WO2004036199A1 - Glass bottle mouth part inspection device - Google Patents

Glass bottle mouth part inspection device Download PDF

Info

Publication number
WO2004036199A1
WO2004036199A1 PCT/JP2002/010840 JP0210840W WO2004036199A1 WO 2004036199 A1 WO2004036199 A1 WO 2004036199A1 JP 0210840 W JP0210840 W JP 0210840W WO 2004036199 A1 WO2004036199 A1 WO 2004036199A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottle
glass bottle
inspection
light
glass
Prior art date
Application number
PCT/JP2002/010840
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiko MORISAKI
Yasusaburo Kodama
Hisao Katogi
Akira Fujiwara
Original Assignee
Kirin Techno-System Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Techno-System Corporation filed Critical Kirin Techno-System Corporation
Priority to AU2002344113A priority Critical patent/AU2002344113A1/en
Priority to PCT/JP2002/010840 priority patent/WO2004036199A1/en
Publication of WO2004036199A1 publication Critical patent/WO2004036199A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/93Detection standards; Calibrating baseline adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • G01N21/9054Inspection of sealing surface and container finish

Definitions

  • the present invention relates to a glass bottle inspection device for glass bottles, and in particular, detects a molding defect in a screw hole or a thread portion at a bottle mouth of a glass bottle by imaging.
  • the present invention relates to an apparatus for inspecting the mouth of a glass bottle.
  • cracks may occur, and these cracks are called bills.
  • the places where the bottle mouth is twisted are limited to some extent.
  • the bottles are formed near the top of the bottle, the screw is formed at the thread of the bottle, and the neck is formed at the neck of the bottle. There is a neck neck to do.
  • vertical slimes there are two types of vertical slimes that are drowning in the vertical direction (substantially vertical direction), horizontal slashes that extend in the horizontal direction (substantially horizontal direction), and diagonal slashes that extend diagonally.
  • This squeeze inspection device is composed of a plurality of pairs of transmitters and receivers arranged to surround the periphery of the bottle of a glass bottle, and the plurality of pairs of transmitters and receivers are to be inspected.
  • the glass bottles are adjusted to the optimal position with respect to the bottle opening, and are in a positional relationship.
  • each pair of sender and receiver forms a glass bottle.
  • the reflected light is received and the signal obtained is processed to detect the undulation of the bottle.
  • the light from the projector enters the bottle, and if there is a bill, it is reflected by the cracked surface of the bill and shines brightly. Sharpness of the bottle part is detected based on whether or not there is a part having brightness equal to or higher than a predetermined value.
  • the above-mentioned conventional billet inspection apparatus is provided with a plurality of inspection stations for inspecting the beveling of the bottle portion of the glass bottle, and the star wheel for inspection holds the glass bottle and holds the circumference.
  • the glass bottle is conveyed above and indexed (rotated) by multiple inspection stations. At a plurality of inspection stations, the glass bottle is rotated on its own, and each is inspected exclusively for defects such as opening, screwing, and necking.
  • the above-mentioned conventional squeeze inspection apparatus is a target to be inspected because it has a configuration in which a plurality of inspection stations are provided and a plurality of pairs of light emitters and receivers are arranged for each inspection station.
  • the angles and heights of a plurality of pairs of emitters and receivers at each inspection station must be readjusted, and the sensitivity of the receivers must be readjusted.
  • the threaded portion has a complicated curved surface, so that there is often the same reflected light as that of the thread in the threaded portion.
  • the processing is performed so that even if there is reflected light from the area where the thread part exists, it is not determined to be pilling. Therefore, even if there is a run in the upper and lower regions of the thread part and the thread part, it is not detected.
  • the seam of the bottle also has a curved surface that is continuous in the vertical direction, there are many cases where there is reflected light similar to that of Pili. Since the same processing is performed, this bottle Is not detected even if there is a sway in the seam portion and the surrounding area. In addition, it has been difficult to detect defective molding at the thread part and the like that occurs when molding bottles. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and does not require readjustment of the arrangement of the light emitter and the light receiver at the time of a type change in which the type of the glass bottle to be inspected is changed.
  • By detecting the bill around the seam of the billiard bottle in the area of the target area it is possible to accurately detect pills and to detect molding defects in the bottle (especially thread part).
  • the objective is to provide a glass bottle inspection device. .
  • one embodiment of the present invention relates to an inspection apparatus that illuminates a glass bottle, captures light from the bottle, and detects a defect in the bottle by image processing.
  • Lighting provided above the top surface of the bottle, a plurality of CCD cameras arranged around the bottle of the glass bottle, and an image processing device for processing images obtained by the CCD camera.
  • the plurality of CCD cameras capture light transmitted from the bottle portion after light from the illumination enters the bottle.
  • the light from the illumination placed above the glass bottle enters the glass bottle bottle, and some light is transmitted through the bottle.
  • a plurality of CCD cameras arranged around the bottle mouth of the glass bottle capture the light transmitted through the bottle portion of the glass bottle.
  • the light that enters the bottle from inside the bottle is reflected by the cracked surface of the pill, and this reflected light passes through the bottle and passes through the CCD camera. It is photographed by.
  • the light reflected on the crack surface of Piri is brighter than the light transmitted through other parts, so the part corresponding to Piri in the image taken with the CCD camera Is a lighter area than other parts.
  • the image processing device determines that this bright area is vibrate.
  • the interior of the bottle is illuminated from the illumination disposed above the bottle of the glass bottle, and the light transmitted from the bottle is transmitted to the periphery of the bottle after entering the bottle.
  • the illumination which is the light emitter
  • the CCD camera which is the light receiver
  • the optical axes of the plurality of CCD cameras are on a line extending radially from the bottle portion of the glass bottle.
  • the plurality of CCD cameras are installed in a hemisphere centered on a bottle portion of a glass bottle.
  • the hemisphere is configured to be vertically movable.
  • Another aspect of the present invention is an apparatus arranged at a different inspection position from the glass bottle inspection apparatus according to any one of claims 1 to 4, wherein A first lighting device arranged on the side of the mouth, a plurality of CCD cameras arranged around the bottle portion of the glass bottle, and an image processing device for processing an image obtained by the CCD camera;
  • the plurality of CCD cameras capture light reflected from or transmitted through the bottle portion after light from the illumination enters the bottle portion.
  • the light from the illumination installed on the side of the glass bottle enters the bottle portion of the glass bottle.
  • a plurality of CCD cameras arranged around the bottle of the glass bottle capture the light reflected or transmitted from the bottle of the glass bottle.
  • the bottle part is illuminated from the illumination arranged on the side of the bottle part of the glass bottle, and the light reflected or transmitted from the bottle part is placed around the bottle part. Images are taken with a plurality of CCD cameras at different elevation angles to detect the undulation of the bottle. Therefore, even if the crack surface of the vertical pill perfectly matches the direction extending in the radial direction from the axis of the bottle, such a sway can be detected.
  • FIG. 1 is a longitudinal sectional view showing a mouth inspection apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a plan view of a hemisphere of the mouth inspection device shown in FIG.
  • FIG. 3 is a schematic diagram showing the behavior of light from illumination in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the relationship between the image processing device of the mouth inspection device and the CCD camera according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating an example of an image in which angle information and a mold number are written.
  • FIG. 6 is a schematic diagram showing an image of a glass bottle serving as a sample.
  • FIG. 7 is a frequency distribution showing the distribution of pixel brightness.
  • FIG. 8 is a schematic diagram showing an image of a non-defective glass bottle.
  • FIG. 9 is a graph showing the distribution of brightness of pixels in a specific row.
  • FIG. 10 is a diagram showing the relationship between the brightness distribution of each pixel in the image of the glass bottle to be inspected and the template.
  • FIG. 11A is a schematic diagram showing a bright template
  • FIG. 11B is a schematic diagram showing a dark template.
  • Fig. 12A shows the bright template image imaged based on each value of the bright template shown in Fig. 11A
  • Fig. 12B shows the bright template image based on each value of the dark template shown in Fig. 11B. This shows a template image that has been imaged.
  • FIG. 13 is a plan view showing a main part of the mouth inspection apparatus according to the second embodiment of the present invention.
  • FIG. 14 is a sectional view taken along line AA of FIG.
  • FIG. 15 is a sectional view taken along line BB of FIG.
  • FIG. 16 is a schematic diagram illustrating the behavior of light from illumination according to the second embodiment of the present invention.
  • FIG. 17 shows the image processing of the mouth inspection apparatus according to the second embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a relationship between the processing device and a CCD camera. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 to 17 An embodiment of a glass bottle inspection apparatus according to the present invention will be described with reference to FIGS. 1 to 17.
  • the glass bottle to be inspected is held on an inspection starwheel (not shown) and transported along a transport path on the circumference of the starwheel.
  • the glass bottle inspection apparatus according to the present invention is disposed at one station (first inspection station) on the transfer path on the circumference of the star wheel. In this first inspection station, the glass bottle conveyed by the star wheel is indexed (rotated), and the glass bottle roto-inspection device according to the present invention is used to check the screw in the bottle roto or the screw crest. Molding failure is detected.
  • FIG. 1 is a longitudinal sectional view showing the mouth inspection device according to the first embodiment of the present invention.
  • the mouth inspection device supports a hemisphere 4 arranged to cover the bottle holder 3 of a glass bottle 2 placed on a rotatable turntable 1 and a hemisphere 4 It has struts 5.
  • the center O of the hemisphere 4 substantially coincides with the bottle portion 3 of the glass bottle 2 placed on the turntable 1.
  • the hemisphere 4 is attached to a column 5 via a vertically movable sliding member 6, and is configured to be vertically movable with respect to the column 5.
  • FIG. 2 is a plan view of the hemisphere 4 shown in FIG.
  • the top of the hemisphere 4 that is, above the top surface of the bottle part 3 of the glass bottle 2 on the turntable 1, is inside the bottle of the glass bottle 2 on the turntable 1.
  • Lighting 7 for irradiating light is installed.
  • a plurality of CCD cameras 10 to 20 are arranged on the hemisphere 4 so as to surround the bottle opening 3 of the glass bottle 2.
  • the optical axis of these CCD cameras 10 to 20 is the center of the hemisphere 4 It is on the line extending radially from O (bottle part 3 of glass bottle 2).
  • a total of 11 CCD cameras are arranged.
  • one camera 10 is provided with a screw of a bottle section 3 of a glass bottle 2 placed on a turntable 1. It is a camera dedicated to angle detection that detects the rotation angle of the glass bottle 2 with respect to a predetermined reference position by photographing the mountain. As shown in Fig. 1, the angle detection camera 10 is arranged so that the elevation angle of the optical axis is 0 °, and photographs the thread of the bottle part 3 of the glass bottle 2 from the horizontal direction. It has become.
  • the cameras 11 to 20 other than the camera 10 dedicated to angle detection are inspection CCD cameras for photographing the bottle 3 from various angles and inspecting the bottle 3 for stiffness.
  • the angle between the projection of the optical axis of each camera on the horizontal plane and the optical axis of the camera 10 dedicated to angle detection is 25 ° (the first detection CCD camera 11 and the second detection CCD camera 11).
  • the elevation angle of the optical axis of the first inspection CCD camera 11 is 30 °
  • the second inspection CCD camera 12 is 0 °
  • the fourth inspection CCD camera 14 is 55 °
  • 20 ° for CCD camera 17 for seventh inspection 35 ° for CCD camera 18 for eighth inspection
  • the 10th inspection CCD camera 20 is 25. It has become.
  • the third inspection CCD camera 13 and the ninth inspection CCD camera 19 are configured to be able to move up and down on the surface of the hemisphere 4, and the elevation angle of the optical axis can be freely set. You can do it.
  • the number of pixels of each of the CCD cameras 10 to 20 used in the present embodiment is 64 ⁇ 64, so that one image can be captured every 0.4 millisecond. .
  • the processing time for one glass bottle is 200 milliseconds. If only glass bottles are to be photographed, a maximum of 250 images (2100 / 0.4) can be photographed per glass bottle.
  • the turntable 1 is rotating, and each CCD camera 10 is rotated while the glass bottle 2 is rotated.
  • the glass bottle 2 is photographed at the same time according to. In this way, by repeatedly taking a picture of the glass bottle 2 while rotating the glass bottle 2, it is possible to take a picture of the bottle portion 3 of the glass bottle 2 over the entire circumference.
  • the image processing device provided in the mouth detection device detects this bright region from the images obtained by the above-described CCD cameras 10 to 20 and determines that the region is stiff. On the other hand, if there is no internal kink C of Binro portion 3, the part of the light L A is transmitted through the Binro portion 3 as it enters the Binro portion 3 from the inner circumferential surface of the Binro 3 . In this case, if there is a molding defect in the thread part, etc., the light from this defective molding part will be scattered in a direction that does not enter the corresponding CCD camera, and the image of the thread part that has been formed normally Because the image is slightly darker and fuzzier than Good defects can be detected.
  • FIG. 4 is a schematic diagram showing a relationship between the image processing apparatus and each of the CCD cameras 10 to 20.
  • the image processing apparatus 7 includes operation boards 30 to 40 corresponding to the respective CCD cameras 10 to 20. These operation ports 30 to 40 correspond. They are connected to CCD cameras 10 to 20, respectively.
  • the angle detection arithmetic board 30 to which the angle detection dedicated camera 10 is connected has a relationship between the height of the screw helix of the glass bottle 2 and the rotation angle of the glass bottle 2 with respect to a predetermined reference position in advance. It is remembered.
  • the calculation port 30 for angle detection detects the height position of the spiral of the screw thread from the image obtained by the camera 10 dedicated to angle detection, and determines the reference position based on the above relationship from the height position of the spiral screw thread.
  • the rotation angle of the glass bottle 2 at the time of shooting with respect to is detected.
  • the detected rotation angle signal of the glass bottle 2 is sent to the operation boards 31 to 40 connected to the respective inspection CCD cameras 11 to 20.
  • the angle detection dedicated camera 10 and the angle detection calculation board 30 constitute angle detection means for detecting the rotation angle of the glass bottle at the time of shooting with respect to the reference position.
  • the rotation angles of the glass bottle 2 sent from the angle detection calculation board 30 are sent to the calculation boards 31 to 40 connected to the inspection CCD cameras 11 to 20, respectively. This rotation angle is written as rotation angle information in each image captured by each of the inspection CCD cameras 11 to 20.
  • the diffused light from the illumination 7 enters the bottle from above the bottle 3 of the glass bottle 2 placed on the turntable 1.
  • the diffused light that has entered the bottle is diffused radially and passes through the bottle 3.
  • the transmitted light that has passed through the bottle 3 in a radial manner is equivalent to all the C arranged around the bottle 3 Photographed simultaneously by a CD camera (11 CCD cameras) 10 to 20.
  • a CD camera 11 CCD cameras
  • one CCD camera is a camera dedicated to angle detection
  • the camera 10 dedicated to angle detection captures the thread of the bottle holder 3 to set the reference position. The angle of rotation of the glass bottle at the time of shooting can be detected.
  • the relationship between the height of the spiral of the thread and the rotation angle with respect to the reference position is calculated in advance by the dedicated angle detection camera 10. If stored in the board 30, the camera 10 dedicated to angle detection can detect the angle with respect to the reference position at the time of photographing.
  • the reference position for example, the starting end, which is the start of the thread, may be set as the reference position (0 °).
  • each detection CCD camera 11 to 20 With reference to the angle detection dedicated camera 10, the relative position of each detection CCD camera 11 to 20 with respect to the angle detection dedicated force camera 10 is predetermined.
  • the rotation angle detected by the calculation port 30 of the camera 10 can be considered by shifting the reference position relatively.
  • Each of the detection CCD cameras 11 to 20 images the bottle 3 It can also be used as the rotation angle. For this reason, in the present embodiment, each image captured by each of the detection CCD cameras 11 to 20 is transmitted from the angle detection calculation board 30 of the angle detection dedicated camera 10. The rotation angle is written.
  • the transmitted light transmitted through the bottle 3 is photographed at predetermined time intervals to obtain a large number of images. Then, the angle information at the time of shooting described above is written in all the images.
  • glass bottle molding machines are equipped with a large number of molds, and many molds are simultaneously molded using these molds. It is known that the properties (thickness, subtle shapes, etc.) of molded glass bottles greatly depend on the mold. In addition, the generation of spiking at the mouth of the glass bottle also depends on the mold. Therefore, some of the images obtained with the inspection device of the present invention contain glass bottles.
  • the information of the mold number which indicates whether the molding has been performed with the mold is also written.
  • the mold number can be detected by a mold number reading device that reads a convex code formed on the bottom of the glass bottle, and the signal from the mold number reading device is a CCD camera for inspection.
  • FIG. 5 is a schematic diagram illustrating an example of an image in which the rotation angle information and the mold number obtained as described above are written. The inspection result, for example, the quality of the glass bottle may be written in each image.
  • each image in which the angle information and the mold number etc. are written is compared with a reference image called a template prepared in advance before inspecting the glass bottle. Check if there is any stiffness.
  • a reference image (template) is prepared for each angle and for each mold number, and the angle information and the reference image corresponding to the mold number written in the image obtained by each inspection CCD camera are stored. The selected reference image is compared with the image of the glass bottle to be inspected.
  • a method of creating a reference image (hereinafter referred to as a template as appropriate) is roughly divided into three processes. That is, a photographing process of photographing a plurality of glass bottles used for template creation with each CCD camera, and excluding images of defective glass bottles from a group of images photographed in the photographing process to obtain non-defective glass bottles. This is an image selection process for selecting images of glass bottles, and an image creation process for creating a template based on the images selected in the image selection process.
  • each step will be described in order.
  • the basic data of the imaging process performed in this embodiment is as follows.
  • the 100 glass bottles to be sampled are conveyed to the inspection station by the star wheel for inspection, and the first to tenth inspection CCD cameras 11 to 20 provided in the inspection station Photographed at The captured images are sent to the computer 42 (see FIG. 4) connected to the calculation units 30 to 40 of the inspection CCD cameras 11 to 20, and are based on these images. The following steps are performed by the computer 42.
  • a template that serves as a reference image When creating a template that serves as a reference image, if multiple glass bottles that are used as samples contain defective products, a template that includes light based on stiffness is created. Will be. in this way, If a template is created based on an image that contains bright light from a part that should not shine, it is impossible to judge a glass bottle that has stiffness in that part as a defective product. For this reason, as a pre-process for creating a template, work is performed to exclude images of defective glass bottles from multiple images used in the template.
  • FIG. 6 is a schematic diagram showing an image of a glass bottle serving as a sample.
  • FIG. 7 is a frequency distribution showing the distribution of pixel brightness.
  • reference numeral 50 indicates a bright part.
  • the vertical axis of the frequency distribution represents the number of pixels, and the horizontal axis represents brightness (0 to 255).
  • the image of each of the CCD cameras 11 to 20 is composed of a pixel group of 64 ⁇ 64 pixels.
  • the number of pixels can be appropriately adjusted.
  • one image can be decomposed into 64 ⁇ 64 pixels.
  • the pixels in the first row and first column from the decomposed pixel group are plotted on the graph for each image.
  • the frequency representing the brightness distribution of the first row and the first column as shown in FIG. 7 is obtained. Distribution can be obtained. This frequency distribution is created from 1st row, 1st column to 64th row, 6th column.
  • a standard deviation ⁇ indicating the degree of variation in brightness is calculated for each obtained frequency distribution.
  • This standard deviation ⁇ is obtained by a general statistical method. Then, for example, when the brightness of the pixels is distributed within the range of ⁇ 2 ⁇ , the detection criterion is set so that the image is judged to be a good glass bottle image. If all sample glass bottles are good, the brightness of all pixels will be distributed around the average value X. Therefore, as shown in Fig. 7, all pixels are within the range of ⁇ 2 ⁇ ( In this case, no images are rejected and all 35 images are used for template creation.
  • the part 60 of the image that indicates the presence of the stiffness becomes extremely bright (see Fig. 6). Then, in the frequency distribution, as shown in FIG. 7, the number 61 of pixels having the brightness corresponding to this part 60 is plotted in the area to the right of + 2 ⁇ . Then, it is determined that an image having such pixels has a sharp image. Similarly, when there is an extremely dark part, the number of pixels having the brightness corresponding to this part is plotted in the area on the left side of 12 ⁇ . Then, it is determined that an image having such pixels includes a thread portion or the like having a molding defect. These images are then excluded from the images used to create the template.
  • the image selection step is performed by using a statistical method.
  • the present invention is not limited to this. Other methods may be used as long as the image to be excluded can be specified. For example, multiple images obtained by the shooting process are displayed on the display for each mold and each angle, and the operator selects images of defective glass bottles by looking at the images on the display. Is also good.
  • Figure 8 is a schematic diagram showing an image of a good glass bottle.
  • FIG. 9 is a graph showing a distribution of brightness of pixels in a specific row.
  • FIG. 10 is a diagram showing the relationship between the brightness distribution of each pixel of the image of the glass bottle to be inspected and the template.
  • the template in the present embodiment is created for each pixel row of the image.
  • a certain pixel row is specified.
  • the identified pixel row is placed in the column direction (horizontal direction in Fig. 8). (1, 2, 3 ⁇ ⁇ ⁇ 64 directions), and the brightness of each pixel is shown in a graph.
  • each pixel on the specified pixel row is plotted on a graph, with the brightness level of the pixel on the vertical axis and the column number of the pixel on the horizontal axis.
  • the line drawn when each pixel in the third row is plotted on the graph has a brightness near zero. Is a straight line located at
  • the line drawn when each pixel in this row is plotted is as shown in FIG. 9. That is, in the 10th row, the bright portion 50 formed by the light from the thread portion runs, so that the pixel corresponding to the bright portion 50 has a high degree of brightness.
  • each pixel in the same row is plotted on the same graph. That is, in the present embodiment, since 35 images are used for creating the template, as shown in FIG. 9, 35 lines (in FIG. 9, only four lines ⁇ 1 to ⁇ 4 are used). A brightness distribution map consisting of is created. In this way, a brightness distribution map is created for all rows from 1 to 64.
  • the maximum area defined by these line groups is the area to be used as a template. That is, as shown in Fig. 10, the line obtained by connecting the points indicating the maximum value (maximum brightness) for each column is defined as a bright template line ⁇ max, and the minimum value (minimum brightness) for each column is obtained. Let the line obtained by connecting the points indicating)) be the template line T min. The area surrounded by the light template line T max and the ⁇ template line T min becomes the reference image (template) to be obtained. That is, a range between the maximum brightness and the minimum brightness is continuously formed in the column direction between the bright template line Tmax and the dark template line Tmin. In this way, 64 templates are created for the mold number Ml and the angle A1.
  • each of the inspection CCD cameras 11 to 20 has a template for each mold, angle, and pixel row. As described above, the degree of occurrence of waviness and the like of the glass bottle greatly depends on the mold. Can be enhanced.
  • the reference image (template) obtained by the above-described method is compared with the image obtained from the glass bottle to be inspected, and it is determined whether or not there is a molding defect in a pill or a thread portion in the bottle portion. The determination method will be described.
  • a template created under the same conditions (mold, angle, etc.) as the image to be inspected based on various information such as the angle information and mold number given to the image is used as a comparison target. Selected.
  • the image of the glass bottle to be inspected is compared with the template for each pixel row. Specifically, a line indicating the brightness distribution in the column direction in a specific pixel row is compared with the template. Then, as shown in FIG. 10, a line S1 indicating the degree of brightness of the glass bottle to be inspected is surrounded by a non-defective region (a bright template line Tmax and a template line Tmin) of the template. The glass bottle is judged to be good if it is entirely within the area.
  • the glass bottle is determined to be defective. If all the pixel rows are determined to be defective in at least one of the rows when compared with the template, the glass bottle has a twist or a thread in the bottle section. Etc., it is determined that a molding defect exists.
  • Such an inspection is performed at each angle A1 to A8, for example. Even when it is determined that there is no twist or molding failure at the angle A1, it may be determined that there is a twist or molding failure at the angle A2. In the present embodiment, since the detection of the twist or the molding defect is performed at a plurality of angles (A1 to A8), the inspection accuracy of the thread or the molding defect can be improved as compared with the conventional inspection device.
  • FIG. 11A is a schematic diagram showing a bright template
  • FIG. 11B is a schematic diagram showing a dark template.
  • the process of creating a bright template will be described with reference to FIGS. 10 and 11A.
  • the brightness level of the bright template line T max of a specific row can be quantified within the range of 0 to 255 for each column.
  • each numerical value indicating the degree of brightness is plotted on the corresponding row of the table composed of 64 rows ⁇ 64 columns shown in FIG. 11A.
  • a numerical value indicating the degree of brightness of the m columns of the n rows of bright template lines T max is plotted in a section located at 11 rows and m columns of the table.
  • the degree of brightness of 0 to 255 is represented by a hexadecimal notation.
  • FIG. 11A When all the brightness levels of the light template lines T max from the 1st line to the 64th line are plotted in the table, one bright template is finally created as shown in Fig. 11A. .
  • the dark template shown in FIG. 11B is also created based on the dark template line T min by the same process as the light template.
  • the range of the maximum brightness and the minimum brightness of each pixel constituting the reference image is determined by the light template and the dark template obtained in this way. That is, in the example shown in FIG. 11A and FIG. 11B, the range of the minimum brightness and the maximum brightness for the pixels located in n rows and m columns is a range from 02 to 08.
  • Figure 12A is an image based on the numerical values of the light template shown in Figure 11A.
  • FIG. 12B shows a dark template image formed based on each numerical value of the dark template shown in FIG. 11B.
  • the glass bottle to be inspected has a molding defect at the bottle mouth or a screw thread or the like.
  • the method is explained. First, the particular row of the image of the glass bottle to be Ken ⁇ object is scanned in the column direction (lateral direction), from one row of c Next, the row brightness of each pixel is quantified that line has 6 It is determined whether the brightness of each pixel up to 4 columns is within the range of the maximum brightness and the minimum brightness determined by the light template and the dark template (hereinafter referred to as non-defective range). . This process is performed for all rows from 1 to 64.
  • the allowable value from the non-defective range and the specified value of the number of pixels which are the criteria for determining a defective product, can be set according to the inspection accuracy to be achieved. For example, if a predetermined number of adjacent pixels in an image have brightness outside the non-defective range, the image may be determined to be an image of a defective glass bottle.
  • the inside of the bottle is illuminated, and the vignetting or molding defect is detected from the transmitted light that has passed through the bottle.
  • the lateral vibration extending in the horizontal direction and the oblique vibration extending obliquely can be completely detected.
  • most of the vertical runout extending in the vertical direction can be detected.However, if the crack surface of the vertical runout completely matches the direction extending in the radial direction from the axis of the bottle, the bottle must be removed. Since transmitted light travels in parallel to the crack plane, there is a possibility that longitudinal vibration cannot be detected.
  • a second inspection station is provided in the middle of the transport path on the circumference of the star wheel, and the second inspection station detects a vertical wobble by reflected light at the second inspection station.
  • the inspection device is located.
  • the inspection apparatus using the transmitted light shown in FIGS. 1 to 12A and 12B is of course installed in the first inspection station.
  • FIG. 13 a description will be given of a glass bottle inspection apparatus for detecting vertical warpage with reference to FIGS. 13 to 16.
  • FIG. 13 a description will be given of a glass bottle inspection apparatus for detecting vertical warpage with reference to FIGS. 13 to 16.
  • Fig. 13 is a plan view showing the main part of the mouth detection device for detecting vertical runout
  • Fig. 14 is a cross-sectional view taken along line A-A in Fig. 13
  • Fig. 15 is a cross-sectional view taken along line B-B in Fig. 13. It is a figure.
  • this mouth detection device includes a hemisphere 104 arranged so as to cover the bottle portion 3 of the glass bottle 2. The center 0 of the hemisphere 104 substantially coincides with the bottle part 3 of the glass bottle 2.
  • a first illumination 107a for irradiating light to the bottle part 3 of the glass bottle 2 is installed on the side of the hemisphere 104, that is, on the side of the bottle 'part 3 of the glass bottle 2, a first illumination 107a for irradiating light to the bottle part 3 of the glass bottle 2 is installed.
  • a plurality of CCD cameras 110 to 119 are arranged on the hemisphere 104 so as to surround the bottle part 3 of the glass bottle 2.
  • the optical axis of these CCD cameras 110 to 119 is on a line extending radially from the center O of the hemisphere 104 (the bottle part 3 of the glass bottle 2).
  • a total of 10 CCD cameras are arranged, and one of these cameras 110 is provided for the bottle section 3 of the glass bottle 2. It is a camera dedicated to angle detection that detects the screw thread and detects the rotation angle of the glass bottle 2. As shown in Fig. 15, the dedicated angle detection camera 110 is positioned so that the elevation angle of the optical axis is 0 °, and photographs the thread of the bottle part 3 of the glass bottle 2 from the horizontal direction. To do so. On the side of the hemisphere 104 facing the camera 110 dedicated to angle detection, a second light 107 b is arranged, and the second light 107 b causes the bottle 2 It illuminates the threads of part 3.
  • the light emitted from the second illumination 107b is infrared light, and does not interfere with the light emitted from the first illumination 107a. Further, the camera 110 dedicated to angle detection receives only infrared light emitted from the second illumination 107 b.
  • the cameras 111 to 119 other than the angle detection camera 110 are inspection CCD cameras for photographing the bottle 3 from various angles and inspecting the bottle 3 for stiffness.
  • the angle between the projection of the optical axis of each camera on the horizontal plane and the optical axis of the camera 110 dedicated to angle detection is 90 ° (the first detection CCD camera 111).
  • the elevation angle of the optical axis of the first inspection CCD camera 111 is 40 °
  • the second inspection CCD camera 112 is 35 °
  • the third inspection CCD camera 113 is 0 °
  • 4 Inspection CCD camera 1 14 is 50 °
  • 5th inspection CCD camera 1 15 is 40 °
  • 6th inspection CCD camera 1 16 is 10 °
  • 7th inspection CCD camera 1 17 is 35 °
  • 8th inspection CCD camera 1 1 8 is 35 °
  • the ninth inspection CCD camera 119 is 0 °.
  • the light L c from the first illumination 1 0 7 a enters from the outer circumferential surface of the Binro portion 3 of the glass bottle 2 to Binro unit 3.
  • Binro unit 3 Inside last place of Binro portion 3 (vertical Billiton) If a C is, of the light L c is kink C inside the Binro portion 3 reflected by the crack plane, the reflected light L D is the Binro 3
  • the image is transmitted through the inside and photographed by the above-described detection CCD cameras 11 1 to 11 19.
  • the light L D reflected from the crack surface of the billiary C is brighter than the light transmitted through other parts, and therefore, in the image taken by the CCD camera 11 1 to 1 19, the part corresponding to the billiary C Is a lighter area than other parts.
  • the image processing device provided in the mouth detection device detects this bright region from the images obtained by the above-described CCD cameras 11 1 to 11 9 and determines that the region is vibrant.
  • the light L c from the first illumination 1 0 7 a it enters the Binro portion 3 from the outer peripheral surface of Binro 3 Binro Either passes through part 3 or reflects on the outer surface of bottle part 3.
  • the configuration of the image processing device is the same as the image processing device of the mouth inspection device in the first embodiment described above, and thus the description is omitted here.
  • the operation of the glass bottle inspection apparatus configured as described above will be described with reference to FIGS.
  • Infrared light from the second illumination 107 b enters the bottle 3 from the side of the bottle 3 of the glass bottle 2 placed on the turntable 1 and passes through the bottle 3 .
  • the infrared light transmitted through the bottle part 3 is photographed by the angle detection camera 110 provided opposite to the second illumination 107 b.
  • the camera 110 dedicated to angle detection takes an image of the thread of the bottle part 3 so that the glass bottle at the time of photography with respect to the reference position at the time of photography is taken.
  • the rotation angle can be detected.
  • the diffused light from the first illumination 107 a enters the bottle part 3 of the glass bottle 2 placed on the turntable 1.
  • the inspection CCD cameras 1 1 1 1 to 1 1 9 capture the light reflected from the bottle 3 of the glass bottle 2. In this case, if there is a pill inside the bottle part 3, the light incident on the inside of the bottle part from the outer peripheral surface of the bottle part 3 is reflected by the cracked surface of the bottle, and this reflected light passes through the bottle part 3.
  • the image is transmitted through the CCD camera 111 to 119.
  • the camera dedicated to angle detection is used.
  • the rotation angle detected by the camera 110 can be considered by shifting the reference position relative to each other, so that each of the detection CCD cameras 111 to 119 captures the bottle 3 It can also be used as a rotation angle.
  • the rotation angle detected by the angle detection dedicated camera 110 is written in each image captured by each of the detection CCD cameras 11 to 11. ing. Then, as in the first embodiment, a comparison is made between the reference image (template) and the image obtained from the glass bottle to be inspected to determine whether or not the bottle B has any warpage.
  • the operation boards 30 to 40 of the image processing device 8 of the mouth inspection device at the first inspection station and the mouth detection device of the mouth inspection device at the second inspection station are provided.
  • the above-described reference image may be created by connecting the arithmetic boards 130 to 139 of the image processing apparatus 108 to the host computer 142 by, for example, the Ethernet 141. That is, images taken by the CCD cameras 10 to 20 and 110 to 119 of each mouth inspection device are sent to the host computer 142, and the host computer is operated based on these images.
  • the reference image can also be created by the computer 142.
  • the interior of the bottle is illuminated from the illumination disposed above the bottle of the glass bottle, and the light transmitted from the bottle is illuminated after entering the bottle.
  • the screw around the joint portion of the screw bottle in the upper and lower regions of the thread portion is to be inspected. By doing so, it is possible to accurately detect piri. Industrial potential
  • the present invention can be suitably used for a glass bottle inspection device capable of detecting a molding defect at a bottle portion or a thread portion at a bottle mouth portion of a glass bottle by imaging.

Abstract

A glass bottle mouth part inspection device capable of detecting any defective formation at an end part or a threaded part of a glass bottle mouth part by picking up the image thereof. The glass bottle mouth part inspection device illuminates a glass bottle (2) and picks up the light from a mouth part (3) so as to detect any defects of the mouth part through the image processing. The device comprises an illumination (7) disposed on an upper part of a top surface of the mouth part of the glass bottle, a plurality of CCD cameras (11-20) disposed around the mouth part of the glass bottle, and an image processor (8) for processing the images obtained by the CCD cameras. The plurality of CCD cameras pick up the light transmitted through the mouth part after the light from the illumination is incident in the mouth.

Description

ガラス壜のロ部検査装置 Glass bottle inspection equipment
技術分野 本発明は、 ガラス壜のロ部検明査装置に係り、 特にガラス壜の壜口部 にあるビリ又はねじ山部等における成形不良を撮像によ り検出する 田 TECHNICAL FIELD The present invention relates to a glass bottle inspection device for glass bottles, and in particular, detects a molding defect in a screw hole or a thread portion at a bottle mouth of a glass bottle by imaging.
ことができるガラス壜の口部検査装置に関するものである。 The present invention relates to an apparatus for inspecting the mouth of a glass bottle.
背景技術 Background art
ガラス壜の製造に際して、 壜ロ部の肉厚内にひび割れのような亀裂 When manufacturing glass bottles, cracks such as cracks in the thickness of the bottle
(クラック) が入ることがあり、 この亀裂はビリ と称されている。 壜 口部にビリが発生する箇所はある程度限られていて、 代表的には壜ロ の天面付近に発生する口ビリ、 壜口のねじ山部に発生するねじビリ、 壜口の首部に発生する首ビリがある。 またビリには亀裂の方向によつ て、 縦方向 (略垂直方向) に涎びる縦ピリ、 横方向 (略水平方向) に 延びる横ビリ、 斜め方向に延びる斜めビリがある。 (Cracks) may occur, and these cracks are called bills. The places where the bottle mouth is twisted are limited to some extent.Typically, the bottles are formed near the top of the bottle, the screw is formed at the thread of the bottle, and the neck is formed at the neck of the bottle. There is a neck neck to do. Depending on the direction of the cracks, there are two types of vertical slimes that are drowning in the vertical direction (substantially vertical direction), horizontal slashes that extend in the horizontal direction (substantially horizontal direction), and diagonal slashes that extend diagonally.
上述したビリはガラス壜の破損の原因になるため壜ロ部を撮像す ることにより ピリの有無を検出し、 ピリがあるガラス壜を不良壜とし て排除するようにしている。  Since the above-mentioned squeeze causes damage to the glass bottle, the presence or absence of spiking is detected by imaging the bottle part and the glass bottle with spiking is eliminated as a defective bottle.
従来から、 ガラス壜の壜口部を撮像してビリの有無を自動的に検查 するガラス壜のビリ検查装置が知られている。 このビリ検査装置は、 ガラス壜の壜口部の周囲を囲むよ うに配設された複数対の投光器と 受光器とから構成されており、 複数対の投光器と受光器とは、 検査対 象のガラス壜の壜口部に対してそれぞれ最適な位置に調整され配置 関係にある。 そして、 各対をなす投光器と受光器とによりガラス壜か らの反射光を受光し得られた信号を処理し、 壜ロ部のビリを検出する ようにしている。 この場合、 投光器からの投光は壜ロ部に入射し、 ビ リがある場合にはビリの亀裂面で反射して明るく光るため、 この反射 光を投光器と対をなす受光器で受光して所定値以上の明るさを有す る部分があるか否かで壜ロ部のビリを検出している。 2. Description of the Related Art Conventionally, there has been known a glass bottle twist detecting apparatus which automatically detects whether or not there is a blur by imaging a bottle portion of the glass bottle. This squeeze inspection device is composed of a plurality of pairs of transmitters and receivers arranged to surround the periphery of the bottle of a glass bottle, and the plurality of pairs of transmitters and receivers are to be inspected. The glass bottles are adjusted to the optimal position with respect to the bottle opening, and are in a positional relationship. Then, each pair of sender and receiver forms a glass bottle. The reflected light is received and the signal obtained is processed to detect the undulation of the bottle. In this case, the light from the projector enters the bottle, and if there is a bill, it is reflected by the cracked surface of the bill and shines brightly. Sharpness of the bottle part is detected based on whether or not there is a part having brightness equal to or higher than a predetermined value.
上述した従来のビリ検査装置は、 ガラス壜の壜口部のビリを検査す るために、 複数の検查ステーショ ンを備えており、 検查用のスターホ ィールはガラス壜を保持して円周上を搬送して複数の検査ステーシ ヨ ンでガラス壜をインデックス (回転割出し) するようになっている。 そして、 複数の検查ステーションでは、 ガラス壜を自転させつつ、 そ れぞれ口ビリ、 ねじピリ、 首ビリ等の欠陥毎に専用に検査するように なっている。  The above-mentioned conventional billet inspection apparatus is provided with a plurality of inspection stations for inspecting the beveling of the bottle portion of the glass bottle, and the star wheel for inspection holds the glass bottle and holds the circumference. The glass bottle is conveyed above and indexed (rotated) by multiple inspection stations. At a plurality of inspection stations, the glass bottle is rotated on its own, and each is inspected exclusively for defects such as opening, screwing, and necking.
上述した従来のビリ検査装置は、 複数の検查ステーシヨ ンを備え、 各検査ステーショ ン毎に複数対の投光器と受光器とを配置するとい う構成を採用しているため、 検查対象であるガラス壜の品種が変更さ れる型替え時には、 各検査ステーション毎に複数対の投光器と受光器 の配置関係を再調整しなければならないという問題点がある。 すなわ ち、 各検查ステーションにおける複数対の投光器と受光器の角度およ ぴ高さを再調整すると ともに受光器の感度等も再調整しなければな らないという問題点がある。  The above-mentioned conventional squeeze inspection apparatus is a target to be inspected because it has a configuration in which a plurality of inspection stations are provided and a plurality of pairs of light emitters and receivers are arranged for each inspection station. When the type of glass bottle is changed, there is a problem in that the positional relationship between multiple pairs of transmitters and receivers must be readjusted for each inspection station. In other words, there is a problem that the angles and heights of a plurality of pairs of emitters and receivers at each inspection station must be readjusted, and the sensitivity of the receivers must be readjusted.
また、 壜ロ部にねじ山部を有したガラス壜においては、 ねじ山部は 複雑な曲面を有しているためにこのねじ山部においてピリ と同様の 反射光がある場合が多いので、 このねじ山部がある領域から反射光が あってもピリ とは判定しないように処理している。 そのため、 ねじ山 部及ぴねじ山部の上下の領域にビリがあっても検出されない。 さらに. 壜の合わせ目部分も縦方向に連続している曲面になっているために この部分においても、 ピリ と同様の反射光がある場合が多いため、 こ の部分についても、 ねじ山部と同様の処理を行っているため、 この壜 の合わせ目部分及びその周囲の領域にビリがあっても検出されない。 また壜の成形時に生ずるねじ山部等における成形不良については、 従 来、 検出が困難であった。 発明の開示 Further, in a glass bottle having a threaded portion in the bottle portion, the threaded portion has a complicated curved surface, so that there is often the same reflected light as that of the thread in the threaded portion. The processing is performed so that even if there is reflected light from the area where the thread part exists, it is not determined to be pilling. Therefore, even if there is a run in the upper and lower regions of the thread part and the thread part, it is not detected. Furthermore, since the seam of the bottle also has a curved surface that is continuous in the vertical direction, there are many cases where there is reflected light similar to that of Pili. Since the same processing is performed, this bottle Is not detected even if there is a sway in the seam portion and the surrounding area. In addition, it has been difficult to detect defective molding at the thread part and the like that occurs when molding bottles. Disclosure of the invention
本発明は、 上述の事情に鑑みなされたもので、 検査対象であるガラ ス壜の品種が変更される型替え時において投光器と受光器の配置を 再調整する必要がなく、 ねじ山部の上下の領域にあるビリゃ壜の合わ せ目部分の周囲にあるビリ を検査対象とすることで精度よく ピリ を 検出することができるとともに壜 (特にねじ山部) における成形不良 を検出することができるガラス壜のロ部検査装置を提供することを 目的とする。 .  The present invention has been made in view of the above circumstances, and does not require readjustment of the arrangement of the light emitter and the light receiver at the time of a type change in which the type of the glass bottle to be inspected is changed. By detecting the bill around the seam of the billiard bottle in the area of the target area, it is possible to accurately detect pills and to detect molding defects in the bottle (especially thread part). The objective is to provide a glass bottle inspection device. .
上述した目的を達成するために、 本発明の一態様は、 ガラス壜を照 明し壜ロ部からの光を撮影して画像処理により壜ロ部の欠陥を検出す る検査装置において、ガラス壜の壜口部の天面の上方に配置された照明 と、 ガラス壜の壜口部の周囲に配置された複数の C C Dカメラと、 C C Dカメラにより得られた画像を処理する画像処理装置とを備え、前記複 数の C C Dカメラは照明からの光が壜口内に入射した後に壜ロ部から 透過した光を撮影することを特徴とするものである。  In order to achieve the above object, one embodiment of the present invention relates to an inspection apparatus that illuminates a glass bottle, captures light from the bottle, and detects a defect in the bottle by image processing. Lighting provided above the top surface of the bottle, a plurality of CCD cameras arranged around the bottle of the glass bottle, and an image processing device for processing images obtained by the CCD camera. The plurality of CCD cameras capture light transmitted from the bottle portion after light from the illumination enters the bottle.
本発明によれば、 ガラス壜の上方に設置された照明からの光はガラ ス壜の壜口内に入射し、 一部の光は壜ロ部を透過する。 ガラス壜の壜 口部を取り囲むように配置された複数の C C Dカメラは、 ガラス壜の 壜ロ部を透過した光を撮影する。 この場合、 壜ロ部の内部にピリがあ ると、 壜内から壜ロ内部に入射した光は、 ピリの亀裂面で反射した後 に、 この反射光は壜ロ部を透過して C C Dカメラにより撮影される。 ピリの鼂裂面で反射した光は、 他の部分を透過した光より も明るく、 そのため、 C C Dカメラで撮影した画像中では、 ピリに相当する部分 は他の部分より明るい領域となる。 画像処理装置はこの明るい領域を ビリであると判定する。 According to the present invention, the light from the illumination placed above the glass bottle enters the glass bottle bottle, and some light is transmitted through the bottle. A plurality of CCD cameras arranged around the bottle mouth of the glass bottle capture the light transmitted through the bottle portion of the glass bottle. In this case, if there is a pill inside the bottle, the light that enters the bottle from inside the bottle is reflected by the cracked surface of the pill, and this reflected light passes through the bottle and passes through the CCD camera. It is photographed by. The light reflected on the crack surface of Piri is brighter than the light transmitted through other parts, so the part corresponding to Piri in the image taken with the CCD camera Is a lighter area than other parts. The image processing device determines that this bright area is vibrate.
一方、 ねじ山部等において成形不良があると、 この成形不良部分か らの光は正常に成形されたねじ山部の画像と比べてうす暗く ぼんや り とした画像となるため、 この成形不良の欠陥を検出できる。  On the other hand, if there is a molding defect in the thread part or the like, the light from this defective molding part becomes a dark and fuzzy image compared to the image of the thread part formed normally, so this molding defect Defects can be detected.
このように、 本発明によれば、 ガラス壜の壜口部の上方に配置され た照明から壜ロ内部を照明し、 壜口内に入射した後に壜ロ部から透過 した光を壜ロ部の周囲に配置された仰角の異なる複数の C C Dカメ ラで撮影して壜ロ部におけるビリやねじ山部等における成形不良を 検出することができる。 したがって、 検查対象であるガラス壜の品種 が変更される型替え時に、 投光器である照明と受光器である C C D力 メラとの配置関係を再調整する必要がなく、 型替え時の調整時間を飛 躍的に短縮することができる。  As described above, according to the present invention, the interior of the bottle is illuminated from the illumination disposed above the bottle of the glass bottle, and the light transmitted from the bottle is transmitted to the periphery of the bottle after entering the bottle. By photographing with a plurality of CCD cameras arranged at different elevation angles, it is possible to detect shaping in the bottle part and molding defects in the thread part. Therefore, when the type of glass bottle to be inspected is changed, the positional relationship between the illumination, which is the light emitter, and the CCD camera, which is the light receiver, does not need to be readjusted. It can be dramatically shortened.
本発明の好ましい一態様は、前記複数の C C Dカメラの光軸は、 ガラ ス壜の壜ロ部から放射状に伸びる線上にあることを特徴としている。 本発明の好ましい一態様は、前記複数の C C Dカメラは、 ガラス壜の 壜ロ部を中心とする半球体に設置されることを特徴としている。この場 合において、前記半球体を上下動可能に構成することが好ましい。 この ような構成により、 半球体の上下位置を変更するだけで、 ガラス壜の 品種が変更される型替えに対応することができ、 型替え時の調整時間 を飛躍的に短縮することができる。  In a preferred aspect of the present invention, the optical axes of the plurality of CCD cameras are on a line extending radially from the bottle portion of the glass bottle. In a preferred aspect of the present invention, the plurality of CCD cameras are installed in a hemisphere centered on a bottle portion of a glass bottle. In this case, it is preferable that the hemisphere is configured to be vertically movable. With such a configuration, it is possible to cope with a type change in which the type of glass bottle is changed only by changing the vertical position of the hemisphere, and the adjustment time at the time of the type change can be drastically reduced.
また本発明の他の態様は、 請求項 1乃至 4のいずれか 1項に記載の ガラス壜のロ部検查装置とは異なった検查位置に配置される装置であ つて、 ガラス壜の壜口部の側方に配置された第 1の照明と、 ガラス壜の 壜ロ部の周囲に配置された複数の C C Dカメラと、 C C Dカメラにより 得られた画像を処理する画像処理装置とを備え、前記複数の C C Dカメ ラは照明からの光が壜ロ部に入射した後に壜ロ部から反射した光又は 透過した光を撮影することを特徴とするものである。 本発明によれば、 ガラス壜の側方に設置された照明からの光はガラ ス壜の壜ロ部に入射する。 ガラス壜の壜口部を取り囲むように配置さ れた複数の C C Dカメラは、 ガラス壜の壜口部から反射した光又は透 過した光を撮影する。 この場合、 壜ロ部の内部にピリがあると、 壜ロ 部の外周面から壜口内部に入射した光はビリ の亀裂面で反射した後 に、 この反射光は壜ロ部を透過して C C Dカメラにより撮影される。 ビリの亀裂面で反射した光は、 他の部分を透過した光より も明るく、 そのため、 C C Dカメラで撮影した画像中では、 ピリに相当する部分 は他の部分より明るい領域となる。 画像処理装置はこの明るい領域を ビリであると判定する。 Another aspect of the present invention is an apparatus arranged at a different inspection position from the glass bottle inspection apparatus according to any one of claims 1 to 4, wherein A first lighting device arranged on the side of the mouth, a plurality of CCD cameras arranged around the bottle portion of the glass bottle, and an image processing device for processing an image obtained by the CCD camera; The plurality of CCD cameras capture light reflected from or transmitted through the bottle portion after light from the illumination enters the bottle portion. According to the present invention, the light from the illumination installed on the side of the glass bottle enters the bottle portion of the glass bottle. A plurality of CCD cameras arranged around the bottle of the glass bottle capture the light reflected or transmitted from the bottle of the glass bottle. In this case, if there is a pill inside the bottle, the light incident on the inside of the bottle from the outer surface of the bottle will be reflected by the cracked surface of the screw, and this reflected light will pass through the bottle. Photographed by CCD camera. The light reflected from the crack surface of the rivet is brighter than the light transmitted through other parts, and therefore, in the image taken by the CCD camera, the part corresponding to pilus is a brighter area than the other parts. The image processing device determines that this bright area is vibrate.
一方、 ねじ山部等において成形不良があると、 この成形不良部分か らの反射光は正常に成形されたねじ山部の画像と比べてうす喑く ぼ んやり とした画像となるため、 この成形不良の欠陥を検出できる。  On the other hand, if there is a molding defect in the thread part or the like, the reflected light from this defective molding part becomes a slightly faint image compared to the image of the thread part formed normally. Defective molding defects can be detected.
このよ うに、 本発明によれば、 ガラス壜の壜口部の側方に配置され た照明から壜ロ部を照明し、 壜ロ部から反射した光又は透過した光を 壜ロ部の周囲に配置された仰角の異なる複数の C C Dカメラで撮影 して壜ロ部のビリを検出する。 したがって、 縦ピリ の亀裂面が壜の軸 心から半径方向に延びる方向と完全に一致している場合であっても、 このようなビリ を検出することができる。  As described above, according to the present invention, the bottle part is illuminated from the illumination arranged on the side of the bottle part of the glass bottle, and the light reflected or transmitted from the bottle part is placed around the bottle part. Images are taken with a plurality of CCD cameras at different elevation angles to detect the undulation of the bottle. Therefore, even if the crack surface of the vertical pill perfectly matches the direction extending in the radial direction from the axis of the bottle, such a sway can be detected.
本発明の好ましい一態様は、ガラス壜の基準位置に対する回転角度を 検出する角度検出手段と、ガラス壜の壜口部の側方に配置された前記角 度検出手段のための第 2の照明とをさらに備えたことを特徴としてい る。 この場合において、前記第 1の照明と前記第 2の照明から互いに干 渉しない光を発することが好ましい。 図面の簡単な説明 図 1は、 本発明の第 1の実施形態における口部検査装置を示す縦断 面図である。 One preferred embodiment of the present invention is directed to an angle detecting means for detecting a rotation angle of the glass bottle with respect to a reference position, and a second illumination for the angle detecting means arranged on the side of the bottle opening of the glass bottle. It is further characterized by the following. In this case, it is preferable that the first illumination and the second illumination emit light that does not interfere with each other. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing a mouth inspection apparatus according to a first embodiment of the present invention. FIG.
図 2は、 図 1に示す口部検查装置の半球体の平面図である。  FIG. 2 is a plan view of a hemisphere of the mouth inspection device shown in FIG.
図 3は、本発明の第 1の実施形態における照明からの光の挙動を示す 模式図である。  FIG. 3 is a schematic diagram showing the behavior of light from illumination in the first embodiment of the present invention.
図 4は、 本発明の第 1の実施形態における口部検查装置の画像処理 装置と C C Dカメラとの関係を示す模式図である。  FIG. 4 is a schematic diagram showing the relationship between the image processing device of the mouth inspection device and the CCD camera according to the first embodiment of the present invention.
図 5は、 角度情報と金型番号とが書き込まれた画像の一例を示す模 式図である。  FIG. 5 is a schematic diagram illustrating an example of an image in which angle information and a mold number are written.
図 6は、 サンプルとなるガラス壜の画像を示す模式図である。 図 7は、 画素の明るさの分布を示す度数分布である。  FIG. 6 is a schematic diagram showing an image of a glass bottle serving as a sample. FIG. 7 is a frequency distribution showing the distribution of pixel brightness.
図 8は、 良品のガラス壜の画像を示す模式図である。  FIG. 8 is a schematic diagram showing an image of a non-defective glass bottle.
図 9は、 ある特定の行における画素の明るさの分布を示すグラフ図 である。  FIG. 9 is a graph showing the distribution of brightness of pixels in a specific row.
図 1 0は、 検査すべきガラス壜の画像における各画素の明るさ分布 とテンプレートとの関係を示す図である。  FIG. 10 is a diagram showing the relationship between the brightness distribution of each pixel in the image of the glass bottle to be inspected and the template.
図 1 1 Aは明テンプレートを示す模式図であり、 図 1 1 Bは暗テン プレートを示す模式図である。  FIG. 11A is a schematic diagram showing a bright template, and FIG. 11B is a schematic diagram showing a dark template.
図 1 2 Aは図 1 1 Aに示す明テンプレー トの各数値に基づいて画 像化した明テンプレート画像を示し、 図 1 2 Bは図 1 1 Bに示す暗テ ンプレー トの各数値に基づいて画像化した喑テンプレー ト画像を示 す。  Fig. 12A shows the bright template image imaged based on each value of the bright template shown in Fig. 11A, and Fig. 12B shows the bright template image based on each value of the dark template shown in Fig. 11B. This shows a template image that has been imaged.
図 1 3は、 本発明の第 2の実施形態における口部検査装置の主要部 を示す平面図である。  FIG. 13 is a plan view showing a main part of the mouth inspection apparatus according to the second embodiment of the present invention.
図 1 4は、 図 1 3の A— A線断面図である。  FIG. 14 is a sectional view taken along line AA of FIG.
図 1 5は、 図 1 3の B— B線断面図である。  FIG. 15 is a sectional view taken along line BB of FIG.
図 1 6は、本発明の第 2の実施形態における照明からの光の挙動を示 す模式図である。  FIG. 16 is a schematic diagram illustrating the behavior of light from illumination according to the second embodiment of the present invention.
図 1 7は、 本発明の第 2の実施形態における口部検査装置の画像処 理装置と C C Dカメラとの関係を示す模式図である。 発明を実施するための最良の形態 FIG. 17 shows the image processing of the mouth inspection apparatus according to the second embodiment of the present invention. FIG. 2 is a schematic diagram showing a relationship between the processing device and a CCD camera. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係るガラス壜のロ部検查装置の実施態様を図 1乃至 図 1 7を参照して説明する。  Hereinafter, an embodiment of a glass bottle inspection apparatus according to the present invention will be described with reference to FIGS. 1 to 17.
検査対象となるガラス壜は、 検査用のスターホイール (図示せず) に 保持され、 スターホイールの円周上の搬送経路に沿って搬送される。 こ のスターホイールの円周上の搬送経路の途中の 1つのステーショ ン (第 1検査ステーショ ン) に、 本発明に係るガラス壜のロ部検査装置が配 置されている。 この第 1検査ステーショ ンにおいて、 スターホイールに より搬送されるガラス壜がインデックス (回転割出し) され、 本発明 に係るガラス壜のロ部検査装置によって壜ロ部におけるビリ又はね じ山部等における成形不良が検出される。  The glass bottle to be inspected is held on an inspection starwheel (not shown) and transported along a transport path on the circumference of the starwheel. The glass bottle inspection apparatus according to the present invention is disposed at one station (first inspection station) on the transfer path on the circumference of the star wheel. In this first inspection station, the glass bottle conveyed by the star wheel is indexed (rotated), and the glass bottle roto-inspection device according to the present invention is used to check the screw in the bottle roto or the screw crest. Molding failure is detected.
図 1は、 本発明の第 1の実施形態における口部検查装置を示す縦断 面図である。 図 1に示すように、 口部検査装置は、 回転自在な回転台 1に載置されたガラス壜 2の壜ロ部 3を覆うように配置された半球 体 4と、 半球体 4を支持する支柱 5 とを備えている。 この半球体 4 の 中心 Oは、 回転台 1に載置されたガラス壜 2の壜ロ部 3 と略一致する ようになつている。 半球体 4は、 上下動可能な摺動部材 6を介して支 柱 5に取り付けられており、 支柱 5に対して上下動自在に構成されて いる。  FIG. 1 is a longitudinal sectional view showing the mouth inspection device according to the first embodiment of the present invention. As shown in FIG. 1, the mouth inspection device supports a hemisphere 4 arranged to cover the bottle holder 3 of a glass bottle 2 placed on a rotatable turntable 1 and a hemisphere 4 It has struts 5. The center O of the hemisphere 4 substantially coincides with the bottle portion 3 of the glass bottle 2 placed on the turntable 1. The hemisphere 4 is attached to a column 5 via a vertically movable sliding member 6, and is configured to be vertically movable with respect to the column 5.
図 2は、 図 1に示す半球体 4の平面図である。 図 1および図 2に示 すように、 半球体 4の頂部、 すなわち回転台 1上のガラス壜 2の壜ロ 部 3の天面の上方には、 回転台 1上のガラス壜 2の壜口内に光を照射 する照明 7が設置されている。 また、 半球体 4には、 ガラス壜 2の壜 口部 3を取り囲むように複数の C C Dカメラ 1 0〜 2 0が配置され ている。 これらの C C Dカメラ 1 0〜 2 0の光軸は、 半球体 4の中心 O (ガラス壜 2の壜ロ部 3 ) から放射状に伸びる線上にある。 FIG. 2 is a plan view of the hemisphere 4 shown in FIG. As shown in FIGS. 1 and 2, the top of the hemisphere 4, that is, above the top surface of the bottle part 3 of the glass bottle 2 on the turntable 1, is inside the bottle of the glass bottle 2 on the turntable 1. Lighting 7 for irradiating light is installed. A plurality of CCD cameras 10 to 20 are arranged on the hemisphere 4 so as to surround the bottle opening 3 of the glass bottle 2. The optical axis of these CCD cameras 10 to 20 is the center of the hemisphere 4 It is on the line extending radially from O (bottle part 3 of glass bottle 2).
本実施形態においては、 合計で 1 1台の C C Dカメラが配置されて おり、 これらのうち 1台のカメラ 1 0は、 回転台 1に载置されたガラ ス壜 2の壜ロ部 3のねじ山を撮影してガラス壜 2の所定の基準位置 に対する回転角度を検出する角度検出専用カメラとなっている。 図 1 に示すよ うに、 角度検出専用カメラ 1 0は、 その光軸の仰角が 0 ° と なるよ うに配置されており、 ガラス壜 2の壜ロ部 3のねじ山を水平方 向から撮影するよ うになっている。  In the present embodiment, a total of 11 CCD cameras are arranged. Of these, one camera 10 is provided with a screw of a bottle section 3 of a glass bottle 2 placed on a turntable 1. It is a camera dedicated to angle detection that detects the rotation angle of the glass bottle 2 with respect to a predetermined reference position by photographing the mountain. As shown in Fig. 1, the angle detection camera 10 is arranged so that the elevation angle of the optical axis is 0 °, and photographs the thread of the bottle part 3 of the glass bottle 2 from the horizontal direction. It has become.
角度検出専用カメラ 1 0以外のカメラ 1 1〜 2 0は、 壜ロ部 3を 様々な角度から撮影して壜ロ部 3のビリ を検査する検査用 C C D力 メラとなっている。 本実施形態においては、 各カメラの光軸の水平面 への投射と角度検出専用カメラ 1 0の光軸とのなす角が、 2 5 ° (第 1検查用 C C Dカメ ラ 1 1、 第 2検查用 C C Dカメラ 1 2 ) 、 5 9 . 5 ° (第 3検査用 C C Dカメラ 1 3 ) 、 1 4 0 ° (第 4検査用 C C D カメラ 1 4、 第 5検査用 C C Dカメラ 1 5 ) 、 1 8 5 ° (第 6検查用 C C Dカメラ 1 6 ) 、 2 2 0 ° (第 7検査用 C C Dカメラ 1 7 ) 、 2 6 0 ° (第 8検査用 C C Dカメラ 1 8 ) 、 2 9 6. 5 ° (第 9検査用 C C Dカメラ 1 9 ) 、 3 2 6 ° (第 1 0検査用 C C Dカメ ラ 2 0 ) と なるよ うな位置に検査用 C C Dカメラ 1 1〜 2 0がそれぞれ配置さ れている。  The cameras 11 to 20 other than the camera 10 dedicated to angle detection are inspection CCD cameras for photographing the bottle 3 from various angles and inspecting the bottle 3 for stiffness. In this embodiment, the angle between the projection of the optical axis of each camera on the horizontal plane and the optical axis of the camera 10 dedicated to angle detection is 25 ° (the first detection CCD camera 11 and the second detection CCD camera 11). Operation CCD camera 1 2), 59.5 ° (3rd inspection CCD camera 13), 140 ° (4th inspection CCD camera 14, 5th inspection CCD camera 15), 18 5 ° (6th inspection CCD camera 16), 220 ° (7th inspection CCD camera 17), 260 ° (8th inspection CCD camera 18), 296.5 ° Inspection CCD cameras 11 to 20 are arranged at such positions as to be (ninth inspection CCD camera 19) and 32 ° (10th inspection CCD camera 20).
また、 第 1検查用 C C Dカメ ラ 1 1の光軸の仰角は 3 0 ° 、 第 2検 查用 C C Dカメラ 1 2は 0 ° 、 第 4検査用 C C Dカメラ 1 4は 5 5 ° 第 5検査用 C C Dカメラ 1 5は 1 5 ° 、 第 6検査用 C C Dカメ ラ 1 6 は 4 5 ° 、 第 7検査用 C C Dカメラ 1 7は 2 0 ° 、 第 8検查用 C C D カメラ 1 8は 3 5 ° 、 第 1 0検査用 C C Dカメラ 2 0は 2 5。 となつ ている。 第 3検査用 C C Dカメラ 1 3およぴ第 9検查用 C C Dカメ ラ 1 9は、 半球体 4の面上を上下に移動できるよ うに構成されており、 その光軸の仰角を自由に設定できるよ うになつている。 本実施形態において使用される各 C C Dカメラ 1 0〜 2 0の画素 数は 6 4 X 6 4であり、 0. 4ミ リ秒毎に 1枚の画像を撮影すること ができるようになつている。 例えば、 1分間に 3 0 0本のガラス壜を 検査する場合、 1本のガラス壜に対する処理時間は 2 0 0 ミ リ秒とな るが、 この処理時間のうち 1 0 0 ミ リ秒の間だけガラス壜の撮影をす る場合には、 1本のガラス壜に対して最大で 2 5 0枚 (二 1 0 0 / 0. 4 ) の画像を撮影することができる。 ここで、 口部検查装置によりガ ラス壜 2の壜ロ部 3の検査を行なっている間は、 回転台 1は回転して おり、 ガラス壜 2を回転させた状態で各 C C Dカメラ 1 0〜 2 0によ り同時にガラス壜 2を撮影する。 このよ うに、 ガラス壜 2を回転させ ながら、 ガラス壜 2の撮影を繰り返し行なうことで、 ガラス壜 2の壜 口部 3を全周に亘つて撮影することができる。 The elevation angle of the optical axis of the first inspection CCD camera 11 is 30 °, the second inspection CCD camera 12 is 0 °, the fourth inspection CCD camera 14 is 55 °, and the fifth inspection. 15 ° for CCD camera 15, 45 ° for CCD camera 16 for sixth inspection, 20 ° for CCD camera 17 for seventh inspection, 35 ° for CCD camera 18 for eighth inspection The 10th inspection CCD camera 20 is 25. It has become. The third inspection CCD camera 13 and the ninth inspection CCD camera 19 are configured to be able to move up and down on the surface of the hemisphere 4, and the elevation angle of the optical axis can be freely set. You can do it. The number of pixels of each of the CCD cameras 10 to 20 used in the present embodiment is 64 × 64, so that one image can be captured every 0.4 millisecond. . For example, when inspecting 300 glass bottles per minute, the processing time for one glass bottle is 200 milliseconds. If only glass bottles are to be photographed, a maximum of 250 images (2100 / 0.4) can be photographed per glass bottle. During the inspection of the bottle part 3 of the glass bottle 2 by the mouth inspection device, the turntable 1 is rotating, and each CCD camera 10 is rotated while the glass bottle 2 is rotated. The glass bottle 2 is photographed at the same time according to. In this way, by repeatedly taking a picture of the glass bottle 2 while rotating the glass bottle 2, it is possible to take a picture of the bottle portion 3 of the glass bottle 2 over the entire circumference.
ここで、 ガラス場 2の上方に設置された照明 7からの光はガラス壜 2の壜口内に入射し、 図 3に示すように、 一部の光 LAは壜ロ部 3の 内周面から壜ロ部 3に入射する。 壜ロ部 3の内部にビリ Cがあった場 合、 この光 L Aは壜ロ部 3の内部のビリ Cの亀裂面で反射し、 この反 射光 L Bは壜ロ部 3の内部を透過して上述した検查用 C C Dカメラ 1 1〜 2 0により撮影される。 ピリ Cの亀裂面で反射した光 L Bは、 他 の部分を透過した光より も明るく、 そのため、 C C Dカメラで撮影し た画像中では、 ビリ Cに相当する部分は他の部分より明るい領域とな る。 口部検查装置に設けられた画像処理装置は、 上述した C C Dカメ ラ 1 0 ~ 2 0により得られた画像からこの明るい領域を検出し、 これ をビリであると判定する。 一方、 壜ロ部 3の内部にビリ Cがない場合 には、 前記一部の光 LAは壜ロ部 3の内周面から壜ロ部 3に入射して そのまま壜ロ部 3を透過する。 この場合、 ねじ山部等において成形不 良があると、 この成形不良部分からの光は、 対応する C C Dカメラに は入射しない方向に散乱することになり、 正常に成形されたねじ山部 の画像と比べてうす暗くぼんやり とした画像となるため、 この成形不 良の欠陥を検出できる。 Here, light from the illumination 7 disposed above the glass field 2 is incident on the bottle mouth of the glass bottle 2, as shown in FIG. 3, a part of the light L A inner peripheral surface of the Binro 3 And enters the bottle part 3. If there is a bill C inside the bottle part 3, this light L A is reflected by the cracked surface of the bill C inside the bottle part 3, and this reflected light L B passes through the inside of the bottle part 3. Then, the image is captured by the above-described inspection CCD cameras 11 to 20. Light L B reflected by the crack plane of the pyridinium C is brighter than light which has passed through other parts, therefore, in the image taken by the CCD camera, the portion corresponding to the kink C is bright than the other partial regions Become. The image processing device provided in the mouth detection device detects this bright region from the images obtained by the above-described CCD cameras 10 to 20 and determines that the region is stiff. On the other hand, if there is no internal kink C of Binro portion 3, the part of the light L A is transmitted through the Binro portion 3 as it enters the Binro portion 3 from the inner circumferential surface of the Binro 3 . In this case, if there is a molding defect in the thread part, etc., the light from this defective molding part will be scattered in a direction that does not enter the corresponding CCD camera, and the image of the thread part that has been formed normally Because the image is slightly darker and fuzzier than Good defects can be detected.
図 4は、 この画像処理装置と各 C C Dカメラ 1 0〜 2 0 との関係を 示す模式図である。 図 4に示すように、 画像処理装置 7は、 それぞれ の C C Dカメラ 1 0〜 2 0に対応して演算ボード 3 0〜 4 0を備え ており、 これらの演算ポード 3 0〜 4 0は対応する C C Dカメラ 1 0 〜 2 0にそれぞれ接続されている。  FIG. 4 is a schematic diagram showing a relationship between the image processing apparatus and each of the CCD cameras 10 to 20. As shown in FIG. 4, the image processing apparatus 7 includes operation boards 30 to 40 corresponding to the respective CCD cameras 10 to 20. These operation ports 30 to 40 correspond. They are connected to CCD cameras 10 to 20, respectively.
角度検出専用カメラ 1 0が接続された角度検出用演算ボード 3 0 には、 予めガラス壜 2のねじ山の螺旋の高さ位置と所定の基準位置に 対するガラス壜 2の回転角度との関係が記憶されている。 角度検出用 演算ポード 3 0は、 角度検出専用カメラ 1 0により得られた画像から ねじ山の螺旋の高さ位置を検出し、 このねじ山の螺旋の高さ位置から 前記関係に基づいて基準位置に対する撮影時のガラス壜 2の回転角 度を検出する。 検出されたガラス壜 2の回転角度の信号は、 各検査用 C C Dカメラ 1 1〜 2 0に接続された演算ボード 3 1〜 4 0に送ら れるようになっている。 このように、 角度検出専用カメラ 1 0および 角度検出用演算ボード 3 0は、 基準位置に対する撮影時のガラス壜の 回転角度を検出する角度検出手段を構成している。  The angle detection arithmetic board 30 to which the angle detection dedicated camera 10 is connected has a relationship between the height of the screw helix of the glass bottle 2 and the rotation angle of the glass bottle 2 with respect to a predetermined reference position in advance. It is remembered. The calculation port 30 for angle detection detects the height position of the spiral of the screw thread from the image obtained by the camera 10 dedicated to angle detection, and determines the reference position based on the above relationship from the height position of the spiral screw thread. The rotation angle of the glass bottle 2 at the time of shooting with respect to is detected. The detected rotation angle signal of the glass bottle 2 is sent to the operation boards 31 to 40 connected to the respective inspection CCD cameras 11 to 20. In this way, the angle detection dedicated camera 10 and the angle detection calculation board 30 constitute angle detection means for detecting the rotation angle of the glass bottle at the time of shooting with respect to the reference position.
上述したように、 各検査用 C C Dカメラ 1 1〜 2 0に接続された演 算ボード 3 1〜4 0には、 前記角度検出用演算ボード 3 0から送られ たガラス壜 2の回転角度が送られ、 各検查用 C C Dカメラ 1 1〜 2 0 により撮影された各画像には、 この回転角度が回転角度情報として書 き込まれる。  As described above, the rotation angles of the glass bottle 2 sent from the angle detection calculation board 30 are sent to the calculation boards 31 to 40 connected to the inspection CCD cameras 11 to 20, respectively. This rotation angle is written as rotation angle information in each image captured by each of the inspection CCD cameras 11 to 20.
次に、 前述のように構成されたガラス壜のロ部検查装置の作用を図 1乃至図 4を参照して説明する。  Next, the operation of the glass bottle inspection apparatus configured as described above will be described with reference to FIGS.
上述したように、 照明 7からの拡散光は、 回転台 1に載置されたガ ラス壜 2の壜ロ部 3の上方から壜口内に入射する。 壜口内に入射した 拡散光は、 放射状に拡散して壜ロ部 3を透過する。 そして、 壜ロ部 3 を放射状に透過した透過光は、 壜ロ部 3の周囲に配置された全ての C C Dカメ ラ ( 1 1個の C C Dカメラ) 1 0〜 2 0により同時に撮影さ れる。 このとき、 1個の C C Dカメラは、 上述したよ うに、 角度検出 専用カメラになっており、 この角度検出専用カメ ラ 1 0は壜ロ部 3の ねじ山を撮影することによ り、 基準位置に対する撮影時のガラス壜の 回転角度を検出することができる。 ねじ山の螺旋は 1回転すると 1 ピ ツチ分だけ高さ位置が変化するため、 予めねじ山の螺旋の高さ位置と 基準位置に対する回転角度との関係を角度検出専用カメ ラ 1 0の演 算ボード 3 0に記憶させておけば、 角度検出専用カメ ラ 1 0は撮影時 の基準位置に対する角度を検出することができる。 この基準位置と し ては、 例えば、 ねじ山の始まりである始端を基準位置 ( 0° ) とすれ ばよい。 As described above, the diffused light from the illumination 7 enters the bottle from above the bottle 3 of the glass bottle 2 placed on the turntable 1. The diffused light that has entered the bottle is diffused radially and passes through the bottle 3. Then, the transmitted light that has passed through the bottle 3 in a radial manner is equivalent to all the C arranged around the bottle 3 Photographed simultaneously by a CD camera (11 CCD cameras) 10 to 20. At this time, as described above, one CCD camera is a camera dedicated to angle detection, and the camera 10 dedicated to angle detection captures the thread of the bottle holder 3 to set the reference position. The angle of rotation of the glass bottle at the time of shooting can be detected. Since the height of the spiral of the thread changes by one pitch per rotation, the relationship between the height of the spiral of the thread and the rotation angle with respect to the reference position is calculated in advance by the dedicated angle detection camera 10. If stored in the board 30, the camera 10 dedicated to angle detection can detect the angle with respect to the reference position at the time of photographing. As the reference position, for example, the starting end, which is the start of the thread, may be set as the reference position (0 °).
前記角度検出専用カメ ラ 1 0を基準とすれば、 この角度検出専用力 メ ラ 1 0に対する各検查用 C C Dカメ ラ 1 1〜 2 0の相対位置は予 め定まっているため、 角度検出専用カメラ 1 0の演算ポード 3 0によ り検出された回転角度は、 基準位置を相対的にずらして考えることで. 各検查用 C C Dカメ ラ 1 1 〜 2 0が壜ロ部 3 を撮影したときの回転 角度と しても用いることができる。 このため、 本実施形態では、 各検 查用 C C Dカメラ 1 1〜 2 0によ り撮影された各画像には、 角度検出 専用カメ ラ 1 0の角度検出用演算ボー ド 3 0から送られた回転角度 が書き込まれている。  With reference to the angle detection dedicated camera 10, the relative position of each detection CCD camera 11 to 20 with respect to the angle detection dedicated force camera 10 is predetermined. The rotation angle detected by the calculation port 30 of the camera 10 can be considered by shifting the reference position relatively. Each of the detection CCD cameras 11 to 20 images the bottle 3 It can also be used as the rotation angle. For this reason, in the present embodiment, each image captured by each of the detection CCD cameras 11 to 20 is transmitted from the angle detection calculation board 30 of the angle detection dedicated camera 10. The rotation angle is written.
回転台 1によってガラス壜 2を回転させながら、 壜ロ部 3を透過し た透過光を所定時間毎に撮影し多数の画像を得る。 そして、 全ての画 像には上述した撮影時の角度情報が書き込まれている。  While rotating the glass bottle 2 by the turntable 1, the transmitted light transmitted through the bottle 3 is photographed at predetermined time intervals to obtain a large number of images. Then, the angle information at the time of shooting described above is written in all the images.
一方、 ガラス壜成形機は多数の金型を備えており、 これら金型を用 いて多数の壜を同時成形することが行なわれている。 成形されたガラ ス壜の性状 (肉厚や微妙な形状等) は金型に大いに依存していること が知られている。 また、 ガラス壜の壜口部のピリの発生も金型に依存 する。 そのため、 本発明の検査装置で得た画像中には、 ガラス壜がど の金型で成形されたかがわかる金型番号の情報も書き込まれている。 金型番号はガラス壜の壜底に形成された凸状の符号を読み取る金型 番号読取り装置により検出できるものであり、 金型番号読取り装置か らの信号は各検查用 C C Dカメラ 1 1〜 2 0の演算ボー ド 3 1〜 4 0に入力され、 各画像中に金型番号が書き込まれるようになつている c また、 各画像中に製造番号等の製造に関連した情報が書き込まれるよ うになつている。 図 5は、 上述のようにして得られた回転角度情報と 金型番号とが書き込まれた画像の一例を示す模式図である。 なお、 検 査結果、 例えばガラス壜の良否を各画像中に書き込んでもよい。 On the other hand, glass bottle molding machines are equipped with a large number of molds, and many molds are simultaneously molded using these molds. It is known that the properties (thickness, subtle shapes, etc.) of molded glass bottles greatly depend on the mold. In addition, the generation of spiking at the mouth of the glass bottle also depends on the mold. Therefore, some of the images obtained with the inspection device of the present invention contain glass bottles. The information of the mold number which indicates whether the molding has been performed with the mold is also written. The mold number can be detected by a mold number reading device that reads a convex code formed on the bottom of the glass bottle, and the signal from the mold number reading device is a CCD camera for inspection. 20 is input to the operation board 31 to 40, and the mold number is written in each image.c Also, information related to manufacturing such as the serial number is written in each image. It's swelling. FIG. 5 is a schematic diagram illustrating an example of an image in which the rotation angle information and the mold number obtained as described above are written. The inspection result, for example, the quality of the glass bottle may be written in each image.
次に、 角度情報と金型番号等が書き込まれた各画像と、 ガラス壜の 検査前に予め作成してあったテンプレー トと称される基準画像とを 比較し、 ガラス壜の壜口部にビリがあるか否かを検查する。 この場合. 基準画像 (テンプレート) は角度毎および金型番号毎に用意されてお り、 各検査用 C C Dカメラで得られた画像中に書き込まれた角度情報 および金型番号と対応した基準画像が選定されて、 この選定された基 準画像と検査対象のガラス壜の画像とが比較される。  Next, each image in which the angle information and the mold number etc. are written is compared with a reference image called a template prepared in advance before inspecting the glass bottle. Check if there is any stiffness. In this case. A reference image (template) is prepared for each angle and for each mold number, and the angle information and the reference image corresponding to the mold number written in the image obtained by each inspection CCD camera are stored. The selected reference image is compared with the image of the glass bottle to be inspected.
次に、 基準画像 (テンプレート) の作成方法について説明する。 基準画像 (以下、 適宜テンプレートという) を作成する工程は、 大 きく分けて 3つの工程から構成される。 すなわち、 テンプレー トの作 成に使用される複数のガラス壜を各 C C Dカメラにて撮影する撮影 工程、 撮影工程によって撮影された画像群の中から不良品のガラス壜 の画像を排除して良品のガラス壜の画像を選別する画像選別工程、 そ して、 画像選別工程により選別された画像に基づいてテンプレートを 作成する画像作成工程である。 以下、 各工程について順に説明する。  Next, a method of creating a reference image (template) will be described. The process of creating a reference image (hereinafter referred to as a template as appropriate) is roughly divided into three processes. That is, a photographing process of photographing a plurality of glass bottles used for template creation with each CCD camera, and excluding images of defective glass bottles from a group of images photographed in the photographing process to obtain non-defective glass bottles. This is an image selection process for selecting images of glass bottles, and an image creation process for creating a template based on the images selected in the image selection process. Hereinafter, each step will be described in order.
( 1 ) 撮影工程  (1) Shooting process
本実施形態において実施される撮影工程の基礎データは次の通り である。  The basic data of the imaging process performed in this embodiment is as follows.
①サンプルに使用されるガラス壜の本数 1 0 0本 ②金型番号 M 1〜M 8 ① Number of glass bottles used for sample 100 bottles ②Mold number M 1 ~ M 8
③角度 A 1〜A 8 (A 1 : 0〜4 5° 、 A 2 : 4 5〜 9 0° 、 · · · , A 8 : 3 1 5〜 3 6 0° )  ③ Angle A1 to A8 (A1: 0 to 45 °, A2: 45 to 90 °, · · ·, A8: 315 to 360 °)
④ガラス壜 1本当りの撮影枚数 1 0 0枚  枚 数 Number of shots per glass bottle 100
サンプルとなる 1 0 0本のガラス壜は検査用のスターホイールに より検查ステーショ ンに搬送され、 検査ステーシヨ ンに備えられてい る第 1乃至第 1 0検査用 C CDカメラ 1 1〜 2 0にて撮影される。 撮 影された画像は、 各検査用 C CDカメラ 1 1〜 2 0の演算ュニッ ト 3 0〜 4 0に接続されたコンピュータ 4 2 (図 4参照) に送られ、 これ らの画像に基づいて以下に述べる工程がコンピュータ 4 2によ り行 われる。  The 100 glass bottles to be sampled are conveyed to the inspection station by the star wheel for inspection, and the first to tenth inspection CCD cameras 11 to 20 provided in the inspection station Photographed at The captured images are sent to the computer 42 (see FIG. 4) connected to the calculation units 30 to 40 of the inspection CCD cameras 11 to 20, and are based on these images. The following steps are performed by the computer 42.
以下、 第 1検査用 C C Dカメラ 1 1、 金型番号 M 1、 角度 A 1 に対 応したテンプレー トを作成する例について説明する。  Hereinafter, an example will be described in which a template corresponding to the first inspection CCD camera 11, the mold number M1, and the angle A1 is created.
上述のよ うに、 1本のガラス壜に対して 1 0 0枚の画像が撮影され るので、 1 0 0本のガラス壜に対して合計 1 0 , 0 0 0枚の画像が第 1検査用 C C Dカメラ 1 1によ り撮影される。 1 0 0本のガラス壜の うち、 金型番号 M 1により成形されたガラス壜が 3本である場合、 こ の金型番号 M 1 によって成形されたガラス壜の画像数は 3本 X 1 0 0枚 = 3 0 0枚である。 したがって、 まず、 金型番号 M 1 によ り成形 されたガラス壜の画像 3 0 0枚が 1 0, 0 0 0枚の中から抽出される ( さらに、 この 3 0 0枚の画像の中から、 角度 A 1において撮影された 画像が抽出される。 本実施形態では、 角度 A 1において 3 5枚の画像 が撮影されるよ うになっている。 したがって、 金型番号 M l、 角度 A 1に対応したテンプレー トの作成には 3 5枚の画像が選定される。 ( 2 ) 画像選別工程 As described above, 100 images are taken for one glass bottle, so a total of 100,000 images for 100 glass bottles are used for the first inspection. Photographed by CCD camera 11. If three of the 100 glass bottles are molded with mold number M1, the number of images of the glass bottle molded with mold number M1 is 3 x 10 0 sheets = 300 sheets. Therefore, first, 300 images of the glass bottle formed by the mold number M 1 are extracted from the 100,000 images ( further, from among the 300 images, In this embodiment, 35 images are photographed at the angle A1. Therefore, the mold number Ml and the angle A1 are used. To create a corresponding template, 35 images are selected. (2) Image selection process
基準画像となるテンプレー トを作成する際に、 サンプルと して使用 される複数のガラス壜の中に不良品が含まれていると、 ビリに基づく 光を含んだ形のテンプレー トが作成されることになる。 このよ うに、 本来、 光るべきでない部位からの明るい光を含んだ画像に基づいてテ ンプレー トが作成されてしまう と、 その部位にビリが存在するガラス 壜を不良品と判断することができなくなってしまう。 このような理由 から、 テンプレートを作成する前工程と して、 テンプレートに使用さ れる複数の画像から不良品のガラス壜の画像を排除する作業が行わ れる。 When creating a template that serves as a reference image, if multiple glass bottles that are used as samples contain defective products, a template that includes light based on stiffness is created. Will be. in this way, If a template is created based on an image that contains bright light from a part that should not shine, it is impossible to judge a glass bottle that has stiffness in that part as a defective product. For this reason, as a pre-process for creating a template, work is performed to exclude images of defective glass bottles from multiple images used in the template.
画像選別工程では、 撮影工程により選定された複数の画像に基づい て、 画像を構成する画素毎の明るさの分布を示す度数分布が作成され る。 図 6は、 サンプルとなるガラス壜の画像を示す模式図である。 図 7は、 画素の明るさの分布を示す度数分布である。 図 6において符号 5 0は明部を示す。 図 7において、 度数分布の縦軸は画素の個数を表 し、 横軸は明るさ ( 0〜 2 5 5 ) を表す。  In the image selection step, a frequency distribution indicating the brightness distribution of each pixel constituting the image is created based on the plurality of images selected in the imaging step. FIG. 6 is a schematic diagram showing an image of a glass bottle serving as a sample. FIG. 7 is a frequency distribution showing the distribution of pixel brightness. In FIG. 6, reference numeral 50 indicates a bright part. In FIG. 7, the vertical axis of the frequency distribution represents the number of pixels, and the horizontal axis represents brightness (0 to 255).
図 6に示すように、 各 C C Dカメラ 1 1〜 2 0の画像は縦 6 4個 X 横 6 4個の画素群から構成されている。 この画素数は適宜調整するこ とができる。 この例の場合、 1枚の画像は 6 4 X 6 4の画素に分解す ることができる。 そして、 分解された画素群の中から 1行 1列目の画 素が画像ごとにグラフ上にプロッ トされる。 このようにして 1行 1列 目の画素が 3 5枚の画像についてグラフ上に順次プロッ トされると、 図 7に示すような、 1行 1列目の画素の明るさの分布を表す度数分布 を得ることができる。 この度数分布は 1行 1列目から 6 4行 6 4列目 まで作成される。  As shown in FIG. 6, the image of each of the CCD cameras 11 to 20 is composed of a pixel group of 64 × 64 pixels. The number of pixels can be appropriately adjusted. In this example, one image can be decomposed into 64 × 64 pixels. Then, the pixels in the first row and first column from the decomposed pixel group are plotted on the graph for each image. In this way, when the pixels in the first row and the first column are sequentially plotted on the graph for 35 images, the frequency representing the brightness distribution of the first row and the first column as shown in FIG. 7 is obtained. Distribution can be obtained. This frequency distribution is created from 1st row, 1st column to 64th row, 6th column.
次に、 得られた度数分布毎に明るさのばらつき度合いを示す標準偏 差 σが計算される。 この標準偏差 σは一般的な統計的手法により求め られる。 そして、 例えば、 ± 2 σの範囲内に画素の明るさが分布する 場合は良品のガラス壜の画像と判断されるよ うに検出基準を設定す る。 サンプルとなるガラス壜が総て良品である場合には、 総ての画素 の明るさはほぼ平均値 X付近に分布することになる。 したがって、 図 7に示すように、 総ての画素は ± 2 σの範囲内に存在することになる ( この場合、 画像は排除されず、 3 5枚の総ての画像がテンプレート作 成に使用される。 Next, a standard deviation σ indicating the degree of variation in brightness is calculated for each obtained frequency distribution. This standard deviation σ is obtained by a general statistical method. Then, for example, when the brightness of the pixels is distributed within the range of ± 2σ, the detection criterion is set so that the image is judged to be a good glass bottle image. If all sample glass bottles are good, the brightness of all pixels will be distributed around the average value X. Therefore, as shown in Fig. 7, all pixels are within the range of ± 2σ ( In this case, no images are rejected and all 35 images are used for template creation.
一方、 あるガラス壜にピリが存在する場合、 このビリの存在を示す 画像の部位 6 0は極端に明るくなる (図 6参照) 。 そうすると、 度数 分布には、 図 7に示すように、 この部位 6 0に対応する明るさの画素 の個数 6 1が + 2 σの右側の領域にプロッ トされることになる。 そし て、 このような画素を有する画像にはピリが撮影されていると判断さ れる。 また同様に、 極端に暗い部位がある場合は、 この部位に対応す る明るさの画素の個数は一 2 σの左側の領域にプロッ トされること になる。 そして、 このような画素を有する画像には成形不良のねじ山 部等が撮影されていると判断される。 そして、 これらの画像はテンプ レー トの作成に使用される画像から排除される。 なお、 本実施形態で は統計学的手法を用いて画像選別工程を行っているが、 これに限らず. 排除すべき画像を特定できるものであれば他の手法を用いてもよい。 例えば、 撮影工程によ'り得られた複数の画像を金型別、 角度別にディ スプレイ上に表示し、 オペレータがディスプレイ上の画像を目視する ことにより不良品のガラス壜の画像を選別してもよい。  On the other hand, if there is a pill in a glass bottle, the part 60 of the image that indicates the presence of the stiffness becomes extremely bright (see Fig. 6). Then, in the frequency distribution, as shown in FIG. 7, the number 61 of pixels having the brightness corresponding to this part 60 is plotted in the area to the right of + 2σ. Then, it is determined that an image having such pixels has a sharp image. Similarly, when there is an extremely dark part, the number of pixels having the brightness corresponding to this part is plotted in the area on the left side of 12σ. Then, it is determined that an image having such pixels includes a thread portion or the like having a molding defect. These images are then excluded from the images used to create the template. In the present embodiment, the image selection step is performed by using a statistical method. However, the present invention is not limited to this. Other methods may be used as long as the image to be excluded can be specified. For example, multiple images obtained by the shooting process are displayed on the display for each mold and each angle, and the operator selects images of defective glass bottles by looking at the images on the display. Is also good.
( 3 ) 画像作成工程  (3) Image creation process
画像作成工程では、 上述した画像選別工程により選別された複数の 画像に基づいて、 テンプレートとなる基準画像が作成される。 この画 像作成工程について図 8乃至図 1 0を参照して説明する。 図 8は良品 のガラス壜の画像を示す模式図である。 図 9は、 ある特定の行におけ る画素の明るさの分布を示すグラフ図である。 図 1 0は検査すべきガ ラス壜の画像の各画素の明るさ分布とテンプレー トとの関係を示す 図である。  In the image creation step, a reference image serving as a template is created based on the plurality of images selected in the above-described image selection step. This image creation step will be described with reference to FIGS. Figure 8 is a schematic diagram showing an image of a good glass bottle. FIG. 9 is a graph showing a distribution of brightness of pixels in a specific row. FIG. 10 is a diagram showing the relationship between the brightness distribution of each pixel of the image of the glass bottle to be inspected and the template.
本実施形態におけるテンプレートは、 画像の画素行ごとに作成され る。 まず、 ある画素行を特定する。 例えば、 図 8において、 第 3行を 特定したとする。 次に、 この特定した画素行を列方向 (図 8の横方向. 1、 2、 3 · · · 6 4の方向) に走査して、 各画素が有する明るさを グラフに表す。 具体的には、 画素の明るさ度合いを縦軸とし、 画素の 列番号を横軸として、 特定した画素行上の各画素をグラフ上にプロッ トしていく。 図 8に示すように、 第 3行の画素は暗部 7 0の領域に位 置するため、 この第 3行の各画素をグラフ上にプロッ トしたときに描 かれる線は、 ほぼ明るさ 0付近に位置する直線となる。 The template in the present embodiment is created for each pixel row of the image. First, a certain pixel row is specified. For example, in FIG. 8, assume that the third line is specified. Next, the identified pixel row is placed in the column direction (horizontal direction in Fig. 8). (1, 2, 3 · · · 64 directions), and the brightness of each pixel is shown in a graph. Specifically, each pixel on the specified pixel row is plotted on a graph, with the brightness level of the pixel on the vertical axis and the column number of the pixel on the horizontal axis. As shown in FIG. 8, since the pixels in the third row are located in the dark area 70, the line drawn when each pixel in the third row is plotted on the graph has a brightness near zero. Is a straight line located at
一方、 例えば、 第 1 0行の画素を特定した場合、 この行の各画素を プロッ トしたときに描かれる線は図 9に示す Τ 1のようになる。 即ち. 第 1 0行では、 ねじ山部からの光によって形成された明部 5 0が走查 されるので、 この明部 5 0に対応する画素は高い明るさ度合いを示す ことになる。  On the other hand, for example, when the pixels in the 10th row are specified, the line drawn when each pixel in this row is plotted is as shown in FIG. 9. That is, in the 10th row, the bright portion 50 formed by the light from the thread portion runs, so that the pixel corresponding to the bright portion 50 has a high degree of brightness.
さらに、 総ての画像について、 同一行の各画素が同一グラフ上にプ ロッ小される。 つまり、 本実施形態では、 3 5枚の画像がテンプレー トの作成に使用されるので、 図 9に示すように、 3 5本の線群 (図 9 では 4本の線 Τ 1〜 Τ 4のみを示す) からなる明るさの分布図が作成 される。 このようにして、 1行から 6 4行までの総ての行について明 るさの分布図が作成される。  Furthermore, for all images, each pixel in the same row is plotted on the same graph. That is, in the present embodiment, since 35 images are used for creating the template, as shown in FIG. 9, 35 lines (in FIG. 9, only four lines Τ 1 to Τ 4 are used). A brightness distribution map consisting of is created. In this way, a brightness distribution map is created for all rows from 1 to 64.
そして、 これらの線群によって画定された最大領域がテンプレート とすべき領域となる。即ち、図 1 0に示すように、列ごとの最大値(最 大の明るさ) を示す点を結んで得られる線を明テンプレートライン Τ m a Xと し、 列ごとの最小値 (最小の明るさ) を示す点を結んで得ら れる線を喑テンプレートライン T m i nとする。 そして、 明テンプレ 一トライン T m a X と喑テンプレートライン T m i nとによって囲 まれた領域が求めるべき基準画像 (テンプレート) となる。 つまり、 明テンプレー トライン T m a X と暗テンプレー トライン T m i n と の間には、 最大の明るさと最小の明るさの間の範囲が列方向に連続し て形成される。 このよ うにして、 金型番号 M l、 角度 A 1において、 6 4個のテンプレートが作成される。 このよ うなテンプレートの作成作業は、 金型番号 M 1〜M 2 0、 角 度 A 1〜A 8について行われるので、 6 4 X 2 0 X 8 = 1 0 , 2 4 0 個のテンプレー トが第 1検査用 C C Dカメラ 1 1 に対して与えられ る。 つまり、 それぞれの検查用 C C Dカメラ 1 1〜 2 0は、 金型、 角 度、 画素行ごとのテンプレートを有することになる。 上述したように、 ガラス壜の性状ゃビリの発生具合などは金型に大きく依存するため、 各金型に対応したテンプレートを作成することによってビリ又はね じ山部等における成形不良の検出精度を高めることができる。 The maximum area defined by these line groups is the area to be used as a template. That is, as shown in Fig. 10, the line obtained by connecting the points indicating the maximum value (maximum brightness) for each column is defined as a bright template line Τ max, and the minimum value (minimum brightness) for each column is obtained. Let the line obtained by connecting the points indicating)) be the template line T min. The area surrounded by the light template line T max and the 喑 template line T min becomes the reference image (template) to be obtained. That is, a range between the maximum brightness and the minimum brightness is continuously formed in the column direction between the bright template line Tmax and the dark template line Tmin. In this way, 64 templates are created for the mold number Ml and the angle A1. Since such template creation work is performed for mold numbers M1 to M20 and angles A1 to A8, 64 X 20 X 8 = 10 and 24 templates are obtained. Provided for the first inspection CCD camera 11. That is, each of the inspection CCD cameras 11 to 20 has a template for each mold, angle, and pixel row. As described above, the degree of occurrence of waviness and the like of the glass bottle greatly depends on the mold. Can be enhanced.
次に、 上述の方法で得られた基準画像 (テンプレート) と検査対象 のガラス壜から得られた画像とを比較して壜ロ部におけるピリ又は ねじ山部等における成形不良があるか否かを判定する方法について 説明する。  Next, the reference image (template) obtained by the above-described method is compared with the image obtained from the glass bottle to be inspected, and it is determined whether or not there is a molding defect in a pill or a thread portion in the bottle portion. The determination method will be described.
まず、 画像に付与された角度情報や金型番号などの各種情報に基づ いて、 検査対象となる画像と同一の条件 (金型、 角度など) の下で作 成されたテンプレートが比較対象として選定される。 次に、 検査すベ きガラス壜の画像が画素行ごとにテンプレートと比較される。 具体的 には、 ある特定の画素行における列方向の明るさ分布を示す線がテン プレートと比較される。 そして、 図 1 0に示すように、 検査すべきガ ラス壜の明るさ度合いを示す線 S 1がテンプレートの良品領域 (明テ ンプレー トライン T m a X と喑テンプレー トライン T m i n とによ つて囲まれた領域) 内に総て存在すれば、 このガラス壜は良品と判定 される。  First, a template created under the same conditions (mold, angle, etc.) as the image to be inspected based on various information such as the angle information and mold number given to the image is used as a comparison target. Selected. Next, the image of the glass bottle to be inspected is compared with the template for each pixel row. Specifically, a line indicating the brightness distribution in the column direction in a specific pixel row is compared with the template. Then, as shown in FIG. 10, a line S1 indicating the degree of brightness of the glass bottle to be inspected is surrounded by a non-defective region (a bright template line Tmax and a template line Tmin) of the template. The glass bottle is judged to be good if it is entirely within the area.
一方、 符号 S 2に示すように、 線の一部がテンプレートの良品領域 からはみ出す場合、 このガラス壜は不良品と判断される。 そして、 総 ての画素行をテンプレー トと比較したときに少なく とも 1つの行に おいて不良品と判定された場合には、 このガラス壜には、 壜ロ部にお いてビリ又はねじ山部等において成形不良が存在すると判定される。  On the other hand, if a part of the line protrudes from the non-defective area of the template, as shown by reference numeral S2, the glass bottle is determined to be defective. If all the pixel rows are determined to be defective in at least one of the rows when compared with the template, the glass bottle has a twist or a thread in the bottle section. Etc., it is determined that a molding defect exists.
このよ うな検査は各角度 A 1〜 A 8において行われるので、 例えば. 角度 A 1においてビリ又は成形不良が存在しないと判断された場合 であっても、 角度 A 2においてビリ又は成形不良が存在すると判断さ れることもある。 本実施形態では、 複数の角度 (A 1〜A 8 ) におい てビリ又は成形不良の検出が行われるため、 従来の検査装置に比べて ビリ又は成形不良の検査精度を高めることができる。 Such an inspection is performed at each angle A1 to A8, for example. Even when it is determined that there is no twist or molding failure at the angle A1, it may be determined that there is a twist or molding failure at the angle A2. In the present embodiment, since the detection of the twist or the molding defect is performed at a plurality of angles (A1 to A8), the inspection accuracy of the thread or the molding defect can be improved as compared with the conventional inspection device.
上述のように作成された 6 4個のテンプレートは、 さらに、 2次元 的 (平面的) な 2枚の明テンプレート及び喑テンプレートに集約する ことができる。 図 1 1 Aは明テンプレートを示す模式図であり、 図 1 1 Bは暗テンプレートを示す模式図である。 以下、 図 1 0及び図 1 1 Aを参照して明テンプレー トの作成工程を説明する。  The 64 templates created as described above can be further aggregated into two two-dimensional (planar) bright templates and 喑 templates. FIG. 11A is a schematic diagram showing a bright template, and FIG. 11B is a schematic diagram showing a dark template. Hereinafter, the process of creating a bright template will be described with reference to FIGS. 10 and 11A.
図 1 0に示すように、 ある特定の行の明テンプレートライン T m a xが有する明るさ度合いは、 列ごとに 0〜 2 5 5の範囲内で数値化す ることができる。 そして、 これらの明るさ度合いを示す各数値を、 図 1 1 Aに示す 6 4行 X 6 4列の区画からなる表の対応する行にプロ ッ トする。 例えば、 n行の明テンプレートライン T m a Xの m列が有 する明るさ度合いを示す数値は、 表の 11行 m列に位置する区画にプロ ッ トされる。 ここで、 図 1 1 Aでは、 0〜 2 5 5の明るさ度合いを 1 6進法で表している。  As shown in FIG. 10, the brightness level of the bright template line T max of a specific row can be quantified within the range of 0 to 255 for each column. Then, each numerical value indicating the degree of brightness is plotted on the corresponding row of the table composed of 64 rows × 64 columns shown in FIG. 11A. For example, a numerical value indicating the degree of brightness of the m columns of the n rows of bright template lines T max is plotted in a section located at 11 rows and m columns of the table. Here, in FIG. 11A, the degree of brightness of 0 to 255 is represented by a hexadecimal notation.
1行から 6 4行までの明テンプレー トライン T m a xの明るさ度 合いが総て表にプロッ トされると、 最終的に、 図 1 1 Aに示すような 1枚の明テンプレートが作成される。 図 1 1 Bに示す暗テンプレート も、 明テンプレートと同様の工程により暗テンプレートライン T m i nに基づいて作成される。 このよ うにして得られた明テンプレート及 ぴ暗テンプレートによって、 基準画像を構成する各画素の最大の明る さと最小の明るさの範囲が決定される。 すなわち、 図 1 1 A及び図 1 1 Bに示す例では、 n行 m列に位置する画素についての最小の明るさ と最大の明るさの範囲は 0 2から 0 8までの範囲となる。 なお、 図 1 2 Aは図 1 1 Aに示す'明テンプレートの各数値に基づいて画像化し た明テンプレート画像を示し、 図 1 2 Bは図 1 1 Bに示す暗テンプレ 一トの各数値に基づいて画像化した暗テンプレート画像を示す。 When all the brightness levels of the light template lines T max from the 1st line to the 64th line are plotted in the table, one bright template is finally created as shown in Fig. 11A. . The dark template shown in FIG. 11B is also created based on the dark template line T min by the same process as the light template. The range of the maximum brightness and the minimum brightness of each pixel constituting the reference image is determined by the light template and the dark template obtained in this way. That is, in the example shown in FIG. 11A and FIG. 11B, the range of the minimum brightness and the maximum brightness for the pixels located in n rows and m columns is a range from 02 to 08. Figure 12A is an image based on the numerical values of the light template shown in Figure 11A. FIG. 12B shows a dark template image formed based on each numerical value of the dark template shown in FIG. 11B.
上述した説明においては、 二次元的 (平面的) な 2枚の明テンプレ ート及ぴ喑テンプレートを作成するに際して、 行毎に各画素が有する 明るさを数値化する例を説明したが、 行毎にではなく各画素毎に各画 素の明るさの度合いを数値化することによっても二次元的な 2枚の 明テンプレー ト及び暗テンプレートを作成することができる。  In the above description, an example has been described in which the brightness of each pixel is quantified for each row when two two-dimensional (planar) light templates and templates are created. It is also possible to create two-dimensional two-dimensional light and dark templates by quantifying the degree of brightness of each pixel instead of every pixel.
次に、 上記工程により得られた 2枚の明テンプレート及び暗テンプ レー トを用いて検査対象となるガラス壜に壜口部におけるビリ又は ねじ山部等における成形不良があるか否かを判定する方法について 説明する。 まず、 検查対象となるガラス壜の画像の特定の行が列方向 (横方向) に走査され、 その行が持つ各画素の明るさが数値化される c 次に、 その行の 1列から 6 4列までの各画素の明るさが、 明テンプレ 一ト及び暗テンプレートによって決定された最大の明るさと最小の 明るさの範囲 (以下、 良品範囲という) 内に存在するか否か判断され る。 この工程は 1行から 6 4行までの総ての行について行われる。 そして、 検査対象となる画像を構成する総ての画素の明るさが良品 範囲内に存在すれば、 ガラス壜には壜ロ部におけるビリまたはねじ山 部等における成形不良が存在しないと判定される。 一方、 明るさが良 品範囲から許容値以上外れた画素が規定数以上存在すれば、 その画像 は不良品のガラス壜の画像と判断され、 そのガラス壜には壜口部にお けるビリまたはねじ山部等における成形不良が存在すると判定され る。 なお、 不良品の判断基準となる良品範囲からの許容値おょぴ画素 の個数の規定値は、 達成すべき検査精度に応じて設定することができ る。 例えば、 ある画像中の隣接する所定個数の画素が良品範囲外の明 るさを有する場合には、 その画像を不良品のガラス壜の画像と判断す るようにしてもよレ、。 Next, using the two bright templates and the dark templates obtained in the above process, it is determined whether or not the glass bottle to be inspected has a molding defect at the bottle mouth or a screw thread or the like. The method is explained. First, the particular row of the image of the glass bottle to be Ken查object is scanned in the column direction (lateral direction), from one row of c Next, the row brightness of each pixel is quantified that line has 6 It is determined whether the brightness of each pixel up to 4 columns is within the range of the maximum brightness and the minimum brightness determined by the light template and the dark template (hereinafter referred to as non-defective range). . This process is performed for all rows from 1 to 64. If the brightness of all the pixels constituting the image to be inspected is within the acceptable range, it is determined that the glass bottle does not have a molding defect in the bottle part, a thread part, or the like. . On the other hand, if there is more than the specified number of pixels whose brightness deviates from the acceptable range by more than the allowable value, the image is judged to be an image of a defective glass bottle, and the glass bottle has a slip in the bottle opening or It is determined that there is a molding failure in the thread portion or the like. Note that the allowable value from the non-defective range and the specified value of the number of pixels, which are the criteria for determining a defective product, can be set according to the inspection accuracy to be achieved. For example, if a predetermined number of adjacent pixels in an image have brightness outside the non-defective range, the image may be determined to be an image of a defective glass bottle.
図 1乃至図 1 2 A, 1 2 Bに示す実施形態においては、 ガラス壜の 壜ロ内部を照明し、 壜ロ部を透過した透過光からビリ又は成形不良を 検出するように構成している。 この構成によれば、 横方向に延びる横 ビリや斜めに延びる斜めビリは完全に検出できる。 また垂直方向に延 ぴる縦ビリについても大部分のものは検出できるが、 縦ビリの亀裂面 が壜の軸心から半径方向に延びる方向と完全に一致している場合に は、 壜ロ部を透過する透過光は亀裂面に平行に進行していくために縦 ビリを検出できない可能性がある。 そのため、 第 2の実施形態におい ては、 スターホイールの円周上の搬送経路の途中に第 2検查ステーシ ヨ ンを設け、 この第 2検査ステーショ ンに反射光で縦ビリ を検出する ガラス壜のロ部検查装置を配置している。 なお、 第 2の実施形態にお いても、 図 1乃至図 1 2 A, 1 2 Bに示す透過光を用いた検査装置を 第 1検查ステーションに設置していることは勿論である。 In the embodiment shown in FIGS. 1 to 12A and 12B, The inside of the bottle is illuminated, and the vignetting or molding defect is detected from the transmitted light that has passed through the bottle. According to this configuration, the lateral vibration extending in the horizontal direction and the oblique vibration extending obliquely can be completely detected. In addition, most of the vertical runout extending in the vertical direction can be detected.However, if the crack surface of the vertical runout completely matches the direction extending in the radial direction from the axis of the bottle, the bottle must be removed. Since transmitted light travels in parallel to the crack plane, there is a possibility that longitudinal vibration cannot be detected. For this reason, in the second embodiment, a second inspection station is provided in the middle of the transport path on the circumference of the star wheel, and the second inspection station detects a vertical wobble by reflected light at the second inspection station. (B) The inspection device is located. In the second embodiment, the inspection apparatus using the transmitted light shown in FIGS. 1 to 12A and 12B is of course installed in the first inspection station.
次に、 縦ビリを検出するガラス壜のロ部検査装置を図 1 3乃至図 1 6を参照して説明する。  Next, a description will be given of a glass bottle inspection apparatus for detecting vertical warpage with reference to FIGS. 13 to 16. FIG.
図 1 3は縦ビリを検出する口部検查装置の主要部を示す平面図、 図 1 4は図 1 3の A— A線断面図、 図 1 5は図 1 3の B— B線断面図で ある。 図 1 3乃至図 1 5に示すように、 この口部検查装置は、 ガラス 壜 2の壜ロ部 3を覆うように配置された半球体 1 0 4を備えている。 この半球体 1 0 4の中心0は、 ガラス壜 2の壜ロ部 3 と略一致するよ うになつている。 半球体 1 0 4の側部、 すなわちガラス壜 2の壜口'部 3の側方には、 ガラス壜 2の壜ロ部 3に光を照射する第 1の照明 1 0 7 aが設置されている。 また、 半球体 1 0 4には、 ガラス壜 2の壜ロ 部 3を取り囲むように複数の C C Dカメラ 1 1 0〜 1 1 9が配置さ れている。 これらの C C Dカメラ 1 1 0〜 1 1 9の光軸は、 半球体 1 0 4の中心 O (ガラス壜 2の壜ロ部 3 ) から放射状に伸びる線上にあ る。  Fig. 13 is a plan view showing the main part of the mouth detection device for detecting vertical runout, Fig. 14 is a cross-sectional view taken along line A-A in Fig. 13, and Fig. 15 is a cross-sectional view taken along line B-B in Fig. 13. It is a figure. As shown in FIGS. 13 to 15, this mouth detection device includes a hemisphere 104 arranged so as to cover the bottle portion 3 of the glass bottle 2. The center 0 of the hemisphere 104 substantially coincides with the bottle part 3 of the glass bottle 2. On the side of the hemisphere 104, that is, on the side of the bottle 'part 3 of the glass bottle 2, a first illumination 107a for irradiating light to the bottle part 3 of the glass bottle 2 is installed. I have. A plurality of CCD cameras 110 to 119 are arranged on the hemisphere 104 so as to surround the bottle part 3 of the glass bottle 2. The optical axis of these CCD cameras 110 to 119 is on a line extending radially from the center O of the hemisphere 104 (the bottle part 3 of the glass bottle 2).
本実施形態においては、 合計で 1 0台の C C Dカメラが配置されて おり、 これらのうち 1台のカメラ 1 1 0は、 ガラス壜 2の壜ロ部 3の ねじ山を撮影してガラス壜 2の回転角度を検出する角度検出専用力 メラとなっている。 図 1 5に示すように、 角度検出専用カメラ 1 1 0 は、 その光軸の仰角が 0° となるよ うに配置されており、 ガラス壜 2 の壜ロ部 3のねじ山を水平方向から撮影するよ うになつている。 半球 体 1 0 4の角度検出専用カメラ 1 1 0に対向する側面には第 2の照 明 1 0 7 bが配置されており、 この第 2の照明 1 0 7 bによりガラス 壜 2の壜ロ部 3のねじ山を照明するよ うになつている。 この第 2の照 明 1 0 7 bから発される光は赤外光となっており、 第 1の照明 1 0 7 aから発される光と干渉しないよ うになっている。 また、 角度検出専 用カメラ 1 1 0は、 第 2の照明 1 0 7 bから発された赤外光のみを受 光するよ うになつている。 In the present embodiment, a total of 10 CCD cameras are arranged, and one of these cameras 110 is provided for the bottle section 3 of the glass bottle 2. It is a camera dedicated to angle detection that detects the screw thread and detects the rotation angle of the glass bottle 2. As shown in Fig. 15, the dedicated angle detection camera 110 is positioned so that the elevation angle of the optical axis is 0 °, and photographs the thread of the bottle part 3 of the glass bottle 2 from the horizontal direction. To do so. On the side of the hemisphere 104 facing the camera 110 dedicated to angle detection, a second light 107 b is arranged, and the second light 107 b causes the bottle 2 It illuminates the threads of part 3. The light emitted from the second illumination 107b is infrared light, and does not interfere with the light emitted from the first illumination 107a. Further, the camera 110 dedicated to angle detection receives only infrared light emitted from the second illumination 107 b.
角度検出専用カメラ 1 1 0以外のカメラ 1 1 1〜 1 1 9は、 壜ロ部 3を様々な角度から撮影して壜ロ部 3のビリ を検査する検査用 C C Dカメラとなっている。 本実施形態においては、 各カメ ラの光軸の水 平面への投射と角度検出専用カメラ 1 1 0の光軸とのなす角が、 9 0° (第 1検查用 C CDカメラ 1 1 1 ) 、 1 3 0° (第 2検査用 C C Dカメ ラ 1 1 2) 、 1 5 0° (第 3検查用 C C Dカメラ 1 1 3 ) 、 1 8 0° (第 4検査用 C C Dカメラ 1 1 4 ) 、 2 2 0 ° (第 5検査用 C C Dカメ ラ 1 1 5、 第 6検查用 C C Dカメラ 1 1 6 ) 、 2 6 0° (第 7検査用 C C Dカメラ 1 1 7 ) 、 3 0 5 ° (第 8検査用 C C Dカメ ラ 1 1 8 ) 、 3 1 7° (第 9検査用 C CDカメラ 1 1 9 ) となるよ うな 位置に検査用 C C Dカメ ラ 1 1 1〜 1 1 9がそれぞれ配置されてい る。  The cameras 111 to 119 other than the angle detection camera 110 are inspection CCD cameras for photographing the bottle 3 from various angles and inspecting the bottle 3 for stiffness. In the present embodiment, the angle between the projection of the optical axis of each camera on the horizontal plane and the optical axis of the camera 110 dedicated to angle detection is 90 ° (the first detection CCD camera 111). ), 130 ° (2nd inspection CCD camera 1 1 2), 150 ° (3rd inspection CCD camera 1 1 3), 180 ° (4th inspection CCD camera 1 1 4) ), 220 ° (5th inspection CCD camera 115, 6th inspection CCD camera 1 16), 260 ° (7th inspection CCD camera 1 17), 300 ° (Eighth inspection CCD camera 118), 311 ° (Ninth inspection CCD camera 111) CCD inspection cameras 111 to 119 are arranged respectively. It has been done.
また、 第 1検査用 C C Dカメラ 1 1 1の光軸の仰角は 4 0 ° 、 第 2 検査用 C C Dカメラ 1 1 2は 3 5° 、 第 3検查用 C C Dカメラ 1 1 3 は 0 ° 、 第 4検査用 C CDカメ ラ 1 1 4は 5 0° 、 第 5検査用 C C D カメラ 1 1 5は 4 0° 、 第 6検査用 C C Dカメラ 1 1 6は 1 0 ° 、 第 7検查用 C C Dカメラ 1 1 7は 3 5° 、 第 8検査用 C C Dカメ ラ 1 1 8は 3 5 ° 、 第 9検查用 C C Dカメラ 1 1 9は 0° となっている。 The elevation angle of the optical axis of the first inspection CCD camera 111 is 40 °, the second inspection CCD camera 112 is 35 °, the third inspection CCD camera 113 is 0 °, 4 Inspection CCD camera 1 14 is 50 °, 5th inspection CCD camera 1 15 is 40 °, 6th inspection CCD camera 1 16 is 10 °, 7th inspection CCD camera 1 17 is 35 °, 8th inspection CCD camera 1 1 8 is 35 °, and the ninth inspection CCD camera 119 is 0 °.
ここで、 図 1 6に示すように、 第 1の照明 1 0 7 aからの光 L cは、 ガラス壜 2の壜ロ部 3の外周面から壜ロ部 3に入射する。 壜ロ部 3の 内部にビリ (縦ビリ) Cがあった場合、 この光 L cは壜ロ部 3の内部 のビリ Cの亀裂面で反射し、 この反射光 LDは壜ロ部 3の内部を透過 して上述した検查用 C C Dカメラ 1 1 1〜 1 1 9により撮影される。 ビリ Cの亀裂面で反射した光 LDは、 他の部分を透過した光より も明 るく、 そのため、 C C Dカメラ 1 1 1〜 1 1 9で撮影した画像中では. ビリ Cに相当する部分は他の部分より明るい領域となる。 口部検查装 置に設けられた画像処理装置は、 上述した C C Dカメラ 1 1 1〜 1 1 9により得られた画像からこの明るい領域を検出し、 これをビリであ ると判定する。 一方、 壜ロ部 3の内部にビリ Cがない場合には、 第 1 の照明 1 0 7 aからの光 L cは壜ロ部 3の外周面から壜ロ部 3に入射 してそのまま壜ロ部 3を透過するか、 または壜ロ部 3の外周面で反射 する。 この場合、 ねじ山部等において成形不良があると、 この成形不 良部分からの光は、 対応する C C Dカメラには入射しない方向に散乱 することになり、 正常に成形されたねじ山部の画像と比べてうす暗く ^ ぼんやり とした画像となるため、 この成形不良の欠陥を検出できる。 前記画像処理装置の構成は、 上述の第 1の実施形態における口部検查 装置の画像処理装置と同様であるので、 ここでは説明を省略する。 次に、 前述のように構成されたガラス壜のロ部検査装置の作用を図 1 3乃至図 1 6を参照して説明する。 Here, as shown in FIG. 1 6, the light L c from the first illumination 1 0 7 a, and enters from the outer circumferential surface of the Binro portion 3 of the glass bottle 2 to Binro unit 3. Inside last place of Binro portion 3 (vertical Billiton) If a C is, of the light L c is kink C inside the Binro portion 3 reflected by the crack plane, the reflected light L D is the Binro 3 The image is transmitted through the inside and photographed by the above-described detection CCD cameras 11 1 to 11 19. The light L D reflected from the crack surface of the billiary C is brighter than the light transmitted through other parts, and therefore, in the image taken by the CCD camera 11 1 to 1 19, the part corresponding to the billiary C Is a lighter area than other parts. The image processing device provided in the mouth detection device detects this bright region from the images obtained by the above-described CCD cameras 11 1 to 11 9 and determines that the region is vibrant. On the other hand, when there is no kink C inside the Binro unit 3, the light L c from the first illumination 1 0 7 a it enters the Binro portion 3 from the outer peripheral surface of Binro 3 Binro Either passes through part 3 or reflects on the outer surface of bottle part 3. In this case, if there is a molding defect in the thread part, etc., the light from this defective part will be scattered in a direction not incident on the corresponding CCD camera, and the image of the thread part formed normally Since the image is slightly darker and more blurry than this, it is possible to detect this defective molding defect. The configuration of the image processing device is the same as the image processing device of the mouth inspection device in the first embodiment described above, and thus the description is omitted here. Next, the operation of the glass bottle inspection apparatus configured as described above will be described with reference to FIGS.
第 2の照明 1 0 7 bからの赤外光は、 回転台 1に載置されたガラス 壜 2の壜ロ部 3の側方から壜ロ部 3に入射し、 壜ロ部 3を透過する。 壜ロ部 3を透過した赤外光は、 第 2の照明 1 0 7 bに対向して設けら れた角度検出専用カメラ 1 1 0により撮影される。 上述の第 1の実施 形態と同様に、 この角度検出専用カメラ 1 1 0が壜ロ部 3のねじ山を 撮影することにより、 撮影時の基準位置に対する撮影時のガラス壜の W 200 Infrared light from the second illumination 107 b enters the bottle 3 from the side of the bottle 3 of the glass bottle 2 placed on the turntable 1 and passes through the bottle 3 . The infrared light transmitted through the bottle part 3 is photographed by the angle detection camera 110 provided opposite to the second illumination 107 b. As in the first embodiment described above, the camera 110 dedicated to angle detection takes an image of the thread of the bottle part 3 so that the glass bottle at the time of photography with respect to the reference position at the time of photography is taken. W 200
23 回転角度を検出することができる。 23 The rotation angle can be detected.
一方、 第 1 の照明 1 0 7 aからの拡散光は、 回転台 1に'載置された ガラス壜 2の壜ロ部 3に入射する。 検查用 C CDカメラ 1 1 1〜 1 1 9は、 ガラス壜 2の壜ロ部 3から反射した光を撮影する。 この場合、 壜ロ部 3の内部にピリがあると、 壜ロ部 3の外周面から壜ロ内部に入 射した光はビリの亀裂面で反射した後に、 この反射光は壜ロ部 3を透 過して C C Dカメラ 1 1 1〜 1 1 9により撮影される。  On the other hand, the diffused light from the first illumination 107 a enters the bottle part 3 of the glass bottle 2 placed on the turntable 1. The inspection CCD cameras 1 1 1 to 1 1 9 capture the light reflected from the bottle 3 of the glass bottle 2. In this case, if there is a pill inside the bottle part 3, the light incident on the inside of the bottle part from the outer peripheral surface of the bottle part 3 is reflected by the cracked surface of the bottle, and this reflected light passes through the bottle part 3. The image is transmitted through the CCD camera 111 to 119.
前記角度検出専用カメラ 1 1 0を基準とすれば、 この角度検出専用 カメラ 1 1 0に対する各検查用 C CDカメラ 1 1 1〜 1 1 9の相対 位置は予め定まっているため、 角度検出専用カメ ラ 1 1 0によ り検出 された回転角度は、 基準位置を相対的にずらして考えることで、 各検 查用 C C Dカメラ 1 1 1〜 1 1 9が壜ロ部 3を撮影したときの回転 角度と しても用いることができる。 このため、 本実施形態では、 各検 查用 C C Dカメラ 1 1〜 1 1 9によ り撮影された各画像には、 角度検 出専用カメラ 1 1 0によ り検出された回転角度が書き込まれている。 そして、 第 1の実施形態と同様に、 基準画像 (テンプレー ト) と検査 対象のガラス壜から得られた画像とを比較して壜ロ部にビリがある か否かを判定する。  Based on the camera 110 dedicated to angle detection, since the relative positions of the CCD cameras 11 1 to 11 for detection with respect to the camera 110 dedicated to angle detection are predetermined, the camera dedicated to angle detection is used. The rotation angle detected by the camera 110 can be considered by shifting the reference position relative to each other, so that each of the detection CCD cameras 111 to 119 captures the bottle 3 It can also be used as a rotation angle. For this reason, in this embodiment, the rotation angle detected by the angle detection dedicated camera 110 is written in each image captured by each of the detection CCD cameras 11 to 11. ing. Then, as in the first embodiment, a comparison is made between the reference image (template) and the image obtained from the glass bottle to be inspected to determine whether or not the bottle B has any warpage.
ここで、 図 1 7に示すよ うに、 第 1検査ステーショ ンにおける口部 検査装置の画像処理装置 8の演算ボード 3 0〜 4 0 と、 第 2検查ステ ーショ ンにおける口部検查装置の画像処理装置 1 0 8の演算ボード 1 3 0〜 1 3 9 とを、 例えばイーサネッ ト 1 4 1でホス トコンピュー タ 1 4 2に接続して上述した基準画像を作成してもよい。 すなわち、 各口部検查装置の C C Dカメラ 1 0〜 2 0 , 1 1 0〜 1 1 9によ り撮 影された画像をホス トコンピュータ 1 4 2に送り、 これらの画像に基 づいてホス トコンピュータ 1 4 2によ り基準画像を作成することも できる。  Here, as shown in FIG. 17, the operation boards 30 to 40 of the image processing device 8 of the mouth inspection device at the first inspection station and the mouth detection device of the mouth inspection device at the second inspection station are provided. The above-described reference image may be created by connecting the arithmetic boards 130 to 139 of the image processing apparatus 108 to the host computer 142 by, for example, the Ethernet 141. That is, images taken by the CCD cameras 10 to 20 and 110 to 119 of each mouth inspection device are sent to the host computer 142, and the host computer is operated based on these images. The reference image can also be created by the computer 142.
これまで本発明の一実施形態について説明したが、 本発明は上述の 実施形態に限定されず、 その技術的思想の範囲内において種々異なる 形態にて実施されてよいことは言うまでもない。 So far, one embodiment of the present invention has been described. It is needless to say that the present invention is not limited to the embodiment, and may be implemented in various different forms within the scope of the technical idea.
以上説明したように、 本発明によれば、 ガラス壜の壜口部の上方に 配置された照明から壜ロ内部を照明し、 壜口内に入射した後に壜ロ部 から透過した光を壜ロ部の周囲に配置された仰角の異なる複数の C C Dカメラで撮影して壜ロ部のビリ を検出することができると とも に壜 (特にねじ山部) の成形不良を検出することができる。 したがつ て、 検査対象であるガラス壜の品種が変更される型替え時に、 投光器 である照明と受光器である C C Dカメラとの配置関係を再調整する 必要がなく、 型替え時の調整時間を飛躍的に短縮することができる。  As described above, according to the present invention, the interior of the bottle is illuminated from the illumination disposed above the bottle of the glass bottle, and the light transmitted from the bottle is illuminated after entering the bottle. By photographing with multiple CCD cameras with different elevation angles arranged around the camera, it is possible to detect the undulation of the bottle and to detect the molding failure of the bottle (especially the thread). Therefore, when changing the type of glass bottle to be inspected, the positional relationship between the illumination, which is the projector, and the CCD camera, which is the receiver, does not need to be adjusted, and the adjustment time when changing the type Can be dramatically reduced.
また本発明によれば、 壜ロ部にねじ山部を有したガラス壜であって も、 ねじ山部の上下の領域にあるビリゃ壜の合わせ目部分の周囲にあ るビリ を検査対象とすることで精度よく ピリ を検出することができ る。 産業上の利用の可能性  Further, according to the present invention, even if the bottle is a glass bottle having a thread portion in the bottle portion, the screw around the joint portion of the screw bottle in the upper and lower regions of the thread portion is to be inspected. By doing so, it is possible to accurately detect piri. Industrial potential
本発明は、 ガラス壜の壜口部にあるビリ又はねじ山部等における成形 不良を撮像により検出することができるガラス壜のロ部検査装置に好適 に利用可能である。  INDUSTRIAL APPLICABILITY The present invention can be suitably used for a glass bottle inspection device capable of detecting a molding defect at a bottle portion or a thread portion at a bottle mouth portion of a glass bottle by imaging.

Claims

請求の範囲 The scope of the claims
1 .ガラス壜を照明し壜ロ部からの光を撮影して画像処理により壜ロ部 の欠陥を検出する検査装置において、 1. An inspection device that illuminates a glass bottle, captures light from the bottle, and detects defects in the bottle by image processing.
ガラス壜の壜口部の天面の上方に配置された照明と、  Lighting placed above the top of the bottle of the glass bottle,
ガラス壜の壜口部の周囲に配置された複数の C C Dカメラと、 C C Dカメラにより得られた画像を処理する画像処理装置とを備え、 前記複数の C C Dカメラは照明からの光が壜口内に入射した後に壜 口部から透過した光を撮影することを特徴とするガラス壜のロ部検查  A plurality of CCD cameras arranged around the bottle portion of the glass bottle; and an image processing device for processing an image obtained by the CCD camera, wherein the plurality of CCD cameras allow light from illumination to enter the bottle mouth. B) Inspection of glass bottles characterized by taking light transmitted through the bottle
2 . 前記複数の C C Dカメラの光軸は、 ガラス壜の壜口部から放射状に 伸びる線上にあることを特徴とする請求項 1に記載のガラス壜のロ部 2. The glass bottle part according to claim 1, wherein the optical axes of the plurality of CCD cameras are on a line extending radially from the bottle part of the glass bottle.
3 . 前記複数の C C Dカメラは、 ガラス壜の壜口部を中心とする半球体 に設置されることを特徴とする請求項 1又は 2に記載のガラス壜の口 部検査装置。 3. The mouth inspection apparatus for a glass bottle according to claim 1, wherein the plurality of CCD cameras are installed in a hemisphere centered on a mouth of the glass bottle.
4 . 前記半球体は、上下動可能に構成されていることを特徴とする請求 項 3に記載のガラス壜のロ部検査装置。 4. The glass bottle inspection apparatus according to claim 3, wherein the hemisphere is configured to be vertically movable.
5 .請求項 1乃至 4のいずれか 1項に記載のガラス壜のロ部検査装置と は異なった検査位置に配置される装置であって、 5.A device arranged at a different inspection position from the glass bottle inspection device according to any one of claims 1 to 4,
ガラス壜の壜口部の側方に配置された第 1の照明と、  A first light located on the side of the bottle of the glass bottle;
ガラス壜の壜口部の周囲に配置された複数の C C Dカメラと、 A plurality of CCD cameras arranged around the bottle opening of the glass bottle,
C C Dカメラにより得られた画像を処理する画像処理装置とを備え、 前記複数の C C Dカメラは照明からの光が壜ロ部に入射した後に壜 口部から反射した光又は透過した光を撮影することを特徴とするガラ ス壜の口部検査装置。 An image processing device for processing an image obtained by the CCD camera, An apparatus for inspecting a mouth of a glass bottle, wherein the plurality of CCD cameras photograph light reflected or transmitted from the mouth of the bottle after light from the illumination enters the bottle.
6 . ガラス壜の基準位置に対する回転角度を検出する角度検出手段と、 ガラス壜の壜口部の側方に配置された前記角度検出手段のための第 2の照明とをさらに備えたことを特徴とする請求項 5に記載のガラス 壜のロ部検查装置。 6. An angle detecting means for detecting a rotation angle of the glass bottle with respect to a reference position, and a second illumination for the angle detecting means arranged on a side of a bottle of the glass bottle. 6. The glass bottle inspection device according to claim 5, wherein:
7 .前記第 1の照明と前記第 2の照明は互いに干渉しない光を発するこ とを特徴とする請求項 6に記載のガラス壜のロ部検查装置。 7. The glass bottle inspection apparatus according to claim 6, wherein the first illumination and the second illumination emit light that does not interfere with each other.
PCT/JP2002/010840 2002-10-18 2002-10-18 Glass bottle mouth part inspection device WO2004036199A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002344113A AU2002344113A1 (en) 2002-10-18 2002-10-18 Glass bottle mouth part inspection device
PCT/JP2002/010840 WO2004036199A1 (en) 2002-10-18 2002-10-18 Glass bottle mouth part inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010840 WO2004036199A1 (en) 2002-10-18 2002-10-18 Glass bottle mouth part inspection device

Publications (1)

Publication Number Publication Date
WO2004036199A1 true WO2004036199A1 (en) 2004-04-29

Family

ID=32104840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010840 WO2004036199A1 (en) 2002-10-18 2002-10-18 Glass bottle mouth part inspection device

Country Status (2)

Country Link
AU (1) AU2002344113A1 (en)
WO (1) WO2004036199A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172695A1 (en) * 2011-06-15 2012-12-20 キリンテクノシステム株式会社 Method and device for inspecting glass bottle
CN110431405A (en) * 2017-02-06 2019-11-08 东洋玻璃株式会社 The check device of vial

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277960A (en) * 1987-05-11 1988-11-15 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Inspecting method for defect in threaded neck part
JPH0224543A (en) * 1988-07-13 1990-01-26 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Visual inspection method of bottle
JPH03500092A (en) * 1988-09-16 1991-01-10 オーエンス‐イリノイ・グラス・コンテナー・インコーポレーテツド Inspection of container mouth
JPH04364453A (en) * 1991-06-11 1992-12-16 Toyo Glass Co Ltd Method and apparatus for inspecting defect of bottle and the like
JPH11344451A (en) * 1998-03-31 1999-12-14 Nihon Yamamura Glass Co Ltd Apparatus for inspecting check cracks of mouth part of glass bottle
JP2000019130A (en) * 1998-07-03 2000-01-21 Toyo Glass Co Ltd Defect inspection device for glass container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63277960A (en) * 1987-05-11 1988-11-15 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Inspecting method for defect in threaded neck part
JPH0224543A (en) * 1988-07-13 1990-01-26 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Visual inspection method of bottle
JPH03500092A (en) * 1988-09-16 1991-01-10 オーエンス‐イリノイ・グラス・コンテナー・インコーポレーテツド Inspection of container mouth
JPH04364453A (en) * 1991-06-11 1992-12-16 Toyo Glass Co Ltd Method and apparatus for inspecting defect of bottle and the like
JPH11344451A (en) * 1998-03-31 1999-12-14 Nihon Yamamura Glass Co Ltd Apparatus for inspecting check cracks of mouth part of glass bottle
JP2000019130A (en) * 1998-07-03 2000-01-21 Toyo Glass Co Ltd Defect inspection device for glass container

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172695A1 (en) * 2011-06-15 2012-12-20 キリンテクノシステム株式会社 Method and device for inspecting glass bottle
JPWO2012172695A1 (en) * 2011-06-15 2015-02-23 キリンテクノシステム株式会社 Inspection method and apparatus for glass bottle
US9147241B2 (en) 2011-06-15 2015-09-29 Kirin Techno-System Company, Limited Glass bottle inspection method and apparatus
CN110431405A (en) * 2017-02-06 2019-11-08 东洋玻璃株式会社 The check device of vial

Also Published As

Publication number Publication date
AU2002344113A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
JP4269005B2 (en) Glass bottle inspection equipment
JP4478786B2 (en) Inspection method of glass bottle
JPH04166751A (en) Method and apparatus for inspecting defect in bottle and the like
US20060244959A1 (en) Inspecting apparatus and method for foreign matter
JPH10505680A (en) Container flange inspection system using an annular lens
JP7054450B2 (en) Work inspection method
US5354984A (en) Glass container inspection machine having means for defining the center and remapping the acquired image
EP1988387B1 (en) Machine for inspecting glass containers
JP4747313B2 (en) Inspection method and inspection equipment for thin plate parts
JP2000180382A (en) Visual examination apparatus
JPH05249279A (en) Circumferential surface inspection device for nuclear fuel pellet
JP2002022671A (en) Apparatus and method for inspecting inner wall surface of cylinder
JP2004163425A (en) Visual examination apparatus
WO2004036199A1 (en) Glass bottle mouth part inspection device
JPH06258226A (en) Appearance inspection method for tablet
KR100691433B1 (en) Electronic part vision inspection method
JPH06118026A (en) Method for inspecting vessel inner surface
JPH0481232B2 (en)
JPH04121647A (en) Appearance inspection method and device for metal can edge part
JP4220304B2 (en) Nuclear fuel pellet inspection method and apparatus
JPH06160289A (en) Inner face inspection equipment for circular vessel
JP3682249B2 (en) Glass bottle thread inspection device
JPH0721301A (en) Mold number reading device
JP3130548B2 (en) Image processing device
JP2005214991A (en) Apparatus and method for inspecting thread part of glass bottle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP