WO2004025310A1 - Aparato y método de medida de la calidad de señales eléctricas en una red trifásica - Google Patents

Aparato y método de medida de la calidad de señales eléctricas en una red trifásica Download PDF

Info

Publication number
WO2004025310A1
WO2004025310A1 PCT/ES2003/000464 ES0300464W WO2004025310A1 WO 2004025310 A1 WO2004025310 A1 WO 2004025310A1 ES 0300464 W ES0300464 W ES 0300464W WO 2004025310 A1 WO2004025310 A1 WO 2004025310A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
quality
signals
measuring
voltage
Prior art date
Application number
PCT/ES2003/000464
Other languages
English (en)
French (fr)
Inventor
Juan Carlos MONTAÑO ASQUERINO
Antonio LÓPEZ OJEDA
Manuel CASTILLA IBÁÑEZ
Mª Dolores BORRÁS TALAVERA
BENÍTEZ Jaime GUTIÉRREZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad De Sevilla
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200202111A external-priority patent/ES2215467B1/es
Application filed by Consejo Superior De Investigaciones Científicas, Universidad De Sevilla filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU2003267460A priority Critical patent/AU2003267460A1/en
Publication of WO2004025310A1 publication Critical patent/WO2004025310A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging

Definitions

  • the producer of electricity or the consumer thereof can use a simple system, basically three voltage transducers, three intensity transducers and a data acquisition card adapted to a PC, to execute a program that presents on the PC screen: the real-time measurement of a set of electrical quantities, typical of three-phase systems, which allows diagnosing the quality of the electrical service and the performance in the generator-load power transfer.
  • These magnitudes are: degree of signal distortion; symmetry of the network signals (balance between phases R, S and T); effective values and various types of electrical power: active, reactive and apparent; instantaneous frequency evolution; three-phase voltage and intensity waves; positive, negative and zero sequence waves; three-phase wave spectra; Total harmonic distortion coefficient data.
  • the quality of the three-phase signal is diagnosed in real time, qualitatively and quantitatively: frequency stability, degree of signal distortion and three-phase network symmetry (balance between the R, S and T phases).
  • the system behaves like • Mains frequency meter, following its changes with 0.01% accuracy at measurement intervals of a fundamental signal cycle, admitting deformed and noisy signals.
  • Three-phase magnitude meter associated, interchangeably, with the three voltage signals or the three intensity signals
  • FC 0 and 1 of the situation of a three-phase network at a common coupling point.
  • the FC variable is called the service quality factor.
  • FC ⁇ 1 indicates a degradation in one or more of the concepts:
  • the service quality factor (FC) is the weighted sum of the levels of harmonic purity (NP), equilibrium (NE) and three-phase power factor (FP).
  • the measurement of HR is obtained by analyzing the three-phase electrical signals of voltage and intensity by conventional methods.
  • the National Power Quality Testing Network (USA) covers a set of research centers that coordinate the study of problems caused by the lack of quality of the electrical service or signal quality of the electric network (Electric Power Quality (EPQ)).
  • EQ Electrical Power Quality
  • IA-20, No.3, pp. 625, May / June 1984] which is designed for power control through the use of active filters and does not provide new concepts in the measurement of electrical quantities.
  • SV Transducers containing three Hall effect circuits for voltage signal detection.
  • YES Transducers containing three Hall effect circuits for intensity signal detection.
  • ADA Data acquisition card.
  • PC personal computer.
  • ME external mass memory.
  • It consists of an electronic circuit, controlled by an efficient calculation algorithm, which can be conveniently connected at a point of the four-conductor electrical distribution network (three RST phase conductors and one of neutral N) where there is a certain consumption (load) electric power
  • Its first objective is to store the data of the simultaneous sampling of a set of basic functions: ⁇ UR (T.), Us (t), u ⁇ (t), ⁇ R (T.), Is (t), i ⁇ (t) ⁇ , periodically, the first three being phase-neutral tensions and the last three being line intensities.
  • This set of functions defined in a period or an integer number of periods, is necessary and sufficient to obtain all the information regarding the quality of the three-phase signals and the transfer of power and electromagnetic energy at the point of consumption.
  • the purpose of the device of the invention is to measure with precision, continuously, the set of electrical quantities necessary to obtain said information. Therefore, it first calculates the instantaneous frequency of the mains voltage signal, which allows it to control the stability of the system and errors due to sampling of the aforementioned set of basic functions. In this way there is a perfect synchronization, cycle by cycle, between the voltage and intensity waves at the corrected sampling intervals. Subsequently, the corrected samples of the signals of the set of basic functions are digitally processed by the fast Fourier transform (FFT). It is thus obtained, free of the usual errors in the processing with real signals, the processing of the electric quantities that interest us in the frequency domain.
  • FFT fast Fourier transform
  • V e [(VR + VS + VT) / 3]
  • I e [(IR + Is 2 + I ⁇ ) ⁇ ] m .
  • the program detects the degree of saturation, that is, it measures the rate of processing versus that of data collection and generates an index. If this index increases considerably, the program stops processing the acquired signals until the favorable conditions for starting over to process them This saturation can only occur if the hardware performance is not the minimum required, in this case it does not represent a danger of system interruption or blockage.
  • Another measure of the device object of the invention is the instantaneous measurement of the frequency of the network. The frequency measurement is carried out continuously in a fraction of the fundamental period of the voltage signal and uses the sampling data of one of the voltage phase signals to apply a new calculation algorithm based on the minimum variance of the voltage estimated value of the frequency.
  • the device allows the fluctuations in the frequency of the network around its nominal value to be measured more quickly and accurately (50Hz).
  • the samples of the RST phase voltage signals are also processed in a set of registers to obtain, and visualize in the form of a temporary diagram, the set of functions called instantaneous symmetric components: ⁇ u p (t), Un (f), Uo (t), i p (t), in (t), i 0 (t) ⁇ , the first three being the symmetrical voltage components (positive, negative and zero sequences) and the next three corresponding to the intensities of line.
  • the temporal representation of the set allows an instantaneous visualization of the state of the three-phase system in the aspects of generator imbalance, load symmetry and possible failures in the system components. In essence, after these operations are displayed on the screen:
  • the temporal evolution of the frequency value with an accuracy greater than 0.01% the waveforms of phase voltages and line intensities, as captured from the sensors.
  • the service quality factor is calculated, which is defined according to the following terms: harmonic purity level, equilibrium level and three-phase power factor.
  • the harmonic pollution factor is defined as the quotient of the apparent powers: equivalent of the fundamental, S e /, and equivalent, S e ;
  • the imbalance factor is defined as the quotient of the apparent powers: equivalent of the fundamental, S e /, and equivalent of the fundamental of positive sequence, Si;
  • the three-phase power factor is defined as the ratio between the fundamental active power of the positive sequence, P, and the equivalent apparent power, S e .
  • FC klx (l- harmonic purity level) + k2x (1- equilibrium level) + k3x (l- three-phase power factor). Being kl, k2 and k3 arbitrary constants that sum up the unit. The value of them is previously set, in each application, to assign a relative weight to each of these factors, assessing the incidence that they should have on the service quality factor.
  • the measurement corresponding to this factor can be displayed as a numerical data between 0 and 1 in a 'display' at programmable intervals, indicating the value 1 the ideal situation of a three-phase sinusoidal system, balanced in voltage and intensity and with maximum efficiency in the transfer of generator power to load.
  • the independent measurement of the three factors simply requires assigning 1 to your weight and 0 to the remaining two.
  • One way of performing the circuitry of the invention is using three Hall effect sensor modules, type LV 25-P, for the voltage (SV); three Hall effect sensor modules, type LA 25-NP, for intensity (SI); a data acquisition card (ADA), type PCI-MIO 16E-4 from National Instruments, pluggable into a 'slot' of the expansion bus of a personal computer, capable of simultaneously sampling the six input channels, 12 bits of resolution and 6400 samples per second in each channel; a computer (PC) with Pentium H processor at 400Mhz, 64 Mb of RAM and 256K of cache on its motherboard; and a hard disk type HD 10 Gb Ultra DMA as a data storage system (ME).
  • PC computer
  • d) apply to the corrected data, obtained in c), the fast algorithm of the discrete Fourier transform (FFT).
  • FFT discrete Fourier transform
  • e) conveniently process the FFT data to calculate effective values of voltage (VR, VS, VT) and intensity (IR, IS, IT).
  • f) process the effective value data to calculate the equivalent effective values of voltage (V e ) and intensity (I_).
  • g) conveniently process the FFT data to obtain the fundamental symmetric components (positive, negative and zero sequences) of fundamental voltage and intensity, h) process the effective value data to calculate the total harmonic distortion coefficient of the voltage and intensity.
  • control algorithm performs the following operations:
  • g) apply to the data obtained in c) the fast algorithm of the discrete Fourier transform.
  • h) process the real and imaginary components of the six spectra to calculate effective values, squared, of the first 40 harmonics of voltage and intensity.
  • i) apply the fast algorithm of the discrete Fourier transform to the data obtained in d).
  • j) process the real and imaginary components of the six spectra to calculate the effective values, squared, of the fundamental component of the positive, negative and zero sequences of voltage and intensity.
  • k) process the data of h) to calculate the total harmonic distortion coefficient of the voltage and intensity.
  • control algorithm For the exclusive calculation of the quality factor, the control algorithm performs the following operations:
  • f) Process the real and imaginary components of the six spectra to calculate the effective values, squared, of the fundamental component of positive sequence of voltage and intensity.
  • g) Process the data of e) to calculate the fundamental active power of positive sequence and the equivalent apparent power of the fundamental.
  • h) Process the data of e) to calculate the equivalent effective values of voltage and intensity.
  • i) Process the data of h) to calculate the apparent power of the three-phase system.
  • j) Process the data of the fundamental active powers of positive and apparent equivalent sequence to calculate the three-phase power factor
  • k) Process the data of the equivalent apparent and apparent equivalent powers of the fundamental to calculate the harmonic pollution factor.
  • FC quality factor
  • the measurement of the distortion factors, and harmonic content of the signals, as well as that of the harmonic flows of active and reactive powers, is immediately applicable in the monitoring of the quality of the electricity supply service and the determination of the sources of distortion in the signals of the lines. Therefore, the electric companies are the most directly involved in this invention, although, in the same way, so are the state law enforcement and surveillance agencies. compliance with the regulations that regulate said quality and arbitrate the cases of confrontation of interests between the users and between them and the producers.
  • the measurement of effective values, active and reactive powers, and power factor directly affects the billing of electric power consumption, therefore both the accuracy of the measurement, and the data corresponding to the maximum savings that could be achieved with methods adequate compensation, are of maximum interest from the point of view of the consumer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

El aparato de medida de la calidad de señales eléctricas en una red trifásica es un dispositivo que consta (Fig. 1) de seís transductores: tres de tensión (SV) Y tres de intensidad (SI), una tarjeta de adquisición de datos (ADA) adaptada a un ordenador personal (PC) y un programa informático instalado en el PC. El dispositivo se conecta a la red eléctrica trifásica para la medida continuada de:La calidad de señales trifásicas asociadas, indistintamente, a las tres señales de tensión o a las tres de intensidad:La calidad de señales trifásicas asociadas a las señales de tensión e intensidad.Asimismo, el dispositivo permite visualizar en la pantalla del PC las medidas de valores instantaneos:Señales trifásicas de tensión e intensidad. Frecuencia de red, siguiendo sus cambios con precisión del 0.01% y armónicos.Por último, el dispositivo proporciona la medida de un factor de calidad del servicio (FC).

Description

TITULO
Aparato y método de medida de la calidad de señales eléctricas en una red trifásica
OBJETO DE LA INVENCIÓN El productor de energía eléctrica o el consumidor de la misma, pueden utilizar un sistema sencillo, básicamente tres transductores de tensión, tres transductores de intensidad y una tarjeta de adquisición de datos adaptada a un PC, para ejecutar un programa que presenta en la pantalla del PC: la medida en tiempo real de un conjunto de magnitudes eléctricas, propias de los sistemas trifásicos, que permite diagnosticar la calidad del servicio eléctrico y el rendimiento en la transferencia de potencia generador- carga. Estas magnitudes son: grado de distorsión de las señales; simetría de las señales de red (equilibrio entre las fases R, S y T); valores eficaces y varios tipos de potencia eléctrica: activa, reactiva y aparente; evolución instantánea de la frecuencia; ondas trifásicas de tensión e intensidad; ondas de secuencias positiva, negativa y cero; espectros de ondas trifásicas; datos de los coeficientes de distorsión armónica total.
Con esta información se diagnostica en tiempo real, en forma cualitativa y cuantitativa, la calidad de la señal trifásica: estabilidad en frecuencia, grado de distorsión de las señales y simetría de la red trifásica (equilibrio entre las fases R, S y T). El sistema se comporta como • Medidor de la frecuencia de red, siguiendo sus cambios con precisión del 0.01% a intervalos de medida de un ciclo fundamental de la señal, admitiendo señales deformadas y con ruido.
• Analizador de armónicos de precisión, sin utilizar funciones ventana para evitar los errores típicos en la medida de espectros ('leakage', 'jitter',..). • Osciloscopio de seis canales, que muestra la evolución temporal de las tres ondas de tensión y las tres de intensidad, incluyendo la opción de procesarlas para mostrar, en su lugar, las señales correspondientes de secuencia positiva, negativa y cero.
• Medidor de magnitudes trifásicas asociadas, indistintamente, a las tres señales de tensión o a las tres de intensidad
- Valores eficaces. - Componentes simétricas (secuencias positiva, negativa y cero) del término fundamental.
- Factor de distorsión.
- Factor de desequilibrio. • Medidor de magnitudes trifásicas asociadas a las señales de tensión e intensidad::
- Potencias aparente, activa y reactiva en función de las componentes simétricas.
- Potencia aparente equivalente y potencia equivalente de distorsión.
- Factor de potencia fundamental. • Medidor del factor de calidad del servicio en una red eléctrica trifásica definido como la medida, mediante una variable numérica, FC, con rango de variación entre
0 y 1, de la situación de una red trifásica en un punto de acoplo común. La variable FC se denomina factor de calidad del servicio. La situación correspondiente a FC=
1 es la ideal, esto es, la de un sistema trifásico senoidal, equilibrado en tensión e intensidad y con eficiencia máxima en la transferencia de potencia del generador a la carga. Una situación FC< 1 indica una degradación en uno o varios de los conceptos:
Calidad de las señales o nivel de pureza armónica,
- Calidad del sistema trifásico o nivel de equilibrio, y - Factor de potencia trifásico, o rendimiento (eficiencia) en la transferencia de potencia entre el generador y la carga.
El factor de calidad del servicio (FC), es la suma ponderada de los niveles de pureza armónica (NP), de equilibrio (NE) y factor de potencia trifásico (FP).
Matemáticamente: FC= kl NP + k2 NE + k3 FP; siendo kl, k2, k3 constantes arbitrarias tales que: kl+k2+k3= 1.
La medida de FC se obtiene al analizar mediante métodos convencionales las señales eléctricas trifásicas de tensión e intensidad. La medida independiente de cada uno de los factores, NP, EN ó FP, requiere simplemente asignar un 1 a su factor de ponderación y 0 a los dos restantes. ESTADO DE LA TÉCNICA
La National Power Quality Testing Network (USA) abarca un conjunto de centros de investigación que coordinan el estudio de los problemas originados por la falta de calidad del servicio eléctrico o calidad de la señal de la red eléctrica (Electric Power Quality (EPQ)). Para determinar las soluciones a estos problemas existe un conjunto de áreas prioritarias entre las que se encuentra la de "Medida e Instrumentación", referente a medida de magnitudes eléctricas relacionadas con la EPQ [A. Domijan et al. , 'Directions of Research on Electric Power Quality', IEEE Trans. on Power Del., Vol. 8, No. 1, Jan. 1993]. Dentro del área de medida de la EPQ existen las sub-áreas referentes a la medida del conjunto de magnitudes eléctricas: Tensión/Intensidad/Frecuencia/Desequilibrio en N-fases; Armónicos; Demandas de potencia activa/reactiva; Transitorios y Sobre/sub tensiones. En cada una de éstas, existen normas establecidas para vigilar los limites de variación de los correspondientes parámetros. Por lo general, los sistemas de medida utilizados actualmente están basados en definiciones establecidas (aceptadas) de las magnitudes eléctricas correspondientes. Sin embargo, a diferencia de los sistemas monofásicos en los que no se ha producido revisiones importantes de la formulación, en los sistemas de medida trifásicos se están analizando continuamente definiciones propuestas por numerosos autores. Así, en el dominio frecuencial los trabajos existentes amplían, en lo posible, los conceptos monofásicos al caso trifásico [L. S. Czarnecki, 'Orthogonal Decomposition of the Currents in a 3-Phase Nonlinear Asymmetrical Circuit with a Nonsinusoidal Voltage Source,' LEEE Trans. Instrum. Meas., vol. 37, No. 1, March 1988] y en el dominio temporal destaca la teoría de la potencia reactiva instantánea de Akagi, Kanazawa, Nabae [ H. Akagi, Y. Kanazawa, and A. Nabae, "Instantaneous Reactive Power Compensators Comprising Switching Devices Without Energy Storage Components," LEEE Trans. Ind. Appl., vol. IA-20, No.3, pp. 625, May/June 1984], que está concebida para el control de potencia mediante la utilización de filtros activos y no aporta nuevos conceptos en la medida de magnitudes eléctricas. Algunas magnitudes, casi unánimemente aceptadas en los sistemas monofásicos, como son la potencia aparente y el factor de potencia, encuentran en los sistemas trifásicos fuertes discrepancias en su formulación y significado físico. La elección de las mismas tiene una gran incidencia en la facturación de la energía [A.E. Emanuel, On the defínition of power factor and apparent power in unbalanced polyphase circuits with sinusoidal voltage and currents', IEEE Trans. on Power Deliv., Vol.8, No.3, July 1993].
Dada la importancia del tema, el Instituto de Ingeniería Eléctrica y Electrónica (IEEE) nombró un grupo de trabajo para la propuesta de un conjunto de definiciones de magnitudes eléctricas en sistemas trifásicos, con ondas no sinusoidales y cargas no equilibradas. Se buscó un consenso en beneficio de la comunidad científica y las partes involucradas en el sector eléctrico, en particular de los fabricantes de la instrumentación relativa a la medida de magnitudes eléctricas. Los resultados del trabajo se difundieron ampliamente [IEEE Working Group on Nonsinusoidal Situations: Effects on Meter Performance and Definitions of Power, 'Practical Definitions for Powers in Systems with Nonsinusoidal Waveforms and Unbalanced Loads: A Discussion', IEE' Trans. Power Delivery, Vol. 11, No. 1, Enero 1996] y en su mayoría las definiciones propuestas han sido aceptadas.
Sin embargo, en la instrumentación existente hoy día en el mercado no se ha incorporado la medida de las magnitudes propuestas en estos trabajos, ni en forma individualizada ni como grupo de magnitudes que definen la eficiencia del sistema trifásico. Así, numerosos trabajos como el de las patentes [Longini Richard L (US), 'Digitally measuring electrical energy consumption', 1991-10-30, No. EPO454360; Longini Richard L (US), 'Method and apparatus for digitally measuring electrical power', 1996-05-14, No. US5517106; Komatsu Yasuaki (JP), 'Electric power measuring apparatus and method', 1996-04-16, No. US5508617] aplican métodos modernos de medida de potencia y energía en sistemas monofásicos, pero no son extrapolables a sistemas trifásicos. El sistema descrito en la patente [Hutt Peter R (GB) y Day Stephen (GB), 'Electronic electricity meters', 1990-06-05, No. EPO181719] permite la medida del consumo eléctrico en sistemas mono y polifásicos. Sin embargo, no existe una indicación de las posibles deformaciones existentes en las señales de tensión e intensidad, ni ninguna medida complementaria de armónicos o coeficientes de distorsión. Otras patentes, como la [P-9401032], contienen magnitudes y conceptos diferentes a los definidos en los sistemas trifásicos; algunas otras describen circuitos y sistemas de medida de valores eficaces (RMS) de señales de tensión [patente EP- 414039], intensidad [patente EP-256183], o ambas [patentes EP-517549 y EP-423987]. Existen también las relativas a medida de potencia real y/o reactiva [patente EP- 455839], de intensidades activa y reactiva [patente EP-213344] e incluso de medida y cálculo de componentes de Fourier de un parámetro de una línea de alta tensión [patente EP-218220].
De todo lo anterior se desprende que no existen antecedentes de un dispositivo con las características enumeradas para la medida de magnitudes eléctricas y para el análisis de calidad de la señal en una red trifásica.
En cuanto al factor de calidad del servicio, se proponen formulaciones para las medidas del grado de polución armónica, grado de desequilibrio y distintos factores de potencia. Sin embargo, estas definiciones no son generales, en cuanto que no son exactas en el caso particular, y frecuente, de sistemas trifásicos de cuatro conductores (tres fases más neutro) que presenten desequilibrios en las ondas trifásicas de tensión e intensidad. Además, no proponen una definición concreta para el factor de potencia trifásico ni para un factor de calidad del sistema trifásico en conjunto. Por último, no existe un instrumento capaz de medir estas magnitudes de forma exacta, rápida, fiable y en proceso continuo (on-line). Las posibles alteraciones en el valor nominal de la frecuencia son detectadas para la corrección del proceso de medida.
En resumen, en la instrumentación existente hoy día en el mercado no se ha incorporado la medida de las magnitudes propuestas en estos trabajos, ni en forma individualizada ni como grupo de magnitudes que definen la calidad o eficiencia del sistema trifásico.
BREVE DESCRIPCIÓN DE LA FIGURA
Módulos electrónicos de que consta el dispositivo de la Figura 1 :
SV: Transductores conteniendo tres circuitos de efecto Hall para detección de las señales de tensión. SI: Transductores conteniendo tres circuitos de efecto Hall para detección de las señales de intensidad. ADA: Tarjeta de adquisición de datos. PC: ordenador personal. ME: memoria masiva externa.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Consiste en un circuito electrónico, controlado por un algoritmo eficiente de cálculo, que puede conectarse convenientemente en un punto de la red de distribución eléctrica de cuatro conductores (tres conductores de fase R-S-T y uno de neutro N) donde existe un cierto consumo (carga) de energía eléctrica. Su primer objetivo consiste en almacenar los datos del muestreo simultáneo de un conjunto de funciones básicas: {UR(T.), us(t), uτ(t), ÍR(T.), is(t), iτ(t)}, en forma periódica, siendo las tres primeras las tensiones fase-neutro y las tres últimas las intensidades de línea. Este conjunto de funciones, definidas en un período o un número entero de períodos, es el necesario y suficiente para obtener toda la información referente a la calidad de las señales trifásicas y la transferencia de potencia y energía electromagnética en el punto de consumo.
El dispositivo de la invención tiene como objetivo final el medir con precisión, en forma continua, el conjunto de magnitudes eléctricas necesario para conseguir dicha información. Por ello, calcula en primer lugar la frecuencia instantánea de la señal de tensión de red, lo que le permite controlar la estabilidad del sistema y los errores debidos al muestreo del conjunto mencionado de funciones básicas. De esta forma existe una perfecta sincronización, ciclo a ciclo, entre las ondas de tensión e intensidad en los intervalos corregidos de muestreo. Posteriormente, las muestras corregidas de las señales del conjunto de funciones básicas se procesan digitalmente mediante la transformada rápida de Fourier (FFT). Se obtiene así, libre de los errores habituales en el procesamiento con señales reales, el procesamiento de las magnitudes eléctricas que nos interesa en el dominio frecuencial. Estas magnitudes, considerando el caso real de un régimen quasi- periódico, toman como referencia un sistema trifásico 'perfecto' (denominado por muchos autores sistema eficiente) con señales de tensión senoidales, de secuencia positiva, equilibrado en magnitudes y fase, presentando una frecuencia nominal constante y aplicado a una carga simétrica y lineal. Esto permite valorar la calidad del sistema en cuanto a su grado de coincidencia con el sistema eficiente. El dispositivo mide, en suma, un conjunto de magnitudes eléctricas, propias de los sistemas trifásicos, que permite diagnosticar la calidad del servicio eléctrico, esto es,
Valores eficaces de las señales de tensión (VR, VS, VT) e intensidad (IR, IS, IT) y
2 2 2 1/2 2 sus correspondientes valores equivalentes: Ve= [(VR + VS + VT )/3] ; Ie= [(IR + Is2 + Iτ )β]m.
- Componentes simétricas del término fundamental de tensión (V+, V, v ) e intensidad (f, I, f).
- Factor de distorsión armónica total de las tensiones de fase e intensidades de línea (THDW y THDI%, respectivamente).
- Factor de desequilibrio (simetría) de las señales de tensión (FDV%) e intensidad (FDI%). La definición del factor de desequilibrio: FDV%= (V/ F+)100; FDP/_= (J/7 )100, aporta la medida de desequilibrio del sistema en magnitud y fase.
Potencias activa (P¡+, Pf, P¡ ), reactiva (Q¡+, Qí, Qj°) y aparente (Sj+, Sí, Sι°) correspondientes a las componentes fundamentales de las secuencias positiva, negativa y cero. Potencia aparente equivalente, Se, y potencia aparente de distorsión, SN- La primera se define como Se= 3 Vele- La segunda, definida como: SN = Se - (Si ) , contiene las potencias aparentes de desequilibrio y de distorsión armónica. Factor de potencia fundamental (FPF), definido como el coseno del ángulo de desfase entre las componentes fundamentales de las ondas de tensión e intensidad, ambas correspondientes a la secuencia positiva. Su expresión matemática: FPF= P¡+¡ Sι+= cos(arg + - arg/j.
Estas magnitudes podrán visualizarse de forma continua antes de su grabación definitiva en un medio magnético. El programa detecta el grado de saturación, esto es, mide del ritmo de procesamiento frente al de toma de datos y genera un índice. Si aumenta considerablemente este índice el programa deja de procesar las señales adquiridas hasta que se den las condiciones favorables para empezar de nuevo a procesarlas. Esta saturación sólo puede darse si las prestaciones del hardware no son las mínimas requeridas, en tal caso no representa un peligro de interrupción o bloqueo del sistema. Constituye otra aplicación del dispositivo objeto de la invención la propia medida de la frecuencia de la red en forma instantánea. La medida de la frecuencia se efectúa de forma continua en una fracción del período fundamental de la señal de tensión y utiliza los datos del muestreo de una de las señales de fase de la tensión para aplicar un nuevo algoritmo de cálculo basado en la varianza mínima del valor estimado de la frecuencia. Es un proceso que mejora al utilizado en la instrumentación convencional y permite adaptar, como se ha mencionado, el intervalo de muestreo al periodo real de la señal, de modo que, en un ciclo de red exista exactamente un número entero de muestras. Este periodo fundamental se calcula en forma continua a partir de la medida anterior de la frecuencia instantánea. De esta forma existe una perfecta sincronización, ciclo a ciclo, entre las ondas de tensión e intensidad y los intervalos corregidos de muestreo.
Por consiguiente el dispositivo permite medir con mayor rapidez y precisión las fluctuaciones de la frecuencia de la red alrededor de su valor nominal (50Hz). Las muestras de las señales de tensión de fase R-S-T son también procesadas en un conjunto de registros para obtener, y visualizar en forma de diagrama temporal, el conjunto de funciones denominadas componentes simétricas instantáneas: {up(t), Un(f), Uo(t), ip(t), in(t), i0(t)}, siendo las tres primeras las componentes simétricas de tensión (secuencias positiva, negativa y cero) y las tres siguientes las correspondientes a las intensidades de línea. La representación temporal del conjunto permite una visualización instantánea del estado del sistema trifásico en los aspectos de desequilibrio del generador, simetría de la carga y posibles fallos en los componentes del sistema. En esencia, tras estas operaciones se visualizan en pantalla:
la evolución temporal del valor de la frecuencia con una precisión superior al 0.01% las formas de onda de tensiones de fase e intensidades de línea, tal y como se capturan de los sensores. las formas de onda, derivadas de las anteriores, definidas como las respectivas componentes instantáneas de secuencias positiva, negativa y cero.
Finalmente se calcula el factor de calidad del servicio, que se define en función de los siguientes términos: nivel de pureza armónica, nivel de equilibrio y factor de potencia trifásico. Matemáticamente, el factor de polución armónica se define como el cociente de las potencias aparentes: equivalente del fundamental, Se/, y equivalente, Se; el factor de desequilibrio se define como el cociente de las potencias aparentes: equivalente del fundamental, Se/, y equivalente del fundamental de secuencia positiva, Si ; el factor de potencia trifásico se define como el cociente entre la potencia activa fundamental de secuencia positiva, P¡ , y la potencia aparente equivalente, Se. Estos tres factores definen, a su vez, el factor de calidad del servicio como suma ponderada de los mismos. Su expresión matemática obedece a la expresión: FC= klx(l- nivel de pureza armónica) + k2x (1- nivel de equilibrio) + k3x(l- factor de potencia trifásico). Siendo kl, k2 y k3 constantes arbitrarias que suman la unidad. El valor de las mismas se fija previamente, en cada aplicación, para asignar un peso relativo a cada uno de estos factores, valorando la incidencia que deban tener los mismos en el factor de calidad del servicio.
La medida correspondiente a este factor podrá visualizarse como dato numérico entre 0 y 1 en un 'display' a intervalos programables, indicando el valor 1 la situación ideal de un sistema trifásico senoidal, equilibrado en tensión e intensidad y con eficiencia máxima en la transferencia de potencia del generador a la carga. La medida independiente de los tres factores requiere simplemente asignar un 1 a su peso y 0 a los dos restantes. DESCRIPCIÓN DE UN MODO DE REALIZACIÓN DE LA INVENCIÓN
1. Estructura del diseño (Hardware).
Una forma de realizar la circuitería de la invención, de acuerdo con la figura 1, es utilizando tres módulos sensores de efecto Hall, tipo LV 25-P, para la tensión (SV); tres módulos sensores de efecto Hall, tipo LA 25-NP, para la intensidad (SI); una tarjeta de adquisición de datos (ADA), tipo PCI-MIO 16E-4 de National Instruments, enchufable en un 'slot' del bus de expansión de un ordenador personal, con capacidad para muestrear simultáneamente los seis canales de entrada, 12 bits de resolución y 6400 muestras por segundo en cada canal; un ordenador (PC) con procesador Pentium H a 400Mhz, 64 Mb de RAM y 256K de cache en su placa base; y un disco duro tipo HD 10 Gb Ultra DMA como sistema de almacenamiento de datos (ME).
2. Programa de control (Software).
Los algoritmos de control de estos circuitos, que permiten realizar el conjunto de medidas propuesto, se esquematizan en el diagrama de flujo que se describe a continuación. En el caso concreto de señales con ancho de banda limitado a 2000Hz, se realizan las siguientes operaciones: a) muestrear simultáneamente las señales de fase de tensión {uR(t), us(t), uτ(t)} e intensidad {ÍR(Í), is(t), iτ(t)} tomadas con los sensores de efecto Hall en un punto de interés de la red, de forma que en cada período de la onda obtengamos 128 muestras. b) procesar las muestras de la tensión de la fase de referencia UR(T.) para obtener la medida de la frecuencia de red ciclo a ciclo. c) corregir los datos del muestreo inicial de acuerdo con la medida actualizada de la frecuencia de la señal UR(I). d) aplicar a los datos corregidos, obtenidos en c), el algoritmo rápido de la transformada discreta de Fourier (FFT). e) procesar convenientemente los datos de la FFT para calcular valores eficaces de tensión (VR, VS, VT) e intensidad (IR, IS, IT). f) procesar los datos de valores eficaces para calcular los valores eficaces equivalentes de tensión (Ve) e intensidad (I_). g) procesar convenientemente los datos de la FFT para obtener las componentes simétricas (secuencias positiva, negativa y cero) fundamentales de tensión e intensidad, h) procesar los datos de valores eficaces para calcular el coeficiente de distorsión armónica total de la tensión y de la intensidad. i) procesar los datos de componentes simétricas para calcular el factor de desequilibrio de tensión e intensidad, j) procesar los datos de g) para calcular las potencias fundamentales activa, reactiva y aparente, correspondientes a las secuencias positiva, negativa y cero. k) procesar los datos de valores eficaces equivalentes para calcular la potencia aparente equivalente (Se). 1) procesar los datos de las potencias aparentes: equivalente y fundamental de secuencia positiva, para calcular la potencia aparente de distorsión (SN). m) procesar los datos de las potencias fundamentales de secuencia positiva, activa y aparente, para calcular el factor de potencia fundamental de secuencia positiva
(FPF).
En el caso de análisis de calidad de la señal de red en forma gráfica, visualizando en pantalla la variación instantánea de las magnitudes asociadas a dicha calidad, el algoritmo de control realiza las siguientes operaciones:
a) muestrear simultáneamente las señales de fase de tensión (VR, Vs, VT) e intensidad (IR, Is, Iτ) tomadas con los sensores de efecto Hall en un punto de interés de la red, de forma que en cada período de la onda obtengamos 128 muestras. b) procesar las muestras de la tensión de la fase de referencia VR para obtener la medida de la frecuencia de red ciclo a ciclo. c) corregir los datos del muestreo inicial de acuerdo con la medida actualizada de la frecuencia de VR. d) desplazar convenientemente los datos corregidos de las fases S y T, de la tensión e intensidad, de acuerdo con la definición de las componentes simétricas, y sumarlos con los corregidos de la fase R para obtener las componentes simétricas instantáneas de tensión e intensidad. e) visualizar en pantalla las formas de onda de las tensiones e intensidades trifásicas. f) visualizar en pantalla las formas de onda de las tensiones e intensidades de secuencias positiva, negativa y cero. g) aplicar a los datos obtenidos en c) el algoritmo rápido de la transformada discreta de Fourier. h) procesar las componentes real e imaginaria de los seis espectros para calcular valores eficaces, al cuadrado, de los 40 primeros armónicos de tensión e intensidad. i) aplicar a los datos obtenidos en d) el algoritmo rápido de la transformada discreta de Fourier. j) procesar las componentes real e imaginaria de los seis espectros para calcular los valores eficaces, al cuadrado, de la componente fundamental de las secuencias positiva, negativa y cero, de tensión e intensidad. k) procesar los datos de h) para calcular los coeficiente de distorsión armónica total de la tensión y de la intensidad.
Para el cálculo exclusivo del factor de calidad el algoritmo de control realiza las siguientes operaciones:
a) Muestrear simultáneamente las señales de fase de tensión (VR, VS, VT) e intensidad (IR, Is, IT) tomadas con los sensores de efecto Hall en un punto de interés de la red, de forma que en cada período de la onda obtengamos 128 muestras. b) Procesar las muestras de la tensión de la fase de referencia VR para obtener la medida de la frecuencia de red ciclo a ciclo. c) Corregir los datos del muestreo inicial de acuerdo con la medida actualizada de la frecuencia de VR. d) Aplicar a los datos obtenidos en c) el algoritmo rápido de la transformada discreta de Fourier. e) Procesar las componentes real e imaginaria de los seis espectros para calcular valores eficaces, al cuadrado, de los 40 primeros componentes armónicos de tensión e intensidad. f) Procesar las componentes real e imaginaria de los seis espectros para calcular los valores eficaces, al cuadrado, de la componente fundamental de secuencia positiva de tensión e intensidad. g) Procesar los datos de e) para calcular la potencia activa fundamental de secuencia positiva y la potencia aparente equivalente del fundamental. h) Procesar los datos de e) para calcular los valores eficaces equivalentes de tensión e intensidad. i) Procesar los datos de h) para calcular la potencia aparente del sistema trifásico. j) Procesar los datos de las potencias activa fundamental de secuencia positiva y aparente equivalente para calcular el factor de potencia trifásico, k) Procesar los datos de las potencias aparente equivalente y aparente equivalente del fundamental para calcular el factor de polución armónica.
1) Procesar los datos de las potencias aparente de secuencia positiva del fundamental y aparente equivalente del fundamental para calcular el factor de desequilibrio, m) Procesar los datos de los tres factores calculados en j), k) y 1) y los valores asignados a los pesos kl, k2 y k3 para calcular el factor de calidad, FC, del sistema trifásico. n) Procesar el dato FC para presentarlo convenientemente en un 'display' alfanumérico, con una cadencia programada de actualización del dato.
SECTOR DE LA TÉCNICA AL QUE SE APLICA EL DISPOSITIVO DE LA INVENCIÓN
La medida de los factores de distorsión, y contenido armónico de las señales, así como, la de los flujos de armónicos de potencias activa y reactiva, es de aplicación inmediata en el seguimiento de la calidad del servicio de suministro de electricidad y la determinación de las fuentes de distorsión en las señales de las líneas. Por lo tanto, las compañías eléctricas son las más directamente implicadas en esta invención, aunque, de igual forma, también lo están los organismos estatales de legislación y vigilancia del cumplimiento de la normativa que regule dicha calidad y arbitre los casos de confrontación de intereses entre los usuarios y entre éstos y los productores. La medida de valores eficaces, potencias activa y reactiva, y factor de potencia, incide directamente en la facturación del consumo de energía eléctrica, por lo que tanto la exactitud de la medida, como el dato correspondiente al máximo ahorro que se podría conseguir con métodos adecuados de compensación, son del máximo interés desde el punto de vista del consumidor. En consecuencia, los sectores más interesados a este respecto son los grandes consumidores: industrias o empresas que facturan cantidades importantes por consumos de potencia activa y reactiva (fundiciones, industrias del acero, del aluminio, de laminados,.., grandes edificios e instalaciones con aire acondicionado, redes de ordenadores, etc.), tanto para diseño de un nuevo sistema de compensación de reactiva, como para mejora del sistema utilizado. Asimismo, las compañías eléctricas para medir con mayor exactitud estas magnitudes, logrando una facturación más precisa del gasto energético, y para mejorar, mediante compensadores adecuados, la capacidad de los sistemas de suministro.

Claims

REIVINDICACIONES
1. Aparato de medida de la calidad de señales eléctricas en una red trifásica, consistente en un sistema electrónico-informático compuesto por una tarjeta de adquisición de datos, a la que se conectan tres sondas de tensión alterna y otras tres de intensidad, particularmente del tipo de efecto Hall, adaptada a un ordenador personal en el que se instala un programa informático de control.
2. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según la reivindicación 1, caracterizado por funcionar, simultáneamente, como: 'analizador de armónicos de precisión', sin utilizar funciones ventana para corrección de errores;
'medidor de la distorsión armónica total' en señales trifásicas; 'medidor del factor de desequilibrio' en señales de tensión trifásicas y en señales de intensidad trifásicas;
'voltímetro trifásico' de medida de valores eficaces y valores eficaces equivalentes; 'amperímetro trifásico' de medida de valores eficaces y valores eficaces equivalentes;
'vatímetro trifásico' de medida de potencia activa fundamental y armónica (y equivalentes); 'varímetro trifásico' de medida de potencia reactiva fundamental;
'voltamperímetro' de medida de potencia aparente fundamental y de distorsión; y
'medidor del factor de potencia del término fundamental de secuencia positiva' y 'osciloscopio digital multicanal' para visualizar señales trifásicas de tensión e intensidad y sus respectivas señales de secuencia positiva, negativa y cero, incluyendo señal de frecuencia instantánea..
3. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1 y 2, caracterizado porque incluye un procedimiento que permite medir, de modo continuo, la frecuencia instantánea de la red utilizando un conjunto de muestras de las tres señales trifásicas de tensión de red y obteniendo los datos en fracciones del periodo fundamental.
4. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2 y 3, caracterizado porque el programa de control permite corregir los datos procedentes del muestreo citado en el punto anterior y adaptarlos al periodo de la onda fundamental, de forma que en cada ciclo de la señal trifásica exista siempre un número exacto de intervalos de muestreo.
5. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3 y 4, caracterizado porque permite procesar los datos corregidos de las fases R, S y T, de acuerdo con la definición establecida de las componentes simétricas, para obtener las componentes simétricas (secuencias positiva, negativa y cero) de tensión e intensidad.
6. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4 y 5, caracterizado porque, al aplicar a los datos del muestreo, corregidos según la reivindicación 4, el algoritmo rápido de la transformada discreta de Fourier, mide los valores eficaces correspondientes a un conjunto seleccionado de hasta cuarenta armónicos de las señales muestreadas, de tensión e intensidad.
7. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, y 6, caracterizado porque, al aplicar a los datos obtenidos en la reivindicación 5 el algoritmo rápido de la transformada discreta de Fourier, mide los valores eficaces de la componente fundamental de las secuencias positiva, negativa y cero, de tensión e intensidad.
8. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6 y 7, caracterizado porque mide el coeficiente de distorsión armónica total, definido como la relación entre valores eficaces de la señal carente del armónico fundamental y la señal consistente en dicho armónico fundamental, de las ondas de tensión e intensidad.
9. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7 y 8, caracterizado porque mide el coeficiente de desequilibrio del sistema trifásico, definido como la relación entre componentes de secuencia negativa y positiva, correspondiente a las señales de tensión de fase y a las señales de intensidad en la línea.
10. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8 y 9, caracterizado porque mide los valores de potencias fundamentales aparente, activa y reactiva, correspondientes a las secuencias positiva, negativa y cero.
11. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9 y 10, caracterizado porque mide los valores eficaces equivalentes de tensión e intensidad.
12. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 y 11, caracterizado porque mide la potencia aparente equivalente, propia del sistema trifásico.
13. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 y 12, caracterizado porque, al procesar los datos de la potencia aparente equivalente y la potencia aparente fundamental de secuencia positiva, mide la potencia aparente de distorsión.
14. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y 13, caracterizado porque, al procesar los datos de las potencias fundamentales de secuencia positiva, activa y aparente, mide el factor de potencia fundamental, esto es, el coseno del ángulo formado por los dos fasores: el de tensión y el de intensidad, ambos de secuencia positiva.
15. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 y 14, caracterizado porque procesa los datos del factor de potencia trifásico, el factor de polución armónica y el factor de desequilibrio del sistema trifásico para obtener la medida de un factor de calidad de la red trifásica.
16. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 y 15, caracterizado porque la medida del factor de calidad de la red trifásica es un número real comprendido entre 0 y 1, que muestra el grado de calidad en cuanto a: eficiencia del sistema en la transferencia de potencia del generador a la carga, pureza de las señales trifásicas de tensión e intensidad y grado de desequilibrio de dichas señales relativo a la estructura fasorial del sistema trifásico ideal.
17. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 y 16, caracterizado porque las medidas del grado de pureza senoidal de las señales, del desequilibrio entre fases y de la eficiencia energética, mencionadas en el punto anterior, pueden obtenerse independientemente de la medida del factor de calidad, al tener asignados estos tres factores unos coeficientes de ponderación, programables externamente.
18. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 y 17, caracterizado por funcionar, simultáneamente, como: 'medidor de la frecuencia de red', siguiendo sus cambios con precisión del 0.01% a intervalos de medida de un ciclo fundamental de la señal, admitiendo señales deformadas y con ruido; 'analizador de armónicos de precisión', sin utilizar funciones ventana para corrección de errores; 'medidor de la distorsión armónica total' en señales trifásicas; 'osciloscopio de seis canales', que muestra la evolución temporal de las tres ondas de tensión y las tres de intensidad, incluyendo la opción de procesarlas para mostrar, en su lugar, las señales senoidales correspondientes de secuencia positiva, negativa y cero.
19. Aparato de medida de la calidad de señales eléctricas en una red trifásica, según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 y 18, caracterizado porque el programa detecta el grado de saturación, esto es, mide del ritmo de procesamiento frente al de toma de datos y genera un índice que, en condiciones de saturación, impide el procesamiento de datos hasta que se den las condiciones favorables para empezar de nuevo, sin que exista peligro de interrupción o bloqueo del sistema.
20.- Método de medida de la calidad de señales eléctricas en una red eléctrica trifásica mediante un aparato según las reivindicaciones 1-19 que comprende las etapas de: a) conexión del aparato a un punto de la red eléctrica utilizando las sondas de tensión e intensidad. b) muestreo simultáneo de las señales de fase de tensión (VR, Vs, VT) e intensidad de línea (IR, Is, IT) c) almacenamiento temporal de los valores muestreados para su procesamiento posterior.
PCT/ES2003/000464 2002-09-13 2003-09-12 Aparato y método de medida de la calidad de señales eléctricas en una red trifásica WO2004025310A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003267460A AU2003267460A1 (en) 2002-09-13 2003-09-12 Device and method for measuring the quality of electrical signals in a three-phase network

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ESP200202112 2002-09-13
ES200202111A ES2215467B1 (es) 2002-09-13 2002-09-13 Aparato y metodo de medida de magnitudes electricas en una red trifasica.
ES200202112 2002-09-13
ESP200202114 2002-09-13
ESP200202111 2002-09-13
ES200202114 2002-09-13

Publications (1)

Publication Number Publication Date
WO2004025310A1 true WO2004025310A1 (es) 2004-03-25

Family

ID=31998522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000464 WO2004025310A1 (es) 2002-09-13 2003-09-12 Aparato y método de medida de la calidad de señales eléctricas en una red trifásica

Country Status (2)

Country Link
AU (1) AU2003267460A1 (es)
WO (1) WO2004025310A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175907A (zh) * 2011-03-10 2011-09-07 华北电力大学(保定) 灵活的广域电网相量测量系统
CN104316809A (zh) * 2014-11-18 2015-01-28 国家电网公司 一种数字采样测量表

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672555A (en) * 1984-10-18 1987-06-09 Massachusetts Institute Of Technology Digital ac monitor
US4878185A (en) * 1986-11-04 1989-10-31 Bbc Brown Boveri Ag Digital measuring instrument
EP0708339A2 (en) * 1994-10-17 1996-04-24 Eaton Corporation Data collection and processing for digital AC power system monitor/analyzer
EP0777125A2 (en) * 1995-11-30 1997-06-04 General Electric Company Vector electricity meters and associated vector electricity metering methods
WO1998011447A1 (en) * 1996-09-11 1998-03-19 Abb Power T & D Company Inc. Current measurement methods and apparatus employing second harmonic scaling
ES2166670A1 (es) * 1999-08-04 2002-04-16 Univ Valencia Politecnica Procedimiento para la medida de potencias, energias y eficiencia en las instalaciones electricas, asi como el dispositivo para su puesta en practica.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4672555A (en) * 1984-10-18 1987-06-09 Massachusetts Institute Of Technology Digital ac monitor
US4878185A (en) * 1986-11-04 1989-10-31 Bbc Brown Boveri Ag Digital measuring instrument
EP0708339A2 (en) * 1994-10-17 1996-04-24 Eaton Corporation Data collection and processing for digital AC power system monitor/analyzer
EP0777125A2 (en) * 1995-11-30 1997-06-04 General Electric Company Vector electricity meters and associated vector electricity metering methods
WO1998011447A1 (en) * 1996-09-11 1998-03-19 Abb Power T & D Company Inc. Current measurement methods and apparatus employing second harmonic scaling
ES2166670A1 (es) * 1999-08-04 2002-04-16 Univ Valencia Politecnica Procedimiento para la medida de potencias, energias y eficiencia en las instalaciones electricas, asi como el dispositivo para su puesta en practica.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUIZ J. ET AL.: "Multi-channel system for full characterization in real time of power supply using a PC and several DSPs working in parallel", PROCEEDINGS OF THE ICHQP 7TH INTERNATIONAL CONFERENCE ON HARMONICS AND QUALITY OF POWER, 16 October 1996 (1996-10-16) - 18 October 1996 (1996-10-18), LAS VEGAS, NV, USA, pages 196 - 202 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175907A (zh) * 2011-03-10 2011-09-07 华北电力大学(保定) 灵活的广域电网相量测量系统
CN104316809A (zh) * 2014-11-18 2015-01-28 国家电网公司 一种数字采样测量表

Also Published As

Publication number Publication date
AU2003267460A8 (en) 2004-04-30
AU2003267460A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
Filipski et al. Evaluation of reactive power meters in the presence of high harmonic distortion
CN104020352B (zh) 一种适用于m类pmu单元的同步相量测量方法
CN111505563B (zh) 一种电能表的综合误差测试方法
KR100537018B1 (ko) 전력계에서 주파수 보상에 대한 시스템 및 방법
Arseneau et al. Application of IEEE standard 519-1992 harmonic limits for revenue billing meters
CN110031680A (zh) 一种系统侧谐波阻抗估计方法和系统
Adamo et al. A proposal for an open source energy meter
Yang et al. A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT
Cristaldi et al. A method and related digital instrument for the measurement of the electric power quality
Sharon et al. Power quality factor for networks supplying unbalanced nonlinear loads
Arseneau et al. An improved three-phase digital recorder system for calibrating power instrumentation
Berrisford A Smarter Meter: IEEE-1459 power definitions in an off-the-shelf Smart Meter
Valenzuela et al. Real-time interharmonics detection and measurement based on FFT algorithm
ES2215467B1 (es) Aparato y metodo de medida de magnitudes electricas en una red trifasica.
WO2004025310A1 (es) Aparato y método de medida de la calidad de señales eléctricas en una red trifásica
JPS61126485A (ja) 誤差測定装置
De Araujo et al. Integrated circuit for real-time poly-phase power quality monitoring
Arseneau Application of IEEE standard 1459-2000 for revenue meters
Djokić et al. Calibration of Electrical Instruments Under Nonsinusoidal Conditions at NRC Canada
Arseneau Calibration system for power quality instrumentation
KR20040050099A (ko) 에프에프티를 이용한 실시간 전력계통 진동 감시장치
Arseneau et al. Calibration services in support of smart grid applications
Li et al. A generic flicker measurement method based on feature sequence reconstruction
Yu et al. An improved phasor based algorithm for accurate frequency measurement
ES2711204B2 (es) Procedimiento y sistema de análisis de calidad de la energía e índice de calidad 2S2PQ, caracterización de la señal en un punto del suministro eléctrico

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP