-22 2003-10-22 Optical switch and optical device

Country Status (3)

Country Link
JP (1) JPWO2004038485A1 (en)
AU (1) AU2003275584A1 (en)
WO (1) WO2004038485A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815620A (en) * 1994-07-01 1996-01-19 Nippon Telegr & Teleph Corp <Ntt> Filter type optical switch
JP2002023073A (en) * 2000-07-03 2002-01-23 Ntt Electornics Corp Mems optical switch and producing method therefor
JP2002023069A (en) * 2000-07-12 2002-01-23 Sumitomo Electric Ind Ltd Optical switch
JP2002214547A (en) * 2001-01-12 2002-07-31 Sumitomo Electric Ind Ltd Optical switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815620A (en) * 1994-07-01 1996-01-19 Nippon Telegr & Teleph Corp <Ntt> Filter type optical switch
JP2002023073A (en) * 2000-07-03 2002-01-23 Ntt Electornics Corp Mems optical switch and producing method therefor
JP2002023069A (en) * 2000-07-12 2002-01-23 Sumitomo Electric Ind Ltd Optical switch
JP2002214547A (en) * 2001-01-12 2002-07-31 Sumitomo Electric Ind Ltd Optical switch

Also Published As

Publication number Publication date
JPWO2004038485A1 (en) 2006-02-23
AU2003275584A8 (en) 2004-05-13
AU2003275584A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP4456310B2 (en) Micro electromechanical optical switch and method of manufacturing the same
US7003187B2 (en) Optical switch with moveable holographic optical element
US6493482B1 (en) Optical switch having a planar waveguide and a shutter actuator
WO2006025343A1 (en) Two-dimensional photonic crystal and optical device using the same
US6470130B1 (en) Waveguide structures
CA2638477C (en) Integrated electrical cross-talk walls for electrostatic mems
WO2004038485A1 (en) Optical switch and optical device
JP4349127B2 (en) Optical element, thin film structure, optical switch, and method of manufacturing optical element
US20030223681A1 (en) Optical switch with 3D waveguides
KR20170095891A (en) Stress-tuned planar lightwave circuit and method therefor
JP2004102227A (en) Micromirror actuator
US6894819B2 (en) Micromirror actuator and method of manufacturing the same
US7177065B2 (en) Optical element, thin film structure, optical switch, and method of manufacturing optical element
US20040013344A1 (en) Planar optical switch and switch array
US6847756B2 (en) Optical switching matrix and method of fabricating such a matrix
JP2006187060A (en) Micro actuator, manufacturing method thereof, optical device, and optical switch
KR20030025714A (en) Micromachined optical switch and method of manufacture thereof
JP3960186B2 (en) Optical device
JP2004295043A (en) Optical waveguide
EP1451628B1 (en) Optical switch with moveable holographic optical element
JP4012808B2 (en) Variable optical attenuator
WO2001048532A9 (en) Integrated planar optical waveguide and shutter
JP2002116388A (en) Optical switch and optical switch device including the same
JP2003202508A (en) Optical switch and mirror element
JP4238539B2 (en) Thin film three-dimensional structure and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004546443

Country of ref document: JP

122 Ep: pct application non-entry in european phase