WO2004032536A2 - Wireless communication method and system with controlled wtru peer-to-peer communications - Google Patents
Wireless communication method and system with controlled wtru peer-to-peer communications Download PDFInfo
- Publication number
- WO2004032536A2 WO2004032536A2 PCT/US2003/030967 US0330967W WO2004032536A2 WO 2004032536 A2 WO2004032536 A2 WO 2004032536A2 US 0330967 W US0330967 W US 0330967W WO 2004032536 A2 WO2004032536 A2 WO 2004032536A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peer
- communications
- mode
- wtru
- infrastructure
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/023—Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/02—Services making use of location information
- H04W4/029—Location-based management or tracking services
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W64/00—Locating users or terminals or network equipment for network management purposes, e.g. mobility management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/0009—Transmission of position information to remote stations
- G01S5/0018—Transmission from mobile station to base station
- G01S5/0027—Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
Definitions
- This application relates to methods and systems for wireless communication with controlled wireless transmit/receive unit (WTRU) peer-to- peer communications.
- WTRU wireless transmit/receive unit
- such systems comprise communication stations, which transmit and receive wireless communication signals between each other.
- communication stations typically are one of two types: base stations or wireless transmit/receive units (WTRUs), which, include mobile units.
- WTRUs wireless transmit/receive units
- base station includes, but is not limited to, a base station, Node B, site controller, access point or other interfacing device in a wireless environment that provides WTRUs with wireless access to a network with which the base station is associated.
- WTRU includes, but is not limited to, a user equipment, mobile station, fixed or mobile subscriber unit, pager, or any other type of device capable of operating in a wireless environment.
- WTRUs include personal communication devices, such as phones, video phones, and Internet ready phones that have network connections.
- WTRUs include portable personal computing devices, such as PDAs and notebook computers with wireless modems that have similar network capabilities. WTRUs that are portable or can otherwise change location are referred to as mobile units.
- a network of base stations is provided where each base station is capable of conducting concurrent wireless communications with appropriately configured WTRUs.
- Some WTRUs are configured to conduct wireless communications directly between each other, i.e., without being relayed through a network via a base station. This is commonly called peer- to-peer wireless communications.
- WTRUs can be configured for use in multiple networks with both network and peer-to-peer communications capabilities.
- wireless local area network One type of wireless system, called a wireless local area network
- WLAN wireless local area network
- WTRUs equipped with WLAN modems can be configured to conduct wireless communications with WTRUs equipped with WLAN modems that are also able to conduct peer-to-peer communications with similarly equipped WTRUs.
- WLAN modems are being integrated into many traditional communicating and computing devices by manufacturers. For example, cellular phones, personal digital assistants, and laptop computers are being built with one or more WLAN modems. Accordingly, there is an increasing need to facilitate communications among such WTRUs with WLAN modems. For instance, it would be desirable if a first user of a PDA equipped with a WLAN modem could share data, such as a phone book, with a second user having a cellular phone equipped with a WLAN modem locally, without going through a telecommunications network.
- FIG. 1A illustrates an infrastructure mode, where WTRUs conduct wireless communications via a base station 54 that serves as an access point to network infrastructure 16.
- the base station 54 is shown as conducting communications with WTRU 18, WTRU 20, WTRU 22, WTRU 24, and WTRU 26.
- the communications are coordinated and synchronized through the base station 54.
- Such a configuration is also called a basic service set (BSS) within WLAN contexts.
- BSS basic service set
- the ad hoc mode In contrast to the infrastructure mode, the ad hoc mode does not use network infrastructure.
- the ad hoc mode operates with peer-to-peer communications and is also called "independent BSS".
- two or more WTRUs establish a communication among themselves without the need of a coordinating network element, i.e., base station.
- Ad hoc mode operation is illustrated in Figure IB. No access points to the network infrastructure are required.
- a base station can be configured with the ad hoc protocols to act as the other WTRUs in peer-to-peer communications. In such case, a base station may act as a bridge or a router to another network or to the Internet.
- FIG. 1B illustrates base station 54 in communication with WTRU 18 and WTRU 20 in an ad hoc network. In this scenario, the base station 54 does not control the flow of data.
- Communications are normally limited to the other stations in an ad hoc network, but one WTRU may communicate indirectly with another WTRU via a third WTRU. For example, as shown in Figure IB, where both WTRU 22 and WTRU 24 are communicating in ad hoc mode with WTRU 26, communications may occur between WTRU 22 and WTRU 24. Additionally, when a WTRU is in ad hoc mode, it typically ignores infrastructure mode base station transmissions. It is also necessary for one WTRU to initiate ad hoc mode and other WTRUs to join in. The other stations will assimilate the operating parameter information as they join the ad hoc network.
- the station that starts an ad hoc network selects the ad hoc network's operating parameters, such as the service set identifier (SSID), channel and beacon timing, and then transmits this information in, for example, beacon frames.
- SSID service set identifier
- stations join the ad hoc network they assimilate the operating parameters.
- parameters such as the SSID are normally specified by a network controller connected to network base stations.
- the SSID in an IEEE 802 based system can be a 32-character unique identifier attached to a header of packets sent over a WLAN.
- the SSID then acts as a password when a WTRU attempts to connect to a BSS or an independent BSS.
- the SSID differentiates one WLAN from another, so all base stations and all devices attempting to connect to a specific WLAN normally use the same SSID. A device will not normally be permitted to join a BSS unless it can provide the unique SSID.
- Another drawback of the open ad- hoc networking is that it can affect the business model of a WLAN operator.
- the inventors have recognized that if peer-to-peer ad hoc mode communications are allowed without any overall control or monitoring, a WLAN operator loses revenue by not being able to charge for the WLAN infrastructure that is available and must be maintained even when it is not being used for infrastructure mode communications. It is therefore desirable to have a hybrid operational mode where peer-to-peer communications are controlled and/or monitored.
- the inventors have recognized that other advantages can be gained through implementation of a hybrid ad hoc/infrastructure mode. For example, a mobile WTRU may travel into areas of poor signal quality where the communications with the network may become sporadic or nonexistent. In such cases, it would also be desirable if the WTRU can use a hybrid mode to relay communication through another WTRU which is in direct contact with a network base station.
- a WTRU in accordance with the invention is used for infrastructure communication in a wireless network via network base stations and for peer-to-peer communications with other such WTRUs.
- the WTRU has transceiver components that are configured for selective operation in an infrastructure communication mode for infrastructure communication with a network base station and in a peer-to-peer communications mode for peer to peer communications with other WTRUs.
- the transceiver components may include a wireless local area network (WLAN) modem for the peer-to-peer communications with other WTRUs.
- WLAN wireless local area network
- the WTRU also has a transceiver controller configured to selectively control peer-to-peer mode communications with other WTRUs based on communication signals received in infrastructure communications with a network base station.
- the transceiver controller is configured to control the transceiver components to switch between infrastructure communication mode and peer-to-peer communication mode based on Quality of Service criteria.
- the transceiver controller is configured with selected default control limits for peer-to-peer mode communications that can be overridden based on communication signals received in infrastructure communications with a network base station.
- the transceiver controller selected default control limits for peer-to-peer mode communications may include a maximum duration of a peer-to-peer communication and a restriction as to types of data traffic permitted in peer-to-peer communications.
- the transceiver controller can be configured to control each peer-to-peer mode communications based on settings received in infrastructure communications with a network base station.
- the WTRU is a mobile unit.
- the transceiver controller can then be configured to control the transceiver components to switch between infrastructure communication mode and peer-to-peer communication mode based on an estimate of the geographic location of the mobile unit.
- the WTRU preferably includes a Global Positioning System (GPS) for generating the estimate of the geographic location of the mobile unit.
- GPS Global Positioning System
- the WTRU transceiver components are also configured to selectively function in a relay mode to relay a communication between a network base station via infrastructure communication mode and another WTRU via peer-to-peer communication mode.
- the transceiver controller is preferably configured to control the transceiver components to function in the relay mode based on Quality of Service criteria.
- Peer-to-peer mode communications with other WTRUs are selectively controlled based on communication signals received in infrastructure communications with a network base station.
- selected default control limits are used for peer- to-peer mode communications and the defaults are overridden based on communication signals received in infrastructure communications with a network base station.
- a maximum duration of a peer-to-peer communication and a restriction as to types of data traffic permitted in peer-to-peer communications can be included as the default control limits used for peer-to- peer mode communications.
- a WLAN modem can be used for the peer to peer communications with other WTRUs.
- the WTRU transceiver components are switched between infrastructure communication mode and peer-to-peer communication mode based on Quality of Service criteria. This may include the transceiver components being switched between infrastructure communication mode and peer to peer communication mode based on an estimate of the geographic location of the WTRU where the WTRU is a mobile unit.
- the WTRU preferably includes a Global Positioning System (GPS) that is used for generating the estimate of the geographic location of the mobile unit.
- GPS Global Positioning System
- Another method includes the WTRU transceiver components being configured to selectively function in a relay mode to relay a communication between a network base station via infrastructure communication mode and another WTRU via peer-to-peer communication mode.
- the WTRU transceiver components are preferably controlled to function in the relay mode to based on Quality of Service criteria.
- the invention also provides a wireless network for providing controlled wireless communications with multi-mode wireless WTRUs as referenced above.
- the wireless network has at least one base station having a transceiver configured for selective operation in an infrastructure communication mode with multi-mode WTRUs.
- the wireless network also has a controller configured to selectively control transmission of control signals via infrastructure communications with a WTRU to control peer-to-peer mode communications of that WTRU with other WTRUs.
- the controller is configured to selectively control transmission of control signals via infrastructure communications with a WTRU to control that WTRU to switch between infrastructure communication mode and peer- to-peer communication mode based on Quality of Service criteria.
- the controller is preferably configured provide override control signals to override selected default WTRU control limits for peer-to-peer mode communications.
- the network controller is configured to selectively control transmission of control signals via infrastructure communications with a WTRU to control WLAN peer-to-peer mode communications of that WTRU with other WTRUs.
- the controller is preferably configured to selectively control transmission of control signals via infrastructure communications with a mobile unit to control that mobile unit to switch between infrastructure communication mode and peer- to-peer communication mode based on an estimate of the geographic location of the mobile unit and/or an estimate of congestion.
- the network may include a processing component for generating the estimate of the geographic location of the mobile unit based on reception of transmissions form the mobile unit.
- the WTRUs may send test packets to generate an estimate of congestion.
- a method of wireless communication for a wireless network is provided. Controlled wireless communications with multi-mode WTRUs as referenced above is conducted. The method includes transmitting from a network base station in an infrastructure communication mode control signals to a WTRU to control peer-to-peer mode communications of that WTRU with other WTRUs. Preferably, the control signals are transmitted to the WTRU to switch between infrastructure communication mode and peer-to-peer communication mode based on Quality of Service criteria. [0036] Selected default control limits can be used for peer-to-peer mode communications. In such case the defaults are preferably overridden based the control signals transmitted by the network base station.
- a maximum duration of a peer-to-peer communication and a restriction as to types of: data traffic permitted in peer-to-peer communications are included as the default control limits used for peer to peer mode communications.
- Figure IB is a diagram of a communications system operating in an ad hoc network mode of operation.
- Figure 2 is an illustration of a communications system operating in a hybrid mode showing two WTRUs and a base station.
- a first user 31 is illustrated operating a first WTRU 33 in the form of a Pocket PC-type phone device with an 802.11(b) WLAN card 35 installed.
- the WTRU 33 may be connected to a wireless telecommunications network 27 via a base station 25.
- the WTRU 33 transmits and receives radio frequency (RF) signals via antenna 34 to and from the base station 25.
- the Pocket PC type phone device 33 contains a database with a phone book 38.
- a second user 35 is illustrated operating a second WTRU 37 in the form of a cell phone with a built in Palm-type device including built-in 802.11(b) WLAN 36.
- the WTRU 37 can also connect with the wireless telecommunications network 27 via signals transmitted and received by antenna 39.
- the second user 35 may wish talk to the first user 31 or to access or copy the phone book 38 located in the first WTRU 33. Since both WTRUs 33, 37 have a WLAN modem and also a phone network interface, the users 31, 35 are able to communicate either by means of peer-to-peer communication 40 using an 802.11(b) wireless network or by using the telecommunications network 27. Accordingly, there is a decision to be made as to which type of communication mode is to be used.
- a QoS threshold is preferably set so that a desired quality of radio signal is available for communicating at the lowest cost.
- the desired quality of radio signal which serves as a trigger to switch the communication may be different for different local networks and ad hoc networking because of relative cost factors.
- the thresholds used by the WTRU's transceiver controller can be adjusted, for example, based on available battery life and the current use of the WTRU for its own communications.
- a further variable criteria that can be used to formulate QoS decision factor thresholds to switch between the use of peer-to-peer techniques or infrastructure network communications is the volume of communication traffic in a particular geographic area serviced by one or more network base stations. In particular it is desirable to limit the amount of peer-to-peer signaling to avoid interference in a WLAN.
- the volume of communication traffic in a particular geographic area can be determined by WTRUs sending a small packet to a network base station to test congestion conditions, i.e., interference level.
- the decision to switch from or to peer-to-peer communications within the geographic area can then be based at least in part on the resultant amount of interference caused by such test packets.
- Each WTRU can then control the switching to and from peer-to-peer communications, preferably based on thresholds set by the network serving the area.
- the network can accordingly formulate thresholds for switching the type of service using current traffic load as one criteria. As traffic load changes, the threshold values determined by the network may change accordingly.
- FIG. 3 illustrates an example of a network environment 400 where a hybrid mode can be used to expand the service area of a network base station 406 of a network 405.
- the network base station 406 may employ a beam forming antenna 407 to only service selected geographic areas 401, 403 such that those areas are "hot spots" for network infrastructure communications via the base station 406.
- areas 401 and 403 and other unobstructed areas may be the only areas where there is an acceptable quality of radio signals for certain services due to the intervening obstacles.
- a WTRU 402 that is in an obstructed area, such as obstructed by wall 408, may not be able to conduct infrastructure mode communications with network 405 while another WTRU 404 that is about the same distance from the base station antenna 407 can use infrastructure mode communications.
- an obstacle, such as the wall 408 situated between the WTRU 410 and other WTRUs 402, 404 is an impediment to ad hoc mode communications.
- WTRU 402 would not be able to communicate with WTRU 410 in either mode when located as illustrated in Figure 3.
- wireless communications can be conducted using WTRU 404 as a relay.
- WTRU 402 Since WTRU 402 is not in a geographic location for direct infrastructure mode communications with network 405, for WTRU 402 to communicate with WTRU 410, WTRU 402 can first attempt to establish an ad hoc mode communication directly with WTRU 410 by sending a beacon signal that indicates a request to establish an ad hoc communication with an identification code associated with WTRU 410. This attempt would fail in the illustrated scenario of Figure 3 due to the obstructing wall 408. Such a communication failure can be indicated after a predetermined connection time expires without a connection being established. WTRU 402 then switches to a hybrid ad hoc mode. WTRU 402 can be configured to make such a switch either automatically or with user intervention, depending user preference.
- WTRU 402 initiates a hybrid mode ad hoc network with WTRU 404 which relays an identification of WTRU 410 to the network 405 via an infrastructure communication with base station 406.
- the network 405 then seeks to communicate with the identified WTRU in a conventional manner through one of its base stations or an associated network as is well known in the art.
- network 405 finds WTRU 410 at that location and an infrastructure mode communication is established with WTRU 410.
- the substance of the communication between WTRUs 402 and 410 is conveyed as both an ad hoc communication and infrastructure communication with WTRU 404 as a relay that, if necessary, appropriately converts the substantive communication data between the protocols and formats of the two communication modes.
- all WTRUs configured for hybrid mode communications include appropriate relay conversion processing circuitry which operates transparent to the user of the WTRU.
- Overriding restriction defaults is one type of network control of ad hoc mode communications.
- a comprehensive network control can be implemented that requires network permission to enable ad hoc mode in the WTRUs.
- network controls are active when at least one of the WTRUs in an ad hoc network is also in communication with the network.
- a WTRU is designated as the "master" WTRU of an ad hoc network, which may shift the "master" designation from an initiating WTRU that is not in communication with the controlling network to another of the ad hoc communicating WTRUs.
- the "master" WTRU then can easily report ad hoc network communication statistics, such as length of connection, identity of connected WTRUs, type of connection, etc. to the controlling network.
- Such hybrid and controlled ad hoc modes are particularly suited for using WLAN modem equipped WTRUs employing 802.11 technology for peer-to-peer communications, but may be implemented with WTRUs employing other types of peer-to-peer communication systems.
- the controlling network may also be configured as a WLAN using infrastructure mode access point base stations built according to the IEEE 802.11b standard.
- the present invention can be implemented for any wireless communications network system, such as a time division duplex (TDD) or frequency division duplex (FDD) wireless telephone system where the WTRUs which communicate with network base stations are also capable of peer-to- peer communications.
- TDD time division duplex
- FDD frequency division duplex
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
- Small-Scale Networks (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003277154A AU2003277154B2 (en) | 2002-10-01 | 2003-09-30 | Wireless communication method and system with controlled WTRU peer-to-peer communications |
CA002500656A CA2500656C (en) | 2002-10-01 | 2003-09-30 | Wireless communication method and system with controlled wtru peer-to-peer communications |
JP2004541946A JP4473129B2 (en) | 2002-10-01 | 2003-09-30 | Wireless communication method and system with controlled WTRU peer-to-peer communication |
CN038235420A CN1689345B (en) | 2002-10-01 | 2003-09-30 | Wireless communication method and system with controlled WTRU peer-to-peer communications |
MXPA05003536A MXPA05003536A (en) | 2002-10-01 | 2003-09-30 | Wireless communication method and system with controlled wtru peer-to-peer communications. |
BR0314506-9A BR0314506A (en) | 2002-10-01 | 2003-09-30 | Wireless communication method and system with controlled peer to peer wtru communications |
EP03799362A EP1550320A4 (en) | 2002-10-01 | 2003-09-30 | Wireless communication method and system with controlled wtru peer-to-peer communications |
IL167807A IL167807A (en) | 2002-10-01 | 2005-03-31 | Wireless communication method and system with controlled wtru peer-to-peer communication |
NO20052032A NO20052032L (en) | 2002-10-01 | 2005-04-26 | Tradlos communication method with controlled WTRU like-for-like communication |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41528102P | 2002-10-01 | 2002-10-01 | |
US60/415,281 | 2002-10-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004032536A2 true WO2004032536A2 (en) | 2004-04-15 |
WO2004032536A3 WO2004032536A3 (en) | 2004-10-14 |
Family
ID=31978804
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/030968 WO2004032540A1 (en) | 2002-10-01 | 2003-09-30 | Location based method and system for wireless mobile unit communication |
PCT/US2003/030967 WO2004032536A2 (en) | 2002-10-01 | 2003-09-30 | Wireless communication method and system with controlled wtru peer-to-peer communications |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/030968 WO2004032540A1 (en) | 2002-10-01 | 2003-09-30 | Location based method and system for wireless mobile unit communication |
Country Status (19)
Country | Link |
---|---|
US (3) | US7231220B2 (en) |
EP (2) | EP1554897A4 (en) |
JP (2) | JP4473129B2 (en) |
KR (13) | KR20050101570A (en) |
CN (4) | CN100356801C (en) |
AR (2) | AR041457A1 (en) |
AU (2) | AU2003277155A1 (en) |
BR (2) | BR0314506A (en) |
CA (3) | CA2669483A1 (en) |
DE (1) | DE20315165U1 (en) |
GE (1) | GEP20084433B (en) |
HK (3) | HK1056094A2 (en) |
IL (1) | IL167807A (en) |
MX (2) | MXPA05003536A (en) |
MY (2) | MY134541A (en) |
NO (2) | NO20051933L (en) |
SG (1) | SG165166A1 (en) |
TW (8) | TWI322600B (en) |
WO (2) | WO2004032540A1 (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005109762A1 (en) | 2004-05-07 | 2005-11-17 | Sony Computer Entertainment Inc. | Application execution method, file data download method, file data upload method, communication method, network identifier setting method, and radio communication terminal device |
WO2005109763A1 (en) | 2004-05-07 | 2005-11-17 | Sony Computer Entertainment Inc. | Network identifier establishing method, communicating method, and wireless communication terminal apparatus |
WO2006016331A1 (en) * | 2004-08-10 | 2006-02-16 | Koninklijke Philips Electronics N.V. | Method and apparatus for limiting p2p communication interference |
WO2006019618A1 (en) * | 2004-07-14 | 2006-02-23 | Intel Corporation | Systems and methods of distributed self-configuration for extended service set mesh networks |
JP2006060578A (en) * | 2004-08-20 | 2006-03-02 | Fuji Xerox Co Ltd | Radio communication system, communication equipment, communication control method and communication control program |
JP2006319795A (en) * | 2005-05-13 | 2006-11-24 | Kyocera Corp | Communication system and communication equipment |
JP2006333271A (en) * | 2005-05-27 | 2006-12-07 | Toshiba Corp | Radio communication system |
WO2006134562A2 (en) * | 2005-06-17 | 2006-12-21 | Koninklijke Philips Electronics N.V. | Method and apparatus of realizing two-hop relaying communication in wireless communication systems |
EP1773091A2 (en) * | 2005-10-06 | 2007-04-11 | Samsung Electronics Co., Ltd. | Method of configuring channel and allocating resources in a multi-hop relay wireless communication system |
WO2007055993A1 (en) * | 2005-11-03 | 2007-05-18 | Interdigital Technology Corporation | Method and system for performing peer-to-peer communication between stations within a basic service set |
WO2007082257A1 (en) * | 2006-01-11 | 2007-07-19 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting multiple modes |
JP2007531456A (en) * | 2004-03-30 | 2007-11-01 | キノマ インコーポレイテッド | Interface negotiation |
WO2008005922A2 (en) | 2006-06-30 | 2008-01-10 | Qualcomm Incorporated | System and method for high speed local connectivity between local devices |
US7336927B2 (en) | 2004-06-30 | 2008-02-26 | Alcatel | Ad-hoc extensions of a cellular air interface |
WO2008096921A1 (en) | 2007-02-08 | 2008-08-14 | Korea Advanced Institute Of Science And Technology | Cognitive radio based air interface method in wireless communication system |
JP2009500969A (en) * | 2005-07-08 | 2009-01-08 | マイクロソフト コーポレーション | Direct wireless client-to-client communication |
EP2018087A1 (en) * | 2007-06-11 | 2009-01-21 | Nokia Siemens Networks Oy | Operator controlled configuration of end-systems for alternative access and establishment of direct point-to-point voice/data calls/sessions |
JP2009516418A (en) * | 2005-11-11 | 2009-04-16 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for limiting peer-to-peer communication interference |
WO2010126413A1 (en) * | 2009-04-29 | 2010-11-04 | Nanoradio Hellas A.E. | A method for communication between a wlan terminal and a human interference device |
EP2294892A1 (en) * | 2008-06-16 | 2011-03-16 | Free2Move AB | Method and device for communication between multiple wireless units |
EP2312903A1 (en) * | 2009-10-13 | 2011-04-20 | Samsung Electronics Co., Ltd. | Method and apparatus for peer-to-peer connection using wireless local area network (LAN) in mobile communication terminal |
WO2011056746A1 (en) * | 2009-11-09 | 2011-05-12 | Harris Corporation | Remote control of mobile radio system through portable radio system |
EP2391179A1 (en) * | 2010-05-31 | 2011-11-30 | Research In Motion Limited | Management of mobile hotspot connections |
WO2011123516A3 (en) * | 2010-03-31 | 2011-12-29 | Qualcomm Incorporated | Methods and apparatus for determining a communications mode and/or using a determined communications mode |
US8223729B2 (en) | 2006-07-19 | 2012-07-17 | Qualcomm Incorporated | Radio interface selection for a terminal |
GB2491870A (en) * | 2011-06-15 | 2012-12-19 | Renesas Mobile Corp | Peer to Peer Communication Link Monitoring in Unlicensed band or Cluster Network |
US8391254B2 (en) | 2005-10-06 | 2013-03-05 | Samsung Electronics Co., Ltd | Channel configuration and bandwidth allocation in multi-hop cellular communication networks |
US8503934B2 (en) | 2010-07-22 | 2013-08-06 | Harris Corporation | Multi-mode communications system |
EP2632222A1 (en) * | 2012-02-23 | 2013-08-28 | Broadcom Corporation | Flow control for constrained wireless access points |
US8527605B2 (en) | 2005-03-24 | 2013-09-03 | Motorola Solutions, Inc. | Methods for performing client to client communication in a WLAN |
WO2013161671A1 (en) * | 2012-04-25 | 2013-10-31 | 株式会社エヌ・ティ・ティ・ドコモ | Extension system, extension server, and communication method |
US8762543B2 (en) | 2009-12-15 | 2014-06-24 | Intel Corporation | Method and apparatus for autonomous peer discovery and enhancing link reliability for wireless peer direct links |
WO2014198519A1 (en) * | 2013-06-11 | 2014-12-18 | Deutsche Telekom Ag | Method for enhancing machine type communication between a mobile communication network on the one hand, and a plurality of machine type communication devices on the other hand |
WO2014198518A1 (en) * | 2013-06-11 | 2014-12-18 | Deutsche Telekom Ag | Method for enhancing machine type communication between a mobile communication network on the one hand, and a plurality of machine type communication devices on the other hand |
EP2764641A4 (en) * | 2011-10-03 | 2015-03-18 | Intel Corp | Device to device (d2d) communication mechanisms |
JP2015080256A (en) * | 2010-04-20 | 2015-04-23 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | Mobile station and reception method |
WO2015095300A1 (en) * | 2013-12-20 | 2015-06-25 | Google Technology Holdings LLC | Method and device for determining when to switch between multiple communication modes of a transceiver subsystem |
US9084283B2 (en) | 2008-11-19 | 2015-07-14 | Qualcomm Incorporated | Peer-to-peer communication using a wide area network air interface |
EP2983440A1 (en) * | 2014-08-07 | 2016-02-10 | Alcatel Lucent | Device-to-device communication |
EP2562940A4 (en) * | 2010-04-19 | 2017-04-19 | LG Electronics Inc. | Method for cooperative data transmission among terminals, and method for clustering cooperative terminals for same |
EP2641445B1 (en) * | 2010-11-18 | 2020-05-27 | Qualcomm Incorporated(1/3) | Association rules based on channel quality for peer-to-peer and wan communication |
Families Citing this family (302)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2221335C2 (en) * | 2001-11-01 | 2004-01-10 | Общество с ограниченной ответственностью "Алгоритм" | Method for data transmission in wireless local-area network |
WO2003049326A1 (en) * | 2001-12-06 | 2003-06-12 | Fujitsu Limited | Portable terminal having function of detecting approach of person by using proximity wireless communication means, recorded medium used for the same, and server |
AU2003209194A1 (en) | 2002-01-08 | 2003-07-24 | Seven Networks, Inc. | Secure transport for mobile communication network |
US8050360B2 (en) | 2002-06-12 | 2011-11-01 | Intellectual Ventures I Llc | Direct link relay in a wireless network |
US7948951B2 (en) | 2002-06-12 | 2011-05-24 | Xocyst Transfer Ag L.L.C. | Automatic peer discovery |
USRE43127E1 (en) | 2002-06-12 | 2012-01-24 | Intellectual Ventures I Llc | Event-based multichannel direct link |
US8787988B2 (en) | 2003-01-29 | 2014-07-22 | Intellectual Ventures I Llc | Power management for wireless direct link |
US7933293B2 (en) * | 2002-06-12 | 2011-04-26 | Xocyst Transfer Ag L.L.C. | Link margin notification using return frame |
US7231220B2 (en) * | 2002-10-01 | 2007-06-12 | Interdigital Technology Corporation | Location based method and system for wireless mobile unit communication |
US20040082383A1 (en) * | 2002-10-24 | 2004-04-29 | Motorola, Inc | Methodology and wireless device for interactive gaming |
JP2004186846A (en) * | 2002-12-02 | 2004-07-02 | Nec Infrontia Corp | Wireless network operation method and its system |
US7917468B2 (en) | 2005-08-01 | 2011-03-29 | Seven Networks, Inc. | Linking of personal information management data |
US8468126B2 (en) | 2005-08-01 | 2013-06-18 | Seven Networks, Inc. | Publishing data in an information community |
US7853563B2 (en) | 2005-08-01 | 2010-12-14 | Seven Networks, Inc. | Universal data aggregation |
CN1276620C (en) * | 2003-01-10 | 2006-09-20 | 华为技术有限公司 | Method for providing location based service for WLAN user |
GB2397466B (en) * | 2003-01-16 | 2006-08-09 | Hewlett Packard Co | Wireless LAN |
JP4581996B2 (en) * | 2003-02-03 | 2010-11-17 | ソニー株式会社 | Wireless communication system, wireless communication apparatus, wireless communication method, and computer program |
US20040156372A1 (en) * | 2003-02-12 | 2004-08-12 | Timo Hussa | Access point service for mobile users |
US7400621B2 (en) * | 2003-03-11 | 2008-07-15 | Conexant, Inc. | Technique for achieving connectivity between telecommunication stations |
US7333829B2 (en) * | 2003-03-24 | 2008-02-19 | Quorum Systems | Multi-mode wireless bridge system and method using a single-radio transceiver |
JP2004363645A (en) * | 2003-05-30 | 2004-12-24 | Toshiba Corp | Transmission apparatus and method, as well as program |
WO2005011200A1 (en) * | 2003-07-29 | 2005-02-03 | Sony Corporation | Radio communication system, radio communication device, radio communication method, and computer program |
US20050070303A1 (en) * | 2003-09-30 | 2005-03-31 | Lagno Barbara Jean | Level of service in a wireless telecommunications network |
US20050130634A1 (en) * | 2003-10-31 | 2005-06-16 | Globespanvirata, Inc. | Location awareness in wireless networks |
US20090222537A1 (en) * | 2003-12-04 | 2009-09-03 | Colligo Newworks, Inc., A Canadian Corporation | System And Method For Interactive Instant Networking |
US7856091B2 (en) * | 2003-12-18 | 2010-12-21 | Siemens Enterprise Communications, Inc. | Telephone system responsive to call control protocol |
US7912200B2 (en) * | 2003-12-18 | 2011-03-22 | Siemens Enterprise Communications, Inc. | Computer-based telephone call signaling |
US7907964B2 (en) * | 2003-12-18 | 2011-03-15 | Siemens Enterprise Communications, Inc. | Networked telephone system |
US7907706B2 (en) * | 2003-12-18 | 2011-03-15 | Siemens Enterprise Communications, Inc. | Telephone network/computer network gateway |
US8116447B2 (en) * | 2003-12-18 | 2012-02-14 | Siemens Enterprise Communications, Inc. | Networkable telephone system |
JP2005190068A (en) * | 2003-12-25 | 2005-07-14 | Fanuc Ltd | Software download system for controller |
KR100605891B1 (en) * | 2003-12-29 | 2006-08-01 | 삼성전자주식회사 | Apparatus and method for warning battery power source consumption |
US20050195830A1 (en) * | 2004-02-18 | 2005-09-08 | Interdigital Technology Corporation | User directed background transfer and data storage |
KR100542259B1 (en) * | 2004-03-17 | 2006-01-11 | 엘지전자 주식회사 | Modem Sharing Method in PDA |
US8670428B2 (en) | 2004-03-18 | 2014-03-11 | Qualcomm Incorporated | Signal acquisition in peer-to-peer communications |
US7747279B2 (en) * | 2004-03-30 | 2010-06-29 | Sony Corporation | Interface negotiation |
GB0410481D0 (en) * | 2004-05-11 | 2004-06-16 | Nokia Corp | Frame transmission interval |
DE102004023298A1 (en) * | 2004-05-11 | 2005-12-08 | Fujitsu Siemens Computers Gmbh | Method for setting up an ad hoc network |
US20050272444A1 (en) * | 2004-06-08 | 2005-12-08 | Heffield Timothy W | Method and system for directing users to coverage |
JP4113160B2 (en) * | 2004-06-24 | 2008-07-09 | 株式会社東芝 | Wireless communication system and wireless communication method |
US8009586B2 (en) | 2004-06-29 | 2011-08-30 | Damaka, Inc. | System and method for data transfer in a peer-to peer hybrid communication network |
US8050272B2 (en) | 2004-06-29 | 2011-11-01 | Damaka, Inc. | System and method for concurrent sessions in a peer-to-peer hybrid communications network |
US7933260B2 (en) | 2004-06-29 | 2011-04-26 | Damaka, Inc. | System and method for routing and communicating in a heterogeneous network environment |
US8437307B2 (en) | 2007-09-03 | 2013-05-07 | Damaka, Inc. | Device and method for maintaining a communication session during a network transition |
US7570636B2 (en) | 2004-06-29 | 2009-08-04 | Damaka, Inc. | System and method for traversing a NAT device for peer-to-peer hybrid communications |
US20060013160A1 (en) * | 2004-07-19 | 2006-01-19 | Haartsen Jacobus C | Peer connectivity in ad-hoc communications systems |
US7941177B2 (en) * | 2004-09-15 | 2011-05-10 | Samsung Electronics Co., Ltd | Wireless terminal apparatus for automatically changing WLAN standard and method thereof |
US20060064391A1 (en) * | 2004-09-20 | 2006-03-23 | Andrew Petrov | System and method for a secure transaction module |
US20060075062A1 (en) * | 2004-09-28 | 2006-04-06 | Bloebaum L S | Initiating Internet Protocol (IP) communications in an IP communication system based on databases of contact information |
US7324820B2 (en) * | 2004-09-28 | 2008-01-29 | Intel Corporation | Wireless communication mapping apparatus, systems, and methods |
US7643833B2 (en) * | 2004-09-29 | 2010-01-05 | Alcatel-Lucent Usa Inc. | Methods and systems for proximity communication |
US7647022B2 (en) * | 2004-09-29 | 2010-01-12 | Alcatel-Lucent Usa Inc. | Methods and systems for proximity communication |
GB0422472D0 (en) * | 2004-10-09 | 2004-11-10 | Koninkl Philips Electronics Nv | A radio communications gateway and radio communications terminal |
US7441271B2 (en) | 2004-10-20 | 2008-10-21 | Seven Networks | Method and apparatus for intercepting events in a communication system |
US20060094485A1 (en) * | 2004-10-28 | 2006-05-04 | Interdigital Technology Corporation | Method and apparatus for preventing communication link degradation due to the detrimental orientation of a mobile station |
US20060094449A1 (en) * | 2004-10-28 | 2006-05-04 | Interdigital Technology Corporation | Method and apparatus for preventing communication link degradation due to the disengagement or movement of a self-positioning transceiver |
JP4592392B2 (en) * | 2004-11-10 | 2010-12-01 | 株式会社エヌ・ティ・ティ・ドコモ | Control device, mobile terminal, and mobile communication method |
US20060104235A1 (en) * | 2004-11-12 | 2006-05-18 | Orjan Fritz | Mixed mode wireless local area network terminal |
US7706781B2 (en) | 2004-11-22 | 2010-04-27 | Seven Networks International Oy | Data security in a mobile e-mail service |
FI117152B (en) | 2004-12-03 | 2006-06-30 | Seven Networks Internat Oy | E-mail service provisioning method for mobile terminal, involves using domain part and further parameters to generate new parameter set in list of setting parameter sets, if provisioning of e-mail service is successful |
KR100582727B1 (en) * | 2004-12-08 | 2006-05-22 | 삼성전자주식회사 | Transmit power control system and method in wireless lan |
JP4559207B2 (en) * | 2004-12-21 | 2010-10-06 | 株式会社エヌ・ティ・ティ・ドコモ | Control device, mobile terminal, and communication control method |
JP4480568B2 (en) * | 2004-12-21 | 2010-06-16 | 株式会社エヌ・ティ・ティ・ドコモ | Control device, mobile terminal, and communication control method |
JP4568598B2 (en) * | 2004-12-21 | 2010-10-27 | 株式会社エヌ・ティ・ティ・ドコモ | Control device and communication control method |
KR100584409B1 (en) * | 2004-12-29 | 2006-05-26 | 삼성전자주식회사 | Relay commonication method for ofdma-based cellular communication system |
CN100477851C (en) * | 2005-01-05 | 2009-04-08 | 国际商业机器公司 | Method and system for carrying out switching between two communication modes of WLAN |
US20060159047A1 (en) * | 2005-01-18 | 2006-07-20 | Interdigital Technology Corporation | Method and system for context transfer across heterogeneous networks |
GB0503040D0 (en) | 2005-02-14 | 2005-03-23 | Nokia Corp | Location services for unlicensed mobile access |
US7752633B1 (en) | 2005-03-14 | 2010-07-06 | Seven Networks, Inc. | Cross-platform event engine |
US7742444B2 (en) | 2005-03-15 | 2010-06-22 | Qualcomm Incorporated | Multiple other sector information combining for power control in a wireless communication system |
ES2379074T3 (en) * | 2005-03-22 | 2012-04-20 | Swisscom Ag | Method and system for establishing a "peer-to-peer" communication channel. |
US7797018B2 (en) | 2005-04-01 | 2010-09-14 | Interdigital Technology Corporation | Method and apparatus for selecting a multi-band access point to associate with a multi-band mobile station |
KR100715144B1 (en) * | 2005-04-06 | 2007-05-10 | (주)파도시스템 | Method comprising a mobile network system consisted of only pda |
US8438633B1 (en) | 2005-04-21 | 2013-05-07 | Seven Networks, Inc. | Flexible real-time inbox access |
US20060240816A1 (en) * | 2005-04-22 | 2006-10-26 | Marvell World Trade Ltd. | Wireless phone system |
US20060240863A1 (en) * | 2005-04-22 | 2006-10-26 | Sehat Sutardja | Wireless phone system |
US20060240864A1 (en) * | 2005-04-22 | 2006-10-26 | Sehat Sutardja | Wireless phone system |
JP4689339B2 (en) * | 2005-04-27 | 2011-05-25 | キヤノン株式会社 | COMMUNICATION DEVICE AND COMMUNICATION PARAMETER SETTING METHOD |
JP4900891B2 (en) | 2005-04-27 | 2012-03-21 | キヤノン株式会社 | Communication apparatus and communication method |
JP4250611B2 (en) * | 2005-04-27 | 2009-04-08 | キヤノン株式会社 | Communication device, communication parameter setting method, and communication method |
US7937069B2 (en) * | 2005-04-29 | 2011-05-03 | Rassam Frederic | System and process for switching between cell phone and landline services |
US8750908B2 (en) | 2005-06-16 | 2014-06-10 | Qualcomm Incorporated | Quick paging channel with reduced probability of missed page |
US9055552B2 (en) | 2005-06-16 | 2015-06-09 | Qualcomm Incorporated | Quick paging channel with reduced probability of missed page |
WO2006136660A1 (en) | 2005-06-21 | 2006-12-28 | Seven Networks International Oy | Maintaining an ip connection in a mobile network |
US8364148B2 (en) | 2005-07-07 | 2013-01-29 | Qualcomm Incorporated | Methods and devices for interworking of wireless wide area networks and wireless local area networks or wireless personal area networks |
US8126477B2 (en) | 2005-07-07 | 2012-02-28 | Qualcomm Incorporated | Methods and devices for interworking of wireless wide area networks and wireless local area networks or wireless personal area networks |
US8311543B2 (en) | 2005-07-07 | 2012-11-13 | Qualcomm Incorporated | Methods and devices for interworking of wireless wide area networks and wireless local area networks or wireless personal area networks |
US7717342B2 (en) | 2005-08-26 | 2010-05-18 | Hand Held Products, Inc. | Data collection device having dynamic access to multiple wireless networks |
US8509761B2 (en) * | 2005-09-15 | 2013-08-13 | At&T Mobility Ii Llc | Location based services quality assessment |
US20090207790A1 (en) | 2005-10-27 | 2009-08-20 | Qualcomm Incorporated | Method and apparatus for settingtuneawaystatus in an open state in wireless communication system |
KR20080070042A (en) | 2005-10-27 | 2008-07-29 | 퀄컴 인코포레이티드 | A method and apparatus of processing non-sticky assignments in wireless communication systems |
JP2007124486A (en) * | 2005-10-31 | 2007-05-17 | Toshiba Corp | Communication control method |
US8483616B1 (en) | 2005-11-01 | 2013-07-09 | At&T Intellectual Property Ii, L.P. | Non-interference technique for spatially aware mobile ad hoc networking |
US8103260B2 (en) * | 2005-11-16 | 2012-01-24 | Motorola Mobility, Inc. | System and method for providing cordless extension of communication devices |
US8777752B2 (en) | 2005-11-30 | 2014-07-15 | At&T Intellectual Property I, L.P. | Geogame for mobile device |
US8149801B2 (en) * | 2007-08-17 | 2012-04-03 | At&T Intellectual Property Ii, L.P. | System and method for geocasting in a mobile ad hoc network |
US8702506B2 (en) * | 2005-11-30 | 2014-04-22 | At&T Intellectual Property I, L.P. | Geogame for mobile device |
US8355410B2 (en) | 2007-08-17 | 2013-01-15 | At&T Intellectual Property I, L.P. | Location-based mobile gaming application and method for implementing the same using a scalable tiered geocast protocol |
US7525933B1 (en) * | 2005-11-30 | 2009-04-28 | At&T Intellectual Property Ii, L.P. | System and method for mobile ad hoc network |
JP2007151006A (en) * | 2005-11-30 | 2007-06-14 | Fujitsu Ltd | Communication system and communication terminal equipment |
US7917169B1 (en) * | 2005-11-30 | 2011-03-29 | At&T Intellectual Property Ii, L.P. | System and method for mobile ad hoc network |
KR100714110B1 (en) * | 2005-12-06 | 2007-05-02 | 한국전자통신연구원 | Method and system for constructing overlay multicast tree using position information |
JP2007166000A (en) * | 2005-12-09 | 2007-06-28 | Fujitsu Ltd | Channel assignment method by wireless base station group, and wireless system |
US8811369B2 (en) * | 2006-01-11 | 2014-08-19 | Qualcomm Incorporated | Methods and apparatus for supporting multiple communications modes of operation |
US7532898B2 (en) * | 2006-01-19 | 2009-05-12 | International Business Machines Corporation | Generating and dynamically updating databases of WIFI hotspots locations and performance metrics via location mappers |
US7769395B2 (en) | 2006-06-20 | 2010-08-03 | Seven Networks, Inc. | Location-based operations and messaging |
US8571473B2 (en) * | 2006-06-02 | 2013-10-29 | Qualcomm Incorporated | Wireless subscriber station for short range ad-hoc data communication |
US7761087B2 (en) * | 2006-07-21 | 2010-07-20 | Kyocera Corporation | Apparatus, system and method for providing services through a multi-mode wireless terminal device |
US7779444B2 (en) * | 2006-07-23 | 2010-08-17 | William Glad | System and method for video on request |
US8452317B2 (en) * | 2006-09-15 | 2013-05-28 | Qualcomm Incorporated | Methods and apparatus related to power control and/or interference management in a mixed wireless communications system supporting WAN signaling and peer to peer signaling |
US8929281B2 (en) | 2006-09-15 | 2015-01-06 | Qualcomm Incorporated | Methods and apparatus related to peer to peer device |
US8369800B2 (en) | 2006-09-15 | 2013-02-05 | Qualcomm Incorporated | Methods and apparatus related to power control and/or interference management in a mixed wireless communications system |
US8634869B2 (en) * | 2006-09-15 | 2014-01-21 | Qualcomm Incorporated | Methods and apparatus related to multi-mode wireless communications device supporting both wide area network signaling and peer to peer signaling |
US8432920B2 (en) * | 2006-09-19 | 2013-04-30 | Marvell World Trade Ltd. | Direct link setup mechanisms for wireless LANs |
US9198212B2 (en) | 2006-09-19 | 2015-11-24 | Marvell World Trade Ltd. | Direct link setup mechanisms for wireless LANs |
TW200816836A (en) * | 2006-09-27 | 2008-04-01 | Compal Communications Inc | Mobile communication apparatus |
ES2342096T3 (en) | 2006-10-02 | 2010-07-01 | Deutsche Telekom Ag | METHOD AND SYSTEM FOR DATA COMMUNICATION IN A COMMUNICATIONS NETWORK BASED ON WIRELESS INFRASTRUCTURE. |
JP4886463B2 (en) | 2006-10-20 | 2012-02-29 | キヤノン株式会社 | Communication parameter setting method, communication apparatus, and management apparatus for managing communication parameters |
TWI326544B (en) | 2006-11-15 | 2010-06-21 | Ind Tech Res Inst | An intelligent heterogeneous network packet dispatcher methodology |
WO2008078245A2 (en) * | 2006-12-20 | 2008-07-03 | Koninklijke Philips Electronics N. V. | Method and system to select devices of a wireless network, particularly a network of wireless lighting devices |
JP5108786B2 (en) * | 2006-12-26 | 2012-12-26 | 富士通株式会社 | Radio communication method, radio control station, and radio base station |
US8249932B1 (en) | 2007-02-02 | 2012-08-21 | Resource Consortium Limited | Targeted advertising in a situational network |
US8805425B2 (en) | 2007-06-01 | 2014-08-12 | Seven Networks, Inc. | Integrated messaging |
US8693494B2 (en) | 2007-06-01 | 2014-04-08 | Seven Networks, Inc. | Polling |
KR101375481B1 (en) * | 2007-07-06 | 2014-03-19 | 삼성전자주식회사 | Method and apparatus of deciding communication mode in a communication system |
KR101466897B1 (en) * | 2007-07-09 | 2014-12-02 | 삼성전자주식회사 | Method and apparatus for supporting connectivity management for peer to peer in wirless commumication system |
US9264907B2 (en) * | 2007-07-10 | 2016-02-16 | Qualcomm Incorporated | Method and apparatus for interference management between networks sharing a frequency spectrum |
US8521194B2 (en) * | 2007-07-10 | 2013-08-27 | Qualcomm Incorporated | Performing paging in a wireless peer-to-peer network |
KR101537529B1 (en) * | 2007-07-17 | 2015-07-29 | 코닌클리케 필립스 엔.브이. | Medium reservation announcement |
WO2009043016A2 (en) | 2007-09-28 | 2009-04-02 | Damaka, Inc. | System and method for transitioning a communication session between networks that are not commonly controlled |
TW200919261A (en) * | 2007-10-23 | 2009-05-01 | Asustek Comp Inc | Input apparatus and operation method for computer |
KR101452997B1 (en) * | 2007-10-30 | 2014-10-24 | 삼성전자주식회사 | Apparatus and method for supporting peer to peer communication in broadband wireless communication system |
US8380859B2 (en) | 2007-11-28 | 2013-02-19 | Damaka, Inc. | System and method for endpoint handoff in a hybrid peer-to-peer networking environment |
US20090141661A1 (en) * | 2007-11-29 | 2009-06-04 | Nokia Siemens Networks Oy | Residual traffic state for wireless networks |
US8364181B2 (en) | 2007-12-10 | 2013-01-29 | Seven Networks, Inc. | Electronic-mail filtering for mobile devices |
US9002828B2 (en) | 2007-12-13 | 2015-04-07 | Seven Networks, Inc. | Predictive content delivery |
US8254909B1 (en) * | 2008-01-03 | 2012-08-28 | At&T Intellectual Property I, L.P. | Computational syndrome detector |
US8107921B2 (en) | 2008-01-11 | 2012-01-31 | Seven Networks, Inc. | Mobile virtual network operator |
US20090191892A1 (en) * | 2008-01-25 | 2009-07-30 | Garmin Ltd. | Integrating position-determining and wi-fi functions |
US8862657B2 (en) | 2008-01-25 | 2014-10-14 | Seven Networks, Inc. | Policy based content service |
US20090193338A1 (en) | 2008-01-28 | 2009-07-30 | Trevor Fiatal | Reducing network and battery consumption during content delivery and playback |
US20090215398A1 (en) * | 2008-02-25 | 2009-08-27 | Adler Mitchell D | Methods and Systems for Establishing Communications Between Devices |
US8595501B2 (en) * | 2008-05-09 | 2013-11-26 | Qualcomm Incorporated | Network helper for authentication between a token and verifiers |
ITTO20080458A1 (en) * | 2008-06-12 | 2009-12-13 | Consorzio Gal Pmi S C R L | MOBILE COMMUNICATION AND LOCALIZATION DEVICE |
US8755350B2 (en) * | 2008-06-13 | 2014-06-17 | Qualcomm Incorporated | Mobile devices with femto cell functionality |
US8787947B2 (en) | 2008-06-18 | 2014-07-22 | Seven Networks, Inc. | Application discovery on mobile devices |
US8078158B2 (en) | 2008-06-26 | 2011-12-13 | Seven Networks, Inc. | Provisioning applications for a mobile device |
DK2161962T3 (en) | 2008-09-03 | 2013-05-13 | Teliasonera Ab | Ad-hoc connection in a communication system |
US9544922B2 (en) | 2008-09-16 | 2017-01-10 | At&T Intellectual Property I, L.P. | Quality of service scheme for collision-based wireless networks |
US8681700B2 (en) * | 2008-09-30 | 2014-03-25 | Nec Corporation | System and method for executed function management and program for mobile terminal |
US8909759B2 (en) | 2008-10-10 | 2014-12-09 | Seven Networks, Inc. | Bandwidth measurement |
DE202009018797U1 (en) * | 2008-10-27 | 2013-06-06 | Andrew Wireless Systems Gmbh | repeater |
US9320067B2 (en) | 2008-11-24 | 2016-04-19 | Qualcomm Incorporated | Configuration of user equipment for peer-to-peer communication |
US20100128701A1 (en) * | 2008-11-24 | 2010-05-27 | Qualcomm Incorporated | Beacon transmission for participation in peer-to-peer formation and discovery |
US9544924B2 (en) | 2008-11-25 | 2017-01-10 | Lantiq Beteiligungs-GmbH & Co. KG | Ad hoc communication protocol method and apparatus |
US20100128645A1 (en) * | 2008-11-26 | 2010-05-27 | Murata Manufacturing Co., Ltd. | System and method for adaptive power conservation based on traffic profiles |
KR101013759B1 (en) * | 2008-11-28 | 2011-02-14 | 한국전자통신연구원 | Method for allocating resources between communication links and relay and terminal devices adapted thereto |
US20100157826A1 (en) * | 2008-12-19 | 2010-06-24 | Telefonaktiebolaget Lm | Local communication between mobile stations via one or more relay stations |
JP5414807B2 (en) * | 2009-01-22 | 2014-02-12 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Address assignment in the network |
US8995923B2 (en) | 2009-03-03 | 2015-03-31 | Mobilitie, Llc | System and method for management of a dynamic network using wireless communication devices |
US9609513B2 (en) | 2009-03-03 | 2017-03-28 | Mobilitie, Llc | System and method for device authentication in a dynamic network using wireless communication devices |
US9179296B2 (en) | 2009-03-03 | 2015-11-03 | Mobilitie, Llc | System and method for device authentication in a dynamic network using wireless communication devices |
US9077564B2 (en) | 2009-03-03 | 2015-07-07 | Mobilitie, Llc | System and method for dynamic formation of a communication network using wireless communication devices |
CN102356679B (en) * | 2009-03-17 | 2015-07-08 | Idtp控股公司 | Angle of arrival downlink signaling |
JP4941496B2 (en) * | 2009-04-03 | 2012-05-30 | カシオ計算機株式会社 | Wireless communication apparatus and program |
JP5313758B2 (en) | 2009-04-27 | 2013-10-09 | パナソニック株式会社 | Wireless communication route selection method |
JP5235777B2 (en) * | 2009-05-15 | 2013-07-10 | キヤノン株式会社 | COMMUNICATION DEVICE, COMMUNICATION DEVICE CONTROL METHOD, PROGRAM |
US9118428B2 (en) * | 2009-11-04 | 2015-08-25 | At&T Intellectual Property I, L.P. | Geographic advertising using a scalable wireless geocast protocol |
CN102083094B (en) * | 2009-11-30 | 2015-04-08 | 西门子公司 | Interference measuring method and apparatus in wireless communication system |
US8457657B2 (en) * | 2010-01-22 | 2013-06-04 | Qualcomm Incorporated | Method and apparatus for peer-assisted localization |
US20110201360A1 (en) * | 2010-02-12 | 2011-08-18 | David Garrett | Method and system for physical map-assisted wireless access point locating |
US8874785B2 (en) | 2010-02-15 | 2014-10-28 | Damaka, Inc. | System and method for signaling and data tunneling in a peer-to-peer environment |
US8892646B2 (en) | 2010-08-25 | 2014-11-18 | Damaka, Inc. | System and method for shared session appearance in a hybrid peer-to-peer environment |
US8725895B2 (en) | 2010-02-15 | 2014-05-13 | Damaka, Inc. | NAT traversal by concurrently probing multiple candidates |
US8689307B2 (en) * | 2010-03-19 | 2014-04-01 | Damaka, Inc. | System and method for providing a virtual peer-to-peer environment |
US9043488B2 (en) | 2010-03-29 | 2015-05-26 | Damaka, Inc. | System and method for session sweeping between devices |
US9191416B2 (en) | 2010-04-16 | 2015-11-17 | Damaka, Inc. | System and method for providing enterprise voice call continuity |
US8352563B2 (en) | 2010-04-29 | 2013-01-08 | Damaka, Inc. | System and method for peer-to-peer media routing using a third party instant messaging system for signaling |
