WO2004027492A1 - Display unit and electronic apparatus equipped with display unit - Google Patents

Display unit and electronic apparatus equipped with display unit Download PDF

Info

Publication number
WO2004027492A1
WO2004027492A1 PCT/JP2003/012024 JP0312024W WO2004027492A1 WO 2004027492 A1 WO2004027492 A1 WO 2004027492A1 JP 0312024 W JP0312024 W JP 0312024W WO 2004027492 A1 WO2004027492 A1 WO 2004027492A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
double
light guide
prism sheet
Prior art date
Application number
PCT/JP2003/012024
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Sasagawa
Akimasa Yuuki
Naoto Sugawara
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2004538005A priority Critical patent/JP3930021B2/en
Priority to US10/523,205 priority patent/US7210836B2/en
Publication of WO2004027492A1 publication Critical patent/WO2004027492A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays

Definitions

  • the present invention relates to a display device, and more particularly to a display device used for a portable information terminal having a small display surface and capable of simultaneously displaying different screens with the same bright screen and the same bright screen. Fine
  • the stereoscopic display device generally presents an image having parallax from each viewpoint to the left and right eyes of the observer.
  • the method of using glasses is to switch the left and right parallax images that are displayed alternately in a time-division manner so that the glasses reach the left and right eyes of the observer through glasses.
  • the observer must Glasses must be worn, which is uncomfortable and annoying.
  • a method using a lenticular lens or a paralux barrier is generally used.
  • the display device displays left and right parallax images for each vertical pixel line, and the light emitted from each pixel line is guided to the left and right eyes of the observer.
  • a lenticular lens and a parallax barrier are installed. Since it is necessary to display the left and right parallax images for each vertical pixel line of the display device, the image is divided into one line for the right and left for the number of pixels in the display device, resulting in an image with half the number of pixels .
  • the lenticular Since it is difficult to switch the presence or absence of a single lens, it is necessary to display different pixel lines on the left and right eyes, as in a stereoscopic image, when displaying a planar image. Will drop.
  • the parallax barrier method the parallax barrier itself is composed of a liquid crystal element, etc., so that the parallax barrier can be erased when displaying a flat image, so that the flat display is performed at the original resolution of the display panel.
  • the display becomes dark because a part of the light source light is blocked by a parallax barrier.
  • the left and right parallax images are displayed in a time-division manner on a transmissive display panel, and the directivity of the light source that illuminates them is switched.
  • a transmissive display panel 4 a collimating lens 6 provided on the rear surface, and further provided behind it, are sequentially provided.
  • An array 7 of light sources that emit light is provided, and light emitted from the light source section 7a that emits light in the array of light sources is transmitted by a collimating lens 6 disposed in front of the light source section 7a. After passing through, it is converged with directivity. Therefore, the image on the transmissive display panel can be observed only in the direction in which it is converged.
  • the left and right images can be viewed These parallax images are guided to the left and right eyes of the observer, respectively, enabling stereoscopic vision.
  • This method of controlling the light emission position and using a lens with a collimating lens allows extremely accurate conversion of the position of the light emitting point on the light source into the angle of illumination light divided by the viewing position with the collimating lens. Good directionality of illumination light can be obtained, and high-quality stereoscopic vision can be achieved by good separation of left and right images.
  • Japanese Patent Application Laid-Open Publication No. 63-106 Japanese Patent Application Laid-Open No. H10-161601 discloses a switchable stripe-shaped mask that switches light from a light source using a switchable element such as a liquid crystal element.
  • a method has been proposed in which a lenticular sheet that divides a light source into a tris-like light source and acts as a collimating lens disposed after that is used to obtain the directivity of the light source.
  • a prism sheet 8 is placed under the liquid crystal panel 4 by superposing two sets of the light source 1a, lb and the backlight light guide plates 2a, 2b.
  • This method of switching the directivity of the illumination light by using the light deflecting effect of the above-mentioned method eliminates the need for an expensive switchable shirt element. Since the adjustment is performed only by adjustment, it is difficult to obtain sufficient directivity in the above-described method in which the directivity of the illumination light can be clearly defined by the shutter element and the collimator lens.
  • the angle of light emitted from the light guide plate is distributed around 60 to 80 degrees with a peak of 70 degrees.
  • the light guide plate will vary to some extent depending on the shape of the light guide plate and the light extraction structure. In order to obtain uniform brightness while maintaining the light emission angle constant within this range, an advanced light guide plate is required. Shape design and shape restrictions are required. For this reason, the directivity is reduced and crosstalk between left and right is likely to occur, and in order to obtain a good light distribution characteristic, the light guide plate must be connected to the light guide plate as disclosed in Japanese Patent Application Laid-Open No. 2001-66657. There were problems such as the need to prepare a set. i
  • the method of using glasses is troublesome to wear glasses, and the method of using lenticular and parallax barriers is not a method of using glasses when using glasses.
  • the resolution or brightness of the planar image was reduced.
  • a method using a switching shirt element and a collimating lens requires an expensive switching shirt element, resulting in high cost.
  • direct control of directivity using a light guide plate is difficult to control, direct crosstalk is likely to occur, and two knocklights are used. I was learning.
  • the present invention solves such a problem, and can realize a high-quality stereoscopic image with no reduction in resolution for both stereoscopic and planar images and with few problems such as crosstalk, and is simple and low-cost.
  • Another object of the present invention is to provide a display device that can perform stereoscopic viewing and simultaneously display different screens on the same screen without using glasses suitable for a portable information terminal. Disclosure of the invention
  • a display device includes a light guide plate and light sources respectively disposed on two light incident end faces facing the light guide plate, and a light guide plate disposed on a light exit surface side of the light guide plate, and a light guide plate facing the light guide plate.
  • a double-sided prism sheet having a triangular prism array extending in a direction parallel to the light incident end face of the light guide plate, a cylindrical lens array extending in parallel with the triangular prism array on a surface facing the surface, And a transmissive display panel arranged on the light exit surface side of the light source. The light from the light source is shifted left and right in synchronization with the left and right parallax images alternately displayed on the transmissive display panel by a synchronous driving means.
  • a double-sided prism sheet having a triangular prism array extending in a direction parallel to the light incident end face, a cylindrical lens array extending parallel to the triangular prism array on a surface facing the above-mentioned surface, and a double-sided prism sheet.
  • a transmissive display panel disposed on the exit surface side; and a synchronous driving unit for displaying a parallax image in synchronization with the light source on the transmissive display panel, wherein light from the light source is converted into a right and left parallax. Since the light is emitted from the transmissive display panel at a corresponding angle, there is an effect that a high-quality stereoscopic view with little crosstalk and different screens can be simultaneously displayed on the same screen.
  • FIG. 1 is a side view for explaining main parts of a display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram for explaining an operation of the display device according to the first embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing light distribution characteristics of light emitted from the light guide plate and the display panel of the display device according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram for explaining a transmitted light path of a double-sided prism sheet used in the display device according to the first embodiment of the present invention.
  • FIG. 5 is a configuration diagram for explaining the operation of the double-sided prism sheet used in the display device according to the first embodiment of the present invention.
  • FIG. 6 is a configuration diagram for explaining focal positions of lenses of a cylindrical lens array formed in a double-sided prism sheet used in the display device according to the first embodiment of the present invention.
  • FIG. 7 is a configuration diagram for explaining the angle defining action of the double-sided prism sheet used in the display device according to Embodiment 1 of the present invention.
  • FIG. 8 is a characteristic diagram showing light distribution characteristics of a double-sided prism sheet used in the display device according to Embodiment 1 of the present invention.
  • FIG. 9 is a configuration diagram for explaining conditions for calculating light distribution characteristics of the double-sided prism sheet according to Embodiment 1 of the present invention.
  • FIG. 10 is a characteristic diagram showing light distribution characteristics of a prism sheet shown as a comparative example for explaining Embodiment 1 of the present invention.
  • FIG. 11 is a configuration diagram for explaining an optical path change due to the thickness and pitch of a double-sided prism sheet as a comparative example in Embodiment 1 of the present invention.
  • FIG. 12 is a configuration diagram for explaining an optical path change due to the thickness and pitch of a double-sided prism sheet as a comparative example in Embodiment 1 of the present invention.
  • FIG. 13 is a characteristic diagram for explaining changes in light distribution characteristics when the thickness and pitch of the double-sided prism sheet change in Embodiment 1 of the present invention.
  • FIG. 14 is a characteristic diagram for explaining changes in light distribution characteristics when the thickness and pitch of the double-sided prism sheet are changed in Embodiment 1 of the present invention.
  • FIG. 15 is a characteristic diagram for explaining changes in light distribution characteristics when the thickness and pitch of the double-sided prism sheet change in Embodiment 1 of the present invention.
  • FIG. 16 is a configuration diagram for explaining an optical path change according to the prism angle of the triangular prism array formed on the double-sided prism sheet in the first embodiment of the present invention.
  • FIG. 17 is a characteristic diagram for explaining a change in light distribution characteristics when the prism angle of the triangular prism array formed on the double-sided prism sheet changes in Embodiment 1 of the present invention.
  • FIG. 18 is a characteristic diagram for explaining a change in light distribution characteristics when the prism angle of the triangular prism array of the double-sided prism sheet changes in Embodiment 1 of the present invention.
  • FIG. 19 is a characteristic diagram for explaining a change in light distribution characteristics when the prism angle of the triangular prism array of the double-sided prism sheet changes in Embodiment 1 of the present invention.
  • FIG. 20 is a front view for describing an electronic information device according to Embodiment 2 of the present invention.
  • FIG. 21 is a configuration diagram for explaining a mobile phone according to Embodiment 3 of the present invention.
  • FIG. 22 is a configuration diagram for explaining a conventional stereoscopic display device using a light source arrangement and a collimating lens.
  • FIG. 23 is a side view for explaining a conventional stereoscopic display device by backlight light distribution control.
  • FIG. 1 is a side view for explaining a display device for a portable information device according to a first embodiment of the present invention.
  • la and lb are light sources
  • 2 is a light guide plate having a rectangular side surface and an overall flat plate shape, and has a predetermined width in a direction orthogonal to the paper surface.
  • This Light sources 1a and lb are arranged on both light incident end face sides of the light guide plate 2 so as to face each other.
  • Reference numeral 2a denotes light extraction means formed on the surface of the light guide plate 2 by reflection printing, surface roughening, or the like.
  • Reference numeral 3 denotes a double-sided prism sheet disposed on the exit surface of the light guide plate 2
  • reference numeral 4 denotes a transmissive liquid crystal panel
  • a hatched portion denotes a liquid crystal layer.
  • Reference numeral 5 denotes control means for controlling the synchronization of the display switching of the parallax images between the light sources 1 a and 1 b and the transmissive liquid crystal panel 4.
  • FIG. 1B is an enlarged side view showing the shape of the double-sided prism sheet 3.
  • the double-sided prism sheet 3 is formed of a material having a refractive index of 1.5, and has a triangular shape formed of an isosceles triangle having a vertex angle K of 60 degrees with a ridge line extending in a direction parallel to the light incident end face of the light guide plate 2 on the lower surface.
  • a prism array 32 is arranged so as to extend in a direction perpendicular to the plane of the paper, and a cylindrical lens array 31 extending in a direction parallel to the triangular prism array 32 (a direction orthogonal to the plane) is provided on the upper surface. It is arranged with the same pitch P as the shape prism row 32.
  • the curvature is adjusted so that the focal position of each lens that forms the cylindrical lens array 31 coincides with the vertex of the triangular prism array 32 on the lower surface, and the pitch P of the cylindrical lens array 31 on the upper surface and both sides are adjusted.
  • the thickness L of the prism sheet 3 is configured such that the value of (thickness L / pitch P) is 3.
  • the stereoscopic operation will be described with reference to FIG.
  • FIG. 2A only the left light source 1a is on, and the right light source 1b is off.
  • the light emitted from the light source 1a propagates in the light guide plate 2 and is extracted out of the light guide plate 2 by the light extraction means 2a installed in the light guide plate 2.
  • the light distribution is such that the emission angle is largely deviated toward the side opposite to the light source 1a, as shown in the light distribution characteristics shown in FIG. 3A.
  • FIG. 3A the light distribution characteristics shown in FIG.
  • the horizontal axis represents the light emission angles of the light sources 1a and 1b, and 0 degrees represents the front direction (the normal direction of the transmissive liquid crystal panel).
  • the angle inclined to the side is the + direction, and the vertical axis is the luminance (unit: cd / m 2 ).
  • the center of the transmissive liquid crystal panel 4 The angle between the straight line connecting the left eye 6a or the right eye 6b and the normal direction of the transmissive liquid crystal panel 4 is about 6 degrees. That is, when the viewing distance is 300 mm, the light emitted from the transmissive liquid crystal panel 4 has sufficient intensity in the leftward direction of 6 degrees, and hardly emits light in the rightward direction of 6 degrees.
  • the image is recognized by the left eye 6a of the observer, but the light does not reach the right eye 6b and the image is not recognized.
  • the light distribution shown in Fig. 3B it is possible to make the image recognized only by the left eye 6a of the observer.
  • Fig. 2B if the left light source 1a is turned off and only the right light source 1b is turned on, contrary to the case of Fig. 2A, the observer's right eye 6b Only images are recognized.
  • the light sources 1a and 1b are alternately turned on and the parallax images on the left and right are displayed on the transmissive liquid crystal panel 4 in synchronization with the lighting of the light sources 1a and lb by the synchronization control means 5, the observer's view can be obtained.
  • Different parallax images can be recognized by the left eye 6a and the right eye 6b, and stereoscopic viewing by parallax becomes possible.
  • the right eye will be at 16 degrees right and the left eye will be at 2 degrees right.
  • the right eye image is recognized as a normal plane image by the left and right eyes.
  • the left eye is 16 degrees left and the right is 2 degrees left. You will come to the right position.
  • the image for the left eye is recognized as a normal plane image by the left and right eyes.
  • FIG. 4 is a view showing a transmission optical path of the double-sided prism sheet
  • FIG. 5 is a view for explaining the operation of the double-sided prism sheet
  • FIG. 6 is a view for explaining a focal position of a cylindrical lens of the double-sided prism sheet.
  • FIG. 7 is a diagram for explaining the angle defining action of the double-sided prism sheet.
  • light emitted from the light guide plate 2 inclined rightward is formed on the double-sided prism sheet 3.
  • the light that is totally reflected by the slope 32 b and enters the cylindrical lens array 31 directly above is emitted from the region 104 in FIG. 5, and is directly above the cylindrical lens array 31. It can be seen that there is no light passing through the same optical path as the light incident on the row 3 1. If the focal position of the cylindrical lens array 31 is matched with the vertex B of the prism of the triangular prism array 32 as shown in Fig. 6, the cylindrical lens is totally reflected by the slope 32b and is directly above The light incident on the row 3 1 is emitted from the right side of the optical axis A of the cylindrical lens row 3 1 on the horizontal plane C including the focal point of the cylindrical lens row 3 1 and is incident on the cylindrical lens row 3 1 directly above.
  • n is the refractive index of the material forming the double-sided prism sheet 3
  • L is the thickness of the double-sided prism sheet 3
  • FIG. 8 is a characteristic diagram showing a result obtained by performing a simulation on the light distribution characteristics of the double-sided prism sheet 3.
  • the horizontal axis represents the angle of incidence on the double-sided prism sheet 3, and the vertical axis represents the amount of light emitted from the viewing region of both eyes (arbitrary scale, numerical values used in the simulation).
  • the solid line indicates the amount of light emitted to the left-eye viewing area, and the broken line indicates the amount of light emitted to the right-eye viewing area.
  • the simulation was performed by injecting light with a fixed angle into a single double-sided lens sheet 3 as shown in FIG. 9 and calculating the angular distribution of the emitted light.
  • ⁇ 1 is the angle of incidence on the double-sided prism sheet 3
  • Fig. 8 shows a triangular prism 31 made of a material having a refractive index of about 1.5, as shown in Fig. 9B.
  • a simulation is performed on a double-sided lens sheet 3 that has a ratio of 1: 3 to the lens L and is configured so that the focal point of the lens of the cylindrical lens array 3 1 is located at the vertex of the triangular prism.
  • the horizontal axis indicates the light incident angle, and the vertical axis indicates the amount of light emitted to the visible range from 4.5 to 10 degrees to the left and from 4.5 to 10 degrees to the right, corresponding to the left and right eyes. Is plotted on an arbitrary scale. The solid line in FIG.
  • the angle of light incident on the left and right eyes is determined by the viewing distance, and is about 9 degrees at 200 mm, about 6 degrees at 300 mm, and about 4.5 degrees at 400 mm.
  • the characteristics are evaluated using light with an emission angle of 4.5 degrees to 10 degrees corresponding to a viewing distance of 200 mm to 400 mm. From Fig. 8, the horizontal direction is 50 degrees to 80 degrees. It can be seen that light at an incident angle of? Is emitted to the viewing range, and light at other incident angles is hardly emitted to the viewing range.
  • FIG. 10 the light distribution characteristics of a lens sheet having no cylindrical lens array disclosed in Japanese Patent Application Laid-Open No. 2001-66547 are shown in FIG. 10 as a comparative example.
  • the solid line in FIG. 10 indicates the amount of light emitted to the left-eye viewing area, and the broken line indicates the amount of light emitted to the right-eye viewing area.
  • the horizontal axis in FIG. 10 is the light incident angle on the prism sheet, and the vertical axis is the amount of emitted light (arbitrary scale, 'the numerical values used in the simulation).
  • the incident angle range of the light guided to the left and right eyes is narrow, about 10 degrees in width, and when light inclined from the optimal area enters, the angle difference is about 5 degrees, It can be seen that light guided to the eye of the user is emitted. For this reason, it is necessary to make the light emitted from the light guide plate have a sharp light distribution characteristic that matches this optimum incident angle range. ⁇ It was necessary to use a cryed structure.
  • the light distribution may vary depending on the thickness L and the pitch P of the double-sided prism sheet 3, and crosstalk may easily occur.
  • the ratio of pitch to thickness (thickness L / pitch P) is small, as shown in Fig. 11, the light 107 that directly enters the cylindrical lens array 31 from the slope 32a is May enter the viewing area.
  • the broken line in FIG. 11 shows a configuration in which the ratio of the pitch to the thickness (thickness L / pitch P) is 3 as described above.
  • the light is totally reflected by the slope 3 2 d next to the triangular prism array 32 and the cylindrical lens array 3 1
  • the light 109 incident on the image may enter the viewing area.
  • the intersection of the optical path line of the incident light entering the lenses in the cylindrical lens array and the horizontal plane C including the vertices of the prisms in the triangular prism array is opposite to the light passing through the regular optical path with respect to the optical axis A. Side, so crosstalk may occur.
  • the dashed line in FIG. 12 shows the configuration in the case where the ratio between the pitch and the thickness (thickness L Z pitch P) is 3, similarly to the dashed line in FIG.
  • Figs. 13 to 15 show the light distribution characteristics of the double-sided prism sheet 3 when the ratio of the pitch P to the thickness L (thickness LZ pitch P) of the double-sided prism sheet 3 was changed by 1.7.
  • the results of plotting are shown in the same manner as in FIG. FIGS. 13A and 13B show the above ratios of 1.7 and 2.3, and FIGS. 14A and 14B show the above ratios of 2.7 and 4.0.
  • 5A and 15B respectively show the light distribution characteristics of the double-sided prism sheet 3 when the above ratio is 4.3 and 4.7.
  • the horizontal axis represents the angle of incidence on the double-sided prism sheet 3
  • the vertical axis represents the amount of emitted light (arbitrary scale and numerical values used in simulation).
  • the solid line indicates the amount of light emitted to the left-eye viewing area, and the broken line indicates the amount of light emitted to the right-eye viewing area.
  • the thickness Z pitch is 4.3, the incident angle is in the range of about 50 to 60 degrees.
  • a peak causing crosstalk occurs, and the height of the peak increases as the thickness becomes larger, because of the influence of light due to the light path such as light 109 shown in FIG. Therefore, when the thickness pitch is in the range of 2.3 or less and in the range of 4.3 or more, It is expected that loss talk will increase, and it is understood that it is preferable to use the thickness Z pitch in the range of about 2.5 to 4.0.
  • the thickness / pitch is about 2.5 to 4.0.
  • the apex angle of the prisms of the triangular prism row 32 formed on the double-sided prism sheet 3 changes from the angle shown by the solid line to the angle shown by the broken line, as shown in FIG. Even if the light passes through the same optical path after being reflected, it will have different optical paths like optical paths 112 and 113 before being totally reflected, and the incident angle to the double-sided lens sheet 3 will be It will be different.
  • the optimum incident angle range for emitting light to the viewing area may change. If the area that does not emit light within the viewable range for either the left or right eye becomes narrow due to the change in the incident angle range, crosstalk is likely to occur, and 60 degrees as shown in Fig. 3A. Especially in the range from If the matching with the light distribution in the backlight light guide plate from which many lights are emitted is deteriorated, the efficiency is lowered, which is not preferable.
  • the plotted results are shown.
  • 17 to 19 is the angle of incidence on the double-sided prism sheet 3, and the vertical axis is the amount of emitted light (arbitrary scale, numerical values used in the simulation).
  • the solid line indicates the amount of light emitted to the left-eye viewing area, and the broken line indicates the amount of light emitted to the right-eye viewing area.
  • the light sources la and lb are turned on alternately, and a double-sided prism sheet
  • a double-sided prism sheet By controlling the directivity of the light using 3 and displaying the left and right parallax images on the transmissive liquid crystal panel 4 in synchronization with this, high-quality stereoscopic viewing can be performed with a simple configuration.
  • a high-quality planar image can be displayed without lowering the resolution and the like.
  • the focal position of the lens of the cylindrical lens array 31 formed on the double-sided prism sheet 3 is set to a position that coincides with the vertex of the prism of the triangular prism array 32, and the angle of the emitted light
  • the focal length of the lens of the cylindrical lens array 31 is set to be shorter, and on the horizontal plane C including the apex of the prism of the triangular prism array 32 at the position of the observer's eye.
  • a configuration in which a virtual light source is transferred can also be adopted.
  • a high-quality parallax image with little crosstalk and the like can be presented to the left and right eyes separately, and high-quality display can be performed without a decrease in resolution in both the stereoscopic display and the planar display. There is an effect that a device can be obtained.
  • FIG. 20 is a front view for explaining an electronic information device according to Embodiment 2 for carrying out the present invention.
  • the inside of the electronic information device is displayed around the display device to explain the details of the display device.
  • light sources la and lb are arranged on the left and right sides of the light guide plate 2 in the main body 10 of a portable electronic organizer, which is an electronic information device, so as to face each other.
  • the light source 1 is composed of a light emitting diode 8 and a light guide 9, and the light emitted from the light emitting diode 8 travels through the light guide 9 and emits light little by little toward the light guide plate 2 to uniformly guide the light. Light is emitted to the side of the light plate 2.
  • Reference numeral 3 denotes a double-sided prism sheet disposed on the light exit surface of the light guide plate 2, and the triangular prism array and the cylindrical prism array extend in the vertical direction.
  • 4 is a transmissive liquid crystal panel placed on a double-sided prism sheet.
  • 1 1 is an operation button.
  • the operation will be described with reference to FIG.
  • the light sources 1a and 1b are alternately turned on and the parallax images on the left and right are displayed on the transmissive liquid crystal panel 4 in synchronization with the light sources la and lb by the synchronization control means 5 (not shown)
  • the observer's left eye 6a and right eye 6b can recognize different parallax images, and stereoscopic viewing with parallax becomes possible.
  • the right eye is at 16 degrees right and the left eye is at 2 degrees right. Will be. In this case, only the image for the right eye is recognized as a normal plane image by the left and right eyes. Also, if the observer views from an angle of 8 degrees to the left, the left eye will be at 16 degrees left and the right will be at 2 degrees left. In this case, only the image for the left eye is recognized as a normal plane image by the left and right eyes. At this time, if completely different images are alternately displayed in synchronization with the lighting of the right-eye light sources 1a and 1b, two different images can be recognized depending on the viewing angle of the observer.
  • FIG. 21 is a configuration diagram for explaining an electronic information device and a display device according to a third embodiment for carrying out the present invention.
  • the display device according to the first embodiment is arranged in a mobile phone 12 which is an electronic information device.
  • the display device is arranged so as to display different images vertically. That is, the light sources 1 c and 1 d are arranged above and below the light guide plate 2 so as to face each other.
  • Reference numeral 3 denotes a double-sided prism sheet disposed on the light exit surface of the light guide plate 2, and the triangular prism array and the cylindrical prism array extend in the left-right direction.
  • 4 is a transmissive liquid crystal panel placed on a double-sided prism sheet.
  • 1 1 is an operation button.
  • the operation will be described with reference to FIG. If the light sources 1 c and 1 d are turned on alternately, and two different images are displayed on the transmissive liquid crystal panel 4 by the synchronization control means 5 (not shown) in synchronization with the lighting of the light sources lc and Id,
  • the synchronization control means 5 not shown
  • the observer tilts the mobile phone 12 and looks not from the front of the transmissive liquid crystal panel but from an angle of 2 degrees to 14 degrees, for example, an upper 6 degrees
  • the left and right eyes are both In this case, only the image when the light source 1c arranged on the upper side is lit is recognized as a normal planar image.
  • both the left and right eyes will come to the position of 6 degrees below.
  • only the image when the light source 1d arranged below the left and right eyes is turned on is recognized as a normal planar image.
  • two different images can be recognized depending on the viewing angle of the observer.
  • the left and right images do not differ from each other, and the left and right eyes do not recognize different images at the same time, so the two images are mixed in a wide angle range. There is no single clear image visible. Also, since the viewing angle is wide, the observer does not need to fix his wrist at a narrow angle, so holding the mobile phone is easy.
  • the parallax image is projected as two images, and when the observer views from the front of the transmissive liquid crystal panel of the mobile phone 12, the stereoscopic image can be visually recognized. Needless to say.
  • the parallax image should be displayed so that the right-eye image of the parallax image enters the right eye and the left-eye image enters the left eye, and the parallax image to be displayed faces up and down correctly. It is.
  • a display device suitable for a portable information terminal capable of performing stereoscopic viewing and simultaneously displaying different screens on the same screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A display unit comprising a light guide plate, light sources respectively disposed at two different light input end surfaces thereof, a double-sided prim sheet having a triangular prism row provided on a surface facing the light guide plate to extend in a direction parallel to the light input end surface of the light guide plate and a cylindrical lens row provided on a surface opposite to the above surface to extend in parallel to the triangular prism row, a transmission type display panel disposed on the output surface side of this double-sided prism sheet, and a synchronous drive means for displaying a parallax image on the transmission type display panel in synchronization with the light sources, wherein light rays from the light sources are respectively output from the transmission type display panel at angles corresponding to right and left parallaxes to enable a 3-D display.

Description

表示装置および表示装置を備えた電子機器 技術分野  Display device and electronic device equipped with display device
この発明は、 表示装置、 特に小型の表示面をもつ携帯情報端末用とし て使用される立体視および同一明画面で同時に異なる画面表示が可能な表 示装置に関するものである。 細  The present invention relates to a display device, and more particularly to a display device used for a portable information terminal having a small display surface and capable of simultaneously displaying different screens with the same bright screen and the same bright screen. Fine
背景技術 Background art
立体表示装置は、 観察者の左右眼に各々の視点からの視差を有する画 像を提示する方法が一般的である。 この観察者の左右眼に各々の視差を 有する像を提示する方法としては、 従来、 特殊な眼鏡を利用する方式と 眼鏡無し方式の二つが挙げられる。  The stereoscopic display device generally presents an image having parallax from each viewpoint to the left and right eyes of the observer. Conventionally, there are two methods of presenting images having parallax to the left and right eyes of the observer, a method using special glasses and a method without glasses.
眼鏡を利用する方法は、 時分割で交互に表示される左右視差画像を、 眼鏡によって観察者の左右眼に届く ように切り替える方法で、 立体表示 を観察者に提示するためには、 観察者が眼鏡を装着しなければならず、 不快感ゃ煩わしさをともなう。  The method of using glasses is to switch the left and right parallax images that are displayed alternately in a time-division manner so that the glasses reach the left and right eyes of the observer through glasses.To present a stereoscopic display to the observer, the observer must Glasses must be worn, which is uncomfortable and annoying.
眼鏡を使用しない方法としては、 レンチキユラ一レンズやパララヅク スバリアを使用する方法が一般的である。 この方法では、 表示装置は垂 直画素ライ ン毎に左右用の視差像を表示し、 その各々の画素ライ ンよ り 出射する光が、 それぞれ観察者の左右眼に導かれるように、 表示装置に レンチキユラ一レンズゃパララ ックスバリァを設置している。 表示装置 の垂直画素ライ ン毎に左右の視差像を表示する必要があるため、 画像が 表示装置の 1行の画素数が右用、 左用に分担され、 半分の画素数の画像 となってしまう。 また、 レンチキユラ一レンズ方式では、 レンチキユラ 一レンズの有無を切り替えることが困難であるため、 平面画像表示時に も、 立体画像と同様に左右それそれの眼に異なる画素ライ ンの表示を行 う必要があり、 平面画像表示時にも解像度が低下してしまう。 パララ ッ クスバリア方式では、 パララックスバリア自体を液晶素子などによ り構 成することによ り、 平面画像表示時にはパララックスバリアを消去する ことができるため、 表示パネル本来の解像度で平面表示を行うことがで きるが、 一方で立体表示時には、 パララックスバリアによ り光源光の一 部をさえぎってしまうため、 表示が暗くなる問題点もある。 As a method not using glasses, a method using a lenticular lens or a paralux barrier is generally used. In this method, the display device displays left and right parallax images for each vertical pixel line, and the light emitted from each pixel line is guided to the left and right eyes of the observer. A lenticular lens and a parallax barrier are installed. Since it is necessary to display the left and right parallax images for each vertical pixel line of the display device, the image is divided into one line for the right and left for the number of pixels in the display device, resulting in an image with half the number of pixels . In the lenticular lens system, the lenticular Since it is difficult to switch the presence or absence of a single lens, it is necessary to display different pixel lines on the left and right eyes, as in a stereoscopic image, when displaying a planar image. Will drop. In the parallax barrier method, the parallax barrier itself is composed of a liquid crystal element, etc., so that the parallax barrier can be erased when displaying a flat image, so that the flat display is performed at the original resolution of the display panel. On the other hand, at the time of stereoscopic display, there is also a problem that the display becomes dark because a part of the light source light is blocked by a parallax barrier.
この問題点を回避する方法として、 眼鏡を使用する方法と同様に、 透 過型の表示パネルに時分割で左右視差像を表示し、 これを照明する光源 の指向性を切り替えることによって、 左右の視差画像をそれそれ左右の 眼に導く方法がある。 たとえば第 2 2図に示すケンプリ ッジ大学によつ て提案された方式では、 透過型表示パネル 4 と、 その後面に設けられた コ リメ一夕レンズ 6 と、 更にその後方に設けられ、 順次発光する光源の 配列 7 とを備え、 光源の配列中の発光している光源部 7 aよ り出る光は 、 その前方に配置されたコ リメ一夕レンズ 6 によ り、 透過型表示パネル 4を通過した後に、 指向性をもって収束される。 従って、 透過型表示パ ネルの画像は、 収束される方向のみ観察可能となり、 光源配列の発光部 と透過型表示パネルに表示される視差画像とを同期して切り替えること によ り、 左右それそれの視差画像が観察者の左右眼にそれぞれ導かれ立 体視が可能となる。 この発光位置制御とコ リメ一夕一レンズによる方式 は、 コ リメ一夕レンズによ り光源上の発光点の位置を正確に照明光の角 度ゃ視認位置に変換することができるため、 きわめて良好な照明光の指 向性を得ることができ、 良好な左右画像の分離によ り、 高品位な立体視 が可能となる。  As a method of avoiding this problem, as in the case of using eyeglasses, the left and right parallax images are displayed in a time-division manner on a transmissive display panel, and the directivity of the light source that illuminates them is switched. There is a method to guide the parallax image to the left and right eyes respectively. For example, in the method proposed by the University of Kempty University shown in FIG. 22, a transmissive display panel 4, a collimating lens 6 provided on the rear surface, and further provided behind it, are sequentially provided. An array 7 of light sources that emit light is provided, and light emitted from the light source section 7a that emits light in the array of light sources is transmitted by a collimating lens 6 disposed in front of the light source section 7a. After passing through, it is converged with directivity. Therefore, the image on the transmissive display panel can be observed only in the direction in which it is converged. By switching between the light emitting part of the light source array and the parallax image displayed on the transmissive display panel in a synchronized manner, the left and right images can be viewed These parallax images are guided to the left and right eyes of the observer, respectively, enabling stereoscopic vision. This method of controlling the light emission position and using a lens with a collimating lens allows extremely accurate conversion of the position of the light emitting point on the light source into the angle of illumination light divided by the viewing position with the collimating lens. Good directionality of illumination light can be obtained, and high-quality stereoscopic vision can be achieved by good separation of left and right images.
この方式を小型化できる方法として、 たとえば、 特閧平 5 - 1 0 7 6 6 3号公報ゃ特開平 1 0— 1 6 1 0 6 1号公報では、 光源からの光を液 晶素子など切り替え可能なシャ ッ夕素子によ り、 切り替え可能なス トラ ィプ状ゃマ ト リ ックス状の光源に分割し、 その後に配置されたコ リメ一 夕レンズとして働く レンチキュラーシートによって光源の指向性を得る 方法が提案されている。 この方法では、 立体表示時にも解像度を低下さ せることなく表示可能であるが、 光源の一部を遮光してス トライプ状光 源を作るため、 光利用効率が低下し表示が暗くなる問題点がある。 また 、 表示パネルのほかに、 ス トライプ状光源を作るために、 高価な液晶シ ャッ夕素子等が必要であるため、 安価に構成できない問題点もあつた。 また、 特開 2 0 0 1— 6 6 5 4 7号公報においては、 第 2 3図に示す 方法が提案されている。 コ リメ一夕レンズによ り光源の指向性を与える のではなく、 光源 1 a、 l bおよびバックライ ト導光板 2 a、 2 bを 2 組重ね合わせ、 液晶パネル 4の下に配置したプリズムシート 8による光 偏向作用を用いることによ り、 照明光の指向性を切り替えるこの方法は 、 高価な切り替え可能シャツ夕素子が不要となる反面、 照明光の指向性 を導光板からの光の出射配光調整のみによって行うため、 シャッ夕素子 とコ リメ一タレンズによって明確に照明光の指向性'を規定できる前記の 方式にたいし、 十分な指向性を得ることが難しくなる。 特開 2 0 0 1— 6 6 5 4 7号公報の例では、 導光板を出射する光の角度をピークが 7 0 度で 6 0度から 8 0度付近に分布するとされているが、 これは導光板の 形状や光取り出し構造によ りある程度変化することが考えられ、 光の出 射角度を、 この範囲に一定に保ちつつ、 明るさの均一性を得るためには 、 高度な導光板形状の設計や、 形状の制限が必要である。 そのため、 指 向性が低下し左右のクロス トークなどが発生しやすかつたり、 良好な配 光特性を得るため、 特開 2 0 0 1 — 6 6 5 4 7号公報のように導光板を 2組用意する必要があるなどの問題点があった。 i As a method that can reduce the size of this method, for example, Japanese Patent Application Laid-Open Publication No. 63-106, Japanese Patent Application Laid-Open No. H10-161601 discloses a switchable stripe-shaped mask that switches light from a light source using a switchable element such as a liquid crystal element. A method has been proposed in which a lenticular sheet that divides a light source into a tris-like light source and acts as a collimating lens disposed after that is used to obtain the directivity of the light source. With this method, it is possible to display a stereoscopic image without reducing the resolution.However, since a part of the light source is shielded to create a striped light source, the light use efficiency is reduced and the display becomes darker. There is. Further, in addition to the display panel, an expensive liquid crystal shutter element or the like is required to produce a striped light source, so that there was a problem that it could not be constructed inexpensively. In addition, Japanese Patent Application Laid-Open No. 2001-66547 proposes a method shown in FIG. Rather than giving the directivity of the light source with a collimator lens, a prism sheet 8 is placed under the liquid crystal panel 4 by superposing two sets of the light source 1a, lb and the backlight light guide plates 2a, 2b. This method of switching the directivity of the illumination light by using the light deflecting effect of the above-mentioned method eliminates the need for an expensive switchable shirt element. Since the adjustment is performed only by adjustment, it is difficult to obtain sufficient directivity in the above-described method in which the directivity of the illumination light can be clearly defined by the shutter element and the collimator lens. In the example of JP-A-2001-666547, the angle of light emitted from the light guide plate is distributed around 60 to 80 degrees with a peak of 70 degrees. It is conceivable that the light guide plate will vary to some extent depending on the shape of the light guide plate and the light extraction structure.In order to obtain uniform brightness while maintaining the light emission angle constant within this range, an advanced light guide plate is required. Shape design and shape restrictions are required. For this reason, the directivity is reduced and crosstalk between left and right is likely to occur, and in order to obtain a good light distribution characteristic, the light guide plate must be connected to the light guide plate as disclosed in Japanese Patent Application Laid-Open No. 2001-66657. There were problems such as the need to prepare a set. i
以上のように、 従来の立体表示装置において、 眼鏡を用いる方法は、 眼鏡をかけるわずらわしさがあつたし、 眼鏡を用いない方法では、 レン チキユラ一やパララックスバリァを用いる方法は立体画像や平面画像の 解像度が低下したり、 明るさが低下していた。 また光の指向性を切り替 える従来の方法は、 切り替えシャツ夕素子とコリメートレンズを用いる ものは、 高価な切り替えシャツ夕素子が必要となり高コス トになってい た。 また導光板により直接指向性を制御する方法では、 指向性の制御が 難しく、 左右のクロス トークが発生しやすかつたり、 ノ ックライ ト自体 を 2組用いるなど、 複雑な構成になりコス トが高くなつていた。  As described above, in the conventional stereoscopic display device, the method of using glasses is troublesome to wear glasses, and the method of using lenticular and parallax barriers is not a method of using glasses when using glasses. The resolution or brightness of the planar image was reduced. In the conventional method of switching the light directivity, a method using a switching shirt element and a collimating lens requires an expensive switching shirt element, resulting in high cost. In addition, direct control of directivity using a light guide plate is difficult to control, direct crosstalk is likely to occur, and two knocklights are used. I was learning.
この発明は、 このような問題点を解決し、 立体、 平面画像とも解像度 の低下がなく、 クロス トークなど問題が少ない高品位な立体画像を実現 することができ、 かつ、 簡便で低コス トの、 携帯情報端末に適した眼鏡 なしで立体視および同一画面で同時に異なる画面表示が可能な表示装置 を得るものである。 発明の開示  The present invention solves such a problem, and can realize a high-quality stereoscopic image with no reduction in resolution for both stereoscopic and planar images and with few problems such as crosstalk, and is simple and low-cost. Another object of the present invention is to provide a display device that can perform stereoscopic viewing and simultaneously display different screens on the same screen without using glasses suitable for a portable information terminal. Disclosure of the invention
この発明に係る表示装置は、 導光板とその向かい合った 2つの入光端 面にそれそれ配置された光源と、 上記導光板の出光面側に配置され、 上 記導光板と向かい合う面には上記導光板の入光端面と平行な方向へ伸び る三角形状プリズム列、 上記面と対向する面には上記三角形状プリズム 列と平行に伸びる円筒状レンズ列を有する両面プリズムシートと、 この 両面プリズムシ一卜の出射面側に配置された透過型表示パネルとを有し 、 同期駆動手段によって上記透過型表示パネルに交互に表示される左右 視差画像と同期して、 上記光源からの光がそれそれ左右の視差に対応す る角度で上記透過型表示パネルから出射するように構成したものである このことによって、 導光板とその異なる 2つの入光端面にそれそれ配 置された光源と、 上記導光板の出光面側に配置され、 上記導光板と向か い合う面には上記導光板の入光端面と平行な方向へ伸びる三角形状プリ ズム列、 上記面と対向する面には上記三角形状プリズム列と平行に伸び る円筒状レンズ列を有する両面プリズムシートと、 この両面プリズムシ 一トの出射面側に配置された透過型表示パネルと、 上記透過型表示パネ ルに上記光源に同期させて視差像を表示させる同期駆動手段とを備え、 上記光源からの光がそれそれ左右の視差に対応する角度で上記透過型表 示パネルから出射するように構成したので、 クロス トークの少ない高品 位の立体視および同一画面で同時に異なる画面表示が可能となる効果が ある。 図面の簡単な説明 A display device according to the present invention includes a light guide plate and light sources respectively disposed on two light incident end faces facing the light guide plate, and a light guide plate disposed on a light exit surface side of the light guide plate, and a light guide plate facing the light guide plate. A double-sided prism sheet having a triangular prism array extending in a direction parallel to the light incident end face of the light guide plate, a cylindrical lens array extending in parallel with the triangular prism array on a surface facing the surface, And a transmissive display panel arranged on the light exit surface side of the light source. The light from the light source is shifted left and right in synchronization with the left and right parallax images alternately displayed on the transmissive display panel by a synchronous driving means. Out of the transmissive display panel at an angle corresponding to the parallax of As a result, the light guide plate and the light sources respectively arranged on the two different light-entering end faces thereof, and the light guide plate arranged on the light exit surface side of the light guide plate and facing the light guide plate are provided on the light exit surface side of the light guide plate. A double-sided prism sheet having a triangular prism array extending in a direction parallel to the light incident end face, a cylindrical lens array extending parallel to the triangular prism array on a surface facing the above-mentioned surface, and a double-sided prism sheet. A transmissive display panel disposed on the exit surface side; and a synchronous driving unit for displaying a parallax image in synchronization with the light source on the transmissive display panel, wherein light from the light source is converted into a right and left parallax. Since the light is emitted from the transmissive display panel at a corresponding angle, there is an effect that a high-quality stereoscopic view with little crosstalk and different screens can be simultaneously displayed on the same screen. BRIEF DESCRIPTION OF THE FIGURES
第 1図はこの発明の実施の形態 1による表示装置の主要部を説明する ための側面図である。  FIG. 1 is a side view for explaining main parts of a display device according to Embodiment 1 of the present invention.
第 2図はこの発明の実施の形態 1による表示装置の動作を説明するた めの構成図である。  FIG. 2 is a configuration diagram for explaining an operation of the display device according to the first embodiment of the present invention.
第 3図はこの発明の実施の形態 1による表示装置の導光板および表示 パネル出射光の配光特性を示す特性図である。  FIG. 3 is a characteristic diagram showing light distribution characteristics of light emitted from the light guide plate and the display panel of the display device according to the first embodiment of the present invention.
第 4図はこの発明の実施の形態 1による表示装置に用いられる両面プ リズムシートの透過光路を説明するための構成図である。  FIG. 4 is a configuration diagram for explaining a transmitted light path of a double-sided prism sheet used in the display device according to the first embodiment of the present invention.
第 5図はこの発明の実施の形態 1による表示装置に用いられる両面プ リズムシートの作用を説明するための構成図である。  FIG. 5 is a configuration diagram for explaining the operation of the double-sided prism sheet used in the display device according to the first embodiment of the present invention.
第 6図はこの発明の実施の形態 1による表示装置に用いられる両面プ リズムシ一トに形成された円筒状レンズ列のレンズの焦点位置を説明す るための構成図である。 第 7図はこの発明の実施の形態 1による表示装置に用いられる両面プ リズムシートの角度規定作用を説明するための構成図である。 FIG. 6 is a configuration diagram for explaining focal positions of lenses of a cylindrical lens array formed in a double-sided prism sheet used in the display device according to the first embodiment of the present invention. FIG. 7 is a configuration diagram for explaining the angle defining action of the double-sided prism sheet used in the display device according to Embodiment 1 of the present invention.
第 8図はこの発明の実施の形態 1による表示装置に用いられる両面プ リズムシートの配光特性を示す特性図である。  FIG. 8 is a characteristic diagram showing light distribution characteristics of a double-sided prism sheet used in the display device according to Embodiment 1 of the present invention.
第 9図はこの発明の実施の形態 1による両面プリズムシートの配光特 性の計算条件を説明するための構成図である。  FIG. 9 is a configuration diagram for explaining conditions for calculating light distribution characteristics of the double-sided prism sheet according to Embodiment 1 of the present invention.
第 1 0図はこの発明の実施の形態 1を説明するため、 比較例として示 すプリズムシートの配光特性を示す特性図である。  FIG. 10 is a characteristic diagram showing light distribution characteristics of a prism sheet shown as a comparative example for explaining Embodiment 1 of the present invention.
第 1 1図はこの発明の実施の形態 1において、 比較例として、 両面プ リズムシートの厚さとピッチによる光路変化を説明するための構成図で める。  FIG. 11 is a configuration diagram for explaining an optical path change due to the thickness and pitch of a double-sided prism sheet as a comparative example in Embodiment 1 of the present invention.
第 1 2図はこの発明の実施の形態 1において、 比較例として、 両面プ リズムシートの厚さとピッチによる光路変化を説明するための構成図で める。  FIG. 12 is a configuration diagram for explaining an optical path change due to the thickness and pitch of a double-sided prism sheet as a comparative example in Embodiment 1 of the present invention.
第 1 3図はこの発明の実施の形態 1において、 両面プリズムシートの 厚さとピツチが変化した場合の配光特性の変化を説明するための特性図 である。  FIG. 13 is a characteristic diagram for explaining changes in light distribution characteristics when the thickness and pitch of the double-sided prism sheet change in Embodiment 1 of the present invention.
第 1 4図はこの発明の実施の形態 1において、 両面プリズムシートの 厚さとピツチが変化した場合の配光特性の変化を説明するための特性図 である。  FIG. 14 is a characteristic diagram for explaining changes in light distribution characteristics when the thickness and pitch of the double-sided prism sheet are changed in Embodiment 1 of the present invention.
第 1 5図はこの発明の実施の形態 1において、 両面プリズムシートの 厚さとピツチが変化した場合の配光特性の変化を説明するための特性図 である。  FIG. 15 is a characteristic diagram for explaining changes in light distribution characteristics when the thickness and pitch of the double-sided prism sheet change in Embodiment 1 of the present invention.
第 1 6図はこの発明の実施の形態 1において、 両面プリズムシ一トに 形成された三角形状プリズム列のプリズム角度による光路変化を説明す るための構成図である。 第 1 7図はこの発明の実施の形態 1において、 両面プリズムシ一トに 形成された三角形状プリズム列のプリズム角度が変化した場合、 配光特 性の変化を説明するための特性図である。 FIG. 16 is a configuration diagram for explaining an optical path change according to the prism angle of the triangular prism array formed on the double-sided prism sheet in the first embodiment of the present invention. FIG. 17 is a characteristic diagram for explaining a change in light distribution characteristics when the prism angle of the triangular prism array formed on the double-sided prism sheet changes in Embodiment 1 of the present invention.
第 1 8図はこの発明の実施の形態 1において、 両面プリズムシ一トの 三角形状プリズム列のプリズム角度が変化した場合、 配光特性の変化を 説明するための特性図である。  FIG. 18 is a characteristic diagram for explaining a change in light distribution characteristics when the prism angle of the triangular prism array of the double-sided prism sheet changes in Embodiment 1 of the present invention.
第 1 9図はこの発明の実施の形態 1において、 両面プリズムシートの 三角形状プリズム列のプリズム角度が変化した場合、 配光特性の変化を 説明するための特性図である。  FIG. 19 is a characteristic diagram for explaining a change in light distribution characteristics when the prism angle of the triangular prism array of the double-sided prism sheet changes in Embodiment 1 of the present invention.
第 2 0図はこの発明の実施の形態 2における電子情報機器を説明する ための正面図である。  FIG. 20 is a front view for describing an electronic information device according to Embodiment 2 of the present invention.
第 2 1図はこの発明の実施の形態 3における携帯電話を説明するため の構成図である。  FIG. 21 is a configuration diagram for explaining a mobile phone according to Embodiment 3 of the present invention.
第 2 2図は従来の光源配列とコリメ一夕レンズによる立体表示装置を 説明するための構成図である。  FIG. 22 is a configuration diagram for explaining a conventional stereoscopic display device using a light source arrangement and a collimating lens.
第 2 3図は従来のバックライ ト配光制御による立体表示装置を説明す るための側面図である。 発明を実施するための最良の形態  FIG. 23 is a side view for explaining a conventional stereoscopic display device by backlight light distribution control. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について添付の図面に従って説明する。  Hereinafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
実施の形態 1 . Embodiment 1
第 1図は、 この発明を実施するための実施の形態 1による携帯情報機 器用の表示装置を説明するための側面図である。  FIG. 1 is a side view for explaining a display device for a portable information device according to a first embodiment of the present invention.
第 1図 Aにおいて、 l a , l bは光源、 2は側面が矩形状で全体とし ては平板状の導光板であり紙面と直交する方向に所定の幅を持つ。 この 導光板 2の両入光端面側には光源 1 a, l bがそれそれ対向するように 配置されている。 2 aは導光板 2の表面に、 反射印刷、 粗面化加工など によつて形成された光取り出し手段である。 In FIG. 1A, la and lb are light sources, 2 is a light guide plate having a rectangular side surface and an overall flat plate shape, and has a predetermined width in a direction orthogonal to the paper surface. this Light sources 1a and lb are arranged on both light incident end face sides of the light guide plate 2 so as to face each other. Reference numeral 2a denotes light extraction means formed on the surface of the light guide plate 2 by reflection printing, surface roughening, or the like.
3は導光板 2の出射面上に配置された両面プリズムシート、 4は透過 型液晶パネルであり、 斜線部は液晶層である。  Reference numeral 3 denotes a double-sided prism sheet disposed on the exit surface of the light guide plate 2, reference numeral 4 denotes a transmissive liquid crystal panel, and a hatched portion denotes a liquid crystal layer.
5は光源 1 a, 1 bと透過型液晶パネル 4における視差画像の表示切 替の同期を制御する制御手段である。  Reference numeral 5 denotes control means for controlling the synchronization of the display switching of the parallax images between the light sources 1 a and 1 b and the transmissive liquid crystal panel 4.
第 1図 Bは両面プリズムシート 3の形状を拡大して示す側面図である 。 両面プリズムシート 3は、 屈折率 1 . 5の材料で形成され、 下面に稜 線が導光板 2の入光端面と平行な方向へ伸びる頂角 Kが 6 0度の 2等辺 三角形よりなる三角形状プリズム列 3 2が紙面と直交する方向に延びる ように配置され、 上面には、 三角形状プリズム列 3 2 と平行な方向(紙 面と直交する方向)へ延びる円筒状レンズ列 3 1が、 三角形状プリズム 列 3 2 と同ピツチ Pで配置されている。 円筒状レンズ列 3 1を形成する 各レンズの焦点位置が下面の三角形状プリズム列 3 2の頂点に一致する ように曲率を調整されており、 上面の円筒状レンズ列 3 1のピッチ Pと 両面プリズムシ一ト 3の厚さ Lは、 (厚さ L /ピッチ P )の値が 3 となる ように構成されている。  FIG. 1B is an enlarged side view showing the shape of the double-sided prism sheet 3. FIG. The double-sided prism sheet 3 is formed of a material having a refractive index of 1.5, and has a triangular shape formed of an isosceles triangle having a vertex angle K of 60 degrees with a ridge line extending in a direction parallel to the light incident end face of the light guide plate 2 on the lower surface. A prism array 32 is arranged so as to extend in a direction perpendicular to the plane of the paper, and a cylindrical lens array 31 extending in a direction parallel to the triangular prism array 32 (a direction orthogonal to the plane) is provided on the upper surface. It is arranged with the same pitch P as the shape prism row 32. The curvature is adjusted so that the focal position of each lens that forms the cylindrical lens array 31 coincides with the vertex of the triangular prism array 32 on the lower surface, and the pitch P of the cylindrical lens array 31 on the upper surface and both sides are adjusted. The thickness L of the prism sheet 3 is configured such that the value of (thickness L / pitch P) is 3.
以下、 第 2図において、 立体視の動作を説明する。 第 2図 Aでは左側 の光源 1 aのみが点灯し右側の光源 1 bは消灯している。 この場合、 光 源 1 aより発せられた光は、 導光板 2内を伝播し、 導光板 2に設置され た光取り出し手段 2 aにより導光板 2の外へ取り出される。 導光板 2か ら出射した光は、 出射した時点では、 第 3図 Aに示す配光特性のように 、 出射角度が光源 1 aと反対側へ大きくかたよった配光分布になってい る。 第 3図において、 横軸は光源 1 a, 1 bからの光の出射角度であり 、 0度は正面方向 (透過型液晶パネルの法線方向) を表し、 それより右 側へ傾いた角度を +方向としており、 縦軸は輝度(単位は c d /m2 )であ る。 このような角度分布の光が、 両面プリズムシート 3を透過すると、 両面プリズムシート 3での屈折 ·反射により、 第 3図 Bのように正面方 向を境に、 左側の 0度から一 1 5度程度の範囲に強い強度を持ち、 右側 の 0度から 1 5度程度の範囲にはほとんど光が出射しない配光分布とな る。 その後、 透過型液晶パネル 4を透過し、 配光分布を保ったまま、 第 2図 Aに示すように観察者側へ出射される。 観察者の左眼 6 aと右眼 6 bの距離を約 6 5 m mとし、 透過型液晶パネル 4から観察者までの視距 離を約 3 0 O m mとすると、 透過型液晶パネル 4の中心と左眼 6 aもし くは右眼 6 bを結ぶ直線と、 透過型液晶パネル 4の法線方向とのなす角 は、 約 6度となる。 すなわち視距離が 3 0 0 m mの場合、 透過型液晶パ ネル 4を出射した光が、 左方向 6度の向きに十分な強度を持ち、 右方向 6度の向きにほとんど光が出射しない配光分布であれば、 観察者の左眼 6 aでは画像が認識されるが、 右目 6 bには光が届かず画像が認識され ない。 第 3図 Bのような配光分布であれば、 画像を観察者の左眼 6 aの みに認識させることが可能である。 一方、 第 2図 Bのように、 左側の光 源 1 aを消灯し、 右側の光源 1 bのみを点灯させれば、 第 2図 Aの場合 と逆に、 観察者の右眼 6 bにのみ画像が認識される。 そこで、 光源 1 a , 1 bを交互に点灯し、 同期制御手段 5によって、 光源 1 a , l bの点 灯と同期して透過型液晶パネル 4に左右の視差画像を表示すれば、 観察 者の左眼 6 a、 右眼 6 bにそれぞれ異なった視差画像を認識させること ができ、 視差による立体視が可能となる。 Hereinafter, the stereoscopic operation will be described with reference to FIG. In FIG. 2A, only the left light source 1a is on, and the right light source 1b is off. In this case, the light emitted from the light source 1a propagates in the light guide plate 2 and is extracted out of the light guide plate 2 by the light extraction means 2a installed in the light guide plate 2. At the time when the light emitted from the light guide plate 2 is emitted, the light distribution is such that the emission angle is largely deviated toward the side opposite to the light source 1a, as shown in the light distribution characteristics shown in FIG. 3A. In FIG. 3, the horizontal axis represents the light emission angles of the light sources 1a and 1b, and 0 degrees represents the front direction (the normal direction of the transmissive liquid crystal panel). The angle inclined to the side is the + direction, and the vertical axis is the luminance (unit: cd / m 2 ). When light having such an angular distribution is transmitted through the double-sided prism sheet 3, the light is refracted and reflected by the double-sided prism sheet 3 so that, as shown in FIG. It has a strong intensity in the range of degrees, and has a light distribution that hardly emits light in the range from 0 degrees to 15 degrees on the right. Thereafter, the light passes through the transmissive liquid crystal panel 4 and is emitted toward the observer as shown in FIG. 2A while maintaining the light distribution. If the distance between the left eye 6a and the right eye 6b of the observer is about 65 mm, and the viewing distance from the transmissive liquid crystal panel 4 to the observer is about 30 Omm, the center of the transmissive liquid crystal panel 4 The angle between the straight line connecting the left eye 6a or the right eye 6b and the normal direction of the transmissive liquid crystal panel 4 is about 6 degrees. That is, when the viewing distance is 300 mm, the light emitted from the transmissive liquid crystal panel 4 has sufficient intensity in the leftward direction of 6 degrees, and hardly emits light in the rightward direction of 6 degrees. With the distribution, the image is recognized by the left eye 6a of the observer, but the light does not reach the right eye 6b and the image is not recognized. With the light distribution shown in Fig. 3B, it is possible to make the image recognized only by the left eye 6a of the observer. On the other hand, as shown in Fig. 2B, if the left light source 1a is turned off and only the right light source 1b is turned on, contrary to the case of Fig. 2A, the observer's right eye 6b Only images are recognized. Therefore, if the light sources 1a and 1b are alternately turned on and the parallax images on the left and right are displayed on the transmissive liquid crystal panel 4 in synchronization with the lighting of the light sources 1a and lb by the synchronization control means 5, the observer's view can be obtained. Different parallax images can be recognized by the left eye 6a and the right eye 6b, and stereoscopic viewing by parallax becomes possible.
さらに、 観察者がパネルの正面ではなく、 右斜め 8度の角度から眺め ると、 右目は右 1 6度、 左眼は右 2度の位置にく ることになる。 この場 合、 左右の目に右目用の画像のみが通常の平面画像として認識される。 また、 観察者が左 8度の角度から眺めると、 左目は左 1 6度、 右は左 2 度の位置にく ることになる。 この場合、 左右の目に左目用の画像のみが 通常の平面画像として認識される。 このとき、 全く異なる画像を、 右目 用光源 1 aと 1 bの点灯と同期して交互に表示すれば、 同一画面で同時 に表示しながら観察者の見る角度により、 異なる 2枚の画像を認識する ことができる。 Furthermore, if the observer views from an angle of 8 degrees diagonally right instead of in front of the panel, the right eye will be at 16 degrees right and the left eye will be at 2 degrees right. In this case, only the right eye image is recognized as a normal plane image by the left and right eyes. Also, when the observer views from an angle of 8 degrees left, the left eye is 16 degrees left and the right is 2 degrees left. You will come to the right position. In this case, only the image for the left eye is recognized as a normal plane image by the left and right eyes. At this time, if completely different images are displayed alternately in synchronization with the lighting of the right-eye light sources 1a and 1b, two different images will be recognized at the same time on the same screen, depending on the viewing angle of the observer. can do.
次に、 両面プリズムシート 3の作用について、 第 4図〜第 7図により 詳細に説明する。 第 4図は、 両面プリズムシートの透過光路を示す図、 第 5図は、 両面プリズムシートの作用を説明するための図、 第 6図は、 両面プリズムシートの円筒状レンズの焦点位置を説明するための図、 第 7図は、 両面プリズムシートの角度規定作用を説明するための図である 第 4図において、 導光板 2から右側へ傾いて出射した光は、 両面プリ ズムシ一ト 3に形成された三角形状プリズム列 3 2のプリズムの斜面 3 Next, the operation of the double-sided prism sheet 3 will be described in detail with reference to FIGS. FIG. 4 is a view showing a transmission optical path of the double-sided prism sheet, FIG. 5 is a view for explaining the operation of the double-sided prism sheet, and FIG. 6 is a view for explaining a focal position of a cylindrical lens of the double-sided prism sheet. FIG. 7 is a diagram for explaining the angle defining action of the double-sided prism sheet. In FIG. 4, light emitted from the light guide plate 2 inclined rightward is formed on the double-sided prism sheet 3. Triangular prism row 3 2 prism slope 3
2 aから両面プリズムシ一ト 3内に入射し、 斜面 3 2 bで全反射により 上方に反射され、 直上の上面側の円筒状レンズ列 3 1 ( Aは各レンズの 光軸) を通過して出射されるような光路 1 ◦ 1を通る。 斜面 3 2 bで反 射された後の光路線と、 両面プリズムシート 3に形成された三角形状プ リズム列 3 2のプリズムの頂点 Bを含む水平面 Cとの交点を 1 0 2 とす ると、 光路 1 0 1を通る光は、 交点 1 0 2から発せられ、 直接円筒状レ ンズ列 3 1に入射する光と同等である。 このことから、 斜面 3 2 bで全 反射されて直上の円筒状レンズ列 3 1に入射する光はすべて、 第 5図に おける領域 1 0 3から発せられ、 直接直上の円筒状レンズ列 3 1に入射 する光に置き換えることができる。 なお、 図中に破線によりプリズム列The light enters the double-sided prism sheet 3 from 2a, is reflected upward by total reflection on the inclined surface 3 2b, and passes through the cylindrical lens array 3 1 (A is the optical axis of each lens) immediately above the upper surface. It passes through the optical path 1 ◦ 1 as emitted. If the intersection of the optical path line reflected by the slope 3 2 b and the horizontal plane C including the vertex B of the prism of the triangular prism array 32 formed on the double-sided prism sheet 3 is assumed to be 102. The light passing through the optical path 101 is equivalent to the light emitted from the intersection 102 and directly entering the cylindrical lens array 31. From this, all the light totally reflected by the slope 3 2 b and incident on the cylindrical lens array 31 directly above is emitted from the region 103 in FIG. 5, and the cylindrical lens array 31 directly above It can be replaced by light incident on. The prism row is indicated by a broken line in the figure.
3 2のプリズムの形状を示している。 The shape of 32 prism is shown.
また、 斜面 3 2 bで全反射されて直上の円筒状レンズ列 3 1に入射す る光で、 第 5図における領域 1 0 4から発せられ直接直上の円筒状レン ズ列 3 1 に入射する光と同様な光路を通る光は存在しないことがわかる 。 円筒状レンズ列 3 1の焦点位置を、 第 6図のように三角形状プリズム 列 3 2のプリズムの頂点 Bに一致させておけば、 斜面 3 2 bで全反射さ れて直上の円筒状レンズ列 3 1 に入射する光は、 円筒状レンズ列 3 1の 焦点を含む水平面 C上で、 円筒状レンズ列 3 1の光軸 Aの右側から発せ られ直接直上の円筒状レンズ列 3 1 に入射する光と考えることができる 第 7図のように、 円筒状レンズ列 3 1のレンズの焦点を含む水平面 C 上の 1点から発せられ直接直上の円筒状レンズ列 3 1 に入射する光は、 発光点の円筒状レンズ 3 1の光軸 Aからの距離 dに応じて下記の式( 1 ) で示される角度 6>で円筒状レンズ 3 1から出射される光となり、 発光点 の位置と出射角度が 1対 1で対応する。 In addition, the light that is totally reflected by the slope 32 b and enters the cylindrical lens array 31 directly above, is emitted from the region 104 in FIG. 5, and is directly above the cylindrical lens array 31. It can be seen that there is no light passing through the same optical path as the light incident on the row 3 1. If the focal position of the cylindrical lens array 31 is matched with the vertex B of the prism of the triangular prism array 32 as shown in Fig. 6, the cylindrical lens is totally reflected by the slope 32b and is directly above The light incident on the row 3 1 is emitted from the right side of the optical axis A of the cylindrical lens row 3 1 on the horizontal plane C including the focal point of the cylindrical lens row 3 1 and is incident on the cylindrical lens row 3 1 directly above. As shown in Fig. 7, light emitted from one point on the horizontal plane C including the focal point of the lens of the cylindrical lens array 31 and directly incident on the cylindrical lens array 31 directly above is The light emitted from the cylindrical lens 31 at an angle 6> represented by the following equation (1) according to the distance d from the optical axis A of the cylindrical lens 31 to the light emitting point, and the position and the light emission of the light emitting point The angles correspond one-to-one.
6> = - A r c T a n ( n d / L ) ( 1 )  6> =-A r c T a n (n d / L) (1)
ここで、 nは両面プリズムシート 3を構成する材料の屈折率、 Lは両 面プリズムシート 3の厚さであり、 レンズ列 3 1のレンズの焦点距離に なっている。  Here, n is the refractive index of the material forming the double-sided prism sheet 3, L is the thickness of the double-sided prism sheet 3, and is the focal length of the lens of the lens array 31.
そのため、 平面 C上で光軸 Aの右側から発せられた光は、 すべて左方 向へ傾いて出射されることになる。 つま り、 斜面 3 2 bで全反射されて 直上の円筒状レンズ 3 1 に入射する光は、 円筒状レンズ 3 1 を通過した 後は左方向にのみ出射され、 第 3図 Bのような、 法線方向を境に鋭い左 右分離特性の配光分布を得ることができる。 これは、 上記のとおりケン プリ ッジ大学によ り提案され、 また特開平 5 - 1 0 7 6 6 3号公報等で 提示されているように、 分割光源とレンズによる指向性制御方式とまつ たく同様な指向性制御であ り、 高価な液晶シャツ夕素子などを用いるこ となく、 正確な指向性制御が実現でき、 クロス トークの少ない立体表示 が可能となる。 ここで、 第 8図は、 両面プリズムシート 3の配光特性についてシミュ レーショ ンを行った結果を示す特性図である。 横軸は両面プリズムシ一 ト 3への入射角度、 縦軸は両眼の視認領域の出射光量 (任意目盛であ り 、 数値はシミュレーションで使用したもの) である。 また、 実線は左眼 の視認領域へ出射する光量、 破線は右眼の視認領域へ出射する光量を表 している。 Therefore, all light emitted from the right side of the optical axis A on the plane C is emitted while being inclined leftward. In other words, the light totally reflected by the slope 3 2b and incident on the cylindrical lens 3 1 immediately above is emitted only to the left after passing through the cylindrical lens 31 and, as shown in FIG. 3B, Light distribution with sharp left and right separation characteristics can be obtained at the boundary of the normal direction. This has been proposed by the University of Kentucky as described above, and as disclosed in Japanese Patent Application Laid-Open No. Hei 5-107636, a directivity control method using a divided light source and a lens has been proposed. Directivity control is similar, and accurate directivity control can be realized without using expensive liquid crystal shirt elements, thus enabling three-dimensional display with less crosstalk. Here, FIG. 8 is a characteristic diagram showing a result obtained by performing a simulation on the light distribution characteristics of the double-sided prism sheet 3. The horizontal axis represents the angle of incidence on the double-sided prism sheet 3, and the vertical axis represents the amount of light emitted from the viewing region of both eyes (arbitrary scale, numerical values used in the simulation). The solid line indicates the amount of light emitted to the left-eye viewing area, and the broken line indicates the amount of light emitted to the right-eye viewing area.
シミュレーションは、 第 9図のように単体の両面レンズシート 3につ いて、 角度の決まった光を入射させ、 出射する光の角度分布を計算する ことによって行った。  The simulation was performed by injecting light with a fixed angle into a single double-sided lens sheet 3 as shown in FIG. 9 and calculating the angular distribution of the emitted light.
第 9図において、 θ 1は両面プリズムシ一ト 3への入射角度、 領域 A 、 Bはそれそれ、 0a=4. 5度、 0b=l O度の範囲内の、 左右眼の視認 領域である。  In FIG. 9, θ 1 is the angle of incidence on the double-sided prism sheet 3, and areas A and B are the visible areas of the left and right eyes within the ranges of 0a = 4.5 degrees and 0b = 10 degrees, respectively. .
第 8図は、 屈折率約 1.5の材料で形成され、 第 9図 Bに示すように 三角形状プリズム 3 1のプリズムの角度 ø a = 0 b = 3 O度、 三角形状 プリズムのビヅチ Pと厚さ Lとの比が 1 : 3で、 円筒状レンズ列 3 1の レンズの焦点が三角形状プリズムの頂点に位置するように構成された両 面レンズシー ト 3についてシミュレーションを行い、 計算結果に基づい て、 横軸に光入射角度をと り、 縦軸には左右それそれの眼に対応した、 左方向 4.5度から 1 0度、 右方向 4.5度から 1 0度の視認範囲に出射 される光量を任意スケールでプロッ ト したものである。 第 8図の実線は 左眼の視認領域へ出射する光量、 破線は右眼の視認領域へ出射する光量 をあらわしている。 左右の眼に入射する光の角度は、 視距離によって決 ま り、 視距離 2 0 0mmで約 9度、 3 00mmで約 6度、 400 mmで 約 4. 5度である。 ここでは、 携帯情報機器を想定し、 視距離 2 0 0 m mから 400mmの範囲に相当する 4.5度から 1 0度の出射角の光で 特性を評価している。 第 8図から、 左右方向それそれ 5 0度から 8 0度 の入射角度の光が、 視認範囲に出射され、 それ以外の入射角度の光はほ とんど視認範囲には出射しないことがわかる。 Fig. 8 shows a triangular prism 31 made of a material having a refractive index of about 1.5, as shown in Fig. 9B. A simulation is performed on a double-sided lens sheet 3 that has a ratio of 1: 3 to the lens L and is configured so that the focal point of the lens of the cylindrical lens array 3 1 is located at the vertex of the triangular prism. The horizontal axis indicates the light incident angle, and the vertical axis indicates the amount of light emitted to the visible range from 4.5 to 10 degrees to the left and from 4.5 to 10 degrees to the right, corresponding to the left and right eyes. Is plotted on an arbitrary scale. The solid line in FIG. 8 indicates the amount of light emitted to the left-eye viewing area, and the dashed line indicates the amount of light emitted to the right-eye viewing area. The angle of light incident on the left and right eyes is determined by the viewing distance, and is about 9 degrees at 200 mm, about 6 degrees at 300 mm, and about 4.5 degrees at 400 mm. Here, assuming a portable information device, the characteristics are evaluated using light with an emission angle of 4.5 degrees to 10 degrees corresponding to a viewing distance of 200 mm to 400 mm. From Fig. 8, the horizontal direction is 50 degrees to 80 degrees. It can be seen that light at an incident angle of? Is emitted to the viewing range, and light at other incident angles is hardly emitted to the viewing range.
立体視を行う際に、 左眼に導かれるはずの光が、 右眼にも到達してし まうと左右のクロス トークとなって立体感が損なわれる。 そのため、 左 右の眼に導かれる光の入射角度の領域が、 オーバーラップしていては立 体視できないし、 オーバーラップしていなくても、 お互いに接近してい ると、 シート入射以前にそれらを十分分離できるような鋭い配光特性を 持った光を入射させる必要が生じる。 第 8図のような特性の場合には、 法線方向をはさんで ± 4 0度の広い入射角度範囲にわたって、 左右どち らの眼に対しても視認範囲内に光を出射しない領域が存在するため、 両 面プリズムシ一ト 3への入射光は、 特に鋭い配光分布を必要としない。 そのため、 両面プリズムシ一ト 3入射前の配光分布を制御するための、 導光板 2の特別な構成や、 複雑な設計が不要となる。  When performing stereoscopic vision, if the light that is supposed to be guided to the left eye reaches the right eye, crosstalk will occur between the left and right eyes, impairing the stereoscopic effect. Therefore, if the areas of the incident angles of the light guided to the left and right eyes overlap, it is not possible to see them stereoscopically, and even if they do not overlap, if they are close to each other, they will not It is necessary to input light with sharp light distribution characteristics that can sufficiently separate light. In the case of the characteristics shown in Fig. 8, there is an area that does not emit light within the visible range for both the left and right eyes over a wide incident angle range of ± 40 degrees across the normal direction. Therefore, the light incident on the double-sided prism sheet 3 does not require a particularly sharp light distribution. Therefore, a special configuration of the light guide plate 2 and a complicated design for controlling the light distribution before entering the double-sided prism sheet 3 are not required.
ここで、 特開 2 0 0 1— 6 6 5 4 7号公報に示された、 円筒状レンズ 列を持たないレンズシー卜の配光特性を比較例として第 1 0図に示して おく。 第 1 0図の実線は左眼の視認領域へ出射する光量、 破線は右眼の 視認領域へ出射する光量を示す。 第 1 0図の横軸はプリズムシートへの 光入射角度で、 縦軸は出射光量 (任意目盛で、 '数値はシミュレーション で使用したもの) である。 この比較例のレンズシートの構造では、 特閧 2 0 0 1 - 6 6 5 4 7号公報で開示されように、 屈折率 1 . 5 7でプリ ズムの頂角が ø a = b = 3 4 . 5度である。  Here, the light distribution characteristics of a lens sheet having no cylindrical lens array disclosed in Japanese Patent Application Laid-Open No. 2001-66547 are shown in FIG. 10 as a comparative example. The solid line in FIG. 10 indicates the amount of light emitted to the left-eye viewing area, and the broken line indicates the amount of light emitted to the right-eye viewing area. The horizontal axis in FIG. 10 is the light incident angle on the prism sheet, and the vertical axis is the amount of emitted light (arbitrary scale, 'the numerical values used in the simulation). In the structure of the lens sheet of this comparative example, as disclosed in Japanese Patent Publication No. 2001-6657, the prism has a refractive index of 1.57 and the vertex angle of the prism is øa = b = 34. 5 degrees.
第 1 0図では、 左右の眼に導かれる光の入射角度範囲はそれそれ幅 1 0度程度と狭い上に、 最適領域よりも傾いた光が入射すると、 5度程度 の角度差で、 逆の眼に導かれる光が出射することがわかる。 そのため、 導光板からの出射光をこの最適入射角度範囲にあわせた鋭い配光特性を もったものとする必要があり、 くさび状の導光板 2枚を重ねる複雑なバ ヅクライ ド構造を用いる必要があった。 In Fig. 10, the incident angle range of the light guided to the left and right eyes is narrow, about 10 degrees in width, and when light inclined from the optimal area enters, the angle difference is about 5 degrees, It can be seen that light guided to the eye of the user is emitted. For this reason, it is necessary to make the light emitted from the light guide plate have a sharp light distribution characteristic that matches this optimum incident angle range. ヅ It was necessary to use a cryed structure.
また、 両面プリズムシー ト 3の厚さ L、 ピッチ Pによっても、 配光分 布が変化し、 クロス トークが発生しやすい場合がある。 たとえば、 ピッ チと厚さの比 (厚さ L /ピヅチ P ) が小さな場合では、 第 1 1図のよう に、 斜面 3 2 aから直接円筒状レンズ列 3 1 に入射する光 1 0 7が、 視 認領域に入る可能性がある。 第 1 1図の破線はピッチと厚さの比 (厚さ L /ピヅチ P ) が上記のように 3の場合の構成を示している。  Also, the light distribution may vary depending on the thickness L and the pitch P of the double-sided prism sheet 3, and crosstalk may easily occur. For example, when the ratio of pitch to thickness (thickness L / pitch P) is small, as shown in Fig. 11, the light 107 that directly enters the cylindrical lens array 31 from the slope 32a is May enter the viewing area. The broken line in FIG. 11 shows a configuration in which the ratio of the pitch to the thickness (thickness L / pitch P) is 3 as described above.
また、 ピッチと厚さの比が大きくなりすぎても、 第 1 2図のように、 三角形状プリズム列 3 2のとなりの斜面 3 2 dによつて全反射され、 円 筒状レンズ列 3 1 に入射する光 1 0 9が視認領域に入る可能性が生じる 。 どちらの場合も、 円筒状レンズ列のレンズへ入射する入射光の光路線 と三角形状プリズム列のプリズムの頂点を含む水平面 Cとの交点は光軸 Aに対して正規の光路を通る光と逆側になるため、 クロス トークを発生 する可能性がある。 第 1 2図の破線は第 1 1図の破線と同様にピッチと 厚さの比 (厚さ L Zピッチ P ) が 3の場合の構成を示している。  Also, even if the ratio between the pitch and the thickness becomes too large, as shown in FIG. 12, the light is totally reflected by the slope 3 2 d next to the triangular prism array 32 and the cylindrical lens array 3 1 There is a possibility that the light 109 incident on the image may enter the viewing area. In both cases, the intersection of the optical path line of the incident light entering the lenses in the cylindrical lens array and the horizontal plane C including the vertices of the prisms in the triangular prism array is opposite to the light passing through the regular optical path with respect to the optical axis A. Side, so crosstalk may occur. The dashed line in FIG. 12 shows the configuration in the case where the ratio between the pitch and the thickness (thickness L Z pitch P) is 3, similarly to the dashed line in FIG.
第 1 3図〜第 1 5図に両面プリズムシート 3のピッチ P と厚さ Lの比 (厚さ L Zピヅチ P ) を 1 . 7、 変化させた場合における、 両面プリズ ムシート 3の配光特性を第 8図の場合と同様にプロッ ト した結果を示す 。 第 1 3図 A及び第 1 3図 Bは上記比が、 1 . 7及び 2 . 3、 第 1 4図 A及び第 1 4図 Bは上記比が、 2 . 7及び 4 . 0、 第 1 5図 A及び第 1 5図 Bは上記比が 4 . 3及び 4 . 7の場合、 両面プリズムシート 3の配 光特性をそれそれ示している。 これらの図において、 横軸は両面プリズ ムシート 3への入射角度、 縦軸は出射光量 (任意目盛で数値はシミュレ —シヨンで使用したもの) である。 また、 実線は左眼視認領域へ出射す る光量、 破線は右眼視認領域へ出射する光量を表している。  Figs. 13 to 15 show the light distribution characteristics of the double-sided prism sheet 3 when the ratio of the pitch P to the thickness L (thickness LZ pitch P) of the double-sided prism sheet 3 was changed by 1.7. The results of plotting are shown in the same manner as in FIG. FIGS. 13A and 13B show the above ratios of 1.7 and 2.3, and FIGS. 14A and 14B show the above ratios of 2.7 and 4.0. 5A and 15B respectively show the light distribution characteristics of the double-sided prism sheet 3 when the above ratio is 4.3 and 4.7. In these figures, the horizontal axis represents the angle of incidence on the double-sided prism sheet 3, and the vertical axis represents the amount of emitted light (arbitrary scale and numerical values used in simulation). The solid line indicates the amount of light emitted to the left-eye viewing area, and the broken line indicates the amount of light emitted to the right-eye viewing area.
第 1 3図から、 厚さ Zピツチが 2 . 7から 4 . 0の範囲では、 視認範 囲の分布が若干変化するものの、 入射角度 ± 4 0度の範囲にわたって左 右どちらの眼にも光が出射しない領域を持つ角度特性に大きな変化はな い。 厚さ/ピッチが 2 . 7 よ り小さ くなり 2 . 3 になると、 0度から 3 0度程度の入射角範囲に小さなピー (クが現れ、 1 . 7ではかなり大きな ピークとなる。 これは、 第 1 1図に示す光 1 0 7のような光路による光 の影響によると考えられる。 この入射角度範囲に視認領域に光を出射す るピークがあると、 左右の分離に有効な、 左右どちらの眼に対しても視 認範囲内に光を出射しない領域が狭くなることから好ましくない。 また 、 厚さ Zピッチが 4 . 3 になると、 入射角度 5 0から 6 0度程度の範囲 に、 クロス トークとなるピークが発生し、 よ り厚さノピッチが大きくな るとピークの高さが増す。 これは、 第 1 2図に示す光 1 0 9のような光 路による光の影響によるものである。 よって、 厚さノピッチが 2 . 3以 下の範囲および 4 . 3以上の範囲は、 クロス トークの増加が予想され、 厚さ Zピッチは約 2 . 5から 4 . 0程度の範囲で用いることが好ましい ことがわかる。 このように厚さ/ピッチを約 2 . 5から 4 . 0程度の範 囲で用いることによ り、 よ り高品位の立体表示が可能となる。 From Fig. 13, when the thickness Z pitch is in the range of 2.7 to 4.0, Although the distribution of the surroundings slightly changes, there is no significant change in the angular characteristics having a region where light is not emitted to either the left or right eye over the range of the incident angle ± 40 degrees. If the thickness / pitch is 2. 7 yo Ri small no longer 2.3, a small peak (appears click to the incident angle range of about 3 0 degrees 0 degrees, the 1. In 7 rather large peak. This It is considered that this is due to the influence of light due to the light path such as light 107 shown in Fig. 11. If there is a peak that emits light in the viewing area in this incident angle range, the left and right sides are effective for left and right separation. It is not preferable because the area where light is not emitted is narrowed within the viewing range for both eyes, and when the thickness Z pitch is 4.3, the incident angle is in the range of about 50 to 60 degrees. However, a peak causing crosstalk occurs, and the height of the peak increases as the thickness becomes larger, because of the influence of light due to the light path such as light 109 shown in FIG. Therefore, when the thickness pitch is in the range of 2.3 or less and in the range of 4.3 or more, It is expected that loss talk will increase, and it is understood that it is preferable to use the thickness Z pitch in the range of about 2.5 to 4.0. Thus, the thickness / pitch is about 2.5 to 4.0. By using it within the range, higher-quality three-dimensional display can be performed.
さらに、 両面プリズムシ一ト 3に形成された三角形状プリズム列 3 2 のプリズムの頂角が実線で示す角度から破線で示す角度に変化すると、 第 1 6図のように、 斜面 3 2 bで全反射された後には同じ光路を通る光 でも、 全反射される以前は光路 1 1 2 と 1 1 3のように異なる光路とな り、 両面レンズシー ト 3への入射角度は と ?のように異なるものとな る。  Further, when the apex angle of the prisms of the triangular prism row 32 formed on the double-sided prism sheet 3 changes from the angle shown by the solid line to the angle shown by the broken line, as shown in FIG. Even if the light passes through the same optical path after being reflected, it will have different optical paths like optical paths 112 and 113 before being totally reflected, and the incident angle to the double-sided lens sheet 3 will be It will be different.
そのため、 視認領域に光を出射する最適入射角度範囲が変化してしま うことが考えられる。 入射角度範囲の変化によ り、 左右どちらの眼に対 しても視認範囲内に光を出射しない領域が狭くなるとクロス トークを発 生しやすくなる し、 第 3図 Aのような 6 0度から 8 0度の範囲に特に多 くの光が出射されるバックライ ト導光板における配光分布とのマツチン グが悪くなると効率が低下して好ましくない。 For this reason, it is conceivable that the optimum incident angle range for emitting light to the viewing area may change. If the area that does not emit light within the viewable range for either the left or right eye becomes narrow due to the change in the incident angle range, crosstalk is likely to occur, and 60 degrees as shown in Fig. 3A. Especially in the range from If the matching with the light distribution in the backlight light guide plate from which many lights are emitted is deteriorated, the efficiency is lowered, which is not preferable.
第 1 7図〜第 1 9図に三角形状プリズム列 3 1のプリズムの頂角 φ a = φ bを変化させた場合の、 両面プリズムシート 3の配光特性を第 8図 の場合と同様にプロッ ト した結果を示す。 第 1 7図 A及び第 1 7図 Bは プリズムの頂角 a = ø bが 3 5度及び 3 4度、 第 1 8図 A及び第 1 8 図 Bはプリズムの頂角 ø a = ø bが 3 1度及び 3 0度、 第 1 9図 A及び 第 1 9図 Bはプリズムの頂角 0 a = bが 2 8度及び 2 7度の場合、 両 面プリズムシ一ト 3の配光特性をそれそれ示している。 なお、 第 1 7図 〜第 1 9図における横軸は両面プリズムシート 3への入射角度、 縦軸は 出射光量 (任意目盛で、 数値はシミュレーショ ンで使用したもの) であ る。 また、 実線は左眼の視認領域へ出射する光量、 破線は右眼の視認領 域へ出射する光量を表している。  Figs. 17 to 19 show the light distribution characteristics of the double-sided prism sheet 3 when the apex angle φa = φb of the prisms of the triangular prism row 31 is changed in the same manner as in Fig. 8. The plotted results are shown. Fig. 17A and Fig. 17B show prism apex angles a = øb of 35 and 34 degrees, Figs. 18A and 18B show prism apex angles øa = øb Fig. 19A and Fig. 19B show the light distribution characteristics of the double-sided prism sheet 3 when the prism apex angle 0a = b is 28 degrees and 27 degrees. It is showing it. The horizontal axis in FIGS. 17 to 19 is the angle of incidence on the double-sided prism sheet 3, and the vertical axis is the amount of emitted light (arbitrary scale, numerical values used in the simulation). The solid line indicates the amount of light emitted to the left-eye viewing area, and the broken line indicates the amount of light emitted to the right-eye viewing area.
第 1 Ί図〜第 1 9図によ り、 視認出射光の入射角範囲が、 バックライ 卜から特に多くの光が出射される 6 0度から 8 0度の範囲をほぼカバー しているのは、 0 a = bが第 1 9図 Aによる 2 8度から第 1 7図 Bに よる 3 4度の範囲である。 さらに 0 a = 0 bが第 1 8図 Aによる 3 1度 以上になると、 ± 4 0度間の左右どちらの眼に対しても視認範囲内に光 を出射しない領域において、 視認範囲に出射してしまう光の割合が徐々 に増えていく傾向にあることから、 0 a = 0 bはすくなく とも 2 8度か ら 3 4度の範囲、 よ り好ましくは 2 8度から 3 0度の範囲であることが 望ましい。  From Fig. 1 to Fig. 19, it is clear that the range of incident angle of visible light almost covers the range of 60 degrees to 80 degrees where a large amount of light is emitted from the backlight. 0a = b ranges from 28 degrees according to FIG. 19A to 34 degrees according to FIG. 17B. Further, when 0a = 0b is more than 31 degrees according to FIG. 18A, the light is emitted to the viewable range in a region where the light is not emitted within the viewable range for both the right and left eyes within ± 40 degrees. 0a = 0b is at least in the range of 28 to 34 degrees, more preferably in the range of 28 to 30 degrees, since the proportion of light that is emitted tends to increase gradually. Desirably.
このように両面プリズムシートの下面プリズムの頂角を構成すれば、 よ りクロス トークが減少し、 バックライ ト出射光の光利用効率が高ま り 、 明る く高品位の立体表示が可能となる。  When the apex angle of the lower surface prism of the double-sided prism sheet is configured in this manner, crosstalk is further reduced, the light utilization efficiency of the light emitted from the backlight is increased, and a bright and high-quality three-dimensional display can be performed.
このように、 光源 l a , l bを交互に点灯させ、 両面プリズムシー ト 3を用いた光の指向性制御を行い、 これと同期して、 透過型液晶パネル 4に左右の視差画像を表示することにより、 簡便な構成で高品位の立体 視を行うことができる。 また、 平面画像の表示時には、 光源 1 a, l b を両方とも点灯させ、 透過型液晶パネル 4に画像を表示すれば、 解像度 などが低下することなく高品位の平面画像も表示可能となる。 In this way, the light sources la and lb are turned on alternately, and a double-sided prism sheet By controlling the directivity of the light using 3 and displaying the left and right parallax images on the transmissive liquid crystal panel 4 in synchronization with this, high-quality stereoscopic viewing can be performed with a simple configuration. Also, when displaying a planar image, if both the light sources 1 a and lb are turned on and the image is displayed on the transmissive liquid crystal panel 4, a high-quality planar image can be displayed without lowering the resolution and the like.
この実施の形態 1では、 両面プリズムシート 3に形成された円筒状レ ンズ列 3 1のレンズの焦点位置は三角形状プリズム列 3 2のプリズムの 頂点と一致する位置に設定し、 出射光の角度制御を行う方式としている が、 円筒状レンズ列 3 1のレンズの焦点距離をより短いものとして、 観 察者の眼の位置に三角形状プリズム列 3 2のプリズムの頂点を含む水平 面 C上の仮想光源を転写する構成とすることもできる。 また、 表示領域 が、 観察者の左右眼間隔よりも十分大きな場合には、 円筒状レンズ列 3 1 と三角形状プリズム列 3 2のピツチを両面プリズムシ一ト 3内の位置 に応じて変化させ、 広い表地面全域で良好な左右分離特性を得ることが できる。  In the first embodiment, the focal position of the lens of the cylindrical lens array 31 formed on the double-sided prism sheet 3 is set to a position that coincides with the vertex of the prism of the triangular prism array 32, and the angle of the emitted light Although the control method is adopted, the focal length of the lens of the cylindrical lens array 31 is set to be shorter, and on the horizontal plane C including the apex of the prism of the triangular prism array 32 at the position of the observer's eye. A configuration in which a virtual light source is transferred can also be adopted. When the display area is sufficiently larger than the distance between the left and right eyes of the observer, the pitch of the cylindrical lens row 31 and the triangular prism row 32 is changed according to the position in the double-sided prism sheet 3, Good left-right separation characteristics can be obtained over a wide surface.
以上で説明した実施の形態 1によれば、 クロス トークなどが少なく高 品位な視差画像を左右の眼にそれそれ提示することができ、 立体表示、 平面表示ともにも解像度低下がなく高品位な表示装置を得ることができ る効果がある。  According to the first embodiment described above, a high-quality parallax image with little crosstalk and the like can be presented to the left and right eyes separately, and high-quality display can be performed without a decrease in resolution in both the stereoscopic display and the planar display. There is an effect that a device can be obtained.
この実施の形態 1は、 両面プリズムシート 3のピヅチや、 円筒状レン ズ列 3 1 と三角形状プリズム列 3 2 との位置関係などを構成後に変化さ せることは困難であるため、 観察者の位置に応じて配光特性を能動的に 制御し、 立体視域を広げるような制御を行うことは難しい。 そのため、 機器を手にもって動かすことによって観察者が観察位置をコントロール しゃすい、 携帯情報機器に特に適した方法である。 実施の形態 2 . In the first embodiment, since it is difficult to change the pitch of the double-sided prism sheet 3 and the positional relationship between the cylindrical lens row 31 and the triangular prism row 32 after construction, it is difficult for the observer to change the position. It is difficult to actively control the light distribution characteristics according to the position and to expand the stereoscopic viewing area. Therefore, the observer controls the observation position by moving the device by hand, which is particularly suitable for portable information devices. Embodiment 2
第 2 0図は、 この発明を実施するための実施の形態 2による電子情報 機器を説明するための正面図である。 ここでは、 表示装置の詳細を説明 するために表示装置周辺は電子情報機器の内部を表示している。  FIG. 20 is a front view for explaining an electronic information device according to Embodiment 2 for carrying out the present invention. Here, the inside of the electronic information device is displayed around the display device to explain the details of the display device.
第 2 0図において、 電子情報機器である携帯電子手帳の本体 1 0の中 に、 導光板 2の左右に光源 l aと l bがそれそれ対向するように配置さ れている。 光源 1は、 発光ダイオード 8 とライ トガイ ド 9から構成され 、 発光ダイオード 8から出た光がライ トガイ ド 9の中を進みつつ導光板 2に向かい少しずつ光を放射することにより、 均一に導光板 2の側面に 光を放射する。  In FIG. 20, light sources la and lb are arranged on the left and right sides of the light guide plate 2 in the main body 10 of a portable electronic organizer, which is an electronic information device, so as to face each other. The light source 1 is composed of a light emitting diode 8 and a light guide 9, and the light emitted from the light emitting diode 8 travels through the light guide 9 and emits light little by little toward the light guide plate 2 to uniformly guide the light. Light is emitted to the side of the light plate 2.
3は導光板 2の出射面上に配置された両面プリズムシートであり、 三 角状プリズム列ならびに円筒状プリズム列は縦方向に伸びている。 4は 両面プリズムシートの上に置かれた透過型液晶パネルである。 1 1は操 作ボタンである。  Reference numeral 3 denotes a double-sided prism sheet disposed on the light exit surface of the light guide plate 2, and the triangular prism array and the cylindrical prism array extend in the vertical direction. 4 is a transmissive liquid crystal panel placed on a double-sided prism sheet. 1 1 is an operation button.
以下、 第 2 0図において、 動作を説明する。 光源 1 a , 1 bを交互に 点灯し、 同期制御手段 5 (図示せず) によって、 光源 l a, l bの点灯 と同期して透過型液晶パネル 4に左右の視差画像を表示すれば、 観察者 が透過型液晶パネル 4の正面にいる場合は、 観察者の左眼 6 a、 右眼 6 bにそれぞれ異なった視差画像を認識させることができ、 視差による立 体視が可能となる。  Hereinafter, the operation will be described with reference to FIG. When the light sources 1a and 1b are alternately turned on and the parallax images on the left and right are displayed on the transmissive liquid crystal panel 4 in synchronization with the light sources la and lb by the synchronization control means 5 (not shown), When is located in front of the transmissive liquid crystal panel 4, the observer's left eye 6a and right eye 6b can recognize different parallax images, and stereoscopic viewing with parallax becomes possible.
さらに、 観察者が携帯情報端末 1 0を傾け透過型液晶パネルの正面で はなく、 右斜め 8度の角度から眺めると、 右目は右 1 6度、 左眼は右 2 度の位置にく ることになる。 この場合、 左右の目に右目用の画像のみが 通常の平面画像として認識される。 また、 観察者が左 8度の角度から眺 めると、 左目は左 1 6度、 右は左 2度の位置にくることになる。 この場 合、 左右の目に左目用の画像のみが通常の平面画像として認識される。 このとき、 全く異なる画像を、 右目用光源 1 aと 1 bの点灯と同期して 交互に表示すれば、 観察者の見る角度により、 異なる 2枚の画像を認識 することができる。 In addition, when the observer tilts the portable information terminal 10 and looks at it from an angle of 8 degrees diagonally right instead of in front of the transmissive liquid crystal panel, the right eye is at 16 degrees right and the left eye is at 2 degrees right. Will be. In this case, only the image for the right eye is recognized as a normal plane image by the left and right eyes. Also, if the observer views from an angle of 8 degrees to the left, the left eye will be at 16 degrees left and the right will be at 2 degrees left. In this case, only the image for the left eye is recognized as a normal plane image by the left and right eyes. At this time, if completely different images are alternately displayed in synchronization with the lighting of the right-eye light sources 1a and 1b, two different images can be recognized depending on the viewing angle of the observer.
このような表示機能は、 画像データとしては全く異なるが内容として 関連のある画像、 たとえば、 地図と道案内、 メールの文書と添付フアイ ル写真、 二つの商品の写真を比べる場合、 二つの商品のスペックを比べ る場合に、 指を操作することなく 自然な動作で見比べられるため有効で める。 実施の形態 3 .  These display functions are completely different from the image data, but are related to the content, such as maps and directions, e-mail documents and attached file photos, and two product photos. When comparing specifications, it is effective because it is possible to compare with natural movement without manipulating a finger. Embodiment 3.
第 2 1図は、 この発明を実施するための実施の形態 3による電子情報 機器および表示装置を説明するための構成図である。  FIG. 21 is a configuration diagram for explaining an electronic information device and a display device according to a third embodiment for carrying out the present invention.
第 2 1図において、 電子情報機器である携帯電話 1 2の中に、 実施の 形態 1の表示装置が配置されている。 ここでは、 表示装置は上下に異な る画像を表示するように配置されている。 つまり、 導光板 2の上下に光 源 1 cと 1 dがそれそれ対向するように配置されている。 3は導光板 2 の出射面上に配置された両面プリズムシ一トであり、 三角状プリズム列 ならびに円筒状プリズム列は左右方向に伸びている。 4は両面プリズム シートの上に置かれた透過型液晶パネルである。 その他の表示装置の詳 細は実施の形態 1 と同様であるので説明は省略する。 1 1は操作ボタン である。  In FIG. 21, the display device according to the first embodiment is arranged in a mobile phone 12 which is an electronic information device. Here, the display device is arranged so as to display different images vertically. That is, the light sources 1 c and 1 d are arranged above and below the light guide plate 2 so as to face each other. Reference numeral 3 denotes a double-sided prism sheet disposed on the light exit surface of the light guide plate 2, and the triangular prism array and the cylindrical prism array extend in the left-right direction. 4 is a transmissive liquid crystal panel placed on a double-sided prism sheet. Other details of the display device are the same as those of the first embodiment, and a description thereof will not be repeated. 1 1 is an operation button.
以下、 第 2 1図において、 動作を説明する。 光源 1 c, 1 dを交互に 点灯し、 同期制御手段 5 (図示せず) によって、 光源 l c, I dの点灯 と同期して透過型液晶パネル 4に異なる 2枚の画像を表示すれば、 観察 者が携帯電話 1 2を傾け透過型液晶パネルの正面ではなく、 上斜め 2度 から 1 4度の間のたとえば上 6度の角度から眺めると、 左右の目はとも に上 6度の位置にく ることになり、 上側に.配置された光源 1 cの点灯時 の画像のみが通常の平面画像として認識される。 また、 観察者が下 2度 から 1 4度の間のたとえば下 6度の角度から眺めると、 左右目はともに 下 6度の位置にくることになる。 この場合、 左右の目に下側に配置され た光源 1 dの点灯時の画像のみが通常の平面画像として認識される。 こ のとき、 全く異なる画像を、 光源 1 cと 1 dの点灯と同期して交互に表 示すれば、 観察者の見る角度により、 異なる 2枚の画像を認識すること ができる。 Hereinafter, the operation will be described with reference to FIG. If the light sources 1 c and 1 d are turned on alternately, and two different images are displayed on the transmissive liquid crystal panel 4 by the synchronization control means 5 (not shown) in synchronization with the lighting of the light sources lc and Id, When the observer tilts the mobile phone 12 and looks not from the front of the transmissive liquid crystal panel but from an angle of 2 degrees to 14 degrees, for example, an upper 6 degrees, the left and right eyes are both In this case, only the image when the light source 1c arranged on the upper side is lit is recognized as a normal planar image. Also, if the observer views from an angle between 2 degrees and 14 degrees below, for example, 6 degrees below, both the left and right eyes will come to the position of 6 degrees below. In this case, only the image when the light source 1d arranged below the left and right eyes is turned on is recognized as a normal planar image. At this time, if completely different images are alternately displayed in synchronization with the lighting of the light sources 1c and 1d, two different images can be recognized depending on the viewing angle of the observer.
このように光源を上下に配置する構成の場合、 左右で画像が異なるこ とはないため、 同時に違う画像を左右眼で認識することがないため、 広 い角度範囲で、 2枚の画像が混じらない単独の鮮明な画像を視認できる 。 また、 視認できる角度が広いので、 観察者は手首を狭い角度に固定す る必要がないので携帯電話の保持は容易である。  In the case of such a configuration in which the light sources are arranged vertically, the left and right images do not differ from each other, and the left and right eyes do not recognize different images at the same time, so the two images are mixed in a wide angle range. There is no single clear image visible. Also, since the viewing angle is wide, the observer does not need to fix his wrist at a narrow angle, so holding the mobile phone is easy.
尚、 第 2 1図の携帯電話を横に向けて、 2枚の画像として視差画像を 映し、 観察者が携帯電話 1 2の透過型液晶パネルの正面から眺める場合 には、 立体画像を視認できることはいうまでもない。 この場合画像は、 視差画像の右目用画像が右目に入り、 左目用画像が左目に入る方向に横 を向けた状態で、 表示する視差画像の上下方向が正しく上下を向く よう 表示することが必要である。  In addition, when the mobile phone shown in Fig. 21 is turned sideways, the parallax image is projected as two images, and when the observer views from the front of the transmissive liquid crystal panel of the mobile phone 12, the stereoscopic image can be visually recognized. Needless to say. In this case, the parallax image should be displayed so that the right-eye image of the parallax image enters the right eye and the left-eye image enters the left eye, and the parallax image to be displayed faces up and down correctly. It is.
また、 本実施の形態では携帯電話を用いて説明したが、 他の携帯情報 端末に利用できることは言うまでもない。 産業上の利用可能性  Further, although the present embodiment has been described using a mobile phone, it goes without saying that the present invention can be used for other mobile information terminals. Industrial applicability
本発明は、 携帯情報端末に好適な、 立体視および同一画面で同時に異 なる画面表示が可能な表示装置を得ることができる。  According to the present invention, it is possible to obtain a display device suitable for a portable information terminal and capable of performing stereoscopic viewing and simultaneously displaying different screens on the same screen.

Claims

請 求 の 範 囲 The scope of the claims
1 . 導光板とその異なる 2つの入光端面にそれぞれ配置された光源と、 上記導光板の出光面側に配置され、 上記導光板と向かい合う面には上記 導光板の入光端面と平行な方向へ伸びる三角形状プリズム列、 上記面と 対向する面には上記三角形状プリズム列と平行に伸びる円筒状レンズ列 を有する両面プリズムシ一トと、 この両面プリズムシ一トの出射面側に 配置された透過型表示パネルと、 上記光源に同期させて上記透過型表示 パネルに異なる 2画像を表示させる同期駆動手段とを備え、 上記光源か らの光がそれそれ左右の異なる方向に上記透過型表示パネルから出射す ることを特徴とする表示装置。 1. A light guide plate and light sources respectively arranged on two different light incident end surfaces thereof, and a light guide surface arranged on the light exit surface side of the light guide plate, and a direction parallel to the light incident end surface of the light guide plate on a surface facing the light guide plate. A double-sided prism sheet having a triangular prism array extending in parallel with the above-mentioned surface, and a cylindrical lens array extending in parallel with the triangular prism array, and a transmission disposed on the exit surface side of the double-sided prism sheet. Type display panel, and synchronous driving means for displaying two different images on the transmissive display panel in synchronization with the light source, wherein light from the light source is transmitted from the transmissive display panel in different directions to the left and right, respectively. A display device which emits light.
2 . 上記光源からの光がそれそれ左右の視差に対応する角度で上記透過 型表示パネルから出射することを特徴とする請求の範囲第 1項記載の表 示装置。 2. The display device according to claim 1, wherein the light from the light source is emitted from the transmissive display panel at an angle corresponding to the right and left parallax.
3 . 導光板とその異なる 2つの入光端面にそれそれ配置された光源と、 上記導光板の出光面側に配置され、 上記導光板と向かい合う面には上記 導光板の入光端面と平行な方向へ伸びる≡角形状プリズム列、 上記面と 対向する面には上記三角形状プリズム列と平行に伸びる円筒状レンズ列 を有する両面プリズムシ一トと、 この両面プリズムシ一トの出射面側に 配置された透過型表示パネルと、 上記光源に同期させて上記透過型表示 パネルに異なる 2画像を表示させる同期駆動手段とを備え、 上記光源か らの光がそれそれ上下の異なる方向に上記透過型表示パネルから出射す ることを特徴とする表示装置。 3. A light guide plate and light sources respectively arranged on two different light incident end faces thereof, and a light source arranged on a light exit surface side of the light guide plate, and a surface facing the light guide plate being parallel to a light incident end face of the light guide plate. A double-sided prism sheet having a rectangular prism array extending in the direction, a cylindrical lens array extending in parallel with the triangular prism array on a surface facing the above-described surface, and a double-sided prism sheet is disposed on the exit surface side. A transmission type display panel, and synchronous driving means for displaying two different images on the transmission type display panel in synchronization with the light source. A display device which emits light from a panel.
4 . 上記円筒状レンズ列を形成する円筒レンズの焦点位置が、 上記三角 形状プリズム列を形成するプリズムの頂点に一致するように構成した請 求の範囲第 1項記載の表示装置。 4. The display device according to claim 1, wherein the focal position of the cylindrical lenses forming the cylindrical lens array is set to coincide with the vertices of the prisms forming the triangular prism array.
5 . 上記円筒状レンズ列のピツチと両面プリズムシートの厚さとの比が 1 : 2 . 5から 1 : 4の範囲である請求の範囲第 1項記載の表示装置。 5. The display device according to claim 1, wherein the ratio of the pitch of the cylindrical lens array to the thickness of the double-sided prism sheet is in the range of 1: 2.5 to 1: 4.
6 . 上記三角形状プリズム列のプリズムの頂角が 5 6度から 6 8度の範 囲である請求の範囲第 1項記載の表示装置。 6. The display device according to claim 1, wherein the apex angles of the prisms in the triangular prism row are in a range of 56 degrees to 68 degrees.
7 . 請求の範囲第 1項記載の表示装置を備えた電子機器。 + 7. An electronic device comprising the display device according to claim 1. +
PCT/JP2003/012024 2002-09-19 2003-09-19 Display unit and electronic apparatus equipped with display unit WO2004027492A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004538005A JP3930021B2 (en) 2002-09-19 2003-09-19 Display device and electronic apparatus equipped with display device
US10/523,205 US7210836B2 (en) 2002-09-19 2003-09-19 Display unit and electronic apparatus with display unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-273064 2002-09-19
JP2002273064 2002-09-19

Publications (1)

Publication Number Publication Date
WO2004027492A1 true WO2004027492A1 (en) 2004-04-01

Family

ID=32024943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012024 WO2004027492A1 (en) 2002-09-19 2003-09-19 Display unit and electronic apparatus equipped with display unit

Country Status (4)

Country Link
US (1) US7210836B2 (en)
JP (1) JP3930021B2 (en)
CN (1) CN100376924C (en)
WO (1) WO2004027492A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006021242A1 (en) * 2004-08-19 2006-03-02 Seereal Technologies Gmbh Lenticule and prism unit
US7057638B1 (en) 2004-08-16 2006-06-06 Mitsubishi Denki Kabushiki Kaisha Stereoscopic image display apparatus
JP2006184506A (en) * 2004-12-27 2006-07-13 Casio Comput Co Ltd Liquid crystal display apparatus
JP2006276161A (en) * 2005-03-28 2006-10-12 Casio Comput Co Ltd Liquid crystal display device
WO2007007860A1 (en) * 2005-07-08 2007-01-18 Sharp Kabushiki Kaisha Multiple-view directional display
JP2008209778A (en) * 2007-02-27 2008-09-11 Casio Comput Co Ltd Liquid crystal display
US7444932B2 (en) 2005-03-09 2008-11-04 3M Innovative Properties Company Apparatus and method for making microreplicated article
JP2009037205A (en) * 2007-04-18 2009-02-19 Rohm & Haas Denmark Finance As Double-sided turning film
KR100889333B1 (en) 2005-03-31 2009-03-25 가부시키가이샤 아리사와 세이사쿠쇼 Image displaying apparatus
WO2009046057A1 (en) * 2007-10-04 2009-04-09 3M Innovative Properties Company Stretched film for stereoscopic 3d display
US7677733B2 (en) 2006-10-06 2010-03-16 3M Innovative Properties Company Method of designing a matched light guide for a stereoscopic 3D liquid crystal display
JP2011075979A (en) * 2009-10-01 2011-04-14 Toshiba Mobile Display Co Ltd Stereoscopic video display device
US8182131B2 (en) 2008-06-19 2012-05-22 Samsung Electronics Co., Ltd. Light guide plate and backlight unit having the same
US8339341B2 (en) 2007-11-29 2012-12-25 Mitsubishi Electric Corporation Image display system which performs overdrive processing
US8348490B2 (en) 2008-02-25 2013-01-08 Mitsubishi Electric Corporation Planar light source device and method of manufacturing divided prism mold
JP2013077461A (en) * 2011-09-30 2013-04-25 Minebea Co Ltd Planar lighting device
JP2013517528A (en) * 2010-01-13 2013-05-16 スリーエム イノベイティブ プロパティズ カンパニー Fine replica film for mounting on autostereoscopic display components
WO2013073147A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Image display device
WO2013179679A1 (en) * 2012-06-01 2013-12-05 パナソニック株式会社 Backlight device and image display device using same
US8681148B2 (en) 2010-01-12 2014-03-25 Mitsubishi Electric Corporation Method for correcting stereoscopic image, stereoscopic display device, and stereoscopic image generating device
US8860061B2 (en) 2012-01-23 2014-10-14 Stanley Electric Co., Ltd. Semiconductor light-emitting device, manufacturing method for the same and vehicle headlight
US8917296B2 (en) 2011-05-23 2014-12-23 Panasonic Corporation Luminous intensity distribution system and stereoscopic image display device
US8968629B2 (en) 2005-03-09 2015-03-03 3M Innovative Properties Company Apparatus and method for producing two-sided patterned web in registration
US9229252B2 (en) 2012-06-18 2016-01-05 Stanley Electric Co., Ltd. Stereographic display apparatus and vehicle headlight
CN106462004A (en) * 2014-05-30 2017-02-22 3M创新有限公司 Temporally multiplexing backlight with asymmetric turning film
JP2022138154A (en) * 2021-03-09 2022-09-22 ジオプティカ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Illumination apparatus for display with at least two operating modes

Families Citing this family (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804649B2 (en) 2003-09-09 2010-09-28 3M Innovative Properties Company Microreplicated achromatic lens
GB2410093A (en) * 2004-01-17 2005-07-20 Sharp Kk Display
US7561217B2 (en) * 2004-09-09 2009-07-14 Au Optronics Corporation Liquid crystal display apparatus and method for improving precision 2D/3D viewing with an adjustable backlight unit
WO2006098938A1 (en) * 2005-03-09 2006-09-21 3M Innovative Properties Company Microreplicated article and method for the production thereof
JP4741866B2 (en) * 2005-03-28 2011-08-10 Nec液晶テクノロジー株式会社 Light source device, display device using the same, and terminal device
US20070002563A1 (en) * 2005-07-01 2007-01-04 K-Bridge Electronics Co., Ltd. Light guide grooves in direct type backlight module
GB2428345A (en) * 2005-07-13 2007-01-24 Sharp Kk A display having multiple view and single view modes
TWI315432B (en) * 2005-11-21 2009-10-01 Optoma Corp Brightness enhancement film and backlight module
TWI285721B (en) * 2005-12-02 2007-08-21 Hon Hai Prec Ind Co Ltd Light guide plate and method for manufacturing the light guide plate
JP2007163627A (en) * 2005-12-12 2007-06-28 Epson Imaging Devices Corp Illumination device, electro-optical device and electronic apparatus
CN101416232B (en) * 2006-03-29 2011-03-23 日本电气株式会社 Image display device and image display method
CN101416094B (en) 2006-04-07 2014-04-09 日本电气株式会社 Image display device
KR101213842B1 (en) * 2006-04-27 2012-12-18 후지쯔 가부시끼가이샤 Illumination device and liquid crystal display device
KR101259011B1 (en) * 2006-09-15 2013-04-29 삼성전자주식회사 Multiview autosterescopic display apparatus with lnterlaced image
US8339444B2 (en) * 2007-04-09 2012-12-25 3M Innovative Properties Company Autostereoscopic liquid crystal display apparatus
US8659641B2 (en) * 2007-05-18 2014-02-25 3M Innovative Properties Company Stereoscopic 3D liquid crystal display apparatus with black data insertion
US7528893B2 (en) * 2007-05-18 2009-05-05 3M Innovative Properties Company Backlight for liquid crystal display
ITTO20070620A1 (en) * 2007-08-31 2009-03-01 Giancarlo Capaccio SYSTEM AND METHOD FOR PRESENTING VISUAL DATA DETACHED IN MULTI-SPECTRAL IMAGES, MERGER, AND THREE SPACE DIMENSIONS.
US8004622B2 (en) * 2007-10-04 2011-08-23 3M Innovative Properties Company Embedded stereoscopic 3D display and 2D display film stack
KR20100075606A (en) * 2007-10-12 2010-07-02 브라이트 뷰 테크놀로지즈, 아이엔씨. Light management films, back light units, and related structures
US8339333B2 (en) * 2008-01-02 2012-12-25 3M Innovative Properties Company Methods of reducing perceived image crosstalk in a multiview display
JP2009168961A (en) * 2008-01-15 2009-07-30 Nippon Zeon Co Ltd Light diffusing plate, direct backlight device, and liquid crystal display
US7750982B2 (en) * 2008-03-19 2010-07-06 3M Innovative Properties Company Autostereoscopic display with fresnel lens element and double sided prism film adjacent a backlight having a light transmission surface with left and right eye light sources at opposing ends modulated at a rate of at least 90 hz
JP2009246625A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Stereoscopic display apparatus, stereoscopic display method, and program
US8068187B2 (en) * 2008-06-18 2011-11-29 3M Innovative Properties Company Stereoscopic 3D liquid crystal display apparatus having a double sided prism film comprising cylindrical lenses and non-contiguous prisms
EP2304966B1 (en) * 2008-06-27 2019-03-27 Koninklijke Philips N.V. Autostereoscopic display device
US9086535B2 (en) 2008-07-10 2015-07-21 3M Innovative Properties Company Retroreflective articles and devices having viscoelastic lightguide
US8651720B2 (en) 2008-07-10 2014-02-18 3M Innovative Properties Company Retroreflective articles and devices having viscoelastic lightguide
EP2313800A4 (en) 2008-07-10 2014-03-19 3M Innovative Properties Co Viscoelastic lightguide
TWI379105B (en) * 2008-07-17 2012-12-11 Coretronic Corp Optical film and backlight module using the same
EP2321677A4 (en) 2008-08-08 2011-08-17 3M Innovative Properties Co Lightguide having a viscoelastic layer for managing light
KR101310377B1 (en) * 2008-10-17 2013-09-23 엘지디스플레이 주식회사 Image display device
US8098347B2 (en) 2008-11-21 2012-01-17 3M Innovative Properties Company Stereoscopic 3D liquid crystal display with graded light guide light extraction features
KR101332054B1 (en) * 2009-06-09 2013-11-22 엘지디스플레이 주식회사 Liquid crystal display device
JP5425554B2 (en) 2009-07-27 2014-02-26 富士フイルム株式会社 Stereo imaging device and stereo imaging method
US8659830B2 (en) * 2009-12-21 2014-02-25 3M Innovative Properties Company Optical films enabling autostereoscopy
US9146342B2 (en) 2010-01-13 2015-09-29 3M Innovative Properties Company Illumination device having viscoelastic lightguide
EP2355526A3 (en) 2010-01-14 2012-10-31 Nintendo Co., Ltd. Computer-readable storage medium having stored therein display control program, display control apparatus, display control system, and display control method
TW201131209A (en) * 2010-03-10 2011-09-16 Core Flex Optical Suzhou Co Ltd Beam splitting film, backlight module, and stereo display apparatus
TWI625555B (en) * 2010-03-26 2018-06-01 友輝光電股份有限公司 Optical substrates having light collimating and diffusion structures
US8564740B2 (en) 2010-05-24 2013-10-22 3M Innovative Properties Company Directional backlight with reduced crosstalk
US9693039B2 (en) 2010-05-27 2017-06-27 Nintendo Co., Ltd. Hand-held electronic device
JP5872185B2 (en) * 2010-05-27 2016-03-01 任天堂株式会社 Portable electronic devices
US8646960B2 (en) 2010-08-03 2014-02-11 3M Innovative Properties Company Scanning backlight with slatless light guide
US8547015B2 (en) 2010-10-20 2013-10-01 3M Innovative Properties Company Light extraction films for organic light emitting devices (OLEDs)
US8469551B2 (en) 2010-10-20 2013-06-25 3M Innovative Properties Company Light extraction films for increasing pixelated OLED output with reduced blur
KR101766272B1 (en) * 2010-11-01 2017-08-08 삼성전자주식회사 Apparatus and method for displaying holographic image using collimated directional backlight unit
KR101911835B1 (en) 2010-11-19 2019-01-04 리얼디 스파크, 엘엘씨 Directional flat illuminators
US20140041205A1 (en) 2010-11-19 2014-02-13 Reald Inc. Method of manufacturing directional backlight apparatus and directional structured optical film
TWI412842B (en) * 2010-11-26 2013-10-21 Coretronic Corp Blacklight module and display apparatus
US8988336B2 (en) * 2010-12-16 2015-03-24 3M Innovative Properties Company Dual-orientation autostereoscopic backlight and display
CN102566250B (en) * 2010-12-22 2015-08-19 康佳集团股份有限公司 A kind of optical projection system of naked-eye auto-stereoscopic display and display
KR101739139B1 (en) * 2010-12-30 2017-05-23 엘지디스플레이 주식회사 Stereoscopic image display
CN102162600B (en) * 2010-12-31 2012-11-21 友达光电(苏州)有限公司 Backlight module and three-dimensional display device
TWI421596B (en) * 2010-12-31 2014-01-01 Au Optronics Corp Three-dimensional display apparatus and backlight module thereof
US20120200793A1 (en) * 2011-01-31 2012-08-09 Hossein Tajalli Tehrani 3-D Cinema and Display Technology
JP5312698B2 (en) * 2011-02-15 2013-10-09 三菱電機株式会社 Image processing apparatus, image display apparatus, image processing method, and image processing program
US9244284B2 (en) 2011-03-15 2016-01-26 3M Innovative Properties Company Microreplicated film for autostereoscopic displays
JP2012252249A (en) * 2011-06-06 2012-12-20 Sony Corp Light source device and display
CN102231019A (en) * 2011-06-27 2011-11-02 南京中电熊猫液晶显示科技有限公司 Naked-eye stereoscopic display
TW201305487A (en) * 2011-07-13 2013-02-01 Rambus Inc Lighting assembly with controlled configurable light redirection
JP5943747B2 (en) * 2011-09-06 2016-07-05 三菱電機株式会社 3D image display device
US9436015B2 (en) 2012-12-21 2016-09-06 Reald Inc. Superlens component for directional display
CN103220538A (en) * 2012-01-20 2013-07-24 贝太科技(深圳)有限公司 Stereo display system and stereo display method
JP5532075B2 (en) 2012-04-18 2014-06-25 凸版印刷株式会社 Liquid crystal display
WO2013157341A1 (en) 2012-04-18 2013-10-24 凸版印刷株式会社 Liquid crystal display device
WO2013161304A1 (en) 2012-04-26 2013-10-31 パナソニック株式会社 Optical deflection element and image display device using this
CN104487877A (en) 2012-05-18 2015-04-01 瑞尔D股份有限公司 Directional display apparatus
US9350980B2 (en) 2012-05-18 2016-05-24 Reald Inc. Crosstalk suppression in a directional backlight
US9678267B2 (en) 2012-05-18 2017-06-13 Reald Spark, Llc Wide angle imaging directional backlights
US9709723B2 (en) 2012-05-18 2017-07-18 Reald Spark, Llc Directional backlight
US9188731B2 (en) 2012-05-18 2015-11-17 Reald Inc. Directional backlight
US9235057B2 (en) 2012-05-18 2016-01-12 Reald Inc. Polarization recovery in a directional display device
EP4235270A3 (en) 2012-05-18 2023-11-08 RealD Spark, LLC Directionally illuminated waveguide arrangement
US10062357B2 (en) 2012-05-18 2018-08-28 Reald Spark, Llc Controlling light sources of a directional backlight
JP5998720B2 (en) * 2012-08-01 2016-09-28 セイコーエプソン株式会社 Liquid crystal display device and electronic device
US9420266B2 (en) 2012-10-02 2016-08-16 Reald Inc. Stepped waveguide autostereoscopic display apparatus with a reflective directional element
KR20140052819A (en) * 2012-10-24 2014-05-07 엘지디스플레이 주식회사 Liquid crystal display device having backlight unit to be able to control viewing angle
TW201426124A (en) * 2012-12-25 2014-07-01 Hon Hai Prec Ind Co Ltd Back light module
CN105074552B (en) 2012-12-27 2018-01-02 凸版印刷株式会社 The manufacture method of liquid crystal display device, base plate for liquid crystal display device and base plate for liquid crystal display device
EP2959213A4 (en) 2013-02-22 2016-11-16 Reald Inc Directional backlight
CN104006324A (en) * 2013-02-25 2014-08-27 京东方科技集团股份有限公司 Backlight module and display device comprising same
US9261641B2 (en) 2013-03-25 2016-02-16 3M Innovative Properties Company Dual-sided film with compound prisms
US9784902B2 (en) 2013-03-25 2017-10-10 3M Innovative Properties Company Dual-sided film with split light spreading structures
JP2016529764A (en) 2013-06-17 2016-09-23 リアルディー インコーポレイテッド Control of light source of directional backlight
CN103809356B (en) * 2013-08-02 2019-12-10 杨毅 screen
CN103809360A (en) * 2013-08-02 2014-05-21 吴震 Projection display system
KR102103892B1 (en) 2013-08-09 2020-04-24 삼성전자주식회사 Display apparatus, 3d film and controlling method thereof
CN106068533B (en) 2013-10-14 2019-01-11 瑞尔D斯帕克有限责任公司 The control of directional display
KR102366346B1 (en) 2013-10-14 2022-02-23 리얼디 스파크, 엘엘씨 Light input for directional backlight
WO2015073438A1 (en) 2013-11-15 2015-05-21 Reald Inc. Directional backlights with light emitting element packages
KR20150057321A (en) * 2013-11-19 2015-05-28 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Dual viewing film and dual view display apparatus using that
TWI500983B (en) * 2013-11-29 2015-09-21 Benq Materials Corp Light adjusting film
CN103838034A (en) * 2014-02-07 2014-06-04 京东方科技集团股份有限公司 Backlight module and dual-view display device
WO2015142864A1 (en) 2014-03-18 2015-09-24 3M Innovative Properties Company Marketing strip with viscoelastic lightguide
TW201545384A (en) * 2014-05-29 2015-12-01 國立交通大學 Optical film and light source module
JP6962521B2 (en) 2014-06-26 2021-11-05 リアルディー スパーク エルエルシー Directional privacy display
CN104199192B (en) * 2014-07-31 2017-03-01 京东方科技集团股份有限公司 A kind of display device
US9835792B2 (en) 2014-10-08 2017-12-05 Reald Spark, Llc Directional backlight
WO2016105541A1 (en) 2014-12-24 2016-06-30 Reald Inc. Adjustment of perceived roundness in stereoscopic image of a head
RU2596062C1 (en) 2015-03-20 2016-08-27 Автономная Некоммерческая Образовательная Организация Высшего Профессионального Образования "Сколковский Институт Науки И Технологий" Method for correction of eye image using machine learning and method of machine learning
EP3283906B1 (en) 2015-04-13 2020-09-23 RealD Spark, LLC Wide angle imaging directional backlights
US10228505B2 (en) 2015-05-27 2019-03-12 Reald Spark, Llc Wide angle imaging directional backlights
WO2017074951A1 (en) 2015-10-26 2017-05-04 Reald Inc. Intelligent privacy system, apparatus, and method thereof
US10459321B2 (en) 2015-11-10 2019-10-29 Reald Inc. Distortion matching polarization conversion systems and methods thereof
EP3374822B1 (en) 2015-11-13 2023-12-27 RealD Spark, LLC Surface features for imaging directional backlights
CN108463667B (en) 2015-11-13 2020-12-01 瑞尔D斯帕克有限责任公司 Wide-angle imaging directional backlight
CN114143495A (en) 2016-01-05 2022-03-04 瑞尔D斯帕克有限责任公司 Gaze correction of multi-perspective images
CN114554177A (en) 2016-05-19 2022-05-27 瑞尔D斯帕克有限责任公司 Wide-angle imaging directional backlight source
WO2017205183A1 (en) 2016-05-23 2017-11-30 Reald Spark, Llc Wide angle imaging directional backlights
CN106054448A (en) * 2016-06-12 2016-10-26 合肥工业大学 Backlight module and liquid crystal display device
CN106226955A (en) * 2016-09-29 2016-12-14 深圳市宇顺工业智能科技有限公司 Display
EP3566094B1 (en) 2017-01-04 2023-12-06 RealD Spark, LLC Optical stack for imaging directional backlights
WO2018187154A1 (en) 2017-04-03 2018-10-11 Reald Spark, Llc Segmented imaging directional backlights
US9915773B1 (en) * 2017-04-28 2018-03-13 Delta Electronics, Inc. Backlight module and stereo display device using the same
US10303030B2 (en) 2017-05-08 2019-05-28 Reald Spark, Llc Reflective optical stack for privacy display
EP3622342A4 (en) 2017-05-08 2021-02-17 RealD Spark, LLC Optical stack for directional display
US10126575B1 (en) 2017-05-08 2018-11-13 Reald Spark, Llc Optical stack for privacy display
ES2967691T3 (en) 2017-08-08 2024-05-03 Reald Spark Llc Fitting a digital representation of a head region
CN107347140B (en) * 2017-08-24 2019-10-15 维沃移动通信有限公司 A kind of image pickup method, mobile terminal and computer readable storage medium
CN107490872B (en) * 2017-09-05 2023-11-21 朱光波 Grating imaging film
TW201921060A (en) 2017-09-15 2019-06-01 美商瑞爾D斯帕克有限責任公司 Optical stack for switchable directional display
US11109014B2 (en) 2017-11-06 2021-08-31 Reald Spark, Llc Privacy display apparatus
CN107783305B (en) * 2017-11-24 2024-01-23 成都工业学院 Time division multiplexing 3D display and application thereof
KR101859197B1 (en) * 2018-01-22 2018-05-21 주식회사 연시스템즈 Real-time stereoscopic microscope
US10802356B2 (en) 2018-01-25 2020-10-13 Reald Spark, Llc Touch screen for privacy display
WO2019147762A1 (en) 2018-01-25 2019-08-01 Reald Spark, Llc Reflective optical stack for privacy display
US11635622B1 (en) * 2018-12-07 2023-04-25 Meta Platforms Technologies, Llc Nanovided spacer materials and corresponding systems and methods
CN110716322B (en) * 2019-10-29 2021-03-30 北京邮电大学 Display system and display method for desktop three-dimensional orientation
WO2022060673A1 (en) 2020-09-16 2022-03-24 Reald Spark, Llc Vehicle external illumination device
WO2024030274A1 (en) 2022-08-02 2024-02-08 Reald Spark, Llc Pupil tracking near-eye display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483254A (en) * 1993-12-28 1996-01-09 Dimensional Displays Inc. 3D video display devices
US5936607A (en) * 1993-05-05 1999-08-10 Allio; Pierre Autostereoscopic video device and system
JP2001066547A (en) * 1999-08-31 2001-03-16 Toshiba Corp Stereoscopic display device
WO2001075505A2 (en) * 2000-03-31 2001-10-11 Koninklijke Philips Electronics N.V. Electronic device having a display

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449018A (en) * 1987-08-20 1989-02-23 Seizaburo Kimura Prism plate for stereoscopic display
JPH052047Y2 (en) 1987-09-18 1993-01-19
JP3072866B2 (en) 1991-10-15 2000-08-07 日本電信電話株式会社 3D stereoscopic image display device
US5914760A (en) 1996-06-21 1999-06-22 Casio Computer Co., Ltd. Surface light source device and liquid crystal display device using the same
JPH10161061A (en) 1996-12-02 1998-06-19 Sanyo Electric Co Ltd Stereoscopic video display device
KR20010009720A (en) * 1999-07-13 2001-02-05 박호군 3-Dimentional imaging screen for multi-viewer and fabrication method thereof
TW536646B (en) * 1999-12-24 2003-06-11 Ind Tech Res Inst Back-lighted auto-stereoscopic display
JP2003050569A (en) * 2000-11-30 2003-02-21 Hitachi Ltd Liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5936607A (en) * 1993-05-05 1999-08-10 Allio; Pierre Autostereoscopic video device and system
US5483254A (en) * 1993-12-28 1996-01-09 Dimensional Displays Inc. 3D video display devices
JP2001066547A (en) * 1999-08-31 2001-03-16 Toshiba Corp Stereoscopic display device
WO2001075505A2 (en) * 2000-03-31 2001-10-11 Koninklijke Philips Electronics N.V. Electronic device having a display

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057638B1 (en) 2004-08-16 2006-06-06 Mitsubishi Denki Kabushiki Kaisha Stereoscopic image display apparatus
WO2006021242A1 (en) * 2004-08-19 2006-03-02 Seereal Technologies Gmbh Lenticule and prism unit
JP4622509B2 (en) * 2004-12-27 2011-02-02 カシオ計算機株式会社 Liquid crystal display device
JP2006184506A (en) * 2004-12-27 2006-07-13 Casio Comput Co Ltd Liquid crystal display apparatus
US7444932B2 (en) 2005-03-09 2008-11-04 3M Innovative Properties Company Apparatus and method for making microreplicated article
US8968629B2 (en) 2005-03-09 2015-03-03 3M Innovative Properties Company Apparatus and method for producing two-sided patterned web in registration
JP4692040B2 (en) * 2005-03-28 2011-06-01 カシオ計算機株式会社 Liquid crystal display
JP2006276161A (en) * 2005-03-28 2006-10-12 Casio Comput Co Ltd Liquid crystal display device
KR100889333B1 (en) 2005-03-31 2009-03-25 가부시키가이샤 아리사와 세이사쿠쇼 Image displaying apparatus
US8154800B2 (en) 2005-07-08 2012-04-10 Sharp Kabushiki Kaisha Multiple-view directional display
CN101248475B (en) * 2005-07-08 2010-05-19 夏普株式会社 Multiple-view directional display
JP2009500672A (en) * 2005-07-08 2009-01-08 シャープ株式会社 Multi-view directional display device
WO2007007860A1 (en) * 2005-07-08 2007-01-18 Sharp Kabushiki Kaisha Multiple-view directional display
US7677733B2 (en) 2006-10-06 2010-03-16 3M Innovative Properties Company Method of designing a matched light guide for a stereoscopic 3D liquid crystal display
US7800708B2 (en) 2006-10-06 2010-09-21 3M Innovative Properties Company Stereoscopic 3D liquid crystal display with segmented light guide
US7911547B2 (en) 2006-10-06 2011-03-22 3M Innovative Properties Company Stereoscopic 3D liquid crystal display apparatus with slatted light guide
US8179362B2 (en) 2006-10-06 2012-05-15 3M Innovative Properties Company Stereoscopic 3D liquid crystal display apparatus with scanning backlight
US8035771B2 (en) 2006-10-06 2011-10-11 3M Innovative Properties Company Stereoscopic 3D liquid crystal display apparatus with structured light guide surface
JP2008209778A (en) * 2007-02-27 2008-09-11 Casio Comput Co Ltd Liquid crystal display
JP2009037205A (en) * 2007-04-18 2009-02-19 Rohm & Haas Denmark Finance As Double-sided turning film
WO2009046057A1 (en) * 2007-10-04 2009-04-09 3M Innovative Properties Company Stretched film for stereoscopic 3d display
JP2010541020A (en) * 2007-10-04 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー Stretched film for 3D display
US8339341B2 (en) 2007-11-29 2012-12-25 Mitsubishi Electric Corporation Image display system which performs overdrive processing
US8348490B2 (en) 2008-02-25 2013-01-08 Mitsubishi Electric Corporation Planar light source device and method of manufacturing divided prism mold
US8182131B2 (en) 2008-06-19 2012-05-22 Samsung Electronics Co., Ltd. Light guide plate and backlight unit having the same
JP2011075979A (en) * 2009-10-01 2011-04-14 Toshiba Mobile Display Co Ltd Stereoscopic video display device
US8681148B2 (en) 2010-01-12 2014-03-25 Mitsubishi Electric Corporation Method for correcting stereoscopic image, stereoscopic display device, and stereoscopic image generating device
JP2013517528A (en) * 2010-01-13 2013-05-16 スリーエム イノベイティブ プロパティズ カンパニー Fine replica film for mounting on autostereoscopic display components
US8917296B2 (en) 2011-05-23 2014-12-23 Panasonic Corporation Luminous intensity distribution system and stereoscopic image display device
JP2013077461A (en) * 2011-09-30 2013-04-25 Minebea Co Ltd Planar lighting device
WO2013073147A1 (en) * 2011-11-16 2013-05-23 パナソニック株式会社 Image display device
JPWO2013073147A1 (en) * 2011-11-16 2015-04-02 パナソニックIpマネジメント株式会社 Image display device
US9405125B2 (en) 2011-11-16 2016-08-02 Panasonic Intellectual Property Management Co., Ltd. Image display apparatus
US8860061B2 (en) 2012-01-23 2014-10-14 Stanley Electric Co., Ltd. Semiconductor light-emitting device, manufacturing method for the same and vehicle headlight
WO2013179679A1 (en) * 2012-06-01 2013-12-05 パナソニック株式会社 Backlight device and image display device using same
JPWO2013179679A1 (en) * 2012-06-01 2016-01-18 パナソニックIpマネジメント株式会社 Backlight device and image display device using the same
US9229252B2 (en) 2012-06-18 2016-01-05 Stanley Electric Co., Ltd. Stereographic display apparatus and vehicle headlight
CN106462004A (en) * 2014-05-30 2017-02-22 3M创新有限公司 Temporally multiplexing backlight with asymmetric turning film
CN106462004B (en) * 2014-05-30 2019-08-30 3M创新有限公司 Time multiplexing backlight with asymmetric turning film
JP2022138154A (en) * 2021-03-09 2022-09-22 ジオプティカ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Illumination apparatus for display with at least two operating modes
JP7242104B2 (en) 2021-03-09 2023-03-20 ジオプティカ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Lighting device for display having at least two modes of operation

Also Published As

Publication number Publication date
JPWO2004027492A1 (en) 2006-01-19
CN1678943A (en) 2005-10-05
US20050276071A1 (en) 2005-12-15
JP3930021B2 (en) 2007-06-13
CN100376924C (en) 2008-03-26
US7210836B2 (en) 2007-05-01

Similar Documents

Publication Publication Date Title
WO2004027492A1 (en) Display unit and electronic apparatus equipped with display unit
CN108089340B (en) Directional display device
CN106104372B (en) Directional display device and directional display apparatus
US6445406B1 (en) Stereoscopic image display apparatus whose observation area is widened
KR102117220B1 (en) Directional backlight
JP4503619B2 (en) Portable device
JP4404311B2 (en) Multi-view directional display
US20080186575A1 (en) 2d-3d image switching display system
KR101331900B1 (en) 3-dimension display device using light controlling film
CN104380157A (en) Directionally illuminated waveguide arrangement
JP2012008386A (en) Light source device and three-dimensional display
JP2010237416A (en) Stereoscopic display device
KR101322733B1 (en) 3-dimension display device using reflector
JP4703477B2 (en) 3D display device
JP3789332B2 (en) 3D display device
JP2000075243A (en) Stereoscopic display device
JP2002318369A (en) Stereoscopic video display device
US20240255773A1 (en) Air floating video display apparatus and light source
WO2013121771A1 (en) Image display device
JP3960085B2 (en) Stereoscopic image display device
JP2004198629A (en) Display device
JP4595485B2 (en) Video display system
EP2624043A1 (en) Stereoscopic image display device
CN220085167U (en) Head-up display device
JP2002277821A (en) Three-dimensional image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

WWE Wipo information: entry into national phase

Ref document number: 10523205

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038209756

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004538005

Country of ref document: JP