WO2004025813A1 - Stator for motor employing permanent magnet and motor comprising that stator - Google Patents

Stator for motor employing permanent magnet and motor comprising that stator Download PDF

Info

Publication number
WO2004025813A1
WO2004025813A1 PCT/JP2002/009286 JP0209286W WO2004025813A1 WO 2004025813 A1 WO2004025813 A1 WO 2004025813A1 JP 0209286 W JP0209286 W JP 0209286W WO 2004025813 A1 WO2004025813 A1 WO 2004025813A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
yoke
stator
permanent magnet
electromagnets
Prior art date
Application number
PCT/JP2002/009286
Other languages
French (fr)
Japanese (ja)
Inventor
Teruo Kawai
Original Assignee
Nihon Riken Co., Ltd.
Furukawa, Atsushi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Riken Co., Ltd., Furukawa, Atsushi filed Critical Nihon Riken Co., Ltd.
Priority to PCT/JP2002/009286 priority Critical patent/WO2004025813A1/en
Priority to AU2002330376A priority patent/AU2002330376A1/en
Publication of WO2004025813A1 publication Critical patent/WO2004025813A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary

Definitions

  • the present invention relates to a stator for a motor using a permanent magnet and a motor having the stator, and more particularly to a permanent magnet for a motor.
  • the present invention relates to a stator for a motor capable of improving efficiency by using magnetic energy, and a motor having the stator.
  • Conventional technology Various electric motors have been developed as conversion systems that can extract mechanical output from electrical energy. In these conventional motors, permanent magnets are used for either or both the stator and the rotor for the main purpose of improving efficiency, each of which contributes to the improvement of efficiency.
  • a motor stator configured such that a plurality of electromagnets are arranged in a ring, and the magnetic poles of each electromagnet are arranged in a radial direction.
  • a stator for a rotary motor in which one end of a magnetic core constituting each of the electromagnets is connected to each other by a yoke formed of a magnetic material.
  • a permanent magnet is provided between any two adjacent magnetic cores, and the permanent magnet is in a state where the yoke and the magnetic poles of the permanent magnet are magnetically connected to each other. The direction connecting the magnetic poles intersects the circumferential direction of the yoke,
  • the portion of the permanent magnet excluding the magnetic pole is separated from the yoke by a region having a magnetic permeability V smaller than that of the yoke.
  • the permanent magnet may be provided between adjacent magnetic cores of the electromagnets in a state of being magnetically connected to the jokes.
  • An air gap can be provided between the yoke and the portion of the permanent magnet excluding each magnetic pole.
  • the gap between the permanent magnet and the yoke can be filled with a material having a lower magnetic permeability than the yoke.
  • a rotary motor includes the above-described motor stator and a rotor rotatably disposed inside a plurality of electromagnets of the stator.
  • a rotor having various structures can be applied.
  • a plurality of salient poles are provided along the outer periphery of the rotor so that the salient poles have the same polarity as each other.
  • a magnetized material can be used.
  • the rotor is A plurality of salient poles may be provided along the outer periphery, and the salient poles may be magnetized so as to have alternate polarities.
  • the rotor has a ring-shaped magnetic body, and the magnetic body is rotatably supported so as to be eccentric from the center of the plurality of electromagnets arranged in the ring. Is also good.
  • a plurality of electromagnets are arranged in a ring shape such that one ends of magnetic cores constituting each electromagnet are substantially parallel to each other on one plane, One end of the magnetic core of each of these electromagnets is connected to each other by a yoke made of a magnetic material,
  • the yoke is provided with a permanent magnet at any point between adjacent magnetic cores of the electromagnets.
  • the permanent magnet is in a state where the yoke and the magnetic poles of the permanent magnet are magnetically connected.
  • the direction connecting the magnetic poles of the permanent magnet intersects the circumferential direction of the yoke, and the portion of the permanent magnet other than the magnetic pole has a permeability between the yoke and the yoke that is higher than that of the yoke.
  • a rotor provided with a circular plate-shaped magnetic body, and oscillating and rotating with respect to a magnetic pole at one end of the plurality of electromagnets arranged in an annular shape.
  • a linear motor fixing device in which a plurality of electromagnets are linearly arranged and one end of a magnetic core constituting each of the electromagnets is connected by a yoke formed of a magnetic material.
  • the yoke is provided with a permanent magnet in a state in which the yoke and the magnetic poles are magnetically connected to one between adjacent magnetic cores of the electromagnets.
  • a linear motor stator is provided in which a connecting direction intersects a longitudinal direction of the yoke, and a portion excluding a magnetic pole of the permanent magnet is separated from the yoke by a region having a smaller magnetic permeability than the yoke. Is done.
  • the stator for a relay motor is disposed at a predetermined gap from an electromagnet of the stator along a longitudinal direction of the stator. And a mover in which different magnetic poles are alternately magnetized.
  • the magnetic flux from each permanent magnet provided in the yoke passes through the nearby yoke and is magnetized by its own different polarity, and is not magnetized toward the stator electromagnet.
  • the stator electromagnet when the stator electromagnet is energized, in the permanent magnet arranged adjacent to the electromagnet, magnetic flux from a magnetic pole different from the magnetic pole of the electromagnet is combined with the magnetic flux of the magnetic pole of the electromagnet, and It is added to the magnetic flux generated by energizing.
  • FIG. 1 is a perspective view of a rotary motor stator according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing an example of a rotor used in combination with the rotary motor stator according to the embodiment of the present invention shown in FIG. 1,
  • FIG. 3 is a plan view schematically showing a rotary electric motor according to one embodiment of the present invention
  • FIG. 4 is a schematic view for explaining the operation of the rotary electric motor shown in FIG.
  • FIG. 5 is a schematic diagram illustrating the operation of the rotary motor shown in FIG.
  • FIG. 6 is a schematic diagram illustrating the operation of the rotary motor shown in FIG.
  • FIG. 7 is a perspective view showing a non-excited state in a modified example of the rotary motor stator of FIG. 1,
  • FIG. 8 is a perspective view showing an excited state of the rotary motor stator of FIG. 7,
  • FIG. 9 is a perspective view showing another modified example of the rotary motor stator of FIG. 1,
  • FIG. 10 is a plan view schematically showing a rotary electric motor according to another embodiment of the present invention
  • FIG. 11 is a perspective view schematically showing a rotary electric motor according to still another embodiment of the present invention
  • FIG. 12 is a side view schematically showing a linear motor according to one embodiment of the present invention
  • FIGS. 13 to 13 are plan views schematically showing the operation of the stator of the linear motor of FIG. is there.
  • FIG. 1 is a perspective view showing a stator for a rotary motor according to one embodiment of the present invention.
  • the rotor 10 is formed in a hollow cylindrical shape having a substantially circular cross section, and includes magnetic poles 12 protruding at four locations at a 90 ° pitch and a yoke 1 connecting the magnetic poles 12 to each other. It has six.
  • the magnetic pole 12 has a magnetic core 12 a provided so as to protrude radially inward from a substantially annular yoke 16, and a winding 12 b wound around each magnetic core 12 a .
  • the magnetic core 12a and the yoke 16 of the stator 10 can be formed by using a magnetic material of a material that can be selected as appropriate, for example, by stacking die-cut steel sheets in a predetermined shape. Can be formed by In addition, the wire diameter and the diameter of the conductive wire used for the winding 12b wound around the magnetic core 12a can be appropriately selected.
  • the cross section of the magnetic core 12a is rectangular, but is not particularly limited to this, and may be another shape as necessary. it can.
  • a pole piece 12c as shown in FIG. 3 to be described later can be extended in the circumferential direction of the stator 10 at the tip of the protruding direction of each magnetic pole 12a. Therefore, it is possible to adjust the change in magnetic flux when the rotary electric motor is configured by combining the stator 10 according to the present embodiment with an appropriate rotor.
  • the yoke 16 connecting the magnetic poles 1 2a to each other is provided with an opening 18 having a substantially spindle shape, and a substantially rod-shaped permanent magnet 20 is formed at the center of the widest portion. It is fitted and fixed.
  • This permanent magnet 12 has N pole and S pole magnetic poles 20 a at both ends thereof, and the portion of the magnetic pole 20 a is exclusively formed by the yoke 16.
  • the opening 18 is fixed so as to be in close contact with the inner surface.
  • the portion of the permanent magnet 20 having no magnetic pole (hereinafter, referred to as “non-magnetic pole portion 20 b”) is separated from the surface of the magnetic material constituting the yoke 16 by the gap in the opening 18. They are separated.
  • Each permanent magnet 20 is arranged such that the direction connecting the magnetic poles 20 a of the permanent magnets 20 intersects the radial direction of the jokes 16.
  • the direction connecting the magnetic poles 20a of the permanent magnets 20 and the radial direction of the yoke 16 are substantially orthogonal to each other.
  • the shape of the opening 18 is not limited to the substantially spindle shape of the present embodiment, but may be an appropriate shape such as an ellipse, an oval, and a rectangle.
  • the processing method for forming the opening 18 is also applicable. It can be adopted as appropriate in consideration of the number of processing.
  • the opening 18 may be left as an air gap as in the present embodiment, or may have an appropriate magnetic permeability in order to more securely fix the permanent magnet 20 to the yoke 16.
  • the resin material may be filled into the openings 18 and cured.
  • the rotor 30 includes a substantially cylindrical boss 36 made of a magnetic material, and four salient poles 34 projecting radially outward along the outer periphery of the boss 36.
  • Each salient pole 34 has a permanent magnet 34 a fixed to the base on the boss 36 side and a magnetic head 34 b fixed to the tip thereof. 6 are provided at 90 ° pitches along the outer circumference.
  • Each of the permanent magnets 34a has one of the N and S magnetic poles on the boss 36 side and the end farthest from the boss 36. It is arranged so that the side is the other magnetic pole.
  • the arrangement of the magnetic poles is configured to be opposite to each other between the adjacent magnetic poles 34.However, the arrangement of the magnetic poles is not limited to this arrangement. You may.
  • the magnetic material head 34 b mainly converges the magnetic flux between the permanent magnet 34 a of the rotor 30 and the excited magnetic pole 12 of the stator 10 inside thereof, and
  • the magnetic poles 12 are provided in order to reduce as much as possible a pulling-back attracting force exerted on the permanent magnets 34a of the rotor 34, which resists the rotational drive.
  • the permanent magnets 34a are directly opposed to the magnetic poles 12 of the stator 10 without providing the magnetic material heads 34b, the effects of the present invention can be sufficiently enjoyed. Can be.
  • the shape of the magnetic head 34a of the rotor magnetic pole 34 and the shape of the permanent magnet 34b are symmetrical with respect to the radially outward of the boss 36 in the embodiment of FIG.
  • the boss 36 may be formed asymmetrically radially outward from the viewpoint of causing magnetic imbalance.
  • the center of the boss 36 is provided with a shaft hole 32 into which a rotating shaft (not shown) is inserted and fixed.
  • FIG. 3 is a plan view schematically showing the configuration of the rotary electric motor according to the present embodiment.
  • the rotor 30 shown in FIG. 2 is rotatably supported by the rotating shaft 40 inside the stator 10 shown in FIG. 1 already described.
  • the individual configurations of the stator 10 and the rotor 30 have already been described, and will not be described.
  • the configuration of the stator 10 is as shown in Fig. 1 above, except that the pole piece 12c is extended in the circumferential direction at the tip of each magnetic pole 12. ing.
  • the pole pieces 12 c serve to adjust the magnetic flux distribution between the stator poles 12 and the rotor salient poles 34.
  • these magnetic pole pieces 12c can be formed in a continuous ring shape so as to extend in the circumferential direction, respectively.
  • FIGS. 3 to 6 show that the opening 18 is provided on the upper surface of the yoke 16 of the stator 10 and the permanent magnet 20 is provided there.
  • the arrangement of the opening 18 and the permanent magnet 20 is as shown in FIG. It is.
  • the excitation control device 50 is a current switching device for controlling the direction of the excitation current supplied to the windings 12 b of the respective stator magnetic poles 12 and the on / off switching timing, and generally includes a transistor. Thyristors and other current switching elements, and a control circuit for controlling on / off of the switching elements.
  • an open loop configuration may be used from the viewpoint of drive control.
  • Rotor 3 in order to detect the rotation angle of the rotor 30, for example, an optical sensor in combination with a light-shielding plate (not shown) having a predetermined notch shape, a Hall element, a rotary encoder and the like are used.
  • the output signal of the rotation sensor is input to the control circuit of the excitation control device 50 and is used as a trigger signal for controlling on / off of the current switching element according to the rotation angle of the rotor 30.
  • Fig. 3 shows a state in which no exciting current is supplied to any of the windings 12b of the stator poles 12 and none of the poles 12 is excited, that is, a state in which the power is off. I have.
  • the permanent magnets 34a of the respective salient poles 34 included in the rotor 30 are magnetically attracted to the respective stator magnetic poles 12 via the magnetic material heads 34b.
  • each rotor salient pole 34 only exerts a suction force outward in the radial direction. Looking at the rotating shaft 40 passing through the center of the rotor 30, The outward attractive force acting on each rotor pole 34 is substantially balanced (in other words, the circumferential moment acting on rotor 30 is zero).
  • each permanent magnet 20 provided on the yoke 16 has its own N and S poles which are closest to each other. It is considered that no magnetic interaction occurs between the magnets and the permanent magnets 34a provided on the salient poles 34 of the rotor 30 via the magnetic flux.
  • FIG. 4 shows an initial startup state in which the windings 12 b of the predetermined stator magnetic poles 12 are excited to start the electric motor according to the present embodiment.
  • the respective stator magnetic poles 12 are denoted by symbols S1 to S4 as shown in the figure.
  • S1 to S4 As shown in the figure.
  • S 1 and S 3 are excited to the S pole, and S 2 and S 4 are excited to the N pole.
  • Supplying current As described above, the excitation current supplied to each winding 12 b at this time is controlled by the excitation control device 50.
  • the stator magnetic poles 12 When the stator magnetic poles 12 are excited in this way, the magnetic poles S 1 and S 3 attract the N pole of the rotor 30, and the magnetic poles S 2 and S 4 attract the S pole of the rotor 30. Then, the rotor 30 starts rotating clockwise by the magnetic attraction force as shown in the figure. In this way, when the magnetic poles 12 of the stator 10 are excited to the respective polarities, the magnetic flux of the permanent magnets 20 disposed on the yoke 16 between the magnetic poles 1 and 2 causes the magnetic poles of the magnetic poles of the magnetic poles 1 and 2 to rotate. From the state in which the magnetization is closed between the magnetic poles, coupling is performed between the corresponding magnetic poles of the excited stator magnetic poles 12. For example, as shown in FIG.
  • the magnetic pole s1 has an end facing the rotor 3 ⁇ .
  • the part is excited so as to have an S pole, and an N pole appears at the base corresponding to the connection with the yoke 16.
  • the magnetic flux circulates along the path of the N pole of the permanent magnet 20 ⁇ the S pole of the magnetic pole s 2, and the magnetic flux ⁇ of the permanent magnet 20 is added to and contributes to the magnetic flux generated by the excitation current of each of the magnetic poles s 1 and s 2.
  • each salient pole 34 of the rotor 30 has reached a position substantially facing the excited stator magnetic poles S 1, S 2, S 3, S 4.
  • each rotor salient pole 3 4 and the excited stator The magnetic attraction force acting between the magnetic poles Sl, S2, S3, and S4 acts in the radial direction of the rotor 30 and no longer functions effectively as a driving force for rotating the rotor 30. do not do.
  • each magnetic pole sl ⁇ s4 is changed by inverting the excitation current to the windings 12b of the stator magnetic poles S1, S2, S3, S4 which have been excited so far. .
  • This is the state shown in FIG.
  • the rotor 30 produces a magnetic repulsion between the salient poles 34 and the magnetic poles 12 facing each other, and the magnetic poles 1 having a different polarity excited forward in the rotation direction. It is driven to rotate while being sucked toward 2.
  • the polarity of each stator magnetic pole 12 has been reversed from the state shown in FIG.
  • each permanent magnet 20 provided in the yoke 16 and each magnetic pole 12 The coupling mode of the magnetic flux is also reversed. For example, looking at the permanent magnet 20 disposed between the magnetic poles s 1 and s 2 described in FIG. 4, the N pole of the magnetic pole s 2 ⁇ the S pole of the permanent magnet 20 ⁇
  • the magnetic flux is magnetized with the N pole of the permanent magnet 20 ⁇ the S pole of the magnetic pole s i, and each magnetic pole has a contribution equivalent to 2 ⁇ .
  • the magnetic flux generated by exciting the stator magnetic poles 12 is emitted from the permanent magnets 20 disposed adjacent to the yoke 16. Since the magnetic flux ⁇ is added and used, the efficiency as a motor is greatly improved. Also, the coupling between the magnetic flux ⁇ from the permanent magnet 20 and each of the stator magnetic poles 12 is automatically recombined every time the polarity of the magnetic poles 12 is reversed, thereby providing a special switching mechanism. It is not necessary, and the magnetic flux from the permanent magnet 20 can always be used.
  • FIG. 7 is a perspective view showing a modified example of the rotary motor stator according to the embodiment.
  • the configuration in which four openings 18 are provided in the yoke 16 and the permanent magnets 20 are fitted into each of the openings 18 is the same as that of the stator in FIG. The difference is that both ends in the circumferential direction are connected to each other by a very narrow gap 17.
  • the gap 17 passes through the magnetic poles 12 of the stator 10 as shown in the figure.
  • the stator 10 is provided so as to make a round at substantially the middle in the axial direction of the stator 10. Therefore, in this modification, the stator 10 is composed of two annular parts with the gap 17 interposed therebetween.
  • FIG. 9 is a schematic plan view showing another modification of the rotary motor stator according to the embodiment.
  • the yoke 16 is divided by the gap portion 19 into two relatively thin, substantially cylindrical components on the outer peripheral side and the inner peripheral side of the stator 10.
  • Four openings 18 are provided at 0 ° pitch so as to depress both cylindrical components, and each opening 18 is provided with a permanent magnet so as to intersect the circumferential direction of the yoke 16 20 is fixed.
  • the magnetic pole pieces 12 c of the stator magnetic poles 12 are extended and connected to each other to form a substantially annular ring 13 surrounding the rotor 30.
  • each rotor salient pole 3 4 is connected to a specific pole 12 of the stator 10 because Is prevented from being locked.
  • FIG. 10 is a schematic plan view of the rotary electric motor according to the second embodiment.
  • the configuration of the stator 10 is the same as that of the first embodiment described above, and the description is omitted.
  • a rotation provided with a hollow cylindrical body 62 made of a magnetic material is used instead of the rotor 30 having the four salient poles 34 used in the first embodiment.
  • the difference is that child 60 is used.
  • the hollow cylindrical body 62 made of a magnetic material that can be appropriately selected is fixedly connected to the rotating shaft 64 via a stay 62a, and is rotatably supported together with the rotating shaft 64. I have.
  • the rotating shaft 64 is further provided so as to be eccentric from the center of the stator 10 by a distance S, and the rotating shaft 64 rotates eccentrically around the center of the stator 10 so as to draw a circle with a radius ⁇ . It is configured as follows. Although a detailed description and illustration of such an eccentric rotation mechanism will be omitted, those skilled in the art will understand that it can be easily realized by a combination of a bearing and a crank mechanism.
  • the stator magnetic pole s3 when viewed from the side of the rotor 60, the stator magnetic pole s3 is excited so as to be a negative pole.
  • the hollow cylindrical body 62 of the rotor 60 is attracted by the excited magnetic pole s3 and tries to approach it.
  • the hollow cylindrical body 62 acts while rotating along with the rotating shaft 64 and so that the rotating shaft 64 itself comes close to the excited stator magnetic pole s 3, and acts on the rotating shaft 64.
  • a circular motion occurs around the center of the stator 10.
  • the excitation of the magnetic pole s3 is released near the position where the rotor 60 is closest to the stator magnetic pole s3, and the magnetic pole s4 is excited instead, the rotor 60 continues to the magnetic pole s4.
  • the rotation is continued by being sucked, and the circular motion of the rotating shaft 64 is also continued. If the circular motion of the rotating shaft 64 is taken out by a crank mechanism or the like, a continuous rotating torque can be obtained.
  • the magnetic flux flows into the S pole of the magnetic pole s3 from the ⁇ pole of the permanent magnet 20 provided adjacent to the yoke 16 of the magnetic pole s3 in the circumferential direction, and the magnetic pole s3 is excited.
  • the magnetic flux ⁇ from the permanent magnet 20 is added to the magnetic flux generated by the magnetic field and used. Also, when the excited stator magnetic pole moves to s4, the coupling mode of the magnetic flux is automatically switched so as to be coupled with the magnetic flux ⁇ from the permanent magnets 20 located on both sides of the stator pole.
  • FIG. 11 is a perspective view of the rotary electric motor of the present embodiment.
  • the stator 10 of the present embodiment has an annular yoke 1 that constitutes the stator 10.
  • the four magnetic poles 12 are arranged at an equal pitch so as to be orthogonal to the circumferential direction of 6, that is, to project in one direction along the axial direction of the annular yoke 16.
  • An opening 18 is provided in the yoke 16 between the magnetic poles 12, and a permanent magnet 20 is fitted therein.
  • a gap is provided between the yoke 16 and a portion other than the magnetic poles of the permanent magnet 20.
  • the arrangement in which the direction connecting the magnetic poles of the permanent magnets 20 and the circumferential direction of the yoke 16 intersect is the same as in the first and second embodiments.
  • the rotor 70 is formed as a substantially disk-shaped magnetic material, and a spindle 72 is fixedly connected to the center of the rotor 70. One end of the spindle 72 is connected to a pivot joint 7. It is connected to the fixed shaft 74 via 2a. As a result, the rotor 70 and the support shaft 72 supporting the rotor 70 can rotate around the pivot joint 72a. The other end of the support shaft 72 is connected to the output shaft 76 via another pivot joint 72b. As is clear from FIG. 11, when the rotor 70 and the support shaft 72 swing with respect to one pivot joint 72 a, the other pivot joint 72 b and the output shaft 76 perform circular motion. . The circular motion of the output shaft 76 can be extracted using an appropriate power transmission means such as a crank mechanism.
  • the operation of the rotary electric motor according to the present embodiment will be described.
  • One of the four magnetic poles 12 provided on the stator 10 is selected, and this is selected so as to match a desired rotation direction.
  • the peripheral portion of the rotor 70 is attracted by the excited magnetic poles 12 and approaches thereto.
  • Such an operation is generated so as to synchronize with the sequential excitation of the adjacent stator poles 12, whereby the rotor 70 and its support shaft 72 rotate and the pivot joint 72 b and ⁇ ⁇ Rotation output is generated on the output shaft 76.
  • the S pole of the magnetic pole 12 is obtained from the N pole of the permanent magnet 20 provided adjacently in the circumferential direction of the yoke 16 of the excited magnetic pole 12 shown in FIG.
  • the magnetic flux flows into the The magnetic flux ⁇ from the negative magnet 20 is added and used. Further, when the stator magnetic pole to be excited moves to the adjacent magnetic pole, the coupling mode of the magnetic flux is automatically switched so as to be coupled with the magnetic flux ⁇ from the permanent magnets 20 located on both sides thereof, and any one of the excitation is performed.
  • the magnetic pole is constantly replenished with the magnetic flux ⁇ from the permanent magnet 20.
  • FIG. 12 is a schematic side view of the rear air motor of the present embodiment
  • FIGS. 13 to 13C are schematic plan views showing the operation of the stator.
  • the stator 10 having a long plate shape is formed of an appropriate material such as a laminated silicon steel sheet, and the magnetic poles 12 are juxtaposed at a predetermined pitch.
  • the magnetic pole 12 includes a magnetic core 12 a formed as a protrusion of the stator 10, and a winding 12 b wound on the magnetic core 12 a.
  • a substantially spindle-shaped opening 18 is provided between the magnetic poles 12 of the stator 10, and a permanent magnet 20 is fitted inside the opening 18.
  • the permanent magnet 20 is in close contact with the inner surface of the opening 18 at both magnetic poles, and the space other than the magnetic pole is separated from the inner surface of the opening 18 by an air gap.
  • the direction connecting the magnetic poles of the permanent magnets 20 and the longitudinal direction of the stator 10 cross each other.
  • a mover 80 as a moving body is arranged with a predetermined gap so as to face each magnetic pole 12 of the stator 10. Different magnetic poles are alternately magnetized on the bottom side of the mover 80 facing the stator 10, for example, at intervals equal to the magnetic pole arrangement pitch of the stator 10. Further, the mover 80 can be moved while holding the predetermined gap along the longitudinal direction of the stator 10 by a support mechanism (not shown).
  • FIGS. 13A to 13C the operation of the stator 10 of the present embodiment will be described with reference to FIGS. 13A to 13C.
  • the magnetic flux emitted from each permanent magnet 20 changes from its own N pole to its S pole around the opening 18. It is magnetized to go around.
  • the magnetic poles 12 of the stator 10 are alternately excited to have different polarities, the magnetic flux contained in the permanent magnet 20 is adjacent to its own N pole, as shown in Fig. 13B. Flows into the S pole of the stator poles 1 and 2.
  • magnetic flux flows from the N pole of the stator magnetic pole 12 to the S pole of the adjacent permanent magnet 20.
  • the resulting magnetic flux is used by adding the magnetic flux emitted from a permanent magnet disposed adjacent to the yoke, so that the efficiency of the motor is greatly improved.
  • the coupling between the magnetic flux from the permanent magnet and each stator magnetic pole is automatically rearranged each time the polarity on the magnetic pole side is reversed, so that a special switching mechanism is not required and the permanent magnetic coupling from the permanent magnet is always possible. Magnetic flux can be used.

Abstract

A stator for rotating electric motor comprising a plurality of electromagnets disposed annularly while arranging the magnetic poles in the radial direction, wherein cores constituting respective electromagnets are interconnected, at one end part thereof, through yokes formed of a magnetic body. The yoke is provided with a permanent magnet between any adjacent cores of respective electromagnets, wherein each magnetic pole of the permanent magnet is connected magnetically with the yoke, the direction for connecting respective magnetic poles of the permanent magnet intersects the circumferential direction of the yoke, and the part of the permanent magnet except the magnetic poles is isolated from the yoke by a region having a permeability lower than that of the yoke.