TWI426760B (en) * | 2010-05-20 | 2014-02-11 | Htc Corp | Method for transmitting data between electronic devices |
US8494566B2 (en) * | 2010-06-01 | 2013-07-23 | Microsoft Corporation | Hybrid mobile phone geopositioning |
US8712056B2 (en) | 2010-06-03 | 2014-04-29 | At&T Intellectual Property I, L.P. | Secure mobile ad hoc network |
US8446900B2 (en) | 2010-06-18 | 2013-05-21 | Damaka, Inc. | System and method for transferring a call between endpoints in a hybrid peer-to-peer network |
CN102960045B (en) * | 2010-06-22 | 2016-05-18 | 瑞典爱立信有限公司 | For the method and apparatus of Direct Model communication |
US8611540B2 (en) | 2010-06-23 | 2013-12-17 | Damaka, Inc. | System and method for secure messaging in a hybrid peer-to-peer network |
US8838783B2 (en) | 2010-07-26 | 2014-09-16 | Seven Networks, Inc. | Distributed caching for resource and mobile network traffic management |
CA2806557C (en) | 2010-07-26 | 2014-10-07 | Michael Luna | Mobile application traffic optimization |
WO2012018430A1 (en) | 2010-07-26 | 2012-02-09 | Seven Networks, Inc. | Mobile network traffic coordination across multiple applications |
CA2806548C (en) | 2010-07-26 | 2015-03-31 | Seven Networks, Inc. | Distributed implementation of dynamic wireless traffic policy |
US8468010B2 (en) | 2010-09-24 | 2013-06-18 | Damaka, Inc. | System and method for language translation in a hybrid peer-to-peer environment |
US8743781B2 (en) | 2010-10-11 | 2014-06-03 | Damaka, Inc. | System and method for a reverse invitation in a hybrid peer-to-peer environment |
US10016684B2 (en) | 2010-10-28 | 2018-07-10 | At&T Intellectual Property I, L.P. | Secure geographic based gaming |
WO2012060995A2 (en) | 2010-11-01 | 2012-05-10 | Michael Luna | Distributed caching in a wireless network of content delivered for a mobile application over a long-held request |
US9060032B2 (en) | 2010-11-01 | 2015-06-16 | Seven Networks, Inc. | Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic |
US8843153B2 (en) | 2010-11-01 | 2014-09-23 | Seven Networks, Inc. | Mobile traffic categorization and policy for network use optimization while preserving user experience |
WO2012061430A2 (en) | 2010-11-01 | 2012-05-10 | Michael Luna | Distributed management of keep-alive message signaling for mobile network resource conservation and optimization |
US9330196B2 (en) | 2010-11-01 | 2016-05-03 | Seven Networks, Llc | Wireless traffic management system cache optimization using http headers |
CN103620576B (en) | 2010-11-01 | 2016-11-09 | 七网络公司 | It is applicable to the caching of mobile applications behavior and network condition |
US8484314B2 (en) | 2010-11-01 | 2013-07-09 | Seven Networks, Inc. | Distributed caching in a wireless network of content delivered for a mobile application over a long-held request |
WO2012060997A2 (en) | 2010-11-01 | 2012-05-10 | Michael Luna | Application and network-based long poll request detection and cacheability assessment therefor |
GB2495463B (en) | 2010-11-22 | 2013-10-09 | Seven Networks Inc | Aligning data transfer to optimize connections established for transmission over a wireless network |
EP3422775A1 (en) | 2010-11-22 | 2019-01-02 | Seven Networks, LLC | Optimization of resource polling intervals to satisfy mobile device requests |
US9542203B2 (en) | 2010-12-06 | 2017-01-10 | Microsoft Technology Licensing, Llc | Universal dock for context sensitive computing device |
US8923770B2 (en) | 2010-12-09 | 2014-12-30 | Microsoft Corporation | Cognitive use of multiple regulatory domains |
US8792429B2 (en) | 2010-12-14 | 2014-07-29 | Microsoft Corporation | Direct connection with side channel control |
US20120158839A1 (en) * | 2010-12-16 | 2012-06-21 | Microsoft Corporation | Wireless network interface with infrastructure and direct modes |
US8948382B2 (en) | 2010-12-16 | 2015-02-03 | Microsoft Corporation | Secure protocol for peer-to-peer network |
US9294545B2 (en) | 2010-12-16 | 2016-03-22 | Microsoft Technology Licensing, Llc | Fast join of peer to peer group with power saving mode |
US8971841B2 (en) | 2010-12-17 | 2015-03-03 | Microsoft Corporation | Operating system supporting cost aware applications |
US20120165616A1 (en) * | 2010-12-27 | 2012-06-28 | Nir Geva | Portable monitoring unit and a method for monitoring a monitored person |
EP2661697B1 (en) | 2011-01-07 | 2018-11-21 | Seven Networks, LLC | System and method for reduction of mobile network traffic used for domain name system (dns) queries |
JP5303582B2 (en) * | 2011-01-13 | 2013-10-02 | 株式会社ソニー・コンピュータエンタテインメント | Portable terminal device and communication switching method |
US8407314B2 (en) | 2011-04-04 | 2013-03-26 | Damaka, Inc. | System and method for sharing unsupported document types between communication devices |
US8830872B2 (en) * | 2011-04-08 | 2014-09-09 | Texas Instruments Incorporated | Network configuration for devices with constrained resources |
EP2700019B1 (en) | 2011-04-19 | 2019-03-27 | Seven Networks, LLC | Social caching for device resource sharing and management |
US8621075B2 (en) | 2011-04-27 | 2013-12-31 | Seven Metworks, Inc. | Detecting and preserving state for satisfying application requests in a distributed proxy and cache system |
WO2012149216A2 (en) | 2011-04-27 | 2012-11-01 | Seven Networks, Inc. | Mobile device which offloads requests made by a mobile application to a remote entity for conservation of mobile device and network resources and methods therefor |
US8694587B2 (en) | 2011-05-17 | 2014-04-08 | Damaka, Inc. | System and method for transferring a call bridge between communication devices |
US8724931B2 (en) | 2011-05-27 | 2014-05-13 | Ebay Inc. | Automated user information provision using images |
US9723538B2 (en) * | 2011-06-20 | 2017-08-01 | Cisco Technology, Inc. | Systematic neighbor detection in shared media computer networks |
US9319842B2 (en) | 2011-06-27 | 2016-04-19 | At&T Intellectual Property I, L.P. | Mobile device configured point and shoot type weapon |
US9161158B2 (en) | 2011-06-27 | 2015-10-13 | At&T Intellectual Property I, L.P. | Information acquisition using a scalable wireless geocast protocol |
US9413540B2 (en) | 2011-07-05 | 2016-08-09 | Genband Us Llc | Combining P2P and server-based conferencing |
US8478890B2 (en) | 2011-07-15 | 2013-07-02 | Damaka, Inc. | System and method for reliable virtual bi-directional data stream communications with single socket point-to-multipoint capability |
EP2737742A4 (en) | 2011-07-27 | 2015-01-28 | Seven Networks Inc | Automatic generation and distribution of policy information regarding malicious mobile traffic in a wireless network |
US9137655B2 (en) | 2011-10-07 | 2015-09-15 | Qualcomm Incorporated | Methods and apparatus for supporting peer to peer communications |
US9495870B2 (en) | 2011-10-20 | 2016-11-15 | At&T Intellectual Property I, L.P. | Vehicular communications using a scalable ad hoc geographic routing protocol |
JP5468595B2 (en) * | 2011-11-22 | 2014-04-09 | レノボ・シンガポール・プライベート・リミテッド | Method of accessing wireless network by shared communication and wireless terminal device |
US8934414B2 (en) | 2011-12-06 | 2015-01-13 | Seven Networks, Inc. | Cellular or WiFi mobile traffic optimization based on public or private network destination |
WO2013086225A1 (en) | 2011-12-06 | 2013-06-13 | Seven Networks, Inc. | A mobile device and method to utilize the failover mechanisms for fault tolerance provided for mobile traffic management and network/device resource conservation |
WO2013086447A1 (en) | 2011-12-07 | 2013-06-13 | Seven Networks, Inc. | Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol |
GB2498064A (en) | 2011-12-07 | 2013-07-03 | Seven Networks Inc | Distributed content caching mechanism using a network operator proxy |
WO2013086324A1 (en) * | 2011-12-08 | 2013-06-13 | Interdigital Patent Holdings, Inc. | Method and apparatus for controlling cross link establishment |
US8861354B2 (en) | 2011-12-14 | 2014-10-14 | Seven Networks, Inc. | Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization |
WO2013090834A1 (en) | 2011-12-14 | 2013-06-20 | Seven Networks, Inc. | Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic |
US20130159511A1 (en) | 2011-12-14 | 2013-06-20 | Seven Networks, Inc. | System and method for generating a report to a network operator by distributing aggregation of data |
US8744419B2 (en) | 2011-12-15 | 2014-06-03 | At&T Intellectual Property, I, L.P. | Media distribution via a scalable ad hoc geographic protocol |
WO2013103988A1 (en) | 2012-01-05 | 2013-07-11 | Seven Networks, Inc. | Detection and management of user interactions with foreground applications on a mobile device in distributed caching |
WO2013116856A1 (en) | 2012-02-02 | 2013-08-08 | Seven Networks, Inc. | Dynamic categorization of applications for network access in a mobile network |
US9326189B2 (en) | 2012-02-03 | 2016-04-26 | Seven Networks, Llc | User as an end point for profiling and optimizing the delivery of content and data in a wireless network |
KR102005771B1 (en) * | 2012-02-24 | 2019-10-01 | 삼성전자주식회사 | Method and apparatus for providing ip address in wireless communication network |
US9554406B2 (en) | 2012-03-19 | 2017-01-24 | Industrial Technology Research Institute | Method for device to device communication and control node using the same |
US8812695B2 (en) | 2012-04-09 | 2014-08-19 | Seven Networks, Inc. | Method and system for management of a virtual network connection without heartbeat messages |
US20130268656A1 (en) | 2012-04-10 | 2013-10-10 | Seven Networks, Inc. | Intelligent customer service/call center services enhanced using real-time and historical mobile application and traffic-related statistics collected by a distributed caching system in a mobile network |
JP5997487B2 (en) * | 2012-04-18 | 2016-09-28 | 株式会社Nttドコモ | Wireless communication terminal, communication control apparatus, and communication control method |
US9418372B2 (en) | 2012-05-25 | 2016-08-16 | Apple Inc. | Advertising, discovering, and using services through virtual access point interfaces |
WO2014011216A1 (en) | 2012-07-13 | 2014-01-16 | Seven Networks, Inc. | Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications |
US8750792B2 (en) | 2012-07-26 | 2014-06-10 | Remec Broadband Wireless, Llc | Transmitter for point-to-point radio system |
US9071451B2 (en) | 2012-07-31 | 2015-06-30 | At&T Intellectual Property I, L.P. | Geocast-based situation awareness |
EP2904872B1 (en) * | 2012-10-05 | 2018-08-01 | Telefonaktiebolaget LM Ericsson (publ) | Method, apparatus and computer program for selectable operation of a network node |
US9210589B2 (en) | 2012-10-09 | 2015-12-08 | At&T Intellectual Property I, L.P. | Geocast protocol for wireless sensor network |
CN103780868A (en) * | 2012-10-23 | 2014-05-07 | 中兴通讯股份有限公司 | Data transmission method based on spatial position, controller and equipment |
US9161258B2 (en) | 2012-10-24 | 2015-10-13 | Seven Networks, Llc | Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion |
US9124377B2 (en) | 2012-11-07 | 2015-09-01 | Qualcomm Incorporated | Methods and apparatus for enabling peer-to-peer (P2P) communication in LTE time division duplex (TDD) system |
US9660745B2 (en) | 2012-12-12 | 2017-05-23 | At&T Intellectual Property I, L.P. | Geocast-based file transfer |
US9307493B2 (en) | 2012-12-20 | 2016-04-05 | Seven Networks, Llc | Systems and methods for application management of mobile device radio state promotion and demotion |
US9241314B2 (en) | 2013-01-23 | 2016-01-19 | Seven Networks, Llc | Mobile device with application or context aware fast dormancy |
US8874761B2 (en) | 2013-01-25 | 2014-10-28 | Seven Networks, Inc. | Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols |
US9357580B2 (en) | 2013-02-07 | 2016-05-31 | Industrial Technology Research Institute | Method for switching communication connection mode, communication system, base station, transmitter and receiver |
US8750123B1 (en) | 2013-03-11 | 2014-06-10 | Seven Networks, Inc. | Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network |
US9992021B1 (en) | 2013-03-14 | 2018-06-05 | GoTenna, Inc. | System and method for private and point-to-point communication between computing devices |
US10231206B2 (en) | 2013-03-15 | 2019-03-12 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management for identifying signal-emitting devices |
US10237770B2 (en) | 2013-03-15 | 2019-03-19 | DGS Global Systems, Inc. | Systems, methods, and devices having databases and automated reports for electronic spectrum management |
US10257729B2 (en) | 2013-03-15 | 2019-04-09 | DGS Global Systems, Inc. | Systems, methods, and devices having databases for electronic spectrum management |
US9078162B2 (en) | 2013-03-15 | 2015-07-07 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management |
US9504074B2 (en) | 2013-03-15 | 2016-11-22 | Electronics And Telecommunications Research Institute | Method of providing proximity service communication between terminals supporting proximity service communications |
US8805292B1 (en) | 2013-03-15 | 2014-08-12 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management for identifying signal-emitting devices |
US10299149B2 (en) | 2013-03-15 | 2019-05-21 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management |
US10257727B2 (en) | 2013-03-15 | 2019-04-09 | DGS Global Systems, Inc. | Systems methods, and devices having databases and automated reports for electronic spectrum management |
US10122479B2 (en) | 2017-01-23 | 2018-11-06 | DGS Global Systems, Inc. | Systems, methods, and devices for automatic signal detection with temporal feature extraction within a spectrum |
US10219163B2 (en) | 2013-03-15 | 2019-02-26 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management |
US8750156B1 (en) | 2013-03-15 | 2014-06-10 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management for identifying open space |
US10244504B2 (en) | 2013-03-15 | 2019-03-26 | DGS Global Systems, Inc. | Systems, methods, and devices for geolocation with deployable large scale arrays |
US8787836B1 (en) | 2013-03-15 | 2014-07-22 | DGS Global Systems, Inc. | Systems, methods, and devices having databases and automated reports for electronic spectrum management |
US10257728B2 (en) | 2013-03-15 | 2019-04-09 | DGS Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management |
US10271233B2 (en) | 2013-03-15 | 2019-04-23 | DGS Global Systems, Inc. | Systems, methods, and devices for automatic signal detection with temporal feature extraction within a spectrum |
US11646918B2 (en) | 2013-03-15 | 2023-05-09 | Digital Global Systems, Inc. | Systems, methods, and devices for electronic spectrum management for identifying open space |
US8798548B1 (en) | 2013-03-15 | 2014-08-05 | DGS Global Systems, Inc. | Systems, methods, and devices having databases for electronic spectrum management |
GB201306351D0 (en) * | 2013-04-09 | 2013-05-22 | Gen Dynamics Broadband Inc | Apparatus and methods for device to device communications |
US9686765B2 (en) | 2013-04-12 | 2017-06-20 | Hewlett Packard Enterprise Development Lp | Determining an angle of direct path of a signal |
WO2014168636A1 (en) * | 2013-04-12 | 2014-10-16 | Hewlett-Packard Development Company, L.P. | Location determination of a mobile device |
US9027032B2 (en) | 2013-07-16 | 2015-05-05 | Damaka, Inc. | System and method for providing additional functionality to existing software in an integrated manner |
US9065765B2 (en) | 2013-07-22 | 2015-06-23 | Seven Networks, Inc. | Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network |
US9357016B2 (en) | 2013-10-18 | 2016-05-31 | Damaka, Inc. | System and method for virtual parallel resource management |
US9774982B2 (en) * | 2013-10-30 | 2017-09-26 | AT&T Intellectual Propetry I, L.P. | Long term evolution machine to machine privacy protection |
KR102184488B1 (en) | 2014-01-09 | 2020-11-30 | 삼성전자주식회사 | Mobile Device and Driving Method Thereof, and Image Display Apparatus and Driving Method Thereof |
US20170026896A1 (en) * | 2014-04-07 | 2017-01-26 | Sharp Kabushiki Kaisha | Terminal device, relay terminal device, and communication control method |
CA2956617A1 (en) | 2014-08-05 | 2016-02-11 | Damaka, Inc. | System and method for providing unified communications and collaboration (ucc) connectivity between incompatible systems |
US9941954B2 (en) | 2014-12-19 | 2018-04-10 | Futurewei Technologies, Inc. | System and method for radio link sharing |
WO2017085978A1 (en) * | 2015-11-19 | 2017-05-26 | ソニー株式会社 | Device and method |
US9949302B2 (en) | 2016-03-24 | 2018-04-17 | Google Llc | Automatic wireless communication protocol toggling |
US10091025B2 (en) | 2016-03-31 | 2018-10-02 | Damaka, Inc. | System and method for enabling use of a single user identifier across incompatible networks for UCC functionality |
US10459020B2 (en) | 2017-01-23 | 2019-10-29 | DGS Global Systems, Inc. | Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time within a spectrum |
US10700794B2 (en) | 2017-01-23 | 2020-06-30 | Digital Global Systems, Inc. | Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time within an electromagnetic spectrum |
US10498951B2 (en) | 2017-01-23 | 2019-12-03 | Digital Global Systems, Inc. | Systems, methods, and devices for unmanned vehicle detection |
US10529241B2 (en) | 2017-01-23 | 2020-01-07 | Digital Global Systems, Inc. | Unmanned vehicle recognition and threat management |
US10848992B2 (en) * | 2017-02-21 | 2020-11-24 | Sony Corporation | Data communication by virtual network boosting using proxy nodes in wireless networks |
EP4344325A2 (en) * | 2017-05-04 | 2024-03-27 | Koninklijke Philips N.V. | Intra-group communication |
CN110098858A (en) * | 2018-01-30 | 2019-08-06 | 电信科学技术研究院有限公司 | A kind of relaying operating mode configuration method and terminal |
US10943461B2 (en) | 2018-08-24 | 2021-03-09 | Digital Global Systems, Inc. | Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time |
US10909225B2 (en) * | 2018-09-17 | 2021-02-02 | Motorola Mobility Llc | Electronic devices and corresponding methods for precluding entry of authentication codes in multi-person environments |
US11632271B1 (en) | 2022-02-24 | 2023-04-18 | T-Mobile Usa, Inc. | Location-based channel estimation in wireless communication systems |
KR102618854B1 (en) * | 2023-04-13 | 2023-12-29 | 엠넥스텍 주식회사 | Worker safety managing system and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020071413A1 (en) * | 2000-03-31 | 2002-06-13 | Philips Electronics North America Corporation | Wireless MAC protocol based on a hybrid combination of slot allocation, token passing, and polling for isochronous traffic |
US20030142652A1 (en) * | 2002-01-29 | 2003-07-31 | Palm, Inc. | Dynamic networking modes method and apparatus |
US20030174682A1 (en) * | 2002-03-15 | 2003-09-18 | Barker Charles R. | System and method for trans-medium address resolution on an ad-hoc network with at least one highly disconnected medium having multiple access points to other media |
US20030235175A1 (en) * | 2002-06-24 | 2003-12-25 | Nokia Corporation | Mobile mesh Ad-Hoc networking |
US20040004951A1 (en) * | 2002-07-05 | 2004-01-08 | Interdigital Technology Corporation | Method for performing wireless switching |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5335360A (en) | 1991-06-25 | 1994-08-02 | Motorola, Inc. | Base site selection apparatus and method |
US5231634B1 (en) * | 1991-12-18 | 1996-04-02 | Proxim Inc | Medium access protocol for wireless lans |
JPH07107031A (en) | 1993-10-07 | 1995-04-21 | Kyocera Corp | Measuring instrument provided with service area display function |
EP0772856B1 (en) * | 1994-07-29 | 1998-04-15 | Seiko Communications Holding N.V. | Dual channel advertising referencing vehicle location |
US5610904A (en) * | 1995-03-28 | 1997-03-11 | Lucent Technologies Inc. | Packet-based telecommunications network |
KR100331437B1 (en) * | 1995-06-30 | 2002-08-08 | 삼성전자 주식회사 | Adaptive bit switch apparatus of dmt system and method thereof |
US5903618A (en) | 1995-07-18 | 1999-05-11 | Casio Computer Co., Ltd. | Multimode radio communication system |
US6049711A (en) * | 1995-08-23 | 2000-04-11 | Teletrac, Inc. | Method and apparatus for providing location-based information services |
JPH0998465A (en) | 1995-09-29 | 1997-04-08 | Nec Corp | Portable radio telephone control method and portable radio telephone set |
US6272316B1 (en) | 1995-11-17 | 2001-08-07 | Globalstar L.P. | Mobile satellite user information request system and methods |
JP2963061B2 (en) | 1996-09-24 | 1999-10-12 | タキゲン製造株式会社 | Shaft pin mounting structure |
US6026304A (en) | 1997-01-08 | 2000-02-15 | U.S. Wireless Corporation | Radio transmitter location finding for wireless communication network services and management |
CZ297955B6 (en) | 1997-03-03 | 2007-05-09 | Salbu Research And Development (Proprietary) Limited | Method of transmitting data between stations in cellular wireless communication system and cellular wireless communication system per se |
US6014568A (en) | 1997-09-30 | 2000-01-11 | Ericsson Inc. | Location-based voice coder selection |
US6154172A (en) * | 1998-03-31 | 2000-11-28 | Piccionelli; Gregory A. | System and process for limiting distribution of information on a communication network based on geographic location |
KR100312303B1 (en) | 1998-06-19 | 2001-12-28 | 윤종용 | Method for determining number of base stations using loading factors in a mobile communication system |
DE19849170C2 (en) | 1998-10-26 | 2000-08-24 | Elsa Ag | Procedure for setting up an internet protocol network |
KR100343172B1 (en) * | 1998-10-29 | 2002-08-22 | 삼성전자 주식회사 | Wireless data transmission method and interworking device between mobile terminal and heterogeneous signal |
US6167268A (en) | 1999-02-16 | 2000-12-26 | Motorola, Inc. | Method and apparatus for controlling scanning of a subscriber unit |
AU2934300A (en) | 1999-03-09 | 2000-09-28 | Salbu Research and Development Laboratories (Proprietary) Li mited | Routing in a multi-station network |
US20040224682A1 (en) * | 1999-03-22 | 2004-11-11 | Kang Myung-Seok | Method for applying different charge rates and for indicating location of mobile station in cellular mobile telecommunication system |
KR100365784B1 (en) * | 1999-03-22 | 2002-12-26 | 삼성전자 주식회사 | Method for implementing different charging rate in cellular system |
US6377556B1 (en) | 1999-07-14 | 2002-04-23 | Qualcomm Incorporated | Method and apparatus to resynchronize ppp on um interface without affecting ppp on a rm interface and to resynchronize ppp on a rm interface without affecting ppp on a um interface |
US6067290A (en) * | 1999-07-30 | 2000-05-23 | Gigabit Wireless, Inc. | Spatial multiplexing in a cellular network |
US6463289B1 (en) * | 1999-08-09 | 2002-10-08 | Ericsson Inc. | System and method for providing restricting positioning of a target mobile station based on the calculated location estimate |
US6560462B1 (en) | 2000-03-07 | 2003-05-06 | Samsung Electronics Co., Ltd. | System and method for determining the location of a mobile station in a wireless network |
US6512935B1 (en) * | 2000-03-24 | 2003-01-28 | Gte Internetworking Incorporated | Energy conserving network protocol |
US7143171B2 (en) | 2000-11-13 | 2006-11-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Access point discovery and selection |
US6804532B1 (en) * | 2000-12-22 | 2004-10-12 | Cisco Technology, Inc. | System and method for re-routing communications based on wireless communication link quality |
US6402515B1 (en) * | 2001-01-10 | 2002-06-11 | Sulzer Dental Inc. | Dental implant with variable profile thread |
JP2002209243A (en) * | 2001-01-10 | 2002-07-26 | Hitachi Ltd | Communication method and system |
US20020128000A1 (en) * | 2001-02-06 | 2002-09-12 | Do Nascimento, Oswaldo L. | Driving detection/notification and location/situation-based services |
EP1235451A1 (en) | 2001-02-20 | 2002-08-28 | Motorola, Inc. | Optimisation of cellular communications network performance |
TW490090U (en) * | 2001-03-28 | 2002-06-01 | All Line Inc | Socket with a lid shell |
US20040220995A1 (en) * | 2001-04-23 | 2004-11-04 | Takehiko Tsutsumi | Method, program, and apparatus for delegating information processing |
JP2002345006A (en) * | 2001-04-23 | 2002-11-29 | Motorola Inc | Method, program and device for information processing by proxy |
US7403498B2 (en) | 2001-05-31 | 2008-07-22 | Qualcomm Incorporated | Method and apparatus for selective examination of PPP packets for renegotiation of a PPP link on a Um interface |
WO2002103970A1 (en) * | 2001-06-18 | 2002-12-27 | Tatara Systems, Inc. | Method and apparatus for converging local area and wide area wireless data networks |
US20030008644A1 (en) * | 2001-07-09 | 2003-01-09 | Akhter Akhterzzaman | Preventing activation of audible incoming call indicators based on geographical area |
JP2003023655A (en) | 2001-07-10 | 2003-01-24 | Ntt Docomo Inc | Position registration system, mobile communication terminal in the position registration system, controller and position registration method |
US20030032434A1 (en) | 2001-08-07 | 2003-02-13 | Willner Barry E. | Systems and methods to facilitate compliance with location dependent requirements |
JP4331905B2 (en) * | 2001-09-28 | 2009-09-16 | パイオニア株式会社 | Hybrid car and control method of hybrid car |
US20030109284A1 (en) * | 2001-12-07 | 2003-06-12 | Dag Akerberg | Flexible carrier utilization |
US7027460B2 (en) * | 2001-12-21 | 2006-04-11 | Intel Corporation | Method and system for customized television viewing using a peer-to-peer network |
CN1165190C (en) | 2002-04-28 | 2004-09-01 | 武汉汉网高技术有限公司 | Control method of point-to-point connecting mobile PPP (MPPP) on mobile communication system |
US8386389B2 (en) * | 2002-04-30 | 2013-02-26 | Hewlett-Packard Development Company, L.P. | Service delivery systems and methods |
US6957086B2 (en) * | 2002-05-01 | 2005-10-18 | Microsoft Corporation | Method for wireless capability discovery and protocol negotiation, and wireless device including same |
US7016306B2 (en) * | 2002-05-16 | 2006-03-21 | Meshnetworks, Inc. | System and method for performing multiple network routing and provisioning in overlapping wireless deployments |
US20040203872A1 (en) * | 2002-09-04 | 2004-10-14 | Bajikar Sundeep M. | Wireless network location estimation |
WO2004025975A2 (en) * | 2002-09-11 | 2004-03-25 | George Mason Intellectual Properties, Inc. | Cellular network handoff decision mechanism |
US20040053602A1 (en) * | 2002-09-18 | 2004-03-18 | Wurzburg Francis L. | Low-cost interoperable wireless multi-application and messaging service |
US20040063451A1 (en) * | 2002-09-27 | 2004-04-01 | Bonta Jeffrey D. | Relaying information within an ad-hoc cellular network |
US7231220B2 (en) * | 2002-10-01 | 2007-06-12 | Interdigital Technology Corporation | Location based method and system for wireless mobile unit communication |
-
2003
- 2003-09-29 US US10/675,638 patent/US7231220B2/en not_active Expired - Lifetime
- 2003-09-29 US US10/675,893 patent/US7016673B2/en not_active Expired - Lifetime
- 2003-09-30 JP JP2004541946A patent/JP4473129B2/en not_active Expired - Fee Related
- 2003-09-30 EP EP03799363A patent/EP1554897A4/en not_active Withdrawn
- 2003-09-30 EP EP03799362A patent/EP1550320A4/en not_active Withdrawn
- 2003-09-30 JP JP2004541947A patent/JP2006501778A/en active Pending
- 2003-09-30 MY MYPI20033714A patent/MY134541A/en unknown
- 2003-09-30 AU AU2003277155A patent/AU2003277155A1/en not_active Abandoned
- 2003-09-30 TW TW093110750A patent/TWI322600B/en not_active IP Right Cessation
- 2003-09-30 WO PCT/US2003/030968 patent/WO2004032540A1/en not_active Application Discontinuation
- 2003-09-30 CA CA002669483A patent/CA2669483A1/en not_active Abandoned
- 2003-09-30 BR BR0314506-9A patent/BR0314506A/en not_active IP Right Cessation
- 2003-09-30 BR BR0314505-0A patent/BR0314505A/en not_active IP Right Cessation
- 2003-09-30 CN CNB038235404A patent/CN100356801C/en not_active Expired - Fee Related
- 2003-09-30 CA CA002500659A patent/CA2500659A1/en not_active Abandoned
- 2003-09-30 MX MXPA05003536A patent/MXPA05003536A/en active IP Right Grant
- 2003-09-30 MY MYPI20033715A patent/MY136412A/en unknown
- 2003-09-30 TW TW092217591U patent/TWM240738U/en not_active IP Right Cessation
- 2003-09-30 SG SG200702348-4A patent/SG165166A1/en unknown
- 2003-09-30 CA CA002500656A patent/CA2500656C/en not_active Expired - Fee Related
- 2003-09-30 TW TW093110752A patent/TW200511865A/en unknown
- 2003-09-30 WO PCT/US2003/030967 patent/WO2004032536A2/en active Application Filing
- 2003-09-30 TW TW095117735A patent/TWI325704B/en not_active IP Right Cessation
- 2003-09-30 CN CN038235420A patent/CN1689345B/en not_active Expired - Fee Related
- 2003-09-30 KR KR1020057018511A patent/KR20050101570A/en not_active Application Discontinuation
- 2003-09-30 TW TW095136617A patent/TWI329438B/en not_active IP Right Cessation
- 2003-09-30 TW TW092127120A patent/TWI239782B/en not_active IP Right Cessation
- 2003-09-30 MX MXPA05003543A patent/MXPA05003543A/en active IP Right Grant
- 2003-09-30 TW TW092217592U patent/TWM246927U/en not_active IP Right Cessation
- 2003-09-30 GE GEAP20038774A patent/GEP20084433B/en unknown
- 2003-09-30 KR KR1020057005713A patent/KR20050054991A/en not_active Application Discontinuation
- 2003-09-30 KR KR1020057017760A patent/KR20050099644A/en not_active Application Discontinuation
- 2003-09-30 TW TW092127119A patent/TWI257261B/en not_active IP Right Cessation
- 2003-09-30 KR KR1020057005623A patent/KR20050071533A/en not_active Application Discontinuation
- 2003-09-30 AU AU2003277154A patent/AU2003277154B2/en not_active Ceased
- 2003-10-01 KR KR1020030068398A patent/KR100627636B1/en not_active IP Right Cessation
- 2003-10-01 AR ARP030103579A patent/AR041457A1/en not_active Application Discontinuation
- 2003-10-01 DE DE20315165U patent/DE20315165U1/en not_active Expired - Lifetime
- 2003-10-01 KR KR1020030068356A patent/KR100581480B1/en not_active IP Right Cessation
- 2003-10-01 AR ARP030103580A patent/AR041458A1/en not_active Application Discontinuation
- 2003-10-02 HK HK03107127A patent/HK1056094A2/en not_active IP Right Cessation
- 2003-10-02 HK HK03107126A patent/HK1056093A2/en not_active IP Right Cessation
- 2003-10-08 CN CNU2003201039097U patent/CN2829222Y/en not_active Expired - Lifetime
- 2003-10-08 CN CNU2003201039082U patent/CN2650433Y/en not_active Expired - Lifetime
- 2003-10-14 KR KR20-2003-0032189U patent/KR200339742Y1/en not_active IP Right Cessation
- 2003-11-06 KR KR20-2003-0034752U patent/KR200343532Y1/en not_active IP Right Cessation
-
2005
- 2005-03-31 IL IL167807A patent/IL167807A/en not_active IP Right Cessation
- 2005-04-20 NO NO20051933A patent/NO20051933L/en not_active Application Discontinuation
- 2005-04-26 NO NO20052032A patent/NO20052032L/en not_active Application Discontinuation
- 2005-08-18 KR KR1020050075504A patent/KR20050090958A/en not_active Application Discontinuation
- 2005-08-18 KR KR1020050075929A patent/KR20050089768A/en not_active Application Discontinuation
- 2005-12-02 HK HK05111027A patent/HK1079383A1/en not_active IP Right Cessation
-
2006
- 2006-03-02 US US11/366,114 patent/US7239874B2/en not_active Expired - Lifetime
-
2008
- 2008-09-30 KR KR1020080096323A patent/KR20080097369A/en not_active Application Discontinuation
-
2009
- 2009-11-20 KR KR1020090112726A patent/KR101019457B1/en not_active IP Right Cessation
-
2010
- 2010-03-15 KR KR1020100022792A patent/KR101023161B1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020071413A1 (en) * | 2000-03-31 | 2002-06-13 | Philips Electronics North America Corporation | Wireless MAC protocol based on a hybrid combination of slot allocation, token passing, and polling for isochronous traffic |
US20030142652A1 (en) * | 2002-01-29 | 2003-07-31 | Palm, Inc. | Dynamic networking modes method and apparatus |
US20030174682A1 (en) * | 2002-03-15 | 2003-09-18 | Barker Charles R. | System and method for trans-medium address resolution on an ad-hoc network with at least one highly disconnected medium having multiple access points to other media |
US20030235175A1 (en) * | 2002-06-24 | 2003-12-25 | Nokia Corporation | Mobile mesh Ad-Hoc networking |
US20040004951A1 (en) * | 2002-07-05 | 2004-01-08 | Interdigital Technology Corporation | Method for performing wireless switching |
Non-Patent Citations (1)
Title |
---|
See also references of EP1550320A2 * |
Cited By (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007531456A (en) * | 2004-03-30 | 2007-11-01 | キノマ インコーポレイテッド | Interface negotiation |
US9032055B2 (en) | 2004-05-07 | 2015-05-12 | Sony Corporation | Network identifier configuration method, communication method and wireless communication terminal |
EP1624619A4 (en) * | 2004-05-07 | 2011-07-20 | Sony Computer Entertainment Inc | Network identifier establishing method, communicating method, and wireless communication terminal apparatus |
EP1617604A4 (en) * | 2004-05-07 | 2011-09-28 | Sony Computer Entertainment Inc | Application execution method, file data download method, file data upload method, communication method, network identifier setting method, and radio communication terminal device |
WO2005109763A1 (en) | 2004-05-07 | 2005-11-17 | Sony Computer Entertainment Inc. | Network identifier establishing method, communicating method, and wireless communication terminal apparatus |
WO2005109762A1 (en) | 2004-05-07 | 2005-11-17 | Sony Computer Entertainment Inc. | Application execution method, file data download method, file data upload method, communication method, network identifier setting method, and radio communication terminal device |
EP1617604A1 (en) * | 2004-05-07 | 2006-01-18 | Sony Computer Entertainment Inc. | Application execution method, file data download method, file data upload method, communication method, network identifier setting method, and radio communication terminal device |
US8041374B2 (en) | 2004-05-07 | 2011-10-18 | Sony Computer Entertainment Inc. | Application execution method, file data download method, file data upload method, communication method, network identifier setting method and wireless communication terminal |
EP1624619A1 (en) * | 2004-05-07 | 2006-02-08 | Sony Computer Entertainment Inc. | Network identifier establishing method, communicating method, and wireless communication terminal apparatus |
US7336927B2 (en) | 2004-06-30 | 2008-02-26 | Alcatel | Ad-hoc extensions of a cellular air interface |
US7395064B2 (en) | 2004-07-14 | 2008-07-01 | Intel Corporation | Systems and methods of distributed self-configuration for wireless networks |
WO2006019618A1 (en) * | 2004-07-14 | 2006-02-23 | Intel Corporation | Systems and methods of distributed self-configuration for extended service set mesh networks |
GB2430841B (en) * | 2004-07-14 | 2009-03-25 | Intel Corp | Systems and methods of distributed self-configuration for extended service set mesh networks |
GB2430841A (en) * | 2004-07-14 | 2007-04-04 | Intel Corp | Systems and methods of distributed self-configuration for extended service set mesh networks |
WO2006016331A1 (en) * | 2004-08-10 | 2006-02-16 | Koninklijke Philips Electronics N.V. | Method and apparatus for limiting p2p communication interference |
JP2006060578A (en) * | 2004-08-20 | 2006-03-02 | Fuji Xerox Co Ltd | Radio communication system, communication equipment, communication control method and communication control program |
US8527605B2 (en) | 2005-03-24 | 2013-09-03 | Motorola Solutions, Inc. | Methods for performing client to client communication in a WLAN |
JP2006319795A (en) * | 2005-05-13 | 2006-11-24 | Kyocera Corp | Communication system and communication equipment |
JP2006333271A (en) * | 2005-05-27 | 2006-12-07 | Toshiba Corp | Radio communication system |
US7912489B2 (en) | 2005-05-27 | 2011-03-22 | Kabushiki Kaisha Toshiba | Wireless base station and wireless terminal |
WO2006134562A3 (en) * | 2005-06-17 | 2007-04-12 | Koninkl Philips Electronics Nv | Method and apparatus of realizing two-hop relaying communication in wireless communication systems |
WO2006134562A2 (en) * | 2005-06-17 | 2006-12-21 | Koninklijke Philips Electronics N.V. | Method and apparatus of realizing two-hop relaying communication in wireless communication systems |
JP2009500969A (en) * | 2005-07-08 | 2009-01-08 | マイクロソフト コーポレーション | Direct wireless client-to-client communication |
US8265052B2 (en) | 2005-07-08 | 2012-09-11 | Microsoft Corporation | Direct wireless client to client communication |
EP1773091A3 (en) * | 2005-10-06 | 2007-07-11 | Samsung Electronics Co., Ltd. | Method of configuring channel and allocating resources in a multi-hop relay wireless communication system |
US8391254B2 (en) | 2005-10-06 | 2013-03-05 | Samsung Electronics Co., Ltd | Channel configuration and bandwidth allocation in multi-hop cellular communication networks |
EP1773091A2 (en) * | 2005-10-06 | 2007-04-11 | Samsung Electronics Co., Ltd. | Method of configuring channel and allocating resources in a multi-hop relay wireless communication system |
WO2007055993A1 (en) * | 2005-11-03 | 2007-05-18 | Interdigital Technology Corporation | Method and system for performing peer-to-peer communication between stations within a basic service set |
US8077683B2 (en) | 2005-11-03 | 2011-12-13 | Interdigital Technology Corporation | Method and system for performing peer-to-peer communication between stations within a basic service set |
TWI419595B (en) * | 2005-11-03 | 2013-12-11 | Interdigital Tech Corp | Method and system for performing peer-to-peer communication between stations within a basic service set |
US8452289B2 (en) | 2005-11-03 | 2013-05-28 | Interdigital Technology Corporation | Method and system for performing peer-to-peer communication between stations within a basic service set |
JP4933558B2 (en) * | 2005-11-11 | 2012-05-16 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for limiting peer-to-peer communication interference |
JP2009516418A (en) * | 2005-11-11 | 2009-04-16 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for limiting peer-to-peer communication interference |
US8902866B2 (en) | 2006-01-11 | 2014-12-02 | Qualcomm Incorporated | Communication methods and apparatus which may be used in the absence or presence of beacon signals |
US8774846B2 (en) | 2006-01-11 | 2014-07-08 | Qualcomm Incorporated | Methods and apparatus relating to wireless terminal beacon signal generation, transmission, and/or use |
US8787323B2 (en) | 2006-01-11 | 2014-07-22 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting synchronization |
KR100971635B1 (en) * | 2006-01-11 | 2010-07-22 | 퀄컴 인코포레이티드 | Wireless communication methods and apparatus supporting synchronization |
US9369943B2 (en) | 2006-01-11 | 2016-06-14 | Qualcomm Incorporated | Cognitive communications |
EP2317802A2 (en) * | 2006-01-11 | 2011-05-04 | QUALCOMM Incorporated | Wireless communication methods and apparatus supporting multiple modes |
US8755362B2 (en) | 2006-01-11 | 2014-06-17 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting paging and peer to peer communications |
US8750868B2 (en) | 2006-01-11 | 2014-06-10 | Qualcomm Incorporated | Communication methods and apparatus related to wireless terminal monitoring for and use of beacon signals |
JP2009523392A (en) * | 2006-01-11 | 2009-06-18 | クゥアルコム・インコーポレイテッド | Wireless communication method and apparatus supporting paging and peer-to-peer communication |
JP2009523391A (en) * | 2006-01-11 | 2009-06-18 | クゥアルコム・インコーポレイテッド | Wireless communication method and apparatus for supporting peer-to-peer communication |
JP2009523387A (en) * | 2006-01-11 | 2009-06-18 | クゥアルコム・インコーポレイテッド | Wireless communication method and apparatus using beacon code |
JP2009523386A (en) * | 2006-01-11 | 2009-06-18 | クゥアルコム・インコーポレイテッド | Wireless communication method and apparatus supporting different types of wireless communication approaches |
JP4847542B2 (en) * | 2006-01-11 | 2011-12-28 | クゥアルコム・インコーポレイテッド | Wireless communication method and apparatus using beacon code |
US8923317B2 (en) | 2006-01-11 | 2014-12-30 | Qualcomm Incorporated | Wireless device discovery in a wireless peer-to-peer network |
EP2317802A3 (en) * | 2006-01-11 | 2012-01-11 | QUALCOMM Incorporated | Wireless communication methods and apparatus supporting multiple modes |
US8750262B2 (en) | 2006-01-11 | 2014-06-10 | Qualcomm Incorporated | Communications methods and apparatus related to beacon signals some of which may communicate priority information |
KR101131404B1 (en) * | 2006-01-11 | 2012-04-03 | 퀄컴 인코포레이티드 | Wireless communication methods and apparatus supporting multiple modes |
JP2009523388A (en) * | 2006-01-11 | 2009-06-18 | クゥアルコム・インコーポレイテッド | Wireless communication method and apparatus supporting usage of one or more frequency bands |
US8750261B2 (en) | 2006-01-11 | 2014-06-10 | Qualcomm Incorporated | Encoding beacon signals to provide identification in peer-to-peer communication |
US8743843B2 (en) | 2006-01-11 | 2014-06-03 | Qualcomm Incorporated | Methods and apparatus relating to timing and/or synchronization including the use of wireless terminals beacon signals |
WO2007082257A1 (en) * | 2006-01-11 | 2007-07-19 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting multiple modes |
US8902865B2 (en) | 2006-01-11 | 2014-12-02 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting multiple modes |
US8804677B2 (en) | 2006-01-11 | 2014-08-12 | Qualcomm Incorporated | Methods and apparatus for establishing communications between devices with differing capabilities |
WO2007082253A1 (en) * | 2006-01-11 | 2007-07-19 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting synchronization |
US8902864B2 (en) | 2006-01-11 | 2014-12-02 | Qualcomm Incorporated | Choosing parameters in a peer-to-peer communications system |
US8879519B2 (en) | 2006-01-11 | 2014-11-04 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting peer to peer communications |
US8498237B2 (en) | 2006-01-11 | 2013-07-30 | Qualcomm Incorporated | Methods and apparatus for communicating device capability and/or setup information |
US8902860B2 (en) | 2006-01-11 | 2014-12-02 | Qualcomm Incorporated | Wireless communication methods and apparatus using beacon signals |
US8504099B2 (en) | 2006-01-11 | 2013-08-06 | Qualcomm Incorporated | Communication methods and apparatus relating to cooperative and non-cooperative modes of operation |
US8879520B2 (en) | 2006-01-11 | 2014-11-04 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting wireless terminal mode control signaling |
US8553644B2 (en) | 2006-01-11 | 2013-10-08 | Qualcomm Incorporated | Wireless communication methods and apparatus supporting different types of wireless communication approaches |
US8542658B2 (en) | 2006-01-11 | 2013-09-24 | Qualcomm Incorporated | Support for wide area networks and local area peer-to-peer networks |
WO2008005922A3 (en) * | 2006-06-30 | 2008-05-02 | Qualcomm Inc | System and method for high speed local connectivity between local devices |
US8923267B2 (en) | 2006-06-30 | 2014-12-30 | Qualcomm Incorporated | System and method for high speed peer-to-peer connectivity between wireless devices |
WO2008005922A2 (en) | 2006-06-30 | 2008-01-10 | Qualcomm Incorporated | System and method for high speed local connectivity between local devices |
US8223729B2 (en) | 2006-07-19 | 2012-07-17 | Qualcomm Incorporated | Radio interface selection for a terminal |
EP2109943A1 (en) * | 2007-02-08 | 2009-10-21 | Korea Advanced Institute of Science and Technology | Cognitive radio based air interface method in wireless communication system |
EP2109943A4 (en) * | 2007-02-08 | 2012-01-25 | Korea Advanced Inst Sci & Tech | Cognitive radio based air interface method in wireless communication system |
WO2008096921A1 (en) | 2007-02-08 | 2008-08-14 | Korea Advanced Institute Of Science And Technology | Cognitive radio based air interface method in wireless communication system |
EP2018087A1 (en) * | 2007-06-11 | 2009-01-21 | Nokia Siemens Networks Oy | Operator controlled configuration of end-systems for alternative access and establishment of direct point-to-point voice/data calls/sessions |
EP2294892A4 (en) * | 2008-06-16 | 2014-06-11 | Free2Move Ab | Method and device for communication between multiple wireless units |
EP2294892A1 (en) * | 2008-06-16 | 2011-03-16 | Free2Move AB | Method and device for communication between multiple wireless units |
US9084283B2 (en) | 2008-11-19 | 2015-07-14 | Qualcomm Incorporated | Peer-to-peer communication using a wide area network air interface |
WO2010126413A1 (en) * | 2009-04-29 | 2010-11-04 | Nanoradio Hellas A.E. | A method for communication between a wlan terminal and a human interference device |
US8861492B2 (en) | 2009-04-29 | 2014-10-14 | Samsung Electronics Co., Ltd | Method for communication between a WLAN terminal and a human interface device |
US8848677B2 (en) | 2009-10-13 | 2014-09-30 | Samsung Electronics Co., Ltd. | Method and apparatus for peer-to-peer connection using wireless local area network (LAN) in mobile communication terminal |
EP2312903A1 (en) * | 2009-10-13 | 2011-04-20 | Samsung Electronics Co., Ltd. | Method and apparatus for peer-to-peer connection using wireless local area network (LAN) in mobile communication terminal |
US10708750B2 (en) | 2009-10-13 | 2020-07-07 | Samsung Electronics Co., Ltd. | Method and apparatus for peer-to-peer connection using wireless local area network (LAN) in mobile communication terminal |
US8428573B2 (en) | 2009-11-09 | 2013-04-23 | Harris Corporation | Remote control of mobile radio system through portable radio system |
KR101328773B1 (en) * | 2009-11-09 | 2013-11-13 | 해리스 코포레이션 | Remote control of mobile radio system through portable radio system |
WO2011056746A1 (en) * | 2009-11-09 | 2011-05-12 | Harris Corporation | Remote control of mobile radio system through portable radio system |
US8762543B2 (en) | 2009-12-15 | 2014-06-24 | Intel Corporation | Method and apparatus for autonomous peer discovery and enhancing link reliability for wireless peer direct links |
WO2011123516A3 (en) * | 2010-03-31 | 2011-12-29 | Qualcomm Incorporated | Methods and apparatus for determining a communications mode and/or using a determined communications mode |
US8428629B2 (en) | 2010-03-31 | 2013-04-23 | Qualcomm Incorporated | Methods and apparatus for determining a communications mode and/or using a determined communications mode |
CN102870488A (en) * | 2010-03-31 | 2013-01-09 | 高通股份有限公司 | Methods and apparatus for determining a communications mode and/or using a determined communications mode |
EP2562940A4 (en) * | 2010-04-19 | 2017-04-19 | LG Electronics Inc. | Method for cooperative data transmission among terminals, and method for clustering cooperative terminals for same |
JP2015080256A (en) * | 2010-04-20 | 2015-04-23 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | Mobile station and reception method |
US9386398B2 (en) | 2010-05-31 | 2016-07-05 | Blackberry Limited | Management of mobile hotspot connections |
EP2391179A1 (en) * | 2010-05-31 | 2011-11-30 | Research In Motion Limited | Management of mobile hotspot connections |
US8804517B2 (en) | 2010-05-31 | 2014-08-12 | Blackberry Limited | Management of mobile hotspot connections |
US8503934B2 (en) | 2010-07-22 | 2013-08-06 | Harris Corporation | Multi-mode communications system |
EP2641445B1 (en) * | 2010-11-18 | 2020-05-27 | Qualcomm Incorporated(1/3) | Association rules based on channel quality for peer-to-peer and wan communication |
GB2491870A (en) * | 2011-06-15 | 2012-12-19 | Renesas Mobile Corp | Peer to Peer Communication Link Monitoring in Unlicensed band or Cluster Network |
GB2491870B (en) * | 2011-06-15 | 2013-11-27 | Renesas Mobile Corp | Method and apparatus for providing communication link monito ring |
EP2764641A4 (en) * | 2011-10-03 | 2015-03-18 | Intel Corp | Device to device (d2d) communication mechanisms |
US9877139B2 (en) | 2011-10-03 | 2018-01-23 | Intel Corporation | Device to device (D2D) communication mechanisms |
EP2632222A1 (en) * | 2012-02-23 | 2013-08-28 | Broadcom Corporation | Flow control for constrained wireless access points |
EP2844021A4 (en) * | 2012-04-25 | 2016-01-06 | Ntt Docomo Inc | Extension system, extension server, and communication method |
US9219976B2 (en) | 2012-04-25 | 2015-12-22 | Ntt Docomo, Inc. | Private branch exchange system, private branch exchange server, and communication method |
US20150072695A1 (en) * | 2012-04-25 | 2015-03-12 | Ntt Docomo, Inc. | Private branch exchange system, private branch exchange server, and communication method |
WO2013161671A1 (en) * | 2012-04-25 | 2013-10-31 | 株式会社エヌ・ティ・ティ・ドコモ | Extension system, extension server, and communication method |
JP2013229747A (en) * | 2012-04-25 | 2013-11-07 | Ntt Docomo Inc | Extension system, extension server, and communication method |
WO2014198518A1 (en) * | 2013-06-11 | 2014-12-18 | Deutsche Telekom Ag | Method for enhancing machine type communication between a mobile communication network on the one hand, and a plurality of machine type communication devices on the other hand |
WO2014198519A1 (en) * | 2013-06-11 | 2014-12-18 | Deutsche Telekom Ag | Method for enhancing machine type communication between a mobile communication network on the one hand, and a plurality of machine type communication devices on the other hand |
WO2015095300A1 (en) * | 2013-12-20 | 2015-06-25 | Google Technology Holdings LLC | Method and device for determining when to switch between multiple communication modes of a transceiver subsystem |
US9479983B2 (en) | 2013-12-20 | 2016-10-25 | Google Technology Holdings LLC | Methods and device for determining when to switch between multiple communication modes of a transceiver subsystem |
EP2983440A1 (en) * | 2014-08-07 | 2016-02-10 | Alcatel Lucent | Device-to-device communication |
WO2016020157A1 (en) * | 2014-08-07 | 2016-02-11 | Alcatel Lucent | Device-to-device communication |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2500656C (en) | Wireless communication method and system with controlled wtru peer-to-peer communications | |
US6957069B2 (en) | Wireless personal communicator and communication method | |
US8867487B2 (en) | Wireless communication methods and components that implement handoff in wireless local area networks | |
TWI260138B (en) | Methods and systems for roaming in 802.11 wireless networks | |
AU2007200222A1 (en) | Wireless communication method and system with controlled WTRU peer-to-peer communications | |
Chen | Mixed-mode wireless networks: framework and power control issues |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2500656 Country of ref document: CA Ref document number: 167807 Country of ref document: IL Ref document number: 1020057005623 Country of ref document: KR Ref document number: 2003277154 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2005/003536 Country of ref document: MX Ref document number: 2004541946 Country of ref document: JP Ref document number: 20038235420 Country of ref document: CN Ref document number: 1332/DELNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003799362 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8774 Country of ref document: GE |
|
WWP | Wipo information: published in national office |
Ref document number: 2003799362 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057005623 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 9726 Country of ref document: GE |