WO2004026439A1 - Fluid filter - Google Patents

Fluid filter Download PDF

Info

Publication number
WO2004026439A1
WO2004026439A1 PCT/JP2003/011800 JP0311800W WO2004026439A1 WO 2004026439 A1 WO2004026439 A1 WO 2004026439A1 JP 0311800 W JP0311800 W JP 0311800W WO 2004026439 A1 WO2004026439 A1 WO 2004026439A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid filter
fluid
region
ceramic
peripheral surface
Prior art date
Application number
PCT/JP2003/011800
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Yamamoto
Eigo Tanuma
Satoshi Sumiya
Original Assignee
Bridgestone Corporation
Johnson Matthey Japan Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation, Johnson Matthey Japan Incorporated filed Critical Bridgestone Corporation
Priority to JP2004568909A priority Critical patent/JPWO2004026439A1/en
Priority to AU2003266520A priority patent/AU2003266520A1/en
Publication of WO2004026439A1 publication Critical patent/WO2004026439A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires

Definitions

  • the present invention relates to a fluid filter, and more particularly to a fluid filter made of a porous ceramic body.
  • a synthetic resin foam having a three-dimensional network skeleton structure with internal communication space for example, a flexible polyurethane foam without a cell membrane
  • a ceramic slurry for example, Japanese Patent Application Laid-Open No. H11-285857, Japanese Patent Laid-Open No. 2000-10973). No. 6).
  • This ceramic porous body has features such as low power density, high heat resistance, and low airflow resistance, that is, low pressure loss. Therefore, grease filters for kitchens, catalyst carriers, air-permeable insulation materials, and molten metal filtration materials However, it is required that the pressure loss be as low as possible for use in these applications.
  • An object of the present invention is to provide a fluid filter made of a porous ceramic body having excellent dust removal performance and low pressure loss.
  • the fluid filter of the first aspect has a first surface and a second surface facing the first surface, and fluid flows from the first surface to the second surface.
  • a fluid filter comprising a porous ceramic body, wherein an empty space is provided between the first surface and the second surface. By providing this empty chamber, the pressure loss rise of the fluid filter is reduced.
  • the porous body has a first side surface connecting the first surface and the second surface, and a second side surface facing the first side surface.
  • the cavity is formed by a hole penetrating from the first side surface to the second side surface.
  • the vacant space extends along the first surface and the second surface in a direction in which these surfaces spread (two orthogonal directions).
  • the hole diameter on the second surface side is smaller than that on the first surface side.
  • the fluid filter of the second aspect is a fluid filter made of a cylindrical ceramic porous body having an outer peripheral surface and an inner peripheral surface, in which a fluid flows from one peripheral surface to the other peripheral surface. It is characterized in that there is a distribution in the average pore diameter in the flow direction of the fluid. As described above, by giving the distribution of the average pore diameter in the flow direction of the fluid, the dust removing performance is improved, and the rise in pressure loss of the fluid filter is reduced.
  • the dust removal performance is improved by making the average pore diameter smaller toward the downstream side in the flow direction of the fluid.
  • the area where the average pore diameter is the same is the area of the fluid filter.
  • the ring has a ring shape in the cross section in the direction perpendicular to the cylinder axis direction, and it is particularly preferable that at least two ring regions having different average pore diameters exist.
  • the fluid filter of the second aspect is preferably cylindrical.
  • the first and second aspects of the ceramic porous body are prepared by immersing a synthetic resin foam having a three-dimensional net-like skeleton structure having an internal communication space in a ceramic slurry, allowing the ceramic to adhere to the synthetic resin foam, and then drying and drying. It is preferably a ceramic porous body having a three-dimensional network skeleton structure obtained by firing.
  • the first and second aspect fluid filters are suitable for removing dust such as air.
  • FIG. 1a is a perspective view of a fluid filter according to an embodiment of the first aspect
  • FIG. Lb is a cross-sectional view taken along line BB of FIG. 1a
  • FIG. It is sectional drawing.
  • FIG. 2A is a perspective view of a fluid filter according to another embodiment of the first aspect
  • FIG. 2B is a cross-sectional view of a part of the fluid filter.
  • FIG. 3A is a perspective view of a fluid filter according to a different embodiment of the first spectrum
  • FIGS. 3B and 3C are cross-sectional views taken along lines BB and C-C of FIG. 3A, respectively. .
  • FIG. 4A is a perspective view of a fluid filter according to still another embodiment of the first aspect
  • FIG. 4B is a sectional view taken along line BB of FIG. 4A.
  • FIG. 5 is a perspective view of a fluid filter according to a comparative example.
  • FIG. 6 is an end view of a fluid filter according to still another embodiment of the first aspect.
  • FIG. 7 is an end view of a fluid filter according to still another embodiment of the first aspect.
  • FIG. 8 is a cross-sectional view of the fluid filter according to the second embodiment of the present invention.
  • FIG. 9A is a perspective view of a fluid filter according to another embodiment of the second aspect
  • FIG. 9B is a cross-sectional view of the filter.
  • the first and second aspects of the ceramic porous body are preferably made of a synthetic resin foam having a three-dimensional network skeleton structure having an internal communication space as a base material.
  • any one having a three-dimensional network skeleton structure having an internal communication space can be used, but a flexible polyurethane foam, particularly a flexible polyurethane foam having no cell membrane, can be suitably used.
  • a foam in which the cell membrane is eliminated by controlling foaming, or a foam in which the cell membrane is removed by an alkali treatment, heat treatment, water pressure treatment, or the like can be used. The rate and other physical properties can be selected according to the application.
  • the synthetic resin foam has a portion corresponding to the vacant room.
  • the ceramic porous body is obtained by immersing the above-described synthetic resin foam in a ceramic slurry, attaching a ceramic slurry to the synthetic resin foam, drying and firing, and thermally decomposing or burning the synthetic resin foam. can get.
  • the ceramic examples include oxide ceramics such as alumina, silica and cordierite, non-oxide ceramics such as silicon carbide and silicon nitride, and sialon.
  • Clay can be added to increase the stability of ceramic slurry.
  • this clay for example, Kibushi clay and Frog-eye clay can be used. Further, it is preferable that the mixing amount be 15% or less based on all the ceramic components. If it is more than 15%, the thixotropy index changes and causes clogging.
  • the thixotropic property can be adjusted by adding a binder such as polybutyl alcohol and carboxymethyl cellulose to the ceramic slurry as necessary.
  • the viscosity of the ceramic slurry can be adjusted by adjusting the amount of water to be added according to the size of the target cell of the ceramic porous body.
  • a synthetic resin foam having a three-dimensional network skeleton structure is immersed in the above-mentioned ceramic slurry, then excess slurry is removed, dried, and heated in a firing furnace at a temperature of about 100 to 150 ° C. By firing at a temperature, there is an internal communication space with a cell structure corresponding to the synthetic resin foam.
  • a ceramic porous body having a three-dimensional network skeleton structure can be obtained.
  • FIG. 1A is a perspective view of a fluid filter 1 according to an embodiment of the first aspect
  • FIG. 1B is a cross-sectional view taken along line BB of FIG. 1A.
  • the fluid filter 1 is a rectangular parallelepiped plate made of the above-described ceramic porous body, and gas such as air flows from the upper surface (one main plate surface) to the lower surface (the other main plate surface) in the figure. .
  • -A large number of cavities 2 are provided from one side 1a of the plate to the other side 1b parallel thereto.
  • the through-hole is a circular hole, but may be another shape such as an ellipse.
  • the cavities are provided in three stages in the thickness direction of the plate-like body, and the vacancies 2 are provided in a staggered arrangement on the side surface 1a.
  • the opening area ratio of the vacant space 2 on the side surface 1a is preferably about 20 to 50%.
  • the opening area ratio is a percentage obtained by dividing the total opening area of the vacant space 2 by the area of the side surface 1a (thickness X side length).
  • the fluid filter 1 provided with the vacant chamber 2 is disposed in the casing so as not to inhale gas from the side surfaces 1a and 1b and the remaining side surfaces lc and 1d, and sucks the lower side in the figure.
  • the gas is circulated from the upper surface to the lower surface by pressurizing the upper surface.
  • lids 1t may be attached to the side surfaces 1a and lb, respectively, so that gas is not sucked from the side surfaces la and lb.
  • This lid is preferably made of a ceramic having a low coefficient of thermal expansion.
  • FIG. 2A is a perspective view of a fluid filter 1A according to another embodiment of the first aspect
  • FIG. 2B is a cross-sectional view of a part of the fluid filter 1A.
  • a seal layer 3 made of a coating film is formed on the lower half side of the figure on the inner peripheral surface of the cavity 2 formed with a through hole.
  • the seal layer 3 is preferably an organic adhesive that is usually used, or one formed by crushing with a slurry of the same quality as the ceramic foam to be obtained.
  • This fluid filter 1 A The other configuration is the same as that of the fluid filter 1.
  • the extending range of the seal layer 3 is 180 ° in the circumferential direction in FIG. 2, but may be between 60 ° and 180 °.
  • FIG. 3A is a perspective view of a fluid filter 4 according to a different embodiment of the first aspect
  • FIGS. 3B and 3C are cross-sectional views taken along lines BB and C-C of FIG. 3A, respectively. is there.
  • the fluid filter 4 is formed of a rectangular parallelepiped plate made of a porous ceramic body. Gas flows from one main plate surface (upper surface in the figure) of the plate-shaped body to the other main plate surface (lower surface in the diagram). From one side surface 4a of the plate-shaped body to the other side surface 4b, there is provided an empty room 5 formed of one through hole.
  • the empty room 5 has a rectangular cross-sectional shape and extends in a direction parallel to the main plate surface.
  • the ratio of the opening area on the side surface 4a of the empty space 5 is preferably about 50 to 90%. It is preferable that the left-right width of FIG.
  • the fluid filter 4 having the empty space 5 is also arranged in the casing so as not to draw gas from the side surfaces 4a, 4b, 4c, and 4d. Pressurization allows gas to flow from the upper main plate surface to the lower main plate surface. Since the fluid filter 4 also has the empty space 5, the pressure loss is kept low for a long time.
  • a sealing layer may be provided on the lower surface of the vacant room 5 in the figure. .
  • FIG. 4A is a perspective view of a fluid filter 1B according to still another embodiment of the first aspect
  • FIG. 4B is a sectional view taken along line BB of FIG. 4A.
  • the fluid filter 1B is obtained by integrally providing a plate-shaped body 8 made of a porous ceramic body on one main plate surface of the fluid filter 1A shown in FIG.
  • the hole diameter of the plate member 8 is also smaller than the hole diameter of the fluid filter 1A.
  • the thickness of the plate 8 is preferably about 15 to 20% of the thickness of the fluid filter 1A.
  • a synthetic resin foam for manufacturing the fluid filter 1A and a synthetic resin foam for manufacturing the plate-shaped body 8 are laminated and integrated, and this is immersed in a ceramic slurry. Others may be the same as above.
  • This fluid filter 1B is also housed inside the casing so that gas is not sucked from the four sides.
  • the lower surface side (plate-like body 8 side) in the figure is sucked or the upper surface side is pressurized, and gas flows from the upper surface side to the lower surface side.
  • lids may be attached to the side surfaces 1a and 1b as in Fig. 1c. 6 and 7 show fluid filters 9 and 9 according to still another embodiment of the first aspect.
  • the fluid filter 9 in FIG. 6 is a cylindrical shape having a center hole 10, and has a plurality of cavities 11, 12, 13 formed of through holes penetrating in a direction parallel to the axis of the cylinder.
  • the cavities 11 are arranged concentrically on the outermost side, the cavities 13 are arranged concentrically on the innermost side, and the cavities 12 are arranged concentrically between them.
  • the arrangement of the vacancies 1, 12, and 13 is staggered at the end face of the fluid filter 9.
  • Vacancies 11, 12, and 13 have smaller diameters in this order.
  • the total open area ratio of the vacancies 11, 12> 13 is preferably about 20 to 50% at the end face of the fluid filter 9.
  • the fluid filter 9 is disposed in the casing so as not to inhale gas from both end surfaces, and sucks the inside of the center hole 10 or pressurizes the outer peripheral side to flow the gas from the outer peripheral surface toward the inner peripheral surface. Let it.
  • lids may be attached to both end surfaces of the filter, as in FIG. 9 described later.
  • This lid has an annular shape similar to a lid 30t in FIG. 9 described later, and the center hole 10 is not closed.
  • the fluid filter 9 also has the vacancies 11, 12, and 13, the pressure loss is kept low for a long period of time.
  • the seal layer 14 may be provided on the suction side of the inner peripheral surface of the empty space like the fluid filter 9A in FIG. In FIG. 7, the seal layer 14 extends 180 ° in the circumferential direction, but may be about 60 to 180 °.
  • Such a fluid filter of the first aspect has a pore number of 6 to 25/25 mm and a porosity of 75 to 95%, particularly 75 to 90%, as a filter for dust-containing gas.
  • the fine filter material constituting the second plate-shaped body 8 in FIG. 4 described above has a porosity of 30 to 45 holes / 25 mm and a porosity of 75 to 95%, particularly 78 to 92%. %.
  • the ceramic porous body (except for the plate-like body 8 in FIG. 4) in each of the examples was manufactured as follows.
  • a ceramic slurry was prepared by mixing 95 parts by weight of Bayer method alumina, 5 parts by weight of Kibushi clay, 4 parts by weight of polyvinyl alcohol, and 20 parts by weight of water.
  • a flexible polyurethane foam having a three-dimensional network structure without a cell membrane and having a shape of 60 cm ⁇ 24 cm ⁇ 24 cm having 30 cells per inch (25 mm) was immersed in the slurry. Excess slurry was removed, dried sufficiently, and then baked at 1300 ° C for 10 minutes to obtain a porous ceramic body. The average pore size of this porous ceramic body is 0.83 mm.
  • the plate-shaped body 8 in Fig. 4 is manufactured using a flexible polyurethane foam with a cell membrane without a cell membrane having a shape of 1 cm x 24 cm x 24 cm with 40 cells per inch (25 mm). did.
  • the average pore size of the porous ceramic body is 0.6 mm.
  • Example 1 As shown in Fig. 1, a 7 cm x 24 cm x 24 cm plate-like body has a diameter of 1.
  • Example 2 In Example 1, as shown in Fig. 2, a ceramic slurry was applied to the lower semicircular surface on the lower side of the cavity 2 having holes to provide a 0.2 mm thick sealing layer.
  • Example 3 In Example 1, instead of the vacant space composed of holes, a vacant room 5 of l cm x 22 cm x 22 cm is provided at the center in the thickness direction as shown in FIG.
  • Example 4 As shown in Fig. 4, a fluid filter 1A made of a 6-cm-thick ceramic porous body and a plate-shaped 1-cm-thick ceramic porous body with a porosity of 85% and an average pore diameter of 0.6 mm The one with body 8 integrated.
  • Comparative Example 1 As shown in FIG. 5, the same ceramic porous body as in Example 1 having a thickness of 7 cm was used. Dust-containing air was passed through each fluid filter at a wind speed of 1 m / sec or 3 m / sec, and the pressure loss and the change over time in the collection rate were measured. As the dust-containing air, air containing JIS-15 type dust was used. Dust content is the case when the wind speed 1 m / sec 0. 1 6 gm wind speed 3m / sec 0. 05 g / m 3. The results are shown in Table 1 below.
  • the average pore size has a distribution, and preferably, the average pore size on the downstream side in the flow direction is reduced.
  • the above-described method for producing a ceramic porous body having a three-dimensional network skeleton structure involves synthesizing a three-dimensional network skeleton structure having different average pore diameters, that is, different roughnesses.
  • a tubular body in which a resin foam tubular body is coaxially engaged is manufactured, and this tubular body is immersed in ceramic slurry to remove excess slurry, dried, and fired in a firing furnace.
  • the air be circulated from the outer peripheral surface side to the inner peripheral surface side.
  • the average pore diameter becomes smaller toward the inner peripheral surface side It is preferable to do so.
  • the number of pores is 6 to 25 and Z25 mm, and the porosity is 75 to 95%. Further, on the innermost peripheral side, it is preferable that the number of vacancies is 30 to 50/25 111111 and the porosity is 75 to 95%.
  • the air may be circulated from the inner peripheral surface side to the outer peripheral surface side.
  • the average pore diameter becomes smaller toward the outer peripheral surface side.
  • FIG. 8 is a cross-sectional view of the fluid filter 30 according to the embodiment of the second aspect in a direction orthogonal to the cylinder axis direction.
  • the fluid filter 30 has a cylindrical shape.
  • a gas such as air flows as a fluid from the outer peripheral surface 41 to the inner peripheral surface 42 or from the peripheral surface 42 to the outer peripheral surface 41.
  • the fluid filter 30 has three regions, a relatively coarse first region 31, a relatively fine third region 33, and a second region 32 where the coarseness is intermediate between them. Yes.
  • the first region 31 is arranged at the outermost periphery
  • the third region 33 is arranged at the innermost periphery
  • the second region 32 is arranged between them. It has been.
  • the first region is disposed on the innermost periphery
  • the third region is disposed on the outermost periphery
  • the first region 31 has a pore number of 6 to 25/25 mm, particularly 13 to 22/25 mm, and a porosity of 75 to 95%, particularly 75 to 90%. In particular, it is preferably 85-90%. Good.
  • the second region 32 has a porosity of 20 to 35 holes / 25 mm, particularly 27 to 35 holes / 25 mm, and a porosity of 75 to 95%, particularly 84 to 8.8%. It is preferable that
  • the third region 33 has a porosity of 30 to 50 25 mm, particularly 35 to 45/25 mm, and a porosity of 75 to 95%, particularly 78 to 92%. It is preferably from 82 to 86%.
  • the radial thickness of the first region is preferably 38 to 46% of the total of the first, second, and third regions, and the radial thickness of the second region is the first, second, and third regions.
  • the total thickness of the third region is preferably 38 to 46%, and the radial thickness of the third region is preferably 11 to 22% of the total of the first, second, and third regions.
  • regions 31, 32, and 33 are provided in FIG. 8, two regions may be provided, or four or more regions may be provided. However, in consideration of the production cost and the dust removal characteristics, about 3 to 4 regions are preferable.
  • the outer diameter (diameter) of the fluid filter 30 is preferably about 200 to 30 Omm, and the inner diameter (diameter) is preferably about 90 to 12 Omm.
  • the length of the fluid filter 30 in the cylinder axis direction is preferably about 0.5 to 1.5 times the outer diameter.
  • the air circulation speed is preferably about 2 to 7 mZ sec.
  • lids 30t may be attached to both end faces of the filter 30.
  • This lid 30t is annular.
  • This lid is preferably made of ceramic with a low coefficient of thermal expansion.
  • the first region 31 is disposed on the innermost peripheral side, and the third region is disposed on the outermost peripheral side.
  • two or four or more regions may be provided, and from the viewpoint of cost and the like, approximately three to four regions are preferable.
  • the ceramic porous body of Example 5 was manufactured as follows.
  • alumina by the Bayer method 95 parts by weight of alumina by the Bayer method, 5 parts by weight of Kibushi clay, 4 parts by weight of polyvinyl alcohol, and 20 parts by weight of water were mixed to prepare a ceramic slurry.
  • a 3D reticulated framework without a cell membrane which has a cylindrical shape with an outer diameter of 24.4 cm, an inner diameter of 19.3 cm, and a length of 10.2 cm, with 24 cells per inch (25 mm).
  • a polyurethane foam cylindrical body was manufactured by fitting a flexible polyurethane foam (for the third region) having a cylindrical shape of 10.2 cm without a cell membrane and having a three-dimensional network skeleton structure. This tubular body was immersed in the slurry. Remove excess slurry, dry thoroughly, then 1300. C was fired for 10 hours to obtain a ceramic porous body.
  • the average pore diameter of the ceramic porous body is 1.04 mm in the first region, 0.82 mm in the second region, and 0.6 lmm in the third region.
  • the outer diameter of the fluid filter is 24 Omm
  • the inner diameter is 120 mm
  • the length is 100 mm
  • the thickness of the first area is 25 mm
  • the thickness of the second area is 25 mm
  • the third area Is 10 mm thick.
  • the fluid filter of Comparative Example 2 is entirely a ceramic porous body in the first region described above, the fluid filter of Comparative Example 3 is entirely a ceramic porous body of the second region, and the fluid filter of Comparative Example 4 is entirely Is the ceramic porous body in the third region.
  • Dust-containing air was passed through each fluid filter at a wind speed of 3 m / sec to measure the pressure loss and the change over time in the collection rate.
  • air containing 0.08 g / m 3 of JIS-12 dust was used as the dust-containing air. The results are shown in Table 2 below.
  • Example 5 has a low pressure loss and a high dust collection rate overall

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

A fluid filter (1) is a rectangular parallelepiped-shaped board-like body constructed from an air-permeable ceramic porous body with a three-dimensional mesh-like skeleton structure. The board-like body has a large number of empty chambers (2) that are through-holes penetrating from one side-face (1a) to the other side-face (1b) parallel to the one side face. The through-holes are round holes and are arranged so as to be in a stagger form at the side faces (1a, 1b). Providing the empty chambers (2) reduces pressure loss and enables the fluid filter to remove dust from a gas for a long period at reduced pressure loss.

Description

明細書 流体フィルタ 発明の分野  Description Fluid filter Field of the invention
本発明は、 流体フィルタに係り、 特に、 セラミック多孔体よりなる流体フィルタ に関する。 . 発明の背景  The present invention relates to a fluid filter, and more particularly to a fluid filter made of a porous ceramic body. Background of the Invention
従来より、 内部連通空間を有する 3次元網状骨格構造の合成樹脂発泡体、 例えば セル膜のない軟質ポリウレタンフォームをセラミ.ックスラリーに浸漬し、 セラミッ クをポリウレタンフォームの骨格に付着させ、 これを乾燥、 焼成することによって 得られた 3次元網状骨格を有するセラミック多孔体が知られている (例えば、 特開 平 1 1— 2 8 5 7 8 2号、 特開 2 0 0 0— 1 0 9 3 7 6号)。  Conventionally, a synthetic resin foam having a three-dimensional network skeleton structure with internal communication space, for example, a flexible polyurethane foam without a cell membrane, is immersed in a ceramic slurry, and the ceramic is adhered to the polyurethane foam skeleton and dried. A ceramic porous body having a three-dimensional network skeleton obtained by firing is known (for example, Japanese Patent Application Laid-Open No. H11-285857, Japanese Patent Laid-Open No. 2000-10973). No. 6).
このセラミック多孔体は、 力 さ比重が小さく、 耐熱性が高く、 通気抵抗、 即ち圧 力損失が低い等の特徴を有するため、 厨房用グリスフィルター、 触媒担体、 通気性 断熱材、 溶融金属ろ過材等に用いられているが、 これらの用途に使用するにあたつ ては圧力損失ができるかぎり低いことが求められている。  This ceramic porous body has features such as low power density, high heat resistance, and low airflow resistance, that is, low pressure loss. Therefore, grease filters for kitchens, catalyst carriers, air-permeable insulation materials, and molten metal filtration materials However, it is required that the pressure loss be as low as possible for use in these applications.
従来、 圧力損失を小さく: るには、 ポリウレタンフォームへのセラミックスラリ 一の付着度合いを少なくし、 目づまりをほとんどなくすことが行われていたが、 こ のようにすると、 見かけ比重が小さくなり、 強度面で問題があった。  Conventionally, to reduce pressure loss, the degree of adhesion of the ceramic slurry to the polyurethane foam was reduced to almost eliminate clogging. However, in this case, the apparent specific gravity was reduced and the strength was reduced. There was a problem in terms.
また、 セラミックスラリ一中へ種々の有機系の界面活性剤、 解膠剤などを添加し て泥漿特性を調節する方法が採用されており、この方法によれば、骨格は太くなり、 強度も大きくなるが、. 目づまりが多少生じ、 圧力損失は十分には下がらないという 問題がある。 しかも、 セラミック原料土のほか可燃消失の有機成分が多いため、 得 られたセラミック多孔体は気孔が多く残り、 ポーラスな構造となる。 このため、 例 えば含塵ガスのフィルタとして用いた場合、 粉塵がセラミック多孔体の骨格に侵入 し、経時的に圧損が上昇する。また、ポーラスな骨格のため、強度面で問題がある。 発明の目的 In addition, a method has been adopted in which various organic surfactants and peptizers are added to the ceramic slurry to adjust the slurry properties. According to this method, the skeleton becomes thicker and the strength is increased. However, there is a problem that clogging occurs slightly and the pressure loss does not decrease sufficiently. In addition, the ceramic porous body obtained has a large number of pores and a porous structure due to the large amount of combustible organic components in addition to the ceramic raw material soil. Therefore, for example, when used as a filter for dust-containing gas, dust enters the skeleton of the porous ceramic body, and the pressure loss increases with time. In addition, there is a problem in strength due to the porous skeleton. Purpose of the invention
本発明は、 除塵性能に優れると共に圧力損失が低いセラミック多孔体よりなる流 体フィルタを提供することを目的とする。 発明の概要  An object of the present invention is to provide a fluid filter made of a porous ceramic body having excellent dust removal performance and low pressure loss. Summary of the Invention
第 1ァスぺク トの流体フィルタは、 第 1の面及ぴ該第 1の面に対向する第 2の面 を有し、 流体が該第 1の面から第 2の面に向って流通するセラミック多孔体よりな る流体フィルタにおいて、 該第 1の面と第 2の面との間に空室が設けられているこ とを特徴とするものである。 この空室を設けることにより、 流体フィルタの圧損上 昇が低減される。  The fluid filter of the first aspect has a first surface and a second surface facing the first surface, and fluid flows from the first surface to the second surface. A fluid filter comprising a porous ceramic body, wherein an empty space is provided between the first surface and the second surface. By providing this empty chamber, the pressure loss rise of the fluid filter is reduced.
第 1アスペク トの流体フィルタの一態様においては、 多孔体は、 第 1の面と第 2 の面とを結ぶ第 1の側面及び該第 1の側面に対向する第 2の側面を有しており、 空 室は、該第 1の側面から第 2の側面に貫通する孔にて構成される。この場合、孔は、 複数個設けられることが好ましい。 さらに、 かかる孔にて空室を構成した場合、 孔 内周面の少なくとも一部、 とりわけ第 2の面側の内周面にシール層を設けることが 好適である。 このシール層は、 塗料を塗布することにより容易に構成することがで さる。  In one aspect of the fluid filter of the first aspect, the porous body has a first side surface connecting the first surface and the second surface, and a second side surface facing the first side surface. The cavity is formed by a hole penetrating from the first side surface to the second side surface. In this case, it is preferable to provide a plurality of holes. Further, when the vacant space is formed by such holes, it is preferable to provide a seal layer on at least a part of the inner peripheral surface of the hole, particularly on the inner peripheral surface on the second surface side. This seal layer can be easily formed by applying a paint.
第 1ァスぺクトの別の一態様においては、 空室は第 1の面及び第 2の面に沿って これらの面の広がり方向 (直交 2方向) に延在する。  In another aspect of the first aspect, the vacant space extends along the first surface and the second surface in a direction in which these surfaces spread (two orthogonal directions).
第 1ァスぺクトの更に別の態様においては、 該第 2の面側の孔径が第 1の面側よ りも小さい。  In still another mode of the first aspect, the hole diameter on the second surface side is smaller than that on the first surface side.
第 2ァスぺクトの流体フィルタは、 外周面及び内周面を有し、 流体が一方の周面 から他方の周面に向って流通する筒形のセラミック多孔体よりなる流体フィルタに おいて、 該流体の流通方向において平均孔径に分布が存在することを特徴とするも のである。 このように、 流体の流通方向において平均孔径に分布を持たせることに より、 除塵性能が向上すると共に、 流体フィルタの圧損上昇が低減される。  The fluid filter of the second aspect is a fluid filter made of a cylindrical ceramic porous body having an outer peripheral surface and an inner peripheral surface, in which a fluid flows from one peripheral surface to the other peripheral surface. It is characterized in that there is a distribution in the average pore diameter in the flow direction of the fluid. As described above, by giving the distribution of the average pore diameter in the flow direction of the fluid, the dust removing performance is improved, and the rise in pressure loss of the fluid filter is reduced.
この流体フィルタにおいては、 流体の流通方向下流側ほど平均孔径を小さい構成 とすることにより、 除塵性能が向上する。  In this fluid filter, the dust removal performance is improved by making the average pore diameter smaller toward the downstream side in the flow direction of the fluid.
第 2ァスぺク トの流体フィルタは、 平均孔径が同一である領域が流体フィルタの 筒軸方向と直交方向の断面において環状に存在することが好ましく、 特に平均孔径 の異なる環状領域が少なくとも 2領域存在することが好ましい。 In the fluid filter of the second aspect, the area where the average pore diameter is the same is the area of the fluid filter. It is preferable that the ring has a ring shape in the cross section in the direction perpendicular to the cylinder axis direction, and it is particularly preferable that at least two ring regions having different average pore diameters exist.
第 2ァスぺク トの流体フィルタは円筒形であることが好ましい。  The fluid filter of the second aspect is preferably cylindrical.
第 1 , 第 2アスペク トのセラミック多孔体は、 内部連通空間を有する 3次元網状 骨格構造の合成樹脂発泡体をセラミックスラリーに浸漬して上記合成樹脂発泡体に セラミックを付着せしめた後、 乾燥、 焼成して得られる 3次元網状骨格構造のセラ ミック多孔体であることが好ましい。  The first and second aspects of the ceramic porous body are prepared by immersing a synthetic resin foam having a three-dimensional net-like skeleton structure having an internal communication space in a ceramic slurry, allowing the ceramic to adhere to the synthetic resin foam, and then drying and drying. It is preferably a ceramic porous body having a three-dimensional network skeleton structure obtained by firing.
第 1 , 第 2アスペク トの流体フィルタは、 空気などのガスを除麈処理するのに好 適である。 図面の簡単な説明  The first and second aspect fluid filters are suitable for removing dust such as air. BRIEF DESCRIPTION OF THE FIGURES
図 1 aは第 1ァスぺク トの実施の形態に係る流体フィルタの斜視図、 図 l bは図 1 aの B— B線に沿う断面図、 図 1 cは異なる形態に係る流体フィルタの断面図で ある。  FIG. 1a is a perspective view of a fluid filter according to an embodiment of the first aspect, FIG. Lb is a cross-sectional view taken along line BB of FIG. 1a, and FIG. It is sectional drawing.
図 2 aは第 1ァスぺクトの別の実施の形態に係る流体フィルタの斜視図、 図 2 b はこの流体フィルタの一部の断面図である。  FIG. 2A is a perspective view of a fluid filter according to another embodiment of the first aspect, and FIG. 2B is a cross-sectional view of a part of the fluid filter.
図 3 aは第 1ァスぺク トの異なる実施の形態に係る流体フィルタの斜視図、 図 3 b , 図 3 cは各々図 3 aの B— B線、 C一 C線断面図である。  FIG. 3A is a perspective view of a fluid filter according to a different embodiment of the first spectrum, and FIGS. 3B and 3C are cross-sectional views taken along lines BB and C-C of FIG. 3A, respectively. .
図 4 aは第 1ァスぺク トのさらに別の実施の形態に係る流体フィルタの斜視図、 図 4 bは図 4 aの B— B線断面図である。  FIG. 4A is a perspective view of a fluid filter according to still another embodiment of the first aspect, and FIG. 4B is a sectional view taken along line BB of FIG. 4A.
図 5は比較例に係る流体フィルタの斜視図である。  FIG. 5 is a perspective view of a fluid filter according to a comparative example.
図 6は第 1ァスぺクトのさらに別の実施の形態に係る流体フィルタの端面図であ る。  FIG. 6 is an end view of a fluid filter according to still another embodiment of the first aspect.
図 7は第 1ァスぺクトのさらに異なる実施の形態に係る流体フィルタの端面図で ある。  FIG. 7 is an end view of a fluid filter according to still another embodiment of the first aspect.
図 8は第 2ァスぺク トの実施の形態に係る流体フィルタの断面図である。  FIG. 8 is a cross-sectional view of the fluid filter according to the second embodiment of the present invention.
図 9 aは第 2ァスぺクトの他の実施の形態に係る流体フィルタの斜視図、 図 9 b はこのフィルタの断面図である。 詳細な説明 FIG. 9A is a perspective view of a fluid filter according to another embodiment of the second aspect, and FIG. 9B is a cross-sectional view of the filter. Detailed description
第 1 , 第 2アスペク トのセラミック多孔体は、 好ましくは、 内部連通空間を有す る 3次元網状骨格構造の合成樹脂発泡体を基材として作られるものである。  The first and second aspects of the ceramic porous body are preferably made of a synthetic resin foam having a three-dimensional network skeleton structure having an internal communication space as a base material.
このような合成樹脂発泡体としては、 内部連通空間を有する 3次元網状骨格構造 を有すればいずれのものも使用できるが、 軟質ポリウレタンフォーム、 特にセル膜 のない軟質ポリウレタンフォームが好適に使用できる。 このセル膜のないポリウレ タンフォームとしては、 発泡時のコントロールによりセル膜をなく したもの、 ある いはアルカリ処理、 熱処理、 水圧処理等によりセル膜を除去したものが使用でき、 セル数、 空孔率その他の物性は用途に応じて選択することができる。  As such a synthetic resin foam, any one having a three-dimensional network skeleton structure having an internal communication space can be used, but a flexible polyurethane foam, particularly a flexible polyurethane foam having no cell membrane, can be suitably used. As the polyurethane foam without a cell membrane, a foam in which the cell membrane is eliminated by controlling foaming, or a foam in which the cell membrane is removed by an alkali treatment, heat treatment, water pressure treatment, or the like can be used. The rate and other physical properties can be selected according to the application.
第 1アスペク トにおいては、 この合成樹脂発泡体は、 空室に対応した部分が抜か れている。  In the first aspect, the synthetic resin foam has a portion corresponding to the vacant room.
セラミック多孔体は、 上述した合成樹脂発泡体をセラミックスラリ一に浸漬し、 合成樹脂発泡体にセラミックスラリーを付着せしめた後、 乾燥、 焼成し、 該合成樹 脂発泡体を熱分解又は焼却して得られる。  The ceramic porous body is obtained by immersing the above-described synthetic resin foam in a ceramic slurry, attaching a ceramic slurry to the synthetic resin foam, drying and firing, and thermally decomposing or burning the synthetic resin foam. can get.
セラミックとしては、 アルミナ、 シリカ、 コーディエライト等の酸化物セラミツ クのほか、 炭化珪素、 窒化珪素などの非酸化物セラミック、 あるいはサイアロン等 が挙げられる。  Examples of the ceramic include oxide ceramics such as alumina, silica and cordierite, non-oxide ceramics such as silicon carbide and silicon nitride, and sialon.
なお、 セラミックスラリ一の安定性を増加させるため粘土を配合することができ る。 この粘土としては、 例えば木節粘土、 蛙目粘土などが使用できる。 また、 配合 量は全セラミック成分に対し 1 5 %以下とすることが好ましい。 1 5 %より多く配 合するとチクソトロピー指数が変化して目づまりの原因となる。  Clay can be added to increase the stability of ceramic slurry. As this clay, for example, Kibushi clay and Frog-eye clay can be used. Further, it is preferable that the mixing amount be 15% or less based on all the ceramic components. If it is more than 15%, the thixotropy index changes and causes clogging.
そのほかセラミックスラリーには必要に応じポリビュルアルコール、 カルボキシ ルメチルセルロース等の結合剤を配合することによりチクソトロピー性を調整する こともできる。  In addition, the thixotropic property can be adjusted by adding a binder such as polybutyl alcohol and carboxymethyl cellulose to the ceramic slurry as necessary.
なお、 セラミックスラリーの粘度は目的とするセラミック多孔体のセルの大きさ などに応じ、 水の添加量を加減して調節することができる。  The viscosity of the ceramic slurry can be adjusted by adjusting the amount of water to be added according to the size of the target cell of the ceramic porous body.
次に、 上述したセラミックスラリーに 3次元網状骨格構造の合成樹脂発泡体を浸 漬し、 次いで余剰泥漿を除去し、 乾燥し、 焼成炉で 1 0 0 0〜1 5 0 0 °C程度の温 度で焼成することにより、 合成樹脂発泡体に対応したセル構造の内部連通空間を有 する 3次元網状骨格構造のセラミック多孔体を得ることができる。 Next, a synthetic resin foam having a three-dimensional network skeleton structure is immersed in the above-mentioned ceramic slurry, then excess slurry is removed, dried, and heated in a firing furnace at a temperature of about 100 to 150 ° C. By firing at a temperature, there is an internal communication space with a cell structure corresponding to the synthetic resin foam. A ceramic porous body having a three-dimensional network skeleton structure can be obtained.
[ 1 ] 第 1アスペク トの流体フィルタの説明  [1] Explanation of the first aspect fluid filter
以下、 図 1〜7を参照して第 1アスペクトの実施の形態について説明する。 図 1 aは第 1ァスぺクトの実施の形態に係る流体フィルタ 1の斜視図、 図 1 bは図 1 a の B— B線に沿う断面図である。  Hereinafter, an embodiment of the first aspect will be described with reference to FIGS. FIG. 1A is a perspective view of a fluid filter 1 according to an embodiment of the first aspect, and FIG. 1B is a cross-sectional view taken along line BB of FIG. 1A.
この流体フィルタ 1は、 上記のセラミック多孔体よりなる直方体形の板状体であ り、 図の上面 (一方の主板面) から下面 (他方の主板面) に向って空気などのガス が流通する。 - この板状体の一側面 1 aからこれと平行な他側面 1 bにかけて貫通孔ょりなる空 室 2が多数設けられている。 この実施の形態では、 貫通孔は円形孔であるが、 楕円 形など他の形状であってもよい。 この実施の形態では、 該空室は板状体の厚み方向 に 3段にわたって、 且つ該ー側面 1 aにおいて空室 2が千鳥配置となるように設け られている。 該ー側面 1 aにおける空室 2の開口面積比は 2 0〜5 0 %程度が好適 である。 この開口面積比は、 空室 2の開口面積の総和を該ー側面 1 aの面積 (厚さ X辺長) で除した百分比である。  The fluid filter 1 is a rectangular parallelepiped plate made of the above-described ceramic porous body, and gas such as air flows from the upper surface (one main plate surface) to the lower surface (the other main plate surface) in the figure. . -A large number of cavities 2 are provided from one side 1a of the plate to the other side 1b parallel thereto. In this embodiment, the through-hole is a circular hole, but may be another shape such as an ellipse. In this embodiment, the cavities are provided in three stages in the thickness direction of the plate-like body, and the vacancies 2 are provided in a staggered arrangement on the side surface 1a. The opening area ratio of the vacant space 2 on the side surface 1a is preferably about 20 to 50%. The opening area ratio is a percentage obtained by dividing the total opening area of the vacant space 2 by the area of the side surface 1a (thickness X side length).
このように空室 2を設けた流体フィルタ 1は、 側面 1 a及び 1 b並びに残りの側 面 l c, 1 dからはガスを吸い込まないようにケーシング内に配置され、 図の下面 側を吸引するか、 又は上面側を加圧して上面側から下面側にガスを流通させる。 空 室 2を設けたことにより、 圧損が減少し、 長期にわたり低圧損にてガスを除塵処理 することができる。  The fluid filter 1 provided with the vacant chamber 2 is disposed in the casing so as not to inhale gas from the side surfaces 1a and 1b and the remaining side surfaces lc and 1d, and sucks the lower side in the figure. Alternatively, the gas is circulated from the upper surface to the lower surface by pressurizing the upper surface. By providing the empty space 2, the pressure loss is reduced, and the gas can be removed with a low pressure loss over a long period of time.
図 1 cのように、 側面 1 a, l bにそれぞれ蓋 1 tを取り付け、 側面 l a , l b からはガスを吸い込まないようにしてもよい。 この蓋は、 熱膨張率の小さいセラミ ックよりなることが好ましい。  As shown in Fig. 1c, lids 1t may be attached to the side surfaces 1a and lb, respectively, so that gas is not sucked from the side surfaces la and lb. This lid is preferably made of a ceramic having a low coefficient of thermal expansion.
図 2 aは第 1ァスぺクトの別の実施の形態に係る流体フィルタ 1 Aの斜視図、 図 2 bはこの流体フィルタ 1 Aの一部の断面図である。  FIG. 2A is a perspective view of a fluid filter 1A according to another embodiment of the first aspect, and FIG. 2B is a cross-sectional view of a part of the fluid filter 1A.
この流体フィルタ 1 Aにあっては、 貫通孔よりなる空室 2の内周面のうち、 図の 下半側に塗膜よりなるシール層 3が形成されている。 このシール層 3としては、 通 常使用される有機接着剤や、 得ようとするセラミックフォーム体と同質のスラリー で目つぶしすることにより形成したものなどが好谪である。 この流体フィルタ 1 A のその他の構成は前記流体フィルタ 1と同じである。 なお、 シール層 3の延在範囲 は、 図 2では周方向に 1 8 0 ° となっているが、 6 0〜: 1 8 0 ° の程度の間であれ ばよい。 In the fluid filter 1A, a seal layer 3 made of a coating film is formed on the lower half side of the figure on the inner peripheral surface of the cavity 2 formed with a through hole. The seal layer 3 is preferably an organic adhesive that is usually used, or one formed by crushing with a slurry of the same quality as the ceramic foam to be obtained. This fluid filter 1 A The other configuration is the same as that of the fluid filter 1. The extending range of the seal layer 3 is 180 ° in the circumferential direction in FIG. 2, but may be between 60 ° and 180 °.
図示はしないが、 図 1 cと同様に空室 2が臨む側面に蓋を取り付けてもよい。 図 3 aは第 1ァスぺク トの異なる実施の形態に係る流体フィルタ 4の斜視図、 図 3 b , 図 3 cはそれぞれ図 3 aの B— B線、 C一 C線断面図である。  Although not shown, a lid may be attached to the side surface facing the vacant room 2 as in FIG. 1c. FIG. 3A is a perspective view of a fluid filter 4 according to a different embodiment of the first aspect, and FIGS. 3B and 3C are cross-sectional views taken along lines BB and C-C of FIG. 3A, respectively. is there.
この流体フィルタ 4は、 セラミック多孔体よりなる直方体形の板状体よりなる。 この板状体の一方の主板面 (図の上面) から他方の主板面 (図の下面) にガスが流 通される。 この板状体の一側面 4 aから他側面 4 bにかけて 1個の貫通孔よりなる 空室 5が設けられている。 この空室 5は長方形断面形状であり、 主板面と平行方向 に延在している。 この空室 5の該ー側面 4 aにおける開口面積比は 5 0〜9 0 %程 度が好ましい。 なお、 空室 5の該ー側面 4 aにおける図 3 bの左右幅は流体フィル タ 4の左右幅の 7 0〜 9 0 %程度が好ましい。  The fluid filter 4 is formed of a rectangular parallelepiped plate made of a porous ceramic body. Gas flows from one main plate surface (upper surface in the figure) of the plate-shaped body to the other main plate surface (lower surface in the diagram). From one side surface 4a of the plate-shaped body to the other side surface 4b, there is provided an empty room 5 formed of one through hole. The empty room 5 has a rectangular cross-sectional shape and extends in a direction parallel to the main plate surface. The ratio of the opening area on the side surface 4a of the empty space 5 is preferably about 50 to 90%. It is preferable that the left-right width of FIG.
この空室 5を有する流体フィルタ 4も、.側面 4 a, 4 b , 4 c, 4 dからガスを 吸い込まないようにケーシング内に配置され、 図の下面側を吸引するか、 又は上面 側を加圧して図の上側主板面から下側主板面にガスを流通させる。 この流体フィル タ 4も、 空室 5を有しているため、 圧損が長期にわたり低く保たれる。 なお、 図示 はしないが、 空室 5の図の下面にシール層を設けてもよい。 .  The fluid filter 4 having the empty space 5 is also arranged in the casing so as not to draw gas from the side surfaces 4a, 4b, 4c, and 4d. Pressurization allows gas to flow from the upper main plate surface to the lower main plate surface. Since the fluid filter 4 also has the empty space 5, the pressure loss is kept low for a long time. Although not shown, a sealing layer may be provided on the lower surface of the vacant room 5 in the figure. .
図示は省略するが、 図 1 cと同様に、 側面 4 a, 4 bに蓋を取り付けてもよレ、。 図 4 aは第 1ァスぺク トのさらに別の実施の形態に係る流体フィルタ 1 Bの斜視 図、 図 4 bは図 4 aの B _ B線断面図である。  Although illustration is omitted, lids may be attached to the side surfaces 4a and 4b as in Fig. 1c. FIG. 4A is a perspective view of a fluid filter 1B according to still another embodiment of the first aspect, and FIG. 4B is a sectional view taken along line BB of FIG. 4A.
この流体フィルタ 1 Bは、 前記図 2に示す流体フィルタ 1 Aの一方の主板面に、 セラミック多孔体よりなる板状体 8を一体に設けたものである。 板状体 8の孔径は 流体フィルタ 1 Aの孔径ょりも小さい。 板状体 8の厚さは流体フィルタ 1 Aの厚さ の 1 5〜2 0 %程度であることが好ましい。  The fluid filter 1B is obtained by integrally providing a plate-shaped body 8 made of a porous ceramic body on one main plate surface of the fluid filter 1A shown in FIG. The hole diameter of the plate member 8 is also smaller than the hole diameter of the fluid filter 1A. The thickness of the plate 8 is preferably about 15 to 20% of the thickness of the fluid filter 1A.
この流体フィルタ 1 Bを製造するには、 流体フィルタ 1 A製造用の合成樹脂発泡 体と板状体 8製造用の合成樹脂発泡体とを積層して一体化させ、 これをセラミック スラリーに浸漬する他は上記と同様にすればよい。  In order to manufacture the fluid filter 1B, a synthetic resin foam for manufacturing the fluid filter 1A and a synthetic resin foam for manufacturing the plate-shaped body 8 are laminated and integrated, and this is immersed in a ceramic slurry. Others may be the same as above.
この流体フィルタ 1 Bも、 4側面からガスを吸引しないようにケーシング内に納 められ、 図の下面側 (板状体 8側) を吸引するか、 又は上面側を加圧し、 上面側か ら下面側にガスを流通させる。 This fluid filter 1B is also housed inside the casing so that gas is not sucked from the four sides. In this case, the lower surface side (plate-like body 8 side) in the figure is sucked or the upper surface side is pressurized, and gas flows from the upper surface side to the lower surface side.
図示はしないが、 図 1 cと同様に、 側面 1 a, 1 bに蓋を取り付けてもよレ、。 図 6, 図 7は第 1アスペク トのさらに別の実施の形態に係る流体フィルタ 9, 9 Although not shown, lids may be attached to the side surfaces 1a and 1b as in Fig. 1c. 6 and 7 show fluid filters 9 and 9 according to still another embodiment of the first aspect.
Aの端面図である。 It is an end elevation of A.
図 6の流体フィルタ 9は、 中心孔 10を有した円筒形であり、 円筒の軸心線と平 行方向に貫通する貫通孔よりなる複数の空室 1 1, 1 2, 1 3を有する。 複数の空 室 1 1は最も外周側に同心円状に配置され、 複数の空室 1 3は最も内周側に同心円 状に配置され、 複数の空室 1 2はそれらの間に同心円状に配置されている。 空室 1 1, 12, 1 3の配置は、 流体フィルタ 9の端面において千鳥状となっている。 空 室 11, 12, 1 3はこの順に小径となっている。 空室 1 1 , 12> 13の合計の 開口面積比は、 流体フィルタ 9の端面において 20〜50%程度であることが好ま しい。  The fluid filter 9 in FIG. 6 is a cylindrical shape having a center hole 10, and has a plurality of cavities 11, 12, 13 formed of through holes penetrating in a direction parallel to the axis of the cylinder. The cavities 11 are arranged concentrically on the outermost side, the cavities 13 are arranged concentrically on the innermost side, and the cavities 12 are arranged concentrically between them. Have been. The arrangement of the vacancies 1, 12, and 13 is staggered at the end face of the fluid filter 9. Vacancies 11, 12, and 13 have smaller diameters in this order. The total open area ratio of the vacancies 11, 12> 13 is preferably about 20 to 50% at the end face of the fluid filter 9.
この流体フィルタ 9は、 両端面からガスを吸い込まないようにしてケーシング内 に配置され、 中心孔 10内を吸引するか、 又は外周側を加圧し、 外周面から内周面 に向ってガスを流通させる。  The fluid filter 9 is disposed in the casing so as not to inhale gas from both end surfaces, and sucks the inside of the center hole 10 or pressurizes the outer peripheral side to flow the gas from the outer peripheral surface toward the inner peripheral surface. Let it.
図示は省略するが、 後述の図 9と同様に、 フィルタの両端面に蓋を取り付けても よい。 この蓋は、 後述の図 9の蓋 30 tと同様の環状であり、 中心孔 10は塞がな い。  Although illustration is omitted, lids may be attached to both end surfaces of the filter, as in FIG. 9 described later. This lid has an annular shape similar to a lid 30t in FIG. 9 described later, and the center hole 10 is not closed.
この流体フィルタ 9も、 空室 1 1, 1 2, 1 3を有するので、 圧損が長期にわた り低く保たれる。  Since the fluid filter 9 also has the vacancies 11, 12, and 13, the pressure loss is kept low for a long period of time.
この円筒形の流体フィルタにおいても、 図 7の流体フィルタ 9 Aのように空室の 内周面のうち吸引側にシール層 14を設けてもよい。 このシール層 14は、 図 7で は周方向に 1 80° 延在しているが、 60〜1 80° 程度であればよい。  Also in this cylindrical fluid filter, the seal layer 14 may be provided on the suction side of the inner peripheral surface of the empty space like the fluid filter 9A in FIG. In FIG. 7, the seal layer 14 extends 180 ° in the circumferential direction, but may be about 60 to 180 °.
このような第 1ァスぺクトの流体フィルタは、 含塵ガス用のフィルタとしては、 空孔数が 6〜 25個/ 25 mmであり、 空隙率が 75〜 95 %特に 75〜 90 %で あることが好ましい。 なお、 上述の図 4の第 2の板状体 8を構成する目の細かいフ ィルタ材は、 空孔数が 30〜 45個 / 25 mmであり、 空隙率が 75〜 95 %特に 78〜92%であることが好ましい。 図 1〜4に示す流体フィルタ 1, 1A, 4, 1 Bと図 5に示す比較例に係る流体 フィルタ 20とについての圧損測定結果を次に説明する。 Such a fluid filter of the first aspect has a pore number of 6 to 25/25 mm and a porosity of 75 to 95%, particularly 75 to 90%, as a filter for dust-containing gas. Preferably, there is. The fine filter material constituting the second plate-shaped body 8 in FIG. 4 described above has a porosity of 30 to 45 holes / 25 mm and a porosity of 75 to 95%, particularly 78 to 92%. %. The measurement results of the pressure loss of the fluid filters 1, 1A, 4, 1B shown in FIGS. 1 to 4 and the fluid filter 20 according to the comparative example shown in FIG. 5 will be described below.
各実施例のセラミック多孔体(ただし図 4の板状体 8を除く。) は次のようにして 製造されたものである。  The ceramic porous body (except for the plate-like body 8 in FIG. 4) in each of the examples was manufactured as follows.
即ち、 バイヤー法アルミナ 95重量部と、 木節粘土 5重量部と、 ポリビニルァノレ コ ル 4重量部と、 水 20重量部とを混合してセラミックスラリーを調製した。 このスラリーに 1インチ (25 mm) 当たりセル数が 30個の 60 cmX 24 c mX 24 cmの形状を有するセル膜のない 3次元網状骨格構造の軟質ポリウレタン フォームを浸漬した。 余分なスラリーを除去し、 十分に乾燥し、 次いで 1 300°C で 10分間焼成を行つてセラミック多孔体を得た。 このセラミック多孔体の平均孔 径は 0. 83 mmである。  That is, a ceramic slurry was prepared by mixing 95 parts by weight of Bayer method alumina, 5 parts by weight of Kibushi clay, 4 parts by weight of polyvinyl alcohol, and 20 parts by weight of water. A flexible polyurethane foam having a three-dimensional network structure without a cell membrane and having a shape of 60 cm × 24 cm × 24 cm having 30 cells per inch (25 mm) was immersed in the slurry. Excess slurry was removed, dried sufficiently, and then baked at 1300 ° C for 10 minutes to obtain a porous ceramic body. The average pore size of this porous ceramic body is 0.83 mm.
図 4の板状体 8は、 1インチ (25mm) 当たりセル数が 40個の 1 c m X 24 cmX 24 cmの形状を有するセル膜のない 3次元網状骨格構造の軟質ポリウレタ ンフォームを用いて製造した。 このセラミック多孔体の平均孔径は 0. 6 mmであ る。  The plate-shaped body 8 in Fig. 4 is manufactured using a flexible polyurethane foam with a cell membrane without a cell membrane having a shape of 1 cm x 24 cm x 24 cm with 40 cells per inch (25 mm). did. The average pore size of the porous ceramic body is 0.6 mm.
各実施例及び比較例の流体フィルタの構成は次の通りである。  The configurations of the fluid filters of the respective examples and comparative examples are as follows.
実施例 1 : 7 cmX 24 cmX 24 c mの板状体に、 図 1の通り、 直径 1.  Example 1: As shown in Fig. 1, a 7 cm x 24 cm x 24 cm plate-like body has a diameter of 1.
5 cmの孔よりなる空室 2を 32個設けた。 空室の開口面積比は 3 3. 6%である。  There were 32 vacancies 2 with 5 cm holes. The open area ratio of vacancies is 33.6%.
実施例 2 : 実施例 1において、 図 2の通り、 孔よりなる空室 2の下側の半円 周面にセラミックスラリーを塗布して厚さ 0. 2mmのシール層を 設けたもの。  Example 2: In Example 1, as shown in Fig. 2, a ceramic slurry was applied to the lower semicircular surface on the lower side of the cavity 2 having holes to provide a 0.2 mm thick sealing layer.
実施例 3 : 実施例 1において、 孔よりなる空室の代りに、 図 3の通り、 l c mX 22 c mX 22 c mの空室 5を厚み方向の中央に設けたもの。 実施例 4 : 図 4の通り、 厚さ 6 cmのセラミック多孔体よりなる流体フィル タ 1Aと、 厚さ 1 c mの空隙率 85 %、 平均孔径 0. 6 mmのセラ ミック多孔体よりなる板状体 8とが一体化されたもの。  Example 3: In Example 1, instead of the vacant space composed of holes, a vacant room 5 of l cm x 22 cm x 22 cm is provided at the center in the thickness direction as shown in FIG. Example 4: As shown in Fig. 4, a fluid filter 1A made of a 6-cm-thick ceramic porous body and a plate-shaped 1-cm-thick ceramic porous body with a porosity of 85% and an average pore diameter of 0.6 mm The one with body 8 integrated.
比較例 1 : 図 5の通り、 厚さ 7 c mの実施例 1と同じセラミック多孔体より なるもの。 各流体フィルタに風速 1 m/ s e c又は 3m/s e cにて含麈空気を流通させて 圧損及び捕集率の経時変化を測定した。 含塵空気としては、 J I S— 1 5種の粉塵 を含むものを用いた。 粉塵含有量は、 風速 1 m/s e cの場合 0. 1 6 g m 風速 3m/s e cの場合 0. 05 g/m3である。 結果を次の表 1に示す。 Comparative Example 1: As shown in FIG. 5, the same ceramic porous body as in Example 1 having a thickness of 7 cm was used. Dust-containing air was passed through each fluid filter at a wind speed of 1 m / sec or 3 m / sec, and the pressure loss and the change over time in the collection rate were measured. As the dust-containing air, air containing JIS-15 type dust was used. Dust content is the case when the wind speed 1 m / sec 0. 1 6 gm wind speed 3m / sec 0. 05 g / m 3. The results are shown in Table 1 below.
Figure imgf000011_0001
Figure imgf000011_0001
表 1の通り、 実施例 1〜 4は比較例 1に比べ圧損が低く粉塵捕集率が高い。 [2] 第 2アスペク トの流体フィルタの説明  As shown in Table 1, Examples 1 to 4 have lower pressure loss and higher dust collection rate than Comparative Example 1. [2] Explanation of fluid filter of 2nd aspect
第 2ァスぺク トの流体フィルタは、 一方の周面から他方の周面へ流体が流通され る。 この流通方向において、 平均孔径が分布を有しており、 好ましくは、 流通方向 下流側の平均孔径が小さくなるようにする。 In the fluid filter of the second aspect, fluid flows from one peripheral surface to the other peripheral surface. You. In this flow direction, the average pore size has a distribution, and preferably, the average pore size on the downstream side in the flow direction is reduced.
このように平均孔径に分布を持たせるには、 前述の 3次元網状骨格構造のセラミ ック多孔体の製造方法において、 平均孔径が異なる、 即ち目の粗さが異なる 3次元 網状骨格構造の合成樹脂発泡体筒状体を同軸的に係合させた筒状体を製作し、 この 筒状体をセラミックスラリーに浸漬し、 余剰泥漿を除去し、 乾燥し、 焼成炉で焼成 すればよい。  In order to give the distribution of the average pore diameter in this way, the above-described method for producing a ceramic porous body having a three-dimensional network skeleton structure involves synthesizing a three-dimensional network skeleton structure having different average pore diameters, that is, different roughnesses. A tubular body in which a resin foam tubular body is coaxially engaged is manufactured, and this tubular body is immersed in ceramic slurry to remove excess slurry, dried, and fired in a firing furnace.
第 2ァスぺク トの流体フィルタにより空気を除塵処理する場合、 空気は外周面側 から内周面側に流通されることが好ましく、 この場合、 内周面側ほど平均孔径が小 さくなるようにするのが好ましい。 この流体フィルタの最外周側にあっては、 空孔 数が 6〜2 5個 Z 2 5 mmであり、 空隙率が 7 5〜9 5 %であることが好ましい。 また、 最内周側にあっては、 空孔数が3 0〜5 0個/ 2 5 111111でぁり、 空隙率が 7 5〜9 5 %であることが好ましい。  When dust is removed from the air by the fluid filter of the second aspect, it is preferable that the air be circulated from the outer peripheral surface side to the inner peripheral surface side. In this case, the average pore diameter becomes smaller toward the inner peripheral surface side It is preferable to do so. On the outermost peripheral side of the fluid filter, it is preferable that the number of pores is 6 to 25 and Z25 mm, and the porosity is 75 to 95%. Further, on the innermost peripheral side, it is preferable that the number of vacancies is 30 to 50/25 111111 and the porosity is 75 to 95%.
ただし、 空気は内周面側から外周面側に流通されてもよく、 この場合には、 外周 面側ほど平均孔径が小さくなるようにするのが好ましい。  However, the air may be circulated from the inner peripheral surface side to the outer peripheral surface side. In this case, it is preferable that the average pore diameter becomes smaller toward the outer peripheral surface side.
以下、 図 8を参照して第 2アスペク トの実施の形態について説明する。 図 8は第 2ァスぺクトの実施の形態に係る流体フィルタ 3 0の筒軸方向と直交方向の断面図 である。  Hereinafter, an embodiment of the second aspect will be described with reference to FIG. FIG. 8 is a cross-sectional view of the fluid filter 30 according to the embodiment of the second aspect in a direction orthogonal to the cylinder axis direction.
この流体フィルタ 3 0は、 円筒形状のものである。 外周面 4 1から内周面 4 2に 向って、 又は 周面 4 2から外周面 4 1に向って、 流体として空気等のガスが流通 される。 この流体フィルタ 3 0は、 比較的目が粗い第 1領域 3 1、 比較的目が細か い第 3領域 3 3及び目の粗さがこれらの中間である第 2領域 3 2との 3領域を有し ている。 外周面から内周面に向って流体を流す場合、 第 1領域 3 1は最外周に配置 され、 第 3領域 3 3は最内周に配置され、 第 2領域 3 2はこれらの間に配置されて いる。  The fluid filter 30 has a cylindrical shape. A gas such as air flows as a fluid from the outer peripheral surface 41 to the inner peripheral surface 42 or from the peripheral surface 42 to the outer peripheral surface 41. The fluid filter 30 has three regions, a relatively coarse first region 31, a relatively fine third region 33, and a second region 32 where the coarseness is intermediate between them. Yes. When the fluid flows from the outer peripheral surface toward the inner peripheral surface, the first region 31 is arranged at the outermost periphery, the third region 33 is arranged at the innermost periphery, and the second region 32 is arranged between them. It has been.
逆に、 内周面 4 2から外周面 4 1に向って流体を流すときには、 第 1領域は最内 周に配置され、 第 3領域は最外周に配置される。  Conversely, when the fluid flows from the inner peripheral surface 42 to the outer peripheral surface 41, the first region is disposed on the innermost periphery, and the third region is disposed on the outermost periphery.
第 1領域 3 1は空孔数が 6〜 2 5個/ 2 5 mm特に 1 3〜 2 2個ノ 2 5 mmであ り、 空隙率が 7 5〜 9 5 %特に 7 5〜 9 0 %とりわけ 8 5〜 9 0 %であることが好 ましい。 The first region 31 has a pore number of 6 to 25/25 mm, particularly 13 to 22/25 mm, and a porosity of 75 to 95%, particularly 75 to 90%. In particular, it is preferably 85-90%. Good.
第 2領域 3 2は空孔数が 2 0〜3 5個 / 2 5 mm特に 2 7〜3 5個 / 2 5 mmで あり、 空隙率が 7 5〜 9 5 %特に 8 4〜 8 8 %であることが好ましい。  The second region 32 has a porosity of 20 to 35 holes / 25 mm, particularly 27 to 35 holes / 25 mm, and a porosity of 75 to 95%, particularly 84 to 8.8%. It is preferable that
第 3領域 3 3は空孔数が 3 0〜 5 0個 2 5 mm特に 3 5〜 4 5個/ 2 5 mmで あり、 空隙率が 7 5〜 9 5 %特に 7 8〜 9 2 %とりわけ 8 2〜 8 6 %であることが 好ましい。  The third region 33 has a porosity of 30 to 50 25 mm, particularly 35 to 45/25 mm, and a porosity of 75 to 95%, particularly 78 to 92%. It is preferably from 82 to 86%.
第 1領域の径方向の厚さは、 第 1、 第 2、 第 3領域の合計の 3 8〜4 6 %が好ま しく、 第 2領域の径方向の厚さは、 第 1、 第 2、 第 3領域の合計の 3 8〜4 6 %が 好ましく、第 3領域の径方向の厚さは、第 1、第 2、第 3領域の合計の 1 1〜2 2 % が好ましい。  The radial thickness of the first region is preferably 38 to 46% of the total of the first, second, and third regions, and the radial thickness of the second region is the first, second, and third regions. The total thickness of the third region is preferably 38 to 46%, and the radial thickness of the third region is preferably 11 to 22% of the total of the first, second, and third regions.
図 8では 3領域 3 1 , 3 2, 3 3が設けられているが、 2領域であってもよく、 4領域以上であってもよい。 ただし、 製造コストと除塵特性とを勘案すると、 3〜 4領域程度が好ましい。  Although three regions 31, 32, and 33 are provided in FIG. 8, two regions may be provided, or four or more regions may be provided. However, in consideration of the production cost and the dust removal characteristics, about 3 to 4 regions are preferable.
空気フィルタとして用いる場合、 流体フィ^/タ 3 0の外径 (直径) は 2 0 0〜3 0 O mm程度が好ましく、 内径 (直径) は 9 0〜1 2 O mm程度が好ましい。 流体 フィルタ 3 0の筒軸方向の長さは、 外径の 0 . 5〜1 . 5倍程度が好ましい。 空気 の流通速度は 2〜7 mZ s e c程度が好適である。  When used as an air filter, the outer diameter (diameter) of the fluid filter 30 is preferably about 200 to 30 Omm, and the inner diameter (diameter) is preferably about 90 to 12 Omm. The length of the fluid filter 30 in the cylinder axis direction is preferably about 0.5 to 1.5 times the outer diameter. The air circulation speed is preferably about 2 to 7 mZ sec.
図 9に示すように、 フィルタ 3 0の両端面に蓋 3 0 tを取り付けてもよレ、。 この 蓋 3 0 tは環状である。 この蓋は、 熱膨張率の小さいセラミックよりなることが好 ましい。  As shown in FIG. 9, lids 30t may be attached to both end faces of the filter 30. This lid 30t is annular. This lid is preferably made of ceramic with a low coefficient of thermal expansion.
なお、内周面側から外周面側に空気等の流体を流通させるときには、前述の通り、 最内周側に上記第 1領域 3 1を配置し、最外周側に上記第 3領域を配置すればよい。 この場合も、 2領域又は 4領域以上設けられてもよく、 コスト等の点からは 3〜4 領域程度が好ましい。  When a fluid such as air flows from the inner peripheral surface side to the outer peripheral surface side, as described above, the first region 31 is disposed on the innermost peripheral side, and the third region is disposed on the outermost peripheral side. Just fine. Also in this case, two or four or more regions may be provided, and from the viewpoint of cost and the like, approximately three to four regions are preferable.
図 8に示す流体フィルタ 3 0と、 比較例に係る流体フィルタとについて行った圧 損測定結果を次に説明する。  Next, the results of pressure loss measurement performed on the fluid filter 30 shown in FIG. 8 and the fluid filter according to the comparative example will be described.
実施例 5のセラミック多孔体は次のようにして製造されたものである。  The ceramic porous body of Example 5 was manufactured as follows.
即ち、 バイヤー法アルミナ 9 5重量部と、 木節粘土 5重量部と、 ポリビニルアル コール 4重量部と、 水 2 0重量部とを混合してセラミックスラリーを調製した。 また、 1インチ (25mm) 当たりセル数が 24個の外径 24. 4 cm, 内径 1 9. 3 cm、 長さ 10. 2 cmの円筒形状を有するセル膜のない 3次元網状骨格構 造の軟質ポリウレタンフォーム (第 1領域用) と、 1インチ (25 mm) 当たりセ ル数が 30個の外径 1 9. 3 cm、 内径 14. 2 cm、 長さ 10. 2 cmの円筒形 状を有するセル膜のない 3次元網状骨格構造の軟質ポリウレタンフォーム (第 2領 域用) と、 1インチ (25mm) 当たりセル数が 40個の外径 14 · 2 cm, 内径 1 2. 2 cm、 長さ 1 0. 2 cmの円筒形状を有するセル膜のない 3次元網状骨格 構造の軟質ポリウレタンフォーム (第 3領域用) とを嵌め合わせてポリウレタンフ オーム筒状体を製作した。 この筒状体を上記スラリーに浸漬した。 余分なスラリー を除去し、 十分に乾燥し、 次いで 1 300。Cで 10時間焼成を行ってセラミック多 孔体を得た。 このセラミック多孔体の平均孔径は、 第 1領域では 1. 04mm、 第 2領域では 0. 82mm、 第 3領域では 0. 6 lmmである。 なお、 焼成された後 の流体フィルタの外径は 24 Omm、 内径は 1 20 mm、 長さは 1 00mm、 第 1 領域の厚さは 25mm、 第 2領域の厚さは 25 mm、 第 3領域の厚さは 1 0 mmで ある。 That is, 95 parts by weight of alumina by the Bayer method, 5 parts by weight of Kibushi clay, 4 parts by weight of polyvinyl alcohol, and 20 parts by weight of water were mixed to prepare a ceramic slurry. In addition, a 3D reticulated framework without a cell membrane, which has a cylindrical shape with an outer diameter of 24.4 cm, an inner diameter of 19.3 cm, and a length of 10.2 cm, with 24 cells per inch (25 mm). Flexible polyurethane foam (for the 1st zone) and a cylindrical shape with 30 cells per inch (25 mm), 19.3 cm outside diameter, 14.2 cm inside diameter, and 10.2 cm length 3D reticulated skeleton flexible polyurethane foam (for the 2nd area) without cell membrane and 40 cells per inch (25mm) outside diameter 14.2 cm, inside diameter 12.2 cm, long A polyurethane foam cylindrical body was manufactured by fitting a flexible polyurethane foam (for the third region) having a cylindrical shape of 10.2 cm without a cell membrane and having a three-dimensional network skeleton structure. This tubular body was immersed in the slurry. Remove excess slurry, dry thoroughly, then 1300. C was fired for 10 hours to obtain a ceramic porous body. The average pore diameter of the ceramic porous body is 1.04 mm in the first region, 0.82 mm in the second region, and 0.6 lmm in the third region. After firing, the outer diameter of the fluid filter is 24 Omm, the inner diameter is 120 mm, the length is 100 mm, the thickness of the first area is 25 mm, the thickness of the second area is 25 mm, and the third area Is 10 mm thick.
比較例 2の流体フィルタは、 全体が上記第 1領域のセラミック多孔体であり、 比 較例 3の流体フィルタは全体が第 2領域のセラミック多孔体であり、 比較例 4の流 体フィルタは全体が第 3領域のセラミック多孔体である。  The fluid filter of Comparative Example 2 is entirely a ceramic porous body in the first region described above, the fluid filter of Comparative Example 3 is entirely a ceramic porous body of the second region, and the fluid filter of Comparative Example 4 is entirely Is the ceramic porous body in the third region.
各流体フィルタに風速 3m/ s e cにて含塵空気を流通させて圧損及び捕集率の 経時変化を測定した。 含塵空気としては、 J I S— 1 2種の粉塵を 0. 08 g/m 3含むものを用いた。 結果を次の表 2に示す。 Dust-containing air was passed through each fluid filter at a wind speed of 3 m / sec to measure the pressure loss and the change over time in the collection rate. As the dust-containing air, air containing 0.08 g / m 3 of JIS-12 dust was used. The results are shown in Table 2 below.
表 2  Table 2
Figure imgf000014_0001
Figure imgf000014_0001
表 2の通り、 実施例 5は総合的にみて圧損が低く粉塵捕集率が高い  As shown in Table 2, Example 5 has a low pressure loss and a high dust collection rate overall

Claims

請求の範囲 The scope of the claims
1 . 第 1の面及び該第 1の面に対向する第 2の面を有し、 流体が該第 1の面から 第 2の面に向って流通するセラミック多孔体よりなる流体フィルタにおいて、 該第 1の面と第 2の面との間に空室が設けられていることを特徴とする流体フィ ルタ。 1. A fluid filter comprising a ceramic porous body having a first surface and a second surface opposed to the first surface, wherein a fluid flows from the first surface to the second surface. A fluid filter, wherein an empty room is provided between a first surface and a second surface.
2 . 請求項 1において、 前記空室として該孔が複数個設けられていることを特徴 とする流体フィルタ。  2. The fluid filter according to claim 1, wherein a plurality of the holes are provided as the empty chamber.
3 . 請求項 2において、 孔内周面の少なくとも一部に流体シール層が設けられて いることを特徴とする流体フィルタ。  3. The fluid filter according to claim 2, wherein a fluid seal layer is provided on at least a part of the inner peripheral surface of the hole.
4 . 請求項 3において、 該孔内周面のうち前記第 2の面側に該流体シール層が設 けられていることを特徴とする流体フィルタ。  4. The fluid filter according to claim 3, wherein the fluid seal layer is provided on the second surface side of the inner peripheral surface of the hole.
5 . 請求項 3において、 該流体シール層は塗膜よりなることを特徴とする流体フ イノレタ。  5. The fluid finletter according to claim 3, wherein the fluid seal layer is formed of a coating film.
6 . 請求項 1において、 該空室は、 該第 1の面及び第 2の面に沿って延在してい ることを特徴とする流体フィルタ。  6. The fluid filter according to claim 1, wherein the empty space extends along the first surface and the second surface.
7 . 請求項 1において、 該第 2の面側の細孔径が第 1の面側よりも小さいことを 特徴とする流体フィルタ。  7. The fluid filter according to claim 1, wherein the pore diameter on the second surface side is smaller than that on the first surface side.
8 . 請求項 1において、 該セラミック多孔体の空孔数が 6〜2 5個 / 2 5 mmで あり、 空隙率が 7 5〜9 5 %であることを特徴とする流体フィルタ。  8. The fluid filter according to claim 1, wherein the number of pores in the porous ceramic body is 6 to 25/25 mm, and the porosity is 75 to 95%.
9 . 請求項 1において、 該セラミック多孔体は板状体であり、 一方の主板面から 他方の主板面に向つて流体が流通し、 該板状体の一側面からこれと平行な他側面に かけて貫通孔よりなる空室が多数設けられていることを特徴とする流体フィルタ。 9. In claim 1, the porous ceramic body is a plate-like body, and a fluid flows from one main plate surface to the other main plate surface, and from one side surface of the plate-like body to another side surface parallel to the main body surface. A fluid filter, wherein a large number of vacant chambers each having a through hole are provided.
1 0 . 請求項 9において、 該空室は板状体の厚み方向に複数段にわたって、 且つ 該ー側面において空室が千鳥配置となるように設けられていることを特徴とする流 体フィルタ。 10. The fluid filter according to claim 9, wherein the empty chambers are provided in a plurality of stages in the thickness direction of the plate-shaped body, and the empty chambers are provided in a staggered arrangement on the side surface.
1 1 . 請求項 9において、 該ー側面における空室の開口面積比は 2 0〜5 0 %で あることを特徴とする流体フィルタ。  11. The fluid filter according to claim 9, wherein an open area ratio of the vacant space on the side surface is 20 to 50%.
1 2 . 請求項 9において、 前記貫通孔よりなる空室の内周面のうち、 前記他方の 主板面側に流体シール層が形成されていることを特徴とする流体フィルタ。 12. In claim 9, the other of the inner peripheral surfaces of the vacant chambers formed by the through holes. A fluid filter, wherein a fluid seal layer is formed on a main plate surface side.
1 3 . 請求項 9において、 前記セラミック多孔体よりなる第 1の板状体の他方の 主板面に、 該セラミック多孔体よりも孔径の小さいセラミック多孔体よりなる第 2 の板状体が積層配置されていることを特徴とする流体フィルタ。  13. In claim 9, a second plate-like body made of a ceramic porous body having a smaller hole diameter than the ceramic porous body is laminated on the other main plate surface of the first plate-like body made of the ceramic porous body. A fluid filter characterized by being performed.
1 4 . 請求項 1 3において、 該第 2の板状体の厚さが第 1の板状体の厚さの 1 5 〜2 0 %であることを特徴とする流体フィルタ。  14. The fluid filter according to claim 13, wherein the thickness of the second plate is 15 to 20% of the thickness of the first plate.
1 5 . 請求項 1 3において、 該第 2の板状体を構成するセラミック多孔体の空孔 数が 3 0〜4 5個 / 2 5 mmであり、 空隙率が 7 5〜9 5 %であることを特徴とす る流体フィルタ。  15. The method according to claim 13, wherein the number of porosity of the ceramic porous body constituting the second plate-like body is 30 to 45/25 mm, and the porosity is 75 to 95%. A fluid filter characterized by the following.
1 6 . 請求項 1において、 該セラミック多孔体は板状体であり、 一方の主板面か ら他方の主板面に向つて流体が流通し、 該板状体の一側面からこれと平行な他側面 にかけて、 方形断面形状の 1個の貫通孔よりなる空室が設けられていることを特徴 とする流体フィルタ。  16. The ceramic porous body according to claim 1, wherein the ceramic porous body is a plate-like body, and fluid flows from one main plate surface to the other main plate surface, and the fluid flows from one side surface of the plate-like body to the other main plate surface. A fluid filter, characterized in that a void formed by a single through-hole having a rectangular cross section is provided on the side surface.
1 7 . 請求項 1 6において、 空室の該ー側面における開口面積比は 5 0〜 9 0 % であり、 空室の該ー側面における幅は該板状体の幅の 7 0〜 9 0 %であることを特 徴とする流体フィルタ。  17. In claim 16, the opening area ratio of the vacant space on the side surface is 50 to 90%, and the width of the vacant space on the side surface is 70 to 90% of the width of the plate-like body. Fluid filter characterized by%.
1 8 . 請求項 1において、該セラミック多孔体は、中心孔を有した円筒形であり、 円筒の軸心線と平行方向に貫通する貫通孔ょりなる複数の空室を有することを特徴 とする流体フィルタ。  18. The ceramic porous body according to claim 1, wherein the porous ceramic body has a cylindrical shape having a center hole, and has a plurality of cavities formed through holes parallel to an axis of the cylinder. Fluid filter.
1 9 . 請求項 1 8において、 前記円筒形のセラミック多孔体の外周面から内周面 に向って流体を流通させる流体フィルタであって、 孔径の異なる複数種類の空室を 有し、 該空室は前記円筒の内周側から外周側へ向けて、 該空室の孔径が大きくなる ように配置されていることを特徴とする流体フィルタ。  19. The fluid filter according to claim 18, wherein the fluid filter circulates a fluid from an outer peripheral surface to an inner peripheral surface of the cylindrical porous ceramic body, the fluid filter having a plurality of types of vacancies having different hole diameters, A fluid filter, wherein the chamber is arranged so that the hole diameter of the chamber increases from the inner peripheral side to the outer peripheral side of the cylinder.
2 0 . 請求項 1 8において、 前記円筒形のセラミック多孔体の内周面から外周面 に向って流体を流通させる流体フィルタであって、 孔径の異なる複数種類の空室を 有し、 該空室は前記円筒の外周側から内周側へ向けて、 該空室の孔径が大きくなる ように配置されていることを特徴とする流体フィルタ。  20. The fluid filter according to claim 18, wherein the fluid filter allows fluid to flow from the inner peripheral surface to the outer peripheral surface of the cylindrical ceramic porous body, and has a plurality of types of vacancies having different hole diameters. A fluid filter, wherein the chamber is arranged so that the hole diameter of the chamber increases from the outer peripheral side to the inner peripheral side of the cylinder.
2 1 . 請求項 1において、 該セラミック多孔体が、 内部連通空間を有する 3次元 網状骨格構造の合成樹脂発泡体をセラミックスラリ一に浸漬して該合成樹脂発泡体 にセラミックを付着せしめた後、 乾燥し、 焼成して得られる 3次元網状骨格構造の セラミック多孔体であることを特徴とする流体フィルタ。 21. The synthetic resin foam according to claim 1, wherein the ceramic porous body is formed by immersing a synthetic resin foam having a three-dimensional network skeleton structure having an internal communication space into a ceramic slurry. A fluid filter characterized by being a porous ceramic having a three-dimensional network skeleton structure obtained by attaching a ceramic to a ceramic, drying, and firing.
2 2 . 請求項 1ないし 2 1のいずれか 1項において、 該第 1の面及び第 2の面に 対して交叉する側面に蓋が設けられていることを特徴とする流体フィルタ。  22. The fluid filter according to any one of claims 1 to 21, wherein a lid is provided on a side surface intersecting the first surface and the second surface.
2 3 . 請求項 2 2において、 該蓋は熱膨張率の低い材料よりなることを特徴とす る流体フィルタ。 23. The fluid filter according to claim 22, wherein the lid is made of a material having a low coefficient of thermal expansion.
2 4 . 請求項 2 3において、 該材料はセラミックであることを特徴とする流体フ イノレタ。  24. The fluid finoleter according to claim 23, wherein the material is ceramic.
2 5 . 外周面及び内周面を有し、 流体が一方の周面から他方の周面に向って流通 する筒形のセラミック多孔体よりなる流体フィルタにおいて、  25. In a fluid filter comprising a cylindrical ceramic porous body having an outer peripheral surface and an inner peripheral surface, in which a fluid flows from one peripheral surface to the other peripheral surface,
該流体の流通方向において平均孔径に分布が存在することを特徴とする流体フィ ルタ。  A fluid filter, characterized in that there is a distribution of average pore diameters in the flow direction of the fluid.
2 6 . 請求項 2 5において、 該流体の流通方向の下流側ほど平均孔径が小さいこ とを特徴とする流体フィルタ。  26. The fluid filter according to claim 25, wherein the average pore diameter is smaller toward the downstream side in the flow direction of the fluid.
2 7 . 請求項 2 6において、 流体が外周面から内周面に向って流通されることを 特徴とする流体フィルタ。  27. The fluid filter according to claim 26, wherein the fluid flows from the outer peripheral surface toward the inner peripheral surface.
2 8 . 請求項 2 7において、 平均孔径が同一である領域が流体フィルタの筒軸方 向と直交方向の断面において環状に存在することを特徴とする流体フィルタ。 28. The fluid filter according to claim 27, wherein the regions having the same average pore diameter are annularly formed in a cross section of the fluid filter in a direction orthogonal to the cylinder axis direction.
2 9 . 請求項 2 7において、 平均孔痉の異なる環状領域が少なく とも 2領域存在 することを特徴とする流体フィルタ。 29. The fluid filter according to claim 27, wherein there are at least two annular regions having different average pores.
3 0 . 請求項 2 5において、 円筒形であることを特徴とする流体フィルタ。  30. The fluid filter according to claim 25, wherein the fluid filter is cylindrical.
3 1 . 請求項 3 0において、 流体は外周面側から内周面側に流通され、 内周面側 ほど平均孔径が小さいことを特徴とする流体フィルタ。 31. The fluid filter according to claim 30, wherein the fluid is circulated from the outer peripheral surface side to the inner peripheral surface side, and the average pore diameter is smaller toward the inner peripheral surface side.
3 2 . 請求項 3 1において、 最外周側にあっては、 空孔数が 6〜2 5個 / 2 5 m m、'空隙率が 7 5〜9 5 %であり、 最内周側にあっては、 空孔数が 3 0〜4 5個ノ3 2. In claim 31, on the outermost peripheral side, the number of holes is 6 to 25/25 mm, the porosity is 75 to 95%, and the innermost peripheral side is Te, an empty hole number 3 0-4 five Roh
2 5 mm, 空隙率が 7 5〜9 5 %であることを特徴とする流体フィルタ。 A fluid filter characterized by having a porosity of 25 to 95% and a porosity of 25 to 95%.
3 3 . 請求項 2 8において、 円筒形であり、 流体は外周面側から内周面側に流通 され、 平均孔径の大きい第 1領域、 平均孔径の小さい第 3領域及ぴ平均孔径がこれ らの中間である第 2領域との 3領域を有し、 第 1領域は最外周に配置され、 第 3領 域は最内周に配置され、 第 2領域はこれらの間に配置されていることを特徴とする 流体フィルタ。 33. In Claim 28, the fluid is circulated from the outer peripheral surface side to the inner peripheral surface side in a cylindrical shape, and the first region having a large average pore diameter, the third region having a small average pore diameter, and the average pore diameter are defined as these. The first region is located on the outermost periphery and the third region The fluid filter is characterized in that the region is disposed on the innermost periphery and the second region is disposed between them.
3 4 . 請求項 2 8において、 円筒形であり、 流体は内周面側から外周面側に流通 され、 平均孔径の大きい第 1領域、 平均孔径の小さい第 3領域及び平均孔径がこれ らの中間である第 2領域との 3領域を有し、 第 1領域は最内周に配置され、 第 3領 域は最外周に配置され、 第 2領域はこれらの間に配置されていることを特徴とする 流体フィルタ。  34. The method according to claim 28, wherein the fluid is circulated from the inner peripheral surface side to the outer peripheral surface side, and the first region having a large average pore diameter, the third region having a small average pore diameter, and the average pore diameter are defined as these. It has three regions, a second region and a middle region, wherein the first region is arranged on the innermost periphery, the third region is arranged on the outermost periphery, and the second region is arranged between them. Features Fluid filter.
3 5 . 請求項 3 3において、 第 1領域は空孔数が 6〜 2 5個 / 2 5 mm, 空隙率 が 7 5〜 9 5 %であり、 第 2領域は空孔数が 2 0〜 3 5個/ 2 5 mm、 空隙率が 7 5〜 9 5 %であり、 第 3領域は空孔数が 3 0〜 5 0個 Z 2 5 mm、 空隙率が 7 5〜 9 5 %であることを特徴とする流体フィルタ。  35. In Claim 33, the first region has 6 to 25 holes / 25 mm, the porosity is 75 to 95%, and the second region has 20 to 50 holes. 35/25 mm, porosity is 75 to 95%, and the third region has 30 to 50 porosity Z 25 mm, porosity is 75 to 95% A fluid filter, characterized in that:
3 6 . 請求項 3 4において、 第 1領域は空孔数が 6〜2 5個 / 2 5 mm、 空隙率 が 7 5〜 9 5 %であり、 第 2領域は空孔数が 2 0〜 3 5個/ 2 5 mm、 空隙率が 7 5〜 9 5 %であり、 第 3領域は空孔数が 3 0〜 5 0個 Z 2 5 mm、 空隙率が 7 5〜 9 5 %であることを特徴とする流体フィルタ。  36. In claim 34, the first region has 6 to 25 holes / 25 mm, the porosity is 75 to 95%, and the second region has 20 to 50 holes. 35/25 mm, porosity is 75 to 95%, and the third region has 30 to 50 porosity Z 25 mm, porosity is 75 to 95% A fluid filter, characterized in that:
3 7 . 請求項 3 3において、 第 1領域の径方向の厚さは、 第 1、 第 2、 第 3領域 の合計の 3 8〜4 6 %であり、 第 2領域の径方向の厚さは、 第 1、 第 2、 第 3領域 の合計の 3 8〜4 6 %であり、 第 3領域の径方向の厚さは、 第 1、 第 2、 第 3領域 の合計の 1 1 ~ 2 2 %であることを特徴とする流体フィルタ。  37. In claim 33, the radial thickness of the first region is 38 to 46% of the total of the first, second, and third regions, and the radial thickness of the second region. Is 38 to 46% of the total of the first, second and third regions, and the radial thickness of the third region is 11 to 2 of the total of the first, second and third regions. A fluid filter characterized by 2%.
3 8 . 請求項 3 4において、 第 1領域の径方向の厚さは、 第 1、 第 2、 第 3領域 の合計の 3 8〜4 6 %であり、 第 2領域の径方向の厚さは、 第 1、 第 2、 第 3領域 の合計の 3 8〜4 6 %であり、 第 3領域の径方向の厚さは、 第 1、 第 2、 第 3領域 の合計の 1 1〜2 2 %であることを特徴とする流体フィルタ。  38. In Claim 34, the radial thickness of the first region is 38 to 46% of the total of the first, second, and third regions, and the radial thickness of the second region. Is 38 to 46% of the total of the first, second and third regions, and the radial thickness of the third region is 11 to 2 of the total of the first, second and third regions. A fluid filter characterized by 2%.
3 9 . 請求項 3 3において、 外径が 2 0 0 ~ 3 0 0 mmで、 内径が 9 0〜: L 2 0 mmで、 筒軸方向の長さは、 外径の 0 . 5〜1 . 5倍であることを特徴とする流体  39. In Claim 33, the outer diameter is 200 to 300 mm, the inner diameter is 90 to: L20 mm, and the length in the cylinder axis direction is 0.5 to 1 of the outer diameter. . Fluid characterized by a factor of 5
4 0 . 請求項 3 4において、 外径が 2 0 0 ~ 3 0 0 mmで、 内径が 9 0〜: I 2 0 mmで、 筒軸方向の長さは、 外径の 0 . 5〜1 . 5倍であることを特徴とする流体 40. In claim 34, the outer diameter is 200 to 300 mm, the inner diameter is 90 to: I 20 mm, and the length in the cylinder axis direction is 0.5 to 1 of the outer diameter. . Fluid characterized by a factor of 5
4 1 . 請求項 2 5において、 該セラミック多孔体が、 内部連通空間を有する 3次 元網状骨格構造の合成樹脂発泡体をセラミックスラリーに浸漬して上記合成樹脂発 泡体にセラミックを付着せしめた後、 乾燥、 焼成して得られる 3次元網状骨格構造 のセラミック多孔体であることを特徴とする流体フィルタ。 41. The ceramic porous body according to claim 25, wherein the ceramic porous body has a three-dimensional network skeleton structure synthetic resin foam having an internal communication space immersed in a ceramic slurry to adhere the ceramic to the synthetic resin foam. A fluid filter characterized by being a porous ceramic having a three-dimensional network skeleton structure obtained by drying and firing.
4 2 . 請求項 2 5ないし 4 1のいずれか 1項において、 該流体フィルタの端面に 蓋が設けられていることを特徴とする流体フィルタ。  42. The fluid filter according to any one of claims 25 to 41, wherein a lid is provided on an end face of the fluid filter.
4 3 . 請求項 4 2において、 該蓋は熱膨張率の低い材料よりなることを特徴とす る流体フイノレタ。  43. The fluid finoleter according to claim 42, wherein the lid is made of a material having a low coefficient of thermal expansion.
4 4 . 請求項 4 3において、 該材料はセラミックであることを特徴とする流体フ ィルタ。  44. The fluid filter according to claim 43, wherein the material is ceramic.
PCT/JP2003/011800 2002-09-19 2003-09-17 Fluid filter WO2004026439A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004568909A JPWO2004026439A1 (en) 2002-09-19 2003-09-17 Fluid filter
AU2003266520A AU2003266520A1 (en) 2002-09-19 2003-09-17 Fluid filter

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-273548 2002-09-19
JP2002273547 2002-09-19
JP2002273548 2002-09-19
JP2002-273547 2002-09-19
JP2002-293835 2002-10-07
JP2002293835 2002-10-07

Publications (1)

Publication Number Publication Date
WO2004026439A1 true WO2004026439A1 (en) 2004-04-01

Family

ID=32034072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011800 WO2004026439A1 (en) 2002-09-19 2003-09-17 Fluid filter

Country Status (3)

Country Link
JP (1) JPWO2004026439A1 (en)
AU (1) AU2003266520A1 (en)
WO (1) WO2004026439A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293319A (en) * 1992-04-21 1993-11-09 Bridgestone Corp Grease filter for kitchen
JPH08257331A (en) * 1995-03-22 1996-10-08 Tokyu Car Corp Filter element
US5730869A (en) * 1995-01-28 1998-03-24 Koppe; Franz Porous ceramic filter
DE19819676A1 (en) * 1998-05-02 1999-11-04 Hermsdorfer Inst Tech Keramik Ceramic filter element used as filter or filter membrane support

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05293319A (en) * 1992-04-21 1993-11-09 Bridgestone Corp Grease filter for kitchen
US5730869A (en) * 1995-01-28 1998-03-24 Koppe; Franz Porous ceramic filter
JPH08257331A (en) * 1995-03-22 1996-10-08 Tokyu Car Corp Filter element
DE19819676A1 (en) * 1998-05-02 1999-11-04 Hermsdorfer Inst Tech Keramik Ceramic filter element used as filter or filter membrane support

Also Published As

Publication number Publication date
JPWO2004026439A1 (en) 2006-01-12
AU2003266520A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US20080092499A1 (en) Porous Honeycomb Filter
JP4937116B2 (en) Honeycomb structure
JP4266103B2 (en) Method for producing porous ceramic body
EP1686108B1 (en) Honeycomb structure
JP4267947B2 (en) Honeycomb structure
EP2505248B1 (en) Honeycomb structured body and exhaust gas purifying apparatus
EP2644245B1 (en) Honeycomb structure and manufacturing method of the same
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
EP2243535B1 (en) Honeycomb structure and bonded type honeycomb structure
KR101108902B1 (en) Honeycomb filter
WO2004063125A1 (en) Coating material, ceramic honeycomb structure and method for production thereof
EP2116347B1 (en) Method for manufacturing a sealed honeycomb structure
JP5140004B2 (en) Honeycomb structure
JP2006326574A (en) Honeycomb structure
EP2641644B1 (en) Honeycomb structure and manufacturing method of honeycomb structure
JP2004299966A (en) Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
EP2116348A1 (en) Method for manufacturing sealing honeycomb structure
US9950964B2 (en) Ceramic honeycomb structure and its production method
JP2004113887A (en) Honeycomb catalyst carrier and its production method
JP2003001029A (en) Porous ceramic honeycomb filter
WO2004026439A1 (en) Fluid filter
EP2085369B1 (en) Porous fired body and manufacturing method thereof
KR20070045130A (en) Honeycomb structure
JP4110982B2 (en) Fluid filter
JP2010234243A (en) Honeycomb structure and method of manufacturing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004568909

Country of ref document: JP

122 Ep: pct application non-entry in european phase