Description

永久磁石を用いた電動機用固定子とその固定子を備えた電動機 発明の属する技術分野 この発明は、 永久磁石を用いた電動機用固定子とその固定子を備えた電動機に 係わり、 特に永久磁石の磁気エネルギーを利用して効率を向上させうる電動機用 固定子とその固定子を備えた電動機明に関する。 従来の技書術 従来、 電気エネルギーから機械的な出力を取り出せるようにした変換システム として、 種々の電動機が開発されてきた。 それら従来の電動機にあっては、 効率 を高めることを主目的として、 固定子、 回転子のいずれか又は両方に永久磁石を 用いることが行われており、 それぞれ効率向上に寄与している。  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stator for a motor using a permanent magnet and a motor having the stator, and more particularly to a permanent magnet for a motor. The present invention relates to a stator for a motor capable of improving efficiency by using magnetic energy, and a motor having the stator. Conventional technology Various electric motors have been developed as conversion systems that can extract mechanical output from electrical energy. In these conventional motors, permanent magnets are used for either or both the stator and the rotor for the main purpose of improving efficiency, each of which contributes to the improvement of efficiency.
しかしながら、 永久磁石を用いる場合に避けることができない問題が現在も残 されている。 それは、 無通電状態において永久磁石の磁束により回転子が一定の 角度位置に強固に固定されてしまうことにより始動性が悪くなる場合があること、 そして、 固定子の卷線に順次通電して回転子を回転駆動させているときに、 回転 子に対して吸引力を与えて回転駆動に寄与していた永久磁石が、 回転子がその磁 極を通過する瞬間から逆に回転子の回転駆動を妨げるような吸引力を及ぼすこと である。 特に後者の問題は、 固定子卷線へ入力される電力の一部が回転子の回転 駆動を阻害するために消費されることを意味するから、 効率向上を図る上からは 非常に有害であった。 ただ、 永久磁石は電磁石とは異なって、 任意に磁束の発生 を入切することができないから、 そのような有害な現象も永久磁石を使用する限 りは原理的に除去することは困難であると考えられてきた。 本願発明者はこの種 の問題を克服するために長年研究を続けており、 主として回転子の構成に着目し て改良を行った電動機として、 例えば特開 2 0 0 2 - 3 4 2 2 2号公報に記載さ れているものがある。 However, there are still problems that cannot be avoided when using permanent magnets. This is because, in the non-energized state, the rotor may be firmly fixed at a certain angular position due to the magnetic flux of the permanent magnet, which may deteriorate startability. When the rotor is driven to rotate, the permanent magnet that has given the rotor an attractive force and contributed to the rotation drive is changed from the moment the rotor passes through the poles to the rotation drive of the rotor. The effect is to exert an obstructive suction force. In particular, the latter problem means that a part of the electric power input to the stator winding is consumed to hinder the rotation of the rotor, which is very harmful for improving efficiency. Was. However, unlike electromagnets, permanent magnets cannot switch on and off magnetic flux arbitrarily, so it is difficult in principle to eliminate such harmful phenomena as long as permanent magnets are used. It has been considered. The inventor of the present application has been conducting research for many years to overcome this kind of problem, and as an electric motor that has been improved mainly by focusing on the configuration of the rotor, for example, Japanese Patent Application Laid-Open No. 2002-324422 Stated in the gazette There are things that are.
この発明は、 上記の事情に基づいてさらなる改良を目指してなされたもので、 その一つの目的は、 永久磁石が持つ磁気エネルギーを有効に利用しつつ効率向上 を妨げる有害な引き戻し力を除去することが可能な電動機用固定子と、 その固定 子を用いた電動機を提供することである。 発明の概要 上記の及びその他の目的を達成するために、 本願発明の一態様に係わる電動機 用固定子は、 複数の電磁石が環状に配設され、 各電磁石の磁極は径方向に配列さ れるようになっており、 それら各電磁石を構成する磁心の一端部の間が磁性体で 形成されたヨークによって相互に接続されている回転電動機用固定子であって、 前記ヨークには、 前記各電磁石の相隣り合う磁心同士の間のいずれかに永久磁 石が設けられ、 その永久磁石は前記ヨークとその永久磁石の各磁極とが磁気的に 接続された状態とされていて、 その永久磁石の各磁極を結ぶ方向は前記ヨークの 周方向と交差するようになっており、  The present invention has been made in view of the above circumstances and has been made with a view to further improving the above.One purpose of the present invention is to effectively use the magnetic energy of a permanent magnet and to remove a harmful pull-back force that hinders an improvement in efficiency. It is an object of the present invention to provide a motor stator capable of performing the above-described steps and a motor using the stator. SUMMARY OF THE INVENTION In order to achieve the above and other objects, a motor stator according to one embodiment of the present invention is configured such that a plurality of electromagnets are arranged in a ring, and the magnetic poles of each electromagnet are arranged in a radial direction. And a stator for a rotary motor in which one end of a magnetic core constituting each of the electromagnets is connected to each other by a yoke formed of a magnetic material. A permanent magnet is provided between any two adjacent magnetic cores, and the permanent magnet is in a state where the yoke and the magnetic poles of the permanent magnet are magnetically connected to each other. The direction connecting the magnetic poles intersects the circumferential direction of the yoke,
前記永久磁石の磁極を除く部分は前記ヨークとの間がそのヨークよりも透磁率 が小さ V、領域によつて離隔されている。  The portion of the permanent magnet excluding the magnetic pole is separated from the yoke by a region having a magnetic permeability V smaller than that of the yoke.
前記永久磁石は、 前記各電磁石の相隣り合う磁心同士の間にそれぞれ前記ョ一 クと磁気的に接続された状態で設けることができる。  The permanent magnet may be provided between adjacent magnetic cores of the electromagnets in a state of being magnetically connected to the jokes.
前記永久磁石の各磁極を除く部分と前記ヨークとの間に空隙を設けることがで きる。 そして、 前記永久磁石とヨークとの間の空隙には、 そのヨークよりも透磁 率の小さい材料を充填することができる。  An air gap can be provided between the yoke and the portion of the permanent magnet excluding each magnetic pole. The gap between the permanent magnet and the yoke can be filled with a material having a lower magnetic permeability than the yoke.
また、 本願発明の一の態様に関わる回転電動機は、 前記の電動機用固定子と、 それら固定子の複数の電磁石の内方に回転自在に配設されている回転子とを有す る。  Further, a rotary motor according to one aspect of the present invention includes the above-described motor stator and a rotor rotatably disposed inside a plurality of electromagnets of the stator.
この場合の回転子としては、 種々の構造のものを適用することができるが、 例 えば、 回転子の外周に沿って複数の突極を備え、 それらの突極が互いに同極性を 有するように磁化されているものを用いることができる。 また、 前記回転子は、 その外周に沿って複数の突極を備え、 それらの突極が交互に異極性を有するよう に磁化されているものとしてもよい。 また、 前記回転子がリング状に形成された 磁性体を備え、 その磁性体が前記環状に配設された複数の電磁石の中心から偏心 するように回転自在に支持されている構成を採用してもよい。 In this case, a rotor having various structures can be applied.For example, a plurality of salient poles are provided along the outer periphery of the rotor so that the salient poles have the same polarity as each other. A magnetized material can be used. Also, the rotor is A plurality of salient poles may be provided along the outer periphery, and the salient poles may be magnetized so as to have alternate polarities. Further, the rotor has a ring-shaped magnetic body, and the magnetic body is rotatably supported so as to be eccentric from the center of the plurality of electromagnets arranged in the ring. Is also good.
また、 本願発明の他の態様に係わる回転電動機は、 複数の電磁石が、 各電磁石 を構成する磁心の一端部が実質的に一の平面上に互いに並列するように環状に配 設されており、 それら各電磁石の磁心の一端部の間が磁性体で形成されたヨーク によって相互に接続され、  Further, in a rotary electric motor according to another aspect of the present invention, a plurality of electromagnets are arranged in a ring shape such that one ends of magnetic cores constituting each electromagnet are substantially parallel to each other on one plane, One end of the magnetic core of each of these electromagnets is connected to each other by a yoke made of a magnetic material,
前記ヨークには、 前記各電磁石の相隣り合う磁心同士の間のいずれかに永久磁 石が設けられ、 その永久磁石は前記ヨークとその永久磁石の各磁極とが磁気的に 接続された状態とされていて、 その永久磁石の各磁極を結ぶ方向は前記ヨークの 周方向と交差するようになつており、 前記永久磁石の磁極を除く部分は前記ョー クとの間がそのヨークよりも透磁率が小さい領域によって離隔されている回転電 動機用固定子と、  The yoke is provided with a permanent magnet at any point between adjacent magnetic cores of the electromagnets. The permanent magnet is in a state where the yoke and the magnetic poles of the permanent magnet are magnetically connected. The direction connecting the magnetic poles of the permanent magnet intersects the circumferential direction of the yoke, and the portion of the permanent magnet other than the magnetic pole has a permeability between the yoke and the yoke that is higher than that of the yoke. A stator for a rotary motor separated by a small area,
円形平板状の磁性体を備え、 前記環状に配設された複数の電磁石の一端部の磁 極に対して傾斜しつつ揺動回転する回転子とを備えている。  A rotor provided with a circular plate-shaped magnetic body, and oscillating and rotating with respect to a magnetic pole at one end of the plurality of electromagnets arranged in an annular shape.
本願発明のさらに他の態様によれば、 複数の電磁石を直線状に並設し、 それら 各電磁石を構成する磁心の一端部の間が磁性体で形成されたヨークによって接続 されているリニァモータ用固定子であって、  According to still another aspect of the present invention, a linear motor fixing device in which a plurality of electromagnets are linearly arranged and one end of a magnetic core constituting each of the electromagnets is connected by a yoke formed of a magnetic material. A child,
前記ヨークには、 前記各電磁石の相隣り合う磁心同士の間のいずれかに前記ョ ークと各磁極とが磁気的に接続された状態で永久磁石が設けられ、 その永久磁石 の各磁極を結ぶ方向が前記ヨークの長手方向と交差するようになっており、 前記永久磁石の磁極を除く部分は前記ヨークからそのヨークよりも透磁率が小 さい領域によって離隔されているリニァモータ用固定子が提供される。  The yoke is provided with a permanent magnet in a state in which the yoke and the magnetic poles are magnetically connected to one between adjacent magnetic cores of the electromagnets. A linear motor stator is provided in which a connecting direction intersects a longitudinal direction of the yoke, and a portion excluding a magnetic pole of the permanent magnet is separated from the yoke by a region having a smaller magnetic permeability than the yoke. Is done.
また、 本願発明のさらに他の態様によれば、 前記リエァモータ用固定子と、 そ の固定子の長手方向に沿ってその固定子の電磁石から所定の空隙をおいて配設さ れ、 その長手方向に互いに異なる磁極が交互に着磁されている可動子とを有する リニアモータが提供される。  According to still another aspect of the present invention, the stator for a relay motor is disposed at a predetermined gap from an electromagnet of the stator along a longitudinal direction of the stator. And a mover in which different magnetic poles are alternately magnetized.
このような構成とすることにより、 固定子の各電磁石に通電していない状態で は、 ヨークに設けた各永久磁石からの磁束は近傍のヨークを通って自分の異極同 士で回磁して固定子電磁石の方には回磁しない。 一方、 固定子電磁石に通電され ると、 その電磁石に隣接して配置されている永久磁石において、 前記電磁石の磁 極とは異なる磁極からの磁束はその電磁石の磁極の磁束と結合し、 電磁石に通電 することによって発生している磁束に足し合わされる。 永久磁石の異極同士で回 磁していた磁束が解放されて隣接する電磁石の磁束と結合するのは、 各永久磁石 の磁極を除く部分が周辺のヨークと直接接触しておらず、 ヨークよりも透磁率が 小さい領域が介在しているために、 その透磁率が小さい部分を迂回して回磁する よりも磁気抵抗がより小さい直近の電磁石に回磁しょうとするためと考えられる。 したがって、 このような電動機用固定子を備えた電動機は、 通電により電磁石が 発生している磁束に加えて永久磁石から発生する磁束も利用して効率を高めるこ とができる。 図面の簡単な説明 図 1は本発明の一実施形態にかかる回転電動機用固定子の斜視図、 With such a configuration, it is possible to prevent the In other words, the magnetic flux from each permanent magnet provided in the yoke passes through the nearby yoke and is magnetized by its own different polarity, and is not magnetized toward the stator electromagnet. On the other hand, when the stator electromagnet is energized, in the permanent magnet arranged adjacent to the electromagnet, magnetic flux from a magnetic pole different from the magnetic pole of the electromagnet is combined with the magnetic flux of the magnetic pole of the electromagnet, and It is added to the magnetic flux generated by energizing. The magnetic flux that has been magnetized between the different poles of the permanent magnet is released and combined with the magnetic flux of the adjacent electromagnet because the part other than the magnetic pole of each permanent magnet is not in direct contact with the surrounding yoke, This is probably because the region with low magnetic permeability is interposed, so that the magnet is magnetized to the nearest electromagnet with a lower magnetic resistance than to bypass the portion with low magnetic permeability. Therefore, the motor having such a motor stator can improve the efficiency by utilizing the magnetic flux generated by the permanent magnet in addition to the magnetic flux generated by the electromagnet when energized. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a rotary motor stator according to an embodiment of the present invention,
図 2は図 1に示す本発明の一実施形態にかかる回転電動機用固定子と組み合わ せて用いられる回転子の一例を示す斜視図、  FIG. 2 is a perspective view showing an example of a rotor used in combination with the rotary motor stator according to the embodiment of the present invention shown in FIG. 1,
図 3は本願発明の一実施形態にかかる回転電動機を模式的に示す平面図、 図 4は図 4に示す回転電動機の作用を説明する模式図その 1、  FIG. 3 is a plan view schematically showing a rotary electric motor according to one embodiment of the present invention, and FIG. 4 is a schematic view for explaining the operation of the rotary electric motor shown in FIG.
図 5は図 4に示す回転電動機の作用を説明する模式図その 2、  FIG. 5 is a schematic diagram illustrating the operation of the rotary motor shown in FIG.
図 6は図 4に示す回転電動機の作用を説明する模式図その 3、  FIG. 6 is a schematic diagram illustrating the operation of the rotary motor shown in FIG.
図 7は図 1の回転電動機用固定子の一変形例において非励磁の状態を示す斜視 図、  FIG. 7 is a perspective view showing a non-excited state in a modified example of the rotary motor stator of FIG. 1,
図 8は図 7の回転電動機用固定子の励磁状態を示す斜視図、  FIG. 8 is a perspective view showing an excited state of the rotary motor stator of FIG. 7,
図 9は図 1の回転電動機用固定子の他の変形例を示す斜視図、  FIG. 9 is a perspective view showing another modified example of the rotary motor stator of FIG. 1,
図 1 0は本発明の他の実施形態にかかる回転電動機を模式的に示す平面図、 図 1 1は本発明のさらに他の実施形態にかかる回転電動機を模式的に示す斜視 図、 図 1 2は本発明の一実施形態にかかるリニァモータを模式的に示す側面図、 図 1 3 〜図 1 3じは図1 1のリニアモータの固定子の作用を模式的に示す平 面図である。 発明の詳細な説明 以下、 この発明の実施形態について、 添付図面を参照して詳細に説明する。 な お、 これらの図においては、 各実施形態の基本的な構成と作用とを明瞭にするた めに、 装置のハウジングなど、 実施形態の構成において本質的でないと思われる ものについては図示を省略している。 FIG. 10 is a plan view schematically showing a rotary electric motor according to another embodiment of the present invention, FIG. 11 is a perspective view schematically showing a rotary electric motor according to still another embodiment of the present invention, FIG. 12 is a side view schematically showing a linear motor according to one embodiment of the present invention, and FIGS. 13 to 13 are plan views schematically showing the operation of the stator of the linear motor of FIG. is there. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In these figures, in order to clarify the basic configuration and operation of each embodiment, illustrations of things that are not essential in the configuration of the embodiment, such as an apparatus housing, are omitted. are doing.
図 1は、 本発明の一実施形態にかかる回転電動機用固定子を示す斜視図である。 回転子 1 0は、 断面がほぼ円形の中空筒状に形成されており、 9 0 ° ピッチで 4 ケ所に突設された磁極 1 2と、 それらの磁極 1 2を互いに連結しているヨーク 1 6を備えている。 磁極 1 2は略円環状のヨーク 1 6からその径方向内方へ突き出 すように設けられた磁心 1 2 aと、 その各磁心 1 2 aに卷回された卷線 1 2 bと を有する。 固定子 1 0の磁心 1 2 a及びヨーク 1 6は、 適宜に選択しうる材質の 磁性体材料を持って形成することができ、 例えば所定の形状に型抜きされたケィ 素鋼板を積層することによって形成することができる。 また、 磁心 1 2 aの周囲 に卷回されている巻線 1 2 bに用いられる導線の線材ゃ線径も適宜に選択するこ とができる。 なお、 図 1に図示されている本実施形態では、 磁心 1 2 aの横断面 が矩形とされているが、 特にこれに限定されるわけではなく、 必要に応じて他の 形状とすることができる。 また、 各磁極 1 2 aの突出方向先端部には、 後出の図 3に示されているような磁極片 1 2 cを固定子 1 0の周方向に延設することがで き、 それによつて本実施形態にかかる固定子 1 0を適宜の回転子と組み合わせて 回転電動機を構成した場合の磁束変化を調整することができる。  FIG. 1 is a perspective view showing a stator for a rotary motor according to one embodiment of the present invention. The rotor 10 is formed in a hollow cylindrical shape having a substantially circular cross section, and includes magnetic poles 12 protruding at four locations at a 90 ° pitch and a yoke 1 connecting the magnetic poles 12 to each other. It has six. The magnetic pole 12 has a magnetic core 12 a provided so as to protrude radially inward from a substantially annular yoke 16, and a winding 12 b wound around each magnetic core 12 a . The magnetic core 12a and the yoke 16 of the stator 10 can be formed by using a magnetic material of a material that can be selected as appropriate, for example, by stacking die-cut steel sheets in a predetermined shape. Can be formed by In addition, the wire diameter and the diameter of the conductive wire used for the winding 12b wound around the magnetic core 12a can be appropriately selected. In the embodiment shown in FIG. 1, the cross section of the magnetic core 12a is rectangular, but is not particularly limited to this, and may be another shape as necessary. it can. A pole piece 12c as shown in FIG. 3 to be described later can be extended in the circumferential direction of the stator 10 at the tip of the protruding direction of each magnetic pole 12a. Therefore, it is possible to adjust the change in magnetic flux when the rotary electric motor is configured by combining the stator 10 according to the present embodiment with an appropriate rotor.
各磁極 1 2 aを相互に連結するヨーク 1 6には、 それぞれ略紡錘形状を呈する 開口部 1 8が設けられ、 その中央部の最も幅広に形成された部分に略棒状の永久 磁石 2 0が嵌め込まれて固定されている。 この永久磁石 1 2は、 その両端部に N 極と S極の各磁極 2 0 aを有し、 その磁極 2 0 aの部分がもっぱらヨーク 1 6の 開口部 1 8内表面と密接するように固設されている。 そして、 永久磁石 2 0の磁 極を有しない部分 (以下、 「非磁極部 2 0 b」 と称する。 ) は、 開口部 1 8内の 空隙によってヨーク 1 6を構成する磁性体材料の表面から離隔されるようになつ ている。 The yoke 16 connecting the magnetic poles 1 2a to each other is provided with an opening 18 having a substantially spindle shape, and a substantially rod-shaped permanent magnet 20 is formed at the center of the widest portion. It is fitted and fixed. This permanent magnet 12 has N pole and S pole magnetic poles 20 a at both ends thereof, and the portion of the magnetic pole 20 a is exclusively formed by the yoke 16. The opening 18 is fixed so as to be in close contact with the inner surface. The portion of the permanent magnet 20 having no magnetic pole (hereinafter, referred to as “non-magnetic pole portion 20 b”) is separated from the surface of the magnetic material constituting the yoke 16 by the gap in the opening 18. They are separated.
各永久磁石 2 0は、 それら永久磁石 2 0の磁極 2 0 a同士を結ぶ方向が、 ョー ク 1 6の径方向と交差するように配設されている。 なお、 図 1に示す実施形態に あっては各永久磁石 2 0の磁極 2 0 a同士を結ぶ方向とヨーク 1 6の径方向とは ほぼ直交しているが、 これは、 永久磁石 2 0の各 N, S磁極 2 0 aとこれらに相 隣接する固定子 1 0の各磁極 1 2との距離を極力均等とすることにより、 後述す る永久磁石 2 0と固定子磁極 1 2との磁束結合の切換を円滑に行わせることがで きるようにするためである。 もちろんこのような直交の位置関係は本発明にとつ て必須なものではなく、 実質的に交差していれば足りるものである。 また、 開口 部 1 8の形状も本実施形態の略紡錘形に限られず、 楕円形、 長円形、 矩形等適宜 な形状を採用することができ、 開口部 1 8を開口形成するための加工法も加工ェ 数等を勘案して適宜採用することができる。 また、 開口部 1 8は、 本実施形態の ように空隙のままとしておいてもよいし、 永久磁石 2 0のヨーク 1 6への固定を より強固にする等のために、 適宜な透磁率を有する樹脂材料を開口部 1 8に充填 して硬化させてもよレ、。  Each permanent magnet 20 is arranged such that the direction connecting the magnetic poles 20 a of the permanent magnets 20 intersects the radial direction of the jokes 16. In the embodiment shown in FIG. 1, the direction connecting the magnetic poles 20a of the permanent magnets 20 and the radial direction of the yoke 16 are substantially orthogonal to each other. By making the distance between each of the N and S magnetic poles 20a and each of the magnetic poles 12 of the stator 10 adjacent to the N and S magnetic poles as equal as possible, the magnetic flux between the permanent magnet 20 and the stator magnetic pole 12, which will be described later, is increased. This is to enable the switching of the coupling to be performed smoothly. Of course, such an orthogonal positional relationship is not essential for the present invention, and it suffices if they intersect substantially. Further, the shape of the opening 18 is not limited to the substantially spindle shape of the present embodiment, but may be an appropriate shape such as an ellipse, an oval, and a rectangle. The processing method for forming the opening 18 is also applicable. It can be adopted as appropriate in consideration of the number of processing. Further, the opening 18 may be left as an air gap as in the present embodiment, or may have an appropriate magnetic permeability in order to more securely fix the permanent magnet 20 to the yoke 16. The resin material may be filled into the openings 18 and cured.
以上の構成を有する図 1の回転電動機用固定子 1 0では、 各永久磁石 2 0につ いて、 その各磁極 2 0 aである N極から放出された磁束 φは、 開口部 1 8を迂回 するようにヨーク 1 6の磁性体内を通って、 もっとも近距離にある自己の S極へ と流入する。  In the rotating motor stator 10 of FIG. 1 having the above configuration, for each permanent magnet 20, the magnetic flux φ emitted from the N pole, which is the magnetic pole 20 a, bypasses the opening 18. As a result, it flows through the magnetic material of the yoke 16 into its own S pole, which is the closest.
次に、 前記の実施形態にかかる固定子 1 0と組み合わせられて一の回転電動機 を形成する回転子について、 図 2を参照して説明する。 回転子 3 0は、 略円筒状 の磁性体材料からなるボス 3 6と、 このボス 3 6の外周に沿って径方向外方に突 設された 4つの突極 3 4とを備える。 各突極 3 4は、 そのボス 3 6側の基部に固 設された永久磁石 3 4 aと、 その先端に固設された磁性体へッド 3 4 bとを有し ており、 ボス 3 6の外周に沿って 9 0 ° ピッチで設けられている。 各永久磁石 3 4 aは、 ボス 3 6側が N, Sいずれか一方の磁極、 ボス 3 6から最も離れた端部 側が他方の磁極となるように配置される。 図 2では、 隣り合う磁極 3 4同士では 互いに磁極の配置が反対となるように構成されているが、 この配置に限られるこ となく、 すべての突極 3 4について磁極の配置を揃えるようにしてもよい。 磁性 体へッド 3 4 bは、 主に回転子 3 0の永久磁石 3 4 aと固定子 1 0の励磁されて いる磁極 1 2との間の磁束をその内部で収束させて、 他の磁極 1 2が回転子 3 4 の永久磁石 3 4 aに及ぼす回転駆動に抗する形態の引き戻す吸引力を可及的に低 減させるために設けられる。 ただし、 磁性体ヘッド 3 4 bを設けることなく永久 磁石 3 4 aと固定子 1 0の各磁極 1 2とが直接対向するように構成しても、 本発 明の作用効果は十分享受することができる。 なお、 回転子磁極 3 4の磁性体へッ ド 3 4 aや永久磁石 3 4 bの形状は、 図 2の実施形態にあってはボス 3 6の径方 向外方について対称に形成されているが、 起動時の回転子 3 0の回転方向を決定 するために、 磁気的な不平衡を生じさせる観点からボス 3 6の径方向外方につい て非対称に形成することもできる。 ボス 3 6の中心には、 図示しない回転軸が差 し込まれて固定される軸孔 3 2が設けられている。 Next, a rotor that forms one rotary electric motor in combination with the stator 10 according to the above embodiment will be described with reference to FIG. The rotor 30 includes a substantially cylindrical boss 36 made of a magnetic material, and four salient poles 34 projecting radially outward along the outer periphery of the boss 36. Each salient pole 34 has a permanent magnet 34 a fixed to the base on the boss 36 side and a magnetic head 34 b fixed to the tip thereof. 6 are provided at 90 ° pitches along the outer circumference. Each of the permanent magnets 34a has one of the N and S magnetic poles on the boss 36 side and the end farthest from the boss 36. It is arranged so that the side is the other magnetic pole. In FIG. 2, the arrangement of the magnetic poles is configured to be opposite to each other between the adjacent magnetic poles 34.However, the arrangement of the magnetic poles is not limited to this arrangement. You may. The magnetic material head 34 b mainly converges the magnetic flux between the permanent magnet 34 a of the rotor 30 and the excited magnetic pole 12 of the stator 10 inside thereof, and The magnetic poles 12 are provided in order to reduce as much as possible a pulling-back attracting force exerted on the permanent magnets 34a of the rotor 34, which resists the rotational drive. However, even if the permanent magnets 34a are directly opposed to the magnetic poles 12 of the stator 10 without providing the magnetic material heads 34b, the effects of the present invention can be sufficiently enjoyed. Can be. The shape of the magnetic head 34a of the rotor magnetic pole 34 and the shape of the permanent magnet 34b are symmetrical with respect to the radially outward of the boss 36 in the embodiment of FIG. However, in order to determine the rotation direction of the rotor 30 at the time of startup, the boss 36 may be formed asymmetrically radially outward from the viewpoint of causing magnetic imbalance. The center of the boss 36 is provided with a shaft hole 32 into which a rotating shaft (not shown) is inserted and fixed.
次に、 図 1に示した回転電動機用固定子と、 図 2に示した回転子とを組み合わ せて構成される回転電動機の構成とその作用について、 図 3〜図 6を参照して説 明する。 図 3は、 本実施形態にかかる回転電動機の構成を模式的に示す平面図で ある。 すでに説明した図 1の固定子 1 0の内側に、 図 2に示した回転子 3 0が回 転軸 4 0によって回転自在に支持されている。 固定子 1 0及び回転子 3 0の個々 の構成については、 すでに説明したので省略する。 ここで、 固定子 1 0の構成は 前出の図 1に示したとおりであるが、 各磁極 1 2の先端部に周方向に向けて磁極 片 1 2 cが延設されている点が異なっている。 この磁極片 1 2 cは、 前述のとお り、 各固定子磁極 1 2と回転子突極 3 4との間の磁束分布を整える作用を行う。 なお、 始動性を改善したり磁極間のコギングを減少させたりする目的で、 これら の磁極片 1 2 cをそれぞれ周方向に延長するようにして連続したリング状として 形成することができる。  Next, the configuration and operation of a rotary motor configured by combining the stator for the rotary motor shown in Fig. 1 and the rotor shown in Fig. 2 will be described with reference to Figs. I do. FIG. 3 is a plan view schematically showing the configuration of the rotary electric motor according to the present embodiment. The rotor 30 shown in FIG. 2 is rotatably supported by the rotating shaft 40 inside the stator 10 shown in FIG. 1 already described. The individual configurations of the stator 10 and the rotor 30 have already been described, and will not be described. Here, the configuration of the stator 10 is as shown in Fig. 1 above, except that the pole piece 12c is extended in the circumferential direction at the tip of each magnetic pole 12. ing. As described above, the pole pieces 12 c serve to adjust the magnetic flux distribution between the stator poles 12 and the rotor salient poles 34. For the purpose of improving startability and reducing cogging between the magnetic poles, these magnetic pole pieces 12c can be formed in a continuous ring shape so as to extend in the circumferential direction, respectively.
図 3〜図 6では、 固定子 1 0のヨーク 1 6の上面に開口部 1 8が設けられそこ に永久磁石 2 0が配設されているように図示しているが、 これは図面を理解しや すくするためであって、 開口部 1 8及び永久磁石 2 0の配置は図 1に示したとお りである。 FIGS. 3 to 6 show that the opening 18 is provided on the upper surface of the yoke 16 of the stator 10 and the permanent magnet 20 is provided there. For the sake of simplicity, the arrangement of the opening 18 and the permanent magnet 20 is as shown in FIG. It is.
励磁制御装置 5 0は、 前記それぞれの固定子磁極 1 2の卷線 1 2 bに供給され る励磁電流の向きとそのオンオフ切換タイミングとを制御するための電流スィッ チング装置であり、 一般に、 トランジスタ、 サイリスタ等の電流スイッチング素 子と、 それらのスィツチング素子のオンオフを制御するための制御回路とから構 成されている。 本実施形態に係る回転電動機は、 基本的には固定子磁極 1 2の励 磁制御に回転子 3 0が同期駆動されるため、 駆動制御の面からはオープンループ 構成として差し支えない。 ただし、 回転子 3 0の回転角度を検出するために、 例 えば所定の切欠き形状を備えた遮光板 (図示省略) と組合せた光センサ、 ホール 素子やロータリエンコーダのような、 既存の種々のセンサを適宜用いて回転子 3 The excitation control device 50 is a current switching device for controlling the direction of the excitation current supplied to the windings 12 b of the respective stator magnetic poles 12 and the on / off switching timing, and generally includes a transistor. Thyristors and other current switching elements, and a control circuit for controlling on / off of the switching elements. In the rotary electric motor according to the present embodiment, since the rotor 30 is basically driven synchronously with the excitation control of the stator magnetic poles 12, an open loop configuration may be used from the viewpoint of drive control. However, in order to detect the rotation angle of the rotor 30, for example, an optical sensor in combination with a light-shielding plate (not shown) having a predetermined notch shape, a Hall element, a rotary encoder and the like are used. Rotor 3
0の速度制御を行うことができる。 その場合、 回転センサの出力信号は、 前記励 磁制御装置 5 0の制御回路に入力され、 回転子 3 0の回転角度に応じて前記電流 スィツチング素子のオンオフを制御するためのトリガ信号として使用される。 次に、 図 3〜図 6を参照して、 上記の構成を有する本発明の一実施形態に係わ る回転電動機の作用を説明する。 Zero speed control can be performed. In that case, the output signal of the rotation sensor is input to the control circuit of the excitation control device 50 and is used as a trigger signal for controlling on / off of the current switching element according to the rotation angle of the rotor 30. You. Next, the operation of the rotary electric motor according to one embodiment of the present invention having the above-described configuration will be described with reference to FIGS.
まず、 図 3は、 固定子磁極 1 2の巻線 1 2 bのいずれにも励磁電流が供給され ておらず、 いずれの磁極 1 2も励磁されていない状態、 いわば電源オフの状態を 示している。 この状態では、 回転子 3 0が備えているそれぞれの突極 3 4の永久 磁石 3 4 aは、 磁性体へッド 3 4 bを介して各固定子磁極 1 2との間に磁気吸引 力を及ぼしている。 したがって、 各回転子突極 3 4はその径方向外方へ向けて吸 引力が作用しているのみで、 回転子 3 0の中心に揷通されている回転軸 4 0につ いてみると、 各回転子磁極 3 4に作用する外方への吸引力は実質的にバランスが とれている (言い換えれば、 回転子 3 0に作用する周方向のモーメントが 0であ る) 。 このような固定子 1 0の各卷線 1 2 bに非励磁の状態では、 ヨーク 1 6に 設けられた各永久磁石 2 0の磁束 φは、 互いに最も近接している自身の N , S極 同士の間で回磁して、 回転子 3 0の突極 3 4に設けられている永久磁石 3 4 aと の間で磁束を介した磁気的相互作用が生じることはないと考えられる。  First, Fig. 3 shows a state in which no exciting current is supplied to any of the windings 12b of the stator poles 12 and none of the poles 12 is excited, that is, a state in which the power is off. I have. In this state, the permanent magnets 34a of the respective salient poles 34 included in the rotor 30 are magnetically attracted to the respective stator magnetic poles 12 via the magnetic material heads 34b. Has been exerted. Therefore, each rotor salient pole 34 only exerts a suction force outward in the radial direction. Looking at the rotating shaft 40 passing through the center of the rotor 30, The outward attractive force acting on each rotor pole 34 is substantially balanced (in other words, the circumferential moment acting on rotor 30 is zero). When the windings 12 b of the stator 10 are not energized, the magnetic flux φ of each permanent magnet 20 provided on the yoke 16 has its own N and S poles which are closest to each other. It is considered that no magnetic interaction occurs between the magnets and the permanent magnets 34a provided on the salient poles 34 of the rotor 30 via the magnetic flux.
次に、 図 4は、 本実施形態に係る電動機を起動すべく、 所定の固定子磁極 1 2 の巻線 1 2 bを励磁した起動初期状態を示している。 いま、 それぞれの固定子磁極 1 2を識別するために、 各固定子磁極 1 2に図示 のとおり S 1〜S 4の符号を付けることにする。 起動初期状態においては、 S 1 から S 4までの固定子磁極 1 2の巻線 1 2 bのうち、 S 1および S 3を S極に、 S 2および S 4を N極に励磁するように電流を供給している。 前記のように、 こ のときの各卷線 1 2 bに供給される励磁電流は、 励磁制御装置 5 0によつて制御 される。 このように固定子磁極 1 2を励磁すると、 磁極 S 1および S 3は回転子 3 0の N極を吸引し、 磁極 S 2および S 4は回転子 3 0の S極を吸引する。 そし て、 回転子 3 0はこの磁気吸引力によって図示のように時計方向に回転し始める。 このように固定子 1 0の各磁極 1 2がそれぞれの極性に励磁されると、 各磁極 1 2間のヨーク 1 6に配設されていた永久磁石 2 0の磁束は、 自身の磁極同士の 間で閉鎖的に回磁していた状態から、 各励磁された固定子磁極 1 2の対応する磁 極との間で結合するようになっている。 例えば、 図 4に示されるように、 固定子 1 0の磁極 s 1と s 2との間に配設されている永久磁石 2 0に注目すると、 磁極 s 1は回転子 3◦に対向する端部側が S極となるように励磁されており、 ヨーク 1 6との接続部に当たる基部には N極が現れている。 そして、 - 磁極 s iの N極 → 永久磁石 2 0の S極 → Next, FIG. 4 shows an initial startup state in which the windings 12 b of the predetermined stator magnetic poles 12 are excited to start the electric motor according to the present embodiment. Now, in order to identify the respective stator magnetic poles 12, the respective stator magnetic poles 12 are denoted by symbols S1 to S4 as shown in the figure. In the initial state of the start-up, among the windings 1 2b of the stator magnetic poles 12 from S 1 to S 4, S 1 and S 3 are excited to the S pole, and S 2 and S 4 are excited to the N pole. Supplying current. As described above, the excitation current supplied to each winding 12 b at this time is controlled by the excitation control device 50. When the stator magnetic poles 12 are excited in this way, the magnetic poles S 1 and S 3 attract the N pole of the rotor 30, and the magnetic poles S 2 and S 4 attract the S pole of the rotor 30. Then, the rotor 30 starts rotating clockwise by the magnetic attraction force as shown in the figure. In this way, when the magnetic poles 12 of the stator 10 are excited to the respective polarities, the magnetic flux of the permanent magnets 20 disposed on the yoke 16 between the magnetic poles 1 and 2 causes the magnetic poles of the magnetic poles of the magnetic poles 1 and 2 to rotate. From the state in which the magnetization is closed between the magnetic poles, coupling is performed between the corresponding magnetic poles of the excited stator magnetic poles 12. For example, as shown in FIG. 4, focusing on the permanent magnet 20 disposed between the magnetic poles s1 and s2 of the stator 10, the magnetic pole s1 has an end facing the rotor 3◦. The part is excited so as to have an S pole, and an N pole appears at the base corresponding to the connection with the yoke 16. And-N pole of magnetic pole si → S pole of permanent magnet 20 →
永久磁石 2 0の N極 → 磁極 s 2の S極 という経路で磁束が回磁し、 永久磁石 2 0の磁束 φが磁極 s 1, s 2それぞれの 励磁電流による磁束に加算されて寄与している。 つまり、 固定子 1 0の各磁極 1 2について、 2 φに相当する磁束が強化されていることになる。 このことは、 2 φに相当する励磁電流を各磁極 s 1〜 s 4に増加させたことと等価であると考え られるから、 本実施形態の回転電動機では大幅な効率の向上が見込めるものであ る。  The magnetic flux circulates along the path of the N pole of the permanent magnet 20 → the S pole of the magnetic pole s 2, and the magnetic flux φ of the permanent magnet 20 is added to and contributes to the magnetic flux generated by the excitation current of each of the magnetic poles s 1 and s 2. I have. That is, for each magnetic pole 12 of the stator 10, the magnetic flux corresponding to 2φ is strengthened. This is considered to be equivalent to increasing the exciting current corresponding to 2φ to each of the magnetic poles s1 to s4.Therefore, a large improvement in efficiency can be expected in the rotary motor of the present embodiment. You.
回転子 3 0が、 図 4の状態から図 5の状態を経てさらに 1 / 2ピッチ程度時計 方向に回転すると、 図 6の状態となる。 このとき、 回転子 3 0のそれぞれの突極 3 4は、 励磁された固定子磁極 S 1 , S 2 , S 3 , S 4にほぼ対向する位置に達 している。 この状態では、 図示のとおり、 各回転子突極 3 4と励磁された固定子 磁極 S l, S 2 , S 3 , S 4との間に働く磁気吸引力は回転子 3 0の半径方向に 作用しており、 もはや回転子 3 0を回転させるための駆動力として有効に機能し ない。 そこで、 ここまで励磁されていた固定子磁極 S 1, S 2 , S 3, S 4の各 卷線 1 2 bへの励磁電流を反転させることによって、 各磁極 s l〜s 4の極性を 転換する。 これが図 6に示されている状態である。 これにより、 回転子 3 0は、 各突極 3 4が対向している磁極 1 2との間に磁気的反発作用を生じるとともに、 回転方向前方にあるあらたに異極性に励磁されている磁極 1 2に向けて吸引され つつ回転駆動される。 ここで注目すべきことは、 図 5までに示した状態から各固 定子磁極 1 2の極性が反転したことにより、 ヨーク 1 6に設けられている各永久 磁石 2 0と各磁極 1 2との磁束の結合態様も反転することである。 例えば、 図 4 において説明した磁極 s 1と s 2との間に配設されている永久磁石 2 0について 見ると、 磁極 s 2の N極 → 永久磁石 2 0の S極 → When the rotor 30 further rotates clockwise about 1/2 pitch from the state of FIG. 4 through the state of FIG. 5, the state of FIG. 6 is obtained. At this time, each salient pole 34 of the rotor 30 has reached a position substantially facing the excited stator magnetic poles S 1, S 2, S 3, S 4. In this state, as shown, each rotor salient pole 3 4 and the excited stator The magnetic attraction force acting between the magnetic poles Sl, S2, S3, and S4 acts in the radial direction of the rotor 30 and no longer functions effectively as a driving force for rotating the rotor 30. do not do. Therefore, the polarity of each magnetic pole sl ~ s4 is changed by inverting the excitation current to the windings 12b of the stator magnetic poles S1, S2, S3, S4 which have been excited so far. . This is the state shown in FIG. As a result, the rotor 30 produces a magnetic repulsion between the salient poles 34 and the magnetic poles 12 facing each other, and the magnetic poles 1 having a different polarity excited forward in the rotation direction. It is driven to rotate while being sucked toward 2. It should be noted here that the polarity of each stator magnetic pole 12 has been reversed from the state shown in FIG. 5, so that each permanent magnet 20 provided in the yoke 16 and each magnetic pole 12 The coupling mode of the magnetic flux is also reversed. For example, looking at the permanent magnet 20 disposed between the magnetic poles s 1 and s 2 described in FIG. 4, the N pole of the magnetic pole s 2 → the S pole of the permanent magnet 20 →
永久磁石 2 0の N極 → 磁極 s iの S極 と磁束が回磁しており、 各磁極には 2 φに相当する寄与がなされている。  The magnetic flux is magnetized with the N pole of the permanent magnet 20 → the S pole of the magnetic pole s i, and each magnetic pole has a contribution equivalent to 2 φ.
このように本実施形態にかかる回転電動機によれば、 固定子磁極 1 2が励磁さ れることにより発生される磁束に、 隣接してヨーク 1 6に配置されている永久磁 石 2 0から放出される磁束 ψが加算されて利用されるので、 電動機としての効率 が大幅に向上する。 また、 永久磁石 2 0からの磁束 φと各固定子磁極 1 2との結 合は、 磁極 1 2側の極性が反転する毎に自動的に組み換えられ、 これによつて特 別な切り換え機構を要しないで、 常時永久磁石 2 0からの磁束を利用することが できる。  As described above, according to the rotary motor according to the present embodiment, the magnetic flux generated by exciting the stator magnetic poles 12 is emitted from the permanent magnets 20 disposed adjacent to the yoke 16. Since the magnetic flux る is added and used, the efficiency as a motor is greatly improved. Also, the coupling between the magnetic flux φ from the permanent magnet 20 and each of the stator magnetic poles 12 is automatically recombined every time the polarity of the magnetic poles 12 is reversed, thereby providing a special switching mechanism. It is not necessary, and the magnetic flux from the permanent magnet 20 can always be used.
図 7は、 上記実施形態にかかる回転電動機用固定子の一変形例を示す斜視図で ある。 ヨーク 1 6に 4ケ所の開口部 1 8が設けられ、 そのそれぞれに永久磁石 2 0が嵌設されている構成は図 1の固定子と同様であるが、 各開口部 1 8のヨーク 1 6周方向両端部が互いにごく狭い間隙部 1 7によって連通している点が異なつ ている。 間隙部 1 7は、 図示のとおり固定子 1 0の各磁極 1 2の部分も通過して 固定子 1 0の軸方向のほぼ中間を一周するように設けられている。 したがって、 この変形例にあっては、 固定子 1 0が間隙部 1 7を挾んで 2つの環状部品から構 成されていることになる。 このように構成すれば、 ヨーク 1 6に開口部 1 8を孔 開け加工する工程を省略しうるだけでなく、 開口部 1 8とこれに設けられる永久 磁石 2 0との寸法精度もそれほど厳密に管理しなくてもよくなるから、 加工コス トを低減することができる。 なお、 間隙部 1 7をあえて設けることなく上記 2つ の環状部品が接するように構成すれば、 結果的に図 1に示した第 1実施形態にお ける固定子 1 0と同様の構成を有する固定子 1 0が得られる。 FIG. 7 is a perspective view showing a modified example of the rotary motor stator according to the embodiment. The configuration in which four openings 18 are provided in the yoke 16 and the permanent magnets 20 are fitted into each of the openings 18 is the same as that of the stator in FIG. The difference is that both ends in the circumferential direction are connected to each other by a very narrow gap 17. The gap 17 passes through the magnetic poles 12 of the stator 10 as shown in the figure. The stator 10 is provided so as to make a round at substantially the middle in the axial direction of the stator 10. Therefore, in this modification, the stator 10 is composed of two annular parts with the gap 17 interposed therebetween. With this configuration, not only can the step of forming an opening 18 in the yoke 16 be omitted, but also the dimensional accuracy of the opening 18 and the permanent magnet 20 provided in the opening 18 is so strict. Since there is no need to manage, processing costs can be reduced. Note that if the two annular components are configured to be in contact with each other without providing the gap 17, the resulting configuration is the same as that of the stator 10 in the first embodiment shown in FIG. 1. The stator 10 is obtained.
図 7の変形例においては、 いずれの磁極 1 2も非励磁の状態であって、 各永久 磁石 2 0からの磁束 φはヨーク 1 6に沿って隣接する永久磁石 2 0の異極へと流 入している。 これに対して、 図 8に示すように各磁極 1 2に交互に異なる極性が 現れるように励磁電流を供給すると、 各永久磁石 2 0と各磁極 1 2とからの磁束 は、 それぞれ隣接する異極同士の間で結合し、 各永久磁石 2 0から射出される磁 束が各磁極 1 2にて利用される。 そして、 各磁極 1 2の励磁極性が反転すれば、 各永久磁石 2 0と各磁極 1 2との磁束の結合状態が前記第 1実施形態にて説明し たように自動的に反転されて、 常時永久磁石 2 0からの磁束が各磁極 1 2にて有 効に利用されることとなる。  In the modified example of FIG. 7, all the magnetic poles 12 are in a non-excited state, and the magnetic flux φ from each permanent magnet 20 flows along the yoke 16 to the opposite pole of the adjacent permanent magnet 20. Yes. On the other hand, when the exciting current is supplied so that different polarities appear alternately on the magnetic poles 12 as shown in FIG. 8, the magnetic fluxes from the permanent magnets 20 and the magnetic poles 12 are different from each other. The magnetic flux that is coupled between the poles and emitted from each permanent magnet 20 is used at each magnetic pole 12. If the excitation polarity of each magnetic pole 12 is reversed, the coupling state of the magnetic flux between each permanent magnet 20 and each magnetic pole 12 is automatically reversed as described in the first embodiment, The magnetic flux from the permanent magnet 20 is always effectively used in each magnetic pole 12.
図 9は、 上記実施形態にかかる回転電動機用固定子の他の変形例を示す模式的 な平面図である。 この場合、 ヨーク 1 6は間隙部 1 9によって固定子 1 0の外周 側と内周側との 2つの比較的薄肉な略円筒状の構成部品に分割されており、 その ヨークの周方向に 9 0 ° ピッチで 4ケ所の開口部 1 8が両方の円筒状構成部品を 凹ませるように加工して設けられ、 各開口部 1 8にはヨーク 1 6の周方向と交差 するようにそれぞれ永久磁石 2 0が固設されている。 このような構成によっても、 前記第 1の変形例について説明したのと同様の効果を得ることができる。 なお、 本変形例では、 各固定子磁極 1 2の磁極片 1 2 cが延長されて互いに連結されて おり、 回転子 3 0を取り囲むような略環状のリング 1 3を形成している。 このよ うに構成することで、 固定子 1 0の各磁極 1 2に励磁されていない状態では、 回 転子 3 0に取り付けられている各永久磁石 3 4 aからの磁束はリング 1 3内を通 つて均等に回磁するから、 各回転子突極 3 4が固定子 1 0の特定の磁極 1 2に口 ックされることが防止される。 FIG. 9 is a schematic plan view showing another modification of the rotary motor stator according to the embodiment. In this case, the yoke 16 is divided by the gap portion 19 into two relatively thin, substantially cylindrical components on the outer peripheral side and the inner peripheral side of the stator 10. Four openings 18 are provided at 0 ° pitch so as to depress both cylindrical components, and each opening 18 is provided with a permanent magnet so as to intersect the circumferential direction of the yoke 16 20 is fixed. With such a configuration, the same effect as that described in the first modification can be obtained. In this modification, the magnetic pole pieces 12 c of the stator magnetic poles 12 are extended and connected to each other to form a substantially annular ring 13 surrounding the rotor 30. With this configuration, when the magnetic poles 12 of the stator 10 are not excited, the magnetic flux from the permanent magnets 34 a attached to the rotor 30 flows through the ring 13. Therefore, each rotor salient pole 3 4 is connected to a specific pole 12 of the stator 10 because Is prevented from being locked.
次に、 本発明の第 2の実施形態にかかる回転電動機について説明する。 図 1 0 は、 第 2の実施形態にかかる回転電動機の模式的な平面図である。 固定子 1 0の 構成は、 前述した第 1の実施形態の場合と同様であるので説明を省略する。 本実 施形態では、 第 1の実施形態において用いられていた 4つの突極 3 4を有する回 転子 3 0に代えて、 磁性体材料によって形成されている中空円筒体 6 2を備えた 回転子 6 0を用いている点が異なる。 適宜に選択しうる磁性体材料をもって形成 されている中空円筒体 6 2は、 ステー 6 2 aを介して回転軸 6 4に固接されてお り、 回転軸 6 4とともに回転自在に支持されている。 回転軸 6 4はさらに固定子 1 0の中心から距離 Sだけ偏心するように設けられており、 回転軸 6 4は固定子 1 0の中心の回りに半径 δの円を描くように偏心回転するように構成される。 こ のような偏心回転機構の詳細な説明と図示は省略するが、 軸受とクランク機構と の組み合わせ等によって容易に実現しうることは当業者に理解されよう。  Next, a description will be given of a rotary electric motor according to a second embodiment of the present invention. FIG. 10 is a schematic plan view of the rotary electric motor according to the second embodiment. The configuration of the stator 10 is the same as that of the first embodiment described above, and the description is omitted. In the present embodiment, instead of the rotor 30 having the four salient poles 34 used in the first embodiment, a rotation provided with a hollow cylindrical body 62 made of a magnetic material is used. The difference is that child 60 is used. The hollow cylindrical body 62 made of a magnetic material that can be appropriately selected is fixedly connected to the rotating shaft 64 via a stay 62a, and is rotatably supported together with the rotating shaft 64. I have. The rotating shaft 64 is further provided so as to be eccentric from the center of the stator 10 by a distance S, and the rotating shaft 64 rotates eccentrically around the center of the stator 10 so as to draw a circle with a radius δ. It is configured as follows. Although a detailed description and illustration of such an eccentric rotation mechanism will be omitted, those skilled in the art will understand that it can be easily realized by a combination of a bearing and a crank mechanism.
いま図 1 0にあっては、 回転子 6 0の側から見て、 固定子磁極 s 3が Ν極とな るように励磁されている。 回転子 6 0の中空円筒体 6 2はこの励磁された磁極 s 3に吸引されてこれに接近しょうとする。 このとき、 中空円筒体 6 2は、 回転軸 6 4とともに自転しつつ、 かつ回転軸 6 4自体が励磁された固定子磁極 s 3に接 近するように作用し、 回転軸 6 4に対して固定子 1 0中心の回りに円運動を生起 させる。 回転子 6 0が以上のようにして固定子磁極 s 3に最接近した近傍で磁極 s 3の励磁を解除し、 代わって磁極 s 4を励磁すると、 回転子 6 0は引き続き磁 極 s 4に吸引されて回転を続け、 回転軸 6 4の円運動も継続されるから、 この回 転軸 6 4の円運動をクランク機構等によって取出せば連続的な回転トルクを得ら れることになる。 磁極 s 3のヨーク 1 6周方向に隣接して設けられている永久磁 石 2 0の Ν極からは、 磁極 s 3の S極へと磁束が流入し、 磁極 s 3が励磁される ことによつて発生する磁束に永久磁石 2 0からの磁束 φが加え合わされて利用さ れる。 また、 励磁される固定子磁極が s 4に移れば、 その両隣に位置する永久磁 石 2 0からの磁束 φと結合するように自動的に磁束の結合態様が切り換わり、 い ずれかの励磁磁極には常時永久磁石 2 0からの磁束 Φが補充されることになる。 次に、 本発明の第 3の実施形態にかかる回転電動機につき、 図 1 1を参照しな がら説明する。 図 1 1は本実施形態の回転電動機の斜視図である。 これまでの固 定子 1 0が径方向内方へ突出するように磁極 1 2が設けられていたのに対し、 本 実施形態の固定子 1 0では、 固定子 1 0を構成する環状のヨーク 1 6の周方向に 対して直交するように、 言い換えれば、 環状ヨーク 1 6の軸方向に沿って一方向 に突設されるようにして 4つの磁極 1 2が等ピッチで配設されている。 そして、 ヨーク 1 6には各磁極 1 2の間において、 開口部 1 8が設けられるとともに、 そ こにそれぞれ永久磁石 2 0が嵌設されている。 前記の実施形態における固定子 1 0の場合と同様に、 永久磁石 2 0の磁極以外の部分とヨーク 1 6との間には、 空 隙が設けられている。 また、 永久磁石 2 0の磁極同士を結ぶ方向とヨーク 1 6の 周方向とが交差するような配置とされているのは、 第 1及び第 2の実施形態と同 様である。 Now, in FIG. 10, when viewed from the side of the rotor 60, the stator magnetic pole s3 is excited so as to be a negative pole. The hollow cylindrical body 62 of the rotor 60 is attracted by the excited magnetic pole s3 and tries to approach it. At this time, the hollow cylindrical body 62 acts while rotating along with the rotating shaft 64 and so that the rotating shaft 64 itself comes close to the excited stator magnetic pole s 3, and acts on the rotating shaft 64. A circular motion occurs around the center of the stator 10. As described above, when the excitation of the magnetic pole s3 is released near the position where the rotor 60 is closest to the stator magnetic pole s3, and the magnetic pole s4 is excited instead, the rotor 60 continues to the magnetic pole s4. The rotation is continued by being sucked, and the circular motion of the rotating shaft 64 is also continued. If the circular motion of the rotating shaft 64 is taken out by a crank mechanism or the like, a continuous rotating torque can be obtained. The magnetic flux flows into the S pole of the magnetic pole s3 from the Ν pole of the permanent magnet 20 provided adjacent to the yoke 16 of the magnetic pole s3 in the circumferential direction, and the magnetic pole s3 is excited. The magnetic flux φ from the permanent magnet 20 is added to the magnetic flux generated by the magnetic field and used. Also, when the excited stator magnetic pole moves to s4, the coupling mode of the magnetic flux is automatically switched so as to be coupled with the magnetic flux φ from the permanent magnets 20 located on both sides of the stator pole. The magnetic pole is constantly replenished with the magnetic flux Φ from the permanent magnet 20. Next, a rotary motor according to a third embodiment of the present invention will be described with reference to FIG. I will explain. FIG. 11 is a perspective view of the rotary electric motor of the present embodiment. Whereas the magnetic pole 12 is provided so that the conventional stator 10 protrudes inward in the radial direction, the stator 10 of the present embodiment has an annular yoke 1 that constitutes the stator 10. The four magnetic poles 12 are arranged at an equal pitch so as to be orthogonal to the circumferential direction of 6, that is, to project in one direction along the axial direction of the annular yoke 16. An opening 18 is provided in the yoke 16 between the magnetic poles 12, and a permanent magnet 20 is fitted therein. As in the case of the stator 10 in the above-described embodiment, a gap is provided between the yoke 16 and a portion other than the magnetic poles of the permanent magnet 20. The arrangement in which the direction connecting the magnetic poles of the permanent magnets 20 and the circumferential direction of the yoke 16 intersect is the same as in the first and second embodiments.
回転子 7 0は略円板状の形成された磁性体材料として形成されており、 その中 心部に支軸 7 2が固接されていて、 支軸 7 2の一端部は枢動継手 7 2 aを介して 固定軸 7 4に接続されている。 これにより、 回転子 7 0及びこれを支持している 支軸 7 2は、 枢動継手 7 2 aの回りに摇動回転を行うことができるようになって いる。 支軸 7 2の他端部は、 もう一つの枢動継手 7 2 bを介して出力軸 7 6に接 続されている。 図 1 1から明らかなように、 一の枢動継手 7 2 aに関して回転子 7 0及び支軸 7 2が揺動すると、 他方の枢動継手 7 2 b及び出力軸 7 6は円運動 を行う。 この出力軸 7 6の円運動を、 クランク機構等の適宜の動力伝達手段を用 いて取出すことができる。  The rotor 70 is formed as a substantially disk-shaped magnetic material, and a spindle 72 is fixedly connected to the center of the rotor 70. One end of the spindle 72 is connected to a pivot joint 7. It is connected to the fixed shaft 74 via 2a. As a result, the rotor 70 and the support shaft 72 supporting the rotor 70 can rotate around the pivot joint 72a. The other end of the support shaft 72 is connected to the output shaft 76 via another pivot joint 72b. As is clear from FIG. 11, when the rotor 70 and the support shaft 72 swing with respect to one pivot joint 72 a, the other pivot joint 72 b and the output shaft 76 perform circular motion. . The circular motion of the output shaft 76 can be extracted using an appropriate power transmission means such as a crank mechanism.
ここで、 本実施形態にかかる回転電動機の作用について説明すると、 固定子 1 0に設けられた 4つの磁極 1 2のうちの一を選択して、 所望の回転方向と一致す るようにこれを順次励磁していくことにより、 回転子 7 0の周縁部がこの励磁さ れた磁極 1 2に吸引されてこれに接近する。 このような動作が隣接する固定子磁 極 1 2の順次励磁と同期するように生起され、 それによつて回転子 7 0及びその 支軸 7 2が摇動回転し、 枢動継手 7 2 b及ぴ出力軸 7 6に回転出力を生じさせる こととなる。 このとき、 例えば図 1 1に図示されている励磁された磁極 1 2のョ ーク 1 6周方向に隣接して設けられている永久磁石 2 0の N極からは、 磁極 1 2 の S極へと磁束が流入し、 磁極 1 2が励磁されることによって発生する磁束に永 久磁石 2 0からの磁束 φが加え合わされて利用される。 また、 励磁される固定子 磁極が隣接する磁極へと移れば、 その両隣に位置する永久磁石 2 0からの磁束 φ と結合するように自動的に磁束の結合態様が切り換わり、 いずれかの励磁磁極に は常時永久磁石 2 0からの磁束 φが補充されることになる。 Here, the operation of the rotary electric motor according to the present embodiment will be described. One of the four magnetic poles 12 provided on the stator 10 is selected, and this is selected so as to match a desired rotation direction. By sequentially exciting, the peripheral portion of the rotor 70 is attracted by the excited magnetic poles 12 and approaches thereto. Such an operation is generated so as to synchronize with the sequential excitation of the adjacent stator poles 12, whereby the rotor 70 and its support shaft 72 rotate and the pivot joint 72 b and回 転 Rotation output is generated on the output shaft 76. At this time, for example, the S pole of the magnetic pole 12 is obtained from the N pole of the permanent magnet 20 provided adjacently in the circumferential direction of the yoke 16 of the excited magnetic pole 12 shown in FIG. The magnetic flux flows into the The magnetic flux φ from the negative magnet 20 is added and used. Further, when the stator magnetic pole to be excited moves to the adjacent magnetic pole, the coupling mode of the magnetic flux is automatically switched so as to be coupled with the magnetic flux φ from the permanent magnets 20 located on both sides thereof, and any one of the excitation is performed. The magnetic pole is constantly replenished with the magnetic flux φ from the permanent magnet 20.
次に、 本発明の第 4の実施形態にかかるリニアモータについて説明する。 図 1 2は、 本実施形態のリエアモータの模式的な側面図、 図 1 3 〜図 1 3 Cは、 そ の固定子の動作を示す模式的な平面図である。 長板状に構成された固定子 1 0は 積層ケィ素鋼板等の適宜の材料にて形成されており、 所定のピッチで磁極 1 2が 並設されている。 磁極 1 2は、 固定子 1 0の突出部として形成されている磁心 1 2 aと、 これに卷回されている卷線 1 2 bとを備える。 固定子 1 0の各磁極 1 2 の間には、 例えば略紡錘形の開口部 1 8が設けられ、 その内側に、 永久磁石 2 0 が嵌設されている。 永久磁石 2 0はその両磁極の部分で開口部 1 8の内側表面と 密接しており、 磁極以外の部分と開口部 1 8内側表面との間は空隙によって離隔 されている。 永久磁石 2 0の磁極同士を結ぶ方向と固定子 1 0の長手方向とは互 いに交差するようになつている。 固定子 1 0の各磁極 1 2に対向するようにして、 移動体としての可動子 8 0が所定のギヤップをもって配設されている。 可動子 8 0の固定子 1 0と対向する底面側には、 例えば固定子 1 0の磁極配設ピッチと等 しい間隔で相異なる磁極が交互に着磁されている。 また、 可動子 8 0は、 図外の 支持機構によって、 固定子 1 0の長手方向に沿って前記所定のギャップを保持し つつ移動することができるようになっている。  Next, a linear motor according to a fourth embodiment of the present invention will be described. FIG. 12 is a schematic side view of the rear air motor of the present embodiment, and FIGS. 13 to 13C are schematic plan views showing the operation of the stator. The stator 10 having a long plate shape is formed of an appropriate material such as a laminated silicon steel sheet, and the magnetic poles 12 are juxtaposed at a predetermined pitch. The magnetic pole 12 includes a magnetic core 12 a formed as a protrusion of the stator 10, and a winding 12 b wound on the magnetic core 12 a. For example, a substantially spindle-shaped opening 18 is provided between the magnetic poles 12 of the stator 10, and a permanent magnet 20 is fitted inside the opening 18. The permanent magnet 20 is in close contact with the inner surface of the opening 18 at both magnetic poles, and the space other than the magnetic pole is separated from the inner surface of the opening 18 by an air gap. The direction connecting the magnetic poles of the permanent magnets 20 and the longitudinal direction of the stator 10 cross each other. A mover 80 as a moving body is arranged with a predetermined gap so as to face each magnetic pole 12 of the stator 10. Different magnetic poles are alternately magnetized on the bottom side of the mover 80 facing the stator 10, for example, at intervals equal to the magnetic pole arrangement pitch of the stator 10. Further, the mover 80 can be moved while holding the predetermined gap along the longitudinal direction of the stator 10 by a support mechanism (not shown).
ここで、 図 1 3 A〜図 1 3 Cを参照して、 本実施形態の固定子 1 0の作用を説 明する。 まずいずれの磁極 1 2も励磁されていない状態では、 図 1 3 Aに示すよ うに、 各永久磁石 2 0から放出される磁束は、 自身の N極から S極へと開口部 1 8の周囲を回り込むように回磁している。 この状態から固定子 1 0の磁極 1 2を 交互に異極性となるように励磁すれば、 図 1 3 Bに示すように、 永久磁石 2 0の 封じ込められていた磁束は自身の N極から隣接する固定子磁極 1 2の S極へと流 入する。 一方、 固定子磁極 1 2の N極からは、 隣接する永久磁石 2 0の S極へと 磁束が流入する。 これにより、 各磁極 1 2には、 永久磁石 2 0からの磁束 φが加 算されて利用されることになる。 そして、 図 1 3 Cに示されているように、 固定 子 1 0の励磁磁極 1 2の極性が反転すると、 各永久磁石 2 0との磁束の結合もそ れに呼応して自動的に組み換えられることとなる。 固定子 1 0側でこのような磁 極 1 2の励磁が順次行われることによって、 可動子 8 0はそれに同期して直線的 な運動を行うのである。 産業上の利用の可能性 本発明の実施形態にかかる回転電動機用固定子及びそれを利用した回転電動機、 リエアモータ用固定子及びそれを利用したリニアモータによれば、 固定子の磁極 が励磁されることにより発生される磁束に、 隣接してヨークに配置されている永 久磁石から放出される磁束が加算されて利用されるので、 電動機としての効率が 大幅に向上する。 また、 永久磁石からの磁束と各固定子磁極との結合は、 磁極側 の極性が反転する毎に自動的に組み換えられ、 これによつて特別な切り換え機構 を要しないで、 常時永久磁石からの磁束を利用することができる。 Here, the operation of the stator 10 of the present embodiment will be described with reference to FIGS. 13A to 13C. First, when none of the magnetic poles 12 is excited, as shown in FIG. 13A, the magnetic flux emitted from each permanent magnet 20 changes from its own N pole to its S pole around the opening 18. It is magnetized to go around. In this state, if the magnetic poles 12 of the stator 10 are alternately excited to have different polarities, the magnetic flux contained in the permanent magnet 20 is adjacent to its own N pole, as shown in Fig. 13B. Flows into the S pole of the stator poles 1 and 2. On the other hand, magnetic flux flows from the N pole of the stator magnetic pole 12 to the S pole of the adjacent permanent magnet 20. As a result, the magnetic flux φ from the permanent magnet 20 is added to each magnetic pole 12 and used. And fixed as shown in Figure 13C When the polarity of the excitation magnetic pole 12 of the child 10 is reversed, the coupling of the magnetic flux with each of the permanent magnets 20 is automatically rearranged accordingly. When the excitation of the magnetic poles 12 is sequentially performed on the stator 10 side, the mover 80 performs a linear motion in synchronization with the excitation. INDUSTRIAL APPLICABILITY According to the rotary motor stator according to the embodiment of the present invention and the rotary motor using the same, the rear air motor stator and the linear motor using the same, the magnetic poles of the stator are excited. The resulting magnetic flux is used by adding the magnetic flux emitted from a permanent magnet disposed adjacent to the yoke, so that the efficiency of the motor is greatly improved. In addition, the coupling between the magnetic flux from the permanent magnet and each stator magnetic pole is automatically rearranged each time the polarity on the magnetic pole side is reversed, so that a special switching mechanism is not required and the permanent magnetic coupling from the permanent magnet is always possible. Magnetic flux can be used.

Claims

請求の範囲 The scope of the claims
1 . 複数の電磁石が環状に配設され、 各電磁石の磁極は径方向に配列されるよう になっており、 それら各電磁石を構成する磁心の一端部の間が磁性体で形成され たヨークによって相互に接続されている回転電動機用固定子であって、 1. A plurality of electromagnets are arranged in a ring, and the magnetic poles of each electromagnet are arranged in the radial direction. A yoke made of a magnetic material is provided between one ends of the magnetic cores constituting each electromagnet. A stator for a rotating motor connected to each other,
前記ヨークには、 前記各電磁石の相隣り合う磁心同士の間のいずれかに永久磁 石が設けられ、 その永久磁石は前記ヨークとその永久磁石の各磁極とが磁気的に 接続された状態とされていて、 その永久磁石の各磁極を結ぶ方向は前記ヨークの 周方向と交差するようになつており、  The yoke is provided with a permanent magnet at any point between adjacent magnetic cores of the electromagnets. The permanent magnet is in a state where the yoke and the magnetic poles of the permanent magnet are magnetically connected. And the direction connecting the magnetic poles of the permanent magnet intersects the circumferential direction of the yoke,
前記永久磁石の磁極を除く部分は前記ヨークとの間がそのヨークよりも透磁率 が小さい領域によって離隔されている  A portion of the permanent magnet excluding the magnetic pole is separated from the yoke by a region having a smaller magnetic permeability than the yoke.
回転電動機用固定子。 Stator for rotary motor.
2 . 前記永久磁石は、 前記各電磁石の相隣り合う磁心同士の間にそれぞれ前記ョ ークと磁気的に接続された状態で設けられている請求項 1に記載の回転電動機用 固定子。 2. The rotary motor stator according to claim 1, wherein the permanent magnet is provided between adjacent magnetic cores of each of the electromagnets in a state of being magnetically connected to the yoke.
3 . 前記永久磁石の各磁極を除く部分と前記ヨークとの間に空隙が設けられてい る請求項 1に記載の回転電動機用固定子。 3. The stator for a rotary electric motor according to claim 1, wherein a gap is provided between a portion of the permanent magnet excluding each magnetic pole and the yoke.
4 . 前記永久磁石とヨークとの間の空隙が、 そのヨークよりも透磁率の小さい材 料で充填されている請求項 3に記載の回転電動機用固定子。 4. The rotary motor stator according to claim 3, wherein a gap between the permanent magnet and the yoke is filled with a material having a smaller magnetic permeability than the yoke.
5 . 請求項 1に記載の固定子と、 それら固定子の複数の電磁石の内方に回転自在 に配設されている回転子とを有する回転電動機。 5. A rotary electric motor comprising: the stator according to claim 1; and a rotor rotatably disposed inside a plurality of electromagnets of the stator.
6 . 前記回転子がその外周に沿って複数の突極を備え、 それらの突極が互いに同 極性を有するように磁化されている請求項 5に記載の回転電動機。 6. The rotary electric motor according to claim 5, wherein the rotor has a plurality of salient poles along an outer periphery thereof, and the salient poles are magnetized so as to have the same polarity.
7 . 前記回転子がその外周に沿って複数の突極を備え、 それらの突極が交互に異 極性を有するように磁化されている請求項 5に記載の回転電動機。 7. The rotary electric motor according to claim 5, wherein the rotor has a plurality of salient poles along an outer periphery thereof, and the salient poles are magnetized so as to have alternate polarities alternately.
8 . 前記回転子がリング状に形成された磁性体を備え、 その磁性体が前記環状に 配設された複数の電磁石の中心から偏心するように回転自在に支持されている請 求項 5に記載の回転電動機。 8. The claim according to claim 5, wherein the rotor includes a magnetic body formed in a ring shape, and the magnetic body is rotatably supported so as to be eccentric from the center of the plurality of electromagnets arranged in the annular shape. The rotary motor as described.
9 . 複数の電磁石が、 各電磁石を構成する磁心の一端部が実質的に一の平面上に 互いに並列するように環状に配設されており、 それら各電磁石の磁心の一端部の 間が磁性体で形成されたヨークによって相互に接続され、 9. A plurality of electromagnets are arranged in an annular shape such that one ends of the magnetic cores constituting the electromagnets are substantially parallel to each other on one plane, and a magnetic field is formed between the ends of the magnetic cores of the electromagnets. Interconnected by a body-formed yoke,
前記ヨークには、 前記各電磁石の相隣り合う磁心同士の間のいずれかに永久磁 石が設けられ、 その永久磁石は前記ヨークとその永久磁石の各磁極とが磁気的に 接続された状態とされていて、 その永久磁石の各磁極を結ぶ方向は前記ヨークの 周方向と交差するようになっており、  The yoke is provided with a permanent magnet at any point between adjacent magnetic cores of the electromagnets. The permanent magnet is in a state where the yoke and the magnetic poles of the permanent magnet are magnetically connected. The direction connecting the magnetic poles of the permanent magnet intersects the circumferential direction of the yoke,
前記永久磁石の磁極を除く部分は前記ヨークとの間がそのヨークよりも透磁率 が小さい領域によって離隔されている回転電動機用固定子と、  A portion excluding the magnetic poles of the permanent magnet, a stator for a rotary motor in which the yoke is separated from the yoke by a region having a smaller magnetic permeability than the yoke;
円形平板状の磁性体を備え、 前記環状に配設された複数の電磁石の一端部の磁 極に対して傾斜しつつ揺動回転する回転子とを備えている回転電動機。  A rotary motor comprising: a circular plate-shaped magnetic body; and a rotor that swings and rotates while being inclined with respect to a magnetic pole at one end of the plurality of electromagnets arranged in an annular shape.
1 0 . 複数の電磁石を直線状に並設し、 それら各電磁石を構成する磁心の一端部 の間が磁性体で形成されたヨークによって接続されているリニァモータ用固定子 であって、 10. A linear motor stator in which a plurality of electromagnets are arranged in a straight line, and one end of a magnetic core constituting each of the electromagnets is connected by a yoke made of a magnetic material.
前記ヨークには、 前記各電磁石の相隣り合う磁心同士の間のレ、ずれかに前記ョ ークと各磁極とが磁気的に接続された状態で永久磁石が設けられ、 その永久磁石 の各磁極を結ぶ方向が前記ヨークの長手方向と交差するようになつており、 前記永久磁石の磁極を除く部分は前記ヨークからそのヨークよりも透磁率が小 さい領域によって離隔されている  The yoke is provided with a permanent magnet in a state in which the yoke and the magnetic poles are magnetically connected to each other between the adjacent magnetic cores of the electromagnets, and the gap therebetween. The direction connecting the magnetic poles intersects the longitudinal direction of the yoke, and the portion of the permanent magnet other than the magnetic poles is separated from the yoke by a region having a smaller permeability than the yoke.
リエアモータ用固定子。 Stator for rear air motor.
1 1 . 請求項 1 0に記載の固定子と、 その固定子の長手方向に沿ってその固定子 の電磁石から所定の空隙をおいて配設され、 その長手方向に互いに異なる磁極が 交互に着磁されている可動子とを有するリユアモータ。 11. The stator according to claim 10, and a predetermined gap is provided along the longitudinal direction of the stator from an electromagnet of the stator, and different magnetic poles are alternately attached in the longitudinal direction. A motor having a magnetized mover.
PCT/JP2002/009286 2002-09-11 2002-09-11 Stator for motor employing permanent magnet and motor comprising that stator WO2004025813A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/009286 WO2004025813A1 (en) 2002-09-11 2002-09-11 Stator for motor employing permanent magnet and motor comprising that stator
AU2002330376A AU2002330376A1 (en) 2002-09-11 2002-09-11 Stator for motor employing permanent magnet and motor comprising that stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/009286 WO2004025813A1 (en) 2002-09-11 2002-09-11 Stator for motor employing permanent magnet and motor comprising that stator

Publications (1)

Publication Number Publication Date
WO2004025813A1 true WO2004025813A1 (en) 2004-03-25

Family

ID=31986082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009286 WO2004025813A1 (en) 2002-09-11 2002-09-11 Stator for motor employing permanent magnet and motor comprising that stator

Country Status (2)

Country Link
AU (1) AU2002330376A1 (en)
WO (1) WO2004025813A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154448A (en) * 1984-12-27 1986-07-14 Nippon Denso Co Ltd Rotary electric machine and manufacture thereof
JPS61214754A (en) * 1985-03-19 1986-09-24 Matsushita Electric Ind Co Ltd Reluctance torque type motor
US4857786A (en) * 1987-04-06 1989-08-15 Hitachi, Ltd. Structure of stepping motor and method of driving the stepping motor
US4980593A (en) * 1989-03-02 1990-12-25 The Balbec Corporation Direct current dynamoelectric machines utilizing high-strength permanent magnets
JPH04281357A (en) * 1991-03-06 1992-10-06 Toyota Autom Loom Works Ltd Ac generator
JPH0588187U (en) * 1992-04-22 1993-11-26 株式会社明電舎 Variable air force gyro motor
JPH077913A (en) * 1993-06-18 1995-01-10 Teruo Kawai Power generator
US5455473A (en) * 1992-05-11 1995-10-03 Electric Power Research Institute, Inc. Field weakening for a doubly salient motor with stator permanent magnets
JPH0923623A (en) * 1995-06-30 1997-01-21 Isuzu Motors Ltd Constant voltage generator
JP2002199679A (en) * 2000-12-28 2002-07-12 Denso Corp Inductor type electric machine having magnet equipped armature

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154448A (en) * 1984-12-27 1986-07-14 Nippon Denso Co Ltd Rotary electric machine and manufacture thereof
JPS61214754A (en) * 1985-03-19 1986-09-24 Matsushita Electric Ind Co Ltd Reluctance torque type motor
US4857786A (en) * 1987-04-06 1989-08-15 Hitachi, Ltd. Structure of stepping motor and method of driving the stepping motor
US4980593A (en) * 1989-03-02 1990-12-25 The Balbec Corporation Direct current dynamoelectric machines utilizing high-strength permanent magnets
JPH04281357A (en) * 1991-03-06 1992-10-06 Toyota Autom Loom Works Ltd Ac generator
JPH0588187U (en) * 1992-04-22 1993-11-26 株式会社明電舎 Variable air force gyro motor
US5455473A (en) * 1992-05-11 1995-10-03 Electric Power Research Institute, Inc. Field weakening for a doubly salient motor with stator permanent magnets
JPH077913A (en) * 1993-06-18 1995-01-10 Teruo Kawai Power generator
JPH0923623A (en) * 1995-06-30 1997-01-21 Isuzu Motors Ltd Constant voltage generator
JP2002199679A (en) * 2000-12-28 2002-07-12 Denso Corp Inductor type electric machine having magnet equipped armature

Also Published As

Publication number Publication date
AU2002330376A1 (en) 2004-04-30
AU2002330376A8 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US5760503A (en) Stepping motor having rotor sections with permanent magnets disposed thereon at a constant pitch
JP4505050B2 (en) Step motor
EP1211786A1 (en) Electric motor utilizing convergence of magnetic flux
US7332842B2 (en) Fan motor
JPH1032967A (en) Torque developing device
JP2009136150A (en) Reluctance motor
JP2006246605A (en) Magnetic force rotating device
JP4596762B2 (en) Stepping motor
JPH1198794A (en) Torque-generating equipment
JPH08317617A (en) Single-phase variable reluctance electric motor
JP4796779B2 (en) Stepping motor and fan including the same
JP2018064457A (en) Electric motor
JP2717601B2 (en) Suction / repulsion motor
WO2004025813A1 (en) Stator for motor employing permanent magnet and motor comprising that stator
JPH10174414A (en) Pulse-drive type brushless motor
WO2021215033A1 (en) Synchronous motor and motor assembly
JP2003180060A (en) Permanent-magnet motor provided with annular stator
JP2004172353A (en) Rotary solenoid
JPH08214524A (en) Brushless motor, and its drive method
WO2002035683A1 (en) Electric motor having rotor capable of confining magnetic flux
JP2002034222A (en) Motor utilizing magnetic flux's phenomenon of convergence
JP2707429B2 (en) Electric hitting machine for pachinko machines
JPH0984324A (en) Reciprocating rotary actuator
WO2004010564A1 (en) Dynamo-electric machine
JPH10150760A (en) Pulse driven brushless motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP