DaimlerChrysler AG Straub /sma
Stereoprojektionssystem und Projektionsvorrichtung dafür
Die Erfindung betrifft ein Stereopro ektionssystem und eine Proj ek ionsvorrichtung für ein solches.
Aus dem deutschen Gebrauchsmuster DE 296 14 692 Ul und den europäischen Patenten EP 749 250 Bl und EP 565 218 Bl sind Projek ionsvorrichtungen mit einer Lichtquelle, einem Farbrad mit mehreren Filtern, insbesondere Interferenzfiltern, einer bildgebenden Einheit, einer Projektionsoptik und einer Steuerung zur Synchronisation der bildgebenden Einheit mit dem Farbrad bekannt. Um eine Überhitzung und damit Schädigung der Projektionsvorrichtung bei gleichzeitiger guter Farbsättigung zu erreichen, werden Interferenzfilter mit breiten Durchlassbereichen im Bereich von 50 nm oder höher verwendet.
Aus dem deutschen Patent DE 100 05 335 C2 ist ein Stereopro- jektionssystem bekannt, das Projektionsvorrichtungen ohne Farbrad zeigt, die für die Projektion eines Halbbildes einen Interferenzfilter mit mehreren schmalbandigen Durchlassbereichen aufweist.
Der Erfindung liegt die Aufgabe zugrunde, ein Stereoprojektionssystem bzw. eine Projektionsvorrichtung anzugeben, welche für die Verwendung in einem Stereoprojektionssystem geeignet ist, welche kostengünstig zu realisieren sind, eine gute Kanaltrennung aufweisen und ein angenehmes Farbempfinden zei- gen.
Diese Aufgabe wird durch eine Projek ionsvorrichtung mit den Merkmalen des Patentanspruchs 1 und ein Stereoprojektionssystem mit den Merkmalen des Anspruchs 8 gelöst .
Vorteilhafte Ausbildungen der Erfindung sind Gegenstand der Unteransprüche .
Die Erfindung macht sich zueigen, die bekannten Projektionsvorrichtungen mit einer Lichtquelle, einem Farbrad mit mehre- ren Interferenzfiltern, einer bildgebenden Einheit, einer Pro ektionsoptik und einer Steuerung zur Synchronisation der bildgebenden Einheit mit einem Farbrad dahingehend weiterzubilden, dass sie mit einer zweiten oder mit weiteren Projektionsvorrichtung so zusammenwirken können, dass sie ein ange- nehmes Stereobilderlebnis ermöglichen bzw. selbst die weitere Projektionsvorrichtung darstellen. Hierfür ist es erforderlich, einerseits die Projektionsvorrichtungen so aufeinander abzustimmen, dass sie dieselbe Projektionsfläche ohne wesentlichen Versatz überdecken und zeitlich bezüglich der zu pro- jizierenden Bilddaten so abgestimmt sind, dass die Wahrnehmung der Stereobildinformationen nicht gestört ist. Dies erfolgt primär über geeignete Ausrichtung der Projektionsvor- richtungen sowie durch entsprechende gemeinsame Steuerung und ggf. über ein die Möglichkeit einer gemeinsamen Datenversor- gung aus einer Datenquelle. Als Datenquelle wird bevorzugt ein Rechnersystem zur Generierung von Virtual-Reality Bilddaten verwendet, mit welchen Stereobilddaten für virtuelle Gegenstände geschaffen werden, welche mittels erfindungsgemäßen Projektionsvorrichtungen auf entsprechende Projektionsflächen projiziert werden.
Die erfindungsgemäßen Projektionsvorrichtungen zeigen jeweils ein Farbrad, das eines oder mehrere Filtertriplets aus Interferenzfiltern zeigt, wobei die Triplets jeweils einen schmal- bandigen Interferenzfilter der Farben rot, grün oder blau aufweisen. Dabei ist die Bandbreite des Durchlassbereiches des schmalbandigen Interferenzfilter so gewählt, dass er ty-
pischerweise unter 30 nm und insbesondere im Bereich von 20 nm liegt. Durch diese schmalbandigen Interferenzfiltern ist einerseits sichergestellt, dass ein Überlapp der verschiedenen Durchlassbereiche der einzelnen Interferenzfilter eines oder mehrerer Tnplets nicht gegeben ist. Die Interferenzfilter zeichnen sich durch sehr hohe Flankensteilheit auf, was sich zusätzlich positiv zu der besonders schmalen Ausbildung der Durchlassbereiche der Filter zur Vermeidung von Überlappbereiche hinzutritt. Durch die schmalbandige Aus- bildung der Interferenzfilter für das Farbrad ist durch die besonders hohe spektrale Reinheit des Farbsignals ein sehr angenehmes Farbempfinden gegeben, zumal die Wahl der drei Farben der Interferenzfilter eines Triplets den drei Farbrezeptoren des menschlichen Auges so angepasst ist, dass die besondere Wirkung im Hinblick auf angenehmes Farbempfinden besonders ausgeprägt gegeben ist .
Auch erweist sich die Projektionsvorrichtung als sehr kostengünstig, da sich für diese Art von Projektionsvorrichtung ei- nerseits eine einfache und kostengünstige breitbandige Lichtquelle und zum andern eine einfache bildgebende Einheit, die nicht eine differenzierte, parallele Erzeugung von Bildern in den drei Grundfarben benötigt. Eine sogenannte Single-Chip bildgebende Einheit, die als DMD-, DLP-, DILA- oder LCD- bildgebende Einheit realisiert ist, genügt für eine erfindungsgemäße Projektionsvorrichtung. Diese sogenannten Single- Chip bildgebenden Einheiten erweisen sich als wesentlich kostengünstiger als entsprechende 3Chip-Lösungen.
Nach einer bevorzugten Ausbildung der Erfindung wird die schmale Bandbreite der Interferenzfilter eines Triplets unterschiedlich für die verschiedenen Farben gewählt, wobei die Bandbreite der Interferenzfilter im Bereich höherer, größerer Wellenlängen größer gewählt wird als die Bandbreiten der In- terferenzfilter im Bereich geringerer Wellenlänge. Dies führt dazu, dass die Interferenzfilter der Farbe rot eine größere Bandbreite aufweisen als die der Farbe grün bzw. die der Far-
be blau. Durch diese differenzierten Bandbreiten der Interferenzfilter des Triplets gelingt es, die längeren, größeren Wellenlängen stärker zu betonen und dadurch einen wärmeren Farbeindruck zu erreichen. Dies erweist sich in Verbindung mit den typischerweise kalten, breitbandigen Lichtquellen wie Halogenlichtquellen von besonderem Vorteil. Durch diese besondere Wahl und Ausgestaltung der schmalbandigen Interferenzfilter wird ein sehr angenehmes Projektionsverhalten der Projektionsvorrichtung erreicht, ohne dass es aufwendige e- lektronische Beschaltungen oder Anpassungen der Bilddaten insbesondere im Hinblick auf Farbkorrekturen erfordert.
Dabei hat es sich im besonderen bewährt, das Verhältnis aus Bandbreite und mittlerer Wellenlänge des Durchlassbereichs eines schmalbandigen Interferenzfilters in dem Bereich von 4 % zu wählen. Dies führt dazu, dass ein besonders gleichmäßiges und angenehmes Farbempfinden gegeben ist. Aus den verschiedenen Möglichkeiten, eine differenzierte Bandbreite in Abhängigkeit der vorgegebenen Wellenlängen des Durchlassbe- reiches zu wählen hat sich diese als besonders vorteilhaft und fertigungstechnisch gut realisierbar herausgestellt.
Eine besonders vorteilhafte Projektionsvorrichtung zeichnet sich dadurch aus, dass das Farbrad wenigstens zwei Triplets aus schmalbandigen Interferenzfiltern aufweist. Dabei sind die mittleren Wellenlängen der Durchlassbereiche der Interferenzfilter gleicher Farbe so gewählt, dass sie im wesentlichen symmetrisch um folgende Symmetriewellenlängen für die Farbe blau im Bereich von 450 nm für die Farbe grün im Be- reich von 540 nm und die Farbe rot im Bereich von 630 nm angeordnet sind. Durch die sehr schmalbandigen Interferenzfilter mit einer typischen Bandbreite von etwa 20 nm ist sichergestellt, dass ein Übersprechen des einen Filters auf den anderen Filter bzw. das Übersprechen der Bildinformationen, die durch den einen Filter gelangen, auf die Bildinformation des Lichtes, das durch den anderen Filter gelangt, verhindert ist indem die beiden oder die mehreren Interferenzfilter einer
Farbe ohne Überlapp und mit ausreichendem Abstand, der vorzugsweise der etwa 10 nm betragt, bei der sehr hohen Flankensteilheit der Interferenzfilter gewählt s nd. Hierdurch gelingt es sehr farbechte und kontrastreiche Bilder zu proji- zieren, was insbesondere für die Stereoprojektion von besonderer Bedeutung ist. Hier wirkt es sich in besonderem Maße aus, da die beiden vergleichbaren Information der beiden Halbbilder einmal für das linke Auge und einmal für das rechte Auge sicher voneinander getrennt und in sehr angenehmen Farben und bei großer Farbsattigung projiziert werden können. W rd der Abstand der Durchlassbereiche geringer gewählt bzw. die besondere Lage der Symmetriewellenlängen nicht so gewählt, so fuhrt das regelmäßig zu einer unerwünschten Verschlechterung des Farbempfindens.
Als ausgesprochen vorteilhafte Ausbildung eines Farbrades für eine erfmdungsgemaße Projektionsvorrichtung hat es sich herausgestellt, zwei Triplets vorzusehen. Dabei sind die beiden roten Interferenzfilter der beiden Triplets mit einem Durch- lassbereich von 660 bis 635 nm bzw. von 625 bis 600 nm gew hlt. Die beiden Durchlassbereiche der grünen Interferenz- filter sind von 565 bis 545 nm bzw. von 535 bis 515 nm und die Durchlassbereiche der blauen Interferenzfilter von 470 bis 455 nm bzw. von 445 bis 430 nm gewählt. Durch diese be- sondere Wahl der Durchlassbereiche der beiden Filtertriplets ist sichergestellt, dass einerseits eine ausreichende Beabstandung der Durchlassbereiche der Interferenzfilter gleicher Farbe gegeben ist, was zu einer sicheren Trennung der Durchlassbereiche fuhrt. Darüber hinaus ist durch die größeren Bandbreiten der Durchlassbereiche bei längeren Wellenlangen also für die rote Farbe gegenüber der grünen und selbst wiederum gegenüber der blauen Farbe der Interferenz- filter ein sehr angenehmes Farbempfinden gegeben. Durch die schmalbandigen Filter ist zudem ein sehr farbreines, farbsat- tes Farbempfinden der projizierten Informationen insbesondere der generierten Virtual-Reality Bilddaten gewährleistet. Diese fuhrt zu einer sehr kostengünstigen Projektionsvorrich-
tung, die ohne dass eine weitere Projektionsvorrichtung benötigt wird für sich allein ein Stereoprojektionssystem ermöglicht. Hierbei wird jedes Halbbild der Stereobilder unter Verwendung eines Filtertriplets projiziert. Diese zeichnet sich zudem durch ein sehr gutes Bild aus.
Daneben hat es sich besonders bewährt, die Interferenzfilter gleicher Farbe mehrerer Triplets auf einer Kreislinie nebeneinander, aufeinanderfolgend auf dem Farbrad anzuordnen. Hierdurch lässt sich eine besonders einfache und sichere Synchronisation der bildgebenden Einheit mit den Interferenzfiltern des Farbrades sicherstellen, da die Wechsel der Informationen nun zwar bei höheren Frequenzen aber sehr gleichmäßig erfolgt . Damit ist ohne große technische Schwierigkeiten ein angenehmeres Bildempfinden gewährleistet .
Eine weitere Ausbildung der Erfindung betrifft ein Stereoprojektionssystem mit einer Projektionsfläche und wenigstens einer Projektionsvorrichtung, deren Farbrad wenigstens zwei Triplets zur Erzeugung der voneinander getrennten Halbbilder aufweist bzw. durch wenigstens zwei Projektionsvorrichtungen, die ein Farbrad mit wenigstens einem Triplet aufweisen, welche ihr Halbbild bzw. ihre Halbbilder auf die Projektionsflache werfen. Darüber hinaus zeigt das Stereoprojektionssystem regelmäßig eine bilddatenerzeugende Einheit, die typischerweise als Workstation oder als PC ausgebildet ist und die die jeweilige bildgebende Einheit in den verschiedenen Projektionsvorrichtungen ansteuert. Zusätzlich wird durch diese Vorrichtung auch die Synchronisation der verschiedenen Projekti- onsvorrichtungen und damit die zeitlich korrekte Darstellung der Halbbilder gewährleistet. Um den Stereoeffekt zu erreichen wird jedes Halbbild mit voneinander klar getrennten Interferenzfiltern, d. h. ohne Überlapp der Durchlassbereiche der Triplets projiziert, so dass durch entsprechende Brillen mit Interferenzfiltern mit einer Tripletstruktur gewährleistet ist, dass das linke Auge jeweils nur das eine Halbbild wahrnehmen kann während das andere Auge jeweils nur das ande-
re Halbbild mit dem anderen Triplet wahrnehmen kann. Im Gegensatz zu den Interferenzfiltern auf dem Farbrad zeigen die Interferenzfilter der Brillen eine Durchlasskurve, die das Licht von einem Triplet ungedämpft durchlässt, während das Licht, welches die Interferenzfilter des anderen Triplets passiert hat, zurückgehalten wird. Durch diese Ausbildung des einen Brillenglas ist sichergestellt, dass nur das eine Halbbild entsprechend dem ersten Triplet sichtbar ist; das andere Halbbild entsprechend dem zweiten Triplet wird vollständig herausgefiltert. In umgekehrter Weise ist das zweite Brillenglas realisiert. Dieses lässt das Halbbild, welches durch die Interferenzfilter des zweiten Triplets hindurch getreten ist ungehindert durch, während es das erste Halbbild, welches durch die Interferenzfilter des ersten Triplets hindurchge- treten ist, vollständig zurückhält. Hierdurch ist eine sichere Trennung der Halbbilder gewährleistet. Der Stereoeffekt durch die flächige Überlagerung der beiden Halbbilder durch die Projektionsvorrichtungen auf der Projektionsflache mit der anschließenden Trennung für die Augen ist in besonders wirkungsvoller und kostengünstiger Weise bei Erhalt der vollen Farbsättigung und ohne merkliches Übersprechverhalten gewährleistet .
Im folgenden wird die Erfindung anhand von vorteilhaften Aus- fuhrungsbeispielen, welche in den Figuren dargestellt sind, erläutert .
Fig. 1 zeigt ein beispielhaften systematischen Aufbau eines
Stereoprojektionssystems ; Fig. 2 zeigt den Aufbau eines beispielhaften Farbrades mit zwei Triplets und Fig. 3 zeigt die Durchlasskurven der sechs Interferenzfilter des Farbrades gemäß Fig. 2.
In der Fig. 1 ist eine schematische Darstellung eines Stereoprojektlonssystems mit einer Projektionsvorrichtung dargestellt. Es ist ein Farbrad 1, das mit einem Motor 2 und einem Positionsmelder 3 gekoppelt ist, vorgesehen. Das Farbrad 1 weist einen Trager 11 auf, an dem die Interferenzfilter 12 befestigt sind. Aus der Lichtquelle 5, welche eine sehr leistungsstarke Lichtquelle insbesondere eine Halogenlichtquelle darstellt, tritt der Lichtstrahl 6 entlang einer optischen Achse 60 aus. Der Lichtstrahl 6 durchquert die Interferenz- filter 12 und trifft auf eine bildgebende Einheit 7, die als digital mirror device- (DMD-) oder als DLP- bildgebende Einheit realisiert ist. Das von der bildgebenden Einheit 7 generierte Bild wird einer Projektionsoptik 8 zugeführt und anschließend auf eine Pro ektionsfläche 9 projiziert.
Der Motor 2 versetzt das Farbrad 1 in Rotation, wodurch die Interferenzfilter 12 abwechselnd in den Lichtstrahl 6 gefahren werden. Welcher Interferenzfilter 12 gerade in den Lichtstrahl gefahren ist, wird über den Positionsmelder 3 be- stimmt Entsprechend des jeweiligen Interferenzfilters der sich im Lichtstrahl 6 befindet, wird in der bildgebenden Einheit 7 ein diesem Interferenzfilter 12 zugeordnetes Bild erzeugt und über die Projektionsoptik 8 auf die Projektionsfl che 9 projiziert. Die Synchronisation des Farbrades 1 und der zu pro lzierenden durch die bildgebende Einheit 7 generierten Bilder wird durch einen Computer 13 gewährleistet, der mit dem Motor 2 und dem Positionsmelder 3 sowie der bildgebenden Einheit 7 verbunden ist . Der Computer 13 erzeugt dabei die durch die bildgebende Einheit 7 zu generierenden Bilddaten.
In Fig. 2 ist das Farbrad 1 dargestellt. In der Mitte befindet sich der Trager 11 um den sich kreisförmig die Interferenzfilter 12 anordnen. Das Farbrad 1 zeigt sechs Interferenzfilter 12, die jeweils zu zwei Triplets aus Interferenz- filtern der Farben rot, grün und blau zusammengefasst sind. Die Interferenzfilter zeigen eine sehr große Flankensteil- heit, d. h. der Anstieg oder Abfall der Transmission von
100 % auf 0 % erfolgt in wenigen nm. Der Durchlassbereich der schmalbandigen Interferenzfiltern ist erfindungsgemäß unter 30 nm insbesondere im Bereich von 20 nm gewählt. Diese Interferenzfilter werden aus abwechselnden Schichten aus Titandi- oxid bzw. Lithiumdioxid aufgebaut. Die Dicke der Schichten wird entsprechend der gewünschten Filtercharakteristik dimensioniert. Entsprechendes gilt für die Anzahl der Schichten. Das Aufbringen der Filterschichten erfolgt bevorzugt durch Kathodenzerstäubungsverfahren wie Magnetronzerstäuben. Ein derartiges Verfahren ist aus der US 5,292,417 bekannt.
Das Farbrad 1 zeigt sechs Interferenzfilter, welche so auf einer Kreislinie angeordnet sind, dass die beiden roten Interferenzfilter gefolgt von den beiden grünen Interferenzfil- ter und diese wiederum gefolgt von den blauen Interferenzfiltern angeordnet sind. Die Durchlassbereiche der beiden roten Interferenzfilter sind so gewählt, dass sie sich von 660 bis 635 nm bzw. von 625 bis 600 nm erstrecken, die Durchlassbereiche der grünen Interferenzfilter erstrecken sich von 565 bis 545 nm bzw. von 535 bis 515 nm und die Durchlassbereiche der blauen Interferenzfilter von 470 bis 455 nm bzw. von 445 bis 430 nm. Damit wird deutlich, dass zwischen den Durchlassbereichen der Interferenzfilter gleicher Farbe ein Abstand in der Größenordnung von etwa 10 nm liegen und dass die Breite der Durchlassbereiche mit zunehmender Wellenlänge größer wird. Die Breite steigt von 15 nm für die blaue Farbe über 20 nm für die grünen Interferenzfilter bis zu 25 bei den roten Interferenzfiltern. Die Zunahme der Breite der Durchlassbereich entspricht einer Steigerung von 4 % abhängig von der mittleren Wellenlänge des Durchlassbereiches. Durch die symmetrische Anordnung der Durchlassbereiche der Interferenzfilter gleicher Farbe, für die roten Interferenzfilter um eine Symmetriemittelfrequenz im Bereich von 630 nm, für die grünen Interferenzfilter im Bereich von 540 und für die blauen In- terferenzfilter im Bereich von 450 nm, gelingt es, ein sehr angenehmes warmes und farbgesättigtes Bild zu erreichen. Die-
se besondere Wahl der Filtercharakteristiken ermöglicht eine Kompensation des kalten Licht der Lichtquelle 5.
Entlang einer Kreislinie auf dem Farbrad 1 sind die Interfe- renzfilter 12 der beiden Triplets aus Interferenzfiltern 12 abwechselnd den Farben rot, grün, blau folgend angeordnet. Die bildgebende Einheit 7 generiert bei jedem neuen Interferenzfilter von den sechs aufeinanderfolgenden Interferenzfiltern ein neues Bild, das abwechselnd dem einen Halbbild für das eine Auge des Betrachters und anschließend dem anderen Halbbild für das andere Auge des Betrachters zur Erzeugung eines Stereoeffektes entspricht. Damit ist ein stetiges Wechseln der Halbbilder synchronisiert durch den Positionsmelder 3 in Verbindung mit dem Computer 13 und dem Motor 2 sowie der bildgebenden Einheit 7 erforderlich. Durch die besondere Anordnung der sechs Interferenzfiltern der zwei Triplets auf dem Farbrad 1 ist eine sichere Synchronisation der bildgebenden Einheit 7 mit dem Farbrad 1 ermöglicht.
Durch diese Ausbildung des Farbrades 1 und der Synchronisationssteuerung über den Computer 13 und den damit verbundenen Komponenten ist die beschriebene Projektionsvorrichtung in der Lage ohne weitere Projektionsvorrichtung ein stereoskopisches Bild auf die Projektionsfläche 9 zu werfen. Dieses wird durch einem mit einer Brille ausgestatteten Betrachter, welche mit Brillengläsern versehen ist, von denen ein Glas einen Durchlassbereich aufweist, welcher das Licht des einen Triplets ungehindert passieren lässt während es das Licht des anderen Triplets sperrt bzw. das andere Glas der Brille ent- sprechend umgekehrt versehen ist, so präsentiert, dass er den stereoskopischen Effekt der Bilder gut wahrnehmen kann. Durch diese Ausbildung der Brille mit entsprechenden Durchlassbereichen und Sperrbereichen der einzelnen Brillengläser ist ein sehr kostengünstiges und wirkungsvolles Projektionssystem gegeben, das mit einer einzigen Lichtquelle 5, einer einzigen Projektionsoptik 8 und einer einzigen bildgebenden Einheit 7 auskommt. Damit ist eine sehr gewichtssparende und kosten-
günstige Projektionsvorrichtung durch die Verwendung des in Fig. 2 dargestellten Farbrades in Verbindung mit den zusätzlichen Elementen der Projektionsvorrichtung insbesondere in Verbindung mit dem Computer 13, der die Steuerung der Projek- tionsvorrichtung bewirkt gegeben.
Insbesondere zeigt diese Art von Stereoprojektionssystem nicht die Notwendigkeit mehrere Projektionsvorrichtungen räumlich sehr exakt aufeinander dahingehend abzustimmen, dass der von ihnen beleuchtete Bereich der Projektionsflache 9 deckungsgleich, gleichmäßig hell und von identischer Helligkeit ausgeleuchtet ist. Darüber hinaus zeigt das erfindungsgemäße Projektionssyste eine sehr farbechte und farbsatte Wiedergabe der Bilder, da die Bandbreiten der Triplets sehr schmal und damit sehr farbecht sind und in ihrer Lage sehr wirksam aufeinander abgestimmt sind. Diese Lage bezieht sich einerseits auf die symmetrische Anordnung der Interferenzfilter gleicher Farbe sowie auf die Lage der Symmetriewellenlängen.
Durch die Verwendung mehrerer derartiger Stereoprojektions- systeme, wie sie in Fig. 1 dargestellt sind, lässt sich eine sogenannte Cave für eine Virtual-Reality-Projektionsanwendung realisieren, indem derartige Stereoprojektionssysteme auf verschiedene Wände eines sogenannten Cave gerichtet werden und so aufeinander abgestimmt sind, dass es zu keinen störenden Überlappungen in Randbereich der Projektionsflächen kommt. Eine Anwendung in diesen Virtual-Reality-Bereich ist durch das besonders geringe Übersprechverhalten, die hohe Farbechtheit und die besondere Leuchtkraft der Farben beson- ders ermöglicht.
In Fig. 3 sind die Durchlasskurven der verschiedenen Interferenzfilter 12 des Farbrades 1 dargestellt. Es sind die sechs Transmissionskurven in der Reihenfolge der Anordnung auf dem Farbrad wiedergegeben. Zuerst wird der erste rote Interferenzfilter dargestellt gefolgt vom zweiten roten Interferenzfilter gefolgt vom ersten grünen gefolgt vom zweiten grünen
gefolgt vom ersten blauen gefolgt vom zweiten blauen Interferenzfilter. Der erste zeigt einen Durchlassbereich von 660 bis 635 nm, der zweite rote von 625 bis 600 nm, der erste grüne von 565 bis 645 nm, der zweite grüne von 535 bis 515 nm, der erste blaue von 470 bis 455 nm und der zweite blaue Interferenzfilter von 445 bis 430 nm. Außerhalb des Durchlassbereiches ist der Durchlasskoeffizient verschwindend gering. Anhand der Fig. 3 wird deutlich, dass die Durchlassbereiche der verschiedenen Interferenzfilter 12 keinerlei Ü- berlapp zeigen, was zu der besonders guten Kanaltrennung der zu proj izierenden Halbbilder des Stereobildes führt. Durch die schmalen Bandbreiten von etwa 25, 20 und 15 nm wird ein sehr farbechter und warmer, ausgeglichener Farbeindruck der Bilder gewährleistet. Insbesondere gelingt es durch die grö- ßere Wahl der Bandbreite der roten Farben einen Ausgleich der kalten Farben, welche durch die starken Lichtquellen hervorgerufen werden, zu schaffen, was sich durch den sehr angenehmen Farbeindruck insbesondere bezüglich der Farbsättigung bemerkbar macht .