WO2004029936A1 - High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer - Google Patents
High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer Download PDFInfo
- Publication number
- WO2004029936A1 WO2004029936A1 PCT/KR2003/001949 KR0301949W WO2004029936A1 WO 2004029936 A1 WO2004029936 A1 WO 2004029936A1 KR 0301949 W KR0301949 W KR 0301949W WO 2004029936 A1 WO2004029936 A1 WO 2004029936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recording medium
- layer
- mask layer
- high density
- super
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910052814 silicon oxide Inorganic materials 0.000 title claims abstract description 20
- 238000002844 melting Methods 0.000 title claims abstract description 19
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 19
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 19
- 239000010410 layer Substances 0.000 claims abstract description 78
- 230000008018 melting Effects 0.000 claims abstract description 13
- 239000011241 protective layer Substances 0.000 claims abstract description 11
- 230000003287 optical effect Effects 0.000 claims abstract description 10
- 230000001939 inductive effect Effects 0.000 claims abstract description 6
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 5
- 239000004417 polycarbonate Substances 0.000 claims abstract description 5
- 230000002427 irreversible effect Effects 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 230000002441 reversible effect Effects 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910003070 TaOx Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 description 7
- 229910052906 cristobalite Inorganic materials 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 7
- 229910052682 stishovite Inorganic materials 0.000 description 7
- 229910052905 tridymite Inorganic materials 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910000618 GeSbTe Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B7/2433—Metals or elements of Groups 13, 14, 15 or 16 of the Periodic Table, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B7/2578—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B9/00—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
- G11B9/12—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24312—Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24314—Metals or metalloids group 15 elements (e.g. Sb, Bi)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24316—Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
Definitions
- the present invention relates to a high density recording medium, and more particularly, to a high density recording medium with a super-resolution near-field structure that is manufactured using a high-melting point metal oxide or silicon oxide mask layer.
- magneto-optical recording media such as mini disks (MDs)
- information is read by detecting the rotation of a straight polarized light reflected from a magnetic film according to the magnetic force and the magnetization direction of the magnetic film.
- the rotation of the reflected light is known as the "Kerr Effect”.
- phase change recording media such as digital versatile discs (DVDs)
- information is read based on the difference in reflectivity due to the different absorption coefficients of an optical constant between an amorphous recorded domain and a crystalline non-recorded domain of the recording medium.
- a super-resolution near-field structure utilizes local surface plasmons generated in its special mask layer to reproduce information.
- the super-resolution near-field structure is classified as an antimony (Sb) transmission type which has an antimony mask layer that becomes transparent by laser irradiation when reproducing information from the recording medium or as a silver oxide decomposition type which has a silver oxide (AgO x ) mask layer that decomposes into oxygen and silver, which acts as a scattering source inducing local plasmons.
- Sb antimony
- AgO x silver oxide
- FIG. 1 illustrates the structure of a recording medium using a conventional super-resolution near-field structure.
- the recording medium includes a second dielectric layer 112-2 made of, for example, ZnS-SiO 2 , a recording layer 115 made of, for example, GeSbTe, a protective layer 114 made of dielectric materials, for example, ZnS-SiO 2 or Si , a mask layer 113 made of, for example, Sb or AgO x , a first dielectric layer 112-1 made of, for example, ZnS-SiO 2 or SiN, and a transparent polycarbonate layer 111 , which are sequentially stacked upon one another.
- the mask layer 113 is made of Sb, SiN is used for the protective layer 114 and the first dielectric layer 112-1.
- the protective layer 114 prevents reaction between the recording layer 115 and the mask layer 113 and is a site upon which a near field acts when reproducing information.
- Sb of the mask layer 113 becomes transparent, and AgO x of the mask layer 113 decomposes into oxygen and silver, which acts as a scattering source inducing local plasmons.
- the recording medium is irradiated with a laser beam of about 10-15 mW emitted from a laser source 118 through a focusing lens (not shown) to heat the recording layer 115 above 600°C so that a laser-irradiated domain of the recording layer 115 becomes amorphous and has a smaller absorption coefficient k of an optical constant (n,k), regardless of the change of refractive index n of the optical constant (n,k).
- the crystalline structure of Sb changes or AgO x irreversibly decomposes, thereby acting as a scattering source which generates plasmons with the result that light of a shorter wavelength than the radiated laser beam is generated.
- the protective layer 114 serves as a super-resolution near-field toward the recording layer 115.
- the protective layer 114 serves as a super-resolution near-field toward the recording layer 115.
- the present invention provides a high density recording medium with a super-resolution near-field structure that ensures improved thermal stability and noise characteristics during information reproduction therefrom, by adopting a mask layer comprising a high-melting point metal oxide or silicon oxide.
- a high density recording medium with a super-resolution near-field structure including a sequential stack of a second dielectric layer, a recording layer, a protective layer, a mask layer, a first dielectric layer, and a polycarbonate layer, wherein the mask layer comprises high melting point metal oxide or silicon oxide to generate a near field by optically or thermally inducing physical changes in the crystalline structure and optical properties of the high melting point metal oxide or silicon oxide.
- a super-resolution near-field high density recording medium according to the present invention that offers effective thermal stability and improved noise characteristics during reproduction may be realized with the mask layer comprising high melting point metal oxide or silicon oxide.
- a super-resolution near-field high density recording medium according to the present invention that offers effective thermal stability and improved noise characteristics during reproduction may be realized with a mask layer comprising WO x as a high melting point metal oxide showing reversible physical changes.
- a super-resolution near-field high density recording medium according to the present invention that offers effective thermal stability and improved noise characteristics during reproduction may be realized with a mask layer comprising TaO x or AuO x as a high melting point metal oxide showing irreversible physical changes.
- a super-resolution near-field high density recording medium according to the present invention that offers effective thermal stability during reproduction may be realized with a mask layer comprising SiO x as a silicon oxide showing irreversible physical changes.
- a super-resolution near-field high density recording medium that offers effective thermal stability and improved noise characteristics during reproduction may further include a reflective layer comprising silver (Ag) or aluminum (Al) below the second dielectric layer.
- FIG. 1 illustrates a high density recording medium with a conventional super-resolution near-field structure
- FIG. 2 illustrates a high density recording medium with a super-resolution near-field structure according to an embodiment of the present invention
- FIG. 3 is a gram of carrier to noise ratio (CNR) versus mark length, for the recording medium according to the present invention and the conventional one; and
- FIG. 4 is a graph of noise level versus mark length, for the recording medium according to the present invention and the conventional one.
- FIG. 2 illustrates a high density recording medium with a super-resolution near-field structure according to an embodiment of the present invention.
- the high density recording medium of FIG. 2 includes a reflective layer made of silver (Ag) or aluminum (Al), a second dielectric layer 122-2 made of, for example, ZnS-SiO 2 , a recording layer 125 made of, for example, GeSbTe, a protective layer 124 made of a dielectric material, for example, ZnS-SiO 2 /SiN, a mask layer 123, a first dielectric layer 122-1 made of, for example, ZnS-SiO 2 /SiN, and a transparent polycarbonate layer 121 , which are sequentially stacked upon one another.
- a reflective layer made of silver (Ag) or aluminum (Al)
- a second dielectric layer 122-2 made of, for example, ZnS-SiO 2
- a recording layer 125 made of, for example, GeSbTe
- the mask layer 123 is made of one of high-melting point metal oxide and silicon oxide.
- high-melting point metal oxide includes WO x which shows nearly reversible physical changes for improving thermal stability and noise characteristics during reproduction from the recording medium and TaO x or AuO x which exhibits irreversible physical changes and effectively improves noise characteristics.
- An example of silicon oxide is SiO x which leads to irreversible physical changes and effectively improves noise characteristics.
- the protective layer 124 prevents reactions between the recording layer 125 and the mask layer 123 and serves as a site where a super-resolution near-field acts upon during reproducing information.
- the mask layer 123 acts as a scattering source for generating local plasmons through its physical changes in crystalline structure and optical properties.
- the reflective layer 128 made of Ag or Al is for inducing physical changes in the crystalline structure and optical properties of the recording layer 125 which faces away from the incident laser beam side and the second dielectric layer 122-2 to occur nearly as much as those of the upper portion of the recording layer 125 which faces the incident laser beam side and the first dielectric layer 122-1.
- the mask layer 124 is described as being made of WO x which shows nearly reversible physical changes.
- the laser irradiated domain of the recording medium becomes amorphous and have a reduced absorption coefficient k of an optical constant (n,k), regardless of the change of refractive index n.
- the protective layer 124 serves as a super-resolution near-field toward the recording layer 125.
- FIG. 3 is a graph of carrier to noise ratio (CNR) versus mark length, for high-density recording media with a super-resolution near-field structure according to the present invention and conventional one.
- CNR carrier to noise ratio
- the resolution limit mark length at a CNR of 40 dB is 155.8 nm for the conventional super-resolution near-field high density recording medium with a AgO x mask layer and 130 nm for the super-resolution near-field high density recording medium with the WO x mask layer according to the present invention. This result indicates that higher density recording can be achieved with the super-resolution near-field high density recording medium according to the present invention than the conventional one under the same conditions.
- FIG. 4 is a graph of noise level versus mark length, for the super-resolution near-field high density recording medium according to the present invention and the conventional one.
- the results of FIG. 4 were obtained as a result of experimentations under the same conditions as for the results of FIG. 3.
- the noise level of the conventional super-resolution near-field high density recording medium with the AgO x mask layer is -65 dBm
- the noise level of the super-resolution near-field high density recording medium with the WO x mask layer according to the present invention is -76 dBm. This result indicates that the super-resolution near-field high density recording medium according to the present invention offers more effective noise characteristics than the conventional one.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/529,044 US7651793B2 (en) | 2002-09-26 | 2003-09-24 | High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer |
AU2003263652A AU2003263652A1 (en) | 2002-09-26 | 2003-09-24 | High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer |
EP03798584A EP1543505A4 (en) | 2002-09-26 | 2003-09-24 | High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-281783 | 2002-09-26 | ||
JP2002281783A JP4221450B2 (en) | 2002-09-26 | 2002-09-26 | Super-resolution near-field high-density recording medium using a refractory metal oxide or silicon oxide mask layer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004029936A1 true WO2004029936A1 (en) | 2004-04-08 |
Family
ID=32040523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2003/001949 WO2004029936A1 (en) | 2002-09-26 | 2003-09-24 | High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer |
Country Status (8)
Country | Link |
---|---|
US (1) | US7651793B2 (en) |
EP (1) | EP1543505A4 (en) |
JP (1) | JP4221450B2 (en) |
KR (1) | KR20050059190A (en) |
CN (1) | CN1316455C (en) |
AU (1) | AU2003263652A1 (en) |
TW (1) | TWI246080B (en) |
WO (1) | WO2004029936A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100388374C (en) * | 2006-06-30 | 2008-05-14 | 中国科学院上海光学精密机械研究所 | Once recording super resolution near field structure CD |
US7442424B2 (en) * | 2004-05-17 | 2008-10-28 | Samsung Electronics Co., Ltd. | Information storage medium having super resolution structure and apparatus for recording to and/or reproducing from the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050086305A (en) * | 2004-02-25 | 2005-08-30 | 삼성전자주식회사 | Super resolution information storage medium and method for making reproducing signal stable |
EP1826758A1 (en) * | 2006-02-24 | 2007-08-29 | THOMSON Licensing | Optical multilayer storage medium using nanoparticles |
CN101286005B (en) * | 2007-04-10 | 2011-03-30 | 国家纳米科学中心 | Local micro photolithography film possessing oxide mask |
CN101960522B (en) * | 2008-03-07 | 2013-09-04 | 汤姆森特许公司 | Optical storage medium comprising a multilevel data layer |
KR100978540B1 (en) * | 2008-07-02 | 2010-08-27 | 연세대학교 산학협력단 | Apparatusfor Measuring light proceeded to backward, which applied plasmonic device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000014590A (en) * | 1998-08-21 | 2000-03-15 | 구자홍 | Optical recording media |
JP2000285536A (en) * | 1999-03-31 | 2000-10-13 | Sanyo Electric Co Ltd | Magneto-optical recording medium |
US20010015949A1 (en) | 1999-12-28 | 2001-08-23 | Toshihiko Nagase | Optical recording medium and recording-reproducing apparatus |
WO2002035540A1 (en) * | 2000-10-26 | 2002-05-02 | Fujitsu Limited | Magnetooptic recording medium and reproducing method and device therefor |
US6411591B1 (en) | 1997-09-18 | 2002-06-25 | Hitachi, Ltd. | Optical recording medium and optical memory device |
US20020154596A1 (en) * | 2001-04-23 | 2002-10-24 | Industrial Technology Research Institute | Super-resolution recordable optical disk |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6335908B1 (en) * | 1999-03-12 | 2002-01-01 | Sanyo Electric Co., Ltd. | Magneto optical recording medium with mask layer |
JP2002025138A (en) | 2000-07-13 | 2002-01-25 | National Institute Of Advanced Industrial & Technology | Optical recording medium and optical recording and reproducing equipment |
TW513615B (en) * | 2000-07-24 | 2002-12-11 | Ritek Corp | Photolithography using a super-resolution near-field structure |
JP4106417B2 (en) * | 2002-05-16 | 2008-06-25 | 三星電子株式会社 | Recording medium having a high melting point recording layer, information recording method for the recording medium, information reproducing apparatus and information reproducing method for reproducing information from the recording medium |
US6896946B2 (en) * | 2002-06-06 | 2005-05-24 | Ritek Corporation | Initiation-free super-resolution optical medium |
JP2004310803A (en) * | 2003-04-01 | 2004-11-04 | Samsung Electronics Co Ltd | Recording medium having super resolution near field structure, and its reproducing method and reproducing device |
-
2002
- 2002-09-26 JP JP2002281783A patent/JP4221450B2/en not_active Expired - Fee Related
-
2003
- 2003-09-24 US US10/529,044 patent/US7651793B2/en not_active Expired - Fee Related
- 2003-09-24 AU AU2003263652A patent/AU2003263652A1/en not_active Abandoned
- 2003-09-24 TW TW092126300A patent/TWI246080B/en not_active IP Right Cessation
- 2003-09-24 EP EP03798584A patent/EP1543505A4/en not_active Ceased
- 2003-09-24 WO PCT/KR2003/001949 patent/WO2004029936A1/en active Application Filing
- 2003-09-24 KR KR1020057005093A patent/KR20050059190A/en not_active Application Discontinuation
- 2003-09-24 CN CNB038228521A patent/CN1316455C/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6411591B1 (en) | 1997-09-18 | 2002-06-25 | Hitachi, Ltd. | Optical recording medium and optical memory device |
KR20000014590A (en) * | 1998-08-21 | 2000-03-15 | 구자홍 | Optical recording media |
JP2000285536A (en) * | 1999-03-31 | 2000-10-13 | Sanyo Electric Co Ltd | Magneto-optical recording medium |
US20010015949A1 (en) | 1999-12-28 | 2001-08-23 | Toshihiko Nagase | Optical recording medium and recording-reproducing apparatus |
WO2002035540A1 (en) * | 2000-10-26 | 2002-05-02 | Fujitsu Limited | Magnetooptic recording medium and reproducing method and device therefor |
US20020154596A1 (en) * | 2001-04-23 | 2002-10-24 | Industrial Technology Research Institute | Super-resolution recordable optical disk |
Non-Patent Citations (3)
Title |
---|
APPLIED PHYSICS LETTERS, vol. 73, no. 15, October 1998 (1998-10-01) |
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 39, no. 2B, 2000, pages 980 - 981 |
See also references of EP1543505A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7442424B2 (en) * | 2004-05-17 | 2008-10-28 | Samsung Electronics Co., Ltd. | Information storage medium having super resolution structure and apparatus for recording to and/or reproducing from the same |
CN100388374C (en) * | 2006-06-30 | 2008-05-14 | 中国科学院上海光学精密机械研究所 | Once recording super resolution near field structure CD |
Also Published As
Publication number | Publication date |
---|---|
TW200405326A (en) | 2004-04-01 |
EP1543505A4 (en) | 2008-05-07 |
AU2003263652A8 (en) | 2004-04-19 |
US20060147757A1 (en) | 2006-07-06 |
TWI246080B (en) | 2005-12-21 |
US7651793B2 (en) | 2010-01-26 |
CN1685401A (en) | 2005-10-19 |
EP1543505A1 (en) | 2005-06-22 |
JP2004118945A (en) | 2004-04-15 |
JP4221450B2 (en) | 2009-02-12 |
KR20050059190A (en) | 2005-06-17 |
CN1316455C (en) | 2007-05-16 |
AU2003263652A1 (en) | 2004-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3866016B2 (en) | Optical information medium and reproducing method thereof | |
US6896946B2 (en) | Initiation-free super-resolution optical medium | |
KR100734641B1 (en) | Optical Recording Medium, Optical Recording/Reproducing Apparatus, Optical Recording Apparatus and Optical Reproducing Apparatus, Data Recording/Reproducing Method for Optical Recording Medium, and Data Recording Method and Data Reproducing Method | |
JP2007538346A (en) | Super-resolution near-field structure recording medium, and reproducing method and apparatus thereof | |
JP4814476B2 (en) | Reproduction method of optical information medium | |
US7572496B2 (en) | Recording medium having high melting point recording layer, information recording method thereof, and information reproducing apparatus and method therefor | |
WO1999014764A1 (en) | Optical recording medium and optical memory device | |
JP3360542B2 (en) | Optical information recording medium | |
US7651793B2 (en) | High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer | |
US6319582B1 (en) | Optical recording medium | |
US20050207327A1 (en) | Recording method using reaction and diffusion, recording medium recorded on using the recording method, and recording/reproducing apparatus for the recording medium | |
JP4265861B2 (en) | Optical reading / writing method, information recording medium, and optical apparatus | |
JP4040280B2 (en) | Optical recording medium | |
JP4998224B2 (en) | Optical information recording medium | |
US6819648B1 (en) | Optical sample and method of writing and reading information on the same | |
JPH05185733A (en) | Data recording medium | |
JP4381540B2 (en) | Reproduction method of optical recording medium | |
JP4134110B2 (en) | Optical recording medium | |
KR20050040440A (en) | Optical recording medium | |
JP2003263776A (en) | Optical recording medium | |
JPH08203123A (en) | Optical disk | |
JP2008544430A (en) | Super-resolution medium | |
JPH10162431A (en) | Optical disk |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003798584 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020057005093 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038228521 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057005093 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003798584 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2006147757 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10529044 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10529044 Country of ref document: US |