WO2004025214A1 - Method and apparatus for measuring shape of tube body - Google Patents

Method and apparatus for measuring shape of tube body Download PDF

Info

Publication number
WO2004025214A1
WO2004025214A1 PCT/JP2003/011737 JP0311737W WO2004025214A1 WO 2004025214 A1 WO2004025214 A1 WO 2004025214A1 JP 0311737 W JP0311737 W JP 0311737W WO 2004025214 A1 WO2004025214 A1 WO 2004025214A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
tubular body
shape
peripheral surface
pair
Prior art date
Application number
PCT/JP2003/011737
Other languages
French (fr)
Japanese (ja)
Inventor
Takumi Akatsuka
So Kanai
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002266651A external-priority patent/JP4363830B2/en
Priority claimed from JP2003009014A external-priority patent/JP4118148B2/en
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Priority to AU2003268643A priority Critical patent/AU2003268643A1/en
Publication of WO2004025214A1 publication Critical patent/WO2004025214A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/207Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D3/00Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts
    • B21D3/02Straightening or restoring form of metal rods, metal tubes, metal profiles, or specific articles made therefrom, whether or not in combination with sheet metal parts by rollers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2408Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring roundness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/08Measuring arrangements characterised by the use of mechanical techniques for measuring diameters
    • G01B5/10Measuring arrangements characterised by the use of mechanical techniques for measuring diameters of objects while moving

Definitions

  • the present invention relates to a method for measuring the shape of a tube such as a substrate for a photosensitive drum of a copying machine, the same apparatus, a method for inspecting a tube, the same device, a method for manufacturing a tube, and the same system.
  • FIGS. there is a method shown in FIGS.
  • the outer peripheral surface 12 near both ends of the tubular body 10 is supported by reference rollers 91, and the displacement measuring devices 92 are provided at, for example, three places in the longitudinal center of the outer peripheral surface of the tubular body 90. Make contact. Then, based on the amount of change in the detected value of the displacement measuring device 92 when the tube 90 is rotated by the rotation of the reference roller 91, the central portion in the longitudinal direction of the outer peripheral surface of the tube 90 due to the rotation is obtained. Is measured. The displacement thus obtained shows the deflection of the outer peripheral surface at the center with reference to the outer peripheral surface near the end of the tube 90.
  • the wall thickness distribution (the degree of uneven thickness) of the pipe 90 also affects the rotation accuracy. For this reason, when high shape accuracy is required, it is conceivable that the maximum thickness and the minimum thickness of the pipe body 90 are determined by a thickness measuring device or the like, and the degree of unevenness is also evaluated.
  • JP-A-11-271008, JP-A-63-131018, JP-A-2001-336920, JP-A-8-141643, JP-A-11-163955, JP-A-3-131131, Japanese Unexamined Patent Publication No. 2000-292161 and Japanese Unexamined Patent Publication No. 2-275305 disclose various techniques for measuring the shape of a tubular body. However, none of these published patents discloses a technique for simply and accurately measuring the flatness of the outer peripheral surface of a tubular body.
  • a conventional method for measuring the shape of a pipe using a roundness measuring device is also conceivable, but in this case, a core that aligns the rotation axis of the measurement table on which the pipe is placed with the center axis of the pipe to be measured is used. It is necessary to repeat leveling and horizontal leveling to make the axis of rotation of the measuring table parallel to the center axis of the tube, which is very time-consuming and time-consuming. is there.
  • an object of the present invention is to provide a method and the like that can measure the shape of a tube simply and with high accuracy.
  • a method for measuring the shape of a tubular body according to a first aspect of the preferred embodiment of the present invention includes the steps of: bringing a pair of reference portions into contact with inner peripheral surfaces near both end portions of the tubular body; In a state where the pipe is fixed, the pipe is rotated so that the contact portion between the pipe and the pair of reference portions is shifted in the circumferential direction on the inner peripheral surface of the pipe, and the pipe is rotated. At least one position fixed on the outside in the circumferential direction of the tube, The amount of displacement of the outer peripheral surface of the tube body in the radial direction due to rolling is detected.
  • the deflection of the outer peripheral surface with respect to the inner peripheral surface is measured.
  • the deflection of the outer peripheral surface to be measured takes into account the effect of uneven wall thickness of the tube. Therefore, it is possible to perform a measurement approximating the state of use of a pipe provided for a use whose inner peripheral surface is rotatably supported.
  • the influence of uneven wall thickness is added to the measured deflection of the outer peripheral surface, so that it is possible to prevent the accumulation of measurement equipment variation and the demand for excessive quality as in the case of separately measuring the wall thickness of a pipe.
  • the influence of uneven thickness is added to the deflection of the outer peripheral surface to be measured, the measurement can be shortened.
  • the reference portion since only the reference is brought into contact with the inner peripheral surface and the outer peripheral surface is measured, it can be realized with a simple configuration, the accumulation of measurement errors is reduced as much as possible, and the shape measurement is high. Accuracy can be obtained. Further, since it is sufficient that the reference portion can be brought into contact with the inner peripheral surface side, it can be suitably used for shape measurement of a tube having a small inner diameter.
  • the position of the reference portion may be fixed only while rotating the tube in order to detect the amount of displacement of the outer peripheral surface of the tube.For example, when the tube is set on a device for performing shape measurement, etc. For example, it may be movable. Also, the position of the reference portion may be fixed, and the posture may change due to rotation or the like.
  • a pipe shape measuring apparatus includes a pair of reference portions abutting on inner circumferential side surfaces near both side ends of the pipe body having a substantially horizontal posture.
  • a pedestal portion that contacts the outer peripheral surface of the tubular body so that the inner peripheral side surface of the tubular body is positioned at substantially the same height as the pair of reference portions and that supports the tubular body by contacting from below.
  • a pressing portion that is provided outside the tubular body and presses an outer peripheral side surface of the tubular body so as to press the tubular body against the pair of reference portions; an inner peripheral surface of the tubular body and the pair of reference portions; With respect to an imaginary straight line passing through two abutting portions that abut against each other, at a position facing the outside of the tubular body, when the tubular body rotates in a state of abutting on the pair of reference portions, this 3 011737
  • a displacement detector for detecting a radial displacement amount of the outer peripheral surface of the tubular body accompanying the rotation.
  • the deflection of the outer peripheral surface of the tube with reference to the inner peripheral surface of the tube that is, the outer peripheral surface of the tube in which the influence of uneven wall thickness is added
  • the deflection of the outer peripheral surface of the tube to be measured is affected by uneven wall thickness, preventing the accumulation of measurement equipment variation and excessive quality requirements, such as when measuring the wall thickness of the tube separately. it can.
  • the influence of uneven thickness is added to the deflection of the outer peripheral surface of the tube to be measured, the measurement can be shortened.
  • the position facing the virtual straight line from the outside of the tubular body is because the radial displacement of the outer peripheral surface of the tubular body is least affected by the displacement of the rotation center position of the tubular body.
  • the tube since the tube is pressed against the pair of reference portions by the pressing portion from the outside, the tube surely comes into contact with the pair of reference portions even while the tube rotates, thereby performing accurate shape measurement. be able to.
  • the tube is supported by the pedestal from below, and a reference position for shape measurement by a pair of reference portions and a detection position by the displacement detection portion are arranged beside the tube.
  • the tube By rotating the tube while it is in contact with the pair of reference parts, even if the height position of the rotation center of the tube moves up and down, it is not affected so much and stably. Shape measurement can be performed, and highly reliable measurement results can be obtained.
  • the supported vertical direction and the direction (horizontal direction) in which the pair of reference portions are in contact with each other and the displacement is detected by the displacement detection unit are substantially orthogonal, and therefore, the vertical direction of the rotation center of the tube is This is because the directional movement has the least effect on the amount of radial displacement of the outer peripheral surface on the side of the tube.
  • a pipe shape measuring apparatus comprises a pair of reference portions abutting the inner peripheral lower surface near both side ends of the pipe in a substantially horizontal posture.
  • a displacement detector for detecting the amount of radial displacement of the outer peripheral surface of the tube body caused by the rotation when rotated in contact with the reference portion of (1). is there. .
  • a pipe shape measuring device it is possible to measure the deflection of the outer peripheral surface with reference to the inner peripheral surface of the tubular body, that is, the deflection of the outer peripheral surface in which the influence of uneven thickness of the tubular body is added. . Therefore, it is possible to perform a measurement approximating the state of use of a tube used for a purpose whose inner peripheral surface is rotatably supported.
  • the thickness of the measured outer peripheral surface is affected by uneven thickness, it is possible to prevent the accumulation of measurement equipment variations and excessive quality requirements, such as when measuring the wall thickness of a pipe separately.
  • the outer circumference to be measured Because the influence of uneven thickness is added to the surface deflection, measurement can be shortened in a short time.
  • the reference portion can be brought into contact with the inner peripheral surface side, it can be suitably used for shape measurement of a tube having a small inner diameter.
  • the contact pressure between the tube and a pair of abutting portions can be set and controlled appropriately regardless of the weight of the tube. This makes it possible to obtain high reliability for shape measurement.
  • the position of the shaft of the tube and the posture of the tube can be stabilized, thereby stabilizing the rotation of the tube and increasing the height. Measurement accuracy can be obtained.
  • the supporting roller has the function of supporting the weight of the tube and the function of positioning the axis of the tube, the number of members that come into contact with the tube can be reduced. As a result, it is possible to eliminate an error factor and contribute to accurate shape measurement, to obtain high reliability of the shape measurement, and to reduce the possibility of damage to the tube.
  • a tube shape measuring apparatus is characterized in that a plurality of straightening rollers are brought into contact with both side ends of the tube, respectively, so that a cross section of both side ends of the tube is provided.
  • the tube is rotated in a state where the shape is temporarily corrected and the cross-sectional shape of the both end portions is temporarily corrected, and the amount of radial displacement of the outer peripheral surface of the tube accompanying the rotation is detected. It is characterized by the following.
  • the amount of displacement of the outer peripheral surface in the radial direction is detected in a state where the tubular body is not straightened but both ends are temporarily straightened by the straightening rollers. For this reason, the shape of the tube can be measured under conditions similar to the actual use of the tube used when the cross-sectional shape of the both end portions is deformed to an appropriate shape. Therefore, the shape of the tube that is exhibited when actually used Accuracy can be obtained, and it is possible to prevent a situation where excessive quality is required in order to secure the required shape accuracy when actually used.
  • a method for measuring the shape of a tube is characterized in that the tube is rotated by rotating the tube while pressing both ends of the tube with a plurality of correction rollers. Plastically deforming both ends of the body to correct its cross-sectional shape, weakening the pressing force of the straightening roller against both ends of the tubular body, and continuously contacting at least a part of the straightening roller with the tubular body. The shape of the tubular body is measured by detecting the amount of radial displacement of the outer peripheral surface of the tubular body accompanying the rotation.
  • the amount of displacement in the radial direction of the outer peripheral surface is detected in a state where the tubular body is not straightened but both ends are straightened by the straightening rollers. For this reason, the shape of the tube can be measured under conditions similar to the actual use of the tube used in a state where the cross-sectional shape of both end portions is deformed to an appropriate shape. Therefore, it is possible to obtain with high precision the shape of the tube that is exhibited when actually used, and to avoid situations where excessive quality is required to ensure the required shape accuracy when actually used. It can be prevented before it happens.
  • the correction roller that corrects both ends of the tube functions as a support roller that continuously supports the tube and maintains the posture of the tube when measuring the shape of the tube. For this reason, by setting the tube at the shape measurement position that comes into contact with the straightening roller, the end correction and the shape measurement can be performed continuously, and excellent work efficiency can be obtained. Further, since the number of times that the tube and the roller or the like supporting the tube come into contact can be reduced, the possibility that the tube is damaged by contact with the roller or the like can be reduced. In addition, since the cross-sectional shape of the end of the pipe whose shape has been measured in this manner has already been corrected, the work of press-fitting a flange or the like can be easily and reliably performed during actual use.
  • a method for measuring the shape of a tubular body is as follows. A pair of inflatable clamps are inserted inside the vicinity of both side ends of the tubular body, and the pair of inflatable clamps are inflated.
  • At least one position fixed in the circumferential direction of the tubular body detects a radial displacement of the outer peripheral surface of the tubular body due to rotation of the tubular body.
  • the central axis position of the pair of expansion clamps is substantially located at the center of the circle formed by the inner peripheral surfaces of the tubular body.
  • the tube since the detected radial displacement of the outer peripheral surface is the deflection of the outer peripheral surface with reference to the approximate center of the circle formed by the inner peripheral surfaces near both ends of the tube, the tube is bent and deviated. It integrates all the effects of the meat, other, and the cross-sectional shape (roundness) of the tube. In this way, the influence of uneven wall thickness is added to the deflection of the outer peripheral surface to be measured, which prevents the accumulation of measurement equipment variations and the demand for excessive quality, such as when measuring the wall thickness of a pipe separately. it can. In addition, since the influence of uneven thickness is added to the deflection of the outer peripheral surface to be measured, the measurement can be shortened in a short time.
  • the center axis positions of the pair of expansion clamps are surely positioned at the center of the circle formed by the inner peripheral surface of the tube, and It is possible to realize a state similar to the rotating state at the time of use. Also, a pair of inflatable clans ⁇ Since the pump contacts the entire circumference of the inner peripheral surface of the pipe, even if it comes in contact with the pipe with a large pressing force, the pressing force can be distributed almost uniformly in the circumferential direction, Can contribute to the measurement.
  • FIG. 1 is a front sectional view showing the principle of a method for measuring the shape of a tubular body according to the present invention.
  • FIG. 2 is a side sectional view of the same.
  • FIG. 3 is a perspective view of the same.
  • FIG. 4 is an explanatory perspective view showing a use state of a pipe (work) whose shape is to be measured.
  • FIG. 5 is an explanatory diagram of a detection position of a displacement amount in the tube shape measuring method according to the present invention.
  • FIG. 6A is a perspective view of a bent tube 101 which is an example of a defective tube.
  • FIG. 6B is a cross-sectional view of a central portion in the axial direction of the bent pipe 101.
  • FIG. 7A is a perspective view of a tube 102 having uneven thickness, which is an example of a defective tube.
  • FIG. 7B is a cross-sectional view of an arbitrary cross section of the uneven thickness pipe 102.
  • FIG. 8A is a perspective view of a tube 103 whose cross section is not a perfect circle as a defective example of the tube body, and in particular, whose cross section is flat.
  • FIG. 8B is a cross-sectional view of an arbitrary cross section of the flat tube 103.
  • FIG. 8C a pair of reference portions 20 and 20 abut against the inner peripheral surface of the tubular body (flat tube) 103.
  • FIG. 4 is an explanatory cross-sectional view showing a state in which the wall-thickness tube 103 is rotated as it is.
  • FIG. 9 is a graph showing an example of a result of detecting a displacement amount of an outer peripheral surface while rotating a pipe (work) 10 as a shape measurement target.
  • FIG. 9A shows an example in which the detected displacement does not change.
  • FIG. 9B is an example in which a runout having a period of 360 degrees is detected.
  • FIG. 9C is an example in which a runout having a period of 180 degrees is detected.
  • FIG. 10 is a front sectional view showing the principle of a more advanced pipe shape measuring method according to the present invention.
  • FIG. 11 is a side sectional view of the same.
  • FIG. 12 is a plan sectional view of the manual type shape measuring device 4.
  • FIG. 13 is a front sectional view of the device 4.
  • FIG. 14 is a side cross-sectional view of the device 4.
  • FIG. 15 is a schematic perspective view of the device 4.
  • FIG. 16 is an explanatory diagram of a procedure for setting a pipe (work) in the device 4.
  • FIG. 16A is a perspective view showing a state in which one end of the tubular body 10 is inserted into one reference portion 42.
  • FIG. 16B is a perspective view showing a state in which the other end of the tube 10 is lowered so that a pair of reference portions 42 and 42 are inserted inside the tube 10.
  • FIG. 16C is a perspective view showing a state where the tube 10 has been horizontally slid so that the other reference portion 42 is inserted into the other end of the tube 10.
  • FIG. 17 is an overall perspective schematic view of the automatic shape measuring device 5.
  • FIG. 18 is an enlarged perspective view of a support structure of the tube 10 in the device 5.
  • FIG. 19 is an explanatory front sectional view of a main part of the device 5.
  • FIG. 20 is a side sectional view of a main part of the device 5.
  • FIG. 21 is a front sectional view showing a supporting form of a reference roller. 1 ⁇ FIG. 22 is an explanatory plan view of the tube transport device.
  • FIG. 23 is an explanatory side view of the tube transport device.
  • FIG. 24 is a graph showing the variance (measurement error) of each measurement result when 10 times shape measurement is performed on a plurality of pipes having various displacements respectively.
  • FIG. 8 is a front sectional view showing a support mode of a reference roller according to a third embodiment.
  • FIG. 26 is an enlarged perspective view of a support structure for the tubular body 10 in the third embodiment.
  • FIG. 27 is a front sectional view showing a support form of the reference roller.
  • FIG. 28 is a side view showing a supporting form of the supporting roller.
  • FIG. 29 is a side view showing a support mode of the support roller in the fourth embodiment.
  • FIG. 30 is a side view showing a support mode of a support roller in the shape measuring apparatus according to the seventh embodiment.
  • FIG. 31 is a front sectional view showing a support form of the tubular body in the eighth embodiment.
  • FIG. 32 is a concept for explaining a tubular body shape measuring method according to the ninth embodiment.
  • Fig. 33 is the same side view.
  • FIG. 34 shows that the central portion 104 b has an appropriate perfect circular shape but the both ends 104 a and 104 a have a flat cross section.
  • FIG. 35A is an explanatory view showing a tubular body 105 whose cross-sectional shape is constant over its entire length, but whose cross-sectional shape is not a perfect circle.
  • Fig. 35B shows flanges 80, 105 on both sides 105a, 105a of the same tubular body 105. It is an explanatory view showing a state at the time of actual use in which 80 or the like is press-fitted.
  • FIG. 36 is an enlarged perspective view of the support structure of the tubular body in the case where the ninth cold embodiment is configured with a mechanical configuration substantially similar to that of the second embodiment and the like.
  • FIG. 37 is a front sectional view showing a modified example using the outer straightening roller 65 having a small-diameter portion 652 forming a gap 653 in the center of the outer peripheral surface 651 in the width direction.
  • Fig. 38 shows one inner straightening roller 911 and two outer straightening rollers 912, 913 located below the tube 10, plus the upper side of the tube 10. This is a modified example of the arrangement of the straightening rollers in which the located outer straightening rollers 914 are arranged.
  • FIG. 39 shows a modification of the arrangement of the straightening rollers in which the straightening rollers are all inner straightening rollers 920.
  • FIG. 40 shows a modification of the arrangement of the correction rollers in which all the correction rollers are outside correction rollers 930.
  • Fig. 41 shows that the inner straightening roller 941 and the outer straightening roller 942 are arranged at the same position in the circumferential direction of the tube 10, and the tube 10 is sandwiched from inside and outside and restrained. This is a modification of the arrangement of the correction rollers, in which correction is performed by correction rollers 943 having different circumferential positions.
  • FIG. 42 shows a case where a plurality of sets of an inner straightening roller 951 and an outer straightening roller 952 having the same circumferential position are arranged, and a plurality of circumferential positions of the tube 10 are sandwiched from inside and outside to be restrained. It is a modified example of the arrangement of the correcting rollers as described above.
  • FIG. 43 shows a modified example of the arrangement of the correction rollers in which a large number of correction rollers 96 are brought into contact with the outer peripheral surface of the tubular body 10 to perform correction.
  • FIG. 44A is a side view for explaining a state in which both ends of the tubular body are being corrected in the tubular shape measuring method according to the tenth embodiment.
  • FIG. 44B is a side view for explaining a state in which the shape of the tubular body is also measured.
  • FIG. 45 shows that the tenth embodiment has almost the same mechanical configuration as the second embodiment and the like.
  • FIG. 3 is an enlarged perspective view of a support structure for a tubular body in the case of the above configuration.
  • FIG. 46 is a flowchart for explaining the overall flow of shape measurement in the tenth embodiment.
  • FIG. 47 is a front sectional view showing a tube shape measuring device 5 for the tube shape measuring method according to the present invention.
  • FIG. 48 is a sectional view of the expansion clamp 20.
  • FIG. 49 is an explanatory diagram of the operation.
  • FIG. 50 is a front sectional view showing a use state of a pipe (work) 10 whose shape is to be measured.
  • FIG. 51 only the end portions 106a and 106a have a flat cross-sectional shape, but the central portion 106b has an appropriate perfect circular shape.
  • FIG. 51 only the end portions 106a and 106a have a flat cross-sectional shape, but the central portion 106b has an appropriate perfect circular shape.
  • FIG. 52 is an example of a tubular body 107 having a material distribution uneven in the circumferential direction.
  • FIG. 52A is a cross-sectional view showing a state before the flange is press-fitted into this tubular body 107.
  • FIG. 52B is a cross-sectional view showing a state after the flange has been press-fitted into this tubular body 107.
  • FIG. 53 shows two positions 3 1..., 3 2..., 3 3..., 3 4... whose circumferential positions are different by half a circle at an arbitrary cross section (axial position) of the tube 10.
  • FIG. 9 is a front sectional view showing a modification in which displacement detectors 30 are arranged so as to detect displacement of the outer peripheral surface.
  • FIG. 54 is a functional block diagram showing the configuration of the inspection device 71.
  • FIG. 55 is a functional block diagram showing the configuration of the manufacturing system 72.
  • FIG. 56 is an explanatory view showing the principle of a conventional method for measuring the shape of a tubular body.
  • FIG. 57 is an explanatory view showing the principle of a conventional pipe shape measuring method.
  • FIG. 1 is a front sectional view showing the principle of the method for measuring the shape of a tubular body according to the present invention.
  • FIG. 2 is a side sectional view of the same.
  • FIG. 3 is a perspective view of the same.
  • FIG. 4 is an explanatory perspective view showing a use state of a pipe (work) whose shape is to be measured.
  • FIG. 5 is an explanatory diagram of a displacement detection position in the method for measuring the shape of a tubular body according to the present invention.
  • the tubular body as the shape measurement object in the present invention is assumed to have a cylindrical shape in which both the inner peripheral surface and the outer peripheral surface are circular in each cross section.
  • a pipe (work) 10 exemplified in this embodiment is supported from the inside by flanges 80, 80 inserted inside both ends thereof as shown in FIG. It is used.
  • the position at which the flanges 80 and 80 come into contact with the pipe 10 and rotate the pipe 10 is, for example, a region S (indicated by hatching in FIG. 4) extending inward from both ends of the pipe 10 by the width d. Area). .
  • the material of such a tube (work) 10 may be, for example, an aluminum alloy.
  • the invention is not limited to this, and various metals, synthetic resins, and the like may be used.
  • examples of the production method include a combination of extrusion molding and pultrusion molding, as described later.
  • the present invention is not limited to this. Extrusion molding, pultrusion molding, forging, forging, injection molding, cutting, or a combination thereof Any method can be used as long as the pipe can be formed, such as by joining.
  • a tube 10 include a substrate and a raw tube for a photosensitive drum in a copying machine, a printer, or the like employing an electrophotographic system.
  • the substrate for the photosensitive drum refers to a tube after a cutting process, a drawing process, or the like is performed, and before the photosensitive layer is formed.
  • the tube after the formation of the photosensitive layer on the substrate for the photosensitive drum can also be the tube to which the shape measurement and the like of the present invention are performed.
  • the method for measuring the shape of a pipe according to the present invention is applied to such a pipe (work) 10 on an inner peripheral surface 11 near both ends.
  • the displacement detectors 30 arranged outside the tube 10 are used to form the tube 10. It detects the amount of displacement of the outer peripheral surface 12 in the radial direction.
  • the rotation of the tube 10 may be performed by the measurement operator grasping and rotating the tube 10 by hand, by rotating a drive roller (not shown) in contact with the tube 10, or by rotating the tube 10. It may be rotated in any manner.
  • the center of rotation of the tube 10 is located at a position corresponding to approximately the axis of the tube of the tube 10. Standard part>
  • the position of the reference portions 20 and 20 of the pair is fixed at least when the tube 10 is rotated, and the contact portion with the tube 10 is located on the inner peripheral surface 11 of the tube 10 Will shift in the circumferential direction.
  • the tube 10 is positioned at least when rotated by the pair of reference portions 20, 20, and a reference for shape measurement is determined.
  • the pair of reference portions 20 and 20 are in contact with the tube 10 at the planned support position (in the hatched area S in FIG. 4) when the tube 10 is actually used. ing. This is the part that serves as a reference for the rotation when the tube 10 is actually used. Can be used as a reference in shape measurement, and more practical measurement can be realized.
  • the pair of reference portions 20 and 20 are formed in a spherical shape, and are in contact with the inner peripheral surface 11 of the tube 10 in a substantially point contact state. As a result, the reference position of the shape measurement can be clearly specified. '
  • the position where the pair of reference portions 20 and 20 abut on the tube 10 may be at the lower surface, the side surface, the upper surface (ceiling surface), the diagonally upper surface or the diagonally lower surface of the inner peripheral surface of the tube.
  • the displacement detectors 30 are arranged outside the tube 10. When the tube 10 is rotated at least, the position in the circumferential direction of the tube 10 (displacement detection position 3 1... ⁇ , 3 2 ⁇ ) are fixed. That is, when the tube 10 is rotated, the displacement detection positions 3 1,..., 3 2... by the displacement detectors 30 are shifted circumferentially on the outer peripheral surface 12 of the tube 10. Will go on.
  • the amount of displacement of the outer peripheral surface 12 of the tubular body 10 in the radial direction detected by the displacement detectors 30 is so-called deflection (outside diameter deflection).
  • deflection outside diameter deflection
  • the pair of reference portions 20, 20 abutting on the inner peripheral surface 11 of the tube 10 described above allows the outer peripheral surface 12 with respect to the inner peripheral surface 11 of the tube 10 to be a reference.
  • the deflection is detected (measured).
  • five displacement detectors 30 are arranged so that the five locations where the axial position of the tube 10 is different can be set as the displacement detection positions 3 1..., 3 2.
  • the case is exemplified.
  • the two outer displacement detectors 30, 30 are located near the two ends of the tube 10 at the positions 31, 31 facing the pair of reference portions 20, 20, respectively. It is arranged so that At these positions 31 and 31, the reference parts 20 and 20 change. The thickness of the tube 10 sandwiched between the position detectors 30 and 30 can be measured.
  • the other three displacement detectors 30 are arranged such that positions 3 2... Other than the positions 3 1, 3 1 facing the pair of reference portions 20, 20 are set as the displacement amount detection positions. It is located. At these positions 32..., It is possible to detect the deflection of the outer peripheral surface of the tube 10 at each position. '
  • the positions of the five displacement detectors 30 in the circumferential direction correspond to the inner peripheral surface 11 of the tube 10 and the pair of reference portions 20, 20.
  • An imaginary straight line Q passing through the two contact points PI and P2 that contact each other is confronted from outside of the tube 10 through the thickness of the tube 10 (the area R hatched in FIG. 3). 3 1 ⁇ , 3 2...
  • FIG. 5 is an explanatory diagram for explaining the characteristics of the detection position of each displacement amount in the circumferential direction of the tube 10.
  • the position of the reference portion 20 is stably fixed because the reference portion 20 is a reference for shape measurement. Except for the part in contact with 20, its position (posture of tube 10) may be unstable. For example, as shown in Fig. 5, the tube 10 during measurement (rotating) may shift from the state where the center indicated by the solid line is at the position ⁇ to the state where the center indicated by the broken line is at the position 0 '. There is.
  • the position A that faces the imaginary straight line Q through the contact points PI and P2 with the reference portion 20 is located at the outer peripheral surface of the tube 10 as compared with the other positions B, C and D.
  • the displacement of the tube affects the amount of displacement of the tube 10 in the radial direction of the tube 10 (in the directions indicated by the arrows A, B, C, and D in FIG. 5). It is the smallest position. In other words, if the position facing the virtual straight line Q is set as the displacement detection position, even if the tube 1 "0" is displaced during the shape measurement, it is hardly affected by the deviation, and the shape measurement is stable. Settings can be made.
  • the position of the tube 10 was stabilized.
  • the problem of displacement of the tube 10 during shape measurement is reduced.
  • the tube 10 is rotated with the pair of reference portions 20 and 20 abutting against the inner peripheral surface 11 of the tube 10 as described above, the tube 10 is completely cylindrical. If there is, the outer peripheral surface 12 of the tubular body is not displaced at all in the radial direction. Conversely, if the tubular body 10 deviates from a perfect cylindrical shape, it will be detected by the displacement detectors 30 as the amount of displacement of the outer peripheral surface.
  • FIG. 6A is a perspective view of a bent tube 101 which is an example of a defective tube.
  • the bent pipe 101 is one in which the axis of the pipe is bent.
  • the circle formed by the inner peripheral surface (inner circle) and the circle formed by the outer peripheral surface (outer circle) are both true circles in each cross section over the entire length so as to eliminate other causes of failure. It is assumed that the center of the outer circle and the center of the outer circle coincide (concentric), and the wall thickness of the pipe is uniform.
  • FIG. 4 When such a bent pipe 101 is actually used, as shown in FIG. 4, when it is rotated by flanges inserted inside both ends of the pipe body, as shown in FIG. 101 rotates around a straight line T1 passing through the center of the inner circumference circle near both ends, and a deflection (run-out) occurs in the axial center of the bent tube 101.
  • the two-dot chain line in FIG. 6A indicates a state where the solid line is rotated 180 degrees from the state of the solid line.
  • FIG. 6B is a cross-sectional view of the central portion of the bent pipe 101 in the axial direction, and the two-dot chain line shows the outer peripheral surface (circumferential circle) in a state rotated 180 degrees from the solid line state.
  • the tubular body 101 is lifted upward in the state of the solid line, but is pushed down as shown by the two-dot chain line when rotated 180 degrees, and When it is rotated 180 degrees, it returns to the state shown by the solid line. That is, a frame with a period of 360 degrees Has occurred.
  • FIG. 7A is a perspective view of a tube having an uneven thickness (hereinafter, referred to as an uneven thickness tube) 102 which is a defective example of the tubular body.
  • the uneven thickness pipe 102 is a pipe whose wall thickness changes in the circumferential direction in the cross section of the pipe.
  • the axis of the tube is a straight line, and its cross-section is the circle formed by the inner circumferential surface (inner circumferential circle) and the outer circumferential surface formed by the outer circumferential surface (outer circumferential circle) to eliminate other causes of failure. Both are perfect circles, but it is assumed that the center of the inner and outer circles is shifted (eccentric), causing uneven thickness.
  • FIG. 7A is a cross-sectional view of an arbitrary cross section of this uneven thickness pipe 102.
  • the two-dot chain line indicates the outer peripheral surface (circumferential circle) in a state rotated by 180 degrees from the solid line state.
  • the thick-walled tube 102 has a thick portion at the top in the solid line state. Therefore, the outer peripheral surface is lifted up as a whole, but when it is rotated 180 degrees, the thick part moves to the lower part as shown by the two-dot chain line, and the thin part is located at the upper part However, it is pushed down as a whole and returns to the state shown by the solid line when it is further rotated 180 degrees. That is, a deflection of 360 degrees occurs.
  • the rotation axis T 2 is a straight line that passes through the center of the inner circumference near one end of the pipe supported by the flange and the center of the inner circumference near the other end. This is similar to the above-described bent pipe. Since the center of the inner circumference circle and the center of the outer circumference are displaced over the entire length of the uneven thickness pipe 102, the rotation axis T2 determined on the basis of the inner circumference circle and the center of the outer circumference over the entire length are aligned. It shifts. The deflection over the entire length of the uneven wall 102 is caused by a deviation between the rotation axis T2 determined by the inner circles near both ends of the tube 102 and the center of the outer circle in the cross section of interest.
  • FIG. 8A is a perspective view of a tube whose cross section is not a perfect circle as a defective example of the tube body, in particular, a tube having a flat cross section (hereinafter, referred to as a flat tube) 103.
  • the flat tube 103 is a tube whose cross-section is not a perfect circle but has an elliptical cross-section as if it were pinched and crushed from above and below or left and right.
  • the axis of the tube is straight, the inner and outer circles are almost similar in shape, the wall thickness is constant, and the cross-sectional shape is constant over the entire length, so as to eliminate other causes of failure. It is assumed that it is not twisted.
  • the tube rotates about a straight line T 3 passing through a position corresponding to the center of the inner circumferential circle, and The tube 103 has runout over its entire length in the axial direction.
  • the two-dot chain line in FIG. 8A indicates a state where the solid line is rotated 90 degrees from the state of the solid line.
  • FIG. 8B is a cross-sectional view of an arbitrary cross section of the flat tube 103, and a two-dot chain line shows an outer peripheral surface (circumferential circle) in a state rotated 90 degrees from the solid line state.
  • the tubular body 103 is in the vertical position in the state of the solid line, but when it is rotated 90 degrees, it is in the horizontal position as shown by the two-dot chain line, and further rotated 90 degrees. By the way, it returns to the state of the solid line. Therefore, the outer peripheral surface repeatedly swells outward and dents inward, causing a 180 ° -period deflection.
  • FIG. 9 is a graph showing an example of the result of detecting the amount of displacement of the outer peripheral surface while rotating the pipe (object) 10 whose shape is to be measured.
  • the horizontal axis represents the rotation angle of the tube (work)
  • the vertical axis represents the detected value of the radial displacement of the outer surface of the tube 10 detected by the displacement detectors 30. Is shown. Complete pipe measurement>''
  • the shape of the tube is measured based on the measurement principle shown in Figs. 1 to 3. As described above, since the outer peripheral surface of the tubular body 10 is not displaced at all, the displacement amounts detected by the five displacement measuring devices 30 are not changed as shown in FIG. 9A. .
  • the detected displacement amount is as shown in FIG. There is no change as shown in the figure. This is because the detection positions 31, 31 facing the reference portions 20, 20 are for detecting the wall thickness of the tube 101 at the positions 31, 31. As described above, it is clear from the assumption that the bent pipe 101 of FIG. 6 assumes a pipe body having a constant wall thickness.
  • the pair of reference portions 20 and 20 abut on the inner peripheral surface of the bent tube. Even if the pipe 102 is rotated with the pipe 102 kept in contact, the inner peripheral surface of the pipe 102 abutting on the pair of reference portions 20 and 20 does not move. Therefore, in the measurement for the uneven thickness tube 102, the tube rotates in the same manner as in FIG. 7A showing a state in which the flange is inserted and rotated on both sides of the tube. Here, the displacement of the rotation center position assumed in FIG. 5 is ignored.
  • FIG. As shown by the arrow on the lower side of 02, the outer peripheral surface of the tubular body 102 is displaced in the radial direction, and its period is 360 degrees, so the outer peripheral surface 1 as shown in FIG. A run of 2 is detected. That is, according to the method for measuring the shape of the tubular body, it is possible to detect the deflection of the outer peripheral surface due to the uneven thickness of the tubular body 102.
  • the wall thickness of the tube 102 is directly detected at the detection positions 31 and 31 facing the reference portions 20 and 20, the detection is performed at these positions 31 and 31. It is also possible to obtain the wall thickness distribution in the circumferential direction of the tube 102 from the deflection.
  • pipes have a combination of defective factors such as bending and uneven wall thickness.However, according to this pipe shape measurement method, the results of superimposing these effects are combined into a single shape. It can be obtained by measurement. ' If it is assumed that the thickness deviation is substantially the same over the entire length of the tube, the tube 10 can be determined from the displacement detected at the detection positions 31 and 31 facing the reference portion of the tube 10. It can be estimated that the wall thickness distribution in the circumferential direction is the same over the entire length of the tube 10. In this case, the displacement amounts detected at the detection positions 3 2... Other than the detection positions 3 1, 3 1 facing the reference portion 20 include the displacement amount due to uneven thickness, but the detection positions will be changed from now on.
  • the pair of reference portions 20, 20 was placed in contact with the inner peripheral surface of the tube (flat tube) 103.
  • the tubular body (flat tube) 103 moves up and down as shown in Fig. 8C.
  • FIG. 10 is a front sectional view showing the principle of the shape measuring method according to the present invention
  • FIG. 11 is a side sectional view of the same.
  • the two contact portions P 1 and P 2 contacting 0 are arranged at positions 3 1..., 3 2... That face the virtual straight line Q from the outside of the tube 10.
  • two of the positions 31 and 31 are positions facing the pair of reference portions 20 and 20.
  • a more advanced shape measuring method according to the present invention includes five displacement detectors 30 in addition to the five displacement detectors 30 in the basic method described above. 30... Are arranged.
  • the newly arranged five detectors 30... have the axial position of the tube 10 coincide with the displacement detection positions 3 1..., 3 2. .., 34,... Are positioned so as to be the displacement detection positions. That is, with respect to the detection position 3 1 ⁇ , 3 2 ⁇ in the basic method, an anti-phase position (a position 180 degrees out of phase) in the circumferential direction of the tube 10 3 3 ⁇ New displacement detectors 30 are arranged so that ⁇ , 34, ... are the detection positions. As described above, by detecting the radial displacement of the outer peripheral surface from both sides of the tubular body 10 at each axial position of the tubular body 10, the outer circumferential surface of the tubular body 10 at each axial position ( Outer diameter) can be obtained.
  • the difference between the displacements detected at the two detection positions sandwiching the tube 10 is determined, thereby obtaining the difference in the circumferential position.
  • the amount of change in the diameter of the tube 10 can be obtained.
  • the displacement amount detected at the detection positions 31 and 31 facing the pair of reference portions 20 and 20 indicates the wall thickness of the tube 10 as described above.
  • the detection positions 33, 33 and the opposite phases opposed thereto it is possible to obtain how the wall thickness and diameter of the tube 10 in this cross section change in the circumferential direction. Therefore, in this cross-section, it is possible to roughly grasp the cross-sectional shape including the inner peripheral surface (inner peripheral circle).
  • the shape measurement is performed on the flat tube shown in FIG. 8 by such an advanced shape measurement method, as described above, it is opposed to the reference portions 20 and 20.
  • the detection positions 3 1, 3 1 and the detection position 3 2— (the lower detection position of the tube 103 in Fig. 8C) whose circumferential position is the same as the detection position, the displacement amount is reduced as shown in Fig. 9A. Only no change is detected.
  • this advanced method can detect a defect such as bending or uneven wall thickness of the pipe in the same manner as in the first method described above.
  • this advanced method involves a non-circular cross section of the pipe. The results obtained by superimposing the effects of these defects together with the defects can be obtained.
  • the conventional peripheral method shown in FIGS. 56 and 57 is used. It is possible to obtain the amount of deflection corresponding to the amount of deflection of the outer peripheral surface based on the surface. That is, from the ratio of the distance between the two detection positions 31 and 31 facing the reference portions 20 and 20 and the other detection positions 3 2... Disposed at the center in the axial direction of the tube 10. The displacements detected at these two detection positions 3 1, 3 1 are given to the other detection positions 3 2... and the displacements thus obtained are actually calculated at the other detection positions 3 2... What is necessary is just to subtract from the detected displacement amount. The other detection positions 3 2... calculated in this way The displacement amount is a displacement amount measured based on the two detection positions 31 and 31. [First Embodiment]
  • a tube shape measuring apparatus for measuring the shape of a tube based on the above principle
  • a manual type in which a measuring operator rotates a tube (work) 10 manually is used.
  • the shape measuring device 4 will be described.
  • FIG. 12 is a plan sectional view of the manual type shape measuring device 4.
  • FIG. 13 is a front sectional view of the device 4.
  • FIG. 14 is a side sectional view of the device 4.
  • FIG. 15 is a schematic perspective view of the device 4.
  • FIG. 16 is an explanatory diagram of a procedure for setting a pipe (work) in the apparatus 4.
  • the shape measuring device 4 supports a pair of reference portions 42, 42, which are in contact with the inner peripheral surface 11 of the tube 10 and serve as a reference for shape measurement, and supports the tube 10 from below.
  • a pedestal part 44 that stabilizes the height position of the tube 10
  • a stopper part 45 that abuts one end of the tube 10 to stabilize the axial position of the tube 10
  • a tube 1 A displacement detector 43 that contacts the outer peripheral surface 12 of the tube 10 to detect the amount of radial displacement of the outer peripheral surface of the tube 10 and a main body base 40 to which these components are attached.
  • the pair of reference portions 42 and 42 are formed on the inner peripheral surface 11 near the both end portions of the pipe 10 in a substantially horizontal posture, and have a height of the same. It comes into contact with the side position (inner side surface) corresponding to the approximate center position in the direction, and serves as a reference for shape measurement.
  • the pair of reference portions 4 2 and 4 2 are made of synthetic resin spheres that can smoothly slide on the inner peripheral surface 11 of the tube 10 and do not damage the inner peripheral surface 11. They are respectively attached to the reference support blocks 4 2 2 and 4 2 2 from outside by fixed support shafts 4 2 1 and 4 2 1. In this embodiment, the pair of reference portions 42 and 42 do not rotate with the rotation of the tube 10.
  • the tubular body 10 of the pair of reference portions 42, 42 is formed. Since the portion that abuts on the inner peripheral surface 11 does not change even when the tube 10 rotates, the measurement reference position can be reliably stabilized. On the other hand, when the portion of the tube 10 that comes into contact with the inner peripheral surface 11 is worn or the like, the tube 10 can be appropriately rotated. As a result, a new portion of the pair of reference portions 42, 42 comes into contact with the inner peripheral surface 11 of the tubular body 10 as necessary.
  • the fixed support shafts 4 2 1 and 4 2 1 that support the reference portions 4 2 and 4 2 have a thinner cross-sectional shape than the reference portions 4 2 and 4 2, and the pair of reference portions 4 2 and 4 2 It is made of, for example, a metal rod having a length equal to or greater than the insertion depth from the end face of the tubular body 10 when inserted into the inside of the tube 10. As a result, the pipe (work) 10 can be set in the procedure described later. '
  • the reference support blocks 422 and 422 are made of, for example, a metal block fixed to the upper surface of the main body base 40 with bolts or the like.
  • a long hole 4 23 of a predetermined length in the longitudinal direction (axial direction) of the tubular body 10 is formed in a portion to which one of the reference support blocks 42, 42 is attached. ing.
  • the structure in which one of the reference support blocks 422 is fixed by bolts penetrating the long holes 423 allows the distance between the pair of reference support blocks 422, 422 to be changed, and thus the pair of reference support blocks 422, 422.
  • One of the reference portions 42, 42 can be moved at a plurality of positions in the axial direction of the tube 10, and can be fixed at each position.
  • shape measurement can be performed by adapting to the tubes 10 of various lengths and sizes.
  • the structure in which the reference portions 42 and 42 can be moved is not for moving the reference support blocks 42 and 42 during the shape measurement of one pipe 10.
  • the bolt hole for attaching the other reference support block 4 22 is also a long hole 4 2 4. However, this is to make the pedestal section 4 described later movable. It is not necessary to move the support block 4 2 2. Since the reference portions 42, 42, the fixed support shafts 421, 421 and the reference support blocks 422, 422 serve as a reference for measuring the shape of the tube 10, sufficient reference is required in accordance with the required measurement accuracy. It is configured to have high rigidity. ⁇ Pedestal>
  • the base portion 44 is formed such that a side portion (inner peripheral side surface) of the inner peripheral surface 11 at the center in the height direction of the tube 10 is the pair of reference portions 42, 42.
  • the pipe 10 is supported from the lower side of the outer peripheral surface 12 so that the inner peripheral side surface of the tubular body 10 and the pair of reference portions 42 abut against each other. It stabilizes the height position.
  • the two pedestal portions 44 are formed on the main body base 40 by a pair of pedestal blocks 441, 441 fixed to the inside of the reference support blocks 422, 422 with a port or the like, and a contact provided on the upper surface thereof. (Contact part) 442, 442.
  • the pedestal blocks 441, 441, like the reference support blocks 422, 422, are fixed on the main body base 40 by a port that penetrates the elongated holes 423, 424 formed in the main body base 40. Can be changed. As a result, similarly to the reference support blocks 422, 422, the pipe body 10 having various lengths can be stably supported at an appropriate axial position and the height can be accurately measured. I have.
  • the pedestal blocks 441, 441 can also be adjusted in the height direction by mounting one or more height adjustment plates 443 having a predetermined thickness between the main body base 40 and the base block 441. This makes it possible to stably support tubes of various cross-sectional sizes (diameters) at appropriate heights.
  • the contact members (contact portions) 442, 442 are made of a material having a low coefficient of friction with the outer peripheral surface 12 of the tube 10, for example, a round bar made of a hard synthetic resin or the like. Therefore, when the outer peripheral surface 12 of the tubular body 10 rotates while being in contact with the pedestals 44, 44, it can be smoothly rotated without generating shear vibration and the like, and accurate shape measurement can be performed. It is possible.
  • any material having a low coefficient of friction with the outer peripheral surface of the tubular body can be suitably used.
  • a metal material having a smooth surface is used. And the like.
  • the contact members 442, 442 are fitted into substantially horizontal grooves orthogonal to the axial direction of the pipe body 10 provided on the upper surfaces of the pedestal blocks 441, 441, and are mounted so that the upper surfaces thereof are substantially horizontal. I have. Thus, even if the contact position with the tube 10 is slightly shifted, the height position of the tube 10 is stably supported, and accurate shape measurement can be performed. .
  • the contact members 442 are arranged at positions where the axial positions of the pair of reference portions 42.42 and the tubular body 10 match. Therefore, it is possible to stabilize the height position of the tubular body at the axial position where the tubular body 10 abuts the pair of reference portions 42, 42, thereby stabilizing the reference position for shape measurement and accurate shape. Measurements can be taken.
  • the stopper portion 45 abuts one end surface of the tube 10 to stabilize its axial position, and the pair of reference portions 42, 42, etc. In the axial direction. Also, the contact position (displacement detection position) between the displacement detectors 43 and the tube 10 is stabilized at an appropriate position in the axial direction.
  • the stopper part 45 includes a stopper mounting shaft 451 mounted on the inner surface of the reference support block 422 that is not moved in the axial direction of the tube 10, and a stopper main body 452 mounted on the distal end thereof. It is composed of
  • the stopper mounting shaft 45 1 is formed as a metal part that extends substantially horizontally from the inner side surface of the reference support block 4 22 and is bent upward.
  • the stopper body 452 is formed as a short columnar body having a circular horizontal section made of synthetic resin or the like having a low coefficient of friction, and is brought into contact with the end face on one end side of the tube 10 and rotated during shape measurement. The axial position of the tube 10 is stabilized.
  • the displacement detectors 43 sense the radial displacement of the outer peripheral surface of the tube 10 by contacting the outer peripheral surface 12 of the tube 10. Contact-type ones are provided at three different locations in the axial direction. Of these three displacement detectors 43, two on both sides are arranged at positions facing the pair of reference portions 42, 42, respectively, at positions where the radial direction of the tube 10 is substantially horizontal. The remaining one is arranged at the axial center of the tube 10 alongside these.
  • Each of the displacement detectors 43 includes a contact hole (contact portion) 431 for rolling contact with the outer peripheral surface of the tube 10 and a support bracket 43 for rotatably supporting the contact roller 43. 2 and a retractable shaft 433 having one end to which the support bracket 432 is attached.
  • the amount of movement of the retractable shaft 433 in the retracting direction, that is, the contact roller (contact portion) 431 The displacement of the outer peripheral surface of the tube 10 can be detected by detecting the displacement of the tube 10. Since the displacement detectors 43 come into contact with the outer peripheral surface 12 of the tubular body to detect the amount of displacement, reliable detection can be performed.
  • the contact roller 431 is in rolling contact with the outer peripheral surface 12 of the tubular body 10, it is possible to prevent the outer peripheral surface 12 of the tubular body 10 from being damaged such as abrasion as much as possible.
  • the contact roller (contact portion) 431 is formed in a cylindrical shape, and has an outer peripheral surface in line contact with the outer peripheral surface 12 of the tubular body 10. As a result, the pressure acting on the outer peripheral surface 12 of the tube 10 is dispersed, and the outer surface 12 of the tube 10 is not easily damaged. I'm wearing Further, both sides of the contact roller 431 are chamfered, and from this point, the outer peripheral surface 12 of the tube 10 is hardly damaged.
  • each displacement detector 43 is provided with a biasing means 43 which biases the retractable shaft 43 toward the tube 10 side, and the tube 10 through the contact roller 43 is provided.
  • the outer peripheral surface 12 is pressed against a pair of reference portions 42 and 42.
  • one end of the biasing means 4 3 4 is fixed to a fixed portion 4 35 in the displacement detector 43, and the other end is an extension shaft 4.
  • the projection 43 is provided with a panel attached to the shaft 43 so as to bias the projection 43 provided on the projection 33. That is, this displacement detector 43 is
  • the displacement detectors 43 function as pressing portions, the number of contact portions between the pipe 10 to be measured and the shape measuring device 4 can be reduced as compared with a configuration having a separate pressing portion. Can be reduced. Therefore, it is possible to eliminate disturbance elements and contribute to accurate shape measurement. In addition, the number of parts of the shape measuring device 4 is reduced, which contributes to cost reduction.
  • the displacement detectors 43 functioning as the pressing portions are disposed at a position facing the pair of reference portions 42 and 42 and at a central position in the axial direction of the tube 10, the pair of reference portions
  • the pipe 10 can be stably abutted against the pipes 42 and 42, and the pipe 10 is arranged symmetrically about the center of the pipe 10 in the axial direction (symmetrical in Fig. 12 etc.).
  • the tube 10 can be stably brought into contact with the pair of reference portions in a well-balanced manner.
  • All of such displacement detectors 43 are non-rotatably mounted on a detector mounting shaft 411 parallel to the axial direction of the tube 10.
  • This detector mounting shaft 4 1 1 The ends are rotatably penetrated through a pair of main body side walls 412, 412 fixed to both sides of the main body base 40, and rotation operation handles 413, 413 are attached.
  • a pair of rotating blocks 414, 414 are mounted so as not to rotate with respect to the detector mounting shaft 411.
  • the rotating blocks 414, 414 can be fixed in their rotational position by inserting bosses (not shown) which inwardly protrude from the pair of main body side walls 412, 412 with the plunger handle 415.
  • the rotational position fixed at this time is set such that the contact rollers 431 of the displacement detectors 43 are separated from the tube body 10, whereby the contact rollers 43 are displaced.
  • the tube 10 is separated from the tube 10 so that the tube 10 can be easily sectioned into this device.
  • Magnets 416, 416 are attached to the upper inside of the pair of main body side walls 412, 412, respectively, so that the rotating positions of the rotating blocks 414, 414 can be fixed.
  • the rotation position fixed at this time is determined by rotating the detector mounting shaft 41 1 with the rotation operation handles 413, 413, and pressing the contact rollers 431... of the respective displacement detectors 43... against the outer peripheral surface 12 of the tube 10.
  • the shape is set so as to correspond to a state (displacement measurement position) in which the shape of the body 10 is measured, and the shape of the tube 10 can be stably measured in this state.
  • the detector mounting shaft 411, the pair of main body side walls 412, 412, the rotating operation handles 413, 413, the rotating blocks 414, 414, the plunger handle 415, and the magnets 416, 416 work with a plurality of displacement detectors 43 ... This makes up an interlocking mechanism that moves the displacement measurement position and the release position.
  • the displacement detectors 43 are attached to the detector mounting shaft 411 so that the axial position of the tube 10 can be changed and can be fixed at each position. Axial position that can respond to the tube 10 and detects the amount of displacement Can be appropriately changed. It is also possible to measure the deflection of the outer peripheral surface 12 of the tubular body 10 at the number of positions or more with the limited displacement detectors 43 (three in this example). ⁇ Set of pipe>-In setting the pipe (work) 10 in this shape measuring device 4, first insert one end of the pipe 10 into one reference part 42 (No.
  • the reference portions 4 2 and 4 2 are supported from outside by fixed support shafts 4 2 1 and 4 2 1, and these fixed support shafts 4 2 1 and 4 2 1 are paired with the reference portions 4 2 and 4 2.
  • the other end of the tubular body 10 (No. 16)
  • One end of the tubular body 10 can be inserted deeply into one of the reference portions 42 until the right end (in FIG. A, the right end) reaches inside (the right side) of the other reference portion 42.
  • the pair of reference portions 42, 42 need not be moved at all. This makes it easy to stabilize the positions of the pair of reference portions 42, 42, which can contribute to accurate shape measurement.
  • the stopper 10 since the stopper 10 has the stopper 45 contacting one end surface of the tube 10, the sliding operation is performed until the other end surface of the tube 10 contacts the stopper body 45 2 of the stopper 45.
  • the tube 10 can be easily set at an appropriate axial position.
  • the measurement operator grasps the outer peripheral surface 12 of the tube 10 and removes the tube 10. Rotate. It is desirable that the rotation operation of the tube 10 be performed at least one rotation, preferably about three rotations in order to eliminate measurement errors.
  • the inner peripheral surface of the tubular body 10 is used as a reference.
  • the magnitude of the fullness of the outer peripheral surface can be detected.
  • the displacement detectors 4 3 store the maximum displacement value while updating the maximum displacement value from the displacement value (reset value at that time) when starting rotation of the tube 10. Also, a function of storing the minimum value and the maximum value of the displacement amount while updating them, or a function of continuously storing the displacement amount may be provided.
  • the detection of the amount of displacement by the displacement detectors 43 may be performed at some rotational angular positions in the circumferential direction by appropriately stopping the rotation of the tube 10. Even in this case, if the displacement amount is detected at a plurality of locations over the entire circumference, the deflection amount of the tube 10 can be obtained approximately.
  • the shape measuring device 4 configured as described above can provide the operational effects of the shape measuring method having the configuration shown in FIGS. 1 to 3 described above.
  • the displacement detectors 43 are biased so as to press the tube 10 against the pair of reference portions 42, 42. Therefore, a stable abutment between the pair of reference portions 42, 42 and the inner peripheral surface 11 of the tube 10 It is easy to maintain the state.
  • the tube 10 is supported in its height direction by the pedestal portion 44, and the height position is stable.
  • An appropriate measurement environment can be secured simply by rotating the tube 10 so that it slides on the pedestal portion 44 while maintaining the state sandwiched between 42 and the displacement detector 43.
  • the pair of reference portions 42.42 comes in contact with the vertical direction in which the pipe body 10 is supported by the pedestals 44, 44, and the displacement amount is detected by the displacement detecting portions 43. Since the horizontal direction is a direction orthogonal to the horizontal direction, the vertical movement of the rotation center of the tube 10 has an effect on the radial displacement of the outer peripheral surface 1.2 on the side of the tube 10. Smallest. For example, as shown in Fig. 5, even if the center of the tube 10 is displaced in the direction of B or D, it has almost no effect on the radial displacement of the outer peripheral surface detected at the position A. There is no.
  • the tubular body 10 has a shape deviating from a perfect cylindrical shape
  • the center position of the tubular body 10 is vertically displaced.
  • the center position of the tubular body 10 shifts up and down in this way, as described above, it has little effect on the radial displacement of the outer peripheral surface detected on the side of the tubular body 10. Therefore, the shape can be stably measured, and a highly reliable measurement result can be obtained.
  • the pipe (work) 10 is supported from below by the pedestals 44, 44, and the upper side of the pipe 10 and the side where the displacement detectors 43 are not arranged. Since the space (in the back side in Fig. 15) is vacant, the tube 10 can be easily set and removed from this space. Also, the tube 10 can be easily rotated from this space. Since the rotation operation is easy as described above, the rotation is manually performed. However, stable rotation with small fluctuation can be performed, and thereby high measurement accuracy can be obtained.
  • the permissible range of the amount of deflection of the outer peripheral surface with respect to the inner peripheral surface of the pipe is, for example, 20 m or less
  • the maximum Inspection for selecting pipes that have a measurement result of 16 m or less as non-defective products may be performed. In this way, it is possible to obtain a set of pipes whose total number of non-defective products is within the allowable range of 20 m or less.
  • the shape measurement is performed by rotating each tube 10 three times. Even if it does, shape measurement can be performed in about 30 seconds or less per piece. Furthermore, if mastered, shape measurement can be completed in about 10 seconds per piece.
  • the upper surface of the contact member 44 of the pedestal portion 44 contacting the outer peripheral surface 12 of the tubular body 10 is configured horizontally, but the contact member 4 42
  • the upper surface may be configured to be concave or convex.
  • the pedestal portion 44 is configured to support the tubular body 10 without changing its posture while being fixed at a predetermined position. It may be composed of one or a plurality of rollers or the like that come into contact with the outer peripheral surface 12 of the tubular body 10 while rotating.
  • the pedestals 44, 44 are arranged near both ends of the tubular body 10, but the pedestals 44 may be one or three or more. Good.
  • the number of the portions that come into contact with the tube 10 is two, but may be one or three or more.
  • the pair of reference portions is brought into contact with the support expected position when the tubular body is used. However, other positions may be used as long as the inner circumferential surface of the tubular body is used. . However, it is desirable to be near the supporting position. This is because the cross-sectional shape is likely to be similar to the planned support position.
  • the pair of reference portions 42, 42 are formed in a spherical shape.
  • the pair of reference portions 42, 42 may be in contact with the inner peripheral surface 11 of the tube 10 to serve as a reference for measuring the shape of the tube 10.
  • Various other shapes can be adopted as long as the shape is acceptable.
  • the pair of reference portions 42, 42 is configured not to rotate with the rotation of the tube 10, but may rotate with the tube 10. By doing so, the rotational resistance of the tube 10 can be reduced.
  • the axial position of the pair of reference portions 42, 42 is fixed when the tube 10 is set in the shape measuring device 4, but the pair of reference portions 42, 42 is fixed.
  • the tube 42 may be moved in the axial direction of the tube 10 to set the tube 10 at a predetermined position.
  • the displacement of the outer peripheral surface of the tube is detected only at a position facing a virtual straight line passing through the contact portion between the pair of reference portions and the tube.
  • the displacement may be detected at other positions in the circumferential direction of the tube.
  • a plurality of displacement amount detection positions are provided, but at least one detection position may be provided.
  • the displacement detector functions as the pressing portion, that is, the displacement detector also serves as the pressing portion, but the pressing portion is provided separately from the displacement detector. It may be provided.
  • a contact-type detector that contacts the outer peripheral surface of the tubular body 10 is exemplified as the displacement detector.However, the amount of radial displacement of the outer peripheral surface 12 of the tubular body 10 can be obtained. For example, it is not limited to these. Detectors based on various measurement principles, such as light-transmitting detectors, eddy-current detectors, capacitance-type detectors, focusing detectors, laser-reflection detectors, etc. Can be used.
  • the photosensitive drum substrate is described as the tube whose shape is to be measured.
  • a tubular body can be a measurement target of the present invention.
  • the measurement operator manually grasps the tube 10 and rotates it.However, a roller or the like driven by a motor or the like is used to rotate the outer surface of the tube 10 or the like. Alternatively, the tube 10 may be rotated by contacting the inner peripheral surface.
  • the second embodiment is an automatic shape measuring device 5 for automatically measuring a shape by automatically rotating a tube (work) 10 by a driving force of the shape measuring device.
  • FIG. 17 is an overall perspective schematic view of the automatic type shape measuring device 5.
  • FIG. 18 is an enlarged perspective view of a support structure of the tube 10 in the device 5.
  • FIG. 19 is an explanatory front sectional view of a main part of the device 5.
  • FIG. 20 is a side sectional view of a main part of the device 5.
  • FIG. 21 is a front sectional view showing a supporting form of a reference roller.
  • FIG. 22 is an explanatory plan view of the tube transport device.
  • FIG. 23 is an explanatory side view of the tube conveying device.
  • the shape measuring device 5 includes a pair of reference rollers (reference portions) 52, 52 which come into contact with the inner peripheral surface 11 of the tube 10 and serve as a reference for shape measurement.
  • the support rollers 5'4 ... that support the tube 10 from below while supporting the tube 10 from below, and light transmission arranged so as to sandwich the tube 10 from a direction orthogonal to the axial direction of the tube 10 Mold displacement detector 53, tube transport device 55 for loading and unloading pipe (work) 10
  • a controller 56 for controlling the operation of the device, and a main body base 50 to which these components are attached are provided. Pair of reference parts>
  • the pair of reference rollers 52 and 52 are located on the inner peripheral surface 11 near both ends of the tube 10 as shown in FIG. It is a reference for shape measurement.
  • the pair of reference rollers 52 and 52 are formed of a cylindrical member having smooth rounded edges.
  • the pair of reference rollers 52, 52 are rotatably mounted on reference support shafts 521, 521, via bearings 52, 53, respectively. Since the pair of reference rollers 52 and 52 are rotatably mounted in this manner, they come into contact with the inner peripheral surface 11 of the tubular body 10 and rotate with the rotation of the tubular body 10 to rotate the tubular body 10. The contact position can be smoothly shifted without hindering the rotation of the body 10.
  • the pair of reference rollers 52, 52 are formed as cylindrical bodies in this manner, they come into line contact with the inner peripheral surface 11 of the tubular body 10, thereby dispersing the pressure and distributing the pressure to the tubular body 10. The inner peripheral surface 11 can be prevented from being damaged.
  • the bearing 523 is configured as a bearing having an axial load resistance. Specifically, as shown in Fig. 21, it is composed of two rows of anguilla ball bearings, and is resistant to both axially outward and inward loads (axial loads). ing. As a result, even when the axial load is applied to the reference rollers 52 and 52 due to a cause such as the tube 10 being bent, smooth rotation of the reference rollers 52 and 52 is ensured. By rotating the tube 10 smoothly, stable shape measurement can be performed.
  • the reference support shafts 5 2 1 and 5 2 1 that support the pair of reference rollers 5 2 and 5 2 are composed of a metal shaft having sufficiently high rigidity, and the tube 10 is mounted on the main body base 50.
  • the equipment boxes 5 11 and 5 11 1 ing. Due to such a structure, the reference support shafts 5 2 1 and 5 2 1 can be displaced in any direction perpendicular to the axial direction of the tube 10 (vertical direction and depth direction in FIG. 17).
  • the position of the pair of reference rollers 52, 52 (the reference position for measurement) can be prevented in any direction (vertical direction and depth direction in FIG. 17) orthogonal to the axial direction of the tube 10. It does not slip. This prevents the smooth rotation of the tube 10 from being hindered.
  • the reference support shafts 5 2 1 and 5 2 1 are moved in the axial direction of the tube 10 by protruding and retracting drive units 5 2 2 and 5 2 2 installed in the equipment boxes 5 1 1 and 5 1 1. It can be driven in and out. As a result, when the tube 10 is set, the pair of reference rollers 52, 52 are retracted to the outside in the axial direction, and the tube 10 is not moved in the axial direction. It can be set. That is, the protruding / retracting drive units 52 2 and 52 2 function as protruding / retracting driving means.
  • the movement of the pair of reference rollers 52, 52 is limited to the sliding movement of the tube 10 in the axial direction, so that the shaft position itself does not move even when the movement is performed. . As a result, the accuracy as a reference for measuring the shape of the pair of reference rollers 52, 52 is ensured, and high reliability in shape measurement can be maintained.
  • the pair of reference rollers 52 and 52 are connected at a portion (planned support position) where the tube 10 is rotatably supported by a flange or the like inserted at the time of use. It comes into contact with the inner peripheral surface of the body 10. As a result, the shape can be measured under the same conditions as those in actual use. Support Roller>
  • the support rollers 54 support the tube 10 from below at both ends thereof, and press the tube 10 against the pair of reference rollers 52, 52 with a predetermined pressing force.
  • the support rollers 54 have a function of rotating the tube 10, a function of positioning the tube 10 in the axial direction, a function of moving the tube 10 up and down, and a structure of the tube 1. 0 A function of supporting from below and stabilizing the height position, and a function as a temporary placing table for temporarily supporting the tube 10 before correction and shape measurement are also realized.
  • the supporting rollers 54 are arranged at the same height, two at the lower side of both ends of the tube 10, and the four supporting rollers 54, including both ends of the tube 10, are combined. Is provided.
  • the two support rollers 54, 54 arranged at one end of the tube 10 are configured as a pair of rollers whose rotation axis directions are parallel as shown in FIG. 15 and the like. Since two support rollers 54 are arranged on both sides of the tube 10 in this manner, the position of the axis of the tube 10 and the posture of the tube 10 can be stabilized.
  • Each of the supporting rollers 54 has a small-diameter portion 541 which comes into contact with the outer peripheral surface 12 of the tubular body 10 to support the tubular body 10 from below, and a concentric large-diameter portion 5 provided outside thereof. 4 2
  • a pair of reference rollers 5 2, 5 2 abut on the inner peripheral surface 11 side of the tube 10, as shown in FIG. Only the both ends of the tube 10 outside the axial position are in contact with the tube 10. This enables the displacement detectors 53 to detect the displacement amount of this section without hindering the detection of the displacement amount of the section where the pair of reference rollers 52, 52 are in contact. ing.
  • the posture of the tubular body 10 at the time of shape measurement can be further stabilized.
  • the supporting roller does not need to contact a large part of the central portion of the tube 10, the outer peripheral surface 12 of the tube 10 may be damaged by the contact of the supporting rollers 54. Performance can also be reduced. From this point, it is particularly suitable for shape measurement of a substrate for a photosensitive drum or the like.
  • each of the support rollers 54 contact the end face of the tube 10 in the axial direction so that the tube 10 set in the apparatus 5 is positioned in the axial direction. It has become. For this reason, the spacing between the support rollers 54 on both axial sides of the tube 10 is set so as to adapt to the length of the tube 10.
  • the support rollers 54 are rotatably mounted on support roller supports 543, 543 on both sides of the tube 10, respectively. These support roller supports 543 and 543 are mounted so as to be slidable with respect to the above-mentioned equipment box '511 and 511, respectively. According to 47, the sliding operation direction is restricted only in the vertical direction. That is, the support port support members 543 and 543 function as elevating members, and the operation direction restriction rails 544 and 545 function as operation direction restriction means. They also function as part of the lifting means at the same time. By attaching the support rollers 54 to the support roller supports 5443, 5443 in this manner, the two support ports 54, 54 on both sides of the tube 10 can maintain a relative positional relationship. It can be maintained properly and high reliability can be obtained for shape measurement. In addition, since the sliding direction of the support rollers 543, 543 is regulated, it is possible to stabilize the elevating direction of the support rollers 54, and obtain high reliability in shape measurement. it can.
  • the support rollers 54 On the lower side of the support rollers 54 are interlocking rollers 544, 544 which come into contact with the outer peripheral surface of the large-diameter portion of the support rollers 544, the support roller supports 544, 544. It is mounted rotatable with respect to 3. In this way, the two support rollers 54 are linked by the interlock rollers 54, 54 on both sides of the tube 10, so that the rotation of the two support rollers 54 is made uniform. You can do it. As a result, the rotation of the tube 10 can be stabilized, and high reliability can be obtained for shape measurement.
  • the drive force of the driven drive motor 545 is rotated in a predetermined direction to transmit the constant-speed rotation to the two support ports 54, 54, which are in contact with each other, and thus to rotate the tube 10. It is supposed to. That is, the drive motor 545 functions as a rotational drive unit that rotationally drives the support roller 45. The drive motor 545 also functions as a part of the lifting / lowering means at the same time. As described above, since the rotational driving force is transmitted to the tube 10 by the support port 54 holding the tube 10, the number of members that come into contact with the tube 10 is reduced to a small extent. And contribute to accurate shape measurement
  • the supporting roller supports 543, 543 on which the supporting rollers 54 and the interlocking rollers 54, 54 are mounted are mounted on the upper and lower sides of the equipment boxes 51, 51, 51.
  • the drive cylinders 546 and 546 perform sliding operation in the vertical direction. That is, the vertical drive cylinders 546, 546 function as lifting / lowering driving means for raising / lowering the support port rollers 54.
  • the vertical drive cylinders 546 and 546 also function as a part of the elevating means at the same time.
  • the tube 10 supported on the supporting rollers 54 and the inner periphery of the tube 10 are moved.
  • the lower surface moves back and forth between the measurement position where the lower surface contacts the pair of reference rollers 52 and 52 and the separated position where the inner lower surface is separated from the pair of reference rollers 52 and 52.
  • the vertical drive cylinders 546, 546 When measuring the shape of the tube 10, the vertical drive cylinders 546, 546 lift the tube 10 to the measurement position, and furthermore, support the roller support members 543, 5. By applying a predetermined upward force to 43, the pipe body 10 at the measurement position is pressed against the pair of reference rollers 52, 52 with a predetermined pressing force. As a result, when measuring the shape of the tube 10, (7) The contact pressure with the pair of reference rollers 52, 52 can be properly maintained, and high reliability can be obtained for shape measurement.
  • the contact pressure between the inner peripheral lower surface of the tube 10 and the pair of reference rollers 52, 52 is reduced by the tube 1 Regardless of the weight of 0, it is possible to set an arbitrary contact pressure that is equal to or greater than the weight of the tube 10. As a result, the most appropriate contact pressure for shape measurement can be realized, and accurate shape measurement can be performed. Specifically, a pressure that does not substantially cause deformation at the end of the tube 10 can be set as the contact pressure. Alternatively, a pressure that positively causes some deformation at the end of the tube 10 can be set.
  • the displacement detectors 53 detect the amount of displacement of the outer peripheral surface 12 of the tube 10 in the radial direction.
  • non-contact type detectors are provided at five different positions of the tube 10 in the axial direction. Are provided. Two of the five displacement detectors 53 are arranged so as to detect the displacement of the section including the position facing the pair of reference rollers 52, 52, respectively.
  • Each of the displacement detectors 53 is a light transmission type displacement detector arranged so as to sandwich the tube 10 from a direction perpendicular to the axial direction of the tube 10. For this reason, the light irradiating section and the light receiving section which are arranged so as to sandwich the tube 10 form a pair of displacement detectors 53, and the light irradiated from the light irradiating section (for example, Of the laser light), the light transmitted without being blocked by the tube is detected by the light receiving portion, and thereby the surface position of the outer peripheral surface 12 of the tube 10 is detected.
  • Each of the displacement detectors 53 is not only a displacement amount at one position on the outer peripheral surface of the tube 10, but also a position opposed thereto (a position different by half a circle in the circumferential direction of the tube 10, 18 0). Rotated position, or out of phase Displacement) can be detected at the same time.
  • the displacements detected at the positions facing each other the diameter of the tube 10 passing through these two positions can be obtained, and the shape of the tube 10 can be grasped more specifically. be able to.
  • the displacement detectors 53 can perform shape measurement similar to the shape measurement method of the configuration of FIGS. 10 and 11.
  • the pipe transfer device (pipe transfer means) 55 transfers the pipe 10 supplied to the shape measuring device 5 to a predetermined loading position 55. From A, the first transporting device 551, which transports the shape to the support roller 54 on which the shape measurement is performed, and the pipe 10 whose shape has been measured from the support roller 54 to the predetermined unloading position 55B And a second transfer device 552 for transferring.
  • the first transfer device 55 1 is provided with transfer arms 55 3 and 55 3 arranged on both sides of the tube 10, respectively. Pickup protrusions 554 and 554 to be inserted into the body 10 are formed.
  • the first transfer device 55 1 includes a slide drive source 5 5 5 5 5 5 for moving the transfer arms 5 5 3 5 5 3 in the axial direction of the tube 10, and a pickup protrusion 5 5 Moving rails 5 5 6 and 5 5 6 for moving the transfer arms 5 5 3 and 5 5 3 picking up the pipe 10 with 4 5 5 4 from the loading position 55 A to the position on the support rollers 54
  • the second transfer device 55 2 also has transfer arms 55 3, 53 3 arranged on both sides of the tube 10, respectively.
  • the controller (control means) 56 generally controls the operation of each part of the shape measuring device 5, and is composed of, for example, a sequencer composed of a computer having a CFU and a memory.
  • the operating units controlled by the controller 56 include a retracting drive unit 52 2, 52 2 for moving the pair of reference rollers 52, 52 to retract, and a drive motor 54 for rotatingly driving the support rollers 54. 5, 5 4 5, up and down drive cylinders 5 4, 5 4 6 to move the support rollers 5 4... up and down, displacement detectors 5 3... to measure the shape of the tube 10, 1st transfer device 5 5 1
  • the slide drive sources 55 5 and 55 5 of the second transfer device 55 2 and the slide drive sources 55 5 of the second transfer device 55 5 can be used. Is controlled at each of the following timings.
  • Examples of the procedure of the shape measurement executed under the control of the controller 56 include the following examples.
  • the controller 56 causes the first transporting device 55 1 to carry in the tube 10 at the carry-in position .55 A onto the support rollers 54.
  • the transfer arms 55 3 and 55 3 are moved by the moving rails 55 6 and 55 6. , 553 to the loading position 55A. Then, the interval between the transfer arms 55 3 and 55 3 is reduced by the slide drive sources 55 5 and 55 5, so that the pickup protrusions 55 4 and 55 4 are inserted into the inside of the tube 10. . In this state, the transfer arm 55 3, 55 3 is moved from the loading position 55 A by the moving rails 55 6, 55 6 to the position above the support roller 54, so that the tube 10 is loaded. .
  • the track of the moving rails 556 rises obliquely upward from the carry-in position, reaches a position substantially horizontally above the support rollers 54, and then descends obliquely downward. Orbital form like this The shape prevents the conveyed pipe 10 from interfering with the displacement detectors 53.
  • the controller 56 retracts the pair of reference rollers 52, 52 to both outsides by the retracting operation of the retracting drive units 522, 522. This prevents the incoming pipe 10 from interfering with the reference rollers 52,52.
  • the slide arms 555, 555 expand the transfer arms 553 to both outer sides by the slide drive sources 555, 555 to move the tube 10 to the support rollers 54.
  • the small diameter part of 541 ...
  • the transfer arms 553, 553 expanded the transfer arms 553, 553 are returned to the transfer position 55A by the moving rails 556, 556, and the controller 56 is prepared for the next transfer of the tube 10.
  • the pair of reference rollers 52, 52 are inserted into the inside of the tube 10 by the retracting operation of the retracting drive units 522, 522. Then, in this state, the tube 10 mounted thereon is lifted together with the support rollers 54 by the vertical drive cylinders 546.
  • the tube 10 When the pair of reference rollers 52, 52 comes into contact with the inner peripheral surface 10 of the tube 10, the tube 10 is further pressed against the pair of reference rollers 52, 52 with a predetermined pressing force. The tube 10 is rotated by the rollers 545 and 545 via the interlocking roller 544 and the supporting roller 54.
  • the displacement detectors 53... Detect the amount of displacement in the radial direction of the outer peripheral surface 12 in each axial section of the tube 10.
  • the controller 56 unloads the pipe 10 whose shape has been measured by the second transfer device 552 from above the support rollers 54 by the same procedure as the loading procedure by the first transfer device 551. It is carried out to the position 55B, and a series of shape measuring operations for one pipe 10 is completed.
  • the shape measuring device 5 configured as described above can provide the operational effects of the shape measuring method shown in FIGS. 10 and 11 described above.
  • the shape can be automatically measured, and therefore, it can be easily incorporated into an automation line. .
  • the supporting rollers 54 supporting the tube 10 transmit the rotational driving force to the tube 10, position the tube 10 in the axial direction, move the tube 10 up and down, and move the tube 10.
  • Setting 10 to the shape measurement position of the tube 10 to measure the shape to simultaneously perform each function of maintaining the contact state with the reference rollers 52 and 52 by supporting 10 from below.
  • the operation parts are integrated to realize a structure with a small number of operation parts. Also, the number of parts where many parts come into contact with the tube 10 to be measured is small. As a result, it is possible to eliminate an error factor and contribute to accurate shape measurement, and to obtain high reliability in shape measurement.
  • the supporting rollers 52 support the tube 10 at both ends thereof, a section where the pair of reference rollers 52, 52 abuts is also subjected to the displacement measurement by the displacement measuring device 53. can do. Thereby, as described above, the wall thickness distribution and the like of the tube 10 can be obtained, and the shape of the tube 10 can be specified in more detail.
  • the non-contact type displacement detector 53 is a light transmission type displacement detector
  • the light is diffracted and reaches the light receiving portion, and a detection result is obtained in which the shape of the outer peripheral surface 12 that is more minute than necessary is omitted. Therefore, it is possible to easily obtain an appropriate detection result excluding the displacement amount of the outer peripheral surface 12 due to an unnecessarily fine surface defect.
  • the pair of reference rollers 52, 52 are fixed as reference portions because they do not move in a direction perpendicular to the axial direction of the tube 10 when setting the tube 10 in the shape measuring device 5.
  • the position in the power direction is stable, which can contribute to accurate shape measurement.
  • the shape measuring device 5 can function as a cutting device.
  • this automatic type shape measuring apparatus 5 when a plurality of pipes having various displacements were measured for 10 times each, as shown in FIG.
  • the variation (measurement error) of the measurement result is a maximum of 3 m, confirming that it has high reliability.
  • This measurement error is an extremely excellent value for a pipe shape measuring device that can be used for mass production.To reduce the margin for absorbing the measurement error and reduce the situation where a good product is erroneously determined to be a defective product. Can be.
  • the allowable range of the amount of deflection of the outer peripheral surface with respect to the inner peripheral surface of the tubular body is, for example, the sum of the respective processing limit precision levels of bending and uneven wall thickness, which are the causes of failure of the tubular body, 20 0 ⁇ m If this is the case, it is only necessary to take into account the maximum measurement error of 3 m and conduct an inspection to select tubes whose flame measurement results are 17 or less as good products. In this way, it is possible to obtain a set of pipes whose total number of non-defective products is within the allowable range of 20 m or less while suppressing the number of erroneously determined defective products. Can be.
  • the pipe shape measuring device 5 performs a series of steps of automatically loading, setting, measuring the shape, and unloading the pipe 10 sequentially for 60 seconds per pipe. It can be performed in the following degree. Furthermore, a series of processes can be performed in 30 seconds or less, 10 seconds or less, and 5 seconds or less per tube by operating at high speed.
  • the shape measuring device 5 can measure the shape of each tube at a high speed, the shape measurement and the pass / fail judgment of all the manufactured tubes can be easily performed. It is possible to guarantee that the deflection amount and the like are within a predetermined range for all the pipes to be shipped at a known limit level of the processing accuracy.
  • the photosensitive drum substrate is generally stored in a case or the like as a plurality of units as a unit, transported, and traded. Usually, one unit is at least 10 units, for example, 80 units or 140 units. It is a book. According to the shape measuring device 5, it is possible to guarantee that the deflection amount is, for example, 20 m or less for all of them. Modified example>
  • the pair of reference portions is brought into contact with the expected support position when the tubular body is used, but it may be located at any other position on the inner peripheral surface of the tubular body. Good. However It is desirable to be near the supporting position. This is because the cross-sectional shape is likely to be similar to the planned support position.
  • the shape measurement is performed with the axial direction of the tube 10 being substantially horizontal.
  • the shape measurement is performed with the axial direction of the tube 10 being substantially vertical. You may do it. In this way, since the tube 10 is less likely to bend under its own weight, the original shape of the tube 10 can be measured.
  • the position facing the virtual straight line passing through the contact portion between the pair of reference portions and the tube, and the position facing the virtual straight line are defined as the displacement detection positions.
  • another position in the circumferential direction may be set as the detection position.
  • a plurality of displacement detection positions are provided, but it is sufficient if at least one.
  • the photosensitive drum base is described as the tube 10 whose shape is to be measured.
  • the present invention is not limited to this.
  • a conveying roller used for a copying machine, a developing roller, and a transfer roller A roller can also be suitably applied.
  • a tube can be a measurement target of the present invention.
  • a light transmission type detector transmission type optical sensor
  • the displacement detector includes a contact-type displacement sensor that has a contact that comes into contact with the outer peripheral surface of the tube 10 and detects displacement from the movement of the contact, and a reflection-type optical type that can detect non-contact.
  • a bearing may be arranged outside the tube 10. More specifically, as shown in FIG. 25, a reference roller 52 4 is fixed to a support shaft 5 25 so as to be non-rotatable, and this support shaft 5 25 is bearing outside the tube 10.
  • the form in which it is rotatably supported by 5 26 can be mentioned. By doing so, it is possible to adopt a large bearing without being limited by the inner dimensions of the tube 10, rotate the pair of reference portions more stably, and obtain high reliability in shape measurement. be able to.
  • the configuration is provided in which the tube transport device 55 that transports the tube 10 is provided. 4 It may be carried in and out of the shape measurement position.
  • the operating direction regulating means is constituted by two operating direction regulating rails 547, 547. Any configuration may be adopted as long as the operation direction can be regulated, even if the operation direction is restricted, even if it is constituted by a rail or a convex portion extending in the operation direction.
  • the support rollers 54 directly supported by the vertical drive cylinders 546 and 546 in the above-described second embodiment are replaced with a rotating member 571 and a weight. It is configured to be supported by 5 7 4.
  • FIG. 26 is an enlarged perspective view of a support structure for the tube 10 in the third embodiment.
  • FIG. 27 is a front sectional view showing a supporting form of the reference roller.
  • Figure 28
  • a pair of reference rollers 5 are provided.
  • Reference numerals 2 and 52 denote inner peripheral surfaces 11 near both ends of the tubular body 10 and abut on a lower position (lower inner peripheral surface) thereof, and serve as a reference for shape measurement.
  • the pair of reference rollers 52, 52 of the second embodiment is formed of a member whose outer peripheral portion has an arc-shaped cross section.
  • the pair of reference rollers 52, 52 are rotatably attached to reference support shafts 521, 521, via bearings 52, 53, respectively. Since the pair of reference rollers 52 and 52 are rotatably mounted in this manner, the pair of reference rollers 52 and 52 abut on the inner peripheral surface 11 of the tube 10 and rotate with the rotation of the tube 10, The contact position can be smoothly shifted without hindering the rotation of the tube 10.
  • the pair of reference rollers 52, 52 has a circular arc-shaped cross section at the outer peripheral portion, and makes point contact with the inner peripheral surface 11 of the tubular body 10, thereby forming the reference rollers 52, 52.
  • the distance from the rotation axis to the point of contact with the tube 10 can be reliably kept constant.
  • the support rollers 54 supporting the tube 10 are attached to the support roller support 54, and the support roller support 54 is provided.
  • the slide operation direction 3 is restricted only in the vertical direction by the operation direction restriction rails 547 and 547.
  • a drive belt 545b is stretched between the drive shaft 545a of the 545 and the interlocking roller 544, and the drive motor 545 is driven by this drive motor.
  • the interlocking roller 544 is rotatably driven via the belt 545b.
  • the drive motor 545 is fixedly installed in the equipment box 5111 and moves up and down together with the support rollers 54 and the support roller support 543. It does not work. Thereby, the support rollers 54 and the support roller support 543 can be moved up and down with a small force.
  • the supporting roller supports 543 and 543 are supported by rotating members 571 and 571, respectively.
  • the rotating member 571 is rotatably supported by a support shaft (fulcrum) 572 at an intermediate position in the longitudinal direction.
  • An elongate hole 573 is formed on one end side of the turning member 551, and a supporting roller support 543 is rotatably attached thereto. With this mounting form, the support roller support 5443 is allowed to move vertically.
  • a weight 574 is attached to the other end of the rotating member 571.
  • the weight 574 is substantially the same as that of the support roller support 544 3 and the support rollers 54 that move up and down (up and down) together with the support roller support 543. It is something to balance. That is, the rotating member 571 and the weight 5574 bear the weight of the supporting roller supports 543 and 543 and the members that move up and down together with the supporting roller supports 543 and 543. It functions as a weight supporting means to support 43. '
  • the weight 554 is screwed to the other end of the rotating member 571 by a screw portion 575, and is attached.
  • the distance between 5 7 2 and the weight 5 7 4 can be adjusted. That is, the screw portion 575 functions as weight position adjusting means.
  • air cylinders 576, 576 for driving the rotating members 571, 571 to rotate are attached.
  • the air cylinder 5756 applies a predetermined upward force to the supporting roller support 543 at the measurement position by rotating the rotating member 571 to rotate the rotating member 571.
  • Pipe 10 is pressed against a pair of reference rollers 52, 52. That is, the air cylinder 576 functions as a pressing force applying means.
  • the air cylinder 576 is capable of rotating the rotating member 571 in both left and right rotation directions, thereby moving the support roller support 543 to the measurement position and the separation position. It also functions as a means for moving between and.
  • the rotating member 571 and the weight 574 bear the weight of the supporting roller supports 543, 543 and the members that move up and down together with the supporting roller, and the pipe 10 is connected to the pair of reference rollers.
  • the air cylinders 576, 576 only bear the force pressing the fins 52, 52
  • the force borne by the air cylinders 576, 576 is reduced.
  • the force exerted by the air cylinders 576 and 576 can be set and controlled accurately, and the contact pressure between the tube 10 and the pair of reference rollers 52 and 52 can be accurately determined. High reliability can be obtained for the shape measurement.
  • the contact pressure between the tube 10 and the pair of reference rollers 52, 52, or the contact pressure between the tube 10 and the support rollers 54, is substantially equal to the end of the tube 10.
  • the pressure can be set without any significant deformation.
  • the support roller support 5443 can be positioned at the 3 ⁇ 4ij fixed position. It may be located at the separated position. At this time, if the weight 574 is adjusted so as to be located at the separated position, the air cylinders 576 and 576 have a driving force in the direction in which the support port support 543 is lifted. There is an advantage that the support roller 543 can be moved up and down only by the support roller. ⁇ Modified example>
  • the third embodiment has been described above, but the present invention is not limited to the above, and the third embodiment As in the first and second embodiments, various modifications are possible, and the configuration may be as follows.
  • the pressing force applying means is constituted by the air cylinder, but these may be constituted by various actuators and the like.
  • a hydraulic cylinder using hydraulic pressure, an electric motor using electric power, or the like may be used.
  • the weight supporting means constituted by the rotating member 571 and the weight 574 in the third embodiment described above is constituted by an elastic member 581.
  • FIG. 29 is a side view showing a supporting form of the supporting roller according to the fourth embodiment.
  • the support rollers 54 supporting the tube 10 are attached to the support roller support 53, and the support roller support 54 is provided.
  • the slide operation direction 3 is restricted only in the vertical direction by the operation direction restriction rails 547 and 547.
  • the support roller support 543 is urged upward by an elastic member 581 made of, for example, a panel to support the support roller support 543 and the support rollers 54 that move up and down together therewith. Weight is supported. That is, the elastic member 581 functions as a weight supporting means for supporting the weight of the support roller support 543 and members that move up and down together with the support roller support 543.
  • the support roller support 54 Reference numeral 3 is such that the inner peripheral surface 11 of the tubular body 10 supported by the supporting rollers 54 is located at a separated position separated from the pair of reference rollers 52, 52.
  • the elastic member 581 has an upper end contacting the support roller support 543 and a lower end screwed into the panel support shaft 582 on the main body base 50. Stopped at 3.
  • the height of the engaging member 583 can be adjusted by the amount of screwing into the panel support shaft 582, and thereby the height of the lower end of the elastic member 581, and consequently the support roller 54, can be adjusted.
  • the height position of ... can be adjusted. That is, the engagement member 583 functions as a height position adjusting means of the support roller support 543. With this configuration, the height position of the support opening roller support 543 corresponds even when the size of the pipe 10 or the support rollers 54, etc., which are the shape measurement targets, is changed. Can be done.
  • the support roller support 5 4 3 is pushed up to the measurement position where the pipe 10 above the support roller 54 contacts the pair of reference rollers 52, 52. Further, an air cylinder 584 for pressing the tube 10 with the reference rollers 52, 52 with a predetermined pressing force is arranged. That is, the air cylinder 584 functions as a pressing force applying means.
  • the elastic roller 581, and the support roller supports 543, 543, and together with the elastic member 581 are provided. Since the air cylinder 584 only has to bear the force of pressing the tube 10 against the pair of reference rollers 52, 52 via the support rollers 54, the air cylinder 584 has to bear the weight of the member to be raised and lowered. The contact pressure between the tube 10 and the pair of reference rollers 52 and 52 by the cylinder 584 can be set and controlled accurately, and thereby high reliability in shape measurement can be obtained. ⁇ Modified example>
  • the fourth embodiment has been described above, but the present invention is not limited to the above, and the fourth embodiment As in the first to third embodiments, various modifications are possible, and the configuration may be as follows.
  • a panel is illustrated as an elastic member.
  • any panel, panel, rubber, or the like that can exhibit elastic force can be appropriately used.
  • the pressing force for pressing the tubular body 10 on the supporting rollers 54 to the pair of reference rollers 52, 52 is as follows. Instead of using an air cylinder 576, it is obtained by a weight 574.
  • the weight and the position of the weight 574 are adjusted around the support shaft 572 by the weight 574 without driving the air cylinder 576. Is set to be larger than the moment by the support roller support 543 and the like.
  • the tubular body 10 above the support rollers 54 ... is pressed against the pair of reference rollers 52, 52 with a predetermined pressing force without driving the air cylinder 576.
  • the rotating member 55 1 and the weight 55 4 urge the support roller support 54 3 and the like upward, and the tube 10 10 is supported via the support rollers 54. Function as a pressing means for pressing the pair of reference rollers 52, 52 with a predetermined pressing force.
  • the air cylinder 5756 pushes the support roller support 543 downward when setting the pipe 10 on the support rollers 54 and when removing the pipe 10 after shape measurement. It is designed to be moved to the separated position. That is, in the fifth embodiment, the air cylinder 576 is a support roller support 5 It functions as a descent drive means for moving the support roller support 5 43 ′ by staking the biasing force of 4 3 upward.
  • the screw portion 575 for adjusting the position of the weight 574 is a biasing force adjusting means for adjusting the biasing force for biasing the support roller support 543 upward. Function. Thereby, the predetermined pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 can be appropriately adjusted.
  • the pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 is not provided by the actively driven means such as the air cylinder 576, but by the rotating member 5.
  • the contact pressure between the tube 10 and the pair of reference rollers 52, 52 can be set accurately in advance in order to be assigned by the pressing means that automatically exerts urging force consisting of 7 1 and the weight 5 7 4. This makes it possible to obtain high reliability for shape measurement.
  • the descent drive means is constituted by an air cylinder, but these can be constituted by various types of actuators.
  • a hydraulic cylinder using hydraulic pressure, an electric motor using electric power, or the like may be used.
  • the sixth embodiment has the same mechanical configuration as that of the above-described fourth embodiment, but has the same structure as that of the fourth embodiment except that the tube 10 on the support rollers 54 is pressed against the pair of reference rollers 52, 52.
  • the pressure is obtained not by the air cylinder 584 but by the elastic member 581.
  • the elastic member 581 presses the pipe 10 on the support rollers 54 ... with a predetermined pressing force without driving the air cylinder 584.
  • the air cylinder 584 pushes down the support roller support 543 when setting the tube 10 on the support roller 54 and when removing the tube 10 after measuring the shape. To move to the separated position. In other words, in the sixth embodiment, the air cylinder 584 is supported by the support roller support 543 by staking the support roller support 543 by the elastic member 581 upward. It functions as a descent drive means for moving.
  • the engaging member 583 for adjusting the lower end position of the elastic member 581, the urging force for adjusting the urging force for urging the support roller support 543 upward. Functions as adjusting means.
  • the predetermined pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 can be appropriately adjusted.
  • the pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 is not provided by an active driving means such as the air cylinder 584, but by an elastic member 581.
  • the contact pressure between the tubular body 10 and the pair of reference rollers 52, 52 can be accurately set in advance because the pressure is controlled by a pressing means that automatically exerts an urging force. High reliability can be obtained.
  • the descent drive means is constituted by an air cylinder, but these can be constituted by various types of actuators.
  • a hydraulic cylinder using hydraulic pressure, an electric motor using electric power, or the like may be used.
  • the elastic member 581 and the air cylinder 584 are arranged in parallel in the above-described sixth embodiment (FIG. 29). 1 and an air cylinder 594 are arranged in series.
  • FIG. 30 is a side view showing a supporting form of a supporting roller in the shape measuring apparatus according to the seventh embodiment.
  • the support rollers 54 supporting the tube 10 are attached to the support roller support 53, and the support roller support 54 is provided.
  • the slide operation direction 3 is restricted only in the vertical direction by the operation direction restriction rails 547 and 547. '
  • the support roller support 543 is supported by an air cylinder 594 mounted on the main body base 50 via an elastic member 591 made of, for example, a panel.
  • a spring support shaft 592 is attached to an operating end 5995, and an engaging portion 5993 is screwed into a thread formed on the panel support shaft 5992. ing.
  • the lower end of the elastic member S91 is fixed to the engaging member 593.
  • the height of the engaging member 593 can be adjusted by the amount of screwing into the panel support shaft 592, and thereby the elastic member with respect to the operating end 595 of the air cylinder 594 can be adjusted.
  • the height of the lower end of 5 9 1 can be adjusted.
  • the air cylinder 594 is provided between the measurement position where the body ⁇ ⁇ 0 on the support roller 54 and the reference roller 52 comes in contact with the reference rollers 52 and 52 and the separation position separated from the reference rollers 52 and 52.
  • the support 543 is driven up and down via the elastic member 591.
  • the air cylinder 594 further pushes up its working end 595, and the elastic member 591 presses the pipe at a predetermined pressure. 10 is pressed against the pair of reference rollers 52, 52. That is, the air cylinder 594 functions as a lifting drive means.
  • the working end 595 of the air cylinder 594 comes into contact with the stoppers 596, 596 provided at the predetermined height position so that it does not exceed the predetermined upper limit height position. I have. Then, the engaging member 593 for adjusting the lower end height position of the elastic member 591 with respect to the working end 595, the working end 595 comes into contact with the stoppers 596 and 5996. In this case, the urging force of the elastic member 591 is adjusted so as to exert a predetermined pressing force for pressing the tube 10 against the pair of reference rollers 52, 52. That is, the engagement member 593 functions as an urging force adjusting unit using the elastic member 591.
  • the pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 is a means for actively driving such as an air cylinder 594. Rather, it is in charge of an elastic member 591 that automatically exerts a biasing force.
  • the biasing force of the elastic member 591 can be appropriately set in advance by the engagement member 593, so that the force between the pipe 10 and the pair of reference rollers 52, 52 can be adjusted.
  • the contact pressure can be set accurately, which can provide high reliability for shape measurement.
  • the height position of the engaging member 593 is adjusted.
  • the biasing force of the elastic member 595 was adjusted, the height position of the stoppers 596, 596 that set the upper limit of the vertical movement of the air cylinder (elevation drive means) 594 may be adjustable. . Modified example>
  • the seventh embodiment has been described.
  • the present invention is not limited to the above, and various modifications are possible as in the first to sixth embodiments described above. It may be configured.
  • the lifting / lowering drive means is constituted by an air cylinder, but these can be constituted by various types of actuators.
  • a hydraulic cylinder using hydraulic pressure, an electric motor using electric power, or the like may be used.
  • FIG. 31 is a front sectional view showing a support form of the tubular body in the eighth embodiment.
  • each support roller 60 has a tapered surface 6 on its outer peripheral surface.
  • the shape measuring device 5 can function as a deburring device.
  • the tube 10 such as the base for the photosensitive drum is used in a state where the flanges 80 and 80 formed in a sufficiently accurate circular shape are pressed into the tube.
  • the cross-sectional shape of both ends of the tube 10 is often corrected.
  • the ninth embodiment measures the shape of the tubular body 10 while temporarily correcting the shape of both ends of the tubular body 10, so that the tubular body in a state similar to that in actual use is measured. It is to grasp the shape of the body.
  • FIG. 32 is a conceptual diagram for explaining the method for measuring the shape of the tubular body according to the ninth embodiment.
  • Fig. 33 is the same side view.
  • the method for measuring the shape of the tube according to the ninth embodiment is as follows. 6 2, 6 2 and the outer straightening rollers 6 4..., And the displacement amount in the radial direction of the outer peripheral surface 12 of the tubular body 10 rotating in the straightened state is detected by the displacement detectors 30. .
  • the inner straightening rollers 62, 62 and the outer straightening rollers 64 are used for measuring the shape, respectively, of the inner peripheral surface 11 and the outer peripheral surface 1 2 of the both ends 13, 13 of the tube 10. Is to temporarily correct the cross-sectional shape of both end portions 13 and 13 of the tubular body 10.
  • the inner straightening rollers 62 and 62 are arranged on both sides of the tube 10 in total, two in total, and the outer straightening rollers 64 and 2 are arranged in two on each side of the tube 10. A total of four are arranged.
  • the two outer correction rollers 64 on both sides of the tube 10 stabilize the position of the shaft of the tube 10 and the posture of the tube 10 with high accuracy on both sides of the tube 10
  • the cross-sectional shape of the ends 13 and 13 can be corrected. Further, the tube 10 can be stably supported.
  • the inner straightening rollers 62, 62, the outer straightening rollers 64 are located inside and outside the tube 10, respectively, and the tube 10 is sandwiched from inside and outside, so that the tube 10 is more stably held. can do.
  • the inner straightening rollers 62, 62 and the outer straightening rollers 64 are arranged inside and outside the tube 10, respectively, it is necessary to apply a correcting force to the tube 10 while arranging them near each other. Can be.
  • the inner straightening rollers 62, 62, the outer straightening rollers 64,... Are all located on the lower half side of the tubular body 10, and are arranged in a narrow area of about 90 degrees or less. For this reason, the inner straightening rollers 62, 62, the outer straightening rollers 64,... Can be firmly positioned with respect to each other, and accurate correction can be performed on both end portions 13, 13 of the tube 10. it can.
  • the inner straightening rollers 62, 62 and the outer straightening rollers 6.4 contact the inner peripheral surface 11 and the outer peripheral surface 12 of the tube 10 at a position where the circumferential position of the tube 10 is different.
  • the inner straightening rollers 62, 62 are located between the outer straightening rollers 64, 64. In this way, since the inner straightening rollers 62, 62 and the outer straightening rollers 64 are located at different circumferential positions in a narrow range in the circumferential direction of the tube 10, the position of the tube 10 with respect to the tube 10 is reduced. To provide corrective power efficiently and correct shape accurately It can be carried out.
  • the portions where the inner straightening rollers 62, 62 and the outer straightening rollers 64 contact the tube 10 are the portions that are supported by the flanges 80, 80 when the tube 10 is actually used.
  • the inner peripheral surface 11 and the outer peripheral surface 12 correspond to (the region S hatched in FIG. 4).
  • the inner straightening rollers 62, 62 and the outer straightening rollers 64,... are located at portions where the tubular body 10 is expected to be straightened by the flanges 80, 80 when actually used. The shape can be corrected.
  • the inner straightening rollers 62, 62 and the outer straightening rollers 64 contact the inner circumferential surface 11 and the outer circumferential surface 12 of the tube 10 with a cylindrical surface formed on the outer circumference thereof. As a result, the inner straightening rollers 62, 62 and the outer straightening rollers 64 disperse the contact pressure to prevent local deformation of the tubular body 10.
  • the relative positional relationship between the inner straightening rollers 62 and 62 and the outer straightening rollers 64 is determined at a straightening position for straightening the cross-sectional shape of the end portions 13 and 13 of the tube 10. It is positioned so that
  • the outer correction rollers 64 and the inner correction rollers 62, 62 in this embodiment. Are positions at which the outer peripheral surface 12 and the inner peripheral surface 11 of both end portions 13: 13 of the tubular body 10 are in contact with each other. In other words, if the cross-sectional shape of both end portions 13 and 13 of the tubular body 10 is inappropriate, the tubular body 10 is straightened by the outer straightening rollers 64 and inner straightening rollers 62 and 62. The force has been added.
  • both ends 13 and 13 of the tubular body 10 have cross-sectional shapes due to contact between the outer straightening rollers 64 and the inner straightening rollers 62 and 62 both fixed at the straightening position. Temporarily corrected properly. Note that the deformation of both ends 13 and 13 of the tubular body 10 due to the temporary correction includes elastic deformation (only elastic deformation may be included), and the inner correction rollers 62, 62 and If the contact state with the outer straightening roller 6 4 Some of them return. (Example of shape measurement)
  • the central portion 104 b of the first example of the tubular body 104 has an appropriate perfect circular shape, but the both end portions 104 a, 100. 4a is the case where the cross section is flat.
  • Such a shape can be obtained by cutting a long tube material formed by extrusion or the like into a predetermined size as described above, for example, when manufacturing a substrate for a photosensitive drum or the like. This is likely to occur when the side edges 104a, 104a of 1 are deformed flat by cutting.
  • both end portions 104a and 104a were deformed flat, and when the conventional shape measurement shown in, for example, FIGS. Since the ends 104a and 104a move up and down due to the rotation of the tube 104, the lower part of the outer peripheral surface of the central portion of the tube 104 in the longitudinal direction also moves up and down. However, large deflection is detected, and it is judged as a shape far from the perfect cylindrical tube shape. It is highly likely that a shape inspection with the prescribed acceptance criteria will result in a defective product.
  • such a tubular body 104 is press-fitted at both ends with flanges 80, 80, etc., as shown in FIG. 0 4a is corrected to a perfect circular shape and its shape defect is eliminated, and the shape at the time of actual use becomes a perfect cylindrical shape, and there may be no problem in using it at all.
  • both ends 104 a and 104 a of the tubular body 104 were temporarily corrected and approximated in actual use. Since the shape of the tube 104 is measured while reproducing the shape of both ends of the tube, as shown in Fig. 34, there is a tube defect near both ends that has a pseudo defect that is eliminated during actual use. Even for 04, a shape measurement result including whether or not the defect remains during actual use can be obtained.
  • the tubular body 105 of the second example has a constant cross-sectional shape over its entire length as shown in FIG. 35A, but has a non-circular cross-sectional shape.
  • an elliptical cross-sectional shape is assumed, such as being crushed by being sandwiched from above and below or from the left and right.
  • Such a shape is likely to occur when a long tube is manufactured by extruding or drawing the tube 105.
  • the conventional shape measurement shown in FIGS. 56 and 57 and the like tends to be judged as a normal cylindrical tubular shape. That is, the tubular body 105 supported and rotated by the both end portions 105a, 105a moves up and down by the rotation phase, but the lower part of the outer peripheral surface of the central portion in the longitudinal direction is almost high. Because the position does not change, it is difficult to detect deflection. There is a high possibility that a shape inspection with a predetermined acceptance criterion will result in a non-defective product.
  • both ends 105a, 105a of the tube 105 are temporarily corrected so that the shapes of the both ends of the tube approximate to those in actual use. Since the shape of the tube 105 is measured while reproducing it, even if there is a shape defect that is difficult to detect as shown in Figs. 35A and 35B, it is a defect that remains during actual use. A shape measurement result including whether or not is obtained is obtained.
  • the ninth embodiment has been conceptually described.
  • the ninth embodiment can be configured with a mechanical configuration substantially similar to that of the above-described second embodiment or the like.
  • FIG. 36 is an enlarged perspective view of a support structure of a tubular body in a case where the ninth embodiment is configured with a mechanical configuration substantially similar to that of the second embodiment and the like.
  • the pair of reference rollers 52, 52 in the second embodiment correspond to the inner correction rollers
  • the support rollers 54 correspond to the outer correction rollers
  • the support roller support (outer straightening roller support) 543, 543 contacts the stoppers 548, 548 attached to the equipment box 511, 511 at the upper limit side of the slide operation by the lower drive cylinder 546, 546. It is like that.
  • the stoppers 548 and 548 come into contact with the supporting roller supports 543 and 543, the relative positional relationship between the outer correcting roller (supporting roller) 54 and the inner correcting roller (reference roller) 52 and 52 is determined.
  • the position is set so as to be located at a correction position for correcting the cross-sectional shape of the end portions 13 and 13 of the tubular body 10.
  • the vertical drive cylinders 546 and 546 lift the tube 10 together with the support roller supports 543 and 543 and the outer straightening rollers 54. , 543 are pressed against the stoppers 548, 548 with a sufficiently large pressing force so that the position of the outer correcting rollers 54 can be fixed at the correcting position. In this way, since the position of the outer straightening rollers 54 is fixed at the straightening position, complicated control is not required for shape correction of the both ends 13, 13 of the tubular body 10. ing.
  • the correction positions of the outer straightening roller 54 and the inner straightening roller 52.52 are determined when the cross-sectional shapes of both end portions 13 and 13 of the tube 10 are appropriate.
  • the outer straightening rollers 54 and inner straightening rollers 52, 52 are located at the positions where they contact the outer peripheral surface 12 and the inner peripheral surface 11 of both ends 13 and 13 of the tubular body 10, respectively. . That is, when the cross-sectional shape of the both ends 13, 13 of the tube 10 is inappropriate, the tube 10 is corrected by the outer straightening rollers 54 and the inner straightening rollers 52, 52. Positive force is being added.
  • the displacement detectors 53 detect the amount of displacement of the outer peripheral surface 12 of the tube 10 in the radial direction.
  • the displacement detectors 53 are located at five different positions of the tube 10 at different axial positions. A contact type is provided.
  • a large pressing force (correction force) is applied to the 74 part, while a small or zero pressing force is applied to the part close to a perfect circle.
  • both end portions 13 and 13 of the tubular body 10 is actually detected, and the pressing force (correction force) applied to the tubular body 10 is varied according to the detected specific sectional shape. You may make it happen. In this way, it is possible to surely perform the correction suitable for the both ends 13, 13 of the tubular body 10.
  • the detection of the cross-sectional shape of both end portions 13 and 13 of the tubular body 10 may be performed prior to the correction or while the correction is being performed.
  • the applied pressing force is an appropriate size for correcting the cross-sectional shape. Can be reliably obtained.
  • a displacement detector for detecting the amount of displacement of the outer peripheral surface of the tubular body 10 in the radial direction can also be used.
  • an outer straightening roller 65 having a small-diameter portion 652 forming a gap 653 at the center in the width direction of the outer peripheral surface 651 is used, and the light transmission type displacement is used. If the laser beam from the detectors 53 is passed through the gap 653 between the outer straightening rollers 65, the cross section of the straightened rollers 52, the outer straightening rollers 65, and the straightened surface can be used. It is possible to detect the cross-sectional shape of the above.
  • one inner straightening roller and two outer straightening rollers are arranged on both sides of the tubular body 10, however, the arrangement of the straightening rollers is not limited to this. However, various arrangements can be adopted as exemplified below. .
  • FIG. 38 As shown in FIG. 38, one inner straightening opening 911 similar to the above embodiment and two outer straightening rollers 9 1 2 located below the tube 10 are provided. , 9 12, an outer straightening roller 9 13 located above the tube 10 may be arranged. In this case, the tubular body 10 is sandwiched in the radial direction by the outer straightening rollers 912, 912, 913, so that the elliptical swelling cross-sectional shape and the like can be effectively reduced. ⁇ ⁇ 0 Can be corrected.
  • all of the straightening rollers may be formed as inner straightening rollers 920.
  • all of the correction rollers may be outer correction rollers 930.
  • the inner straightening roller 941 and the outer straightening roller 942 are arranged at the same position in the circumferential direction of the tube 10, and the tube 10 is sandwiched from inside and outside and restrained.
  • the correction may be performed by a correction roller 943 whose circumferential position is different from the above.
  • a plurality of straightening rollers 96 may be brought into contact with the outer peripheral surface or the inner peripheral surface of the tubular body 10 to perform the correction.
  • a plurality of straightening rollers 96 (here, eight) may be brought into contact with the outer peripheral surface or the inner peripheral surface of the tubular body 10 to perform the correction.
  • the magnitude of the deformation caused by correcting the both end portions 13 and 13 of the tube 10 may be limited to the range of the elastic deformation. In this way, reliability can be obtained because the shape of the tube does not change due to the shape measurement.
  • the straightening roller is brought into contact with the position to be supported when the tube is used.However, the position of the straightening roller is only required to be at both ends of the tube near the position to be supported. .
  • the shape measurement is performed with the axial direction of the tube 10 substantially horizontal.
  • the shape measurement is performed with the axial direction of the tube 10 set substantially horizontal. You may do it. By doing so, it is possible to reduce the possibility that the tube 10 bends under its own weight.
  • a plurality of displacement amount detection positions are provided, but it is sufficient if at least one.
  • the base for the photosensitive drum is described as the tube 10 whose shape is to be measured.
  • the present invention is not limited to this.
  • a transport roller, a developing roller, A transfer roller can also be suitably applied.
  • a tube can be a measurement target of the present invention.
  • a light transmission type detector transmission type optical sensor
  • the present invention is not limited to these as long as a radial displacement amount of the outer peripheral surface 12 of 0 can be obtained.
  • the displacement detector include a contact detector that contacts the outer peripheral surface of the tube 10, a reflective optical sensor that can detect without contact, a general-purpose detector that can detect without contact, and any material.
  • the tube 10 is rotated by driving the outer correcting rollers 54..., But the measuring operator grasps the tube 10 by hand and rotates the tube 10.
  • the drive roller or the like (not shown) may be brought into direct contact with the tube 10 and rotated, or may be rotated by any other method.
  • the displacement of the outer peripheral surface is continuously detected while rotating the tube 10, but the rotation of the tube 10 is intermittently stopped, The displacement of the outer peripheral surface of the tube body 10 in the stopped state may be detected.
  • the outer straightening rollers 54 are moved up and down.
  • the inner straightening rollers 52 and 52 may be lowered.
  • the shapes of both ends of the tube 10 are corrected in advance in order to grasp the shape of the tube in a state approximated during actual use. Is used to measure the shape of the tube 10.
  • the method of measuring the shape of the tube according to the tenth embodiment is the same as that of FIG. 32 of the ninth embodiment described above.
  • the inner straightening rollers 62 and 62 are arranged so as to be in contact with the outer peripheral surface 11 and the outer straightening rollers 64 are in contact with the outer peripheral surface 12.
  • a displacement detector 3 that measures the radial displacement (deflection) of the outer peripheral surface of the tubular body 10 at a plurality of locations (three locations in this example) in the longitudinal intermediate portion of the tubular body 10.
  • FIG. 44A is a side view for explaining a state in which both ends of the tubular body are being corrected in the tubular shape measuring method according to the tenth embodiment.
  • FIG. 44B is a side view for explaining a state where the shape of the tubular body is also measured.
  • the method of measuring the shape of the tube 10 according to the tenth embodiment is as follows. First, as shown in FIG. 44A, both end portions 13, 13 of the tube 10 are fixed to the inner straightening rollers 62, 6 2 and-the outer straightening rollers 6 4... are strongly pressed to correct the cross-sectional shape, and then, as shown in FIG. 44B, the tubes are formed by the inner straightening rollers 62, 62 and the outer straightening rollers 64. The pressing force on both ends 13, 13 of the body 10 is weakened, and the amount of displacement (deflection) in the radial direction of the outer peripheral surface 12 of the tube is measured by the displacement detectors 30. ⁇ Straighting roller>''''
  • the inner straightening rollers 6 2, 6 2 and the outer straightening rollers 6 4 ... contact the inner peripheral surface 11 and the outer peripheral surface 12 of both ends 13, 13 of the tube 10, respectively.
  • the shape of the tube 10 continues to be in contact with the inner peripheral surface 11 and the outer peripheral surface 12 of the tube 10 after this correction. It functions as a support roller for supporting the tube 10 when performing measurement (deflection measurement).
  • the inner straightening rollers 62, 62 and the outer straightening rollers 64 can change their relative positions.
  • FIG. 45 is an enlarged perspective view of the support structure of the tubular body in the case where the tenth embodiment is configured by a substantially similar mechanical configuration to the second embodiment and the like.
  • the pair of reference rollers 52, 52 in the second embodiment correspond to the inner correcting rollers
  • the support rollers 54 correspond to the outer correcting rollers.
  • the support roller supports (outer straightening roller supports) 543, 543 are close to the upper limit of the sliding operation by the vertical drive cylinders 546, 546, and correspond to the stoppers 548, 548 attached to the equipment boxes 511, 511. I'm in touch.
  • the outer straightening rollers 54,... are positioned relative to the inner straightening rollers 52, 52 at the cross-sections of the ends 13, 13 of the tube 10. It is located at a correction position for correcting the shape.
  • the stopper 548 has a very short stroke as compared with the movable range of the outer straightening roller supporters 543, 543 by the stopper position setting means 549, but can move the position in the vertical direction. I'm familiar. By moving the position of the stopper 548 up and down in this way, the setting of the correction position of the outer correction rollers 54 can be slightly changed up and down.
  • the vertical drive cylinders 546, 546 lift the tube 10 together with the outer straightening roller supports 543, 543 and the outer straightening rollers 54, and make the outer straightening roller supports 543, 543 large enough for the stoppers 548, 548. By pressing with the pressing force, the position of the outer correcting rollers 54 can be fixed at the correcting position.
  • This sufficiently large pressing force is a force that can cause a partial plastic deformation when the tube 10 lifted by the outer straightening rollers 54 is sandwiched between the inner straightening rollers 20 and 20 and the outer straightening rollers 40. is there.
  • the position of the outer straightening roller 54 is fixed to the straightening position, complicated control is not required for shape correction of the both end portions 13 and 13 of the tube 10.
  • the correction positions of the outer correction rollers 54 are different from each other. , Line before 13 corrections It is set based on the result of the pre-measurement performed.
  • the stopper one position setting means 549, 549 functions as a correction roller fixing position setting means for setting the position where the outer correction rollers 54 are fixed at the time of correction based on the result of the preliminary measurement.
  • the correction position of the outer straightening rollers 54 set by the stopper position setting means 549 is set so that the pipe 10 is temporarily deformed to an appropriate shape or more. It is now possible to place it at a position further inside the tubular body 10 than at the position where it is just in contact with the outer peripheral surface 12 when the cross-sectional shape of both end portions 13 and 13 of 10 is appropriate. ing.
  • the vertical drive cylinders 546 and 546 are used to support the outer straightening roller support 5 when measuring the shape of the tube 10 after straightening the both ends 13 and 13 of the tube 10. 4 3, 5 4 3 are separated from the stoppers 5 4 8, 5 4 8, and the tube 10 is pressed against the inner straightening rollers 20, 20 with a weak pressing force via the outer straightening rollers 54. That is, at this time, the outer straightening rollers 54 and the inner straightening rollers 20 and 20 are both pressed against the tube 10 with a weak pressing force.
  • the weak pressing force is a pressing force that does not substantially deform both end portions 13 and 13 of the tube 10.
  • the vertical driving cylinders 54, 54, 54 & are capable of reducing the pressing force of the straightening rollers 52, 52, 54,. It functions as a pressing force applying means that can switch between a strong pressing force that can plastically deform both end portions 13 and 13 and a weaker pressing force.
  • the displacement detectors 53 detect the amount of displacement of the outer peripheral surface 12 of the tube 10 in the radial direction.
  • the displacement detectors 53 are located at five different positions of the tube 10 at different axial positions. A contact type is provided.
  • FIG. 46 is a flowchart for explaining the overall flow of the shape measuring means.
  • the pipe 10 is loaded into the shape measuring position (corrected position) of the shape measuring device 5 and set (step S1).
  • the tube 10 When the tube 10 is carried in, the tube 10 is moved to any outside by the inside straightening rollers 52, 52 retracted to the outside by the retracting operation of the retracting drive units 522, 522. Is manually conveyed and placed on the small-diameter portion 541 of the outer correcting rollers 54. Then, the inner straightening rollers 52, 52 are inserted into the inside of the tube 10 by the retracting operation of the retracting drive units 522, 522. In this state, the up-and-down driving cylinders 546, 546 together with the outer straightening rollers 54, lift the tube 10 placed thereon.
  • step S2 the cross-sectional shapes of both end portions 13, 13 of the pipe 10 are measured in advance.
  • the tube 10 placed on the outer straightening rollers 54 is moved up and down by the vertical driving cylinders 546, until the inner peripheral surface 11 of the tube 10 is lightly in contact with the inner straightening rollers 52, 52. Lift by 546.
  • the outer straightening rollers 54 are also in a state of lightly contacting the outer peripheral surfaces 12 of the both end portions 13 and 13 of the tubular body 10, and the tubular body 10 is fixed by the inner straightening rollers 52 and 52 and the outer straightening rollers. It is in a state where a weak pressing force is applied.
  • the outer straightening rollers 54 are driven by drive motors 545 to rotate the tube 10, and the displacement detector 53 having the detection areas 531 corresponding to at least both end portions 13 and 13 of the tube 10. ... Is driven to detect the cross-sectional shape of both end portions 13, 13 of the tubular body 10. Specifically, for example, the degree of flatness of the both end portions 13 and 13 can be obtained from the diameter or the like of the tube 10 that changes depending on the rotation phase. Subsequently, the cross-sectional shape is corrected by plastically deforming both end portions 13 and 13 of the tubular body 10 (step S3).
  • a position where the outer correction rollers 54 are fixed at the time of correction (correction). Position) is set.
  • the reason for setting only the position of the outer straightening rollers 54 is that, in this embodiment, the inner straightening rollers 52, 52 are not moved up and down.
  • the setting of the correction positions of the outer correction rollers 54 is specifically performed by stopper position setting means 549, 549 for setting the height positions of the stoppers 548, 548.
  • the support roller support 54 53, 54 43 is moved by the vertical drive cylinder 54 46, 54 46 to the stopper 54 48, 54. It is lifted until it touches 8 and fixed. As a result, the height position of the outer correction rollers 54 is also fixed.
  • the height of the inner straightening rollers 52, 52 is originally fixed. At this time, the outer straightening rollers 54 are pressed against the outer peripheral surface 12 of the tube 10 with a strong pressing force, and at the same time, the inner straightening rollers 52, 52 are strongly pressed against the inner peripheral surface 11 of the tube 10. It will be pressed by pressure.
  • the outer straightening rollers 54 are driven by the drive motors 545 and 545 to rotate the tube 10 so that both end portions 13 and 13 of the tube 10 are
  • the correction force acts over the entire circumference, and plastic deformation occurs partially in the circumferential direction, and the cross section is corrected to an appropriate cross-sectional shape (true circular shape).
  • the vertical roller cylinders 546, 546 push the support roller supports 543, 543 to the stoppers 548, 548.
  • the inner straightening rollers 52, 52 release the strong pressing force (correcting force) on the tube 10 by the outer straightening rollers 54 and the inner straightening rollers 52, 52.
  • This The release of the strong pressing force is performed while rotating the tube 10 so that the pressing force acting on the tube 10 is gradually reduced. Preferably, it is performed over one rotation. Due to the local intense change (decrease) in the pressing force in the circumferential direction of the tube 10, the cross-sectional shapes of both end portions 13, 13 of the tube 10 become discontinuous in the circumferential direction. This is to prevent the adverse effect of the above.
  • step S3 the straightening step (step S3) is skipped. You may.
  • step S4 the amount of displacement of the outer peripheral surface 1'2 in the radial direction due to the rotation of the tube 10, that is, the amount of deflection of the outer peripheral surface is measured.
  • the measurement of the cross-sectional shape (post-measurement) of both end portions 13, 13 of the tube 10 is simultaneously performed. Is supposed to do it. This post-measurement confirms whether the above-mentioned correction was performed properly.
  • the outer pressing rollers 54 which are released by releasing the strong pressing force on the tube 10 and descend, are formed by the inner straightening rollers 52, 52 and the outer straightening roller 54 ...
  • the lowering operation is stopped at the height position where it comes into light contact with the object.
  • the measurement of the flatness of the outer peripheral surface 12 was performed in this state, that is, in the state where the weak pressing force was applied to the pipe 10 by the inner straightening rollers 52 and 52 and the outer straightening roller, as in the above-mentioned preliminary measurement. Done.
  • the deflection of the outer peripheral surface 12 is measured by driving the outer straightening rollers 5 4... in a state where the inner straightening rollers 5 ′ 2, 52 and the outer straightening rollers are applied with a weak pressing force on the tube 10.
  • the tube 10 is rotated by driving with 5, 5 45, and the displacement detectors 5 3 are driven to measure the displacement (deflection) of the outer peripheral surface at 5 points in the axial direction of the tube 10 Is done.
  • the displacement detected by the displacement detectors 53 on both ends 13, 13 of the tube 10 is based on the cross-sectional shape of both ends 13, 13 of the tube 10. It is for doing. That is, the displacement detectors 5 3 at both ends 13, 13 of the tubular body 10 ... Is a post-measurement of the cross-sectional shape of both ends 13, 13 of the tubular body 10.
  • step S5 When the measurement of the displacement amount of the outer peripheral surface 12 of the tubular body 10 is completed together with the subsequent measurement in this way, it is determined whether the result of the subsequent measurement is appropriate (step S5).
  • step S5 If the result of this post-measurement is incorrect (NG in step S5), since the correction of the both ends 13 and 13 of the tubular body 10 described above has not been successful, the process proceeds to step S3. Return and repeat the correction of the cross-sectional shape of both ends 13 and 13 of the tube 10 again. If the post-measurement result in step S5 is NG even after the correction is repeated a predetermined number of times, the shape measurement of the tube 10 may be terminated as a defective pipe for which the correction is not effective.
  • step S5 If the result of the post-measurement is appropriate (OK in step S5), the outer peripheral surface 1 2 of step S4 should be kept in a state where both ends 13 and 13 of the tube 10 are similar to those in actual use. Since it is estimated that the measurement of the tube 10 was performed, it is assumed that the shape measurement result of the tube 10 is determined by using the amount of deflection of the outer peripheral surface 12 of the tube 10 obtained in the step S4. After the determination, the shape measurement is completed (step S6). .
  • the rotation of the tube 10 is stopped in the reverse order to the above, and the outer straightening rollers 54 are lowered to thereby lower the tube 10 and the inner straightening rollers 52, 52. Is released, and the inner straightening rollers 52, 52 are retreated to both outer sides again, and the tube 10 whose shape measurement has been completed is taken out.
  • the method for measuring the shape of the tubular body according to the tenth embodiment described above may be subjected to various modifications such as the arrangement of the straightening rollers, as in the ninth embodiment.
  • a strong pressing force is applied by the straightening roller.At the time of straightening, the cross-sectional shape of both end portions 13 and 13 of the tubular body 10 is corrected with plastic deformation.
  • the straightening port was lightly contacted to measure the cross-sectional shape of both ends 13 and 13 of the tube 10 without deforming it. Even when measuring the shape of 0, the measurement may be performed while slightly deforming both end portions 13 and 13 of the tubular body 10. In this way, even if correction with plastic deformation cannot be performed satisfactorily, correction is performed by inserting the flange 80 etc. as shown in Fig. 4 when actually used. By reproducing the same state as in such a case, it is possible to perform shape measurement in accordance with actual conditions.
  • both end portions 13, 13 at the time of shape measurement be within a range of elastic deformation.
  • the shape of the both ends of the tube 10 is determined in order to grasp the shape of the tube in a state approximated when actually used.
  • the shape of the tube 10 is measured while correcting the shape.
  • FIG. 47 is a pipe shape measuring apparatus for the pipe shape measuring method according to the present invention.
  • 5 is a front sectional view showing FIG.
  • FIG. 48 is a sectional view of the expansion clamp 20 ′.
  • FIG. 49 is an explanatory diagram of the operation.
  • FIG. 50 is a front sectional view showing a use state of a pipe (work) 10 whose shape is to be measured.
  • the method for measuring the shape of the tube according to the eleventh embodiment is such that a pair of expansion clamps 6 6 , 66 are inflated and brought into contact with the entire circumference of the inner peripheral surface 11 of the tubular body 10.
  • a pair of expansion clamps 66, 66 with the central axis of rotation as the rotation axis is used.
  • the tube 10 is rotated together with the expansion clamps 66, 66 of the tube, and the displacement amount in the radial direction of the outer peripheral surface 12 of the tube 10 at this time is detected by a displacement detector arranged outside the tube 10. 30 ... is detected.
  • the pair of inflation clamps 66, 66 define the standard for measuring the shape of the tube 10.
  • the pair of expansion clamps 66, 66 are arranged substantially horizontally, and the tubular body 10 whose shape is to be measured is supported in a substantially horizontal posture by the pair of expansion clamps 66, 66. Has become.
  • the pair of expansion clamps 6 6 and 6 6 have a cylindrical main body 6 7 having a large-diameter portion 6 71 and a small-diameter portion 6 72, and a clamp main body 6 7.
  • An expansion ring (cylindrical body) 685 attached so as to cover the outer peripheral surface of the small diameter portion 672 is provided.
  • the pair of expansion clamps 6 6, 6 6 are attached to the rotary drive sources 6 9, 6 9 on both outer sides of the large diameter portion 6 7 1 of the clamp body 6 7, 6 7, as shown in FIG. 47 etc.
  • the expansion clamps 66 are supported so that they can rotate accurately around the central axis of the expansion clamps 66.
  • At least one of the expansion clamps 66, 66 is provided with a not-shown protruding / retracting driving means.
  • the clamp body 67 has an oil passage 68 filled with hydraulic oil.
  • the oil passage 68 communicates with an expansion chamber 683 formed inside the expansion ring 685 by a plurality of radially extending pipes in the small diameter portion 672 of the clamp body 67.
  • the chamber 683 is formed between the outer peripheral surface of the small diameter portion 672 of the clamp body 67 and the inner peripheral surface of the expansion ring 685.
  • hydraulic oil is supplied to the expansion chamber 683, and the expansion chamber 683 is expanded by the operating oil pressure (fluid pressure), so that the expansion ring 685 expands in the radial direction.
  • sealing means is provided at both ends in the axial direction of the expansion chamber 683 in order to keep the expansion chamber 683 sealed.
  • O-rings 684, 684 are fitted into grooves formed over the entire circumference of the clamp body 67, and the O-rings 684, 684
  • the expansion chamber 683 3 is hermetically sealed by a structure that is in close contact with the outer peripheral surface (groove) of 67 and the inner peripheral surface of the expansion ring 685.
  • the O-rings 684 and 684 are normally squeezed inward by the expansion ring 685, and when the expansion ring 685 expands and bulges in the radial direction, the 0-ring
  • the small diameter portion of the expansion ring 685 and the clamp body 6 7 is deformed so that the outer diameter of the expansion ring 6 8 4, 6 84 It is possible to maintain a sealed state with the outer peripheral surface.
  • the material of the O-rings 684 and 684 may be, for example, rubber, but any material may be used as long as it is an elastic body that can perform the function of the O-ring. it can.
  • the oil passage 6.8 in the large diameter portion 671 of the clamp body 67 communicates with the outside of the clamp body 67 at the center position of the outer end surface of the large diameter portion 671.
  • An internal thread 681 is formed at the end of the oil passage 68 in the large-diameter portion 671, where the operation screw 6882 is formed. Is installed.
  • the operation screw 682 can be rotated by an arbitrary amount in an arbitrary direction by a driving source such as a motor (not shown).
  • the operating oil 6 82 is rotated to move the female screw 6 8 1 forward and backward, so that the hydraulic oil (fluid) in the internal screw 6 8 1 is passed through the oil passage 6. 8 and raises the hydraulic oil pressure (fluid pressure) in the oil passage 68 including the above-mentioned expansion chamber 683, whereby the hydraulic oil is sent into the expansion chamber 683 and the expansion chamber 683 Can be expanded.
  • the expansion chamber 683 expands when the above-described expansion ring 685 extends in the circumferential direction, its outer diameter increases, and the expansion ring expands in the radial direction.
  • the expansion ring 685 is formed of an elastic body having a predetermined elasticity.
  • the material of the expansion ring for example, metal such as alloy steel, synthetic resin, synthetic rubber, and the like can be mentioned. Any material can be used as long as it is an elastic body that can function as the expansion ring. Can be adopted.
  • the expansion ring 685 When the hydraulic oil is fed into the expansion chamber 683 inside the expansion ring 685, the expansion ring 685 receives a radially outward pressure (working oil pressure, fluid pressure) 'by the sent hydraulic oil, and the circumferential direction is changed. Expands evenly and deforms so that its outer diameter increases. Due to this expansion deformation, the outer peripheral surface of the expansion ring 685 comes into contact with the inner peripheral surface of the tubular body 10 over the entire circumference.
  • working oil pressure, fluid pressure working oil pressure, fluid pressure
  • the expansion ring 685 has a predetermined length in the axial direction. As shown in FIG. 49B, even when inflated, the outer peripheral surface expands and deforms while maintaining substantially the same diameter in the axial direction. Therefore, the tubular body 10 comes into surface contact with the expansion ring 685 with a predetermined contact width in the axial direction. Therefore, it is possible to prevent the tube 10 from being deformed into a shape different from that in actual use by the expansion clamps 66, 66 locally contacting the inner peripheral surface 11 of the tube 10. This can contribute to accurate shape measurement. In addition, the tube 10 can be brought into contact with a large pressing force without giving an inappropriate deformation. gg In addition, the outer peripheral surface of the expansion ring 685 is sufficiently smooth, so that it comes into close contact with the inner peripheral surface 11 of the tubular body 10.
  • the pair of expansion clamps 66, 66 come into contact with the tube 10 at the position where the tube 10 is to be supported during actual use (in the hatched area S in FIG. 4). ing.
  • a portion serving as a reference for the rotational operation when the tube 10 is actually used can be used as a reference in the shape measurement, and more practical measurement can be realized.
  • the expansion clamps 66 and 66 are formed such that the expansion ring 685 is evenly swelled in the circumferential direction, and extends around the inner peripheral surface 11 of the tube 10 and the entire circumference. Since the pipes 10 abut, the tube 10 is supported under almost the same conditions as those supported by the flange during actual use. That is, the center axis position of the pair of expansion clamps 66, 66 substantially coincides with the center of the circle formed by the inner peripheral surface 11 of the tubular body 10.
  • the center axis position of the pair of expansion clamps 66, 66 is set to the tube 1
  • the inner peripheral surface of 0 can be positioned more reliably at the center of the circle formed by 1 and a state close to the rotating state in actual use can be realized.
  • the pair of expansion clamps 66, 66 are in contact with the entire circumference of the outer circumferential surface 11 of the tube 10, even if the tube 10 comes into contact with a larger pressing force, the pressing force gQ can be distributed substantially uniformly in the circumferential direction, which can contribute to accurate shape measurement.
  • a so-called crack-type clamp that is, by contacting the inner peripheral surface 11 of the tubular body 10 at a plurality of holes, and increasing the interval between the plurality of holes
  • a clamp that presses and supports a plurality of locations on the inner peripheral surface 11 of the tube 10 in a radially outward direction.
  • the cross-section of the tube 10 in the circumferential direction is inadequate in the circumferential direction because the inside of the inner surface 11 of the tube 10 comes into contact locally with the circumferential portion.
  • There is a danger of even deformation In particular, when the tube 10 is thin or made of a soft material, accurate shape measurement cannot be performed because the tube 10 is deformed unevenly.
  • the expansion clamps 66 and 66 in the method for measuring the shape of the tubular body according to the present invention the expansion clamp
  • a pair of expansion clamps 66, 66 are inserted into the inside of the tube 10 to expand the tube, and the tube 10 is rotated together with the expansion clamps 66, 66 so that the displacement amount of the outer peripheral surface 12 is determined. Since only detection is required, it can be realized with a simple configuration, and accumulation of measurement errors can be reduced as much as possible, and high accuracy of shape measurement can be obtained.
  • the pair of expansion clamps 66, 66 are assumed to expand by the fluid pressure (operating oil pressure), a substantially large and sufficiently large expansion force is obtained in the circumferential direction, and the expansion clamps 66, 66 are obtained. Can press the inner peripheral surface 11 of the tube 10 radially outward with a sufficiently large pressing force. Thereby, the expansion clamps 66, 66 can be reliably brought into contact with the inner peripheral surface 11 of the tubular body 10.
  • both ends 13 of the tube 10 are expanded and deformed by a sufficiently large pressing force.
  • the pressing force of the pair of expansion clamps 66, 66 pressing the inner peripheral surface of the tube 10 is such that the flanges 80, 80 are pressed into the tube 10 when the tube 10 is used. It is almost the same as the pipe expansion pressure applied to the pipe. As a result, it is possible to realize a supporting state that is more similar to the actual use of the tube 10 in which the flanges 80, 80, etc. are press-fitted near both ends of the tube 10 during actual use. It is possible to realize a state more approximate to the rotation state in actual use.
  • the cross-sectional shape (inner circumference circle) near the both ends of the tube 10 depends on the shapes of the flanges 80 and 80.
  • the tube 10 is expanded by the expansion clamps 66, 66, which expand evenly in the circumferential direction due to the fluid pressure, so that the tube is expanded as in actual use.
  • Tube The shape of the tube 10 can be measured with the vicinity of both ends of the tube 10 being corrected.
  • the expansion of the tube 10 caused by the pair of inflation clamps 66, 66 depends on the degree of expansion of the tube 10 according to the degree of expansion of the tube 10 during actual use of the tube 10. It may be performed within the deformation region, or may reach the plastic deformation region of the tube 10. If the expansion of the tube 10 is kept within the elastic deformation region, the expansion of the tube at the time of shape measurement returns after the shape measurement, and the shape measurement can reliably suppress the influence on the tube. On the other hand, when tube expansion deformation that reaches the plastic deformation region is given during actual use, shape measurement can be performed under almost the same conditions as in actual use by performing tube expansion deformation similar to this.
  • a tube used as a substrate for a photosensitive drum or the like is often manufactured by cutting a long tube material into a predetermined length. In this case, only the vicinity of both ends of the tube is deformed flat by cutting. There are times when you do.
  • the expansion clamps 66, 66 are inserted near both ends of the tubular body 106, and are expanded to fit on the inner peripheral surface of the tubular body 106.
  • the shape of the pipe can be measured in a state where it is brought into contact with the pipe and the pipe is deformed more closely in actual use.Therefore, pseudo defects that are eliminated in actual use near the both ends as shown in Fig. 51 It is possible to obtain a shape measurement result that can accurately determine whether or not an existing tube is a defect that remains during actual use.
  • the second example in which the advantage of the method for measuring the shape of a tubular body according to the present invention is particularly exhibited is that, prior to press-fitting the flange during actual use, the tube has a perfect cylindrical shape, but its material distribution is circumferential. This is the case when the directions are not uniform.
  • Fig. 52 is an example of such a pipe 107 in which the material distribution is not uniform in the circumferential direction.
  • Fig. 52A shows the state before the flange is press-fitted. The state after the press-fit of 0 is shown.
  • the pipe 107 has a uniform wall thickness all around. However, its left half W is easier to deform and stretch than the other parts.
  • the reasons why such a tube is manufactured include, for example, unevenness in the extruded material at the time of extruding the tube, and environmental conditions such as temperature conditions after the tube is formed. There can be mentioned a case where the directions vary.
  • the second example contrary to the first example, has at least a flange when it is actually used, although it has a shape that cannot be determined whether it is normal before actual use. It can be said that the tube near the both ends of the tube body supported by 80 and whose rotation center is determined becomes an uneven thickness tube, resulting in a defective tube.
  • a tubular body 107 has a perfect cylindrical tube shape at the time of shape measurement. It was inevitable to determine the shape, and such a defective pipe could not be detected.
  • the expansion clamps 66, 66 are inserted near both ends of the tube 10 and are expanded to fit on the inner peripheral surface of the tube 10. Since the shape of the pipe can be measured in a state where it is brought into contact with the pipe and the pipe is deformed more similar to that in actual use, hidden defects generated during actual use near both ends as shown in Fig. 52 Can also be detected to provide a true shape measurement.
  • the pair of inflatable clamps 66, 66 are brought into contact with the planned support position when the tubular body is used. It may be a position. However, it is desirable to be near the planned support position. This is because there is a high possibility that the planned support position and the cross-sectional shape are similar.
  • the shape measurement was performed with the axial direction of the tube 10 being substantially horizontal.
  • the shape measurement was performed with the axial direction of the tube 10 being substantially vertical. May be performed. In this way, the bending of the tube 10 due to its own weight is reduced, so that the original shape of the tube 10 can be measured.
  • the displacement detectors 30 are arranged one by one on a plurality of cross sections of the tube 10 so that the outer peripheral surface of the tube 10 on the plurality of cross sections (axial position) is provided. Are detected, but a plurality of displacement detectors 30 may be arranged in one or more cross sections to detect a plurality of displacements in one cross section. By doing so, it becomes possible to know the cross-sectional shape more precisely from the displacement amounts detected for a plurality of cross-sections.
  • a diameter of 10 can be obtained directly. That is, when the tube .10 is supported by the expansion clamps 66 and 66 and rotated around the central axis of the expansion clamps 66 and 66, the displacement of 1 is detected at any cross-section (axial position).
  • the diameter of the tube 10 can be theoretically obtained by matching the displacement detection amount at a position where the rotation angle differs by 180 degrees from the displacement detection amount of the vessel 30.
  • the theoretically obtained accuracy of the diameter is affected by the accuracy of controlling the rotation angle of the tube 10 and detecting the rotation angle.
  • a plurality of detection positions for the amount of displacement of the outer peripheral surface of the tubular body 10 are provided, but at least one position is sufficient.
  • a substrate for a photosensitive drum is described as the tube 10 whose shape is to be measured.
  • the present invention is not limited to this. It can be suitably applied.
  • a tubular body can be a measurement target of the present invention.
  • the pipe body 10 is expanded and deformed by the pair of expansion clamps 66 and 66 to the same extent as the expansion in actual use.
  • the expansion deformation of the tube 10 by the tension clamps 66, 66 may be smaller than the expansion deformation of the tube 10 when the tube 10 is used.
  • the flanges 80, 80 into which the flanges 80, 80 are press-fitted near both ends of the tube 10 realize a support state similar to that in actual use.
  • the influence on the tube 10 by the shape measurement can be reduced.
  • the pair of expansion clamps 20 and 20 are elastic during shape measurement. If only the deformation in the deformation area is given, the same shape as before the shape measurement can be maintained even after the shape measurement of the tube is performed.
  • a pair of inflation is performed by pressing the flanges 80, 80 into a pair during the actual use by pressing the flanges 80, 80 to the same degree as the pressing force acting on the tube 10.
  • the clamp 10 was applied to the tube 10 by the clamps 66 and 66.
  • the pressing force applied to the tube 10 by the 13 ⁇ 4 "expansion clamps 66 and 66 was such that the tube 1 was not used when the tube 10 was used. It may be smaller than the pipe expansion pressure acting on 0. In this case, the pipe body into which the flanges 80, 80, etc.
  • the expansion clamps 66, 66 have been described as an example in which the expansion ring is expanded by the fluid pressure of the hydraulic oil. It is not limited to pressure.
  • a driving principle mechanism for expanding any mechanism capable of obtaining the above-described pressing force when the expanding operation is clamped may be used.
  • the driving principle mechanism for expansion a material whose expansion clamp material changes in volume and whose change amount can be controlled by temperature, electricity, or the like can be used.
  • the expansion portion provided in the expansion clamp may be heated and thermally expanded, and the expansion force may be brought into contact with the inner peripheral surface of the tubular body and further expanded.
  • a so-called piezo actuator using a material that expands when energized may be used to make contact with the inner peripheral surface of the tubular body and further expand and deform the tubular body.
  • FIG. 54 is a functional block diagram showing the configuration of the inspection device 71.
  • the inspection device 71 includes, for example, an automatic shape measurement device 5 according to the second embodiment of the above-described embodiment, and an outer peripheral surface 12 of a tubular body 10 detected by the shape measurement device 5.
  • the deflection amount calculator 711 that calculates the deflection amount of the outer peripheral surface 12 from the displacement amount data of the outer peripheral surface 12 and the allowable range of the deflection amount of the outer peripheral surface 12 of the tubular body 10 are set and stored.
  • an output unit 7 14 is an output unit 7 14.
  • the shape measuring device is not limited to the above-described second embodiment, but may be a device according to another embodiment or a modification thereof.
  • the blur amount calculation unit 7 11, the allowable range storage unit 7 12, the comparison unit 7 13, and the output unit 7 14 are, specifically, software and software that perform their functions in a sequencer or the like composed of a computer. Consists of hardware.
  • the deflection amount handled by the deflection amount calculation unit 711, the allowable range storage unit 7112, and the comparison unit 7113 is, for example, 5 points in the axial direction of the tube 10 by the shape measuring device 5 (5 If the displacement amount of the outer peripheral surface 12 in the (cross section) is to be detected, the deflection amount may be calculated for all the five places or may be a part of them. In addition, even when using the deflection amount at a plurality of locations (for example, five locations), the condition for passing the final inspection result is that even if all the deflection amounts are within a predetermined allowable range, The result of combining the amounts of runout at the points may be within a predetermined allowable range. The combination of the amounts of deflection is, for example, that all of the amounts of deflection at a plurality of locations are within a predetermined range, and the sum of the amounts of deflection is within a predetermined range.
  • the raw data of the displacement amount of the outer peripheral surface of the tube 10 detected by the shape measuring device 5 is processed, and an index value or the like representing the shape of the tube 10 such as the amount of deflection of the outer peripheral surface is processed.
  • the calculation means for calculating is expressed outside the shape measuring device 5, but the shape measuring device 5 itself 9 Needless to say, such a calculating means may be provided. Further, an output means for outputting the calculation result may be provided.
  • FIG. 55 is a functional block diagram showing the configuration of this manufacturing system 72.
  • the manufacturing system 72 includes a pipe-making device 72 1 for forming the tube 10, the above-described inspection device 71, and a completed tube 10 based on the inspection results of the inspection device 71. And a pass / fail determination unit 722 for determining whether or not to make the determination.
  • the tube making device 721 is for making a tube for a photosensitive drum, for example, by combining extrusion molding and drawing molding. Specifically, in the case of producing a photosensitive drum substrate made of an aluminum alloy, a process of manufacturing an extruded material by dissolving the raw material, an extruding process, a drawing process, a straightening process, and a process of preparing a predetermined length. It is configured as a set of mechanical devices that execute the cutting process, the cleaning process, and the like. Note that the pipe producing device 721 is not limited to this as long as it can produce a tubular body, and may be one that produces a tubular body by cutting.
  • the pipe 10 manufactured in this way is inspected by the above-described inspection device 71 to determine whether the shape is within a predetermined allowable range, and a pass / fail judgment unit 722 determines a predetermined value based on the inspection result. If it is within the allowable range, the tube 10 is determined to be a completed product. It is preferable that the manufacturing system 72 be provided with an automatic transfer device for automatically transferring the pipe 10 from the pipe forming device 7 21 to the shape measuring device 5 of the inspection device 71. In addition, it is desirable to provide a transport device for selecting and transporting the finished product passed in the pass / fail determination unit 7 22 and the suspected defective product determined to be rejected to different locations. If the type and characteristics of the defect occurring in the pipe 10 are determined by the pipe shape measuring device 5 provided in the It is preferable to provide a feedback function for performing feedback so as to prevent the occurrence of defective pipes.
  • Preferred configurations according to the ninth embodiment include the following.
  • the straightening roller includes an inner straightening roller that contacts an inner peripheral surface of the tubular body, and an outer straightening roller that contacts an outer peripheral surface of the tubular body. It is desirable to include at least one each. With this configuration, the tube can be stably held by sandwiching the tube from inside and outside, and the correction rollers can be arranged close to each other. Thereby, the plurality of correction rollers can be firmly positioned, and accurate correction can be performed on both end portions of the tubular body. It is also possible to perform local shape correction in the circumferential direction of the tube.
  • the inner straightening roller slides in the axial direction of the tubular body to perform a sliding operation on both sides of the tubular body. It is desirable to retreat from the end to the outside of the tube.
  • the inner straightening roller and the outer straightening roller relatively move apart before and after measuring the shape of the tubular body. In this way, when the tube is set, the tube is not pinched between the inner straightening opening and the outer straightening roller, so that the tube is easily positioned at the shape measurement position. Can be set.
  • the inner straightening roller and the outer straightening roller contact the inner circumferential surface and the outer circumferential surface of the tubular body at different positions in the circumferential direction of the tubular body, respectively. It is desirable to do. With this configuration, the correcting force can be efficiently applied to a portion where the circumferential position of the tube is sandwiched between the inner correcting roller and the outer correcting roller.
  • the outer straightening roller on the lower side of the tubular body can be used as a temporary placing table for temporarily supporting the tubular body before and after setting the tubular body at the shape measurement position.
  • the straightening roller is fixed to a preset position in a state where the cross-sectional shape of both end portions of the tubular body is temporarily corrected. It is desirable. In this case, both ends of the tube can be easily corrected to an appropriate shape without performing complicated control or the like.
  • the straightening roller may be provided on the inner peripheral surface or the outer peripheral surface of the tubular body when the cross-sectional shape of both ends of the tubular body is appropriate. It is desirable to be fixed at the position where it touches. By doing so, it is possible to easily and surely correct both end portions of the tube into an appropriate shape without performing complicated control or the like. In particular, in the vicinity of the portion where the straightening roller contacts, the pipe can be more accurately corrected to an appropriate shape.
  • At least the straightening roller is provided. It is preferable that a pressing force for pressing the tube be applied to one of them. In this way, a degree of freedom of correction is obtained. For this reason, for example, it is also possible to perform appropriate correction according to the specific shape of each tube.
  • the pressing force applied to the correction roller is changed according to the rotation phase of the tube. By doing so, a correction force according to the shape of the pipe body in the circumferential direction and the like can be applied, so that more appropriate correction can be performed.
  • the sectional shape of the tubular body rotating at a state where the sectional shape of the both end portions is temporarily corrected is detected. It is desirable to vary the pressing force applied to the straightening roller in accordance with the cross-sectional shape of both end portions. In this case, since the cross-sectional shape of both end portions of the tubular body is detected, a corrective force corresponding to the shape of the tubular body can be reliably applied in accordance with the detection result, and appropriate correction can be performed.
  • At least one of the straightening rollers is set in advance in a state where the cross-sectional shape of both ends of the tube is temporarily corrected. It is desirable to be fixed in position. With this configuration, the correction roller fixed at a preset position can be used as a reference for measuring the shape of the tubular body, which can contribute to accurate shape measurement.
  • the deformation by temporary correction of both side ends of the tubular body may be performed in an elastic deformation region of the tubular body.
  • the deformation due to the temporary correction of both ends of the tubular body may be made to reach a plastic deformation region. In this way, it is determined whether the deformation at both ends of the tube reaches the plastic deformation region. Without this, the cross-sectional shape of both ends of the tubular body can be reliably corrected to an appropriate shape, so that more accurate shape measurement can be performed.
  • the straightening rollers is driven to rotate.
  • the straightening roller performs the function of rotating the tube, the number of members that come into contact with the tube can be reduced. As a result, it is possible to eliminate an error factor and contribute to accurate shape measurement, to obtain high reliability of the shape measurement, and to reduce the possibility of damage to the tube.
  • the rotational drive of the correction roller is performed by one rotational drive source.
  • the detection position of the displacement amount includes a plurality of positions outside the tubular body. In this way, the deflection of the outer peripheral surface at a plurality of positions outside the tubular body can be measured, and by combining these, the shape of the tubular body can be grasped more specifically.
  • the pipe body includes a plurality of positions where the axial position of the tubular body coincides and the circumferential position is different. In this way, by combining the displacement amounts detected at the plurality of positions, the cross-sectional shape of the tubular body at the axial position can be grasped more specifically. Can be '
  • the axial position of the tubular body is the same, and the circumferential position includes two positions that are different by half a circumference. In this way, by combining the displacement amounts detected at these two positions, the diameter of the tube passing through these two positions can be obtained, and thereby, the shape of the tube can be grasped more specifically. be able to.
  • the rotation of the tube be one rotation or more. This makes it possible to detect the shape of the entire circumference in the circumferential direction of the tube.
  • the detection of the displacement amount can be continuously performed during the entire period or a partial period during which the tubular body is rotated. By doing so, it is possible to detect a local shape change in the circumferential direction of the tube.
  • the detection of the displacement amount may be performed intermittently while rotating the tubular body. This makes it possible to easily detect the amount of displacement of the outer peripheral surface of the tubular body.
  • the rotation of the tubular body may be intermittently stopped, and the detection of the displacement may be performed when the rotation of the tubular body is stopped. Good. With this configuration, stable detection of the displacement amount of the outer peripheral surface of the tube can be performed.
  • the detection of the displacement amount may be performed using a detector that comes into contact with the outer peripheral surface of the tubular body. In this way, the displacement of the outer peripheral surface of the tube can be reliably detected.
  • the displacement is detected using a detector that does not contact the outer peripheral surface of the tubular body. In this way, the displacement amount of the outer peripheral surface of the tubular body can be detected without fear of damaging the outer peripheral surface of the tubular body. it can.
  • the displacement amount is detected by irradiating the tubular body with light from outside, and detecting light transmitted without being blocked by the tubular body. It is desirable to do. This makes it possible to easily and accurately detect the position of the outer peripheral surface of the tubular body.
  • the preferred configuration related to the first embodiment includes the following. It is desirable that the pair of inflation clamps be brought into contact with a position to be supported when the tubular body is used. With this configuration, the shape can be measured with reference to a portion that serves as a reference for the rotation operation and the like when the tube is actually used, so that a measurement more practical can be performed.
  • the pair of expansion clamps make surface contact with a predetermined contact width over the entire inner peripheral surface of the tube. This prevents the pair of expansion clamps from locally contacting the inner peripheral surface of the tube, thereby preventing the tube from being deformed into a shape different from that in actual use, thereby enabling accurate shape measurement. Can contribute. Further, the pipe can be contacted with a larger pressing force without giving an inappropriate deformation to the pipe.
  • the pair of expansion clamps press the entire circumference of the inner peripheral surface of the tubular body in a radially outward direction substantially uniformly.
  • the pair of inflation clamps can be reliably brought into contact with the inner peripheral surface of the tube, so that a state similar to a rotating state in actual use can be more reliably realized.
  • the pair of expansion clamps expands and deforms the tube by pressing an inner peripheral surface of the tube radially outward.
  • a very similar support state can be realized when the tube is actually used.
  • a state closer to the rotating state at the time of use can be realized. Therefore, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection that occurs when the device can be actually used.
  • the expansion of the tube by the pair of expansion clamps is substantially the same as the expansion of the tube when the tube is used.
  • the rotation state can be further approximated. Accordingly, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection that occurs when actually used.
  • the pressing force of the pair of expansion clamps pressing the inner peripheral surface of the tube is substantially equal to the expanding pressure acting on the tube when the tube is used. In this way, when the tube is pressed into the vicinity of both ends of the tube at the time of actual use, a more approximate support state can be realized when the tube is actually used. Can be realized. Therefore, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection occurring when actually used.
  • the expansion of the tube by the pair of expansion clamps is smaller than the expansion of the tube when the tube is used.
  • a tube which is press-fitted with flanges or the like near both ends of the tube at the time of actual use can achieve a support state similar to that at the time of actual use, thereby achieving a rotational state at the time of actual use.
  • a more approximate state can be realized. Therefore, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection occurring when actually used. Also, since only tube expansion deformation smaller than the tube expansion deformation during use of the tube is performed, the influence on the tube by shape measurement can be suppressed to a small value.
  • the pressing force for pressing the inner peripheral surface of the tube by the pair of expansion clamps is smaller than the expanding pressure acting on the tube when the tube is used.
  • a tube that is press-fitted with flanges or the like near both ends of the tube during actual use can achieve a support state similar to that in actual use, thereby achieving a rotational state during actual use.
  • the tube expansion deformation of the tube by the pair of expansion clamps is performed in an elastic deformation region of the tube. In this way, the expansion deformation of the tube at the time of shape measurement returns after the shape measurement, and the influence of the shape measurement on the tube can be reliably suppressed to a small level.
  • the tube expansion deformation of the tube by the pair of expansion clamps reaches the plastic deformation region of the tube. In this way, when the pipe is actually used, even if the pipe expands to plastic deformation, the pipe expansion for proper shape measurement according to the actual degree of the pipe expansion is appropriately adjusted. Can be applied.
  • the pair of expansion clamps expands by a fluid pressure.
  • a substantially large and sufficiently large inflation force is obtained in the circumferential direction, so that the inner peripheral surface of the tubular body can be reliably contacted. Further, a sufficient pressing force for pressing the inner peripheral surface of the tube can be obtained.
  • the pair of expansion clamps has an expansion ring having elasticity, and the expansion ring is bulged radially outward from the inside thereof by a fluid pressure. It is desirable to make contact. In this way, a sufficiently large and substantially uniform circumferential expansion force is obtained, and the expansion ring is attached to the inner peripheral surface of the tubular body. The contact can be made surely. Further, a sufficient pressing force for pressing the inner peripheral surface of the tube can be obtained.
  • the pair of expansion clamps be arranged side by side in the horizontal direction.
  • the tube has a posture in which the axial direction is substantially horizontal, but when the tube is used in this posture, it is possible to obtain a measurement result similar to that when the tube is used.
  • the pair of expansion clamps be arranged side by side in the vertical direction. With this configuration, it is possible to prevent the central portion in the axial direction of the tubular body from bending due to gravity, and to measure the original shape of the tubular body.
  • the displacement detection position includes a position other than a position facing the pair of expansion clamps from the outside of the tube. By doing so, the displacement amount of the outer peripheral surface in consideration of the wall thickness of the tube can be measured.
  • the detection positions of the displacement include a plurality of positions outside the tubular body. In this way, the deflection of the outer peripheral surface at a plurality of positions outside the tubular body can be measured, and by combining these, the shape of the tubular body can be grasped more specifically.
  • the detection position of the displacement amount includes a plurality of positions where the axial position of the tube is different. In this way, it is possible to measure the deflection of the outer peripheral surface at a plurality of positions where the axial position of the pipe is different, and to grasp the change in the shape of the pipe in the axial direction by combining these. it can.
  • the detection position of the displacement amount includes a plurality of positions where the axial position of the pipe body coincides and the circumferential position is different. In this way, by combining the displacement amounts detected at the plurality of positions, it is possible to more specifically grasp the cross-sectional shape of the tube at the axial position.
  • the detection position of the displacement amount includes two positions where the axial position of the tubular body coincides and the circumferential position is different by half a circumference. Do this By combining the displacements detected at these two positions, the diameter of the tube passing through these two positions can be obtained, and this makes it possible to grasp the shape of the tube more specifically. Can be.
  • the detection position of the displacement amount includes a position outside the tube facing at least one of the pair of expansion clamps.
  • the rotation of the tube be one rotation or more. By doing so, the shape of the entire circumference in the circumferential direction of the tube can be detected.
  • the detection of the displacement amount is continuously performed during the entire period or a partial period of rotating the tube. In this way, a local shape change in the circumferential direction of the tube can also be detected.
  • the detection of the amount of displacement be performed intermittently while rotating the tube. This makes it possible to easily detect the amount of displacement of the outer peripheral surface of the tube.
  • the rotation of the tube is intermittently stopped, and the detection of the displacement is performed when the rotation of the tube is stopped.
  • the displacement amount of the outer peripheral surface of the tube can be stably detected.
  • the detection of the displacement amount is performed using a detector that comes into contact with the outer peripheral surface of the tubular body. In this way, the displacement of the outer peripheral surface of the tube can be reliably detected.
  • the displacement is detected using a detector that does not contact the outer peripheral surface of the tubular body.
  • the outer peripheral surface of the tube may be damaged. Therefore, the displacement of the outer peripheral surface of the tube can be detected.
  • the displacement amount is detected by irradiating the tube with light from the outside thereof and detecting light transmitted without being blocked by the tube. This makes it possible to easily and accurately detect the displacement of the outer peripheral surface of the tube.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

A method of measuring the shape of a tube body, comprising the steps of allowing a pair of reference parts (20, 20) to abut on the inner peripheral surface (11) of the tube body (10) near both side end parts, rotating the tube body (10) in the fixed state of the positions of the reference parts (20, 20) so that the contact parts of the tube body (10) with the reference parts (20, 20) are circumferentially moved on the inner peripheral surface (11) of the tube body (10), and detecting the radial displacement amount of the outer peripheral surface (12) of the tube body (10) due to the rotation of the tube body (10) at least one of the positions 31, ..., 32 ... circumferentially fixed on the outside of the tube body (10).

Description

明 細 書 管体の形状測定方法および同装置 本願は、 2002年 9月 12日に出願された日本国特許出願の特願 2002- 266651号、 2002年 10月 2日に出願された日本国特許出願の特願 20 02— 289933号、 2002年 10月 9日に出願された日本国特許出願の特 願 2002— 296382号、 2003年 1月 17日に出願された日本国特許出 願の特願 2003-9014号、 2003年 2月 7日に出願された日本国特許出 願の特願 2003— 31281号、 2003年 2月 28日に出願された日本国特 許出願の特願 2003-54126号、 2003年 4月 9日に出願された日本国 特許出願の特願 2003— 105558号、 2003年 7月 8日に出願された日 本国特許出願の特願 2003— 193624号、 2002年 9月 26日に出願さ れた米国仮出願第 60/413439号、 2002年 10月 25日に出願された 米国仮出願 60Z421079号、 および 2003年 2月 19日に出願された米 国仮出願 60/447745号の優先権主張を伴うものであり、 これらの開示内 容はそのまま本願の一部を構成するものである。  Description Method and apparatus for measuring the shape of a tubular body The present application is based on Japanese Patent Application No. 2002-266665 filed on September 12, 2002, and a Japanese patent filed on October 2, 2002. Patent application 200 02-289933, Japanese patent application filed on October 9, 2002, Japanese patent application 2002-296382, Japanese patent application filed on January 17, 2003 No. 2003-9014, Japanese Patent Application No. 2003-31281 filed on Feb. 7, 2003, Japanese Patent Application No. 2003-54126 filed on Feb. 28, 2003 Japanese Patent Application No. 2003-105558 filed on April 9, 2003, Japanese Patent Application No. 2003-193624 filed on July 8, 2003, September 26, 2002 U.S. Provisional Application No. 60/413439, filed on Oct. 25, U.S. Provisional Application No. 60Z421079, filed on Oct. 25, 2002, and U.S. Provisional Application No. 60/447745, filed on Feb. 19, 2003 Priority of Are those with, the disclosures Description is to directly form a part of this application.
技術分野 本発明は、 たとえば複写機の感光ドラム用の基体等の管体の形状測定方法、 同 装置、 管体の検査方法、 同装置、 管体の製造方法および同システムに関する。 TECHNICAL FIELD The present invention relates to a method for measuring the shape of a tube such as a substrate for a photosensitive drum of a copying machine, the same apparatus, a method for inspecting a tube, the same device, a method for manufacturing a tube, and the same system.
'背景技術 各種機械装置において回転部品等として使用される管体には、 その形状精度を 測定することが求められる場合がある。 たとえば、 複写機等の電子写真システム に用いられる感光ドラム用の基体では、 高い形状精度を確保するため、 製管工程 後の管体に対して形状測定が行われている。 '' Background technology For pipes used as rotating parts in various types of machinery, it is sometimes required to measure the shape accuracy. For example, in a substrate for a photosensitive drum used in an electrophotographic system such as a copying machine, shape measurement is performed on a tube after a tube forming process in order to ensure high shape accuracy.
このような形状測定方法として、 第 5 6図、 第 5 7図に示す方法がある。 この 方法は、 管体 1 0の両端近傍の外周面 1 2を基準ローラ 9 1で支持しておき、 管 体 9 0外周面の長手方向中央部の、 たとえば 3箇所に変位測定器 9 2を当接させ る。 そして、 前記基準ローラ 9 1の回転により管体 9 0を回転させたときの前記 変位測定器 9 2の検出値の変化量から、 この回転に伴う管体 9 0外周面の長手方 向中央部の変位量を測定するというものである。 こうして得られる変位量は、 管 体 9 0の端部近傍外周面を基準とした中央部外周面のフレが表れている。  As such a shape measuring method, there is a method shown in FIGS. In this method, the outer peripheral surface 12 near both ends of the tubular body 10 is supported by reference rollers 91, and the displacement measuring devices 92 are provided at, for example, three places in the longitudinal center of the outer peripheral surface of the tubular body 90. Make contact. Then, based on the amount of change in the detected value of the displacement measuring device 92 when the tube 90 is rotated by the rotation of the reference roller 91, the central portion in the longitudinal direction of the outer peripheral surface of the tube 90 due to the rotation is obtained. Is measured. The displacement thus obtained shows the deflection of the outer peripheral surface at the center with reference to the outer peripheral surface near the end of the tube 90.
また、 管体 9 0がその両側の内周面で回転支持される場合には、 管体 9 0の肉 厚分布 (偏肉の程度) も回転精度に影響を与える。 このため、 高い形状精度が求 められる場合には、 肉厚測定器等により管体 9 0の最大肉厚および最小肉厚を求 めて偏肉の程度も合わせて評価することが考えられる。  When the pipe 90 is rotatably supported on the inner peripheral surfaces on both sides thereof, the wall thickness distribution (the degree of uneven thickness) of the pipe 90 also affects the rotation accuracy. For this reason, when high shape accuracy is required, it is conceivable that the maximum thickness and the minimum thickness of the pipe body 90 are determined by a thickness measuring device or the like, and the degree of unevenness is also evaluated.
しかしながら、 上述した第 5 6図, 第 5 7図の管体 9 0の外周面のフレ測定と 肉厚測定器等を用いた肉厚の測定による管体の形状測定方法によると、 以下の問 題がある。  However, according to the method for measuring the outer shape of the pipe 90 shown in FIGS. 56 and 57 and the method for measuring the shape of the pipe by measuring the wall thickness using a wall thickness measuring instrument or the like, the following questions are obtained. There is a title.
①外周面のフレの測定と肉厚の測定をそれぞれ別個の測定器によって行うため 、 測定器の機器バラツキ、 それを使用する測定者の測定器の使い方に起因する誤 差、 さらに測定者間のバラツキ等が累積されてしまい、 高い測定精度を得にくい ②外周面のフレと肉厚の分布は互いに幾何学的に相殺される場合があるにもか かわらず、 これらを別個に測定しているために、 このような場合を考慮すること ができず、 結果として過剰品質を要求することになつている可能性もある。 また、 特開平 1 1— 271008号、 特開昭 63— 131018号、 特開 20 01— 336920号、 特開平 8— 141643号、 特開平 1 1一 63955、 特開平 3— 1 131 14号、 特開 2000— 292161号、 特開平 2— 275 305号等には、 管体の形状を測定する種々の技術が開示されている。 しかしな がら、 これら公開特許には、 そのいずれにも簡便かつ高精度に管体の外周面のフ レを測定する技術についての開示がない。 また、 従来の真円度計測器を用いた管体の形状測定方法も考えられるが、 この 場合、 管体が置かれる測定テーブルの回転軸と測定対象である管体の中心軸位置 を合わせる芯出し、 および測定テ一ブルの回転軸と管体の中心軸とを平行に合わ せる水平出しを、 各管体ごとに繰り返し行うことが必要であり、 非常に時間と手 間がかかるという問題がある。 (1) Since the measurement of the deflection and the thickness of the outer peripheral surface are performed by separate measuring instruments, there is a variation in the measuring instrument equipment, errors caused by the use of the measuring instrument by the person using the measuring instrument, and further errors between the measuring persons. Variations and the like are accumulated, making it difficult to obtain high measurement accuracy. (2) Although the distribution of deflection and wall thickness on the outer peripheral surface may be geometrically offset by each other, they are measured separately. In order to consider such cases May not be able to do so, resulting in demands for excessive quality. Also, JP-A-11-271008, JP-A-63-131018, JP-A-2001-336920, JP-A-8-141643, JP-A-11-163955, JP-A-3-131131, Japanese Unexamined Patent Publication No. 2000-292161 and Japanese Unexamined Patent Publication No. 2-275305 disclose various techniques for measuring the shape of a tubular body. However, none of these published patents discloses a technique for simply and accurately measuring the flatness of the outer peripheral surface of a tubular body. A conventional method for measuring the shape of a pipe using a roundness measuring device is also conceivable, but in this case, a core that aligns the rotation axis of the measurement table on which the pipe is placed with the center axis of the pipe to be measured is used. It is necessary to repeat leveling and horizontal leveling to make the axis of rotation of the measuring table parallel to the center axis of the tube, which is very time-consuming and time-consuming. is there.
発明の開示 本発明は上記技術背景のもと、 簡素に高い精度で管体の形状を測定できる方法 等を提供することを目的とする。 本発明の好適な実施形態の第 1の側面にかかる管体の形状測定方法は、 管体の 両側端部近傍の内周面に一対の基準部を当接させ、 前記一対の基準部の位置を固 定した状態で、 前記管体と前記一対の基準部との当接部分が前記管体の内周面上 で周方向にずれていくように前記管体を回転させ、 前記管体の外側であって、 前 記管体の周方向について固定された少なくとも 1の位置において、 前記管体の回 転に伴う前記管体の外周面の半径方向の変位量を検出することを特徴とするもの である。 DISCLOSURE OF THE INVENTION Under the technical background described above, an object of the present invention is to provide a method and the like that can measure the shape of a tube simply and with high accuracy. A method for measuring the shape of a tubular body according to a first aspect of the preferred embodiment of the present invention includes the steps of: bringing a pair of reference portions into contact with inner peripheral surfaces near both end portions of the tubular body; In a state where the pipe is fixed, the pipe is rotated so that the contact portion between the pipe and the pair of reference portions is shifted in the circumferential direction on the inner peripheral surface of the pipe, and the pipe is rotated. At least one position fixed on the outside in the circumferential direction of the tube, The amount of displacement of the outer peripheral surface of the tube body in the radial direction due to rolling is detected.
このような管体の形状測定方法によると、 内周面を基準とした外周面のフレが 測定される。 すなわち、 測定される外周面のフレには管体の偏肉の影響が加味さ れたものとなっている。 したがって、 内周面を回転支持される用途に供される管 体に対して、 その使用状態に近似した測定を行うことができる。 また、 測定され る外周面のフレには偏肉の影響が加味されているから、 管体の肉厚を別途測定す る場合のような測定機器バラツキの累積や過剰品質の要求を防止できる。 また、 測定される外周面のフレには偏肉の影響が加味されているから、 測定の短時間化 を図ることができる。 また、 内周面側に基準を当接させて外周面側を計測するだ けであるから、 簡素な構成で実現でき、 測定誤差の累積を可及的に低減して、 形 状測定の高い精度を得ることができる。 また、 内周面側には基準部を当接させる ことができればよいので、 内径の小さい管体の形状測定にも好適に採用すること ができる。 なお、 前記基準部の位置は、 管体の外周面の変位量を検出するために 管体を回転させる間だけ固定されればよく、 たとえば管体を形状測定を行う装置 等にセッ トするとき等には可動でもよい。 また、 基準部はその位置が固定されれ ばよく、 回転するなどにより、 その姿勢は変化してもよい。 また、 本発明の好適な実施形態の他の側面にかかる管体の形状測定装置は、 略 水平姿勢の管体に対し、 その両側端部近傍の内周側面に当接する一対の基準部と 、 前記管体の内周側面の高さが前記一対の基準部と略同一高さに位置するように 、 前記管体の外周面に.下側から当接して前記管体を支持する台座部と、 前記管体 の外側に設けられ、 前記管体を前記一対の基準部に押しつけるように前記管体の 外周側面を押圧する押圧部と、 前記管体の内周面と前記一対の基準部とが当接す る 2つの当接部分を通る仮想的な直線に対し、 前記管体の外側から対峙する位置 において、 前記管体が前記一対の基準部に当接した状態で回転したときに、 この 3 011737 According to such a method for measuring the shape of the tubular body, the deflection of the outer peripheral surface with respect to the inner peripheral surface is measured. In other words, the deflection of the outer peripheral surface to be measured takes into account the effect of uneven wall thickness of the tube. Therefore, it is possible to perform a measurement approximating the state of use of a pipe provided for a use whose inner peripheral surface is rotatably supported. In addition, the influence of uneven wall thickness is added to the measured deflection of the outer peripheral surface, so that it is possible to prevent the accumulation of measurement equipment variation and the demand for excessive quality as in the case of separately measuring the wall thickness of a pipe. In addition, since the influence of uneven thickness is added to the deflection of the outer peripheral surface to be measured, the measurement can be shortened. In addition, since only the reference is brought into contact with the inner peripheral surface and the outer peripheral surface is measured, it can be realized with a simple configuration, the accumulation of measurement errors is reduced as much as possible, and the shape measurement is high. Accuracy can be obtained. Further, since it is sufficient that the reference portion can be brought into contact with the inner peripheral surface side, it can be suitably used for shape measurement of a tube having a small inner diameter. The position of the reference portion may be fixed only while rotating the tube in order to detect the amount of displacement of the outer peripheral surface of the tube.For example, when the tube is set on a device for performing shape measurement, etc. For example, it may be movable. Also, the position of the reference portion may be fixed, and the posture may change due to rotation or the like. Further, a pipe shape measuring apparatus according to another aspect of the preferred embodiment of the present invention includes a pair of reference portions abutting on inner circumferential side surfaces near both side ends of the pipe body having a substantially horizontal posture. A pedestal portion that contacts the outer peripheral surface of the tubular body so that the inner peripheral side surface of the tubular body is positioned at substantially the same height as the pair of reference portions and that supports the tubular body by contacting from below. A pressing portion that is provided outside the tubular body and presses an outer peripheral side surface of the tubular body so as to press the tubular body against the pair of reference portions; an inner peripheral surface of the tubular body and the pair of reference portions; With respect to an imaginary straight line passing through two abutting portions that abut against each other, at a position facing the outside of the tubular body, when the tubular body rotates in a state of abutting on the pair of reference portions, this 3 011737
5 回転に伴う前記管体の外周面の半径方向の変位量を検出する変位検出器と、 を備 えたものである。  And a displacement detector for detecting a radial displacement amount of the outer peripheral surface of the tubular body accompanying the rotation.
このような管体の形状測定装置によると、 管体の内周面を基準とした管体の外 周面のフレを、 すなわち、 管体の偏肉の影響が加味された管体の外周面のフレを 測定することができる。 したがって、 内周面を回転支持される用途に供される管 体に対して、 その使用状態に近似した測定を行うことができる。 また、 測定され る管体の外周面のフレには偏肉の影響が加味されているから、 管体の肉厚を別途 測定する場合のような測定機器バラツキの累積や過剰品質の要求を防止できる。 また、 測定される管体の外周面のフレには偏肉の影響が加味されているから、 測 定の短時間化を図ることができる。 また、 管体の内周面に一対の基準部を当接さ せて管体の外周面の半径方向の変位量を計測するだけであるから、 簡素な構成で 実現でき、 測定誤差の累積を可及的に低減して、 形状測定の高い精度を得ること ができる。 また、 管体の内周面と一対の基準部とが当接する 2つの当接部分を通 る仮想的な直線に対し、 管体の外側から対峙する位置において管体の外周面の半 径方向の変位量を測定するので、 管体の回転中心位置にずれが生じた場合であつ ても安定して形状測定を行うことができ、 高い信頼性を有する測定結果を得るこ とができる。 前記仮想的な直線に管体の外側から対峙する位置は、 管体の外周面 の半径方向の変位量が、 管体の回転中心位置のずれの影響を最も受けにくい位置 であるためである。 また、 管体はその外側から押圧部によって一対の基準部に押 しつけられるため、 管体が回転する間も、 管体は確実に一対の基準部と当接する こととなり、 正確な形状測定を行うことができる。 また、 管体はその下側から台 座部によって支持され、 管体の側方に一対の基準部による形状測定の基準位置と 変位検出部による検出位置が配置されるため、 その内周側面を一対の基準部に当 接させた状態で管体を回転させることにより、 管体の回転中心の高さ位置が上下 に動いた場合であっても、 その影響をあまり受けることなく、 安定して形状測定 を行うことができ、 高い信頼性を有する測定結果を得ることができる。 台座部に よって支持される上下方向と、 一対の基準部が当接し、 かつ変位検出部によって 変位量が検出される方向 (水平方向) とは、 略直交する方向であるため、 管体の 回転中心の上下方向の動きは、 管体の側方における外周面の半径方向の変位量に 最も影響が小さいからである。 また、 管体はその下側から台座部によって支持さ れるため、 管体の上方を空ける構成を採用することができ、 そうすれば、 管体を 形状測定装置の上方から容易にセットし、 また取り出すことができる。 また、 管 体の上方を空ける構成を採用すれば、 測定作業者が管体を上方からつかんで容易 に手動で回転させることもできる。 また、 管体の内周面側には基準部を当接させ ることができればよいので、 内径の小さい管体の形状測定にも好適に採用するこ とができる。 また、 本発明の好適な実施形態のさらに他の側面にかかる管体の形状測定装置 は、 略水平姿勢の管体に対し、 その両側端部近傍の内周下面に当接する一対の基 準部と、 前記管体の両側端部にそれぞれ 2つずつ配置され、 前記管.体の外周下面 に当接して前記管体を支持するとともに前記管体を前記一対の基準部に押し付け る支持ローラと、 前記管体の内周面と前記一対の基準部とが当接する 2つの当接 部分を通る仮想的な直線に対し、 前記管体の外側から対峙する位置において、 前 記管体が前記一対の基準部に当接した状態で回転したときに、 この回転に伴う前 記管体の外周面の半径方向の変位量を検出する変位検出器と、 を備えたことを特 徴とするものである。 . According to such a tube shape measuring apparatus, the deflection of the outer peripheral surface of the tube with reference to the inner peripheral surface of the tube, that is, the outer peripheral surface of the tube in which the influence of uneven wall thickness is added Can be measured. Therefore, it is possible to perform a measurement approximating the state of use of a pipe provided for a use whose inner peripheral surface is rotatably supported. In addition, the deflection of the outer peripheral surface of the tube to be measured is affected by uneven wall thickness, preventing the accumulation of measurement equipment variation and excessive quality requirements, such as when measuring the wall thickness of the tube separately. it can. In addition, since the influence of uneven thickness is added to the deflection of the outer peripheral surface of the tube to be measured, the measurement can be shortened. In addition, since it is only necessary to measure the amount of displacement in the radial direction of the outer peripheral surface of the tubular body by bringing a pair of reference portions into contact with the inner peripheral surface of the tubular body, it can be realized with a simple configuration, and the accumulation of measurement errors can be achieved. As much as possible, high accuracy of shape measurement can be obtained. In addition, with respect to a virtual straight line passing through two contact portions where the inner peripheral surface of the pipe and the pair of reference portions contact each other, a radial direction of the outer peripheral surface of the pipe at a position facing from the outside of the pipe. Since the displacement amount is measured, the shape can be measured stably even when the rotation center position of the tube is deviated, and a highly reliable measurement result can be obtained. The position facing the virtual straight line from the outside of the tubular body is because the radial displacement of the outer peripheral surface of the tubular body is least affected by the displacement of the rotation center position of the tubular body. In addition, since the tube is pressed against the pair of reference portions by the pressing portion from the outside, the tube surely comes into contact with the pair of reference portions even while the tube rotates, thereby performing accurate shape measurement. be able to. In addition, the tube is supported by the pedestal from below, and a reference position for shape measurement by a pair of reference portions and a detection position by the displacement detection portion are arranged beside the tube. By rotating the tube while it is in contact with the pair of reference parts, even if the height position of the rotation center of the tube moves up and down, it is not affected so much and stably. Shape measurement can be performed, and highly reliable measurement results can be obtained. On the pedestal Therefore, the supported vertical direction and the direction (horizontal direction) in which the pair of reference portions are in contact with each other and the displacement is detected by the displacement detection unit are substantially orthogonal, and therefore, the vertical direction of the rotation center of the tube is This is because the directional movement has the least effect on the amount of radial displacement of the outer peripheral surface on the side of the tube. In addition, since the pipe is supported by the pedestal from below, it is possible to adopt a configuration in which the pipe is open above, so that the pipe can be easily set from above the shape measuring device, and Can be taken out. In addition, by adopting a configuration in which the upper part of the pipe is opened, the measuring operator can easily manually rotate the pipe by grasping the pipe from above. Further, since it is sufficient that the reference portion can be brought into contact with the inner peripheral surface side of the tubular body, it can be suitably used for shape measurement of a tubular body having a small inner diameter. A pipe shape measuring apparatus according to still another aspect of the preferred embodiment of the present invention comprises a pair of reference portions abutting the inner peripheral lower surface near both side ends of the pipe in a substantially horizontal posture. And two support rollers disposed on both side end portions of the pipe body to support the pipe body by contacting the lower peripheral surface of the pipe body and pressing the pipe body against the pair of reference portions. At a position facing the virtual straight line passing through two abutting portions where the inner peripheral surface of the tubular body and the pair of reference portions abut against each other, at a position facing the outside of the tubular body, the tubular body is And a displacement detector for detecting the amount of radial displacement of the outer peripheral surface of the tube body caused by the rotation when rotated in contact with the reference portion of (1). is there. .
このような管体の形状測定装置によると、 管体の内周面を基準とした外周面の フレ、 すなわち、 管体の偏肉の影響が加味された外周面のフレを測定することが できる。 したがって、 内周面を回転支持される用途に供される管体に対して、 そ の使用状態に近似した測定を行うことができる。 また、 測定される外周面のフレ には偏肉の影響が加味されているから、 管体の肉厚を別途測定する場合のような 測定機器バラツキの累積や過剰品質の要求を防止できる。 また、 測定される外周 面のフレには偏肉の影響が加味されているから、 測定の短時間化を図ることがで きる。 また、 管体の内周面側に基準を当接させて管体の外周面側を計測するだけ の簡素な構成であるから、 測定誤差の累積を可及的に低減して、 形状測定の高い 精度を得ることができる。 また、 内周面側には基準部を当接させることができれ ばよいので、 内径の小さい管体の形状測定にも好適に採用することができる。 ま た、 管体の重量は下側から支持ローラで支持するため、 管体と一対の当接部との 接触圧を管体の重量によらず適正に設定して制御することができ、 これにより形 状測定について高い信頼性を得ることができる。 また、 支持ローラは管体の両側 にそれぞれ 2つ配置されているため、 管体の軸の位置および管体の姿勢を安定さ せることができ、 これにより管体の回転動作を安定させ、 高い測定精度を得るこ とができる。 また、 支持ローラが管体の重量を支持する機能とともに、 管体の軸 を位置決めする機能をも果たすため、 管体に接触する部材を少なく抑えることが できる。 これにより誤差要因を排除して正確な形状測定に寄与することができ、 形状測定について高い信頼性を得ることができるとともに、 管体が損傷する可能 性を低減することができる。 また、 本発明の好適な実施形態のさらに他の側面にかかる管体の形状測定装置 は、 管体の両側端部にそれぞれ複数の矯正ローラを接触させることにより前記管 体の両側端部の断面形状を一時的に矯正し、 両側端部の断面形状が一時的に矯正 されている状態で前記管体を回転させ、 この回転に伴う前記管体の外周面の半径 方向の変位量を検出することを特徴とするものである。 According to such a pipe shape measuring device, it is possible to measure the deflection of the outer peripheral surface with reference to the inner peripheral surface of the tubular body, that is, the deflection of the outer peripheral surface in which the influence of uneven thickness of the tubular body is added. . Therefore, it is possible to perform a measurement approximating the state of use of a tube used for a purpose whose inner peripheral surface is rotatably supported. In addition, since the thickness of the measured outer peripheral surface is affected by uneven thickness, it is possible to prevent the accumulation of measurement equipment variations and excessive quality requirements, such as when measuring the wall thickness of a pipe separately. Also, the outer circumference to be measured Because the influence of uneven thickness is added to the surface deflection, measurement can be shortened in a short time. In addition, since it has a simple configuration in which the reference is brought into contact with the inner peripheral surface of the pipe and the outer peripheral surface of the pipe is measured, the accumulation of measurement errors is reduced as much as possible, High accuracy can be obtained. Further, since it is sufficient that the reference portion can be brought into contact with the inner peripheral surface side, it can be suitably used for shape measurement of a tube having a small inner diameter. In addition, since the weight of the tube is supported by the support rollers from below, the contact pressure between the tube and a pair of abutting portions can be set and controlled appropriately regardless of the weight of the tube. This makes it possible to obtain high reliability for shape measurement. In addition, since two support rollers are disposed on both sides of the tube, the position of the shaft of the tube and the posture of the tube can be stabilized, thereby stabilizing the rotation of the tube and increasing the height. Measurement accuracy can be obtained. In addition, since the supporting roller has the function of supporting the weight of the tube and the function of positioning the axis of the tube, the number of members that come into contact with the tube can be reduced. As a result, it is possible to eliminate an error factor and contribute to accurate shape measurement, to obtain high reliability of the shape measurement, and to reduce the possibility of damage to the tube. Further, a tube shape measuring apparatus according to still another aspect of the preferred embodiment of the present invention is characterized in that a plurality of straightening rollers are brought into contact with both side ends of the tube, respectively, so that a cross section of both side ends of the tube is provided. The tube is rotated in a state where the shape is temporarily corrected and the cross-sectional shape of the both end portions is temporarily corrected, and the amount of radial displacement of the outer peripheral surface of the tube accompanying the rotation is detected. It is characterized by the following.
このような管体の形状測定方法によると、 管体はそのままの状態ではなく、 両 側端部が矯正ローラによって一時的に矯正された状態で外周面の半径方向の変位 量が検出される。 このため、 両側端部の断面形状が適正な形状に変形した状態で 使用される管体の実際の使用時に近似した条件のもとで管体の形状を測定するこ とができる。 したがって、 実際に使用されるときに発揮される管体の形状を高い 精度で得ることができ、 実際に使用されるときに必要な形状精度を確保するべく 過剰品質を要求するような事態を未然に防止することができる。 また、 本発明の好適な実施形態のさらに他の側面にかかる管体の形状測定方法 は、 管体の両側端部それぞれを複数の矯正ローラで押圧しながら前記管体を回転 させることにより前記管体の両側端部を塑性変形させてその断面形状を矯正し、 前記管体の両側端部に対する前記矯正ローラの押圧力を弱め、 引き続き前記矯正 ローラの少なくとも一部を接触させたまま前記管体を回転させ、 この回転に伴う 前記管体の外周面の半径方向の変位量を検出することにより、 前記管体の形状測 定を行うことを特徴とするものである。 According to such a method of measuring the shape of the tubular body, the amount of displacement of the outer peripheral surface in the radial direction is detected in a state where the tubular body is not straightened but both ends are temporarily straightened by the straightening rollers. For this reason, the shape of the tube can be measured under conditions similar to the actual use of the tube used when the cross-sectional shape of the both end portions is deformed to an appropriate shape. Therefore, the shape of the tube that is exhibited when actually used Accuracy can be obtained, and it is possible to prevent a situation where excessive quality is required in order to secure the required shape accuracy when actually used. Further, a method for measuring the shape of a tube according to still another aspect of the preferred embodiment of the present invention is characterized in that the tube is rotated by rotating the tube while pressing both ends of the tube with a plurality of correction rollers. Plastically deforming both ends of the body to correct its cross-sectional shape, weakening the pressing force of the straightening roller against both ends of the tubular body, and continuously contacting at least a part of the straightening roller with the tubular body The shape of the tubular body is measured by detecting the amount of radial displacement of the outer peripheral surface of the tubular body accompanying the rotation.
このような管体の形状測定方法による之、 管体はそのままの状態ではなく、 両 側端部が矯正ローラによって矯正された状態で外周面の半径方向の変位量が検出 される。 このため、 両側端部の断面形状が適正な形状に変形した状態で使用され る管体の実際の使用時に近似した条件のもとで管体の形状を測定することができ る。 したがって、 実際に使用されるときに発揮される管体の形状を高い精度で得 ることができ、 実際に使用されるときに必要な形状精度を確保するべく過剰品質 を要求するような事態を未然に防止することができる。 また、 管体の両側端部を . 矯正する矯正ローラは管体の形状測定時には引き続き管体を支持して管体の姿勢 を維持させる支持ローラとして機能する。 このため、 管体を矯正ローラに接触す る形状測定位置にセッ トすることで、 端部矯正と形状測定とを連続して行うこと ができ、 優れた作業効率を得られる。 また、 管体とそれを支持するローラ等とが 接触する回数を少なくすることができるため、 管体がローラ等と接触することで 損傷する可能性を低減することができる。 また、 こうして形状測定を終了した管 体はその端部の断面形状が既に矯正されているため、 実際の使用時にはフランジ 等を圧入する作業を容易かつ確実に行うことができ、 矯正されていない非円形の 端部にフランジ等を斜め圧入してしまうような不良の発生を未然に防止すること ができる。 また、 本発明の好適な実施形態めさらに他の側面にかかる管体の形状測定方法 は、 管体の両側端部近傍の内側に一対の膨張クランプを挿入し、 前記一対の膨張 クランプを膨張させて、 前記管体の内周面の全周にわたって接触させ、 前記一対 の膨張クランプの中心軸を回転軸として前記膨張クランプとともに前記管体を回 転させ、 前記管体の外側であって、 前記管体の周方向について固定された少なく とも 1の位置において、 前記管体の回転に伴う前記管体の外周面の半径方向の変 位量を検出することを特徴とするものである。 According to such a method of measuring the shape of the tubular body, the amount of displacement in the radial direction of the outer peripheral surface is detected in a state where the tubular body is not straightened but both ends are straightened by the straightening rollers. For this reason, the shape of the tube can be measured under conditions similar to the actual use of the tube used in a state where the cross-sectional shape of both end portions is deformed to an appropriate shape. Therefore, it is possible to obtain with high precision the shape of the tube that is exhibited when actually used, and to avoid situations where excessive quality is required to ensure the required shape accuracy when actually used. It can be prevented before it happens. In addition, the correction roller that corrects both ends of the tube functions as a support roller that continuously supports the tube and maintains the posture of the tube when measuring the shape of the tube. For this reason, by setting the tube at the shape measurement position that comes into contact with the straightening roller, the end correction and the shape measurement can be performed continuously, and excellent work efficiency can be obtained. Further, since the number of times that the tube and the roller or the like supporting the tube come into contact can be reduced, the possibility that the tube is damaged by contact with the roller or the like can be reduced. In addition, since the cross-sectional shape of the end of the pipe whose shape has been measured in this manner has already been corrected, the work of press-fitting a flange or the like can be easily and reliably performed during actual use. To prevent defects such as oblique press-fitting of flanges etc. into the circular end Can be. Further, according to a preferred embodiment of the present invention, a method for measuring the shape of a tubular body according to still another aspect is as follows. A pair of inflatable clamps are inserted inside the vicinity of both side ends of the tubular body, and the pair of inflatable clamps are inflated. Contacting the entire circumference of the inner peripheral surface of the tubular body, rotating the tubular body together with the inflatable clamp about the central axis of the pair of inflatable clamps as a rotation axis, and outside the tubular body, At least one position fixed in the circumferential direction of the tubular body detects a radial displacement of the outer peripheral surface of the tubular body due to rotation of the tubular body.
このような管体の形状測定方法によると、 一対の膨張クランプの中心軸位置は 管体の内周面がなす円の中心にほぼ位置することとなる。 そして、 この一対の膨 張クランプの中心軸回りに回転させることにより、 内周面で支持されて回転する 用途に供される管体が実際の使用されるときに極めて近似した回転状態が実現で きる。 したがって、 この回転のもとで検出される管体の挙動は、 実際の使用時に おける管体の挙動とほぼ同等なものが表れてくる。 具体的には、 このとき検出さ れる外周面の半径方向の変位量は、 そのまま実際に使用されるときのフレが表現 されている。 すなわち、 この検出される外周面の半径方向の変位量は、 管体の両 端近傍の内周面がなす円のほぼ中心を基準とした外周面のフレであるから、 管体 の曲がり、 偏肉、 その他、 管体の断面形状 (真円度) 等の影響をすベて統合した ものとなっている。 このように、 測定される外周面のフレには偏肉の影響が加味 されているから、 管体の肉厚を別途測定する場合のような測定機器バラツキの累 積や過剰品質の要求を防止できる。 また、 測定される外周面のフレには偏肉の影 響が加味されているから、 測定の短時間化を図ることができる。 また、 一対の膨 張クランプは管体の内周面の全周にわたって接触するため、 一対の膨張クランプ の中心軸位置を管体の内周面がなす円の中心により確実に位置させ、 実際の使用 時の回転状態に近似した状態を実現することができる。 また、 一対の膨張クラン ^ プは管体の内周面の全周にわたって接触するため、 管体により大きな押圧力をも つて接触しても、 その押圧力を周方向について略均等に分布させることができ、 正確な形状測定に寄与することができる。 また、 管体の内側に一対の膨張クラン プを揷入して膨張させ、 この膨張クランプごと管体を回転させて外周面の変位量 を検出するだけであるから、 簡素な構成で実現でき、 測定誤差の累積を可及的に 低減して、 形状測定の高い精度を得ることができる。 According to such a method of measuring the shape of the tubular body, the central axis position of the pair of expansion clamps is substantially located at the center of the circle formed by the inner peripheral surfaces of the tubular body. By rotating the pair of expansion clamps around the central axis, a rotating body that is supported on the inner peripheral surface and rotates can be realized in an extremely similar rotating state when actually used. Wear. Therefore, the behavior of the tube detected under this rotation appears almost the same as the behavior of the tube in actual use. Specifically, the amount of displacement in the radial direction of the outer peripheral surface detected at this time represents the deflection when actually used as it is. That is, since the detected radial displacement of the outer peripheral surface is the deflection of the outer peripheral surface with reference to the approximate center of the circle formed by the inner peripheral surfaces near both ends of the tube, the tube is bent and deviated. It integrates all the effects of the meat, other, and the cross-sectional shape (roundness) of the tube. In this way, the influence of uneven wall thickness is added to the deflection of the outer peripheral surface to be measured, which prevents the accumulation of measurement equipment variations and the demand for excessive quality, such as when measuring the wall thickness of a pipe separately. it can. In addition, since the influence of uneven thickness is added to the deflection of the outer peripheral surface to be measured, the measurement can be shortened in a short time. In addition, since the pair of expansion clamps is in contact with the entire inner peripheral surface of the tube, the center axis positions of the pair of expansion clamps are surely positioned at the center of the circle formed by the inner peripheral surface of the tube, and It is possible to realize a state similar to the rotating state at the time of use. Also, a pair of inflatable clans ^ Since the pump contacts the entire circumference of the inner peripheral surface of the pipe, even if it comes in contact with the pipe with a large pressing force, the pressing force can be distributed almost uniformly in the circumferential direction, Can contribute to the measurement. In addition, since a pair of inflation clamps are inserted into the inside of the tube and inflated, and the tube is rotated together with the inflatable clamp to detect the amount of displacement of the outer peripheral surface, a simple configuration can be realized. Accumulation of measurement errors can be reduced as much as possible, and high accuracy of shape measurement can be obtained.
図面の筒単な説明 第 1図は、 本発明にかかる管体の形状測定方法の原理を示す正面断面図である 第 2図は、 同じく側面断面図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front sectional view showing the principle of a method for measuring the shape of a tubular body according to the present invention. FIG. 2 is a side sectional view of the same.
第 3図は、 同じく斜視図である。  FIG. 3 is a perspective view of the same.
第 4図は、 形状測定対象である管体 (ワーク) の使用状態を示す説明斜視図で める。  FIG. 4 is an explanatory perspective view showing a use state of a pipe (work) whose shape is to be measured.
第 5図は、 本発明にかかる管体の形状測定方法における変位量の検出位置の説 明図である。  FIG. 5 is an explanatory diagram of a detection position of a displacement amount in the tube shape measuring method according to the present invention.
第 6 A図は、 管体の不良例である曲がり管 1 0 1の斜視図である。  FIG. 6A is a perspective view of a bent tube 101 which is an example of a defective tube.
第 6 B図は、 曲がり管 1 0 1の軸方向中央部の断面図である。  FIG. 6B is a cross-sectional view of a central portion in the axial direction of the bent pipe 101.
第 7 A図は、 管体の不良例である偏肉がある管 1 0 2の斜視図である。  FIG. 7A is a perspective view of a tube 102 having uneven thickness, which is an example of a defective tube.
第 7 B図は、 偏肉管 1 0 2の任意の断面の断面図である。  FIG. 7B is a cross-sectional view of an arbitrary cross section of the uneven thickness pipe 102.
第 8 A図は、 管体の不良例として断面が真円ではない管であって、 特に断面が 扁平な管 1 0 3の斜視図である。  FIG. 8A is a perspective view of a tube 103 whose cross section is not a perfect circle as a defective example of the tube body, and in particular, whose cross section is flat.
第 8 B図は、 扁平管 1 0 3の任意の断面の断面図である。  FIG. 8B is a cross-sectional view of an arbitrary cross section of the flat tube 103.
、 第 8 C図は、 一対の基準部 2 0 , 2 0を管体 (扁平管) 1 0 3の内周面に当接 したまま偏肉管 1 0 3を回転させた様子を示す断面説明図である。 In FIG. 8C, a pair of reference portions 20 and 20 abut against the inner peripheral surface of the tubular body (flat tube) 103. FIG. 4 is an explanatory cross-sectional view showing a state in which the wall-thickness tube 103 is rotated as it is.
第 9図は、 形状測定対象である管体 (ワーク) 1 0を回転させながら外周面の 変位量を検出した結果の例を示すグラフである。  FIG. 9 is a graph showing an example of a result of detecting a displacement amount of an outer peripheral surface while rotating a pipe (work) 10 as a shape measurement target.
第 9 A図は、 検出される変位量に変化がない例である。  FIG. 9A shows an example in which the detected displacement does not change.
第 9 B図は、 3 6 0度の周期のフレが検出された例である。  FIG. 9B is an example in which a runout having a period of 360 degrees is detected.
第 9 C図は、 1 8 0度の周期のフレが検出された例である。  FIG. 9C is an example in which a runout having a period of 180 degrees is detected.
第 1 0図は、 本発明にかかるさらに高度な管体の形状測定方法の原理を示す正 面断面図である。  FIG. 10 is a front sectional view showing the principle of a more advanced pipe shape measuring method according to the present invention.
第 1 1図は、 同じく側面断面図である。  FIG. 11 is a side sectional view of the same.
第 1 2図は、 この手動型の形状測定装置 4の平面断面図である。  FIG. 12 is a plan sectional view of the manual type shape measuring device 4.
第 1 3図は、 同装置 4の正面断面図である。  FIG. 13 is a front sectional view of the device 4.
第 1 4図は、 同装置 4の側面断面図である。  FIG. 14 is a side cross-sectional view of the device 4.
第 1 5図は、 同装置 4の概略斜視図である。  FIG. 15 is a schematic perspective view of the device 4.
第 1 6図は、 同装置 4における管体 (ワーク) のセッティング手順の説明図で ある。  FIG. 16 is an explanatory diagram of a procedure for setting a pipe (work) in the device 4.
第 1 6 A図は、 一方の基準部 4 2に対して管体 1 0の一方の端部を差し込んだ 状態を示す斜視図である。  FIG. 16A is a perspective view showing a state in which one end of the tubular body 10 is inserted into one reference portion 42.
第 1 6 B図は、 管体 1 0の内側に一対の基準部 4 2 , 4 2を入れるように管体 1 0の他方の端部を降ろした状態を示す斜視図である。  FIG. 16B is a perspective view showing a state in which the other end of the tube 10 is lowered so that a pair of reference portions 42 and 42 are inserted inside the tube 10.
第 1 6 C図は、 管体 1 0の他方の端部内に他方の基準部 4 2が差し込まれるよ うに管体 1 0を水平にスライド動作させた状態を示す斜視図である。  FIG. 16C is a perspective view showing a state where the tube 10 has been horizontally slid so that the other reference portion 42 is inserted into the other end of the tube 10.
第 1 7図は、 自動型の形状測定装置 5の全体斜視概略図である。  FIG. 17 is an overall perspective schematic view of the automatic shape measuring device 5.
第 1 8図は、 同装置 5における管体 1 0の支持構造の拡大斜視図である。 第 1 9図は、 同装置 5の要部の正面断面説明図である。  FIG. 18 is an enlarged perspective view of a support structure of the tube 10 in the device 5. FIG. 19 is an explanatory front sectional view of a main part of the device 5.
第 2 0図は、 同装置 5の要部の側面断面図である。  FIG. 20 is a side sectional view of a main part of the device 5.
第 2 1図は、 基準ローラの支持形態を示す正面断面図である。 1 ύ 第 2 2図は、 管体搬送装置の平面説明図である。 FIG. 21 is a front sectional view showing a supporting form of a reference roller. 1 ύ FIG. 22 is an explanatory plan view of the tube transport device.
第 2 3図は、 管体搬送装置の側面説明図である。  FIG. 23 is an explanatory side view of the tube transport device.
第 2 4図は、 種々の変位量を有する複数の管体に対してそれぞれ 1 0回の形状 測定を行った場合の各回の測定結果のバラツキ (測定誤差) を示すグラフである 第 2 5図は、 第 3の実施形態における基準ローラの支持形態を示す正面断面図 である。  Fig. 24 is a graph showing the variance (measurement error) of each measurement result when 10 times shape measurement is performed on a plurality of pipes having various displacements respectively. FIG. 8 is a front sectional view showing a support mode of a reference roller according to a third embodiment.
第 2 6図は、 第 3の実施形態における管体 1 0の支持構造の拡大斜視図である 第 2 7図は、 基準ローラの支持形態を示す正面断面図である。  FIG. 26 is an enlarged perspective view of a support structure for the tubular body 10 in the third embodiment. FIG. 27 is a front sectional view showing a support form of the reference roller.
第 2 8図は、 支持ローラの支持形態を示す側面図である。  FIG. 28 is a side view showing a supporting form of the supporting roller.
- 第 2 9図は、 第 4の実施形態における支持ローラの支持形態を示す側面図であ る。  -FIG. 29 is a side view showing a support mode of the support roller in the fourth embodiment.
第 3 0図は、 第 7の実施形態にかかる形状測定装置における支持ローラの支持 形態を示す側面図である。  FIG. 30 is a side view showing a support mode of a support roller in the shape measuring apparatus according to the seventh embodiment.
第 3 1図は、 第 8の実施形態における管体の支持形態を示す正面断面図である 第 3 2図は、 第 9の実施形態にかかる管体の形状測定方法を説明するための概 念図である。  FIG. 31 is a front sectional view showing a support form of the tubular body in the eighth embodiment. FIG. 32 is a concept for explaining a tubular body shape measuring method according to the ninth embodiment. FIG.
第 3 3図は、 同側面図である。  Fig. 33 is the same side view.
第 3 4図は、 その中央部 1 0 4 bは適正な真円形状をなしているが両側端部 1 0 4 a , 1 0 4 aが扁平な断面形状となっている管体 1 0 4を示す説明図である 第 3 5 A図は、 その全長にわたって断面形状は一定であるが、 その断面形状が 真円ではない管体 1 0 5を示す説明図である。  FIG. 34 shows that the central portion 104 b has an appropriate perfect circular shape but the both ends 104 a and 104 a have a flat cross section. FIG. 35A is an explanatory view showing a tubular body 105 whose cross-sectional shape is constant over its entire length, but whose cross-sectional shape is not a perfect circle.
第 3 5 B図は、 同管体 1 0 5の両側端部 1 0 5 a, 1 0 5 aにフランジ 8 0, 8 0等が圧入された実際の使用時の状態を示す説明図である。 Fig. 35B shows flanges 80, 105 on both sides 105a, 105a of the same tubular body 105. It is an explanatory view showing a state at the time of actual use in which 80 or the like is press-fitted.
第 3 6図は、 第 9の寒施形態を第 2の実施形態等とほぼ同様の機械構成によつ て構成した場合の、.管体の支持構造の拡大斜視図である。  FIG. 36 is an enlarged perspective view of the support structure of the tubular body in the case where the ninth cold embodiment is configured with a mechanical configuration substantially similar to that of the second embodiment and the like.
第 3 7図は、 外周面 6 5 1の幅方向中央に隙間 6 5 3を形成する小径部 6 5 2 を形成した外側矯正ローラ 6 5を用いた変形例を示す正面断面図である。  FIG. 37 is a front sectional view showing a modified example using the outer straightening roller 65 having a small-diameter portion 652 forming a gap 653 in the center of the outer peripheral surface 651 in the width direction.
第 3 8図は、 1つの内側矯正ローラ 9 1 1と、 管体 1 0の下側に位置する 2つ の外側矯正ローラ 9 1 2 , 9 1 3に加えて、 管体 1 0の上側に位置する外側矯正 ローラ 9 1 4を配置した矯正ローラの配置の変形例である。  Fig. 38 shows one inner straightening roller 911 and two outer straightening rollers 912, 913 located below the tube 10, plus the upper side of the tube 10. This is a modified example of the arrangement of the straightening rollers in which the located outer straightening rollers 914 are arranged.
第 3 9図は、 矯正ローラをすべて内側矯正ローラ 9 2 0…とした矯正ローラの 配置の変形例である。  FIG. 39 shows a modification of the arrangement of the straightening rollers in which the straightening rollers are all inner straightening rollers 920.
第 4 0図は、 矯正ローラをすべて外側矯正ローラ 9 3 0…とした矯正ローラの 配置の変形例である。  FIG. 40 shows a modification of the arrangement of the correction rollers in which all the correction rollers are outside correction rollers 930.
第 4 1図は、 内側矯正ローラ 9 4 1と外 ^矯正ローラ 9 4 2とを管体 1 0の周 方向について同位置に配置して、 管体 1 0を内外から挟み込んで拘束しておき、 これと周方向位置が異なる矯正ローラ 9 4 3によって矯正を行うようにした、 矯 正ローラの配置の変形例である。  Fig. 41 shows that the inner straightening roller 941 and the outer straightening roller 942 are arranged at the same position in the circumferential direction of the tube 10, and the tube 10 is sandwiched from inside and outside and restrained. This is a modification of the arrangement of the correction rollers, in which correction is performed by correction rollers 943 having different circumferential positions.
第 4 2図は、 周方向位置が同じ内側矯正ローラ 9 5 1と外側矯正ローラ 9 5 2 の組を複数組配置して、 管体 1 0の複数の周方向位置を内外から挟み込んで拘束 するようにした矯正ローラの配置の変形例である。  FIG. 42 shows a case where a plurality of sets of an inner straightening roller 951 and an outer straightening roller 952 having the same circumferential position are arranged, and a plurality of circumferential positions of the tube 10 are sandwiched from inside and outside to be restrained. It is a modified example of the arrangement of the correcting rollers as described above.
第 4 3図は、 多数の矯正ローラ 9 6…を管体 1 0の外周面に接触させて矯正す るようにした矯正ローラの配置の変形例である。  FIG. 43 shows a modified example of the arrangement of the correction rollers in which a large number of correction rollers 96 are brought into contact with the outer peripheral surface of the tubular body 10 to perform correction.
第 4 4 A図は、 第 1 0の実施形態にかかる管体の形状測定方法において管体の 両側端部の矯正を行っている状態を説明するための側面図である。  FIG. 44A is a side view for explaining a state in which both ends of the tubular body are being corrected in the tubular shape measuring method according to the tenth embodiment.
第 4 4 B図は、 同じく管体の形状測定を行っている状態を説明するための側面 図である。  FIG. 44B is a side view for explaining a state in which the shape of the tubular body is also measured.
第 4 5図は、 第 1 0の実施形態を第 2の実施形態等とほぼ同様の機械構成によ つて構成した場合の、 管体の支持構造の拡大斜視図である。 FIG. 45 shows that the tenth embodiment has almost the same mechanical configuration as the second embodiment and the like. FIG. 3 is an enlarged perspective view of a support structure for a tubular body in the case of the above configuration.
第 4 6図は、 第 1 0の実施形態における形状測定の全体の流れを説明するため のフローチヤ一トである。  FIG. 46 is a flowchart for explaining the overall flow of shape measurement in the tenth embodiment.
第 4 7図は、 本発明にかかる管体の形状測定方法のための管体の形状測定装置 5を示す正面断面図である。  FIG. 47 is a front sectional view showing a tube shape measuring device 5 for the tube shape measuring method according to the present invention.
第 4 8図は、 膨張クランプ 2 0の断面図である。  FIG. 48 is a sectional view of the expansion clamp 20.
第 4 9図は、 動作説明図である。  FIG. 49 is an explanatory diagram of the operation.
第 5 0図は、 形状測定対象である管体 (ワーク) 1 0の使用状態を示す正面断 面図である。  FIG. 50 is a front sectional view showing a use state of a pipe (work) 10 whose shape is to be measured.
第 5 1図は、 両端部 1 0 6 a , 1 0 6 aのみが扁平な断面形状をなしているが 、 その中央部 1 0 6 bは適正な真円形状をなしている管体 1 0 6のを示す説明図 である。  In FIG. 51, only the end portions 106a and 106a have a flat cross-sectional shape, but the central portion 106b has an appropriate perfect circular shape. FIG.
第 5 2図は、 周方向に材質分布が不均一な管体 1 0 7の例である。  FIG. 52 is an example of a tubular body 107 having a material distribution uneven in the circumferential direction.
第 5 2 A図は、 この管体 1 0 7にフランジを圧入する前の状態を示す断面図で ある。  FIG. 52A is a cross-sectional view showing a state before the flange is press-fitted into this tubular body 107.
第 5 2 B図は、 この管体 1 0 7にフランジを圧入した後の状態を示す断面図で ある。  FIG. 52B is a cross-sectional view showing a state after the flange has been press-fitted into this tubular body 107.
第 5 3図は、 管体 1 0の任意の断面 (軸方向位置) において周方向位置が半周 分異なる 2つの位置 3 1…, 3 2 ···, 3 3 ···, 3 4…において外周面の変位を検 出するように変位検出器 3 0…を配置した変形例を示す正面断面図である。 第 5 4図は、 検査装置 7 1の構成を示す機能ブロック図であ.る。  Fig. 53 shows two positions 3 1…, 3 2…, 3 3…, 3 4… whose circumferential positions are different by half a circle at an arbitrary cross section (axial position) of the tube 10. FIG. 9 is a front sectional view showing a modification in which displacement detectors 30 are arranged so as to detect displacement of the outer peripheral surface. FIG. 54 is a functional block diagram showing the configuration of the inspection device 71.
第 5 5図は、 製造システム 7 2の構成を示す機能ブロック図である。  FIG. 55 is a functional block diagram showing the configuration of the manufacturing system 72.
第 5 6図は、 従来の管体の形状測定方法の原理を示す説明図である。  FIG. 56 is an explanatory view showing the principle of a conventional method for measuring the shape of a tubular body.
第 5 7図は、 従来の管体の形状測定方法の原理を示す説明図である。 c FIG. 57 is an explanatory view showing the principle of a conventional pipe shape measuring method. c
l b 発明を実施するための最良の形態 [測定原理]  l b Best mode for carrying out the invention [Measurement principle]
以下、 本発明にかかる管体の形状測定方法および装置についての例を実施形態 に基づいて説明するが、 まず、 その測定原理について模式的な説明図を参照しな がら説明する。  Hereinafter, an example of a method and an apparatus for measuring the shape of a tubular body according to the present invention will be described based on an embodiment. First, the principle of measurement will be described with reference to schematic explanatory diagrams.
第 1図は、 本発明にかかる管体の形状測定方法の原理を示す正面断面図である 。 第 2図は、 同じく側面断面図である。 第 3図は、 同じく斜視図である。 第 4図 は、 形状測定対象である管体 (ワーク) の使用状態を示す説明斜視図である。 第 5図は、 本発明にかかる管体の形状測定方法における変位量の検出位置の説明図 である。 ぐ管体>  FIG. 1 is a front sectional view showing the principle of the method for measuring the shape of a tubular body according to the present invention. FIG. 2 is a side sectional view of the same. FIG. 3 is a perspective view of the same. FIG. 4 is an explanatory perspective view showing a use state of a pipe (work) whose shape is to be measured. FIG. 5 is an explanatory diagram of a displacement detection position in the method for measuring the shape of a tubular body according to the present invention. Tube>
本発明における形状測定対象としての管体は、 内周面および外周面とも各断面 において円をなす円筒形状のものを想定している。 さらに、 この実施形態におい て例示する管体 (ワーク) 1 0は、 第 4図に示すように、 その両端の内側に挿入 されるフランジ 8 0 , 8 0によって内側から支持され、 適宜回転させて使用され るものである。 このフランジ 8 0 , 8 0が管体 1 0に接触して、 管体 1 0を回転 支持する位置は、 たとえば管体 1 0の両端から幅 dだけ内側に至る領域 S (図 4 中にハッチングを施した領域) となっている。 .  The tubular body as the shape measurement object in the present invention is assumed to have a cylindrical shape in which both the inner peripheral surface and the outer peripheral surface are circular in each cross section. Further, a pipe (work) 10 exemplified in this embodiment is supported from the inside by flanges 80, 80 inserted inside both ends thereof as shown in FIG. It is used. The position at which the flanges 80 and 80 come into contact with the pipe 10 and rotate the pipe 10 is, for example, a region S (indicated by hatching in FIG. 4) extending inward from both ends of the pipe 10 by the width d. Area). .
このような管体 (ワーク) 1 0の素材は、 たとえばアルミニウム合金等を挙げ ることができる。 ただし、 これに限定されるものではなく、 各種金属や合成樹脂 等であつ-てもよい。  The material of such a tube (work) 10 may be, for example, an aluminum alloy. However, the invention is not limited to this, and various metals, synthetic resins, and the like may be used.
また、 その製造方法としては、 後述するように、 押出成形および引き抜き成形 の組み合わせを挙げることができる。 ただし、 これに限定されるものではなく、 押出成形、 引き抜き成形、 铸造、 鍛造、 射出成形、 切削加工、 またはこれらの組 み合わせなど、 管体を製管できる方法であればよい。 In addition, examples of the production method include a combination of extrusion molding and pultrusion molding, as described later. However, the present invention is not limited to this. Extrusion molding, pultrusion molding, forging, forging, injection molding, cutting, or a combination thereof Any method can be used as long as the pipe can be formed, such as by joining.
このような管体 1 0としては、 具体的には、 電子写真システムを採用した複写 機やプリンタ等における感光ドラム用の基体や素管等を挙げることができる。 な お、 感光ドラム用の基体とは、 切削加工や引抜き加工等が行われた後の管体であ つて、 感光層の形成前の管体をいう。 また、 感光ドラム用の基体に感光層を形成 した後の管体も、 本発明の形状測定等を行う対象たる管体とできる。 く全体概略 >  Specific examples of such a tube 10 include a substrate and a raw tube for a photosensitive drum in a copying machine, a printer, or the like employing an electrophotographic system. The substrate for the photosensitive drum refers to a tube after a cutting process, a drawing process, or the like is performed, and before the photosensitive layer is formed. Further, the tube after the formation of the photosensitive layer on the substrate for the photosensitive drum can also be the tube to which the shape measurement and the like of the present invention are performed. Ku Overview>
第 1図〜第 3図に示すように、 本発明にかかる管体の形状測定方法は、 このよ うな管体 (ワーク) 1 0に対して、 その両側端部近傍の内周面 1 1に一対の基準 部 2 0 , 2 0を当接させ、 この状態で管体 1 0を回転させたときに、 管体 1 0の 外側に配置された変位検出器 3 0…によって管体 1 0の外周面 1 2の半径方向の 変位量を検出するものである。  As shown in FIGS. 1 to 3, the method for measuring the shape of a pipe according to the present invention is applied to such a pipe (work) 10 on an inner peripheral surface 11 near both ends. When the pair of reference portions 20 and 20 are brought into contact with each other and the tube 10 is rotated in this state, the displacement detectors 30 arranged outside the tube 10 are used to form the tube 10. It detects the amount of displacement of the outer peripheral surface 12 in the radial direction.
なお、 管体 1 0の回転は、 測定作業者が手で管体 1 0をつかんで回転させても 、 図示しない駆動ローラ等を管体 1 0に接触させて回転させても、 あるいは他の 任意の方法で回転させてもよい。 また、 管体 1 0の回転の中心は、 およそ管体 1 0の管形状の軸心に相当する位置である。 ぐ基準部 >  The rotation of the tube 10 may be performed by the measurement operator grasping and rotating the tube 10 by hand, by rotating a drive roller (not shown) in contact with the tube 10, or by rotating the tube 10. It may be rotated in any manner. The center of rotation of the tube 10 is located at a position corresponding to approximately the axis of the tube of the tube 10. Standard part>
—対の基準部 2 0 , 2 0は、 少なくとも管体 1 0を回転させるときには、 その 位置が固定され、 管体 1 0との当接部分は、 管体 1 0の内周面 1 1上で周方向に ずれていくことになる。 管体 1 0は、 この一対の基準部 2 0 , 2 0によって、 少 なくとも回転するときは位置決めされ、 形状測定の基準が定められる。  —The position of the reference portions 20 and 20 of the pair is fixed at least when the tube 10 is rotated, and the contact portion with the tube 10 is located on the inner peripheral surface 11 of the tube 10 Will shift in the circumferential direction. The tube 10 is positioned at least when rotated by the pair of reference portions 20, 20, and a reference for shape measurement is determined.
ここでは、 この一対の基準部 2 0 , 2 0は、 管体 1 0の実際の使用時における 支持予定位置 (第 4図でハッチングを施した領域 S内) で、 管体 1 0と当接して いる。 これにより管体 1 0が実際に使用されるときに回転動作の基準となる部分 を、 形状測定における基準とすることができ、 より実際に即した測定を実現する ことができる。 Here, the pair of reference portions 20 and 20 are in contact with the tube 10 at the planned support position (in the hatched area S in FIG. 4) when the tube 10 is actually used. ing. This is the part that serves as a reference for the rotation when the tube 10 is actually used. Can be used as a reference in shape measurement, and more practical measurement can be realized.
また、 この一対の基準部 2 0 , 2 0は球体状に形成され、 管体 1 0の内周面 1 1にそれぞれ略点接触状態で当接している。 これにより、 形状測定の基準位置を ' 明確に特定することができる。 '  The pair of reference portions 20 and 20 are formed in a spherical shape, and are in contact with the inner peripheral surface 11 of the tube 10 in a substantially point contact state. As a result, the reference position of the shape measurement can be clearly specified. '
この一対の基準部 2 0 , 2 0が管体 1 0に当接する位置は、 管体の内周面の下 面でも、 側面でも、 上面 (天井面) でも、 あるいは斜め上方の面や斜め下方の面 でもよい。 <変位検出器 >  The position where the pair of reference portions 20 and 20 abut on the tube 10 may be at the lower surface, the side surface, the upper surface (ceiling surface), the diagonally upper surface or the diagonally lower surface of the inner peripheral surface of the tube. In terms of <Displacement detector>
変位検出器 3 0…は、 管体 1 0の外側に配置されており、 少なくとも管体 1 0 を回転させるときには、 管体 1 0の周方向についての位置 (変位量の検出位置 3 1 ···, 3 2 ···) が固定されるようになっている。 すなわち、 管体 1 0を回転させ るとき、 変位検出器 3 0…による変位量の検出位置 3 1 ···, 3 2…は、 管体 1 0 の外周面 1 2上を周方向にずれていくことになる。  The displacement detectors 30 are arranged outside the tube 10. When the tube 10 is rotated at least, the position in the circumferential direction of the tube 10 (displacement detection position 3 1... ·, 3 2 ····) are fixed. That is, when the tube 10 is rotated, the displacement detection positions 3 1,..., 3 2… by the displacement detectors 30 are shifted circumferentially on the outer peripheral surface 12 of the tube 10. Will go on.
この変位検出器 3 0…によって検出される管体 1 0の外周面 1 2の半径方向の 変位量とは、 いわゆるフレ (外径フレ) である。 本発明においては、 上述した管 体 1 0の内周面 1 1に当接する一対の基準部 2 0 , 2 0により、 管体 1 0の内周 面 1 1を基準とした外周面 1 2のフレが検出 (測定) されることに一つの特徴が ある。  The amount of displacement of the outer peripheral surface 12 of the tubular body 10 in the radial direction detected by the displacement detectors 30 is so-called deflection (outside diameter deflection). In the present invention, the pair of reference portions 20, 20 abutting on the inner peripheral surface 11 of the tube 10 described above allows the outer peripheral surface 12 with respect to the inner peripheral surface 11 of the tube 10 to be a reference. One feature is that the deflection is detected (measured).
ここでは、 管体 1 0の軸方向位置が異なる 5箇所を変位量 (フレ) の検出位置 3 1 ···, 3 2…とできるように、 5個の変位検出器 3 0…を配置した場合を例示 している。  In this case, five displacement detectors 30 are arranged so that the five locations where the axial position of the tube 10 is different can be set as the displacement detection positions 3 1..., 3 2. The case is exemplified.
そして特に外側の 2つの変位検出器 3 0 , 3 0は、 管体 1 0の両端近傍で上述 した一対の基準部 2 0, 2 0に対峙する位置 3 1, 3 1を変位量の検出位置とす るように配置されている。 これらの位置 3 1 , 3 1では、 基準部 2 0 , 2 0と変 位検出器 3 0 , 3 0で挟み込まれた管体 1 0の肉厚を計測することができる。 一方、 他の 3つの変位検出器 3 0…は、 前記一対の基準部 2 0 , 2 0に対峙す る位置 3 1 , 3 1以外の位置 3 2…を変位量の検出位置とするように配置されて いる。 これらの位置 3 2…では、 各位置における管体 1 0の外周面のフレを検出 することができる。 ' In particular, the two outer displacement detectors 30, 30 are located near the two ends of the tube 10 at the positions 31, 31 facing the pair of reference portions 20, 20, respectively. It is arranged so that At these positions 31 and 31, the reference parts 20 and 20 change. The thickness of the tube 10 sandwiched between the position detectors 30 and 30 can be measured. On the other hand, the other three displacement detectors 30 are arranged such that positions 3 2... Other than the positions 3 1, 3 1 facing the pair of reference portions 20, 20 are set as the displacement amount detection positions. It is located. At these positions 32..., It is possible to detect the deflection of the outer peripheral surface of the tube 10 at each position. '
また、 5個の変位検出器 3 0…の周方向についての位置は、 第 3図に示すよう に、 管体 1 0の内周面 1 1と一対の基準部 2 0 , 2 0とが当接する 2つの当接点 P I , P 2を通る仮想的な直線 Qに対し、 管体 1 0の外側から管体 1 0の肉厚 ( 第 3図中にハッチングを施した領域 R) を介して対峙する位置 3 1 ···, 3 2…と なっている。  As shown in FIG. 3, the positions of the five displacement detectors 30 in the circumferential direction correspond to the inner peripheral surface 11 of the tube 10 and the pair of reference portions 20, 20. An imaginary straight line Q passing through the two contact points PI and P2 that contact each other is confronted from outside of the tube 10 through the thickness of the tube 10 (the area R hatched in FIG. 3). 3 1 ···, 3 2…
第 5図は、 管体 1 0の周方向について、 各変位量の検出位置の特徴を説明する 説明図である。  FIG. 5 is an explanatory diagram for explaining the characteristics of the detection position of each displacement amount in the circumferential direction of the tube 10.
本発明にかかる管体の形状測定方法では、 基準部 2 0は形状測定の基準である からその位置は安定して固定させるが、 この基準部 2 0に当接する管体 1 0は、 基準部 2 0に当接している部分を除いて、 その位置 (管体 1 0の姿勢) が不安定 である可能性がある。 たとえば、 第 5図に示すように、 測定中 (回転中) の管体 1 0は、 実線で示す中心が位置〇にある状態から、 破線で示す中心が位置 0' に ある状態にずれる可能性がある。  In the method for measuring the shape of a tubular body according to the present invention, the position of the reference portion 20 is stably fixed because the reference portion 20 is a reference for shape measurement. Except for the part in contact with 20, its position (posture of tube 10) may be unstable. For example, as shown in Fig. 5, the tube 10 during measurement (rotating) may shift from the state where the center indicated by the solid line is at the position 〇 to the state where the center indicated by the broken line is at the position 0 '. There is.
このとき、 基準部 2 0との当接点 P I , P 2を通仮想的な直線 Qに対峙する位 置 Aは、 他の位置 B , C , Dに比較して、 管体 1 0の外周面 1 2の管体 1 0の半 径方向 (第 5図で各位置 A, B , C , Dに示した矢印方向) の変位量に、 上記管 体のずれ (〇→〇' ) の影響が最も小さい位置となっている。 すなわち、 仮想的 な直線 Qに対峙する位置を変位量の検出位置とすれば、 仮に形状測定中に管体 1 " 0にずれが生じたとしてもその影響をほとんど受けるごとなく、 安定した形状測 定を行うことができる。  At this time, the position A that faces the imaginary straight line Q through the contact points PI and P2 with the reference portion 20 is located at the outer peripheral surface of the tube 10 as compared with the other positions B, C and D. The displacement of the tube (〇 → 〇 ') affects the amount of displacement of the tube 10 in the radial direction of the tube 10 (in the directions indicated by the arrows A, B, C, and D in FIG. 5). It is the smallest position. In other words, if the position facing the virtual straight line Q is set as the displacement detection position, even if the tube 1 "0" is displaced during the shape measurement, it is hardly affected by the deviation, and the shape measurement is stable. Settings can be made.
なお、 後述する具体的な形状測定装置においては、 管体 1 0の位置を安定させ る工夫を加え、 上記形状測定中の管体 1 0のずれという問題を軽減している。 このように管体 1 0の内周面 1 1に一対の基準部 2 0 , 2 0を当接させた状態 で管体 1 0を回転させたとき、 管体 1 0が完全な円筒形であれば管体の外周面 1 2は半径方向に全く変位しない。 逆に、 管体 1 0が完全な円筒形からの逸脱があ れば、 変位検出器 3 0…に外周面の変位量として検出されることになる。 In the specific shape measuring device described later, the position of the tube 10 was stabilized. In addition, the problem of displacement of the tube 10 during shape measurement is reduced. When the tube 10 is rotated with the pair of reference portions 20 and 20 abutting against the inner peripheral surface 11 of the tube 10 as described above, the tube 10 is completely cylindrical. If there is, the outer peripheral surface 12 of the tubular body is not displaced at all in the radial direction. Conversely, if the tubular body 10 deviates from a perfect cylindrical shape, it will be detected by the displacement detectors 30 as the amount of displacement of the outer peripheral surface.
(不良管の例) (Example of defective pipe)
次に、 第 6図〜第 8図を参照しながら、 管体 1 0の代表的な不良の例について 説明する。  Next, with reference to FIGS. 6 to 8, an example of typical failure of the tube 10 will be described.
<曲がり管 > <Bent tube>
第 6 A図は、 管体の不良例である曲がり管 1 0 1の斜視図である。 曲がり管 1 0 1とは、 管体の軸が屈曲したものである。 ここでは、 他の不良要因を排除する ように、 その全長にわたって各断面では内周面がなす円 (内周円) および外周面 がなす円 (外周円) がともに真円であり、 内周円と外周円の中心が一致 (同心) し、 したがって管体の肉厚は均一である場合を想定している。  FIG. 6A is a perspective view of a bent tube 101 which is an example of a defective tube. The bent pipe 101 is one in which the axis of the pipe is bent. Here, the circle formed by the inner peripheral surface (inner circle) and the circle formed by the outer peripheral surface (outer circle) are both true circles in each cross section over the entire length so as to eliminate other causes of failure. It is assumed that the center of the outer circle and the center of the outer circle coincide (concentric), and the wall thickness of the pipe is uniform.
このような曲がり管 1 0 1が実際に使用されるとき、 第 4図において説明した ように、 管体両端の内側に挿入したフランジによって回転させると、 第 6 A図に 示すように、 曲がり管 1 0 1は両端近傍の内周円の中心を通る直線 T 1を軸とし て回転し、 曲がり管 1 0 1の軸方向の中央部にフレ (振れ) が生じる。 なお、 第 6 A図の二点鎖線は、 実線の状態から 1 8 0度回転させた状態を示している。 第 6 B図は、 この曲がり管 1 0 1の軸方向中央部の断面図であり、 二点鎖線は 、 実線の状態から 1 8 0度回転させた状態における外周面 (外周円) を示してい る。 この図に示すように、 管体 1 0 1は、 実線の状態では上方に持ち上がつてい るが、 1 8 0度回転したところで二点鎖線に示すように下方に押し下げられ、 さ らに 1 8 0度回転したところで実線の状態に戻る。 すなわち 3 6 0度周期のフレ が生じている。 When such a bent pipe 101 is actually used, as shown in FIG. 4, when it is rotated by flanges inserted inside both ends of the pipe body, as shown in FIG. 101 rotates around a straight line T1 passing through the center of the inner circumference circle near both ends, and a deflection (run-out) occurs in the axial center of the bent tube 101. Note that the two-dot chain line in FIG. 6A indicates a state where the solid line is rotated 180 degrees from the state of the solid line. FIG. 6B is a cross-sectional view of the central portion of the bent pipe 101 in the axial direction, and the two-dot chain line shows the outer peripheral surface (circumferential circle) in a state rotated 180 degrees from the solid line state. You. As shown in this figure, the tubular body 101 is lifted upward in the state of the solid line, but is pushed down as shown by the two-dot chain line when rotated 180 degrees, and When it is rotated 180 degrees, it returns to the state shown by the solid line. That is, a frame with a period of 360 degrees Has occurred.
このようなフランジによる回転では、 フランジによつて支持される管体の一方 の端部近傍の内周円の中心と他方の端部近傍の内周円の中心とを通る直線が回転 軸 T 1となるが、 曲がり管 1 0 1の軸方向の中央部では、 外周円の中心とこの回 転軸 T 1 とがずれてしまう。 曲がり管 1 0 1の軸方向の中央部のフレは、 管体 1 0 1の両端近傍の内周円によって決定される回転軸 T 1と、 着目する断面におけ る外周円の中心とのずれに起因する。 ' <偏肉管>  In such rotation by the flange, a straight line passing through the center of the inner circumference circle near one end of the pipe supported by the flange and the center of the inner circumference circle near the other end is the rotation axis T1. However, at the axial center of the bent pipe 101, the center of the outer circumference circle and the rotation axis T1 are shifted. The deflection of the central portion of the bent pipe 101 in the axial direction is the deviation between the rotation axis T1 determined by the inner circumference circles near both ends of the pipe 101 and the center of the outer circumference circle in the cross section of interest. caused by. '' <Uneven tube>
第 7 A図は、 管体の不良例である偏肉がある管 (以下、 偏肉管と呼ぶ。 ) 1 0 2の斜視図である。 偏肉管 1 0 2とは、 管体の断面において、 周方向に肉厚が変 化するものである。 ここでは、 他の不良要因を排除するように、 管体の軸は直線 であり、 その断面は全長にわたって内周面がなす円 (内周円) および外周面がな す円 (外周円) がともに真円であるが、 内周円と外周円の中心がずれている'(偏 心している) ために偏肉が生じている場合を想定している。 また、 管体の軸方向 についてその断面形状は一定であり、 かつ、 ねじれていない場合を想定している このような偏肉管 1 0 2が実際に使用されるとき、 第 4図において説明したよ うに、 管体両端の内側に揷入したフランジによって回転されると、 第 7 A図に示 すように、 偏肉管 1 0 2は両端近傍の内周円の中心を通る直線 T 2を軸として回 転し、 偏肉管 1 0 2はその軸方向の全長にわたって振れ (フレ) が生じる。 なお 、 第 7 A図の二点鎖線は、 実線の状態から 1 8 0度回転させた状態を示している 第 7 B図は、 この偏肉管 1 0 2の任意の断面の断面図であり、 二点鎖線は、 実 線の状態から 1 8 0度回転させた状態における外周面 (外周円) を示している。 この図に示すように、 偏肉管 1 0 2は、 実線の状態では上部に厚肉部が位置して いるため、 その外周面は全体的に上方に持ち上がっているが、 1 8 0度回転した ところでは二点鎖線に示すように厚肉部が下部に移動し、 上部には薄肉部が位置 するため、 全体的に下方に押し下げられ、 さらに 1 8 0度回転したところで実線 の状態に戻る。 すなわち 3 6 0度周期のフレが生じている。 FIG. 7A is a perspective view of a tube having an uneven thickness (hereinafter, referred to as an uneven thickness tube) 102 which is a defective example of the tubular body. The uneven thickness pipe 102 is a pipe whose wall thickness changes in the circumferential direction in the cross section of the pipe. Here, the axis of the tube is a straight line, and its cross-section is the circle formed by the inner circumferential surface (inner circumferential circle) and the outer circumferential surface formed by the outer circumferential surface (outer circumferential circle) to eliminate other causes of failure. Both are perfect circles, but it is assumed that the center of the inner and outer circles is shifted (eccentric), causing uneven thickness. Also, it is assumed that the cross-sectional shape is constant in the axial direction of the tubular body, and that the tubular body is not twisted. Thus, when rotated by the flanges inserted inside the both ends of the pipe body, as shown in FIG. 7A, the uneven thickness pipe 102 forms a straight line T 2 passing through the center of the inner circumference circle near both ends. Rotating as an axis, the uneven-walled pipe 102 deflects over its entire length in the axial direction. Note that the two-dot chain line in FIG. 7A shows a state rotated 180 degrees from the state of the solid line. FIG. 7B is a cross-sectional view of an arbitrary cross section of this uneven thickness pipe 102. The two-dot chain line indicates the outer peripheral surface (circumferential circle) in a state rotated by 180 degrees from the solid line state. As shown in this figure, the thick-walled tube 102 has a thick portion at the top in the solid line state. Therefore, the outer peripheral surface is lifted up as a whole, but when it is rotated 180 degrees, the thick part moves to the lower part as shown by the two-dot chain line, and the thin part is located at the upper part However, it is pushed down as a whole and returns to the state shown by the solid line when it is further rotated 180 degrees. That is, a deflection of 360 degrees occurs.
このようなフランジによる回転では、 フランジによって支持される管体の一方 の端部近傍の内周円の中心と他方の端部近傍の内周円の中心とを通る直線が回転 軸 T 2となるのは、 上述した曲がり管と同様である。 偏肉管 1 0 2では、 その全 長にわたって内周円と外周円の中心がずれているために、 その全長にわたって内 周円を基準に決定される回転軸 T 2と外周円の中心とがずれてしまう。 偏肉管 1 0 2の全長にわたるフレは、 管体 1 0 2の両端近傍の内周円によって決定される 回転軸 T 2と、 着目する断面における外周円の中心とのずれに起因する。  In such rotation by the flange, the rotation axis T 2 is a straight line that passes through the center of the inner circumference near one end of the pipe supported by the flange and the center of the inner circumference near the other end. This is similar to the above-described bent pipe. Since the center of the inner circumference circle and the center of the outer circumference are displaced over the entire length of the uneven thickness pipe 102, the rotation axis T2 determined on the basis of the inner circumference circle and the center of the outer circumference over the entire length are aligned. It shifts. The deflection over the entire length of the uneven wall 102 is caused by a deviation between the rotation axis T2 determined by the inner circles near both ends of the tube 102 and the center of the outer circle in the cross section of interest.
<扁平管〉 <Flat tube>
第 8 A図は、 管体の不良例として断面が真円ではない管であって、 特に断面が 扁平な管 (以下、 扁平管と呼ぶ。 ) 1 0 3の斜視図である。 扁平管 1 0 3とは、 管体の断面が真円でなく、 上下あるいは左右からはさみ付けて押しつぶしたよう な楕円状の断面をもつものである。 ここでは、 他の不良要因を排除するように、 管体の軸は直線であり、 その断面は内周円と外周円とがほぼ相似形で肉厚が一定 であり、 断面形状が全長にわたって一定であって、 かつ、 ねじれていない場合を 想定している。  FIG. 8A is a perspective view of a tube whose cross section is not a perfect circle as a defective example of the tube body, in particular, a tube having a flat cross section (hereinafter, referred to as a flat tube) 103. The flat tube 103 is a tube whose cross-section is not a perfect circle but has an elliptical cross-section as if it were pinched and crushed from above and below or left and right. Here, the axis of the tube is straight, the inner and outer circles are almost similar in shape, the wall thickness is constant, and the cross-sectional shape is constant over the entire length, so as to eliminate other causes of failure. It is assumed that it is not twisted.
このような扁平管 1 0 3が実際に使用されるとき、 第 4図において説明したよ うに、 管体両端の内側にフランジを挿入すると、 管体 (扁平管) に対してどのよ うにフランジがセッ トされるか、 言い換えればフランジの中心という回転軸に対 して管体 (扁平管) 1 0 3の位置や姿勢がどうなるかは、 管体の扁平度や強度、 フランジの大きさや強度等の関係によって決まるため、 一意に決められない。 こ こでは、 管体 1 0 3の両端ともフランジの中心が扁平管の断面の内周円の中心に 相当する位置にセッ トされた場合を想定する。 この状態でこの管体 (扁平管) 1 0 3を回転させると、 第 8 A図に示すように、 内周円の中心に相当する位置を通 る直線 T 3を軸にして回転し、 扁平管 1 0 3はその軸方向の全長にわたって振れ (フレ) が生じる。 なお、 第 8 A図の二点鎖線は、 実線の状態から 9 0度回転さ せた状態を示している。 When such a flat tube 103 is actually used, as described in FIG. 4, when a flange is inserted inside both ends of the tube, how the flange is formed with respect to the tube (flat tube) The position or orientation of the tube (flat tube) 103 with respect to the rotation axis that is set or in other words the center of the flange depends on the flatness and strength of the tube, the size and strength of the flange, etc. Cannot be uniquely determined. Here, the center of the flange at both ends of the tubular body 103 is set to the center of the inner circumferential circle of the cross section of the flat tube. Assume that it is set at the corresponding position. When this tube (flat tube) 103 is rotated in this state, as shown in FIG. 8A, the tube rotates about a straight line T 3 passing through a position corresponding to the center of the inner circumferential circle, and The tube 103 has runout over its entire length in the axial direction. Note that the two-dot chain line in FIG. 8A indicates a state where the solid line is rotated 90 degrees from the state of the solid line.
第 8 B図は、 この扁平管 1 0 3の任意の断面の断面図であり、 二点鎖線は、 実 線の状態から 9 0度回転させた状態における外周面 (外周円) を示している。 この図に示すように、 管体 1 0 3は、 実線の状態で縦長姿勢となっているが、 9 0度回転したところでは二点鎖線に示すように横長姿勢となり、 さらに 9 0度 回転したところで実線の状態に戻る。 よって外周面では外側に膨らんだり内側に へこんだりを繰り返し、 1 8 0度周期のフレが生じている。  FIG. 8B is a cross-sectional view of an arbitrary cross section of the flat tube 103, and a two-dot chain line shows an outer peripheral surface (circumferential circle) in a state rotated 90 degrees from the solid line state. . As shown in this figure, the tubular body 103 is in the vertical position in the state of the solid line, but when it is rotated 90 degrees, it is in the horizontal position as shown by the two-dot chain line, and further rotated 90 degrees. By the way, it returns to the state of the solid line. Therefore, the outer peripheral surface repeatedly swells outward and dents inward, causing a 180 ° -period deflection.
この扁平管 1 0 3の回転の回転軸 Tは、 上述したように、 管体 (扁平管) 1 0 3の両端の断面において内周円の中心を通ることを想定している。 さらに、 全長 にわたつて一定断面であることを想定しているこの例では、 任意の断面において もその外周円 (真円ではない) の中心を通る。 したがって、 扁平管 1 0 3の全長 にわたるフレは、 管体 1 0 3の各断面における外周円が真円からずれていること に起因する。 第 8 C図については後述する。  As described above, it is assumed that the rotation axis T of the rotation of the flat tube 103 passes through the center of the inner circumferential circle in the cross section at both ends of the tube (flat tube) 103. Furthermore, in this example, assuming a constant cross-section over the entire length, any cross-section passes through the center of its outer circle (not a perfect circle). Therefore, the deflection over the entire length of the flat tube 103 is caused by the fact that the outer circumferential circle in each cross section of the tube 103 is deviated from the true circle. FIG. 8C will be described later.
(測定例) (Example of measurement)
次に、 上記のような不良管を測定対象として、 その形状測定を行った場合につ いて、 第 9図を参照しながら説明する。 第 9図は、 形状測定対象である管体 (ヮ —ク) 1 0を回転させながら外周面の変位量を検出した結果の例を示すグラフで ある。 第 9図において、 横軸は管体 (ワーク) の回転角度を示し、 縦軸は変位検 出器 3 0…によって検出される管体 1 0の外周面の半径方向の変位量の検出値を 示している。 ぐ完全管の測定 > ' Next, the case where the shape of the defective pipe as described above is measured is described with reference to FIG. FIG. 9 is a graph showing an example of the result of detecting the amount of displacement of the outer peripheral surface while rotating the pipe (object) 10 whose shape is to be measured. In FIG. 9, the horizontal axis represents the rotation angle of the tube (work), and the vertical axis represents the detected value of the radial displacement of the outer surface of the tube 10 detected by the displacement detectors 30. Is shown. Complete pipe measurement>''
まず、 曲がり、 偏肉、 断面の変形のいずれもない完全な円筒型の管体 1 0に対 し、 第 1図〜第 3図に示した測定原理に基づいて管体の形状を測定すると、 上述 したように、 管体 1 0の外周面は全く変位しないため、 5つの変位測定器 3 0— によって検出される変位量は、 いずれも第 9 A図に示すように変化がないものと なる。  First, for a complete cylindrical tube 10 without any bending, uneven thickness, or cross-sectional deformation, the shape of the tube is measured based on the measurement principle shown in Figs. 1 to 3. As described above, since the outer peripheral surface of the tubular body 10 is not displaced at all, the displacement amounts detected by the five displacement measuring devices 30 are not changed as shown in FIG. 9A. .
<曲がり管の測定 > <Measurement of bent pipe>
第 6図に示した曲がり管 1 0 1では、 その内周面が真円であることを想定して いるため、 一対の基準部 2 0 , 2 0を曲がり管の内周面に当接したまま管体 1 0 1を回転させても、 この一対の基準部 2 0 , 2 0と当接する管体の内周面は動か ない。 したがって、 この曲がり管 1 0 1に対する測定では、 管体の両側にフラン ジを揷入して回転させた状態を示した第 6 A図と同様に回転することになる。 な お、 ここでは第 5図で想定した回転中心位置のずれは無視レている。  In the bent pipe 101 shown in FIG. 6, since the inner peripheral surface is assumed to be a perfect circle, a pair of reference portions 20 and 20 abut on the inner peripheral surface of the bent pipe. Even if the pipe 101 is rotated as it is, the inner peripheral surface of the pipe abutting on the pair of reference portions 20 and 20 does not move. Accordingly, in the measurement of the bent tube 101, the tube rotates in the same manner as in FIG. 6A showing a state where the flange is inserted into both sides of the tube and rotated. Here, the deviation of the rotation center position assumed in Fig. 5 is ignored.
このとき、 一対の基準部 2 0に対向する管体 1 0 1の両端近傍の検出位置 3 1 , 3 1では、 第 6 A図から明らかなように、 検出される変位量は第 9 A図に示す ような変化のないものとなる。 これは、 基準部 2 0 , 2 0に対向する検出位置 3 1 , 3 1は、 この位置 3 1, 3 1における管体 1 0 1の肉厚が検出されるもので あること、 そして、 上述したように第 6図の曲がり管 1 0 1では肉厚が一定であ る管体を想定したことから明らかである。  At this time, at the detection positions 31 and 31 near both ends of the tubular body 101 facing the pair of reference portions 20, as apparent from FIG. 6A, the detected displacement amount is as shown in FIG. There is no change as shown in the figure. This is because the detection positions 31, 31 facing the reference portions 20, 20 are for detecting the wall thickness of the tube 101 at the positions 31, 31. As described above, it is clear from the assumption that the bent pipe 101 of FIG. 6 assumes a pipe body having a constant wall thickness.
これに対し、 基準部 2 0 , 2 0に対峙する位置 3 1 , 3 1以外の位置 3 2…で は、 第 6 B図に管体 1 0 1の下側の矢印に示すように、 管体 1 0 1の外周面は半 径方向に変位し、 その周期は 3 6 0度であるから、 第 9 B図に示すような外周面 1 2のフレが検出される。 すなわち、 この管体 1 0 1の形状測定法法によれば、 管体 1 0 1の曲がりに起因する外周面のフレを検出することができる。  On the other hand, at positions 3 2... Other than the positions 3 1, 3 1 facing the reference portions 20, 20, as shown by the lower arrow of the tube 101 in FIG. Since the outer peripheral surface of the body 101 is displaced in the radial direction and its cycle is 360 degrees, the deflection of the outer peripheral surface 12 as shown in FIG. 9B is detected. That is, according to the shape measuring method of the tubular body 101, it is possible to detect the deflection of the outer peripheral surface due to the bending of the tubular body 101.
また、 管体 1 0 1の中央の 3つの変位量検出位置 3 2…のうち、 真ん中の検出 位置において、 最も大きい変位 (フレ) が検出される。 このような各検出位置 3 2…でのフレ量の程度比較により、 管体 1 0 1の不良が曲がりによるものである こと、 また、 その曲がりの程度を推測することも可能である。 In the middle of the three displacement detection positions 3 2… in the center of the tube 101, At the position, the largest displacement is detected. By comparing the degree of the deflection amount at each of the detection positions 32, it is possible to estimate that the defect of the tubular body 101 is caused by a bend, and the degree of the bend.
なお、 第 6図のような曲がり管 1 0 1のフレは、 上述した従来の外周面を基準 とした外周面のフレ検出方法 (図 5 6, 図 5 7 ) でも検出することができるもの ではある。  It should be noted that the deflection of the bent tube 101 as shown in FIG. 6 cannot be detected by the above-described conventional method of detecting the deflection of the outer peripheral surface based on the outer peripheral surface (FIGS. 56 and 57). is there.
<偏肉管の測定 > <Measurement of uneven wall tube>
第 7図に示した偏肉管 1 0 2では、 その内周面が真円であることを想定してい るため、 一対の基準部 2 0 , 2 0を曲がり管の内周面に当接したまま管体 1 0 2 を回転させても、 この一対の基準部 2 0, 2 0と当接する管体 1 0 2の内周面は 動かない。 したがって、 この偏肉管 1 0 2に対する測定では、 管体の両側にフラ ンジを挿入して回転させた状態を示した第 7 A図と同様に回転することになる。 なお、 ここでは第 5図で想定した回転中心位置のずれは無視している。  Since the inner peripheral surface of the uneven thickness tube 102 shown in FIG. 7 is assumed to be a perfect circle, the pair of reference portions 20 and 20 abut on the inner peripheral surface of the bent tube. Even if the pipe 102 is rotated with the pipe 102 kept in contact, the inner peripheral surface of the pipe 102 abutting on the pair of reference portions 20 and 20 does not move. Therefore, in the measurement for the uneven thickness tube 102, the tube rotates in the same manner as in FIG. 7A showing a state in which the flange is inserted and rotated on both sides of the tube. Here, the displacement of the rotation center position assumed in FIG. 5 is ignored.
このとき、 一対の基準部 2 0に対向する管体 1 0 2の両端近傍の検出位置 3 1 , 3 1、 およびそれ以外の検出位置 3 2…の全てにおいて、 第 7 B図に管体 1 0 2の下側の矢印に示すように、 管体 1 0 2の外周面は半径方向に変位し、 その周 期は 3 6 0度であるから、 第 9 B図に示すような外周面 1 2のフレが検出される 。 すなわち、 この管体の形状測定方法によれば、 管体 1 0 2の偏肉に起因する外 周面のフレを検出することができる。  At this time, at all of the detection positions 31 and 31 near both ends of the tube 102 facing the pair of reference portions 20 and the other detection positions 32 and so on, FIG. As shown by the arrow on the lower side of 02, the outer peripheral surface of the tubular body 102 is displaced in the radial direction, and its period is 360 degrees, so the outer peripheral surface 1 as shown in FIG. A run of 2 is detected. That is, according to the method for measuring the shape of the tubular body, it is possible to detect the deflection of the outer peripheral surface due to the uneven thickness of the tubular body 102.
とくに、 基準部 2 0 , 2 0に対向する検出位置 3 1, 3 1では管体 1 0 2の肉 厚が直接的に検出されるものであるため、 この位置 3 1 , 3 1で検出されたフレ から、 管体 1 0 2の周方向にわたる肉厚分布を得ることも可能である。  In particular, since the wall thickness of the tube 102 is directly detected at the detection positions 31 and 31 facing the reference portions 20 and 20, the detection is performed at these positions 31 and 31. It is also possible to obtain the wall thickness distribution in the circumferential direction of the tube 102 from the deflection.
また、 一般に管体は曲がりや偏肉といった不良要因が複合的に備わっているも のであるが、 この管体の形状測定方法によれば、 これらの影響を重ね合わせた結 果を 1回の形状測定で得ることができる。 ' また、 偏肉が管体の全長にわたってほぼ同じであると仮定するならば、 管体 1 0の基準部に対峙する検出位置 3 1, 3 1で検出される変位量から判明する管体 1 0の周方向についての肉厚分布が、 管体 1 0の全長にわたって同じであると推 定することができる。 この場合、 基準部 2 0に対峙する検出位置 3 1 , 3 1以外 の検出位置 3 2…において検出される変位量には、 偏肉に起因する変位量が含ま れているが、 これから検出位置 3 1、 3 1で検出される変位量を引き算すること によって消去して偏肉以外の原因に起因する不良の影響のみを取り出すことも可 能である。 このようにすれば、 たとえば曲がりと偏肉の不要要因を複合的に有す る管体に対して、 これらの影響を重ね合わせた結果を得られると共に、 これら不 良による影響を分離して、 それぞれの不良の程度を検討することも可能である。 このような偏肉が管体の全長にわたってほぼ同じであるとする仮定は、 管体の 製造方法の特性等に基づいて行える場合が多い。 たとえば、 押出によって連続的 に製管され、 これを所定長さに切断して製造された管体であれば、 各管体の全長 程度はその断面形状がほぼ同じと仮定できる場合が多い。 In general, pipes have a combination of defective factors such as bending and uneven wall thickness.However, according to this pipe shape measurement method, the results of superimposing these effects are combined into a single shape. It can be obtained by measurement. ' If it is assumed that the thickness deviation is substantially the same over the entire length of the tube, the tube 10 can be determined from the displacement detected at the detection positions 31 and 31 facing the reference portion of the tube 10. It can be estimated that the wall thickness distribution in the circumferential direction is the same over the entire length of the tube 10. In this case, the displacement amounts detected at the detection positions 3 2... Other than the detection positions 3 1, 3 1 facing the reference portion 20 include the displacement amount due to uneven thickness, but the detection positions will be changed from now on. By subtracting the amount of displacement detected in 31 and 31, it is possible to eliminate and extract only the effects of defects caused by causes other than uneven thickness. In this way, for example, a pipe body having unnecessary factors of bending and uneven thickness can be obtained by superimposing these effects, and the effects of these defects can be separated out. It is also possible to consider the degree of each failure. The assumption that such uneven wall thickness is substantially the same over the entire length of the tubular body can often be made based on the characteristics of the manufacturing method of the tubular body. For example, in the case of pipes that are continuously produced by extrusion and then cut to a predetermined length, it is often assumed that the cross-sectional shape of each pipe is approximately the same as the entire length of each pipe.
なお、 第 7図のような偏肉管 1 0 2のフレは、 上述したとおり、 従来の外周面 を基準とした外周面のフレ検出方法 (第 5 6図, 第 5 7図) では検出できないも のである。  As described above, the deflection of the uneven thickness pipe 102 as shown in FIG. 7 cannot be detected by the conventional method of detecting the deflection of the outer peripheral surface with reference to the outer peripheral surface (FIGS. 56 and 57). It is a thing.
<扁平管の測定 > <Measurement of flat tubes>
第 8図に示した扁平管 1 0 3の測定では、 一対の基準部 2 0 , 2 0を管体 (扁 平管) 1 0 3の内周面に当接したまま管体 1 0 3を回転させると、 第 8 C図のよ うに、 管体 (扁平管) 1 0 3は外観的には上下動することとなる。  In the measurement of the flat tube 103 shown in FIG. 8, the pair of reference portions 20, 20 was placed in contact with the inner peripheral surface of the tube (flat tube) 103. When rotated, the tubular body (flat tube) 103 moves up and down as shown in Fig. 8C.
このとき、 第 1図〜第 3図に示した測定方法では、 一対の基準部 2 0, 2 0が 管体に当接する 2点を通る仮想的な直線 Qに対峙する位置、 すなわち第 8 C図に おける管体 1 0 3の上側を変位量の検出位置としているので、 この第 8 C図の管 体 1 0 3の下側に示す矢印から明らかなように変位量の変化がないことが第 9 A 図のように検出される。 これは、 管体 1 0 3に曲がりがなく、 肉厚も一定である ためである。 結局、 第 1図〜第 3図に示した測定方法では、 このような管体の断 面が真円でないという扁平等の非円形断面に起因する不良は検出できない。 なお、 第 8図のような扁平管のフレは、 上述した従来の外周面を基準とした外 周面のフレ検出方法 (第 5 6図, 第 5 7図) でも検出することはできない。 At this time, in the measuring method shown in FIGS. 1 to 3, the position where the pair of reference portions 20 and 20 face a virtual straight line Q passing through two points abutting on the tube, that is, the 8C Since the upper side of the tube 103 in the figure is used as the displacement detection position, there is no change in the amount of displacement as is evident from the arrow below the tube 103 in FIG. 8C. 9th A Detected as shown. This is because the tube 103 has no bend and its wall thickness is constant. After all, the measurement method shown in FIGS. 1 to 3 cannot detect such a defect caused by a non-circular cross-section such as a flat shape in which the cross section of the tube is not a perfect circle. In addition, the deflection of a flat tube as shown in Fig. 8 cannot be detected by the above-mentioned conventional method for detecting deflection of the outer peripheral surface based on the outer peripheral surface (Figs. 56 and 57).
(さらに高度な形状測定方法の原理) (Principle of more advanced shape measurement method)
そこで、 次に、 この扁平管 1 0 3のような断面が非円形であることに起因する 不良も検出することができる本発明にかかるさらに高度な管体の形状測定方法に ついて、 その原理を模式的な説明図を参照しながら説明する。  Then, the principle of a more advanced pipe shape measuring method according to the present invention, which can detect a defect caused by the non-circular cross section of the flat tube 103, can be detected. Description will be given with reference to a schematic explanatory diagram.
第 1 0図は、 本発明にかかる前記形状測定方法の原理を示す正面断面図、 第 1 1図は同じく側面断面図である。  FIG. 10 is a front sectional view showing the principle of the shape measuring method according to the present invention, and FIG. 11 is a side sectional view of the same.
上述した第 1図〜第 3図に示した本発明にかかる管体の形状測定方法 (以下、 基本の方法と呼ぶ。 ) では、 5つの変位検出器 3 0…は、 基準部 2 0 , 2 0と当 接する 2つの当接部分 P 1, P 2を通仮想的な直線 Qに対し、 管体 1 0の外側か ら対峙する位置 3 1 ···, 3 2…に配置していた。 特にそのうちの 2つの位置 3 1 , 3 1は、 一対の基準部 2 0 , 2 0に対峙する位置としていた。  In the tube shape measuring method according to the present invention shown in FIGS. 1 to 3 described above (hereinafter referred to as a basic method), five displacement detectors 30. The two contact portions P 1 and P 2 contacting 0 are arranged at positions 3 1..., 3 2... That face the virtual straight line Q from the outside of the tube 10. Particularly, two of the positions 31 and 31 are positions facing the pair of reference portions 20 and 20.
本発明にかかるさらに高度な形状測定方法は、 第 1 0図および第 1 1図に示す ように、 上述した基本の方法における 5つの変位検出器 3 0…に加え、 新たに 5 つの変位検出器 3 0…を配置したものである。  As shown in FIGS. 10 and 11, a more advanced shape measuring method according to the present invention includes five displacement detectors 30 in addition to the five displacement detectors 30 in the basic method described above. 30... Are arranged.
これら新たに配置した 5つの検出器 3 0…は、 基本の方法の変位量の検出位置 3 1 ···, 3 2…に対して、 管体 1 0の軸方向位置が一致し、 周方向位置が半周分 異なる位置 3 3 ···, 3 4…を変位量の検出位置とするように配置されている。 す なわち、 基本の方法における検出位置 3 1 ···, 3 2…に対して、 管体 1 0の周方 向について逆位相位置 (1 8 0度位相がずれた位置) 3 3 ···, 3 4…を検出位置 とするように新たな変位検出器 3 0…が配置されている。 このように、 管体 1 0の各軸方向位置で管体 1 0を挟んで両側から外周面の半 径方向の変位量を検出すれば、 各軸方向位置における管体 1 0の外周面 (外周円 ) の直径を得ることができる。 具体的には、 管体 1 0を回転させながら、 周方向 について各回転角度において、 管体 1 0を挟む 2つの検出位置で検出される変位 量の差を求めることによって、 各周方向位置における管体 1 0の直径の変化量を 得ることができる。 The newly arranged five detectors 30… have the axial position of the tube 10 coincide with the displacement detection positions 3 1..., 3 2. .., 34,... Are positioned so as to be the displacement detection positions. That is, with respect to the detection position 3 1 ···, 3 2 ··· in the basic method, an anti-phase position (a position 180 degrees out of phase) in the circumferential direction of the tube 10 3 3 ··· New displacement detectors 30 are arranged so that ·, 34, ... are the detection positions. As described above, by detecting the radial displacement of the outer peripheral surface from both sides of the tubular body 10 at each axial position of the tubular body 10, the outer circumferential surface of the tubular body 10 at each axial position ( Outer diameter) can be obtained. Specifically, while rotating the tube 10, at each rotation angle in the circumferential direction, the difference between the displacements detected at the two detection positions sandwiching the tube 10 is determined, thereby obtaining the difference in the circumferential position. The amount of change in the diameter of the tube 10 can be obtained.
これによつて、 このような検出位置を設定した管体 1 ◦の軸方向についての各 断面において、 管体 1 0の外周面形状 (外形状) をほぼ把握することが可能とな る。  This makes it possible to substantially grasp the outer peripheral surface shape (outer shape) of the tube 10 at each cross section in the axial direction of the tube 10 at which the detection position is set.
特に一対の基準部 2 0 , 2 0に対峙する検出位置 3 1 , 3 1で検出される変位 量は、 上述したように管体 1 0の肉厚を表しているため、 この検出位置 3 1 , 3 1とこれに対向する逆位相の検出位置 3 3 , 3 3によれば、 この断面における管 体 1 0の肉厚および直径が周方向についてどのように変化するのかを得ることが できる。 したがって、 この断面では、 内周面 (内周円) を含めて、 その断面形状 をほぼ把握することが可能となる。  In particular, the displacement amount detected at the detection positions 31 and 31 facing the pair of reference portions 20 and 20 indicates the wall thickness of the tube 10 as described above. According to the detection positions 33, 33 and the opposite phases opposed thereto, it is possible to obtain how the wall thickness and diameter of the tube 10 in this cross section change in the circumferential direction. Therefore, in this cross-section, it is possible to roughly grasp the cross-sectional shape including the inner peripheral surface (inner peripheral circle).
また、 これらの検出位置 3 3 ···, 3 4…は、 第 5図に示した位置 Cに相当する 。 この位置 Cは、 管体 1 0の形状測定中 (回転中) に、 管体 1 0の内周面 1 1が 基準部 2 0 , 2 0に当接しながら管体 1 0の中心位置がずれたとき、 このずれに 対する検出量の影響が検出位置 Aに次いで小さい部位である ό このため、 仮に形 状測定中に管体 1 0にずれが生じたとしても、 検出位置 3 3 -·-, 3 4…における 変位量の検出値は、 その影響をほとんど受けることなく、 安定した形状測定を行 うことができる。 , 3 4... Correspond to the position C shown in FIG. The center position of the tube 10 is shifted while the inner peripheral surface 11 of the tube 10 abuts the reference portions 20 and 20 during the shape measurement (rotation) of the tube 10 at the position C. In this case, the effect of the detected amount on this displacement is the second smallest after the detection position A. Therefore, even if the tube 10 is displaced during the shape measurement, the detection position 3 3 The detected values of the displacements in,,… can be measured stably with little effect.
<扁平管の測定 > <Measurement of flat tubes>
このような高度な形状測定方法によって、 第 8図に示した扁平管を対象として 形状測定を行う場合を考えると、 上述したように、 基準部 2 0 , 2 0に対峙する 検出位置 3 1 , 3 1およびそれと周方向位置が同じ検出位置 3 2— (第 8 C図の 管体 1 0 3の下側の検出位置) においては、 第 9 A図のように変位量に変化のな いことが検出されるのみである。 Considering the case where the shape measurement is performed on the flat tube shown in FIG. 8 by such an advanced shape measurement method, as described above, it is opposed to the reference portions 20 and 20. At the detection positions 3 1, 3 1 and the detection position 3 2— (the lower detection position of the tube 103 in Fig. 8C) whose circumferential position is the same as the detection position, the displacement amount is reduced as shown in Fig. 9A. Only no change is detected.
これに対し、 検出位置 3 1 ···, 3 2…と逆位相の検出位置 3 3 ·'·, 3 4…では 、 第 8 C図に管体 1 0 3の上側の矢印に示すように、 管体 1 0 3の外周面は半径 方向に変位する。 この変位の周期は 1 8 0度であるから、 これら検出位置 3 3 , 3 4…では、 第 9 C図に示すような外周面 1 2のフレが検出される。 すなわち 、 この第 2の管体の形状測定方法によれば、 管体の断面が非円形であることに起 因する不良 も検出することができる。  In contrast, at the detection positions 3 3 ····, 3 4… that are in phase with the detection positions 3 1 ···, 3 2 ···, as shown by the arrow above the tubular body 103 in FIG. 8C. The outer peripheral surface of the tubular body 103 is displaced in the radial direction. Since the cycle of this displacement is 180 degrees, a deflection on the outer peripheral surface 12 as shown in FIG. 9C is detected at these detection positions 33, 34,. That is, according to the second method for measuring the shape of the tubular body, it is possible to detect a defect caused by the non-circular cross section of the tubular body.
また、 この検出される変位の変 > (匕の状態 (第 9 C図のグラフの形状) 等から、 測定対象の管体 1 0 3の断面形状を推測することも可能である。  It is also possible to infer the cross-sectional shape of the tube 103 to be measured from the change in the detected displacement (the state of the dangling (the shape of the graph in FIG. 9C)).
また、 この高度な方法は、 上述した第 1の方法と同様にして管体の曲がりや偏 肉等の不良をも検出することができるが、 前記の管体断面が非円形であることに 伴う不良をも併せて、 これらの不良の影響を重ね合わせた結果を得ることができ る。  In addition, this advanced method can detect a defect such as bending or uneven wall thickness of the pipe in the same manner as in the first method described above. However, this advanced method involves a non-circular cross section of the pipe. The results obtained by superimposing the effects of these defects together with the defects can be obtained.
また逆に、 これらの各不良の典型的な検出パターンを考慮することにより、 各 不良毎の程度や大きさ、 内容 (非円形断面の場合の断面形状) 等を分別すること もできる。 これにより、 各不良の解消対策にも寄与できる。  Conversely, by taking into account the typical detection pattern of each of these defects, the degree, size, content (cross-sectional shape in the case of a non-circular cross-section), etc. for each defect can be classified. This can also contribute to measures to resolve each defect.
なお、 上述した第 1図〜第 3図に示した基本の方法および第 1 0図および第 1 1図に示した高度な方法とも、 第 5 6図および第 5 7図に示した従来の外周面を 基準とした外周面のフレ量に相当するフレ量を得ることは可能である。 すなわち 、 基準部 2 0 , 2 0に対峙する 2つの検出位置 3 1 , 3 1と、 管体 1 0の軸方向 について中央に配置された他の検出位置 3 2…との距離の比率から、 これら 2つ の検出位置 3 1 , 3 1で検出された変位量が他の検出位置 3 2…に与える変位量 を求め、 こうして求められた変位量を、 他の検出位置 3 2…において実際に検出 された変位量から引き算すればよい。 こうして算出される他の検出位置 3 2…の 変位量は、 2つの検出位置 3 1 , 3 1を基準として測定した変位量となる。 [第 1実施形態] Both the basic method shown in FIGS. 1 to 3 and the advanced method shown in FIGS. 10 and 11, the conventional peripheral method shown in FIGS. 56 and 57 is used. It is possible to obtain the amount of deflection corresponding to the amount of deflection of the outer peripheral surface based on the surface. That is, from the ratio of the distance between the two detection positions 31 and 31 facing the reference portions 20 and 20 and the other detection positions 3 2... Disposed at the center in the axial direction of the tube 10. The displacements detected at these two detection positions 3 1, 3 1 are given to the other detection positions 3 2… and the displacements thus obtained are actually calculated at the other detection positions 3 2… What is necessary is just to subtract from the detected displacement amount. The other detection positions 3 2… calculated in this way The displacement amount is a displacement amount measured based on the two detection positions 31 and 31. [First Embodiment]
次に、 以上のような原理に基づいて管体の形状測定を行う管体の形状測定装置 の第 1の実施形態として、 管体 (ワーク) 1 0を測定作業者が手動で回転させる 手動型の形状測定装置 4について説明する。  Next, as a first embodiment of a tube shape measuring apparatus for measuring the shape of a tube based on the above principle, a manual type in which a measuring operator rotates a tube (work) 10 manually is used. The shape measuring device 4 will be described.
第 1 2図はこの手動型の形状測定装置 4の平面断面図である。 第 1 3図は同装 置 4の正面断面図である。 第 1 4図は同装置 4の側面断面図である。 第 1 5図は 同装置 4の概略斜視図である。 第 1 6図は同装置 4における管体 (ワーク) のセ ッティング手順の説明図である。  FIG. 12 is a plan sectional view of the manual type shape measuring device 4. FIG. 13 is a front sectional view of the device 4. FIG. 14 is a side sectional view of the device 4. FIG. 15 is a schematic perspective view of the device 4. FIG. 16 is an explanatory diagram of a procedure for setting a pipe (work) in the apparatus 4.
この形状測定装置 4は、 管体 1 0の内周面 1 1に当接して形状測定の基準とな る一対の基準部 4 2, 4 2と、 管体 1 0を下側から支持して管体 1 0の高さ位置 を安定させる台座部 4 4と、 管体 1 0の一側端に当接して管体 1 0の軸方向位置 を安定させるストッパ一部 4 5と、 管体 1 0の外周面 1 2に当接して管体 1 0の 外周面の半径方向の変位量を検出する変位検出器 4 3…と、 これら各部品が取り 付けられる本体べ一ス 4 0と、 を備えている。  The shape measuring device 4 supports a pair of reference portions 42, 42, which are in contact with the inner peripheral surface 11 of the tube 10 and serve as a reference for shape measurement, and supports the tube 10 from below. A pedestal part 44 that stabilizes the height position of the tube 10, a stopper part 45 that abuts one end of the tube 10 to stabilize the axial position of the tube 10, and a tube 1 A displacement detector 43 that contacts the outer peripheral surface 12 of the tube 10 to detect the amount of radial displacement of the outer peripheral surface of the tube 10 and a main body base 40 to which these components are attached. Have.
<一対の基準部 > <A pair of reference parts>
一対の基準部 4 2 , 4 2は、 第 1 4図等に示すように、 略水平姿勢の管体 1 0 に対し、 その両側端部近傍の内周面 1 1であって、 その高さ方向の略中央位置に 相当する側方位置 (内周側面) に当接し、 形状測定の基準となるものである。 この一対の基準部 4 2 , 4 2は、 管体 1 0の内周面 1 1をなめらかに滑ること ができ、 内周面 1 1を傷つけることのない合成樹脂の球体から構成されており、 それぞれ外側から固定支持軸 4 2 1 , 4 2 1によって基準支持ブロック 4 2 2, 4 2 2に取り付けられている。 この実施形態では、 一対の基準部 4 2 , 4 2は管 体 1 0の回転に連れ回りしない。 このため、 一対の基準部 4 2, 4 2の管体 1 0 の内周面 1 1に当接する部分が管体 1 0の回転によっても変化しないため、 測定 基準位置を確実に安定させることができる。 一方、 こうして管体 1 0の内周面 1 1に接触する部分が摩耗等したときには適宜回転させることができるようになつ ている。 これにより、 必要に応じて一対の基準部 4 2 , 4 2の新しい部位で管体 1 0の内周面 1 1に当接するようになつている。 As shown in FIG. 14 and the like, the pair of reference portions 42 and 42 are formed on the inner peripheral surface 11 near the both end portions of the pipe 10 in a substantially horizontal posture, and have a height of the same. It comes into contact with the side position (inner side surface) corresponding to the approximate center position in the direction, and serves as a reference for shape measurement. The pair of reference portions 4 2 and 4 2 are made of synthetic resin spheres that can smoothly slide on the inner peripheral surface 11 of the tube 10 and do not damage the inner peripheral surface 11. They are respectively attached to the reference support blocks 4 2 2 and 4 2 2 from outside by fixed support shafts 4 2 1 and 4 2 1. In this embodiment, the pair of reference portions 42 and 42 do not rotate with the rotation of the tube 10. Therefore, the tubular body 10 of the pair of reference portions 42, 42 is formed. Since the portion that abuts on the inner peripheral surface 11 does not change even when the tube 10 rotates, the measurement reference position can be reliably stabilized. On the other hand, when the portion of the tube 10 that comes into contact with the inner peripheral surface 11 is worn or the like, the tube 10 can be appropriately rotated. As a result, a new portion of the pair of reference portions 42, 42 comes into contact with the inner peripheral surface 11 of the tubular body 10 as necessary.
基準部 4 2, 4 2を支持する固定支持軸 4 2 1、 4 2 1は、 基準部 4 2 , 4 2 よりも細い断面形状で、 かつ一対の基準部 4 2 , 4 2が管体 1 0の内側に挿入さ れた際における管体 1 0の端面からの挿入深さ以上の長さを有する例えば金属棒 から構成されている。 これにより、 後述する手順で管体 (ワーク) 1 0をセッ ト することができるようになつている。 '  The fixed support shafts 4 2 1 and 4 2 1 that support the reference portions 4 2 and 4 2 have a thinner cross-sectional shape than the reference portions 4 2 and 4 2, and the pair of reference portions 4 2 and 4 2 It is made of, for example, a metal rod having a length equal to or greater than the insertion depth from the end face of the tubular body 10 when inserted into the inside of the tube 10. As a result, the pipe (work) 10 can be set in the procedure described later. '
基準支持ブロック 4 2 2 , 4 2 2は、 本体ベース 4 0の上面にボルト等で固定 される例えば金属ブロックから構成されている。 本体ベース 4 0において、 この 基準支持ブロック 4 2 2, 4 2 2の一方が取り付けられる部分には、 管体 1 0の 長手方向 (軸方向) について所定長さの長孔 4 2 3が形成されている。 この長孔 4 2 3を貫通するボルトによって一方の基準支持ブロック 4 2 2を固定する構造 により、 一対の基準支持ブロック 4 2 2 , 4 2 2間の距離を変更可能とし、 ひい ては一対の基準部 4 2, 4 2の一方を管体 1 0の軸方向について複数の位置を移 動可能とし、 かつ各位置で固定することができるようになつている。 これにより 様々な長さサイズの管体 1 0に適応して形状測定を行うことができる。 また、 基 準部 4 2 , 4 2を当接させる部位を管体 1 0の様々な軸方向位置に設定すること も可能となっている。 ただし、 この基準部 4 2, 4 2を移動可能とする構造は、 一つの管体 1 0の形状測定中に基準支持プロック 4 2 2 , 4 2 2を移動させるた めのものではない。  The reference support blocks 422 and 422 are made of, for example, a metal block fixed to the upper surface of the main body base 40 with bolts or the like. In the body base 40, a long hole 4 23 of a predetermined length in the longitudinal direction (axial direction) of the tubular body 10 is formed in a portion to which one of the reference support blocks 42, 42 is attached. ing. The structure in which one of the reference support blocks 422 is fixed by bolts penetrating the long holes 423 allows the distance between the pair of reference support blocks 422, 422 to be changed, and thus the pair of reference support blocks 422, 422. One of the reference portions 42, 42 can be moved at a plurality of positions in the axial direction of the tube 10, and can be fixed at each position. Thereby, shape measurement can be performed by adapting to the tubes 10 of various lengths and sizes. In addition, it is also possible to set the portions where the reference portions 42 and 42 come into contact with each other at various axial positions of the tube 10. However, the structure in which the reference portions 42 and 42 can be moved is not for moving the reference support blocks 42 and 42 during the shape measurement of one pipe 10.
また、 他方の基準支持ブロック 4 2 2を取り付けるボルト孔もまた長孔 4 2 4 となっているが、 'これは後述する台座部 4 4を移動可能とするためのものであり 、 他方の基準支持ブロック 4 2 2を移動させる必要はない。 なお、 これら基準部 42, 42、 固定支持軸 421, 421および基準支持ブ ロック 422, 422は、 管体 10の形状測定の基準をなすものであるから、 求 められる測定精度に応じて、 十分に高い剛性を有するように構成されている。 <台座部> Also, the bolt hole for attaching the other reference support block 4 22 is also a long hole 4 2 4. However, this is to make the pedestal section 4 described later movable. It is not necessary to move the support block 4 2 2. Since the reference portions 42, 42, the fixed support shafts 421, 421 and the reference support blocks 422, 422 serve as a reference for measuring the shape of the tube 10, sufficient reference is required in accordance with the required measurement accuracy. It is configured to have high rigidity. <Pedestal>
台座部 44は、 第 13図や第 14図等に示すように、 管体 10の高さ方向中央 の内周面 1 1の側方部分 (内周側面) が前記一対の基準部 42, 42と略同一高 さに位置し、 管体 10の内周側面と一対の基準部 42, 42とが当接するように 、 管体 10を外周面 12の下側から支持して、 管体 10の高さ位置を安定させる ものである。  As shown in FIGS. 13 and 14, etc., the base portion 44 is formed such that a side portion (inner peripheral side surface) of the inner peripheral surface 11 at the center in the height direction of the tube 10 is the pair of reference portions 42, 42. The pipe 10 is supported from the lower side of the outer peripheral surface 12 so that the inner peripheral side surface of the tubular body 10 and the pair of reference portions 42 abut against each other. It stabilizes the height position.
この台座部 44は、 管体 10の両側端部近傍を支持するように、 管体 10の両 側に配置された 2つがある。 このため、 管体 10はその軸方向をほぼ水平に安定 して支持される。 この 2つの台座部 44, 44は、 本体ベース 40上で、 前記基 準支持プロック 422, 422の内側にポルト等で固定される一対の台座プロッ ク 441, 441と、 その上面に設けられる当接部材 (当接部) 442, 442 とから構成されている。  There are two pedestal portions 44 arranged on both sides of the tubular body 10 so as to support the vicinity of both ends of the tubular body 10. For this reason, the tube 10 is stably supported substantially horizontally in the axial direction. The two pedestal portions 44, 44 are formed on the main body base 40 by a pair of pedestal blocks 441, 441 fixed to the inside of the reference support blocks 422, 422 with a port or the like, and a contact provided on the upper surface thereof. (Contact part) 442, 442.
台座ブロック 441, 441は、 前記基準支持ブロック 422, 422と同様 に、 本体ベース 40に形成された長孔 423, 424を貫通するポルトによって 本体ベース 40上に固定することによって、 台座ブロックの固定位置が変更可能 となっている。 これにより上記基準支持ブロック 422, 422と同様に様々な 長さサイズの管体 10に対しても、 適切な軸方向位置で高さ位置を安定させて支 持し、 正確な形状測定を可能としている。  The pedestal blocks 441, 441, like the reference support blocks 422, 422, are fixed on the main body base 40 by a port that penetrates the elongated holes 423, 424 formed in the main body base 40. Can be changed. As a result, similarly to the reference support blocks 422, 422, the pipe body 10 having various lengths can be stably supported at an appropriate axial position and the height can be accurately measured. I have.
また、 台座ブロック 441, 441は、 本体ベース 40との間に所定厚みの高 さ調整プレート 443を 1ないし複数枚挟み込んで取り付けることにより、 高さ 方向についても調整可能となっている。 これにより、 様々な断面サイズ (直径) の管体に対しても適切な高さ位置に安定させて支持することを可能としている。 当接部材 (当接部) 442, 442は、 管体 10の外周面 12との摩擦係数の 低い材料、 たとえば硬質の合成樹脂等による丸棒材からなる。 このため、 管体 1 0の外周面 12が台座部 44, 44に当接したまま回転するとき、 ぴぴり振動等 を生じることなく滑らかに回転することができ、 正確な形状測定を行うことが可 能となる。 なお、 当接部材 442, 442としては、 管体の外周面との摩擦係数 が低い材料であれば好適に採用することができ、 上記硬質の合成樹脂等のほか、 平滑な表面を有する金属材料等を挙げることができる。 The pedestal blocks 441, 441 can also be adjusted in the height direction by mounting one or more height adjustment plates 443 having a predetermined thickness between the main body base 40 and the base block 441. This makes it possible to stably support tubes of various cross-sectional sizes (diameters) at appropriate heights. The contact members (contact portions) 442, 442 are made of a material having a low coefficient of friction with the outer peripheral surface 12 of the tube 10, for example, a round bar made of a hard synthetic resin or the like. Therefore, when the outer peripheral surface 12 of the tubular body 10 rotates while being in contact with the pedestals 44, 44, it can be smoothly rotated without generating shear vibration and the like, and accurate shape measurement can be performed. It is possible. In addition, as the contact members 442, 442, any material having a low coefficient of friction with the outer peripheral surface of the tubular body can be suitably used. In addition to the above-described hard synthetic resin and the like, a metal material having a smooth surface is used. And the like.
この当接部材 442, 442は、 台座ブロック 441, 441の上面に設けら れた管体 10の軸方向に直交する略水平な溝部にはめ込まれ、 その上面が略水平 をなすように取り付けられている。 これにより、 管体 10との当接位置が多少ズ レたとしても、 管体 10の高さ位置を安定して支持し、 正確な形状測定を行うこ とができるようになっている。.  The contact members 442, 442 are fitted into substantially horizontal grooves orthogonal to the axial direction of the pipe body 10 provided on the upper surfaces of the pedestal blocks 441, 441, and are mounted so that the upper surfaces thereof are substantially horizontal. I have. Thus, even if the contact position with the tube 10 is slightly shifted, the height position of the tube 10 is stably supported, and accurate shape measurement can be performed. .
また、 この当接部材 442, 442は、 一対の基準部 42. 42と管体 10の 軸方向位置が一致する位置に配置されている。 このため、 管体 10がー対の基準 部 42, 42と当接する軸方向位置において管体の高さ位置を安定させることが でき、 これにより、 形状測定の基準位置を安定させて正確な形状測定を行うこと ができるようになっている。 くストッパ一部 >  The contact members 442 are arranged at positions where the axial positions of the pair of reference portions 42.42 and the tubular body 10 match. Therefore, it is possible to stabilize the height position of the tubular body at the axial position where the tubular body 10 abuts the pair of reference portions 42, 42, thereby stabilizing the reference position for shape measurement and accurate shape. Measurements can be taken. Ku Stopper Part>
ストッパー部 45は、 第 13図等に示すように、 管体 10の一方の端面に当接 して、 その軸方向位置を安定させ、 前記一対の基準部 42, 42等を管体 10の 適切な軸方向位置に当接させるものである。 また、 変位検出器 43…と管体 10 との接触位置 (変位の検出位置) も軸方向について適正な位置に安定する。 このストツバ一部 45は、 管体 10の軸方向に移動させない方の基準支持プロ ック 422の内側面に取り付けられたストッパー取付軸 451と、' その先端に取 り付けられたストッパー本体 452とから構成されている。 ストッパー取付軸 4 5 1は、 基準支持プロック 4 2 2の内側面から略水平に延 びてから上方に折り曲げられた金属部品として形成されている。 As shown in FIG. 13 and the like, the stopper portion 45 abuts one end surface of the tube 10 to stabilize its axial position, and the pair of reference portions 42, 42, etc. In the axial direction. Also, the contact position (displacement detection position) between the displacement detectors 43 and the tube 10 is stabilized at an appropriate position in the axial direction. The stopper part 45 includes a stopper mounting shaft 451 mounted on the inner surface of the reference support block 422 that is not moved in the axial direction of the tube 10, and a stopper main body 452 mounted on the distal end thereof. It is composed of The stopper mounting shaft 45 1 is formed as a metal part that extends substantially horizontally from the inner side surface of the reference support block 4 22 and is bent upward.
ストッパー本体 4 5 2は、 摩擦係数の低い合成樹脂等による水平断面が円形の 短柱体として形成されており、 管体 1 0の一端側の端面と当接して、 形状測定中 に回転される管体 1 0の軸方向位置を安定させるようになつている。  The stopper body 452 is formed as a short columnar body having a circular horizontal section made of synthetic resin or the like having a low coefficient of friction, and is brought into contact with the end face on one end side of the tube 10 and rotated during shape measurement. The axial position of the tube 10 is stabilized.
<変位検出器 > <Displacement detector>
変位検出器 4 3…は、 管体 1 0の外周面 1 2に当接して管体 1 0の外周面の半 径方向の変位量を検出するものであり、 ここでは、 管体 1 0の軸方向位置の異な る 3箇所にそれぞれ接触型のものが設けられている。 これら 3箇所の変位検出器 4 3…のうち両側の 2つはそれぞれ一対の基準部 4 2 , 4 2と対峙する位置で管 体 1 0の半径方向が略水平方向になる位置に配置され、 残る 1つもこれらと並ん で管体 1 0の軸方向中央に配置されている。  The displacement detectors 43 sense the radial displacement of the outer peripheral surface of the tube 10 by contacting the outer peripheral surface 12 of the tube 10. Contact-type ones are provided at three different locations in the axial direction. Of these three displacement detectors 43, two on both sides are arranged at positions facing the pair of reference portions 42, 42, respectively, at positions where the radial direction of the tube 10 is substantially horizontal. The remaining one is arranged at the axial center of the tube 10 alongside these.
この変位検出器 4 3…は、 それぞれ管体 1 0の外周面に転がり接触する接触コ 口 (接触部) 4 3 1と、 この接触コロ 4 3 1を回転自在に支持する支持ブラケッ ト 4 3 2と、 一端にこの支持ブラケッ ト 4 3 2が取り付けられた出没軸 4 3 3と を備えており、 この出没軸 4 3 3の出没方向の移動量、 すなわち接触コロ (接触 部) 4 3 1の移動量をを検出することにより、 管体 1 0の外周面の変位量を検出 できるようになつている。 このようにこの変位検出器 4 3…は管体の外周面 1 2 と接触してその変位量を検出するため、 確実な検出を行うことができる。 また、 接触コロ 4 3 1は管体 1 0の外周面 1 2に対して転がり接触するため、 管体 1 0 の外周面 1 2に擦り傷等の損傷を与えることを極力防止できるようになつている 接触コロ (接触部) 4 3 1は、 円筒形状に構成され、 その外周面において管体 1 0の外周面 1 2と線接触するようになっている。 これにより、 管体 1 0の外周 面 1 2に作用する圧力を分散させ、 管体 1 0の外表面 1 2に損傷を与えにくくな つている。 また、 この接触コロ 4 3 1の両側は面取りされており、 この点からも 管体 1 0の外周面 1 2に損傷を与えにくいようになっている。 Each of the displacement detectors 43 includes a contact hole (contact portion) 431 for rolling contact with the outer peripheral surface of the tube 10 and a support bracket 43 for rotatably supporting the contact roller 43. 2 and a retractable shaft 433 having one end to which the support bracket 432 is attached. The amount of movement of the retractable shaft 433 in the retracting direction, that is, the contact roller (contact portion) 431 The displacement of the outer peripheral surface of the tube 10 can be detected by detecting the displacement of the tube 10. Since the displacement detectors 43 come into contact with the outer peripheral surface 12 of the tubular body to detect the amount of displacement, reliable detection can be performed. In addition, since the contact roller 431 is in rolling contact with the outer peripheral surface 12 of the tubular body 10, it is possible to prevent the outer peripheral surface 12 of the tubular body 10 from being damaged such as abrasion as much as possible. The contact roller (contact portion) 431 is formed in a cylindrical shape, and has an outer peripheral surface in line contact with the outer peripheral surface 12 of the tubular body 10. As a result, the pressure acting on the outer peripheral surface 12 of the tube 10 is dispersed, and the outer surface 12 of the tube 10 is not easily damaged. I'm wearing Further, both sides of the contact roller 431 are chamfered, and from this point, the outer peripheral surface 12 of the tube 10 is hardly damaged.
また、 各変位検出器 4 3には、 前記出没軸 4 3 3を管体 1 0側に付勢する付勢 手段 4 3 4を備えており、 接触コロ 4 3 1を介して管体 1 0の外周面 1 2を一対 の基準部 4 2 , 4 2に押し付けるように押圧している。 この付勢手段 4 3 4は、 具体的には一端が変位検出器 4 3内の固定部 4 3 5に固定され、 他端が出没軸 4 Further, each displacement detector 43 is provided with a biasing means 43 which biases the retractable shaft 43 toward the tube 10 side, and the tube 10 through the contact roller 43 is provided. The outer peripheral surface 12 is pressed against a pair of reference portions 42 and 42. Specifically, one end of the biasing means 4 3 4 is fixed to a fixed portion 4 35 in the displacement detector 43, and the other end is an extension shaft 4.
3 3に設けられた突起体 4 3 6を付勢するように、 出没軸 4 3 3に取り付けられ たパネ等によって構成されている。 すなわち、 この変位検出器 4 3は、 付勢手段The projection 43 is provided with a panel attached to the shaft 43 so as to bias the projection 43 provided on the projection 33. That is, this displacement detector 43 is
4 3 4を備えることにより、 押圧部として機能するようになっている。 この変位 検出器 (押圧部) 4 3により、 管体 1 0は外側から一対の基準部 4 2 , 4 2に押 し付けられるため、 管体 1 0が回転する間も、 管体 1 0の内周面 1 1は確実に一 対の基準部 4 2 , 4 2と当接することとなる。 したがって、 正確な形状測定を行 うことができる。 By providing 4 3 4, it functions as a pressing portion. Since the tube 10 is pressed against the pair of reference portions 42 and 42 from the outside by the displacement detector (pressing portion) 43, the tube 10 is kept pressed while the tube 10 rotates. The inner peripheral surface 11 surely comes into contact with the pair of reference portions 42, 42. Therefore, accurate shape measurement can be performed.
また、 変位検出器 4 3…が押圧部として機能するので、 別途押圧部を備える構 成に比べ、 形状測定対象である管体 1 0と形状測定装置 4との接触部の数を可及 的に減らすことができる。 このため、 外乱要素を排除して正確な形状測定に寄与 することができる。 また形状測定装置 4の部品点数を低減して低コスト化にも寄 与する。  In addition, since the displacement detectors 43 function as pressing portions, the number of contact portions between the pipe 10 to be measured and the shape measuring device 4 can be reduced as compared with a configuration having a separate pressing portion. Can be reduced. Therefore, it is possible to eliminate disturbance elements and contribute to accurate shape measurement. In addition, the number of parts of the shape measuring device 4 is reduced, which contributes to cost reduction.
また、 押圧部として機能する変位検出器 4 3…は、 一対の基準部 4 2, 4 2と 対峙する位置と、 管体 1 0の軸方向中央位置に配置されているため、 一対の基準 部 4 2, 4 2に対して管体 1 0を安定して当接させることができるとともに、 管 体 1 0の軸方向の中央を中心として対称に (第 1 2図等では左右対称に) 配置さ れているため、 バランスよく安定して管体 1 0を一対の基準部に当接させること ができる。  Further, since the displacement detectors 43 functioning as the pressing portions are disposed at a position facing the pair of reference portions 42 and 42 and at a central position in the axial direction of the tube 10, the pair of reference portions The pipe 10 can be stably abutted against the pipes 42 and 42, and the pipe 10 is arranged symmetrically about the center of the pipe 10 in the axial direction (symmetrical in Fig. 12 etc.). As a result, the tube 10 can be stably brought into contact with the pair of reference portions in a well-balanced manner.
このような変位検出器 4 3…は、 すべて管体 1 0の軸方向に平行な検出器取付 軸 4 1 1に対して回転不能に取り付けられている。 この検出器取付軸 4 1 1の両 端部は、 本体ベース 40の両側部に固定された一対の本体側壁 412, 412を 回転自在に貫通しており、 回転操作ハンドル 413, 413が取り付けられてい る。 All of such displacement detectors 43 are non-rotatably mounted on a detector mounting shaft 411 parallel to the axial direction of the tube 10. This detector mounting shaft 4 1 1 The ends are rotatably penetrated through a pair of main body side walls 412, 412 fixed to both sides of the main body base 40, and rotation operation handles 413, 413 are attached.
また、 この検出器取付軸 41 1の本体側壁 412, 412のすぐ内側には、 こ の検出器取付軸 411に対して回転不能に一対の回転ブロック 414, 414が 取り付けられている。 この回転ブロック 414, 414は、 プランジャーハンド ル 415によつて一対の本体側壁 412, 412から内側に出没する図示しない ボスを差し込むことにより、 その回転位置を固定できるようになっている。 この とき固定される回転位置は、 変位検出器 43…の接触コロ 431···が管体 10か ら離れた離脱位置となるように設定されており、 これにより、 接触コロ 43レ-- を管体 10から離し、 この装置への管体 10のセクトが容易に行いうるようにな つている。  Immediately inside the main body side walls 412, 412 of the detector mounting shaft 411, a pair of rotating blocks 414, 414 are mounted so as not to rotate with respect to the detector mounting shaft 411. The rotating blocks 414, 414 can be fixed in their rotational position by inserting bosses (not shown) which inwardly protrude from the pair of main body side walls 412, 412 with the plunger handle 415. The rotational position fixed at this time is set such that the contact rollers 431 of the displacement detectors 43 are separated from the tube body 10, whereby the contact rollers 43 are displaced. The tube 10 is separated from the tube 10 so that the tube 10 can be easily sectioned into this device.
また、 一対の本体側壁 412, 412の内側上部にはマグネッ ト 416, 41 6がそれぞれ取り付けられており、 回転ブロック 414, 414の回転位置を固 定できるようになつている。 このとき固定される回転位置は、 回転操作ハンドル 413, 413で検出器取付軸 41 1を回転させて、 各変位検出器 43…の接触 コロ 431…を管体 10の外周面 12に押し付け、 管体 10の形状測定を行う状 態 (変位計測位置) に対応するように設定されており、 この状態において安定し て管体 10の形状測定を行うことができるようになつている。  Magnets 416, 416 are attached to the upper inside of the pair of main body side walls 412, 412, respectively, so that the rotating positions of the rotating blocks 414, 414 can be fixed. The rotation position fixed at this time is determined by rotating the detector mounting shaft 41 1 with the rotation operation handles 413, 413, and pressing the contact rollers 431… of the respective displacement detectors 43… against the outer peripheral surface 12 of the tube 10. The shape is set so as to correspond to a state (displacement measurement position) in which the shape of the body 10 is measured, and the shape of the tube 10 can be stably measured in this state.
これら検出器取付軸 411、 一対の本体側壁 412, 412、 回転操作ハンド ル 413, 413、 回転ブロック 414, 414、 プランジャーハンドル 415 およびマグネッ ト 416, 416は、 複数の変位検出器 43…を連動させて変位 計測位置と離脱位置を移動させる連動機構を構成している。  The detector mounting shaft 411, the pair of main body side walls 412, 412, the rotating operation handles 413, 413, the rotating blocks 414, 414, the plunger handle 415, and the magnets 416, 416 work with a plurality of displacement detectors 43 ... This makes up an interlocking mechanism that moves the displacement measurement position and the release position.
また、 各変位検出器 43…は、 検出器取付軸 411に対して、 管体 10の軸方 向位置を変更可能に、 かつ各位置で固定可能に取り付けられており、 様々な長さ サイズの管体 10に応じることができるとともに、 変位量を検出する軸方向位置 を適宜変更可能となっている。 また、 限られた変位検出器 4 3— (この例では 3 つ) でその数以上の位置における管体 1 0の外周面 1 2のフレを計測することも 可能である。 <管体のセット > - この形状測定装置 4における管体 (ワーク) 1 0のセッティングは、 まず一方 の基準部 4 2に対して管体 1 0の一方の端部を差し込む (第 1 6 A図) 。 このと き、 基準部 4 2, 4 2は外側から固定支持軸 4 2 1, 4 2 1によって支持され、 これら固定支持軸 4 2 1, 4 2 1がー対の基準部 4 2, 4 2が管体 1 0の内側に 揷入された際における管体 1 0の端面からの挿入深さ以上の長さを有しているた め、 管体 1 0の他方の端部 (第 1 6 A図では右側の端部) が他方の基準部 4 2よ り内側 (右側) に至るまで、 管体 1 0の一方の端部を一方の基準部 4 2に深く挿 入することができる。 The displacement detectors 43 are attached to the detector mounting shaft 411 so that the axial position of the tube 10 can be changed and can be fixed at each position. Axial position that can respond to the tube 10 and detects the amount of displacement Can be appropriately changed. It is also possible to measure the deflection of the outer peripheral surface 12 of the tubular body 10 at the number of positions or more with the limited displacement detectors 43 (three in this example). <Set of pipe>-In setting the pipe (work) 10 in this shape measuring device 4, first insert one end of the pipe 10 into one reference part 42 (No. 16A Figure) At this time, the reference portions 4 2 and 4 2 are supported from outside by fixed support shafts 4 2 1 and 4 2 1, and these fixed support shafts 4 2 1 and 4 2 1 are paired with the reference portions 4 2 and 4 2. Is longer than the insertion depth from the end face of the tubular body 10 when the tubular body 10 is inserted into the inside of the tubular body 10, the other end of the tubular body 10 (No. 16) One end of the tubular body 10 can be inserted deeply into one of the reference portions 42 until the right end (in FIG. A, the right end) reaches inside (the right side) of the other reference portion 42.
そして、 この状態から、 管体 1 0の軸方向に見てその内側に一対の基準部 4 2 , 4 2を入れるように管体 1 0の他方の端部を降ろした後 (第 1 6 B図) 、 この 管体 1 0の他方の端部内に他方の基準部 4 2が差し込まれるように管体 1 0を水 平にスライ ド動作させて、 ストッパー 4 5のストッパー本体 4 5 2に当接させれ ばよい (第 1 6 C図) 。  Then, from this state, the other end of the tube 10 is lowered so that the pair of reference portions 42 and 42 are inserted inside the tube 10 when viewed in the axial direction (first 16 B (See figure.) Then, the pipe 10 is horizontally slid so that the other reference portion 42 is inserted into the other end of the pipe 10, and the stopper 10 is brought into contact with the stopper body 45 2 of the stopper 45. They should be touched (Fig. 16C).
このようにこの管体 1 0のセッティングにおいては、 一対の基準部 4 2 , 4 2 を全く動かさなくてもよい。 これにより、 一対の基準部 4 2 , 4 2の位置を安定 させることが容易となり、 正確な形状測定に寄与しうる。  As described above, in the setting of the tube 10, the pair of reference portions 42, 42 need not be moved at all. This makes it easy to stabilize the positions of the pair of reference portions 42, 42, which can contribute to accurate shape measurement.
また、 管体 1 0の一方側の端面と当接するストッパー 4 5を有しているため、 管体 1 0の他方の端面がストッパー 4 5のストッパー本体 4 5 2に当接するまで スライ ド動作させるだけで、 管体 1 0を適切な軸方向位置に容易にセッ トするこ とができる。  Further, since the stopper 10 has the stopper 45 contacting one end surface of the tube 10, the sliding operation is performed until the other end surface of the tube 10 contacts the stopper body 45 2 of the stopper 45. The tube 10 can be easily set at an appropriate axial position.
こうして管体 1 0をセッ トすれば、 プランジャーハンドル 4 1 5を操作して変 位検出器 4 3…を回転移動可能にしておいて、 回転操作ハンドル 4 1 3 , 4 1 3 を操作して各変 検出器 4 3…の接触コロ 4 3 1…を管体 1 0の外周面 1 2に押 し付ける。 Once the tube 10 is set in this way, operate the plunger handle 4 15 to change it. With the position detectors 4 3 ... being rotatable and movable, the rotation rollers 4 13, 4 13 are operated to move the contact rollers 4 3 1… of the variable detectors 4 3… around the tube 10. Press on surface 1 and 2.
そして、 この接触コロ 4 3 1…と管体 1 0の外周面 1 2との接触状態を保った まま、 測定作業者は、 管体 1 0の外周面 1 2をつかんで管体 1 0を回転させる。 この管体 1 0の回転操作は、 1回転以上、 望ましくは測定誤差を排除するために 3回転程度行うことが望ましい。  Then, while maintaining the contact state between the contact rollers 4 3 1... And the outer peripheral surface 12 of the tube 10, the measurement operator grasps the outer peripheral surface 12 of the tube 10 and removes the tube 10. Rotate. It is desirable that the rotation operation of the tube 10 be performed at least one rotation, preferably about three rotations in order to eliminate measurement errors.
この管体 1 0の回転に伴う管体 1 0の外周面 1 2の半径方向の変位量を変位検 出器 4 3…によつて適宜検出すれば、 管体 1 0の内周面を基準とした外周面のフ レの大きさを検出することができる。  If the amount of radial displacement of the outer peripheral surface 12 of the tubular body 10 due to the rotation of the tubular body 10 is appropriately detected by the displacement detectors 43, the inner peripheral surface of the tubular body 10 is used as a reference. The magnitude of the fullness of the outer peripheral surface can be detected.
変位検出器 4 3…による変位量の検出は、 管体 1 0を回転させる間、 連続的に 行うことが望ましい。 この場合、 変位検出器 4 3…に、 管体 1 0の回転を開始す る際変位量の値 (そのときリセッ トすればリセット値) から変位量の最大値を更 新しながら記憶する機能や、 変位量の最小値と最大値を更新しながら記憶する機 能、 あるいは、 変位量を連続的に記憶する機能等を備えていればよい。  It is desirable that the detection of the amount of displacement by the displacement detectors 43 is performed continuously while the tube 10 is rotated. In this case, the displacement detectors 4 3… store the maximum displacement value while updating the maximum displacement value from the displacement value (reset value at that time) when starting rotation of the tube 10. Also, a function of storing the minimum value and the maximum value of the displacement amount while updating them, or a function of continuously storing the displacement amount may be provided.
一方、 変位検出器 4 3…による変位量の検出は、 管体 1 0の回転を適宜止めて いくつかの周方向についての回転角度位置において行うようにしてもよい。 この 場合であっても、 全周にわたって複数箇所で変位量の検出を行えば、 およそ管体 1 0のフレ量を得ることはできる。  On the other hand, the detection of the amount of displacement by the displacement detectors 43 may be performed at some rotational angular positions in the circumferential direction by appropriately stopping the rotation of the tube 10. Even in this case, if the displacement amount is detected at a plurality of locations over the entire circumference, the deflection amount of the tube 10 can be obtained approximately.
<作用効果 > <Effects>
このように構成された形状測定装置 4では、 上述した第 1図〜第 3図の構成の 形状測定方法の作用効果を奏することができる。  The shape measuring device 4 configured as described above can provide the operational effects of the shape measuring method having the configuration shown in FIGS. 1 to 3 described above.
そして、 特にこの第 1 2図〜第 1 6図に示した形状測定装置 4では、 変位検出 器 4 3…は、 管体 1 0を一対の基準部 4 2 , 4 2に押し付けるように付勢するた め、 一対の基準部 4 2, 4 2と管体 1 0の内周面 1 1とにおいて安定した当接状 態を維持することが容易となる。 In particular, in the shape measuring device 4 shown in FIGS. 12 to 16, the displacement detectors 43 are biased so as to press the tube 10 against the pair of reference portions 42, 42. Therefore, a stable abutment between the pair of reference portions 42, 42 and the inner peripheral surface 11 of the tube 10 It is easy to maintain the state.
特に、 管体 1 0は、 その高さ方向を台座部 4 4によって支持されており、 高さ 位置が安定しているため、 測定作業者は管体 1 0がー対の基準部 4 2 , 4 2と変 位検出器 4 3…とで挟み込まれた状態を維持しながら、 管体 1 0が台座部 4 4上 を滑るように回転させるだけで、 適切な測定環境を確保できる。  In particular, the tube 10 is supported in its height direction by the pedestal portion 44, and the height position is stable. An appropriate measurement environment can be secured simply by rotating the tube 10 so that it slides on the pedestal portion 44 while maintaining the state sandwiched between 42 and the displacement detector 43.
また、 台座部 4 4 , 4 4によって管体 1 0が支持される上下方向と、 一対の基 準部 4 2. 4 2が当接し、 かつ変位検出部 4 3…によって変位量が検出される水 平方向とは、 直交する方向であるため、 管体 1 0の回転中心の上下方向の動きは 、 管体 1 0の側方における外周面 1 .2の半径方向の変位量に与える影響が最も小 さい。 たとえば、 第 5図に示したように、 Bあるいは Dの方向について管体 1 0 の中心がずれたとしても、 位置 Aで検出される外周面の半径方向の変位量にはほ とんど影響はない。 管体 1 0が完全なる円筒形から外れた形状をしている場合、 管体 1 0をその下側から台座部 4 4 , 4 4によって支持すると、 その中心位置は 上下にぶれる。 しかし、 このように管体 1 0の中心位置が上下にぶれたとしても 、 上述したように、 管体 1 0の側方で検出される外周面の半径方向の変位量には ほとんど影響を与えないため、 安定して形状測定を行うことができ、 高い信頼性 を有する測定結果を得ることができる。  Further, the pair of reference portions 42.42 comes in contact with the vertical direction in which the pipe body 10 is supported by the pedestals 44, 44, and the displacement amount is detected by the displacement detecting portions 43. Since the horizontal direction is a direction orthogonal to the horizontal direction, the vertical movement of the rotation center of the tube 10 has an effect on the radial displacement of the outer peripheral surface 1.2 on the side of the tube 10. Smallest. For example, as shown in Fig. 5, even if the center of the tube 10 is displaced in the direction of B or D, it has almost no effect on the radial displacement of the outer peripheral surface detected at the position A. There is no. In the case where the tubular body 10 has a shape deviating from a perfect cylindrical shape, if the tubular body 10 is supported by the pedestals 44, 44 from below, the center position of the tubular body 10 is vertically displaced. However, even if the center position of the tubular body 10 shifts up and down in this way, as described above, it has little effect on the radial displacement of the outer peripheral surface detected on the side of the tubular body 10. Therefore, the shape can be stably measured, and a highly reliable measurement result can be obtained.
また、 この形状測定装置 4では、 管体 (ワーク) 1 0は下側から台座部 4 4, 4 4に支持され、 管体 1 0の上方および変位検出器 4 3…が配置されていない側 (第 1 5図では奥側) の空間が空いているので、 この空間から管体 1 0を容易に セッ トしたり、 取り出したりすることできる。 また、 この空間から容易に管体 1 0をつかんで回転させることができる。 このように回転操作が容易であるため、 手動による回転であるが、 安定したぶれの小さい回転を可能とし、 これにより高 い測定精度を得ることができる。  Further, in the shape measuring device 4, the pipe (work) 10 is supported from below by the pedestals 44, 44, and the upper side of the pipe 10 and the side where the displacement detectors 43 are not arranged. Since the space (in the back side in Fig. 15) is vacant, the tube 10 can be easily set and removed from this space. Also, the tube 10 can be easily rotated from this space. Since the rotation operation is easy as described above, the rotation is manually performed. However, stable rotation with small fluctuation can be performed, and thereby high measurement accuracy can be obtained.
具体的に、 種々の変位量を有する複数の管体に対してそれぞれ 1 0回の形状測 定を行ったところ、 測定結果のバラツキ (測定誤差) は、 最大で 4 mであり、 手動型の形状測定装置として高い信頼性を備えていることを確認している。 したがって、 管体の内周面を基準とした外周面のフレ量の許容範囲が、 たとえ ば 2 0 m以下であった場合には、 測定誤差の最大値 4 mを考慮して、 フレ量 の測定結果が 1 6 m以下であるものを良品として管体を選別する検査を行えば よい。 このようにすると、 検査で良品とされた全数が、 確実に許容範囲である 2 0 m以下に収まっている管体の集合を得ることができる。 Specifically, when a shape measurement was performed 10 times for each of a plurality of pipes having various displacements, the variation (measurement error) of the measurement results was at most 4 m. It has been confirmed that it has high reliability as a manual type shape measuring device. Therefore, if the permissible range of the amount of deflection of the outer peripheral surface with respect to the inner peripheral surface of the pipe is, for example, 20 m or less, the maximum Inspection for selecting pipes that have a measurement result of 16 m or less as non-defective products may be performed. In this way, it is possible to obtain a set of pipes whose total number of non-defective products is within the allowable range of 20 m or less.
また、 この管体の形状測定装置 4では、 管体 1 0をセッ トし、 回転させ、 そし て取り出すことを容易に行うことができるため、 各管体 1 0を 3回転させて形状 測定を行うとしても、 1本につき、 3 0秒以下程度で形状計測を行うことができ る。 さらに、 習熟すれば、 1本につき、 1 0秒前後で形状計測を完了することが できる。  In addition, since the tube 10 can be easily set, rotated, and removed with the tube shape measuring device 4, the shape measurement is performed by rotating each tube 10 three times. Even if it does, shape measurement can be performed in about 30 seconds or less per piece. Furthermore, if mastered, shape measurement can be completed in about 10 seconds per piece.
<変形例 > <Modified example>
以上、 第 1の実施形態を説明したが、 本発明は上記に限定されず、 以下のよう に構成してもよい。  Although the first embodiment has been described above, the present invention is not limited to the above, and may be configured as follows.
( 1 ) 上記第 1の実施形態においては、 管体 1 0の外周面 1 2と当接する台座 部 4 4の当接部材 4 4 2の上面を水平に構成したが、 当接部材 4 4 2の上面を凹 状あるいは凸状に構成してもよい。  (1) In the first embodiment described above, the upper surface of the contact member 44 of the pedestal portion 44 contacting the outer peripheral surface 12 of the tubular body 10 is configured horizontally, but the contact member 4 42 The upper surface may be configured to be concave or convex.
( 2 ) 上記第 1の実施形態においては、 台座部 4 4は所定位置に固定した状態 で姿勢を変化させることなく管体 1 0を支持するように構成したが、 台座部 4 4 は、 たとえば回転しながら管体 1 0の外周面 1 2と接触する 1または複数のコロ 等から構成してもよい。  (2) In the first embodiment, the pedestal portion 44 is configured to support the tubular body 10 without changing its posture while being fixed at a predetermined position. It may be composed of one or a plurality of rollers or the like that come into contact with the outer peripheral surface 12 of the tubular body 10 while rotating.
( 3 ) 上記第 1の実施形態においては、 台座部 4 4, 4 4を管体 1 0の両端近 傍に 2つ配置したが、 台座部 4 4は、 1つあるいは 3つ以上,としてもよい。 管体 1 0と当接する部位も上記実施形態では 2つとしたが、 1つあるいは 3つ以上と してもよい。 (4) 上記第 1の実施形態では、 一対の基準部を管体の使用時における支持予 定位置に当接させたが、 管体の内周面であれば他の位置であってもよい。 ただし 、 支持予定位置の近傍であることが望ましい。 支持予定位置と断面形状が近似し ている可能性が高いためである。 (3) In the first embodiment, two pedestals 44, 44 are arranged near both ends of the tubular body 10, but the pedestals 44 may be one or three or more. Good. In the above embodiment, the number of the portions that come into contact with the tube 10 is two, but may be one or three or more. (4) In the first embodiment, the pair of reference portions is brought into contact with the support expected position when the tubular body is used. However, other positions may be used as long as the inner circumferential surface of the tubular body is used. . However, it is desirable to be near the supporting position. This is because the cross-sectional shape is likely to be similar to the planned support position.
(5) 上記第 1の実施形態では、 一対の基準部 42, 42は球体形状に構成し たが、 管体 10の内周面 11と当接して管体 10の形状測定の基準をなす事がで きる形状であれば、 他の種々の形状を採用することができる。  (5) In the first embodiment, the pair of reference portions 42, 42 are formed in a spherical shape. However, the pair of reference portions 42, 42 may be in contact with the inner peripheral surface 11 of the tube 10 to serve as a reference for measuring the shape of the tube 10. Various other shapes can be adopted as long as the shape is acceptable.
(6) 上記第 1の実施形態では、 一対の基準部 42, 42が管体 10の回転に 連れ回りしないように構成したが、 管体 10に連れ回りしてもよい。 このように すると、 管体 10の回転抵抗を減らすことができる。  (6) In the first embodiment, the pair of reference portions 42, 42 is configured not to rotate with the rotation of the tube 10, but may rotate with the tube 10. By doing so, the rotational resistance of the tube 10 can be reduced.
(7) 上記第 1の実施形態では、 管体 10を形状測定装置 4にセットするにあ たり、 一対の基準部 42, 42の軸方向位置を固定するようにしたが、 一対の基 準部 42, 42を管体 10の軸方向に動作させて管体 10を所定位置にセットす るように構成してもよい。  (7) In the first embodiment, the axial position of the pair of reference portions 42, 42 is fixed when the tube 10 is set in the shape measuring device 4, but the pair of reference portions 42, 42 is fixed. The tube 42 may be moved in the axial direction of the tube 10 to set the tube 10 at a predetermined position.
(8) 上記第 1の実施形態においては、 一対の基準部と管体との当接部分を通 る仮想的な直線に対峙する位置においてのみ管体の外周面の変位量を検出したが 、 管体の周方向について他の位置においても変位量を検出することとしてもよい  (8) In the first embodiment, the displacement of the outer peripheral surface of the tube is detected only at a position facing a virtual straight line passing through the contact portion between the pair of reference portions and the tube. The displacement may be detected at other positions in the circumferential direction of the tube.
(9) 上記第 1の実施形態においては、 変位量の検出位置を複数設けたが、 少 なくとも 1つあればよい。 (9) In the first embodiment, a plurality of displacement amount detection positions are provided, but at least one detection position may be provided.
(10) 上記第 1の実施形態においては、 変位検出器を押圧部として機能する ように、 すなわち、 変位検出器を押圧部として兼用するようにしたが、 押圧部を 変位検出器とは別個に設けてもよい。  (10) In the first embodiment, the displacement detector functions as the pressing portion, that is, the displacement detector also serves as the pressing portion, but the pressing portion is provided separately from the displacement detector. It may be provided.
(11) 上記第 1の実施形態においては、 変位検出器として管体 10の外周面 に接触する接触型検出器を例示したが、 管体 10の外周面 12の半径方向の変位 量が得られればこれらに限定するものではなく、 たとえば、 管体の外周面と接触 しない光透過型の検出器、 うず電流式の検出器、 静電容量式の検出器、 ピント合 わせ式の検出器、 レーザ反射型の檢出器等、 種々の測定原理に基づく検出器を採 用することができる。 (11) In the above-described first embodiment, a contact-type detector that contacts the outer peripheral surface of the tubular body 10 is exemplified as the displacement detector.However, the amount of radial displacement of the outer peripheral surface 12 of the tubular body 10 can be obtained. For example, it is not limited to these. Detectors based on various measurement principles, such as light-transmitting detectors, eddy-current detectors, capacitance-type detectors, focusing detectors, laser-reflection detectors, etc. Can be used.
( 1 2 ) 上記第 1の実施形態においては、 形状測定対象である管体として感光 ドラム基体を挙げたが、 これに限らず、 複写機等に用いられる搬送ローラ、 現像 ローラ、 転写ローラでも好適に適用できる。 その他、 管体であれば本発明の測定 対象となりうる。  (12) In the first embodiment described above, the photosensitive drum substrate is described as the tube whose shape is to be measured. Applicable to In addition, a tubular body can be a measurement target of the present invention.
( 1 3 ) 上記第 1の実施形態では、 測定作業者が手動で管体 1 0をつかんで回 転させるようにしたが、 モータ等で駆動されるローラ等を管体 1 0の外周面また は内周面に接触させて管体 1 0を回転させるようにしてもよい。  (13) In the first embodiment, the measurement operator manually grasps the tube 10 and rotates it.However, a roller or the like driven by a motor or the like is used to rotate the outer surface of the tube 10 or the like. Alternatively, the tube 10 may be rotated by contacting the inner peripheral surface.
[第 2実施形態] [Second embodiment]
次に、 第 2実施形態について説明する。  Next, a second embodiment will be described.
この第 2の実施形態は、 管体 (ワーク) 1 0を形状測定装置の駆動力により自 動的に回転させて形状測定を行う自動型の形状測定装置 5である。  The second embodiment is an automatic shape measuring device 5 for automatically measuring a shape by automatically rotating a tube (work) 10 by a driving force of the shape measuring device.
第 1 7図は、 この自動型の形状測定装置 5の全体斜視概略図である。 第 1 8図 は、 同装置 5における管体 1 0の支持構造の拡大斜視図である。 第 1 9図は、 同 装置 5の要部の正面断面説明図である。 第 2 0図は、 同装置 5の要部の側面断面 図である。 第 2 1図は、 基準ローラの支持形態を示す正面断面図である。 第 2 2 図は、 管体搬送装置の平面説明図である。 第 2 3図は、 管体搬送装置の側面説明 図である。  FIG. 17 is an overall perspective schematic view of the automatic type shape measuring device 5. FIG. 18 is an enlarged perspective view of a support structure of the tube 10 in the device 5. FIG. 19 is an explanatory front sectional view of a main part of the device 5. FIG. 20 is a side sectional view of a main part of the device 5. FIG. 21 is a front sectional view showing a supporting form of a reference roller. FIG. 22 is an explanatory plan view of the tube transport device. FIG. 23 is an explanatory side view of the tube conveying device.
この形状測定装置 5は、 管体 1 0の内周面 1 1に当接して形状測定の基準とな る一対の基準ローラ (基準部) 5 2, 5 2と、 管体 1 0をその両端部で下側から 支持するとともに、 管体 1 0を回転駆動する支持ローラ 5 '4…と、 管体 1 0の軸 方向に直交する方向から管体 1 0を挟み込むように配置された光透過型の変位検 出器 5 3…と、 管体 (ワーク) 1 0を搬入 ·搬出する管体搬送装置 5 5と、 各部 の動作を制御するコントローラ 5 6と、 これら各部品が取り付けられる本体べ一 ス 5 0と、 を備えている。 ぐ一対の基準部 > The shape measuring device 5 includes a pair of reference rollers (reference portions) 52, 52 which come into contact with the inner peripheral surface 11 of the tube 10 and serve as a reference for shape measurement. The support rollers 5'4 ... that support the tube 10 from below while supporting the tube 10 from below, and light transmission arranged so as to sandwich the tube 10 from a direction orthogonal to the axial direction of the tube 10 Mold displacement detector 53, tube transport device 55 for loading and unloading pipe (work) 10 A controller 56 for controlling the operation of the device, and a main body base 50 to which these components are attached are provided. Pair of reference parts>
—対の基準ローラ 5 2 , 5 2は、 第 2 0図等に示すように、 管体 1 0の両端近 傍の内周面 1 1であって、 その下方位置 (内周下面) に当接し、 形状測定の基準 となるものである。  —The pair of reference rollers 52 and 52 are located on the inner peripheral surface 11 near both ends of the tube 10 as shown in FIG. It is a reference for shape measurement.
この一対の基準ローラ 5 2 , 5 2は、 端部周縁に滑らかなアールが施された円 柱体形状の部材からなる。 この一対の基準ローラ 5 2, 5 2は、 それぞれベアリ ング 5 2 3 , 5 2 3を介して基準支持軸 5 2 1, 5 2 1に対して回転自在に取り 付けられている。 このように一対の基準ローラ 5 2 , 5 2は回転自在に取り付け られることで、 管体 1 0の内周面 1 1に当接して管体 1 0の回転に対して連れ回 りし、 管体 1 0の回転を妨げることなく、 滑らかにその当接位置をずらしていく ことができる。 また、 このように一対の基準ローラ 5 2 , 5 2は円柱体として構 成されることで管体 1 0の内周面 1 1と線接触し、 これにより圧力を分散して管 体 1 0の内周面 1 1が損傷することを防止することができる。  The pair of reference rollers 52 and 52 are formed of a cylindrical member having smooth rounded edges. The pair of reference rollers 52, 52 are rotatably mounted on reference support shafts 521, 521, via bearings 52, 53, respectively. Since the pair of reference rollers 52 and 52 are rotatably mounted in this manner, they come into contact with the inner peripheral surface 11 of the tubular body 10 and rotate with the rotation of the tubular body 10 to rotate the tubular body 10. The contact position can be smoothly shifted without hindering the rotation of the body 10. In addition, since the pair of reference rollers 52, 52 are formed as cylindrical bodies in this manner, they come into line contact with the inner peripheral surface 11 of the tubular body 10, thereby dispersing the pressure and distributing the pressure to the tubular body 10. The inner peripheral surface 11 can be prevented from being damaged.
ベアリング 5 2 3は、 耐アキシアル荷重性を有する軸受けとして構成されてい る。 具体的には、 第 2 1図に示すように、 2列のアンギユラ玉軸受けから構成さ れ、 軸方向外向きおよび内向きの両方向の荷重 (アキシアル荷重) に対して'も耐 性を有している。 これにより、 管体 1 0が曲がっているなどの原因により、 基準 ローラ 5 2 , 5 2にアキシアル荷重が作用する場合でも、 基準ローラ 5 2 , 5 2 の滑らかな回転を確保し、 これによつて管体 1 0を滑らかに回転させて、 安定し た形状測定が可能となるようになつている。  The bearing 523 is configured as a bearing having an axial load resistance. Specifically, as shown in Fig. 21, it is composed of two rows of anguilla ball bearings, and is resistant to both axially outward and inward loads (axial loads). ing. As a result, even when the axial load is applied to the reference rollers 52 and 52 due to a cause such as the tube 10 being bent, smooth rotation of the reference rollers 52 and 52 is ensured. By rotating the tube 10 smoothly, stable shape measurement can be performed.
—対の基準ローラ 5 2, 5 2を支持する基準支持軸 5 2 1 , 5 2 1は、 十分に 高い剛性を有する金属軸体から構成され、 本体ベース 5 0上に管体 1 0を軸方向 から挟むように立設された機器ボックス 5 1 1 , 5 1 1を貫通して取り付けられ ている。 このような構造により、 基準支持軸 5 2 1 , 5 2 1は、 その位置が管体 1 0の軸方向に直交するいずれの方向 (第 1 7図の上下方向および奥行き方向) にずれることも防止され、 ひいては、 一対の基準ローラ 5 2 , 5 2の位置 (測定 の基準位置) が管体 1 0の軸方向に直交するいずれの方向 (第 1 7図の上下方向 および奥行き方向) にもずれないようになつている。 これにより、 管体 1 0の円 滑な回転動作が妨げられないようになつている。 —The reference support shafts 5 2 1 and 5 2 1 that support the pair of reference rollers 5 2 and 5 2 are composed of a metal shaft having sufficiently high rigidity, and the tube 10 is mounted on the main body base 50. The equipment boxes 5 11 and 5 11 1 ing. Due to such a structure, the reference support shafts 5 2 1 and 5 2 1 can be displaced in any direction perpendicular to the axial direction of the tube 10 (vertical direction and depth direction in FIG. 17). The position of the pair of reference rollers 52, 52 (the reference position for measurement) can be prevented in any direction (vertical direction and depth direction in FIG. 17) orthogonal to the axial direction of the tube 10. It does not slip. This prevents the smooth rotation of the tube 10 from being hindered.
また、 この基準支持軸 5 2 1, 5 2 1は、 機器ボックス 5 1 1 , 5 1 1内に設 けられた出没駆動部 5 2 2 , 5 2 2によって、 管体 1 0の軸方向について出没駆 動動作可能となっている。 これにより、 管体 1 0をセッ トするときに一対の基準 ローラ 5 2 , 5 2を軸方向外側に退避させ、 管体 1 0を軸方向に移動動作させる ' ことなく、 この形状測定装置にセットできるようになつている。 すなわち、 この 出没駆動部 5 2 2 , 5 2 2は、 出没駆動手段として機能する。 なお、 この一対の 基準ローラ 5 2 , 5 2の出没動作は、 管体 1 0の軸方向へのスライ ド動作に限定 されており、 出没動作によっても軸位置自体は動かないようになつている。 これ により、 一対の基準ローラ 5 2 , 5 2の形状測定の基準としての精度を確保して 、 形状測定について高い信頼性を保つことができるようになつている。  The reference support shafts 5 2 1 and 5 2 1 are moved in the axial direction of the tube 10 by protruding and retracting drive units 5 2 2 and 5 2 2 installed in the equipment boxes 5 1 1 and 5 1 1. It can be driven in and out. As a result, when the tube 10 is set, the pair of reference rollers 52, 52 are retracted to the outside in the axial direction, and the tube 10 is not moved in the axial direction. It can be set. That is, the protruding / retracting drive units 52 2 and 52 2 function as protruding / retracting driving means. The movement of the pair of reference rollers 52, 52 is limited to the sliding movement of the tube 10 in the axial direction, so that the shaft position itself does not move even when the movement is performed. . As a result, the accuracy as a reference for measuring the shape of the pair of reference rollers 52, 52 is ensured, and high reliability in shape measurement can be maintained.
また、 この一対の基準ローラ 5 2 , 5 2は、 第 4図で示したように、 管体 1 0 が使用時に挿入されるフランジ等によつて回転支持される部位 (支持予定位置) で管体 1 0の内周面と当接するようになつている。 これにより、 実際の使用時と 同様の条件で形状測定を行いうるようになつている。 く支持ローラ >  Further, as shown in FIG. 4, the pair of reference rollers 52 and 52 are connected at a portion (planned support position) where the tube 10 is rotatably supported by a flange or the like inserted at the time of use. It comes into contact with the inner peripheral surface of the body 10. As a result, the shape can be measured under the same conditions as those in actual use. Support Roller>
支持ローラ 5 4…は、 管体 1 0をその両端部で下側から支持するとともに、 管 体 1 0を所定の押圧力で一対の基準ローラ 5 2 , 5 2に押し付けるものである。 'また、 この支持ローラ 5 4…は、 管体 1 0を回転駆動する機能、 管体 1 0の軸方 向位置を位置決めする機能、 管体 1 0を上下に移動動作させる機能、 管体 1 0を 下側から支持し、 その高さ位置を安定させる機能、 矯正および形状測定前に、 管 体 1 0を一時的に支持する仮置き台としての機能をも同時に実現するようになつ ている。 The support rollers 54 support the tube 10 from below at both ends thereof, and press the tube 10 against the pair of reference rollers 52, 52 with a predetermined pressing force. The support rollers 54 have a function of rotating the tube 10, a function of positioning the tube 10 in the axial direction, a function of moving the tube 10 up and down, and a structure of the tube 1. 0 A function of supporting from below and stabilizing the height position, and a function as a temporary placing table for temporarily supporting the tube 10 before correction and shape measurement are also realized.
この支持ローラ 5 4…は、 管体 1 0の両端部の下側に、 それぞれ 2つずつ同一 高さで配置されており、 管体 1 0の両端側を合わせて 4つの支持ローラ 5 4…が 設けられている。 管体 1 0の一方の端部に配置された 2つの支持ローラ 5 4, 5 4は、 図 1 5等に示すように、 回転軸方向が平行な一対のローラ対として構成さ れている。 このように支持ローラ 5 4…は管体 1 0の両側にそれぞれ 2つ配置さ れているため、 管体 1 0の軸の位置および管体 1 0の姿勢を安定させることがで ぎる。  The supporting rollers 54 are arranged at the same height, two at the lower side of both ends of the tube 10, and the four supporting rollers 54, including both ends of the tube 10, are combined. Is provided. The two support rollers 54, 54 arranged at one end of the tube 10 are configured as a pair of rollers whose rotation axis directions are parallel as shown in FIG. 15 and the like. Since two support rollers 54 are arranged on both sides of the tube 10 in this manner, the position of the axis of the tube 10 and the posture of the tube 10 can be stabilized.
各支持ローラ 5 4は、 管体 1 0の外周面 1 2と当接して管体 1 0を下側から支 持する小径部 5 4 1と、 その外側に設けられた同心の大径部 5 4 2とからなる。 支持ローラ 5 4…の小径部 5 4 1…は、 第 1 9図等に示すように、 管体 1 0の 内周面 1 1側で一対の基準ローラ 5 2 , 5 2が当接している軸方向位置よりも外 側の管体 1 0の両端部でのみ管体 1 0と接触するようになっている。 これにより 、 変位検出器 5 3…が、 一対の基準ローラ 5 2 , 5 2が当接している断面の変位 量を検出することを妨げることなく、 この断面についての変位量を検出できるよ うになつている。 また、 管体 1 0の両側端部を支持することで形状測定時の管体 1 0の姿勢をより安定させることができる。 また、 管体 1 0の中央部の大部分に 対して支持ローラを当接させずに済むため、 支持ローラ 5 4…が当接することに より管体 1 0の外周面 1 2が損傷する可能性も低減することができる。 この点か ら、 とくに感光ドラム用の基体等の形状測定に好適である。  Each of the supporting rollers 54 has a small-diameter portion 541 which comes into contact with the outer peripheral surface 12 of the tubular body 10 to support the tubular body 10 from below, and a concentric large-diameter portion 5 provided outside thereof. 4 2 As shown in FIG. 19 and the like, a pair of reference rollers 5 2, 5 2 abut on the inner peripheral surface 11 side of the tube 10, as shown in FIG. Only the both ends of the tube 10 outside the axial position are in contact with the tube 10. This enables the displacement detectors 53 to detect the displacement amount of this section without hindering the detection of the displacement amount of the section where the pair of reference rollers 52, 52 are in contact. ing. Further, by supporting both end portions of the tubular body 10, the posture of the tubular body 10 at the time of shape measurement can be further stabilized. In addition, since the supporting roller does not need to contact a large part of the central portion of the tube 10, the outer peripheral surface 12 of the tube 10 may be damaged by the contact of the supporting rollers 54. Performance can also be reduced. From this point, it is particularly suitable for shape measurement of a substrate for a photosensitive drum or the like.
各支持ローラ 5 4…の大径部 5 4 2…は、 管体 1 0の軸方向端面に当接して、 この装置 5にセッ トされる管体 1 0の軸方向の位置決めが行われるようになって いる。 このため、 管体 1 0の軸方向両側の各支持ローラ 5 4…は、 その間隔が管 体 1 0の長さサイズに適応するように設定されている。 このように、 管体 1 0を l r The large-diameter portions 542 of each of the support rollers 54 contact the end face of the tube 10 in the axial direction so that the tube 10 set in the apparatus 5 is positioned in the axial direction. It has become. For this reason, the spacing between the support rollers 54 on both axial sides of the tube 10 is set so as to adapt to the length of the tube 10. Thus, the tube 10 lr
45 支持する支持ローラ 5 4…によって管体 1 0の軸方向の位置決めを行うことで、 管体 1 0に接触する部材を少なく抑られている。 これにより誤差要因ができるだ け排除されている。 また、 形状測定に高い信頼性が得られる。 また、 管体 1 0が 損傷を受ける可能性も低減されている。  45 By positioning the tube 10 in the axial direction by the supporting rollers 54 to support, members that come into contact with the tube 10 are reduced. As a result, error factors have been eliminated as much as possible. Also, high reliability can be obtained for shape measurement. Also, the possibility of damage to the tube 10 is reduced.
<支持ローラの支持形態 > <Support form of support roller>
この支持ローラ 5 4…は、 管体 1 0の両側のそれぞれにおいて、 支持ローラ支 持体 5 4 3 , 5 4 3に、 回転自在に取り付けられている。 これら支持ローラ支持 体 5 4 3 , 5 4 3は、 それぞれ上述した機器ボックス' 5 1 1, 5 1 1に対してス ライ ド動作可能に取り付けられており、 動作方向規制レール 5 4 7 , 5 4 7によ つてそのスライ ド動作方向が上下方向のみに規制されている。 すなわち、 支持口 ーラ支持体 5 4 3, 5 4 3は、 昇降部材として機能し、 動作方向規制レール 5 4 7 , 5 4 7は、 動作方向規制手段として機能する。 またこれらは同時に昇降手段 の一部としても機能する。 このように支持ローラ 5 4…を支持ローラ支持体 5 4 3 , 5 4 3に取り付けたことにより、 管体 1 0の両側それぞれの 2つの支持口一 ラ 5 4, 5 4は相対位置関係を適正に維持し、 形状測定について高い信頼性を得 ることができる。 また、 支持ローラ支持体 5 4 3, 5 4 3のスライ ド動作方向を 規制しているため、 支持ローラ 5 4…の昇降動作方向を安定させ、 形状測定につ いて高い信頼性を得ることができる。  The support rollers 54 are rotatably mounted on support roller supports 543, 543 on both sides of the tube 10, respectively. These support roller supports 543 and 543 are mounted so as to be slidable with respect to the above-mentioned equipment box '511 and 511, respectively. According to 47, the sliding operation direction is restricted only in the vertical direction. That is, the support port support members 543 and 543 function as elevating members, and the operation direction restriction rails 544 and 545 function as operation direction restriction means. They also function as part of the lifting means at the same time. By attaching the support rollers 54 to the support roller supports 5443, 5443 in this manner, the two support ports 54, 54 on both sides of the tube 10 can maintain a relative positional relationship. It can be maintained properly and high reliability can be obtained for shape measurement. In addition, since the sliding direction of the support rollers 543, 543 is regulated, it is possible to stabilize the elevating direction of the support rollers 54, and obtain high reliability in shape measurement. it can.
この支持ローラ 5 4…の下側には、 この支持ローラ 5 4…の大径部の外周面に 当接する連動ローラ 5 4 4, 5 4 4が、 前記支持ローラ支持体 5 4 3 , 5 4 3に 対して回転可能に取り付けられている。 このように、 管体 1 0の両側それぞれで 2つの支持ローラ 5 4…が連動ローラ 5 4 4 , 5 4 4によって連動することによ り、 2つの支持ローラ 5 4…の回転を等速化することできる。 これにより、 管体 1 0の回転を安定させ、 形状測定について高い信頼性を得ることができる。 また、 この連動ローラ 5 4 4 , 5 4 4の一方は; 機器ボックス 5 1 1内に収容 された駆動モータ 5 4 5の駆動力によって、 所定方向に回転駆動され、 当接する 2つの支持口一ラ 5 4 , 5 4に等速の回転を伝達し、 ひいては管体 1 0を回転駆 動するようになっている。 すなわち、 駆動モータ 5 4 5は、 支持ローラ 4 5を回 転駆動する回転駆動手段として機能する。 また駆動モータ 5 4 5は同時に昇降手 段の一部としても機能する。 このように、 管体 1 0をま持する支持口一ラ 5 4— によって管体 1 0に回転駆動力を伝達するため、 管体 1 0に接触する部材を少な く抑え、 これにより誤差要因を排除して正確な形状測定に寄与することができるOn the lower side of the support rollers 54 are interlocking rollers 544, 544 which come into contact with the outer peripheral surface of the large-diameter portion of the support rollers 544, the support roller supports 544, 544. It is mounted rotatable with respect to 3. In this way, the two support rollers 54 are linked by the interlock rollers 54, 54 on both sides of the tube 10, so that the rotation of the two support rollers 54 is made uniform. You can do it. As a result, the rotation of the tube 10 can be stabilized, and high reliability can be obtained for shape measurement. One of the interlocking rollers 5 4 4 and 5 4 4 is housed in the equipment box 5 1 1 The drive force of the driven drive motor 545 is rotated in a predetermined direction to transmit the constant-speed rotation to the two support ports 54, 54, which are in contact with each other, and thus to rotate the tube 10. It is supposed to. That is, the drive motor 545 functions as a rotational drive unit that rotationally drives the support roller 45. The drive motor 545 also functions as a part of the lifting / lowering means at the same time. As described above, since the rotational driving force is transmitted to the tube 10 by the support port 54 holding the tube 10, the number of members that come into contact with the tube 10 is reduced to a small extent. And contribute to accurate shape measurement
。 また、 管体 1 0の回転を 1つの回転駆動源によって行うため、 複数の回転駆動 源を用いた場合のような回転ムラの発生を抑制することができる。 また、 回転の 制御を簡素化することができる。 . In addition, since the rotation of the tube 10 is performed by one rotation drive source, it is possible to suppress the occurrence of uneven rotation as in the case where a plurality of rotation drive sources are used. In addition, control of rotation can be simplified.
また、 支持ローラ 5 4…および連動ローラ 5 4 4 , 5 4 4が取り付けられた支 持ローラ支持体 5 4 3 , 5 4 3は、 機器ボックス 5 1 1 , 5 1 1に設けられた上 下駆動シリンダ 5 4 6 , 5 4 6によって上下方向にスライ ド動作されるようにな つている。 すなわち、 この上下駆動シリンダ 5 4 6 , 5 4 6は、 支持口一ラ 5 4 …を昇降動作させる昇降駆動手段として機能する。 また上下駆動シリンダ 5 4 6 , 5 4 6は同時に昇降手段の一部としても機能する。  In addition, the supporting roller supports 543, 543 on which the supporting rollers 54 and the interlocking rollers 54, 54 are mounted are mounted on the upper and lower sides of the equipment boxes 51, 51, 51. The drive cylinders 546 and 546 perform sliding operation in the vertical direction. That is, the vertical drive cylinders 546, 546 function as lifting / lowering driving means for raising / lowering the support port rollers 54. The vertical drive cylinders 546 and 546 also function as a part of the elevating means at the same time.
この上下駆動シリンダ 5 4 6, 5 4 6によって支持ローラ支持体 5 4 3, 5 4 3がスライ ド動作することにより、 支持ローラ 5 4…上に支持された管体 1 0は 、 その内周下面が一対の基準ローラ 5 2 , 5 2に当接する測定位置と、 その内周 下面が一対の基準ローラ 5 2 , 5 2からから離間した離間位置との間を行き来で ぎる。  When the supporting roller supports 543 and 543 slide by the vertical driving cylinders 546 and 546, the tube 10 supported on the supporting rollers 54 and the inner periphery of the tube 10 are moved. The lower surface moves back and forth between the measurement position where the lower surface contacts the pair of reference rollers 52 and 52 and the separated position where the inner lower surface is separated from the pair of reference rollers 52 and 52.
また、 上下駆動シリンダ 5 4 6, 5 4 6は、 管体 1 0の形状測定を行うときに は、 前記測定位置に前記管体 1 0を持ち上げるとともに、 さらに支持ローラ支持 体 5 4 3 , 5 4 3に所定の上向きの力を付与することにより、 前記測定位置にあ る管体 1 0を所定の押圧力で前記一対の基準ローラ 5 2 , 5 2に押し付けるよう になっている。. これにより、 管体 1 0の形状測定時には、 管体 1 0の内周下面と 7 一対の基準 ΰーラ 5 2 , 5 2との接触圧を適正に維持して、 形状測定について高 い信頼性を得ることができる。 When measuring the shape of the tube 10, the vertical drive cylinders 546, 546 lift the tube 10 to the measurement position, and furthermore, support the roller support members 543, 5. By applying a predetermined upward force to 43, the pipe body 10 at the measurement position is pressed against the pair of reference rollers 52, 52 with a predetermined pressing force. As a result, when measuring the shape of the tube 10, (7) The contact pressure with the pair of reference rollers 52, 52 can be properly maintained, and high reliability can be obtained for shape measurement.
また、 管体 1 0の重量を支持ローラ 5 4…によって下側から支持しているため 、 管体 1 0の内周下面と一対の基準ローラ 5 2 , 5 2との接触圧を管体 1 0の重 量によらず、 管体 1 0の重量以上あるいは以下の任意の接触圧に設定することが 可能である。 これにより、 形状測定に最も適当な接触圧を実現して正確な形状測 定を実行することができる。 具体的には、 この接触圧として、 管体 1 0の端部に 対して実質的な変形を伴わない圧力を設定することができる。 あるいはまた、 管 体 1 0の端部に積極的に多少の変形を生じさせる圧力を設定することもできる。  Since the weight of the tube 10 is supported from below by the support rollers 54, the contact pressure between the inner peripheral lower surface of the tube 10 and the pair of reference rollers 52, 52 is reduced by the tube 1 Regardless of the weight of 0, it is possible to set an arbitrary contact pressure that is equal to or greater than the weight of the tube 10. As a result, the most appropriate contact pressure for shape measurement can be realized, and accurate shape measurement can be performed. Specifically, a pressure that does not substantially cause deformation at the end of the tube 10 can be set as the contact pressure. Alternatively, a pressure that positively causes some deformation at the end of the tube 10 can be set.
<変位検出器 > <Displacement detector>
変位検出器 5 3…は、 管体 1 0の外周面 1 2の半径方向の変位量を検出するも のであり、 ここでは、 管体 1 0の軸方向位置の異なる 5箇所にそれぞれ非接触型 のものが設けられている。 これら 5箇所の変位検出器 5 3…のうち両側の 2つは それぞれ一対の基準ローラ 5 2, 5 2と対峙する位置を含む断面の変位量を検出 するように配置されている。  The displacement detectors 53 detect the amount of displacement of the outer peripheral surface 12 of the tube 10 in the radial direction. Here, non-contact type detectors are provided at five different positions of the tube 10 in the axial direction. Are provided. Two of the five displacement detectors 53 are arranged so as to detect the displacement of the section including the position facing the pair of reference rollers 52, 52, respectively.
各変位検出器 5 3…は、 管体 1 0の軸方向に直交する方向から管体 1 0を挟み 込むように配置された光透過型の変位検出器である。 このため、 管体 1 0を挟み 込むように配置された光照射部と受光部とがー組となってそれぞれの変位検出器 5 3をなしており、 光照射部から照射された光 (たとえばレーザ光) のうち管体 によって遮られず透過した光を受光部によって検出し、 これによつて管体 1 0の 外周面 1 2の表面位置を検出するようになっている。  Each of the displacement detectors 53 is a light transmission type displacement detector arranged so as to sandwich the tube 10 from a direction perpendicular to the axial direction of the tube 10. For this reason, the light irradiating section and the light receiving section which are arranged so as to sandwich the tube 10 form a pair of displacement detectors 53, and the light irradiated from the light irradiating section (for example, Of the laser light), the light transmitted without being blocked by the tube is detected by the light receiving portion, and thereby the surface position of the outer peripheral surface 12 of the tube 10 is detected.
各変位検出器 5 3 '·'の検出域 5 3 1 ···、 5 3 2…は、 第 1 9図等に示すように 、 管体 1 0の直径を超える高さ方向の幅を有しており、 各変位検出器 5 3は、 管 体 1 0の外周面の一箇所の変位量だけではなく、 それに対向する位置 (管体 1 0 の周方向について半周分異なる位置、 1 8 0度回転した位置、 あるいは逆位相位 置) の変位量も同時に検出できるようになつている。 これにより、 互いに対向す る位置において検出される変位量を組み合わせることにより、 これら 2つの位置 を通る管体 1 0の直径を求めることができ、 より具体的に管体 1 0の形状を把握 することができる。 , 532... Have a width in the height direction exceeding the diameter of the tube 10 as shown in FIG. 19 and the like. Each of the displacement detectors 53 is not only a displacement amount at one position on the outer peripheral surface of the tube 10, but also a position opposed thereto (a position different by half a circle in the circumferential direction of the tube 10, 18 0). Rotated position, or out of phase Displacement) can be detected at the same time. Thus, by combining the displacements detected at the positions facing each other, the diameter of the tube 10 passing through these two positions can be obtained, and the shape of the tube 10 can be grasped more specifically. be able to.
すなわち、 この変位検出器 5 3…では、 第 1 0図および第 1 1図の構成の形状 測定方法と同様の形状測定が可能となっている。  That is, the displacement detectors 53 can perform shape measurement similar to the shape measurement method of the configuration of FIGS. 10 and 11.
<管体搬送装置 > <Pipe transfer device>
管体搬送装置 (管体搬送手段) 5 5は、 第 2 2図、 第 2 3図に示すように、 こ の形状測定装置 5に供給される管体 1 0を、 所定の搬入位置 5 5 Aから、 形状測 定が行われる支持ローラ 5 4上まで搬送する第 1搬送装置 5 5 1と、 形状測定を 終えた管体 1 0を支持ローラ 5 4上から所定の搬出位置 5 5 Bまで搬送する第 2 搬送装置 5 5 2とを備えている。  As shown in FIGS. 22 and 23, the pipe transfer device (pipe transfer means) 55 transfers the pipe 10 supplied to the shape measuring device 5 to a predetermined loading position 55. From A, the first transporting device 551, which transports the shape to the support roller 54 on which the shape measurement is performed, and the pipe 10 whose shape has been measured from the support roller 54 to the predetermined unloading position 55B And a second transfer device 552 for transferring.
第 1搬送装置 5 5 1は、 管体 1 0の両側にそれぞれ配置された搬送アーム 5 5 3、 5 5 3を備えており、 各搬送アーム 5 5 3、 5 5 3の先端には、 管体 1 0内 に揷し込まれるピックアップ突起 5 5 4 , 5 5 4が形成されている。 また、 この 第 1搬送装置 5 5 1は、 搬送アーム 5 5 3 , 5 5 3を管体 1 0の軸方向に移動さ せるスライ ド駆動源 5 5 5 , 5 5 5と、 ピックアップ突起 5 5 4 , 5 5 4で管体 1 0をピックアップした搬送アーム 5 5 3 , 5 5 3を前記搬入位置 5 5 Aから支 持ローラ 5 4上の位置まで移動させる移動レール 5 5 6、 5 5 6とを備えている 同様に、 第 2搬送装置 5 5 2もまた、 管体 1 0の両側にそれぞれ配置された搬 送アーム 5 5 3、 5 5 3を備えており、 各搬送アーム 5 5 3、 5 5 3の先端には 、 管体 1 0内に挿し込まれるピックアップ突起 5 5 4 , 5 5 4が形成され、 搬送 アーム 5 5 3, 5 5 3を管体 1 0の軸方向に移動させるスライ ド駆動源 5 5 5 , . 5 5 5と、 搬送アーム 5 5 3 , 5 5 3を前記支持ローラ 5 4…上の位置から搬出 位置 5 5 Bまで移動させる移動レール 5 5 6 , 5 5 6とを備えている。 くコントローラ > The first transfer device 55 1 is provided with transfer arms 55 3 and 55 3 arranged on both sides of the tube 10, respectively. Pickup protrusions 554 and 554 to be inserted into the body 10 are formed. The first transfer device 55 1 includes a slide drive source 5 5 5 5 5 5 for moving the transfer arms 5 5 3 5 5 3 in the axial direction of the tube 10, and a pickup protrusion 5 5 Moving rails 5 5 6 and 5 5 6 for moving the transfer arms 5 5 3 and 5 5 3 picking up the pipe 10 with 4 5 5 4 from the loading position 55 A to the position on the support rollers 54 Similarly, the second transfer device 55 2 also has transfer arms 55 3, 53 3 arranged on both sides of the tube 10, respectively. At the end of the tube 53, pickup protrusions 554, 554 to be inserted into the tube 10 are formed, and the transfer arms 553, 553 are moved in the axial direction of the tube 10. 5 5 5 and 5 5 5 and the transfer arms 5 5 3 and 5 5 3 are carried out from the position above the support rollers 5 4. Moving rails 556 and 5556 for moving to a position 55B are provided. Controller>
コントローラ (制御手段) 5 6は、 形状測定装置 5の各部の動作を統括的に制 御するものであり、 たとえば C F Uやメモリ等を備えたコンピュータからなるシ —ケンサ等で構成されている。  The controller (control means) 56 generally controls the operation of each part of the shape measuring device 5, and is composed of, for example, a sequencer composed of a computer having a CFU and a memory.
このコントローラ 5 6に制御される動作部としては、 一対の基準ローラ 5 2 , 5 2を出没動作させる出没駆動部 5 2 2 , 5 2 2、 支持ローラ 5 4…を回転駆動 する駆動モータ 5 4 5 , 5 4 5、 支持ローラ 5 4…を上下動作させる上下駆動シ リンダ 5 4 6 , 5 4 6、 管体 1 0の形状測定を行う変位検出器 5 3…、 第 1搬送 装置 5 5 1のスライ ド駆動源 5 5 5 , 5 5 5や、 第 2搬送装置 5 5 2のスライ ド 駆動源 5 5 5等を挙げることができ、 コントローラ 5 6は、 これら各動作部を形 状測定手順の各タイミングにおいて制御するようになっている。  The operating units controlled by the controller 56 include a retracting drive unit 52 2, 52 2 for moving the pair of reference rollers 52, 52 to retract, and a drive motor 54 for rotatingly driving the support rollers 54. 5, 5 4 5, up and down drive cylinders 5 4, 5 4 6 to move the support rollers 5 4… up and down, displacement detectors 5 3… to measure the shape of the tube 10, 1st transfer device 5 5 1 The slide drive sources 55 5 and 55 5 of the second transfer device 55 2 and the slide drive sources 55 5 of the second transfer device 55 5 can be used. Is controlled at each of the following timings.
このコントローラ 5 6の制御の下で実行される形状測定の手順は、 以下の例を 挙げることができる。  Examples of the procedure of the shape measurement executed under the control of the controller 56 include the following examples.
コントローラ 5 6は、 まず第 1搬送装置 5 5 1により、 搬入位置.5 5 Aにある 管体 1 0を支持ローラ 5 4…上に搬入させる。  First, the controller 56 causes the first transporting device 55 1 to carry in the tube 10 at the carry-in position .55 A onto the support rollers 54.
具体的には、 スライ ド駆動源 5 5 5 , 5 5 5により搬送アーム 5 5 3、 5 5 3 を両外側に拡げた状態で、 移動レール 5 5 6、 5 5 6によって搬送アーム 5 5 3 、 5 5 3を搬入位置 5 5 Aに移動させる。 そして、 スライ ド駆動源 5 5 5 , 5 5 5により搬送アーム 5 5 3 , 5 5 3の間隔を狭めることにより、 ピックアップ突 起 5 5 4 , 5 5 4を管体 1 0の内側に挿し込む。 この状態で移動レール 5 5 6、 5 5 6によって搬送アーム 5 5 3、 5 5 3を搬入位置 5 5 Aから支持ローラ 5 4 …上の位置まで移動させることにより、 管体 1 0を搬入する。 この移動レール 5 5 6の軌道は搬入位置から斜め上方に上昇し、 略水平に支持ローラ 5 4…の上方 位置に至り、 ここから斜め下方に降下するようになっている。 このような軌道形 状により、 搬送される管体 10が変位検出器 53…に干渉することが防止されて いる。 Specifically, with the transfer arms 55 3 and 55 3 extended to both outer sides by the slide drive sources 55 5 and 55 5, the transfer arms 55 3 and 55 6 are moved by the moving rails 55 6 and 55 6. , 553 to the loading position 55A. Then, the interval between the transfer arms 55 3 and 55 3 is reduced by the slide drive sources 55 5 and 55 5, so that the pickup protrusions 55 4 and 55 4 are inserted into the inside of the tube 10. . In this state, the transfer arm 55 3, 55 3 is moved from the loading position 55 A by the moving rails 55 6, 55 6 to the position above the support roller 54, so that the tube 10 is loaded. . The track of the moving rails 556 rises obliquely upward from the carry-in position, reaches a position substantially horizontally above the support rollers 54, and then descends obliquely downward. Orbital form like this The shape prevents the conveyed pipe 10 from interfering with the displacement detectors 53.
この管体 10の搬入時には、 コントローラ 56は、 一対の基準ローラ 52, 5 2を出没駆動部 522, 522の出没動作によって両外側に退避させておく。 こ れにより、 搬入される管体 10が基準ローラ 52, 52と干渉することも防止さ れている。  When the tube 10 is carried in, the controller 56 retracts the pair of reference rollers 52, 52 to both outsides by the retracting operation of the retracting drive units 522, 522. This prevents the incoming pipe 10 from interfering with the reference rollers 52,52.
第 1搬送装置 551は、 管体 10を支持ローラ 54…上の位置まで搬入すると 、 スライ ド駆動源 555, 555により搬送アーム 553、 553を両外側に拡 げて管体 10を支持ローラ 54…の小径部 541…上に降ろす。 そして、 搬送ァ —ム 553, 553を拡げたままの状態で移動レール 556、 556によって搬 送アーム 553, 553を搬入位置 55 Aに戻し、 次の管体 10の搬送に備える つづいて、 コントローラ 56は、 出没駆動部 522, 522の出没動作によつ て一対の基準ローラ 52, 52を管体 10の内側に揷入する。 そして、 この状態 で上下駆動シリンダ 546, 546によって支持ローラ 54…とともに、 その上 に載せられた管体 10を持ち上げる。  When the first transfer device 551 carries the tube 10 to the position above the support rollers 54, the slide arms 555, 555 expand the transfer arms 553 to both outer sides by the slide drive sources 555, 555 to move the tube 10 to the support rollers 54. The small diameter part of 541 ... Then, with the transfer arms 553, 553 expanded, the transfer arms 553, 553 are returned to the transfer position 55A by the moving rails 556, 556, and the controller 56 is prepared for the next transfer of the tube 10. The pair of reference rollers 52, 52 are inserted into the inside of the tube 10 by the retracting operation of the retracting drive units 522, 522. Then, in this state, the tube 10 mounted thereon is lifted together with the support rollers 54 by the vertical drive cylinders 546.
管体 10の内周面 10に一対の基準ローラ 52, 52が当接すれば、 さらに所 定の押圧力で管体 10を一対の基準ローラ 52, 52に押し付け、 この状態のま ま、 駆動モータ 545, 545により連動ローラ 544および支持ローラ 54— を介して管体 10を回転させる。  When the pair of reference rollers 52, 52 comes into contact with the inner peripheral surface 10 of the tube 10, the tube 10 is further pressed against the pair of reference rollers 52, 52 with a predetermined pressing force. The tube 10 is rotated by the rollers 545 and 545 via the interlocking roller 544 and the supporting roller 54.
このとき、 各変位検出器 53…により、 管体 10の各軸方向断面における外周 面 12の半径方向の変位量を検出する。  At this time, the displacement detectors 53... Detect the amount of displacement in the radial direction of the outer peripheral surface 12 in each axial section of the tube 10.
管体 10を一回転以上させて、 周方向について全周の変位量を検出すれば、 上 記と逆の手順で、 管体 1 0の回転を止め、 管体 10を下げて基準ローラ 52, 5 2との当接状態を解除し、 一対の基準ローラ 52, 52を再び両外側に退避させ る。 JP2003/011737 If the pipe 10 is rotated one or more turns and the displacement of the entire circumference is detected in the circumferential direction, the rotation of the pipe 10 is stopped, the pipe 10 is lowered, and the reference rollers 52, 52 The contact state with 2 is released, and the pair of reference rollers 52, 52 are retracted to both outsides again. JP2003 / 011737
51 そして、 コントローラ 5 6は、 第 1搬送装置 5 5 1による搬入手順と同様の手 順で第 2搬送装置 5 5 2により形状測定の終了した管体 1 0を支持ローラ 5 4… 上から搬出位置 5 5 Bに搬出して、 1本の管体 1 0に対する一連の形状測定作業 を完了する。  51 Then, the controller 56 unloads the pipe 10 whose shape has been measured by the second transfer device 552 from above the support rollers 54 by the same procedure as the loading procedure by the first transfer device 551. It is carried out to the position 55B, and a series of shape measuring operations for one pipe 10 is completed.
<作用効果 > <Effects>
このように構成された形状測定装置 5では、 上述した第 1 0図および第 1 1図 に示した形状測定方法の作用効果を奏することができる。  The shape measuring device 5 configured as described above can provide the operational effects of the shape measuring method shown in FIGS. 10 and 11 described above.
さらに、 この自動型の形状測定装置 5では、 管体 1 0が支持ローラ 5 4…上に 載せられれば、 自動的にその形状測定を行うことができるため、 自動化ラインに 容易に組み込むことができる。  Furthermore, in the automatic type shape measuring device 5, if the tube 10 is placed on the supporting rollers 54, the shape can be automatically measured, and therefore, it can be easily incorporated into an automation line. .
また、 管体 1 0を支持する支持ローラ 5 4…は、 管体 1 0への回転駆動力の伝 達、 管体 1 0の軸方向の位置決め、 管体 1 0の上下移動動作、 管体 1 0を下側か ら支持して基準ローラ 5 2 , 5 2との当接状態の維持という各機能を同時に果た すため、 管体 1 0の形状測定位置へのセッティングゃ形状測定のための動作部を 集約して動作部の数が少ない構造を実現している。 また、 多数の部品が測定対象 である管体 1 0に接触する部品の数も少ない。 これにより、 誤差要因を排除して 正確な形状測定に寄与することができ、 また、 形状測定について高い信頼性を得 ることができる。  Further, the supporting rollers 54 supporting the tube 10 transmit the rotational driving force to the tube 10, position the tube 10 in the axial direction, move the tube 10 up and down, and move the tube 10. Setting 10 to the shape measurement position of the tube 10 to measure the shape to simultaneously perform each function of maintaining the contact state with the reference rollers 52 and 52 by supporting 10 from below. The operation parts are integrated to realize a structure with a small number of operation parts. Also, the number of parts where many parts come into contact with the tube 10 to be measured is small. As a result, it is possible to eliminate an error factor and contribute to accurate shape measurement, and to obtain high reliability in shape measurement.
また、 支持ローラ 5 2…は、 管体 1 0をその両端部で支持するため、 変位測定 器 5 3…によって、 一対の基準ローラ 5 2, 5 2が当接する断面をも変位測定対 象とすることができる。 これにより、 上述したように、 管体 1 0の肉厚分布等を 得ることができ、 管体 1 0の形状をより詳細に特定することができる。  In addition, since the supporting rollers 52 support the tube 10 at both ends thereof, a section where the pair of reference rollers 52, 52 abuts is also subjected to the displacement measurement by the displacement measuring device 53. can do. Thereby, as described above, the wall thickness distribution and the like of the tube 10 can be obtained, and the shape of the tube 10 can be specified in more detail.
また、 非接触型の変位検出器 5 3…が用いられているため、 管体 1 0の外表面 に損傷を与えることがない。 ' ·  Since the non-contact type displacement detectors 53 are used, the outer surface of the tube 10 is not damaged. '·
また、 この非接触型の変位検出器 5 3…は、 光透過型の変位検出器であるため 、 光を遮る管体 1 0の外周面 1 2近傍では光が回折して受光部に到達し、 必要以 上に微細な外周面 1 2の形状凹凸を捨象した検出結果が得られる。 このため、 必 要以上に微細な表面欠陥による外周面 1 2の変位量を除いた適切な検出結果を容 易に得ることできる。 Also, since the non-contact type displacement detector 53 is a light transmission type displacement detector, In the vicinity of the outer peripheral surface 12 of the tube 10 that blocks light, the light is diffracted and reaches the light receiving portion, and a detection result is obtained in which the shape of the outer peripheral surface 12 that is more minute than necessary is omitted. Therefore, it is possible to easily obtain an appropriate detection result excluding the displacement amount of the outer peripheral surface 12 due to an unnecessarily fine surface defect.
また、 一対の基準ローラ 5 2 , 5 2は、 管体 1 0を形状測定装置 5にセットす るにあたり、 管体 1 0の軸方向に直交する方向について移動しないため、 基準部 として固定されるべき方向についてその位置が安定し、 正確な形状測定に寄与す ることができる。  Further, the pair of reference rollers 52, 52 are fixed as reference portions because they do not move in a direction perpendicular to the axial direction of the tube 10 when setting the tube 10 in the shape measuring device 5. The position in the power direction is stable, which can contribute to accurate shape measurement.
また、 支持ローラ 5 4…を管体 1 0の両側の端部に当接させながら、 この管体 1 0を一対の基準ローラ 5 2 , 5 2に押し付けるため、 管体 1 0の端面に所定長 さに切断する際にできたバリ等が残っている場合であってもこれを脱落させるこ とができる。 このため、 管体 1 0が支持ローラ 5 4…に接触した状態を確実に保 つことができ、 これにより形状測定の高い精度を確保することができる。 また、 この形状測定装置 5をノ リ取り加工装置として機能させることができる。  In order to press the tube 10 against the pair of reference rollers 52 and 52 while making the supporting rollers 54 contact the ends on both sides of the tube 10, a predetermined amount is applied to the end face of the tube 10. Even if burrs formed during cutting to length remain, they can be dropped. Therefore, the state in which the tube 10 is in contact with the support rollers 54 can be reliably maintained, and high accuracy in shape measurement can be ensured. In addition, the shape measuring device 5 can function as a cutting device.
具体的に、 この自動型の形状測定装置 5において、 種々の変位量を有する複数 の管体に対してそれぞれ 1 0回の形状測定を行ったところ、 第 2 4図に示すよう に、 各回の測定結果のバラツキ (測定誤差) は、 最大で 3 mであり、 高い信頼 性を備えていることが確認できる。 この測定誤差は、 量産に対応できる管体の形 状測定装置としては極めて優れた値であり、 測定誤差を吸収する余裕を小さく し て、 良品が不良品と誤判定されてしまう事態を減らすことができる。  Specifically, in this automatic type shape measuring apparatus 5, when a plurality of pipes having various displacements were measured for 10 times each, as shown in FIG. The variation (measurement error) of the measurement result is a maximum of 3 m, confirming that it has high reliability. This measurement error is an extremely excellent value for a pipe shape measuring device that can be used for mass production.To reduce the margin for absorbing the measurement error and reduce the situation where a good product is erroneously determined to be a defective product. Can be.
管体の内周面を基準とした外周面のフレ量の許容範囲が、 たとえば管体 1 0の 不良要因である曲がりや偏肉のそれぞれの加工限界精度レベルの合計である 2 0 « m以下であった場合には、 測定誤差の最大値 3 mを考慮して、 フレ查の測定 結果が 1 7 以下であるものを良品として管体を選別する検査を行えばよい。 このようにすると、 不良品と誤判定される数を抑えながら、 検査で良品とされた 全数が確実に許容範囲である 2 0 m以下に収まっている管体の集合を得ること ができる。 The allowable range of the amount of deflection of the outer peripheral surface with respect to the inner peripheral surface of the tubular body is, for example, the sum of the respective processing limit precision levels of bending and uneven wall thickness, which are the causes of failure of the tubular body, 20 0 ≤ m If this is the case, it is only necessary to take into account the maximum measurement error of 3 m and conduct an inspection to select tubes whose flame measurement results are 17 or less as good products. In this way, it is possible to obtain a set of pipes whose total number of non-defective products is within the allowable range of 20 m or less while suppressing the number of erroneously determined defective products. Can be.
さらに、 計測誤差を考慮してしきい値を設定し、 管体を選別することにより、 フレ量が 1 5 m以下に収まっている好適な管体の集合を得ることができる。 ま た、 従来の管体の製法では極めて加工が困難なレベルであるフレ量が 1 0 m以 下に収まっている特に好適な管体の集合や、 さらにフレ量が 5 以下に収まつ ている極めて好適な管体の集合を得ることができる。 究極には、 フレ量が測定誤 差の最大値である 3 m以下に収まっている管体の集合も得ることができる。 また、 この管体の形状測定装置 5では、 順次、 管体 1 0を自動的に搬入し、 セ ッ トし、 形状測定し、 搬出する一連の工程を、 管体 1本につき、 6 0秒以下程度 で行うことができる。 さらに、 高速運転すれば、 管体 1本につき 3 0秒以下、 1 0秒以下、 5秒以下で一連の工程を行うことも可能である。  Furthermore, by setting the threshold value in consideration of the measurement error and selecting the pipes, it is possible to obtain a suitable set of pipes with a deflection of 15 m or less. In addition, particularly suitable sets of pipes with a deflection of less than 10 m, which is a level that is extremely difficult to process with conventional pipe manufacturing methods, and a deflection of 5 or less A very suitable set of tubes can be obtained. Ultimately, it is possible to obtain a set of pipes whose deflection is less than the maximum measurement error of 3 m. In addition, the pipe shape measuring device 5 performs a series of steps of automatically loading, setting, measuring the shape, and unloading the pipe 10 sequentially for 60 seconds per pipe. It can be performed in the following degree. Furthermore, a series of processes can be performed in 30 seconds or less, 10 seconds or less, and 5 seconds or less per tube by operating at high speed.
このように、 この形状測定装置 5は、 高速で各管体の形状測定を行うことがで きるため、 製造されるすべての管体の形状測定および合否判定を容易に行うこと ができ、 ひいては、 公知の加工精度の限界レベルにおいて出荷する管体の全数に ついてフレ量等が所定範囲にあることを保証できる。  As described above, since the shape measuring device 5 can measure the shape of each tube at a high speed, the shape measurement and the pass / fail judgment of all the manufactured tubes can be easily performed. It is possible to guarantee that the deflection amount and the like are within a predetermined range for all the pipes to be shipped at a known limit level of the processing accuracy.
たとえば、 感光ドラム用基体は、 一般に複数本を一単位として、 ケース等に収 容されて搬送され、 取引され、 通常は、 一単位は 1 0本以上であり、 たとえば、 8 0本や 1 4 0本である。 この形状測定装置 5によれば、 この全数についてフレ 量がたとえば 2 0 m以下であることを保証できる。 く変形例〉  For example, the photosensitive drum substrate is generally stored in a case or the like as a plurality of units as a unit, transported, and traded. Usually, one unit is at least 10 units, for example, 80 units or 140 units. It is a book. According to the shape measuring device 5, it is possible to guarantee that the deflection amount is, for example, 20 m or less for all of them. Modified example>
以上、 第 2の実施形態を説明したが、 本発明は上記に限定されず、 上述した第 1の実施形態と同様に、 種々の変形が可能であり、 また、 以下のように構成して もよい。  As described above, the second embodiment has been described, but the present invention is not limited to the above, and various modifications are possible as in the above-described first embodiment. Good.
.( 1 ) 上記第 2の実施形態では、 一対の基準部を管体の使用時における支持予 定位置に当接させたが、 管体の内周面であれば他の位置であってもよい。 ただし 、 支持予定位置の近傍であることが望ましい。 支持予定位置と断面形状が近似し ている可能性が高いためである。 (1) In the second embodiment described above, the pair of reference portions is brought into contact with the expected support position when the tubular body is used, but it may be located at any other position on the inner peripheral surface of the tubular body. Good. However It is desirable to be near the supporting position. This is because the cross-sectional shape is likely to be similar to the planned support position.
( 2 ) 上記第 2の実施形態においては、 管体 1 0の軸方向を略水平方向にして 形状測定を行ったが、 管体 1 0の軸方向を略鉛直方向に立てて形状測定を行うよ うにしてもよい。 このようにすると、 管体 1 0が自重でたわむことが軽減される ため、 管体 1 0本来の形状を測定することができる。  (2) In the second embodiment, the shape measurement is performed with the axial direction of the tube 10 being substantially horizontal. However, the shape measurement is performed with the axial direction of the tube 10 being substantially vertical. You may do it. In this way, since the tube 10 is less likely to bend under its own weight, the original shape of the tube 10 can be measured.
( 3 ) 上記第 2の実施形態においては、 一対の基準部と管体との当接部分を通 る仮想的な直線に対峙する位置、 およびそれと対向する位置を変位量の検出位置 としたが、 周方向について他の位置を検出位置としてもよい。  (3) In the second embodiment, the position facing the virtual straight line passing through the contact portion between the pair of reference portions and the tube, and the position facing the virtual straight line are defined as the displacement detection positions. Alternatively, another position in the circumferential direction may be set as the detection position.
( 4 ) 上記第 2の実施形態においては、 変位量の検出位置を複数設けたが、 少 なくとも 1つあればよい。  (4) In the second embodiment, a plurality of displacement detection positions are provided, but it is sufficient if at least one.
( 5 ) 上記第 2の実施形態においては、 形状測定対象である管体 1 0として感 光ドラム基体を挙げたが、 これに限らず、 複写機等に用いられる搬送ローラ、 現 像ローラ、 転写ローラでも好適に適用できる。 その他、 管体であれば本発明の測 定対象となりうる。  (5) In the second embodiment, the photosensitive drum base is described as the tube 10 whose shape is to be measured. However, the present invention is not limited to this. For example, a conveying roller used for a copying machine, a developing roller, and a transfer roller A roller can also be suitably applied. In addition, a tube can be a measurement target of the present invention.
( 6 ) 上記第 2の実施形態においては、 変位検出器として、 管体 1 0の外周面 に接触しない光透過型の検出器 (透過式の光学式センサ) を例示したが、 変位検 出器としては、 管体 1 0の外周面 1 2の半径方向の変位量が得られれ これらに 限定するものではない。 変位検出器としては、 たとえば、 管体 1 0の外周面に接 触する接触子を有し、 この接触子の動きから変位を検出する接触型変位センサ、 非接触で検出できる反射型の光学式センサ、 非接触で検出でき、 材料を選ばず汎 用的な画像処理用の C C Dカメラやラインカメラ、 非接触で検出でき、 高精度、 高速、 環境に強く、 かつ安価なうず電流式の変位センサ、 非接触で検出でき、 高 精度な静電容量式の変位センサ、 非接触で検出できるエア一 (差圧) 式の変位セ ンサ、 あるいは、 非接触で検出でき、 長距離計測が可能な超音波式変位センサ等 、 種々の測定原理に基づく検出器を採用することができる。 ( 7 ) 上記第 2の実施形態では、 一対の基準部 (基準ローラ) 5 2, 5 2を回 転支持するベアリング 5 2 3、 5 2 3を基準ローラ 5 2 , 5 2とともに管体 1 0 の内部に挿入するようにしたが、 このようなベアリングを管体 1 0の外側に配置 するようにしてもよい。 具体的には、 第 2 5図に示すように、 基準ローラ 5 2 4 を支持軸 5 2 5に回転不能に固着しておき、 この支持軸 5 2 5を管体 1 0の外側 でべァリング 5 2 6によって回転自在に支持する形態を挙げることができる。 こ のようにすると、 管体 1 0の内側寸法に制限されることなく大きなベアリングを 採用することが可能となり、 一対の基準部をより安定して回転させ、 形状測定に ついて高い信頼性を得ることができる。 (6) In the above-described second embodiment, a light transmission type detector (transmission type optical sensor) that does not contact the outer peripheral surface of the tube 10 has been illustrated as the displacement detector. As a result, the displacement amount in the radial direction of the outer peripheral surface 12 of the tubular body 10 can be obtained, and the present invention is not limited thereto. Examples of the displacement detector include a contact-type displacement sensor that has a contact that comes into contact with the outer peripheral surface of the tube 10 and detects displacement from the movement of the contact, and a reflection-type optical type that can detect non-contact. Sensor, non-contact detection, CCD camera and line camera for general-purpose image processing regardless of material, eddy-current displacement sensor that can detect non-contact, high accuracy, high speed, environmentally friendly, and inexpensive , Non-contact, high-precision capacitance type displacement sensor, non-contact, air-type (differential pressure) type displacement sensor, or non-contact, super long-distance measurement Detectors based on various measurement principles, such as an acoustic displacement sensor, can be employed. (7) In the second embodiment, the bearings 52, 52, which rotatably support the pair of reference portions (reference rollers) 52, 52, are combined with the reference rollers 52, 52 together with the tubular body 10. Although the bearing is inserted inside the tube, such a bearing may be arranged outside the tube 10. More specifically, as shown in FIG. 25, a reference roller 52 4 is fixed to a support shaft 5 25 so as to be non-rotatable, and this support shaft 5 25 is bearing outside the tube 10. The form in which it is rotatably supported by 5 26 can be mentioned. By doing so, it is possible to adopt a large bearing without being limited by the inner dimensions of the tube 10, rotate the pair of reference portions more stably, and obtain high reliability in shape measurement. be able to.
( 8 ) 上記第 2の実施形態では、 管体 1 0を搬送する管体搬送装置 5 5を備え た構成としたが、 作業者等が管体 1 0を手で掴むなどして支持ローラ 5 4上の形 状測定位置に搬入 ·搬出するようにしてもよい。  (8) In the second embodiment described above, the configuration is provided in which the tube transport device 55 that transports the tube 10 is provided. 4 It may be carried in and out of the shape measurement position.
( 9 ) 上記第 2の実施形態においては、 動作方向規制手段を、 2本の動作方向 規制レール 5 4 7 , 5 4 7によって構成したが、 1本のレールで構成しても、 3 本以上のレールで構成しても、 動作方向に延びる凸部ゃ凹部等によって構成して も、 動作方向を規制できれば任意の構成を採用できる。  (9) In the second embodiment, the operating direction regulating means is constituted by two operating direction regulating rails 547, 547. Any configuration may be adopted as long as the operation direction can be regulated, even if the operation direction is restricted, even if it is constituted by a rail or a convex portion extending in the operation direction.
( 1 0 ) 上記笋 2の実施形態では、 管体 1 0を回転させながら連続的にその外 周面の変位を検出するようにしたが、 断続的に管体 1 0の回転を停止し、 停止状 態の管体 1 0の外周面の変位を検出するようにしてもよい。  (10) In the embodiment of the above-mentioned Shin 2, the displacement of the outer peripheral surface is continuously detected while rotating the tube 10, but the rotation of the tube 10 is intermittently stopped, The displacement of the outer peripheral surface of the tube body 10 in the stopped state may be detected.
[第 3実施形態] [Third embodiment]
次に、 第 3の実施形態について説明する。  Next, a third embodiment will be described.
この第 3の実施形態は、 上述した第 2の実施形態では上下駆動シリンダ 5 4 6 , 5 4 6で直接的に支持していた支持ローラ 5 4…等を、 回動部材 5 7 1や重り 5 7 4で支持するように構成したものである。  In the third embodiment, the support rollers 54 directly supported by the vertical drive cylinders 546 and 546 in the above-described second embodiment are replaced with a rotating member 571 and a weight. It is configured to be supported by 5 7 4.
以下においては、 上述した実施形態との差異について説明し、 同様の構成部分 7 In the following, differences from the above-described embodiment will be described, and similar components will be described. 7
56 については同一符号を付して重複説明を省略する。  56 is given the same reference numeral and redundant description is omitted.
第 2 6図は、 この第 3の実施形態における管体 1 0の支持構造の拡大斜視図で ある。 第 2 7図は、 基準ローラの支持形態を示す正面断面図である。 第 2 8図は FIG. 26 is an enlarged perspective view of a support structure for the tube 10 in the third embodiment. FIG. 27 is a front sectional view showing a supporting form of the reference roller. Figure 28
、 支持ローラの支持形態を示す側面図である。 It is a side view which shows the support form of a support roller.
第 2 6図に示すように、 この第 3の実施形態においても、 一対の基準ローラ 5 As shown in FIG. 26, also in the third embodiment, a pair of reference rollers 5 are provided.
2 , 5 2は、 管体 1 0の両端近傍の内周面 1 1であって、 その下方位置 (内周下 面) に当接し、 形状測定の基準となる。 Reference numerals 2 and 52 denote inner peripheral surfaces 11 near both ends of the tubular body 10 and abut on a lower position (lower inner peripheral surface) thereof, and serve as a reference for shape measurement.
図 2 7に示すように、 第 2実施形態の一対の基準ローラ 5 2 , 5 2は、 外周部 の断面が円弧状に構成された部材からなる。 この一対の基準ローラ 5 2 , 5 2は 、 それぞれベアリング 5 2 3, 5 2 3を介して基準支持軸 5 2 1 , 5 2 1に対し て回転自在に取り付けられている。 このように一対の基準ローラ 5 2 , 5 2は回 転自在に取り付けられることで、 管体 1 0の内周面 1 1に当接して管体 1 0の回 転に対して連れ回りし、 管体 1 0の回転を妨げることなく、 滑らかにその当接位 置をずらしていくことができる。 また、 一対の基準ローラ 5 2 , 5 2は外周部の 断面が円弧状に構成されることで管体 1 0の内周面 1 1と点接触し、 これにより 基準ローラ 5 2, 5 2の回転軸から管体 1 0との接触点までの距離を確実に一定 に保つことができる。  As shown in FIG. 27, the pair of reference rollers 52, 52 of the second embodiment is formed of a member whose outer peripheral portion has an arc-shaped cross section. The pair of reference rollers 52, 52 are rotatably attached to reference support shafts 521, 521, via bearings 52, 53, respectively. Since the pair of reference rollers 52 and 52 are rotatably mounted in this manner, the pair of reference rollers 52 and 52 abut on the inner peripheral surface 11 of the tube 10 and rotate with the rotation of the tube 10, The contact position can be smoothly shifted without hindering the rotation of the tube 10. Also, the pair of reference rollers 52, 52 has a circular arc-shaped cross section at the outer peripheral portion, and makes point contact with the inner peripheral surface 11 of the tubular body 10, thereby forming the reference rollers 52, 52. The distance from the rotation axis to the point of contact with the tube 10 can be reliably kept constant.
第 2 6図に示すように、 この第 3の実施形態においても、 管体 1 0を支持する 支持ローラ 5 4…は支持ローラ支持体 5 4 3に取り付けられ、 この支持ローラ支 持体 5 4 3のスライ ド動作方向は、 動作方向規制レール 5 4 7 , 5 4 7によって 上下方向のみに規制されている。  As shown in FIG. 26, also in the third embodiment, the support rollers 54 supporting the tube 10 are attached to the support roller support 54, and the support roller support 54 is provided. The slide operation direction 3 is restricted only in the vertical direction by the operation direction restriction rails 547 and 547.
駆動モータ (回転駆動手段) 5 4 5の駆動軸 5 4 5 aと連動ローラ 5 4 4との 間には駆動ベルト 5 4 5 bが掛け渡されており、 駆動モータ 5 4 5は、 この駆動 ベルト 5 4 5 bを介して連動ローラ 5 4 4を回転駆動するようになっている。 こ のような駆動力伝達機構によって、 駆動モータ 5 4 5は、 機器ボックス 5 1 1内 に固定的に設置され、 支持ローラ 5 4…や支持ローラ支持体 5 4 3とともに昇降 動作しないようになっている。 これにより、 支持ローラ 5 4…や支持ローラ支持 体 5 4 3を小さな力で昇降動作させることができる。 Drive motor (rotary drive means) A drive belt 545b is stretched between the drive shaft 545a of the 545 and the interlocking roller 544, and the drive motor 545 is driven by this drive motor. The interlocking roller 544 is rotatably driven via the belt 545b. With such a driving force transmission mechanism, the drive motor 545 is fixedly installed in the equipment box 5111 and moves up and down together with the support rollers 54 and the support roller support 543. It does not work. Thereby, the support rollers 54 and the support roller support 543 can be moved up and down with a small force.
また、 支持ローラ支持体 5 4 3 , 5 4 3は、 それぞれ回動部材 5 7 1、 5 7 1 によって支持されている。 この回動部材 5 7 1は、 その長手方向の中間位置で支 持軸 (支点) 5 7 2に回動自在に支持されている。 この回動部材 5 5 1の一端側 には長孔 5 7 3が形成され、 ここに支持ローラ支持体 5 4 3が回動自在に取り付 けられている。 この取付形態により、 支持ローラ支持体 5 4 3は上下スライ ド動 作が許容されている。  Further, the supporting roller supports 543 and 543 are supported by rotating members 571 and 571, respectively. The rotating member 571 is rotatably supported by a support shaft (fulcrum) 572 at an intermediate position in the longitudinal direction. An elongate hole 573 is formed on one end side of the turning member 551, and a supporting roller support 543 is rotatably attached thereto. With this mounting form, the support roller support 5443 is allowed to move vertically.
この回動部材 5 7 1の他端側には、 重り 5 7 4が取り付けられている。 この重 り 5 7 4は、 支持軸 (支点) 5 7 2まわりのモーメントが、 支持ローラ支持体 5 4 3およびこれとともに上下スライ ド動作 (昇降動作) する支持ローラ 5 4…等 の部材とほぼ釣り合うものとなっている。 すなわち、 これら回動部材 5 7 1およ ぴ重り 5 7 4は、 支持ローラ支持体 5 4 3 , 5 4 3およびこれとともに昇降する 部材の重量を負担して支持ローラ支持体 5 4 3 , 5 4 3を支持する重量支持手段 として機能する。 '  A weight 574 is attached to the other end of the rotating member 571. The weight 574 is substantially the same as that of the support roller support 544 3 and the support rollers 54 that move up and down (up and down) together with the support roller support 543. It is something to balance. That is, the rotating member 571 and the weight 5574 bear the weight of the supporting roller supports 543 and 543 and the members that move up and down together with the supporting roller supports 543 and 543. It functions as a weight supporting means to support 43. '
また、 この重り 5 5 4は、 ネジ部 5 7 5によって回動部材 5 7 1の他端側にね じ込まれて取り付けられ、 このねじ込み量により回動部材 5 7 1の支持軸 (支点 ) 5 7 2と重り 5 7 4との距離を調整することができるようになつている。 すな わちこのネジ部 5 7 5は、 重り位置調整手段として機能する。 このような取付形 態により、 この重り 5 7 4が支持ローラ支持体 5 4 3等とつり合うように適宜調 整することができる。 このため、 形状測定対象である管体 1 0や支持ローラ 5 4 …等のサイズ等を変更した場合であってもこれに対応できる。  The weight 554 is screwed to the other end of the rotating member 571 by a screw portion 575, and is attached. The distance between 5 7 2 and the weight 5 7 4 can be adjusted. That is, the screw portion 575 functions as weight position adjusting means. With such a mounting form, it is possible to appropriately adjust the weight 574 so that the weight 574 and the support roller support 543 are balanced. Therefore, even when the size or the like of the tube 10 or the support rollers 54, which are the shape measurement targets, is changed, this can be handled.
また、 回動部材 5 7 1 , 5 7 1の他端側には、 この回動部材 5 7 1, 5 7 1を 回動駆動するエアシリンダ 5 7 6 , 5 7 6が取り付けられている。 このエアシリ ンダ 5 7 6は、 回動部材 5 7 1を回動駆動することにより、 測定位置にある支持 ローラ支持体 5 4 3に所定の上向きの力を付与し、 支持ローラ 5 4を介して管体 1 0を一対の基準ローラ 5 2 , 5 2に押し付けるようになつている。 すなわち、 このエアシリンダ 5 7 6は、 押圧力付与手段として機能する。 また、 このエアシ リンダ 5 7 6は、 回動部材 5 7 1を左右両回転方向に回転駆動することができる ようになつており、 これにより、 支持ローラ支持体 5 4 3を測定位置と離間位置 との間で移動させる手段としても機能するようになっている。 On the other end of the rotating members 571, 571, air cylinders 576, 576 for driving the rotating members 571, 571 to rotate are attached. The air cylinder 5756 applies a predetermined upward force to the supporting roller support 543 at the measurement position by rotating the rotating member 571 to rotate the rotating member 571. Pipe 10 is pressed against a pair of reference rollers 52, 52. That is, the air cylinder 576 functions as a pressing force applying means. Further, the air cylinder 576 is capable of rotating the rotating member 571 in both left and right rotation directions, thereby moving the support roller support 543 to the measurement position and the separation position. It also functions as a means for moving between and.
このように回動部材 5 7 1および重り 5 7 4は、 支持ローラ支持体 5 4 3 , 5 4 3およびこれとともに昇降する部材の重量を負担しておき、 管体 1 0を一対の 基準ローラ 5 2 , 5 2に押し付ける力のみをエアシリンダ 5 7 6, 5 7 6に負担 させる構成を採用したことにより、 エアシリンダ 5 7 6 , 5 7 6が負担する力は 小さくなる。 このため、 エアシリンダ 5 7 6 , 5 7 6の発揮する力を正確に設定 し、 また制御することが可能となり、 管体 1 0と一対の基準ローラ 5 2 , 5 2と の接触圧を正確に設定して形状測定について高い信頼性を得ることができる。 なお、 管体 1 0と一対の基準ローラ 5 2 , 5 2との接触圧、 あるいは管体 1 0 と支持ローラ 5 4…との接触圧は、 管体 1 0の端部に対して実質的な変形を伴わ ない圧力を設定することができる。 あるいはまた、 管体 1 0の端部に積極的に多 少の変形を生じさせる圧力を設定して、 管体 1 0の断面形状を矯正しながら形状 測定を行うようにすることもできる。  As described above, the rotating member 571 and the weight 574 bear the weight of the supporting roller supports 543, 543 and the members that move up and down together with the supporting roller, and the pipe 10 is connected to the pair of reference rollers. By adopting a configuration in which the air cylinders 576, 576 only bear the force pressing the fins 52, 52, the force borne by the air cylinders 576, 576 is reduced. For this reason, the force exerted by the air cylinders 576 and 576 can be set and controlled accurately, and the contact pressure between the tube 10 and the pair of reference rollers 52 and 52 can be accurately determined. High reliability can be obtained for the shape measurement. The contact pressure between the tube 10 and the pair of reference rollers 52, 52, or the contact pressure between the tube 10 and the support rollers 54, is substantially equal to the end of the tube 10. The pressure can be set without any significant deformation. Alternatively, it is also possible to set a pressure that positively causes a small deformation at the end of the tube 10 and measure the shape while correcting the cross-sectional shape of the tube 10.
また、 エアシリンダ 5 7 6を駆動させず、 重り 5 7 4と支持ローラ支持体 5 4 3等とが釣り合った状態において、 支持ローラ支持体 5 4 3は前記 ¾ij定位置に位 置しても、 前記離間位置に位置してもよい。 このとき、 離間位置に位置するよう に重り 5 7 4が調整されているならば、 エアシリンダ 5 7 6 , 5 7 6は支持口一 ラ支持体 5 4 3を持ち上げる向きについての駆動力を有するだけで、 支持ローラ 支持体 5 4 3を昇降させることができるという利点がある。 <変形例>  In addition, when the air cylinder 576 is not driven and the weight 574 is balanced with the support roller support 543 and the like, the support roller support 5443 can be positioned at the ¾ij fixed position. It may be located at the separated position. At this time, if the weight 574 is adjusted so as to be located at the separated position, the air cylinders 576 and 576 have a driving force in the direction in which the support port support 543 is lifted. There is an advantage that the support roller 543 can be moved up and down only by the support roller. <Modified example>
以上、 第 3の実施形態を説明したが、 本発明は上記に限定されず、 上述した第 1〜第 2の実施形態と同様に、 種々の変形が可能であり、 また、 以下のように構 成してもよい。 The third embodiment has been described above, but the present invention is not limited to the above, and the third embodiment As in the first and second embodiments, various modifications are possible, and the configuration may be as follows.
( 1 ) 上記第 3の各実施形態においては、 押圧力付与手段をエアシリンダによ つて構成したが、 これらは各種のァクチユエータ等から構成することができる。 たとえば、 油圧力を用いる油圧シリンダや、 電力を用いる電動モータ等から構成 してもよい。  (1) In each of the third embodiments, the pressing force applying means is constituted by the air cylinder, but these may be constituted by various actuators and the like. For example, a hydraulic cylinder using hydraulic pressure, an electric motor using electric power, or the like may be used.
[第 4実施形態] [Fourth embodiment]
次に、 第 4の実施形態について説明する。  Next, a fourth embodiment will be described.
この第 4の実施形態は、 上述した第 3の実施形態では回動部材 5 7 1および重 り 5 7 4によって構成した重量支持手段を、 弾性部材 5 8 1によって構成したも のである。  In the fourth embodiment, the weight supporting means constituted by the rotating member 571 and the weight 574 in the third embodiment described above is constituted by an elastic member 581.
以下においては、 上述した実施形態との差異について説明し、 同様の構成部分 については同一符号を付して重複説明を省略する。  In the following, differences from the above-described embodiment will be described, and the same components will be denoted by the same reference numerals, without redundant description.
第 2 9図は、 この第 4の実施形態における支持ローラの支持形態を示す側面図 である。  FIG. 29 is a side view showing a supporting form of the supporting roller according to the fourth embodiment.
第 2 9図に示すように、 この第 4の実施形態においても、 管体 1 0を支持する 支持ローラ 5 4…は支持ローラ支持体 5 4 3に取り付けられ、 この支持ローラ支 持体 5 4 3のスライ ド動作方向は、 動作方向規制レール 5 4 7 , 5 4 7によって 上下方向のみに規制されている。 . この支持ローラ支持体 5 4 3は、 たとえばパネからなる弾性部材 5 8 1によつ て上向きに付勢され、 支持ローラ支持体 5 4 3およびこれとともに昇降動作する 支持ローラ 5 4…等の重量が支持されている。 すなわち、 弾性部材 5 8 1は、 支 持ローラ支持体 5 4 3およびこれとともに昇降動作する部材等の重量を支持する 重量支持手段として機能する。  As shown in FIG. 29, also in the fourth embodiment, the support rollers 54 supporting the tube 10 are attached to the support roller support 53, and the support roller support 54 is provided. The slide operation direction 3 is restricted only in the vertical direction by the operation direction restriction rails 547 and 547. The support roller support 543 is urged upward by an elastic member 581 made of, for example, a panel to support the support roller support 543 and the support rollers 54 that move up and down together therewith. Weight is supported. That is, the elastic member 581 functions as a weight supporting means for supporting the weight of the support roller support 543 and members that move up and down together with the support roller support 543.
この弾性部材 5 8 1によって支持された状態において、 支持ローラ支持体 5 4 3は、 支持ローラ 5 4…に支持された管体 1 0の内周面 1 1が一対の基準ローラ 5 2 , 5 2から離間した離間位置に位置するようになっている。 When supported by the elastic member 581, the support roller support 54 Reference numeral 3 is such that the inner peripheral surface 11 of the tubular body 10 supported by the supporting rollers 54 is located at a separated position separated from the pair of reference rollers 52, 52.
この弾性部材 5 8 1は、 その上端部が支持ローラ支持体 5 4 3に接触し、 その 下端部が本体べ一ス 5 0上のパネ支持軸 5 8 2にねじ込まれた係合部材 5 8 3に 止められている。 この係合部材 5 8 3は、 パネ支持軸 5 8 2に対するねじ込み量 によって高さ位置を調整できるようになつており、 これにより弾性部材 5 8 1の 下端高さ位置を、 ひいては支持ローラ 5 4…の高さ位置を調整することができる ようになつている。 すなわち、 この係合部材 5 8 3は、 支持ローラ支持体 5 4 3 の高さ位置調整手段として機能する。 このような形態により、 形状測定対象であ る管体 1 0や支持ローラ 5 4…等のサイズ等を変更した場合であっても、 支持口 ーラ支持体 5 4 3の高さ位置を対応させることができる。  The elastic member 581 has an upper end contacting the support roller support 543 and a lower end screwed into the panel support shaft 582 on the main body base 50. Stopped at 3. The height of the engaging member 583 can be adjusted by the amount of screwing into the panel support shaft 582, and thereby the height of the lower end of the elastic member 581, and consequently the support roller 54, can be adjusted. The height position of ... can be adjusted. That is, the engagement member 583 functions as a height position adjusting means of the support roller support 543. With this configuration, the height position of the support opening roller support 543 corresponds even when the size of the pipe 10 or the support rollers 54, etc., which are the shape measurement targets, is changed. Can be done.
支持ローラ支持体 5 4 3の下方には、 支持ローラ 5 4…上の管体 1 0がー対の 基準ローラ 5 2 , 5 2に接触する測定位置まで支持ローラ支持体 5 4 3を押し上 げ、 さらに、 管体 1 0を基準ローラ 5 2, 5 2 ίこ所定の押圧力で押し付けるエア シリンダ 5 8 4が配置されている。 すなわち、 エアシリンダ 5 8 4は、 押圧力付 与手段として機能する。  Below the support roller support 5 4 3, the support roller support 5 4 3 is pushed up to the measurement position where the pipe 10 above the support roller 54 contacts the pair of reference rollers 52, 52. Further, an air cylinder 584 for pressing the tube 10 with the reference rollers 52, 52 with a predetermined pressing force is arranged. That is, the air cylinder 584 functions as a pressing force applying means.
このような第 4の実施形態にかかる形状測定装置によると、 上述した第 3の実 施形態と同様に、 弾性部材 5 8 1によって支持ローラ支持体 5 4 3, 5 4 3およ びこれとともに昇降する部材の重量を負担し、 エアシリンダ 5 8 4は支持ローラ 5 4…を介して管体 1 0を一対の基準ローラ 5 2 , 5 2に押し付ける力のみを負 担すればよいため、 エアシリンダ 5 8 4による管体 1 0と一対の基準ローラ 5 2 , 5 2との接触圧を正確に設定、 制御することができ、 これにより形状測定につ いて高い信頼性を得ることができる。 <変形例〉  According to such a shape measuring apparatus according to the fourth embodiment, similarly to the above-described third embodiment, the elastic roller 581, and the support roller supports 543, 543, and together with the elastic member 581, are provided. Since the air cylinder 584 only has to bear the force of pressing the tube 10 against the pair of reference rollers 52, 52 via the support rollers 54, the air cylinder 584 has to bear the weight of the member to be raised and lowered. The contact pressure between the tube 10 and the pair of reference rollers 52 and 52 by the cylinder 584 can be set and controlled accurately, and thereby high reliability in shape measurement can be obtained. <Modified example>
以上、 第 4の実施形態を説明したが、 本発明は上記に限定されず、 上述した第 1〜第 3の実施形態と同様に、 種々の変形が可能であり、 また、 以下のように構 成してもよい。 The fourth embodiment has been described above, but the present invention is not limited to the above, and the fourth embodiment As in the first to third embodiments, various modifications are possible, and the configuration may be as follows.
( 1 ) 上記第 4の実施形態においては、 弾性部材としてパネを例示したが、 板 パネやゴム等、 弾性力を発揮しうるものであれば、 適宜採用することができる。  (1) In the above-described fourth embodiment, a panel is illustrated as an elastic member. However, any panel, panel, rubber, or the like that can exhibit elastic force can be appropriately used.
[第 5実施形態] [Fifth Embodiment]
次に、 第 5の実施形態について説明する。  Next, a fifth embodiment will be described.
この第 5の実施形態は、 上述した第 3の実施形態と同じ機械構成を備えながら 、 支持ローラ 5 4…上の管体 1 0を一対の基準ローラ 5 2 , 5 2に押し付ける押 圧力を、 エアシリンダ 5 7 6ではなく、 重り 5 7 4によって得られるようにした ものである。  In the fifth embodiment, while having the same mechanical configuration as the above-described third embodiment, the pressing force for pressing the tubular body 10 on the supporting rollers 54 to the pair of reference rollers 52, 52 is as follows. Instead of using an air cylinder 576, it is obtained by a weight 574.
以下においては、 上述した実施形態との差異について説明し、 同様の構成部分 については同一符号を付して重複説明を省略する。  In the following, differences from the above-described embodiment will be described, and the same components will be denoted by the same reference numerals, without redundant description.
この第 5の実施形態では、 第 2 8図に示す構成において、 重り 5 7 4の重量お よび位置は、 エアシリンダ 5 7 6を駆動しない状態で、 重り 5 7 4による支持軸 5 7 2まわりのモーメン卜が支持ローラ支持体 5 4 3等によるモーメントより大 きくなるように設定されている。 これにより、 エアシリンダ 5 7 6を駆動しない 状態で、 支持ローラ 5 4…上の管体 1 0は、 所定の押圧力で一対の基準ローラ 5 2 , 5 2に押し付けられる。 すなわち、 第 5の実施形態では、 回動部材 5 5 1お よび重り 5 5 4は、 支持ローラ支持体 5 4 3等を上方に付勢し、 支持ローラ 5 4 …を介して管体 1 0を一対の基準ローラ 5 2 , 5 2に所定の押圧力で押し付ける 押圧手段として機能する。  In the fifth embodiment, in the configuration shown in FIG. 28, the weight and the position of the weight 574 are adjusted around the support shaft 572 by the weight 574 without driving the air cylinder 576. Is set to be larger than the moment by the support roller support 543 and the like. As a result, the tubular body 10 above the support rollers 54 ... is pressed against the pair of reference rollers 52, 52 with a predetermined pressing force without driving the air cylinder 576. That is, in the fifth embodiment, the rotating member 55 1 and the weight 55 4 urge the support roller support 54 3 and the like upward, and the tube 10 10 is supported via the support rollers 54. Function as a pressing means for pressing the pair of reference rollers 52, 52 with a predetermined pressing force.
一方、 エアシリンダ 5 7 6は、 支持ローラ 5 4…上に管体 1 0をセットすると き、 および形状測定後に管体 1 0を取り出すときに、 支持ローラ支持体 5 4 3を 下方に押し下げて離間位置に移動させるようになつている。 すなわち、 第 5の実 施形態では、 このエアシリンダ 5 7 6は、 重り 5 7 4による支持ローラ支持体 5 4 3を上方に付勢する付勢力に杭して支持ローラ支持体 5 4 3'を移動させる下降 駆動手段として機能する。 On the other hand, the air cylinder 5756 pushes the support roller support 543 downward when setting the pipe 10 on the support rollers 54 and when removing the pipe 10 after shape measurement. It is designed to be moved to the separated position. That is, in the fifth embodiment, the air cylinder 576 is a support roller support 5 It functions as a descent drive means for moving the support roller support 5 43 ′ by staking the biasing force of 4 3 upward.
また、 この第 5の実施形態では、 重り 5 7 4の位置を調整するネジ部 5 7 5は 、 支持ローラ支持体 5 4 3を上方に付勢する付勢力を調整する付勢力調整手段と して機能する。 これにより、 管体 1 0を一対の基準ローラ 5 2, 5 2に押し付け る所定の押圧力を適正に調整することができる。  In the fifth embodiment, the screw portion 575 for adjusting the position of the weight 574 is a biasing force adjusting means for adjusting the biasing force for biasing the support roller support 543 upward. Function. Thereby, the predetermined pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 can be appropriately adjusted.
このような構成によると、 管体 1 0を一対の基準ローラ 5 2 , 5 2に押し付け る押圧力を、 エアシリンダ 5 7 6のような能動的に駆動される手段ではなく、 回 動部材 5 7 1と重り 5 7 4からなる自動的に付勢力を発揮する押圧手段によって 担当させるため、 管体 1 0と一対の基準ローラ 5 2 , 5 2との接触圧を予め正確 に設定することができ、 これにより形状測定について高い信頼性を得ることがで ぎる。  According to such a configuration, the pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 is not provided by the actively driven means such as the air cylinder 576, but by the rotating member 5. The contact pressure between the tube 10 and the pair of reference rollers 52, 52 can be set accurately in advance in order to be assigned by the pressing means that automatically exerts urging force consisting of 7 1 and the weight 5 7 4. This makes it possible to obtain high reliability for shape measurement.
<変形例 > <Modified example>
以上、 第 5の実施形態を説明したが、 本発明は上記に限定されず、 上述した第 1〜第 4の実施形態と同様に、 種々の変形が可能であり、 また、 以下のように構 成してもよい。  Although the fifth embodiment has been described above, the present invention is not limited to the above, and various modifications are possible as in the above-described first to fourth embodiments. May be implemented.
( 1 ) 上記第 5の各実施形態においては、 下降駆動手段をエアシリンダによつ て構成したが、 これらは各種のァクチユエ一夕等から構成することができる。 た とえば、 油圧力を用いる油圧シリンダや、 電力を用いる電動モータ等から構成し てもよい。  (1) In each of the fifth embodiments described above, the descent drive means is constituted by an air cylinder, but these can be constituted by various types of actuators. For example, a hydraulic cylinder using hydraulic pressure, an electric motor using electric power, or the like may be used.
[第 6実施形態] [Sixth embodiment]
次に、 第 6の実施形態について説明する。  Next, a sixth embodiment will be described.
この第 6の実施形態は、 上述した第 4の実施形態と同じ機械構成を備えながら 、 支持ローラ 5 4…上の管体 1 0を一対の基準ローラ 5 2 , 5 2に押し付ける押 圧力を、 エアシリンダ 5 8 4ではなく、 弾性部材 5 8 1によって得られるように したものである。 The sixth embodiment has the same mechanical configuration as that of the above-described fourth embodiment, but has the same structure as that of the fourth embodiment except that the tube 10 on the support rollers 54 is pressed against the pair of reference rollers 52, 52. The pressure is obtained not by the air cylinder 584 but by the elastic member 581.
以下においては、 上述した実施形態との差異について説明し、 同様の構成部分 については同一符号を付して重複説明を省略する。  In the following, differences from the above-described embodiment will be described, and the same components will be denoted by the same reference numerals, without redundant description.
この第 6実施形態では、 第 2 9図に示す構成において、 弾性部材 5 8 1は、 ェ ァシリンダ 5 8 4を駆動しない状態で、 支持ローラ 5 4…上の管体 1 0を所定の 押圧力で一対の基準ローラ 5 2 , 5 2に押し付けるだけの付勢力を発揮するよう に設定されている。 すなわち、 第 6の実施形態では、 弾性部材 5 8 1は、 支持口 ーラ支持体 5 4 3等を上方に付勢し、 支持ローラ 5 4…を介して管体 1 0を一対 の基準ローラ 5 2, 5 2に所定の押圧力で押し付ける押圧手段として機能する。 一方、 エアシリンダ 5 8 4は、 支持ローラ 5 4…上に管体 1 0をセッ トすると き、 および形状測定後に管体 1 0を取り出すときに、 支持ローラ支持体 5 4 3を 下方に押し下げて離間位置に移動させるようになつている。 すなわち、 第 6の実 施形態では、 このエアシリンダ 5 8 4は、 弾性部材 5 8 1による支持ローラ支持 体 5 4 3を上方に付勢する付勢力に杭して支持ローラ支持体 5 4 3を移動させる 下降駆動手段として機能する。  In the sixth embodiment, in the configuration shown in FIG. 29, the elastic member 581 presses the pipe 10 on the support rollers 54 ... with a predetermined pressing force without driving the air cylinder 584. Is set so as to exert an urging force enough to press against the pair of reference rollers 52, 52. That is, in the sixth embodiment, the elastic member 581 urges the support roller supporter 543 and the like upward, and urges the tubular body 10 via the support rollers 54 to a pair of reference rollers. It functions as pressing means for pressing 52, 52 with a predetermined pressing force. On the other hand, the air cylinder 584 pushes down the support roller support 543 when setting the tube 10 on the support roller 54 and when removing the tube 10 after measuring the shape. To move to the separated position. In other words, in the sixth embodiment, the air cylinder 584 is supported by the support roller support 543 by staking the support roller support 543 by the elastic member 581 upward. It functions as a descent drive means for moving.
また、 この第 6の実施形態では、 弾性部材 5 8 1の下端位置を調整する係合部 材 5 8 3は、 支持ローラ支持体 5 4 3を上方に付勢する付勢力を調整する付勢力 調整手段として機能する。 これにより、 管体 1 0を一対の基準ローラ 5 2 , 5 2 に押し付ける所定の押圧力を適正に調整することができる。  Further, in the sixth embodiment, the engaging member 583 for adjusting the lower end position of the elastic member 581, the urging force for adjusting the urging force for urging the support roller support 543 upward. Functions as adjusting means. Thus, the predetermined pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 can be appropriately adjusted.
このような構成によると、 管体 1 0を一対の基準ローラ 5 2 , 5 2に押し付け る押圧力を、 エアシリンダ 5 8 4のような能動的に駆動する手段ではなく、 弾性 部材 5 8 1からなる自動的に付勢力を発揮する押圧手段によって担当させるため 、 管体 1 0と一対の基準ローラ 5 2 , 5 2との接触圧を予め正確に設定すること ができ、 これにより形状測定について高い信頼性を得ることができる。  According to such a configuration, the pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 is not provided by an active driving means such as the air cylinder 584, but by an elastic member 581. The contact pressure between the tubular body 10 and the pair of reference rollers 52, 52 can be accurately set in advance because the pressure is controlled by a pressing means that automatically exerts an urging force. High reliability can be obtained.
<変形例 > 以上、 第 6の実施形態を説明したが、 本発明は上記に限定されず、 上述した第 1〜第 5の実施形態と同様に、 種々の変形が可能であり、 また、 以下のように構 成してもよい。 <Modified example> Although the sixth embodiment has been described above, the present invention is not limited to the above, and various modifications are possible as in the above-described first to fifth embodiments. May be implemented.
( 1 ) 上記第 6の各実施形態においては、 下降駆動手段をエアシリンダによつ て構成したが、 これらは各種のァクチユエ一夕等から構成することができる。 た とえば、 油圧力を用いる油圧シリンダや、 電力を用いる電動モータ等から構成し てもよい。  (1) In each of the above-described sixth embodiments, the descent drive means is constituted by an air cylinder, but these can be constituted by various types of actuators. For example, a hydraulic cylinder using hydraulic pressure, an electric motor using electric power, or the like may be used.
[第 7実施形態] [Seventh embodiment]
次に、 第 7の実施形態について説明する。  Next, a seventh embodiment will be described.
この第 7の実施形態は、 上述した第 6の実施形態 (第 2 9図) では弾性部材 5 8 1とエアシリンダ 5 8 4とを並列的に配置していたのに対し、 弾性部材 5 9 1 とエアシリンダ 5 9 4とを直列的に配置したものである。  In the seventh embodiment, the elastic member 581 and the air cylinder 584 are arranged in parallel in the above-described sixth embodiment (FIG. 29). 1 and an air cylinder 594 are arranged in series.
以下においては、 上述した実施形態との差異について説明し、 同様の構成部分 については同一符号を付して重複説明を省略する。  In the following, differences from the above-described embodiment will be described, and the same components will be denoted by the same reference numerals, without redundant description.
第 3 0図は、 この第 7の実施形態にかかる形状測定装置における支持ローラの 支持形態を示す側面図である。  FIG. 30 is a side view showing a supporting form of a supporting roller in the shape measuring apparatus according to the seventh embodiment.
第 3 0図に示すように、 この第 7の実施形態においても、 管体 1 0を支持する 支持ローラ 5 4…は支持ローラ支持体 5 4 3に取り付けられ、 この支持ローラ支 持体 5 4 3のスライ ド動作方向は、 動作方向規制レール 5 4 7, 5 4 7によって 上下方向のみに規制されている。 '  As shown in FIG. 30, also in the seventh embodiment, the support rollers 54 supporting the tube 10 are attached to the support roller support 53, and the support roller support 54 is provided. The slide operation direction 3 is restricted only in the vertical direction by the operation direction restriction rails 547 and 547. '
この支持ローラ支持体 5 4 3は、 たとえばパネからなる弾性部材 5 9 1を介し て、 本体ベース 5 0上に設置されたエアシリンダ 5 9 4に支持されている。 このエアシリンダ 5 9 4は、 その動作端部 5 9 5にバネ支持軸 5 9 2が取付ら れ、 このパネ支持軸 5 9 2に形成されたネジ山に係合部 5 9 3がねじ込まれて いる。 弾性部材 S 9 1の下端は、 この係合部材 5 9 3に止められている。 この係合部材 5 9 3は、 パネ支持軸 5 9 2に対するねじ込み量によって高さ位 置を調整できるようになつており、 これにより前記エアシリンダ 5 9 4の動作端 部 5 9 5に対する弾性部材 5 9 1の下端高さ位置を調整することができるように なっている。 The support roller support 543 is supported by an air cylinder 594 mounted on the main body base 50 via an elastic member 591 made of, for example, a panel. In the air cylinder 594, a spring support shaft 592 is attached to an operating end 5995, and an engaging portion 5993 is screwed into a thread formed on the panel support shaft 5992. ing. The lower end of the elastic member S91 is fixed to the engaging member 593. The height of the engaging member 593 can be adjusted by the amount of screwing into the panel support shaft 592, and thereby the elastic member with respect to the operating end 595 of the air cylinder 594 can be adjusted. The height of the lower end of 5 9 1 can be adjusted.
エアシリンダ 5 9 4は、 支持ローラ 5 4…上の 体 Γ 0が基準ローラ 5 2 , 5 2に接触する測定位置と、 基準ローラ 5 2 , 5 2から離間した離間位置との間で 支持ローラ支持体 5 4 3を前記弾性部材 5 9 1を介して昇降駆動する。 また、 ェ ァシリンダ 5 9 4は、 支持ローラ支持体 5 4 3が測定位置に至った状態で、 さら にその動作端部 5 9 5を押し上げ、 弾性部材 5 9 1による所定の押圧力で管体 1 0を一対の基準ローラ 5 2 , 5 2に押し付.けるようになつている。 すなわち、 ェ ァシリンダ 5 9 4は、 昇降駆動手段どして機能する。  The air cylinder 594 is provided between the measurement position where the body 上 の 0 on the support roller 54 and the reference roller 52 comes in contact with the reference rollers 52 and 52 and the separation position separated from the reference rollers 52 and 52. The support 543 is driven up and down via the elastic member 591. When the support roller support 543 reaches the measurement position, the air cylinder 594 further pushes up its working end 595, and the elastic member 591 presses the pipe at a predetermined pressure. 10 is pressed against the pair of reference rollers 52, 52. That is, the air cylinder 594 functions as a lifting drive means.
また、 エアシリンダ 5 9 4の動作端部 5 9 5は所定の高さ位置に設けられたス トッパー 5 9 6、 5 9 6に接触して所定の上限高さ位置を越えないようになって いる。 そして、 動作端部 5 9 5に対する弾性部材 5 9 1の下端高さ位置を調整す る係合部材 5 9 3は、 動作端部 5 9 5がストッパー 5 9 6、 5 9 6に.接触してい るときに、 弾性部材 5 9 1の付勢力が、 管体 1 0を一対の基準ローラ 5 2 , 5 2 に押し付ける所定の押圧力を発揮するように調整されている。 すなわち、 この係 合部材 5 9 3は、 弾性部材 5 9 1による付勢力調整手段として機能する。  In addition, the working end 595 of the air cylinder 594 comes into contact with the stoppers 596, 596 provided at the predetermined height position so that it does not exceed the predetermined upper limit height position. I have. Then, the engaging member 593 for adjusting the lower end height position of the elastic member 591 with respect to the working end 595, the working end 595 comes into contact with the stoppers 596 and 5996. In this case, the urging force of the elastic member 591 is adjusted so as to exert a predetermined pressing force for pressing the tube 10 against the pair of reference rollers 52, 52. That is, the engagement member 593 functions as an urging force adjusting unit using the elastic member 591.
このような第 7の実施形態にかかる形状測定装置によると、 管体 1 0を一対の 基準ローラ 5 2 , 5 2に押し付ける押圧力は、 エアシリンダ 5 9 4のような能動 的に駆動する手段ではなく、 自動的に付勢力を発揮する弾性部材 5 9 1によって 担当される。 そして、 この弾性部材 5 9 1による付勢力は、 係合部材 5 9 3によ つて予め適正に設定しておくことができるため、 管体 1 0と一対の基準ローラ 5 2 , 5 2との接触圧を正確に設定して、 これにより形状測定について高い信頼性 を得ることができる。  According to such a shape measuring apparatus according to the seventh embodiment, the pressing force for pressing the tube 10 against the pair of reference rollers 52, 52 is a means for actively driving such as an air cylinder 594. Rather, it is in charge of an elastic member 591 that automatically exerts a biasing force. The biasing force of the elastic member 591 can be appropriately set in advance by the engagement member 593, so that the force between the pipe 10 and the pair of reference rollers 52, 52 can be adjusted. The contact pressure can be set accurately, which can provide high reliability for shape measurement.
なお、 この第 7の実施形態では、 係合部材 5 9 3の高さ位置を調整することで 弾性部材 5 9 1の付勢力を調整したが、 エアシリンダ (昇降駆動手段) 5 9 4の 昇降動作の上限を設定するストッパー 5 9 6、 5 9 6の高さ位置を調整可能とし てもよい。 く変形例 > In the seventh embodiment, the height position of the engaging member 593 is adjusted. Although the biasing force of the elastic member 595 was adjusted, the height position of the stoppers 596, 596 that set the upper limit of the vertical movement of the air cylinder (elevation drive means) 594 may be adjustable. . Modified example>
以上、 第 7の実施形態を説明したが、 本発明は上記に限定されず、 上述した第 1〜第 6の実施形態と同様に、'種々の変形が可能であり、 また、 以下のように構 成してもよい。  As described above, the seventh embodiment has been described. However, the present invention is not limited to the above, and various modifications are possible as in the first to sixth embodiments described above. It may be configured.
( 1 ) 上記第 7の各実施形態においては、 昇降駆動手段をエアシリンダによつ て構成したが、 これらは各種のァクチユエ一夕等から構成することができる。 た とえば、 油圧力を用いる油圧シリンダや、 電力を用いる電動モータ等から構成し てもよい。  (1) In each of the above-described seventh embodiments, the lifting / lowering drive means is constituted by an air cylinder, but these can be constituted by various types of actuators. For example, a hydraulic cylinder using hydraulic pressure, an electric motor using electric power, or the like may be used.
[第 8実施形態] [Eighth Embodiment]
次に、 第 8の実施形態について説明する。  Next, an eighth embodiment will be described.
以下においては、 上述した各実施形態との差異について説明し、 同様の構成部 分については同一符号を付して重複説明を省略する。  In the following, differences from the above-described embodiments will be described, and the same components will be denoted by the same reference numerals, without redundant description.
第 3 1図は、 この第 8の実施形態における管体の支持形態を示す正面断面図で める。  FIG. 31 is a front sectional view showing a support form of the tubular body in the eighth embodiment.
この第 8の実施形態では、 各支持ローラ 6 0…は、 その外周面にテーパー面 6 In the eighth embodiment, each support roller 60 has a tapered surface 6 on its outer peripheral surface.
1が形成され、 .このテーパー面 6 1において管体 1 0の端部 1 3 , 1 3と接触す るようになっている。 1 is formed so that the tapered surface 61 contacts the ends 13 and 13 of the tube 10.
これにより、 支持ローラ 6 0…は管体 1 0を支持しながらも、 その外周面 1 2 とはその両外側端部近傍を除いてほとんど接触せず、 管体 1 0の外周面 1 2に損 傷を与えることがない。 このため、 外周面 1 2が感光層として用いられる感光ド ラム用の基体等であっても、 管体 1 0の外周面 1 2に損傷を与えることなく、 形 P T/JP2003/011737 As a result, while the support rollers 60 support the tube 10, they hardly contact the outer peripheral surface 12 except for the vicinity of both outer ends thereof, and the outer peripheral surface 12 of the tube 10. No damage. Therefore, even if the outer peripheral surface 12 is a photosensitive drum base used as a photosensitive layer, the outer peripheral surface 12 of the tubular body 10 is not damaged, and the shape is not changed. PT / JP2003 / 011737
67 状測定を行うことができる。 .  67 state measurements can be made. .
また、 支持ローラ 6 0…が管体 1 0の両側の端部 1 3 , 1 3に当接するため、 管体 1 0の端面にバリ等が残っている場合であってもこれを脱落させて形状測定 の高い精度を確保することができる。 また、 この形状測定装置 5をバリ取り加工 装置として機能させることができる。  Further, since the supporting rollers 60 contact the ends 13, 13 on both sides of the tube 10, even if burrs or the like remain on the end surface of the tube 10, the burrs are dropped off. High accuracy of shape measurement can be secured. Further, the shape measuring device 5 can function as a deburring device.
以上、 第 8の実施形態を説明したが、 本発明は上記に限定されず、 上述した第 1〜第 7の実施形態と同様に、 種々の変形が可能である。  The eighth embodiment has been described above, but the present invention is not limited to the above, and various modifications are possible as in the first to seventh embodiments.
[第 9実施形態] [Ninth embodiment]
次に、 第 9実施形態について説明する。  Next, a ninth embodiment will be described.
第 4図に示したように、 感光ドラム'用の基体等の管体 1 0は、 十分に正確な円 形に作り込まれたフランジ 8 0 , 8 0が圧入された状態で使用されるため、 実際 の使用時には管体 1 0の両端部分の断面形状は矯正される場合が多い。  As shown in FIG. 4, the tube 10 such as the base for the photosensitive drum is used in a state where the flanges 80 and 80 formed in a sufficiently accurate circular shape are pressed into the tube. However, in actual use, the cross-sectional shape of both ends of the tube 10 is often corrected.
第 9の実施形態は、 かかる事情を鑑みて、 管体 1 0の両端部分の形状を一時的 に矯正しながら管体 1 0の形状を測定することにより、 実際の使用時に近似した 状態における管体の形状を把握するものである。  In view of such circumstances, the ninth embodiment measures the shape of the tubular body 10 while temporarily correcting the shape of both ends of the tubular body 10, so that the tubular body in a state similar to that in actual use is measured. It is to grasp the shape of the body.
以下においては、 上述した実施形態との差異について説明し、 同様の構成部分 については同一符号を付して重複説明を省略する。  In the following, differences from the above-described embodiment will be described, and the same components will be denoted by the same reference numerals, without redundant description.
第 3 2図は、 第 9の実施形態にかかる管体の形状測定方法を説明するための概 念図である。 第 3 3図は、 同側面図である。  FIG. 32 is a conceptual diagram for explaining the method for measuring the shape of the tubular body according to the ninth embodiment. Fig. 33 is the same side view.
第 3 2図および第 3 3図に示すように、 第 9の実施形態にかかる管体の形状測 定方法は、 管体 (ワーク) 1 0の両側端部 1 3, 1 3を内側矯正ローラ 6 2 , 6 2と外側矯正ローラ 6 4…とで矯正し、 こうして矯正された状態で回転する管体 1 0の外周面 1 2の半径方向の変位量を変位検出器 3 0…によって検出する。  As shown in FIGS. 32 and 33, the method for measuring the shape of the tube according to the ninth embodiment is as follows. 6 2, 6 2 and the outer straightening rollers 6 4..., And the displacement amount in the radial direction of the outer peripheral surface 12 of the tubular body 10 rotating in the straightened state is detected by the displacement detectors 30. .
<矯正ローラ > 内側矯正ローラ 6 2, 6 2および外側矯正ローラ 6 4 · · ·は、 形状測定時にはそ れぞれ管体 1 0の両側端部 1 3, 1 3の内周面 1 1および外周面 1 2に接触して 、 管体 1 0の両側端部 1 3 , 1 3の断面形状を一時的に矯正するものである。 内側矯正ローラ 6 2, 6 2は、 管体 1 0の両側にそれぞれ 1個ずつ、 合計 2個 が配置され、 外側矯正ローラ 6 4…は、 管体 1 0の両側にそれぞれ 2個ずつ、 合 計 4個が配置されている。 <Straighting roller> The inner straightening rollers 62, 62 and the outer straightening rollers 64, are used for measuring the shape, respectively, of the inner peripheral surface 11 and the outer peripheral surface 1 2 of the both ends 13, 13 of the tube 10. Is to temporarily correct the cross-sectional shape of both end portions 13 and 13 of the tubular body 10. The inner straightening rollers 62 and 62 are arranged on both sides of the tube 10 in total, two in total, and the outer straightening rollers 64 and 2 are arranged in two on each side of the tube 10. A total of four are arranged.
管体 1 0の両側に外側矯正ローラ 6 4…がそれぞれ 2個ずつあることで、 管体 1 0の軸の位置および管体 1 0の姿勢を安定させ、 高い精度で管体 1 0の両側端 部 1 3, 1 3の断面形状を矯正することができる。 また、 管体 1 0を安定して支 持することができる。  The two outer correction rollers 64 on both sides of the tube 10 stabilize the position of the shaft of the tube 10 and the posture of the tube 10 with high accuracy on both sides of the tube 10 The cross-sectional shape of the ends 13 and 13 can be corrected. Further, the tube 10 can be stably supported.
また、 管体 1 0の内外にそれぞれ内側矯正ローラ 6 2, 6 2、 外側矯正ローラ 6 4…が位置し、 管体 1 0が内外から挟み込まれるため、 管体 1 0をより安定し て保持することができる。  In addition, the inner straightening rollers 62, 62, the outer straightening rollers 64 ... are located inside and outside the tube 10, respectively, and the tube 10 is sandwiched from inside and outside, so that the tube 10 is more stably held. can do.
また、 管体 1 0の内外にそれぞれ内側矯正ローラ 6 2, 6 2、 外側矯正ローラ 6 4…を配しているため、 これらを互いに近くに配置しながら管体 1 0に矯正力 を与えることができる。 ここでは、 内側矯正ローラ 6 2 , 6 2、 外側矯正ローラ 6 4…はいずれも管体 1 0の下半分側であって、 9 0度以下程度の範囲内の狭い 領域に配置されている。 このため、 内側矯正ローラ 6 2 , 6 2、 外側矯正ローラ 6 4…を互いに強固に位置決めして、 管体 1 0の両側端部 1 3, 1 3に対して正 確な矯正を行うことができる。  In addition, since the inner straightening rollers 62, 62 and the outer straightening rollers 64 are arranged inside and outside the tube 10, respectively, it is necessary to apply a correcting force to the tube 10 while arranging them near each other. Can be. Here, the inner straightening rollers 62, 62, the outer straightening rollers 64,... Are all located on the lower half side of the tubular body 10, and are arranged in a narrow area of about 90 degrees or less. For this reason, the inner straightening rollers 62, 62, the outer straightening rollers 64,... Can be firmly positioned with respect to each other, and accurate correction can be performed on both end portions 13, 13 of the tube 10. it can.
また、 内側矯正ローラ 6 2 , 6 2と外側矯正ローラ 6.4…とは、 管体 1 0の周 方向位置が異なる位置において管体 1 0の内周面 1 1及び外周面 1 2に接触して いる。 具体的には、 内側矯正ローラ 6 2, 6 2は、 外側矯正ローラ 6 4 , 6 4の 間に位置している。 このように、 管体 1 0の周方向について狭い範囲において異 なる周方向位置に内側矯正ローラ 6 2 , 6 2と外側矯正ローラ 6 4…とが位置す ることによって、 管体 1 0に対して効率的に矯正力を付与し、 正確な形状矯正を 行うことができる。 Further, the inner straightening rollers 62, 62 and the outer straightening rollers 6.4 ... contact the inner peripheral surface 11 and the outer peripheral surface 12 of the tube 10 at a position where the circumferential position of the tube 10 is different. I have. Specifically, the inner straightening rollers 62, 62 are located between the outer straightening rollers 64, 64. In this way, since the inner straightening rollers 62, 62 and the outer straightening rollers 64 are located at different circumferential positions in a narrow range in the circumferential direction of the tube 10, the position of the tube 10 with respect to the tube 10 is reduced. To provide corrective power efficiently and correct shape accurately It can be carried out.
また内側矯正ローラ 6 2 , 6 2および外側矯正ローラ 6 4…が管体 1 0と接触 する部位は、 管体 1 0が実際に使用される時にはフランジ 8 0, 8 0によって支 持される部位 (第 4図でハッチングを施した領域 S ) に対応する内周面 1 1およ ぴ外周面 1 2となっている。 これにより内側矯正ローラ 6 2 , 6 2および外側矯 正ローラ 6 4…は、 管体 1 0が実際に使用されるときにフランジ 8 0, 8 0によ つて矯正されることが予想される部位の形状を矯正することができるようになつ ている。  The portions where the inner straightening rollers 62, 62 and the outer straightening rollers 64 contact the tube 10 are the portions that are supported by the flanges 80, 80 when the tube 10 is actually used. The inner peripheral surface 11 and the outer peripheral surface 12 correspond to (the region S hatched in FIG. 4). As a result, the inner straightening rollers 62, 62 and the outer straightening rollers 64,... Are located at portions where the tubular body 10 is expected to be straightened by the flanges 80, 80 when actually used. The shape can be corrected.
また、 内側矯正ローラ 6 2, 6 2および外側矯正ローラ 6 4…は、 その外周に 形成された円筒面で管体 1 0の内周面 1 1および外周面 1 2に線接触する。 これ により内側矯正ローラ 6 2 , 6 2および外側矯正ローラ 6 4…は、 接触圧を分散 させて管体 1 0の局所的な変形を防止できるようになつている。  The inner straightening rollers 62, 62 and the outer straightening rollers 64 contact the inner circumferential surface 11 and the outer circumferential surface 12 of the tube 10 with a cylindrical surface formed on the outer circumference thereof. As a result, the inner straightening rollers 62, 62 and the outer straightening rollers 64 disperse the contact pressure to prevent local deformation of the tubular body 10.
これら内側矯正ローラ 6 2, 6 2と、 外側矯正ローラ 6 4…の相対的な位置関 係は、 管体 1 0の端部 1 3, 1 3の断面形状を矯正するための矯正位置に位置す るように位置設定されている。  The relative positional relationship between the inner straightening rollers 62 and 62 and the outer straightening rollers 64 is determined at a straightening position for straightening the cross-sectional shape of the end portions 13 and 13 of the tube 10. It is positioned so that
この矯正位置は、 この実施形態では、 管体 1 0の両側端部 1 3 , 1 3の断面形 状が適正であった場合に、 外側矯正ローラ 6 4…および内側矯正ローラ 6 2 , 6 2がそれぞれ管体 1 0の両側端部 1 3 : 1 3の外周面 1 2および内周面 1 1にち ようど接する位置である。 すなわち、 管体 1 0の両側端部 1 3, 1 3の断面形状 が不適正であった場合には、 外側矯正ローラ 6 4…および内側矯正ローラ 6 2 , 6 2によって管体 1 0に矯正力が加わるようになつている。  In this embodiment, when the cross-sectional shape of the both ends 13, 13 of the tubular body 10 is proper, the outer correction rollers 64 and the inner correction rollers 62, 62 in this embodiment. Are positions at which the outer peripheral surface 12 and the inner peripheral surface 11 of both end portions 13: 13 of the tubular body 10 are in contact with each other. In other words, if the cross-sectional shape of both end portions 13 and 13 of the tubular body 10 is inappropriate, the tubular body 10 is straightened by the outer straightening rollers 64 and inner straightening rollers 62 and 62. The force has been added.
このとき、 管体 1 0の両側端部 1 3 , 1 3は、 ともに矯正位置に固定された外 側矯正ローラ 6 4…と内側矯正ローラ 6 2 , 6 2との接触により、 その断面形状 が一時的に適正に矯正されている。 なお、 この一時的に矯正による管体 1 0の両 側端部 1 3, 1 3の変形には弾性変形分が含まれ (弾性変形のみでもよい) 、 内 側矯正ローラ 6 2, 6 2および外側矯正ローラ 6 4 ···との接触状態が解かれれば その一部はもとに戻る。 (形状測定の例) At this time, both ends 13 and 13 of the tubular body 10 have cross-sectional shapes due to contact between the outer straightening rollers 64 and the inner straightening rollers 62 and 62 both fixed at the straightening position. Temporarily corrected properly. Note that the deformation of both ends 13 and 13 of the tubular body 10 due to the temporary correction includes elastic deformation (only elastic deformation may be included), and the inner correction rollers 62, 62 and If the contact state with the outer straightening roller 6 4 Some of them return. (Example of shape measurement)
次に、 具体的な管体形状の例を挙げ、 第 9の実施形態にかかる管体の形状測定 方法の利点が特に発揮される場合について説明する。  Next, a case where the advantage of the tube shape measuring method according to the ninth embodiment is particularly exhibited will be described with reference to a specific example of the tube shape.
<両端扁平管 > <Flat pipe at both ends>
まず第 1の例の管体 1 0 4は、 第 3 4図に示すように、 その中央部 1 0 4 bは 適正な真円形状をなしているが両側端部 1 0 4 a, 1 0 4 aが扁平な断面形状と なっている場合である。  First, as shown in FIG. 34, the central portion 104 b of the first example of the tubular body 104 has an appropriate perfect circular shape, but the both end portions 104 a, 100. 4a is the case where the cross section is flat.
このような形状は、 上述したように押出加工等によって成形された長尺の管体 素材を所定寸法に切断することにより、 たとえば感光ドラム用の基体等を製造す る場合に、 管体 1 0 1の両側端部 1 0 4 a ,. 1 0 4 aが切断によって扁平に変形 することで発生しやすいものである。  Such a shape can be obtained by cutting a long tube material formed by extrusion or the like into a predetermined size as described above, for example, when manufacturing a substrate for a photosensitive drum or the like. This is likely to occur when the side edges 104a, 104a of 1 are deformed flat by cutting.
このように両側端部 1 0 4 a , 1 0 4 aが扁平に変形した.形状では、 たとえば 第 5 6図および第 5 7図等に示した従来の形状測定を行うと、 支持される両側端 部 1 0 4 a , 1 0 4 aが管体 1 0 4の回転によって上下動してしまい、 これに伴 つて管体 1 0 4の長手方向中央部分の外周面下側も上下動するため、 大きなフレ が検出され、 完全な円筒管形状からかけ離れた形状として判定されてしまう。 所 定の合格基準のある形状検査では不良品と判定されてしまう可能性も高い。  In this way, both end portions 104a and 104a were deformed flat, and when the conventional shape measurement shown in, for example, FIGS. Since the ends 104a and 104a move up and down due to the rotation of the tube 104, the lower part of the outer peripheral surface of the central portion of the tube 104 in the longitudinal direction also moves up and down. However, large deflection is detected, and it is judged as a shape far from the perfect cylindrical tube shape. It is highly likely that a shape inspection with the prescribed acceptance criteria will result in a defective product.
しかしながら、 このような管体 1 0 4は、 実際の使用時には第 4図に示したよ うに、 その両端にフランジ 8 0 , 8 0等が圧入されることで、 両側端部 1 0 4 a , 1 0 4 aが真円形状に矯正されてその形状不良は解消され、 実際の使用時の形 態は完全な円筒形となり、 全く使用するのに問題がない場合もある。 一方、 実際 の使用時にフランジ等を圧入しても完全な円筒形とはならない本当の不良管もあ るが、 従来の形状測定方法では、 これらを判別しようがなく、 本来は良品と判定 しうるものを不良と判定してしまう可能性があった。 However, as shown in FIG. 4, such a tubular body 104 is press-fitted at both ends with flanges 80, 80, etc., as shown in FIG. 0 4a is corrected to a perfect circular shape and its shape defect is eliminated, and the shape at the time of actual use becomes a perfect cylindrical shape, and there may be no problem in using it at all. On the other hand, there are some truly defective pipes that do not become completely cylindrical even if a flange or the like is pressed in during actual use.However, conventional shape measurement methods cannot help determine these, and are originally judged to be good. There was a possibility that what could be done was determined to be defective.
これに対し、 第 9の実施形態にかかる形状測定方法によれば、 管体 1 0 4の両 側端部 1 0 4 a, 1 0 4 aを一時的に矯正して実際の使用時に近似した管体両端 の形状を再現しながら、 管体 1 0 4の形状測定を行うため、 第 3 4図のように両 端近傍に実際の使用時には解消される擬似的な不良が存在する管体 1 0 4に対し ても、 実際の使用時に残る不良であるのか否かが含まれる形状測定結果が得られ る。  On the other hand, according to the shape measuring method according to the ninth embodiment, both ends 104 a and 104 a of the tubular body 104 were temporarily corrected and approximated in actual use. Since the shape of the tube 104 is measured while reproducing the shape of both ends of the tube, as shown in Fig. 34, there is a tube defect near both ends that has a pseudo defect that is eliminated during actual use. Even for 04, a shape measurement result including whether or not the defect remains during actual use can be obtained.
このため、 従来は、 不良と判別せざるを得なかった管体についても正確に形状 測定を行い、 真の形状測定結果を提供することができる。  For this reason, it is possible to accurately measure the shape of a tube that had to be determined to be defective in the past, and to provide a true shape measurement result.
ぐ全長扁平管 > Full length flat tube>
第 2の例の管体 1 0 5は、 第 3 5 A図に示すように、 その全長にわたって断面 形状は一定であるが、 その断面形状が真円ではないものである。 ここでは、 上下 あるいは左右から挟み付けて押しつぶしたような楕円状の断面形状を想定してい る。  The tubular body 105 of the second example has a constant cross-sectional shape over its entire length as shown in FIG. 35A, but has a non-circular cross-sectional shape. Here, an elliptical cross-sectional shape is assumed, such as being crushed by being sandwiched from above and below or from the left and right.
このような形状は、 管体 1 0 5を押出成形や引抜き成形等により長尺管を製造 する場合に発生しやすい。  Such a shape is likely to occur when a long tube is manufactured by extruding or drawing the tube 105.
このように管体 1 0 5の全長が扁平に変形した形状では、 第 5 6図および第 5 7図等に示した従来の形状測定では、 正常な円筒管形状として判定されやすい。 すなわち、 その両側端部 1 0 5 a , 1 0 5 aで支持されて回転する管体 1 0 5は 、 回転位相によって上下動するが、 その長手方向中央部分の外周面下側はほとん ど高さ位置が変化しないため、 フレが検出されにくいためでる。 所定の合格基準 のある形状検查では良品と判定されてしまう可能性も高い。  In the shape in which the entire length of the tubular body 105 is flattened, the conventional shape measurement shown in FIGS. 56 and 57 and the like tends to be judged as a normal cylindrical tubular shape. That is, the tubular body 105 supported and rotated by the both end portions 105a, 105a moves up and down by the rotation phase, but the lower part of the outer peripheral surface of the central portion in the longitudinal direction is almost high. Because the position does not change, it is difficult to detect deflection. There is a high possibility that a shape inspection with a predetermined acceptance criterion will result in a non-defective product.
一方、 このような管体 1 0 5は、 実際の使用時にその両側端部 1 0 5 a , 1 0 5 aにフランジ 8 0, 8 0等が圧入されて両側端部 1 0 5 a , 1 0 5 aが真円形 状に矯正されても、 第 3 5 B図に示すように、 管体 1 0 5の中央部分 1 0 5 bは 2003/011737 On the other hand, in such a tubular body 105, flanges 80, 80, etc. are press-fitted into both end portions 105a, 105a during actual use, so that both end portions 105a, 1 Even if 0a is corrected to a perfect circular shape, as shown in Fig. 35B, the central portion 105b of the tubular body 105 2003/011737
72 扁平な断面形状のままである。 このため、 このような管体 105は、 実際の使用 時には大きなフレを生じる不良管である場合がある。  72 The flat cross-sectional shape remains. For this reason, such a tube 105 may be a defective tube that causes large deflection in actual use.
これに対し、 第 9の実施形態にかかる形状測定方法によれば、 管体 105の両 側端部 105 a, 105 aを一時的に矯正して実際の使用時に近似した管体両端 の形状を再現しながら、 管体 105の形状測定を行うため、 第 35 A図、 第 35 B図のように検出されにくい形状不良が存在する管体 105に対しても、 実際の 使用時に残る不良であるのか否かが含まれる形状測定結果が得られる。  On the other hand, according to the shape measuring method according to the ninth embodiment, both ends 105a, 105a of the tube 105 are temporarily corrected so that the shapes of the both ends of the tube approximate to those in actual use. Since the shape of the tube 105 is measured while reproducing it, even if there is a shape defect that is difficult to detect as shown in Figs. 35A and 35B, it is a defect that remains during actual use. A shape measurement result including whether or not is obtained is obtained.
このため、 従来は、 不良と判別せざるを得なかった管体についても正確に形状 測定を行い、 真の形状測定結果を提供することができる。  For this reason, it is possible to accurately measure the shape of a tube that had to be determined to be defective in the past, and to provide a true shape measurement result.
(具体例) (Concrete example)
以上、 第 9の実施形態を概念的に説明したが、 この第 9の実施形態は、 上述し た第 2の実施形態等とほぼ同様の機械構成によつて構成することができる。  As described above, the ninth embodiment has been conceptually described. However, the ninth embodiment can be configured with a mechanical configuration substantially similar to that of the above-described second embodiment or the like.
第 36図は、 第 9の実施形態を第 2の実施形態等とほぼ同様の機械構成によつ て構成した場合の、 管体の支持構造の拡大斜視図である。  FIG. 36 is an enlarged perspective view of a support structure of a tubular body in a case where the ninth embodiment is configured with a mechanical configuration substantially similar to that of the second embodiment and the like.
この場合、 第 2の実施形態における一対の基準ローラ 52, 52は内側矯正口 ーラに相当し、 支持ローラ 54…は外側矯正ローラに相当している。  In this case, the pair of reference rollers 52, 52 in the second embodiment correspond to the inner correction rollers, and the support rollers 54 correspond to the outer correction rollers.
支持ローラ支持体 (外側矯正ローラ支持体) 543, 543は、 下駆動シリ ンダ 546, 546によるスライ ド動作の上限側で、 機器ボックス 51 1, 51 1に取り付けられたストッパー 548, 548と当接するようになつている。 こ のストッパー 548, 548は、 支持ローラ支持体 543, 543と当接すると きに、 外側矯正ローラ (支持 ーラ) 54…および内側矯正ローラ (基準ローラ ) 52, 52の相対的な位置関係が、 管体 10の端部 13, 13の断面形状を矯 正するための矯正位置に位置するように位置設定されている。  The support roller support (outer straightening roller support) 543, 543 contacts the stoppers 548, 548 attached to the equipment box 511, 511 at the upper limit side of the slide operation by the lower drive cylinder 546, 546. It is like that. When the stoppers 548 and 548 come into contact with the supporting roller supports 543 and 543, the relative positional relationship between the outer correcting roller (supporting roller) 54 and the inner correcting roller (reference roller) 52 and 52 is determined. The position is set so as to be located at a correction position for correcting the cross-sectional shape of the end portions 13 and 13 of the tubular body 10.
上下駆動シリンダ 546, 546は、 支持ローラ支持体 543, 543および 外側矯正ローラ 54…ごと管体 10を上方に持ち上げ、 支持ローラ支持体 543 , 5 4 3をストッパー 5 4 8, 5 4 8に十分に大きい押圧力で押し付けることで 、 外側矯正ローラ 5 4…の位置を前記矯正位置に固定できるようになつている。 このように、 外側矯正ローラ 5 4…の位置を矯正位置に固定するため、 管体 1 0 の両側端部 1 3 , 1 3の形状矯正を行うにあたって複雑な制御を要しないで済む ものとなっている。 The vertical drive cylinders 546 and 546 lift the tube 10 together with the support roller supports 543 and 543 and the outer straightening rollers 54. , 543 are pressed against the stoppers 548, 548 with a sufficiently large pressing force so that the position of the outer correcting rollers 54 can be fixed at the correcting position. In this way, since the position of the outer straightening rollers 54 is fixed at the straightening position, complicated control is not required for shape correction of the both ends 13, 13 of the tubular body 10. ing.
外側矯正ローラ 5 4…および内側矯正ローラ 5 2. 5 2の矯正位置は、 この実 施形態では、 管体 1 0の両側端部 1 3 , 1 3の断面形状が適正であった場合に、 外側矯正ローラ 5 4…および内側矯正ローラ 5 2, 5 2がそれぞれ管体 1 0の両 側端部 1 3 , 1 3の外周面 1 2および内周面 1 1にちようど接する位置である。 すなわち、 管体 1 0の両側端部 1 3 , 1 3の断面形状が不適正であった場合には 、 外側矯正ローラ 5 4…および内側矯正ローラ 5 2 , 5 2によって管体 1 0に矯 正力が加わるようになつている。  In this embodiment, the correction positions of the outer straightening roller 54 and the inner straightening roller 52.52 are determined when the cross-sectional shapes of both end portions 13 and 13 of the tube 10 are appropriate. The outer straightening rollers 54 and inner straightening rollers 52, 52 are located at the positions where they contact the outer peripheral surface 12 and the inner peripheral surface 11 of both ends 13 and 13 of the tubular body 10, respectively. . That is, when the cross-sectional shape of the both ends 13, 13 of the tube 10 is inappropriate, the tube 10 is corrected by the outer straightening rollers 54 and the inner straightening rollers 52, 52. Positive force is being added.
また、 変位検出器 5 3…は、 管体 1 0の外周面 1 2の半径方向の変位量を検出 するものであり、 ここでは、 管体 1 0の軸方向位置の異なる 5箇所にそれぞれ非 接触型のものが設けられている。  The displacement detectors 53 detect the amount of displacement of the outer peripheral surface 12 of the tube 10 in the radial direction. Here, the displacement detectors 53 are located at five different positions of the tube 10 at different axial positions. A contact type is provided.
<変形例 > <Modified example>
以上、 第 9の実施形態を説明したが、 本発明は上記に限定されず、 上述した第 1〜第 8の実施形態と同様に、 種々の変形が可能であり、 また、 以下のように構 成してもよい。  Although the ninth embodiment has been described above, the present invention is not limited to the above, and various modifications are possible as in the first to eighth embodiments described above. May be implemented.
( 1 ) 上記第 9の実施形態では、 管体 1 0を矯正しながら形状測定する時には 、 矯正ローラを矯正位置に固定したが、 矯正ローラのいくつかは位置を固定せず 、 管体 1 0の回転位相に応じて内側矯正ローラ 6 2, 6 2または外側矯正ローラ 6 4…の管体 1 0への押圧力を変動させることにより、 管体 1 0の端部の形状を 矯正するようにしてもよい。 具体的には、 たとえば、 管体 1 0の両側端部 1 3 , 1 3の各周方向位置のうち、 断面形状が適正な真円形状から大きく逸脱している JP2003/011737 (1) In the ninth embodiment, when measuring the shape while correcting the tube 10, the correction rollers were fixed at the correction position. However, some of the correction rollers did not fix the position, and the tube 10 was not fixed. By varying the pressing force of the inner straightening rollers 62, 62 or the outer straightening rollers 64 to the tube 10 in accordance with the rotation phase of the tube 10, the shape of the end of the tube 10 is corrected. May be. Specifically, for example, among the circumferential positions of both end portions 13, 13 of the tubular body 10, the cross-sectional shape largely deviates from an appropriate true circular shape JP2003 / 011737
74 部分に対しては大きな押圧力 (矯正力) を作用させる一方、 真円形状に近い部分 には押圧力を小さく、 あるいは 0にすることを挙げることができる。  A large pressing force (correction force) is applied to the 74 part, while a small or zero pressing force is applied to the part close to a perfect circle.
また、 管体 1 0の両側端部 1 3 , 1 3の断面形状を実際に検出し、 検出された 具体的な断面形状に応じて管体 1 0に付与する押圧力 (矯正力) を変動させるよ うにしてもよい。 このようにすれば、 確実にその管体 1 0の両側端部 1 3 , 1 3 に適した矯正を行うことができる。  In addition, the cross-sectional shape of both end portions 13 and 13 of the tubular body 10 is actually detected, and the pressing force (correction force) applied to the tubular body 10 is varied according to the detected specific sectional shape. You may make it happen. In this way, it is possible to surely perform the correction suitable for the both ends 13, 13 of the tubular body 10.
この管体 1 0の両側端部 1 3 , 1 3の断面形状の検出は、 矯正に先だって行つ ても、 矯正しながら行ってもよい。 管体 1 0の両側端部 1 3 , 1 3を矯正しなが らその断面形状を検出するようにすれば、 付与している押圧力 (矯正力) が断面 形状の矯正に適正な大きさであるかどうかを確実に得ることができる。  The detection of the cross-sectional shape of both end portions 13 and 13 of the tubular body 10 may be performed prior to the correction or while the correction is being performed. By detecting the cross-sectional shape of the tubular body 10 while correcting the both end portions 13, 13, the applied pressing force (correcting force) is an appropriate size for correcting the cross-sectional shape. Can be reliably obtained.
管体 1 0の両側端部 1 3, 1 3の断面形状を検出する手段としては、 管体 1 0 の外周面の半径方向の変位量を検出する変位検出器を兼用することができる。 この場合、 第 3 7図に示すように、 外周面 6 5 1の幅方向中央に隙間 6 5 3を 形成する小径部 6 5 2を形成した外側矯正ローラ 6 5を用い、 光透過型の変位検 出器 5 3…のレーザ光を、 この外側矯正ローラ 6 5の隙間 6 5 3に通すようにす れば、 内側矯正ローラ 5 2と外側矯正ローラと 6 5とによって矯正されている断 面の断面形状を検出することができ、 好ましい。  As a means for detecting the cross-sectional shape of both end portions 13 and 13 of the tubular body 10, a displacement detector for detecting the amount of displacement of the outer peripheral surface of the tubular body 10 in the radial direction can also be used. In this case, as shown in FIG. 37, an outer straightening roller 65 having a small-diameter portion 652 forming a gap 653 at the center in the width direction of the outer peripheral surface 651 is used, and the light transmission type displacement is used. If the laser beam from the detectors 53 is passed through the gap 653 between the outer straightening rollers 65, the cross section of the straightened rollers 52, the outer straightening rollers 65, and the straightened surface can be used. It is possible to detect the cross-sectional shape of the above.
( 2 ) 上記第 9の実施形態では、 管体 1 0の両側それぞれに、 内側矯正ローラ を 1つと外側矯正ローラを 2つとを配置したが、 矯正ローラの配置はこれに限定 されるものではなく、 以下に例示するように、 種々の配置を採用することができ る。 .  (2) In the ninth embodiment, one inner straightening roller and two outer straightening rollers are arranged on both sides of the tubular body 10, however, the arrangement of the straightening rollers is not limited to this. However, various arrangements can be adopted as exemplified below. .
( 2 - 1 ) 第 3 8図に示すように、 上記実施形態と同様の 1つの内側矯正口一 ラ 9 1 1と、 管体 1 0の下側に位置する 2つの外側矯正ローラ 9 1 2, 9 1 2に 加えて、 管体 1 0の上側に位置する外側矯正ローラ 9 1 3を配置してもよい。 こ のようにすると、 管体 1 0は外側矯正ローラ 9 1 2 , 9 1 2 , 9 1 3によって直 径方向に挟み込まれる形態となるため、 楕円形に膨らんだ断面形状等を効果的に ― ί 0 矯正することができる。 (2-1) As shown in FIG. 38, one inner straightening opening 911 similar to the above embodiment and two outer straightening rollers 9 1 2 located below the tube 10 are provided. , 9 12, an outer straightening roller 9 13 located above the tube 10 may be arranged. In this case, the tubular body 10 is sandwiched in the radial direction by the outer straightening rollers 912, 912, 913, so that the elliptical swelling cross-sectional shape and the like can be effectively reduced. ― Ί 0 Can be corrected.
(2-2) 第 39図に示すように、 矯正ローラをすベて内側矯正ローラ 920 …としてもよい。  (2-2) As shown in FIG. 39, all of the straightening rollers may be formed as inner straightening rollers 920.
(2-3) 第 40図に示すように、 矯正ローラをすベて外側矯正ローラ 930 …としてもよい。  (2-3) As shown in FIG. 40, all of the correction rollers may be outer correction rollers 930.
(2-4) 第 41図に示すように 内側矯正ローラ 941と外側矯正ローラ 9 42とを管体 10の周方向について同位置に配置して、 管体 10を内外から挟み 込んで拘束しておき、 これと周方向位置が異なる矯正ローラ 943によって矯正 を行うようにしてもよい。  (2-4) As shown in Fig. 41, the inner straightening roller 941 and the outer straightening roller 942 are arranged at the same position in the circumferential direction of the tube 10, and the tube 10 is sandwiched from inside and outside and restrained. Alternatively, the correction may be performed by a correction roller 943 whose circumferential position is different from the above.
(2-5) 第 42図に示すように、 管体 10の周方向位置が同じ内側矯正口一 ラ 951と外側矯正ローラ 952の組を複数組 (ここでは 2組) 配置して、 管体 10の複数の周方向位置を内外から挟み込んで拘束するようにしてもよい。 この ようにすると、 管体の形状が適正な曲率よりも大きい部分も小さい部分も矯正す ることができる。  (2-5) As shown in FIG. 42, a plurality of sets (two sets in this case) of the inner straightening opening 951 and the outer straightening roller 952 in which the circumferential position of the tube 10 is the same are arranged. The plurality of circumferential positions may be restricted by being sandwiched from inside and outside. In this way, it is possible to correct a portion where the shape of the tube is larger or smaller than an appropriate curvature.
(2-6) 第 43図に示すように、 多数の矯正ローラ 96— (ここでは 8つ) を管体 10の外周面または内周面に接触させて矯正するようにしてもよい。 矯正 ローラを管体 10の外側または内側で 4つ以上配置すると、 3方向に突出するい わゆるおむすび型の断面に対しても適切に矯正を行うことができる。  (2-6) As shown in FIG. 43, a plurality of straightening rollers 96 (here, eight) may be brought into contact with the outer peripheral surface or the inner peripheral surface of the tubular body 10 to perform the correction. By arranging four or more correction rollers on the outside or inside of the tube 10, it is possible to appropriately correct even a so-called diaper-shaped cross section that projects in three directions.
(3) 管体 10の両側端部 13, 13を矯正することによって生じる変形の大 きさが、 弾性変形の範囲に留まるようにしてもよい。 このようにすると、 形状測 定によつて管体の形状が変化しないことによる信頼性を得られる。  (3) The magnitude of the deformation caused by correcting the both end portions 13 and 13 of the tube 10 may be limited to the range of the elastic deformation. In this way, reliability can be obtained because the shape of the tube does not change due to the shape measurement.
(4) 上記第 9の実施形態では、 矯正ローラを管体の使用時に.おける支持予定 位置に接触させたが、 矯正ローラの位置は支持予定位置に近い管体の両側端部で あればよい。  (4) In the ninth embodiment, the straightening roller is brought into contact with the position to be supported when the tube is used.However, the position of the straightening roller is only required to be at both ends of the tube near the position to be supported. .
(5) 上記第 9の実施形態においては、 管体 10の軸方向を略水平方向にして 形状測定を行ったが、 管体 10の軸方向を略水平方向に立てて形状測定を行うよ うにしてもよい。 このようにすると、 管体 1 0が自重でたわむことが軽減するこ とができる。 (5) In the ninth embodiment, the shape measurement is performed with the axial direction of the tube 10 substantially horizontal. However, the shape measurement is performed with the axial direction of the tube 10 set substantially horizontal. You may do it. By doing so, it is possible to reduce the possibility that the tube 10 bends under its own weight.
( 6 ) 上記第 9の実施形態においては、 変位量の検出位置を複数設けたが、 少 なくとも 1つあればよい。  (6) In the ninth embodiment, a plurality of displacement amount detection positions are provided, but it is sufficient if at least one.
( 7 ) 上記第 9の実施形態においては、 形状測定対象である管体 1 0として感 光ドラム用の基体を挙げたが、 これに限らず、 複写機等に用いられる搬送ローラ 、 現像ローラ、 転写ローラでも好適に適用できる。 その他、 管体であれば本発明 の測定対象となりうる。  (7) In the ninth embodiment, the base for the photosensitive drum is described as the tube 10 whose shape is to be measured.However, the present invention is not limited to this. For example, a transport roller, a developing roller, A transfer roller can also be suitably applied. In addition, a tube can be a measurement target of the present invention.
( 8 ) 上記第 9の実施形態においては、 変位検出器として、 管体 1 0の外周面 に接触しない光透過型の検出器 (透過式の光学式センサ) を例示したが、 管体 1 (8) In the ninth embodiment, a light transmission type detector (transmission type optical sensor) that does not contact the outer peripheral surface of the tube 10 is described as the displacement detector.
0の外周面 1 2の半径方向の変位量が得られればこれらに限定するものではない 。 変位撿出器としては、 たとえば、 管体 1 0の外周面に接触する接触型検出器、 非接触で検出できる反射型の光学式センサ、 非接触で検出でき、 材料を選ばず汎 用的な画像処理用の C C Dカメラやラインカメラ、 非接触で検出でき、 高精度、 高速、 環境に強く、 かつ安価なうず電流式の変位センサ、 非接触で検出でき、 高 精度な静電容量式の変位センサ、 非接触で検出できるエアー (差圧) 式の変位セ ンサ、 あるいは、 非接触で検出でき、 長距離計測が可能な超音波式変位センサ等 、 種々の測定原理に基づく検出器を採用することができる。 However, the present invention is not limited to these as long as a radial displacement amount of the outer peripheral surface 12 of 0 can be obtained. Examples of the displacement detector include a contact detector that contacts the outer peripheral surface of the tube 10, a reflective optical sensor that can detect without contact, a general-purpose detector that can detect without contact, and any material. CCD camera and line camera for image processing, non-contact detection, high-accuracy, high-speed, environmentally-friendly and inexpensive eddy-current displacement sensor, non-contact detection, high-precision capacitance-type displacement Sensors based on various measurement principles, such as sensors, air (differential pressure) type displacement sensors that can be detected without contact, or ultrasonic displacement sensors that can be detected without contact and can measure long distances be able to.
( 9 ) 上記第 9の実施形態では、 外側矯正ローラ 5 4…を回転駆動することに より、 管体 1 0を回転させたが、 測定作業者が手で管体 1 0をつかんで回転させ ても、 図示しない駆動ローラ等を管体 1 0に直接接触させて回転させても、 ある いは他の任意の方法で回転させてもよい。  (9) In the ninth embodiment, the tube 10 is rotated by driving the outer correcting rollers 54..., But the measuring operator grasps the tube 10 by hand and rotates the tube 10. Alternatively, the drive roller or the like (not shown) may be brought into direct contact with the tube 10 and rotated, or may be rotated by any other method.
( 1 0 ) 上記第 9の実施形態では、 管体 1 0を回転させながら連続的にその外 周面の変位を検出するようにしたが、 断続的に管体 1 0の回転を停止し、 停止状 態の管体 1 0の外周面の変位を検出するようにしてもよい。  (10) In the ninth embodiment, the displacement of the outer peripheral surface is continuously detected while rotating the tube 10, but the rotation of the tube 10 is intermittently stopped, The displacement of the outer peripheral surface of the tube body 10 in the stopped state may be detected.
( 1 1 ) 上記第 9の実施形態では、 内側矯正ローラ 5 2, 5 2の高さ位置を固 3 0H737 (11) In the ninth embodiment, the height positions of the inner straightening rollers 52 and 52 are fixed. 3 0H737
77 定して、 外側矯正ローラ 5 4…を昇降させたが、 内側矯正ローラ 5 2 , ' 5 2側を 下降させてもよい。 -  77, the outer straightening rollers 54 are moved up and down. Alternatively, the inner straightening rollers 52 and 52 may be lowered. -
[第 1 0実施形態] [10th Embodiment]
次に、 第 1 0の実施形態について説明する。  Next, a tenth embodiment will be described.
第 1 0の実施形態は、 上述した第 9の実施形態と同様に、 実際の使用時に近似 した状態における管体の形状を把握するべく、 管体 1 0の両端部分の形状を予め 矯正してから管体 1 0の形状を測定するものである。  In the tenth embodiment, similarly to the ninth embodiment described above, the shapes of both ends of the tube 10 are corrected in advance in order to grasp the shape of the tube in a state approximated during actual use. Is used to measure the shape of the tube 10.
以下においては、 上述した第 9の実施形態との差異について説明し、 同様の構 成部分については同一符号を付して重複説明を省略する。  In the following, differences from the above-described ninth embodiment will be described, and the same components will be denoted by the same reference numerals, without redundant description.
第 1 0の実施形態にかかる管体の形状測定方法は、 上述した第 9の実施形態の 第 3 2図と同様に、 管体 (ワーク) 1 0の両側端部 1 3 . 1 3の内周面 1 1に内 側矯正ローラ 6 2 , 6 2が、 外周面 1 2に外側矯正ローラ 6 4…が接触するよう に配置される。 また、 管体 1 0の長手方向の中間部位の複数箇所 (この例では 3 箇所) に管体 1 0の外周面の半径方向の変位量 (フレ) を測定する変位検出器 3 The method of measuring the shape of the tube according to the tenth embodiment is the same as that of FIG. 32 of the ninth embodiment described above. The inner straightening rollers 62 and 62 are arranged so as to be in contact with the outer peripheral surface 11 and the outer straightening rollers 64 are in contact with the outer peripheral surface 12. In addition, a displacement detector 3 that measures the radial displacement (deflection) of the outer peripheral surface of the tubular body 10 at a plurality of locations (three locations in this example) in the longitudinal intermediate portion of the tubular body 10.
0…が配置される。 0 ... are arranged.
第 4 4 A図は、 第 1 0の実施形態にかかる管体の形状測定方法において管体の 両側端部の矯正を行っている状態を説明するための側面図である。 第 4 4 B図は 、 同じく管体の形状測定を行っている状態を説明するための側面図である。  FIG. 44A is a side view for explaining a state in which both ends of the tubular body are being corrected in the tubular shape measuring method according to the tenth embodiment. FIG. 44B is a side view for explaining a state where the shape of the tubular body is also measured.
この第 1 0の実施形態にかかる管体 1 0の形状測定方法は、 まず、 第 4 4 A図 に示すように管体 1 0の両側端部 1 3 , 1 3を内側矯正ローラ 6 2 , 6 2および -外側矯正ローラ 6 4…で強く押圧してその断面形状を矯正し、 その後、 第 4 4 B 図に示すように内側矯正ローラ 6 2 , 6 2および外側矯正ローラ 6 4…による管 体 1 0の両側端部 1 3, 1 3への押圧力を弱めて、 管体の外周面 1 2の半径方向 の変位量 (フレ) を変位検出器 3 0…で測定するものである。 <矯正ローラ > ' The method of measuring the shape of the tube 10 according to the tenth embodiment is as follows. First, as shown in FIG. 44A, both end portions 13, 13 of the tube 10 are fixed to the inner straightening rollers 62, 6 2 and-the outer straightening rollers 6 4… are strongly pressed to correct the cross-sectional shape, and then, as shown in FIG. 44B, the tubes are formed by the inner straightening rollers 62, 62 and the outer straightening rollers 64. The pressing force on both ends 13, 13 of the body 10 is weakened, and the amount of displacement (deflection) in the radial direction of the outer peripheral surface 12 of the tube is measured by the displacement detectors 30. <Straighting roller>''
内側矯正ローラ 6 2 , 6 2および外側矯正ローラ 6 4…は、 それぞれ管体 1 0 の両側端部 1 3 , 1 3の内周面 1 1および外周面 1 2に接触して、 管体 1 0の両 側端部 1 3,· 1 3の断面形状を矯正するとともに、 この矯正後にも引き続き管体 1 0の内周面1 1および外周面 1 2に接触し、 管体 1 0の形状測定 (フレ測定) を行う際の管体 1 0を支持する支持ローラとして機能するものである。  The inner straightening rollers 6 2, 6 2 and the outer straightening rollers 6 4… contact the inner peripheral surface 11 and the outer peripheral surface 12 of both ends 13, 13 of the tube 10, respectively. In addition to correcting the cross-sectional shape of both end portions 13, 13 of the tube 0, the shape of the tube 10 continues to be in contact with the inner peripheral surface 11 and the outer peripheral surface 12 of the tube 10 after this correction. It functions as a support roller for supporting the tube 10 when performing measurement (deflection measurement).
第 4 4 A図、 第 4 4 B図に示すように、 これら内側矯正ローラ 6 2, 6 2およ ぴ外側矯正ローラ 6 4 ···は、 相対位置を変更できるようになつている。  As shown in FIGS. 44A and 44B, the inner straightening rollers 62, 62 and the outer straightening rollers 64 can change their relative positions.
すなわち、 第 4 4 A図に示すように、 管体 1 0の両側端部 1 3, 1 3を矯正す る時には、 管体 1 0の適正な形状 (第 4 4 A図の二点鎖線) よりも外側矯正ロー ラ 6 4…が上方に移動できるようになつている。 これにより、 内側矯正ローラ 6 2 , 6 2と外側矯正ローラ 6 4…とに挟まれている部分の管体 1 0の曲率が管体 1 0の適正な形状 (第 4 4 A図の二点鎖線) よりも大きく変形させることができ るようになっている。 矯正ローラ 6 2 , 6 2 , 6 4…による押圧力 (矯正力) を 弱め、 管体 1 0の弾性変形分が戻ったときに適正な形状とするためである。 一方、 こうして矯正された管体 1 0の形状測定の際には、 第 4 4 B図に示すよ うに、 適正な形状 (真円) の管体 1 0にちようど接触する位置にまで下降し、 管 体 1 0の両側端部 1 3, 1 3への押圧力を弱めて、 管体 1 0の外周面 1 2の半径 方向の変位量 (フレ) を変位検出器 3 0…で測定することができるようになって いる。  In other words, as shown in FIG. 44A, when straightening the both end portions 13 and 13 of the tube 10, the proper shape of the tube 10 (two-dot chain line in FIG. 44A) The outer correcting rollers 64 can move upward. As a result, the curvature of the tube 10 at the portion sandwiched between the inner straightening rollers 62, 62 and the outer straightening roller 64,... Becomes the proper shape of the tube 10 (two points in FIG. 44A). (Dotted line). This is because the pressing force (correction force) of the correction rollers 62, 62, 64,... Is reduced, and the tube 10 is formed into an appropriate shape when the elastic deformation thereof returns. On the other hand, when measuring the shape of the tube 10 corrected in this way, as shown in FIG. 44B, the tube 10 descends to the position where it comes into contact with the tube 10 having an appropriate shape (true circle). The pressing force on both ends 13, 13 of the tube 10 is reduced, and the radial displacement (deflection) of the outer peripheral surface 12 of the tube 10 is measured with the displacement detector 30. You can do it.
(具体例) (Concrete example)
以上、 第 1 0の実施形態を概念的に説明したが、 この第 1 0の実施形態は、 上 述した第 2の実施形態等とほぼ同様の機械構成によつて構成することができる。 第 4 5図は、 第 1 0の実施形態を第 2の実施形態等とほぼ同様の機械構成によ つて構成した場合の、 管体の支持構造の拡大斜視図である。 この場合、 第 2の実施形態における一対の基準ローラ 52, 52は内側矯正口 —ラに相当し、 支持ローラ 54…は外側矯正ローラに相当している。 As described above, the tenth embodiment has been conceptually described. However, the tenth embodiment can be configured with a substantially similar mechanical configuration to the above-described second embodiment and the like. FIG. 45 is an enlarged perspective view of the support structure of the tubular body in the case where the tenth embodiment is configured by a substantially similar mechanical configuration to the second embodiment and the like. In this case, the pair of reference rollers 52, 52 in the second embodiment correspond to the inner correcting rollers, and the support rollers 54 correspond to the outer correcting rollers.
支持ローラ支持体 (外側矯正ローラ支持体) 543, 543は、 上下駆動シリ ンダ 546, 546によるスライ ド動作の上限近くで、 機器ボックス 51 1, 5 1 1に取り付けられたストッパー 548, 548と当接するようになつている。 支持ローラ支持体 543, 543がこのストッパー 548, 548と当接する とき、 外側矯正ローラ 54…は、 内側矯正ローラ 52, 52に対する相対的な位 置が、 管体 10の端部 13, 13の断面形状を矯正するための矯正位置に位置す るようになっている。  The support roller supports (outer straightening roller supports) 543, 543 are close to the upper limit of the sliding operation by the vertical drive cylinders 546, 546, and correspond to the stoppers 548, 548 attached to the equipment boxes 511, 511. I'm in touch. When the support rollers 543, 543 abut against the stoppers 548, 548, the outer straightening rollers 54,... Are positioned relative to the inner straightening rollers 52, 52 at the cross-sections of the ends 13, 13 of the tube 10. It is located at a correction position for correcting the shape.
このストッパー 548は、 ストツパー位置設定手段 549によつて外側矯正口 ーラ支持体 543, 543の可動範囲と比較してごく短いストロークであるが、 その位置を上下方向に移動することができるようになつている。 こうしてストッ パ一548の位置を上下に移動させることにより、 外側矯正ローラ 54…の矯正 位置の設定をわずかながら上下に変更することができるようになつている。 上下駆動シリンダ 546, 546は、 外側矯正ローラ支持体 543, 543お よび外側矯正ローラ 54…ごと管体 10を上方に持ち上げ、 外側矯正ローラ支持 体 543, 543をス トッパー 548, 548に十分に大きい押圧力で押し付け ることで、 外側矯正ローラ 54…の位置を前記矯正位置に固定できるようになつ ている。 この十分に大きい押圧力とは、 外側矯正ローラ 54…に持ち上げられた 管体 10が内側矯正ローラ 20, 20と外側矯正ローラ 40…とに挟まれること で部分的に塑性変形を起こしうる力である。 このように、 外側矯正ローラ 54— の位置を矯正位置に固定するため、 管体 10の両側端部 13, 13の形状矯正を 行うにあたって複雑な制御を要しないで済むものとなっている。  The stopper 548 has a very short stroke as compared with the movable range of the outer straightening roller supporters 543, 543 by the stopper position setting means 549, but can move the position in the vertical direction. I'm familiar. By moving the position of the stopper 548 up and down in this way, the setting of the correction position of the outer correction rollers 54 can be slightly changed up and down. The vertical drive cylinders 546, 546 lift the tube 10 together with the outer straightening roller supports 543, 543 and the outer straightening rollers 54, and make the outer straightening roller supports 543, 543 large enough for the stoppers 548, 548. By pressing with the pressing force, the position of the outer correcting rollers 54 can be fixed at the correcting position. This sufficiently large pressing force is a force that can cause a partial plastic deformation when the tube 10 lifted by the outer straightening rollers 54 is sandwiched between the inner straightening rollers 20 and 20 and the outer straightening rollers 40. is there. As described above, since the position of the outer straightening roller 54 is fixed to the straightening position, complicated control is not required for shape correction of the both end portions 13 and 13 of the tube 10.
なお、 外側矯正ローラ 54…の矯正位置、 すなわち、 ストッパー位置設定手段 549, 549によって設定されるストッパー 548, 548の位置は、 この実 施形態では、 後述するように管体 10の両側端部 13, 13の矯正に先立って行 われる事前測定の結果に基づいて設定される。 このストッパ一位置設定手段 5 4 9 , 5 4 9は、 矯正時に外側矯正ローラ 5 4…が固定される位置を事前測定の結 果に基づいて設定する矯正ローラ固定位置設定手段として機能する。 このストッ パー位置設定手段 5 4 9, 5 4 9によって設定される外側矯正ローラ 5 4…の矯 正位置は、 管体 1 0を一時的には適正な形状以上に変形させるように、 管体 1 0 の両側端部 1 3, 1 3の断面形状が適正であった場合の外周面 1 2にちようど接 する位置よりも、 さらに管体 1 0の内側に入り込む位置にできるようになつてい る。 In this embodiment, the correction positions of the outer correction rollers 54, that is, the positions of the stoppers 548, 548 set by the stopper position setting means 549, 549, are different from each other. , Line before 13 corrections It is set based on the result of the pre-measurement performed. The stopper one position setting means 549, 549 functions as a correction roller fixing position setting means for setting the position where the outer correction rollers 54 are fixed at the time of correction based on the result of the preliminary measurement. The correction position of the outer straightening rollers 54 set by the stopper position setting means 549 is set so that the pipe 10 is temporarily deformed to an appropriate shape or more. It is now possible to place it at a position further inside the tubular body 10 than at the position where it is just in contact with the outer peripheral surface 12 when the cross-sectional shape of both end portions 13 and 13 of 10 is appropriate. ing.
また、 上下駆動シリンダ 5 4 6, 5 4 6は、 管体 1 0の両側端部 1 3, 1 3の 矯正後に管体 1 0の形状測定を行う際等には、 外側矯正ローラ支持体 5 4 3 , 5 4 3をストッパー 5 4 8 , 5 4 8から離間させ、 外側矯正ローラ 5 4…を介して 管体 1 0を内側矯正ローラ 2 0 , 2 0に弱い押圧力で押し付ける。 すなわちこの とき外側矯正ローラ 5 4…および内側矯正ローラ 2 0 , 2 0はともに管体 1 0に 対して弱い押圧力で押し付けられた状態となる。 この弱い押圧力とは、 管体 1 0 の両側端部 1 3, 1 3が実質的に変形しない程度の押圧力である。  The vertical drive cylinders 546 and 546 are used to support the outer straightening roller support 5 when measuring the shape of the tube 10 after straightening the both ends 13 and 13 of the tube 10. 4 3, 5 4 3 are separated from the stoppers 5 4 8, 5 4 8, and the tube 10 is pressed against the inner straightening rollers 20, 20 with a weak pressing force via the outer straightening rollers 54. That is, at this time, the outer straightening rollers 54 and the inner straightening rollers 20 and 20 are both pressed against the tube 10 with a weak pressing force. The weak pressing force is a pressing force that does not substantially deform both end portions 13 and 13 of the tube 10.
上下駆動シリンダ 5 4 6, 5 4 &は、 このように、 管体 1 0の両側端部 1 3, 1 3に対する矯正ローラ 5 2, 5 2, 5 4…の押圧力を、 管体 1 0の両側端部 1 3, 1 3を塑性変形させることのできる強い押圧力と、 それよりも弱い押圧力と に切り替え可能な押圧力付与手段として機能する。  As described above, the vertical driving cylinders 54, 54, 54 & are capable of reducing the pressing force of the straightening rollers 52, 52, 54,. It functions as a pressing force applying means that can switch between a strong pressing force that can plastically deform both end portions 13 and 13 and a weaker pressing force.
また、 変位検出器 5 3…は、 管体 1 0の外周面 1 2の半径方向の変位量を検出 するものであり、 ここでは、 管体 1 0の軸方向位置の異なる 5箇所にそれぞれ非 接触型のものが設けられている。  The displacement detectors 53 detect the amount of displacement of the outer peripheral surface 12 of the tube 10 in the radial direction. Here, the displacement detectors 53 are located at five different positions of the tube 10 at different axial positions. A contact type is provided.
<形状測定手順 > , <Shape measurement procedure>,
次に、 このような構成の形状測定装置 5による管体 1 0の具体的な形状測定手 順について説明する。 第 46図は、 この形状測定手段の全体の流れを説明するためのフローチャート である。 Next, a specific procedure for measuring the shape of the tubular body 10 by the shape measuring apparatus 5 having such a configuration will be described. FIG. 46 is a flowchart for explaining the overall flow of the shape measuring means.
この形状測定作業は、 まず、 形状測定装置 5の形状測定位置 (被矯正位置) へ の管体 10の搬入およびセッティングが行われる (ステップ S 1) 。  In this shape measuring operation, first, the pipe 10 is loaded into the shape measuring position (corrected position) of the shape measuring device 5 and set (step S1).
この管体 10の搬入では、 管体 10の内側矯正ローラ 52, 52を出没駆動部 522, 522の出没動作によって両外側に退避させた状態で、 管体 10を任意 の搬送装置または測定作業者が手動で搬送して外側矯正ローラ 54…の小径部 5 41…上に載せる。 そして、 出没駆動部 522, 522の出没動作によって内側 矯正ローラ 52, 52を管体 10の内側に揷入する。 この状態で上下駆動シリン ダ 546, 546によって外側矯正ローラ 54…とともに、 その上に載せられた 管体 10を持ち上げていく。  When the tube 10 is carried in, the tube 10 is moved to any outside by the inside straightening rollers 52, 52 retracted to the outside by the retracting operation of the retracting drive units 522, 522. Is manually conveyed and placed on the small-diameter portion 541 of the outer correcting rollers 54. Then, the inner straightening rollers 52, 52 are inserted into the inside of the tube 10 by the retracting operation of the retracting drive units 522, 522. In this state, the up-and-down driving cylinders 546, 546 together with the outer straightening rollers 54, lift the tube 10 placed thereon.
つづいて、 各管体 10…毎に異なる断面形状に対応した適切な矯正量を得るた め、 管体 10の両側端部 13, 13の断面形状の事前測定が行われる (ステップ S 2)  Subsequently, in order to obtain an appropriate correction amount corresponding to a different cross-sectional shape for each of the pipes 10, the cross-sectional shapes of both end portions 13, 13 of the pipe 10 are measured in advance (step S2).
この事前測定では、 管体 10の内周面 1 1が内側矯正ローラ 52, 52に軽く 接触する高さ位置まで、 外側矯正ローラ 54…上に載せられた管体 10を上下駆 動シリンダ 546, 546によって持ち上げる。 このとき、 外側矯正ローラ 54 …も管体 10の両側端部 13, 13の外周面 12に軽く接触した状態となってお り、 管体 10には内側矯正ローラ 52, 52および外側矯正ローラによって弱い 押圧力が作用した状態となっている。  In this pre-measurement, the tube 10 placed on the outer straightening rollers 54 is moved up and down by the vertical driving cylinders 546, until the inner peripheral surface 11 of the tube 10 is lightly in contact with the inner straightening rollers 52, 52. Lift by 546. At this time, the outer straightening rollers 54 are also in a state of lightly contacting the outer peripheral surfaces 12 of the both end portions 13 and 13 of the tubular body 10, and the tubular body 10 is fixed by the inner straightening rollers 52 and 52 and the outer straightening rollers. It is in a state where a weak pressing force is applied.
この状態で、 外側矯正ローラ 54…を駆動モータ 545, 545によって駆動 して管体 10を回転させ、 管体 10の少なくとも両側端部 13, 13に対応する 検出域 531…を有する変位検出器 53…を駆動して、 管体 10の両側端部 13 , 13の断面形状を検出する。 具体的にはたとえば回転位相によって変化する管 体 10の直径等から、 両側端部 13, 13がどの程度扁平になっているかなどを 得ることができる。 つづいて、 管体 1 0の両側端部 1 3 , 1 3を塑性変形させることによる断面形 状の矯正が行われる (ステップ S 3 ) 。 In this state, the outer straightening rollers 54 are driven by drive motors 545 to rotate the tube 10, and the displacement detector 53 having the detection areas 531 corresponding to at least both end portions 13 and 13 of the tube 10. … Is driven to detect the cross-sectional shape of both end portions 13, 13 of the tubular body 10. Specifically, for example, the degree of flatness of the both end portions 13 and 13 can be obtained from the diameter or the like of the tube 10 that changes depending on the rotation phase. Subsequently, the cross-sectional shape is corrected by plastically deforming both end portions 13 and 13 of the tubular body 10 (step S3).
この矯正では、 まず、 上述した事前測定の結果が示す形状測定対象である管体 1 0がどの程度の矯正を要するかに応じて、 矯正時に外側矯正ローラ 5 4…を固 定する位置 (矯正位置) が設定される。 外側矯正ローラ 5 4…の位置のみを設定 するのは、 この実施形態では、 内側矯正ローラ 5 2, 5 2は上下動作させないた めである。 外側矯正ローラ 5 4…の固定位置 (矯正位置) を設定することで、 矯 正時における全ての矯正ローラ 5 2 , 5 2 , 5 4…の相対的な位置関係が設定さ れることになる。 この外側矯正ローラ 5 4…の矯正位置の設定は、 具体的には、 ストッパー 5 4 8 , 5 4 8の高さ位置を設定するストッパー位置設定手段 5 4 9 , 5 4 9によって行われる。  In this correction, first, depending on how much correction is required for the tubular body 10 whose shape is to be measured as indicated by the result of the above-described pre-measurement, a position where the outer correction rollers 54 are fixed at the time of correction (correction). Position) is set. The reason for setting only the position of the outer straightening rollers 54 is that, in this embodiment, the inner straightening rollers 52, 52 are not moved up and down. By setting the fixed position (correction position) of the outer correction rollers 54, the relative positional relationship of all the correction rollers 52, 52, 54, ... at the time of correction is set. The setting of the correction positions of the outer correction rollers 54 is specifically performed by stopper position setting means 549, 549 for setting the height positions of the stoppers 548, 548.
外側矯正ローラ 5 4…の固定位置 (矯正位置) が設定されると、 上下駆動シリ ンダ 5 4 6, 5 4 6によって支持ローラ支持体 5 4 3, 5 4 3がストッパー 5 4 8 , 5 4 8に当接するまで持ち上げられ、 固定される。 これにより、 外側矯正口 ーラ 5 4…の高さ位置も固定される。 なお、 内側矯正ローラ 5 2 , 5 2はもとも とその高さ位置は固定されている。 このとき、 外側矯正ローラ 5 4…は管体 1 0 の外周面 1 2に強い押圧力で押し付けられ、 同時に内側矯正ローラ 5 2, 5 2が 管体 1 0の内周面 1 1に強い押圧力で押し付けられることになる。  When the fixing position (correction position) of the outer correction roller 54 is set, the support roller support 54 53, 54 43 is moved by the vertical drive cylinder 54 46, 54 46 to the stopper 54 48, 54. It is lifted until it touches 8 and fixed. As a result, the height position of the outer correction rollers 54 is also fixed. The height of the inner straightening rollers 52, 52 is originally fixed. At this time, the outer straightening rollers 54 are pressed against the outer peripheral surface 12 of the tube 10 with a strong pressing force, and at the same time, the inner straightening rollers 52, 52 are strongly pressed against the inner peripheral surface 11 of the tube 10. It will be pressed by pressure.
この状態で、 外側矯正ローラ 5 4…を駆動モータ 5 4 5, 5 4 5によって駆動 して管体 1 0を回転させることにより、 管体 1 0の両側端部 1 3, 1 3は、 その 全周にわたって矯正力が作用し、 周方向について部分的に塑性変形が起こって適 正な断面形状 (真円形状) に矯正されていく。  In this state, the outer straightening rollers 54 are driven by the drive motors 545 and 545 to rotate the tube 10 so that both end portions 13 and 13 of the tube 10 are The correction force acts over the entire circumference, and plastic deformation occurs partially in the circumferential direction, and the cross section is corrected to an appropriate cross-sectional shape (true circular shape).
こうして管体 1 0が 1回転以上、 望ましくは複数回転以上すれば、 上下駆動シ リンダ 5 4 6, 5 4 6によって支持ローラ支持体 5 4 3 , 5 4 3をストッパー 5 4 8 , 5 4 8から離間させるように下降させ、 外側矯正ローラ 5 4…および内側 矯正ローラ 5 2, 5 2による管体 1 0への強い押圧力 (矯正力) を解除する。 こ の強い押圧力の解除は、 管体 1 0に作用する押圧力が徐々に緩められるように、 管体 1 0を回転させながら行われる。 望ましくは 1回転以上かけて行う。 管体 1 0の周方向について局所的に激しい押圧力の変化 (減少) が作用することにより 、 管体 1 0の両側端部 1 3 , 1 3の断面形状が周方向について不連続になるなど の悪影響を与えることを防止するためである。 In this way, if the pipe 10 rotates more than one rotation, preferably more than one rotation, the vertical roller cylinders 546, 546 push the support roller supports 543, 543 to the stoppers 548, 548. And the inner straightening rollers 52, 52 release the strong pressing force (correcting force) on the tube 10 by the outer straightening rollers 54 and the inner straightening rollers 52, 52. This The release of the strong pressing force is performed while rotating the tube 10 so that the pressing force acting on the tube 10 is gradually reduced. Preferably, it is performed over one rotation. Due to the local intense change (decrease) in the pressing force in the circumferential direction of the tube 10, the cross-sectional shapes of both end portions 13, 13 of the tube 10 become discontinuous in the circumferential direction. This is to prevent the adverse effect of the above.
なお、 事前測定の結果、 管体 1 0の両側端部 1 3 , 1 3の形状が良く、 そのま ま矯正しなくて問題がないならば、 この矯正ステップ (ステップ S 3 ) はスキッ プしてもよい。  As a result of the pre-measurement, if the shapes of both end portions 13 and 13 of the tubular body 10 are good and there is no problem without straightening, the straightening step (step S3) is skipped. You may.
つづいて、 管体 1 0の回転に伴う外周面 1' 2の半径方向の変位量、 すなわち外 周面のフレ量が測定される (ステップ S 4 ) 。 この実施形態では、 管体 1 0の軸 方向の中央の外周面 1 2のフレ量の測定とともに、 管体 1 0の両側端部 1 3 , 1 3の断面形状の測定 (事後測定) を同時に行うようになっている。 この事後測定 は、 上述した矯正が適正に行われたか否かを確認するものである。  Subsequently, the amount of displacement of the outer peripheral surface 1'2 in the radial direction due to the rotation of the tube 10, that is, the amount of deflection of the outer peripheral surface is measured (step S4). In this embodiment, simultaneously with the measurement of the deflection amount of the outer peripheral surface 12 at the center in the axial direction of the tube 10, the measurement of the cross-sectional shape (post-measurement) of both end portions 13, 13 of the tube 10 is simultaneously performed. Is supposed to do it. This post-measurement confirms whether the above-mentioned correction was performed properly.
上述した矯正の終了時に管体 1 0への強い押圧力が解除されて下降する外側矯 正ローラ 5 4…は、 内側矯正ローラ 5 2, 5 2および外側矯正ローラ 5 4…が管 体 1 0に軽く接触する高さ位置で、 その下降動作が止められる。 外周面 1 2のフ レの測定は、 この状態、 すなわち上述した事前測定と同様に、 管体 1 0に内側矯 正ローラ 5 2 , 5 2および外側矯正ローラによって弱い押圧力が作用した状態で 行われる。  At the end of the above-described straightening, the outer pressing rollers 54, which are released by releasing the strong pressing force on the tube 10 and descend, are formed by the inner straightening rollers 52, 52 and the outer straightening roller 54 ... The lowering operation is stopped at the height position where it comes into light contact with the object. The measurement of the flatness of the outer peripheral surface 12 was performed in this state, that is, in the state where the weak pressing force was applied to the pipe 10 by the inner straightening rollers 52 and 52 and the outer straightening roller, as in the above-mentioned preliminary measurement. Done.
外周面 1 2のフレの測定は、 管体 1 0に内側矯正ローラ 5' 2 , 5 2および外側 矯正ローラによって弱い押圧力が作用した状態で外側矯正ローラ 5 4…を駆動モ 一夕 5 4 5, 5 4 5によって駆動して管体 1 0を回転させ、 各変位検出器 5 3— を駆動して、 管体 1 0の軸方向について 5箇所における外周面の変位量 (フレ) が測定される。 このうち管体 1 0の両側端部 1 3 , 1 3の変位検出器 5 3…によ つて検出される変位量は、 管体 1 0の両側端部 1 3 , 1 3の断面形状を検出する ためものである。 すなわち、 管体 1 0の両側端部 1 3, 1 3の変位検出器 5 3… による測定は、 管体 1 0の両側端部 1 3 , 1 3の断面形状の事後測定となつてい る。 The deflection of the outer peripheral surface 12 is measured by driving the outer straightening rollers 5 4… in a state where the inner straightening rollers 5 ′ 2, 52 and the outer straightening rollers are applied with a weak pressing force on the tube 10. The tube 10 is rotated by driving with 5, 5 45, and the displacement detectors 5 3 are driven to measure the displacement (deflection) of the outer peripheral surface at 5 points in the axial direction of the tube 10 Is done. Of these, the displacement detected by the displacement detectors 53 on both ends 13, 13 of the tube 10 is based on the cross-sectional shape of both ends 13, 13 of the tube 10. It is for doing. That is, the displacement detectors 5 3 at both ends 13, 13 of the tubular body 10 ... Is a post-measurement of the cross-sectional shape of both ends 13, 13 of the tubular body 10.
こうして管体 1 0の外周面 1 2の変位量の測定が事後測定とともに完了すれば 、 この事後測定の結果が適正であつたかが判断される (ステップ S 5 ) 。  When the measurement of the displacement amount of the outer peripheral surface 12 of the tubular body 10 is completed together with the subsequent measurement in this way, it is determined whether the result of the subsequent measurement is appropriate (step S5).
5 この事後測定の結果が不適正であったならば (ステップ S 5で N G) 、 上述し た管体 1 0の両側端部 1 3, 1 3の矯正がうまくいっていないため、 ステップ S 3に戻り、 再度管体 1 0の両側端部 1 3 , 1 3の断面形状の矯正を繰り返す。 な お、 所定回数矯正を繰り返してもステップ S 5の事後測定結果が N Gであれば、 矯正が効かない不良管として当該管体 1 0の形状測定を終了すればよい。  5 If the result of this post-measurement is incorrect (NG in step S5), since the correction of the both ends 13 and 13 of the tubular body 10 described above has not been successful, the process proceeds to step S3. Return and repeat the correction of the cross-sectional shape of both ends 13 and 13 of the tube 10 again. If the post-measurement result in step S5 is NG even after the correction is repeated a predetermined number of times, the shape measurement of the tube 10 may be terminated as a defective pipe for which the correction is not effective.
- 0 事後測定の結果が適正であれば (ステップ S 5で O K) 、 管体 1 0の両側端部 1 3 , 1 3が実際の使用時に近似した状態で前記ステップ S 4の外周面 1 2のフ レの測定が行われたと推定できることから、 前記ステップ S 4にて得られた管体 1 0の外周面 1 2のフレ量をもって、 この管体 1 0の形状測定結果とすることを ' 決定し、 形状測定を完了する (ステップ S 6 ) 。 . -0 If the result of the post-measurement is appropriate (OK in step S5), the outer peripheral surface 1 2 of step S4 should be kept in a state where both ends 13 and 13 of the tube 10 are similar to those in actual use. Since it is estimated that the measurement of the tube 10 was performed, it is assumed that the shape measurement result of the tube 10 is determined by using the amount of deflection of the outer peripheral surface 12 of the tube 10 obtained in the step S4. After the determination, the shape measurement is completed (step S6). .
5 こうして管体 1 0の形状測定が完了すれば、 管体 1 0がこの形状測定装置 5か ら搬出される (ステップ S 7 ) 。  5 When the shape measurement of the tube 10 is completed in this way, the tube 10 is unloaded from the shape measuring device 5 (step S7).
この管体 1 0の搬出は、 上記と逆の手順で管体 1 0の回転を止め、 外側矯正口 ーラ 5 4…を下降させることで管体 1 0と内側矯正ローラ 5 2 , 5 2の当接状態 を解除し、 内側矯正ローラ 5 2 , 5 2を再ぴ両外側に退避させて、 形状測定の終 0 了した管体 1 0が取り出される。 以上の第 1 0の実施形態にかかる管体の形状測定方法は、 上述した第 9の実施 形態と同様に、 その矯正ローラの配置等、 種々の変形を行ってもよい。  To remove the tube 10, the rotation of the tube 10 is stopped in the reverse order to the above, and the outer straightening rollers 54 are lowered to thereby lower the tube 10 and the inner straightening rollers 52, 52. Is released, and the inner straightening rollers 52, 52 are retreated to both outer sides again, and the tube 10 whose shape measurement has been completed is taken out. The method for measuring the shape of the tubular body according to the tenth embodiment described above may be subjected to various modifications such as the arrangement of the straightening rollers, as in the ninth embodiment.
5 く変形例〉 5 Modified example>
以上、 第 1 0の実施形態を説明したが、 本発明は上記に限定されず、 上述した 第 1〜第 9の実施形態と同様に、 種々の変形が可能であり、 また、 以下のように 構成してもよい。 As described above, the tenth embodiment has been described, but the present invention is not limited to the above. Various modifications are possible as in the first to ninth embodiments, and the following configuration may be adopted.
( 1 ) 上記第 1 0の実施形態では、 矯正ローラにより強い押圧力を作用させる 矯正時に管体 1 0の両側端部 1 3 , 1 3の断面形状に対して塑性変形を伴う矯正 を行い、 管体 1 0の形状測定時には矯正口一ラを軽く接触させて管体 1 0の両側 端部 1 3 , 1 3の断面形状を変形させることなくそのまま測定するようにしたが 、 この管体 1 0の形状測定時においても、 管体 1 0の両側端部 1 3 , 1 3多少変 形させながら測定するようにしてもよい。 このようにすると、 塑性変形を伴う矯 正で十分な矯正ができない場合であっても、 実際に使用されるときには第 4図に 示したようにフランジ 8 0等が挿入されることで矯正されるような場合と同様の 状態を再現して、 実際に即した形状測定を行うことができる。  (1) In the tenth embodiment, a strong pressing force is applied by the straightening roller.At the time of straightening, the cross-sectional shape of both end portions 13 and 13 of the tubular body 10 is corrected with plastic deformation. When the shape of the tube 10 was measured, the straightening port was lightly contacted to measure the cross-sectional shape of both ends 13 and 13 of the tube 10 without deforming it. Even when measuring the shape of 0, the measurement may be performed while slightly deforming both end portions 13 and 13 of the tubular body 10. In this way, even if correction with plastic deformation cannot be performed satisfactorily, correction is performed by inserting the flange 80 etc. as shown in Fig. 4 when actually used. By reproducing the same state as in such a case, it is possible to perform shape measurement in accordance with actual conditions.
この場合、 形状測定時の両側端部 1 3 , 1 3の変形は、 弾性変形の範囲に留ま る程度とすることが望ましい。 形状測定において測定精度を確保するためである ( 2 ) 上記第 1 0の実施形態では、 矯正を終了する際、 矯正ローラによる強い 押圧力を管体を回転させながら徐々に弱めるようにしたが、 同様に、 矯正を開始 する際、 矯正ローラによる押圧力を徐々に強めるようにしてもよい。  In this case, it is desirable that the deformation of both end portions 13, 13 at the time of shape measurement be within a range of elastic deformation. (2) In the above-described tenth embodiment, when the correction is completed, the strong pressing force by the correction roller is gradually reduced while rotating the tube. Similarly, when the correction is started, the pressing force by the correction roller may be gradually increased.
[第 1 1実施形態] [First Embodiment]
次に、 第 1 1実施形態について説明する。  Next, the eleventh embodiment will be described.
第 1 1の実施形態は、 上述した第 9、 第 1 0の実施形態と同様に、 実際の使用 時に近似した状態における管体の形状を把握するべく、 管体 1 0の両端部分の形 状を矯正しながら管体 1 0の形状を測定するものである。  In the eleventh embodiment, as in the ninth and tenth embodiments described above, the shape of the both ends of the tube 10 is determined in order to grasp the shape of the tube in a state approximated when actually used. The shape of the tube 10 is measured while correcting the shape.
以下においては、 上述した実施形態との差異について説明し、 同様の構成部分 については同一符号を付して重複説明を省略する。  In the following, differences from the above-described embodiment will be described, and the same components will be denoted by the same reference numerals, without redundant description.
第 4 7図は、 本発明にかかる管体の形状測定方法のための管体の形状測定装置 5を示す正面断面図である。 第 4 8図は、 膨張クランプ 2 0 'の断面図である。 第 4 9図は、 動作説明図である。 第 5 0図は、 形状測定対象である管体 (ワーク) 1 0の使用状態を示す正面断面図である。 FIG. 47 is a pipe shape measuring apparatus for the pipe shape measuring method according to the present invention. 5 is a front sectional view showing FIG. FIG. 48 is a sectional view of the expansion clamp 20 ′. FIG. 49 is an explanatory diagram of the operation. FIG. 50 is a front sectional view showing a use state of a pipe (work) 10 whose shape is to be measured.
第 4 7図に示すように、 第 1 1の実施形態にかかる管体の形状測定方法は、 管 体 (ワーク) 1 0に対して、 その両側端部近傍の内側に一対の膨張クランプ 6 6 , 6 6を揷入し、 これを膨張させて管体 1 0の内周面 1 1の全周にわたって接触 させ、 この状態で一対の膨張クランプ 6 6, 6 6の中心軸を回転軸として一対の 膨張クランプ 6 6, 6 6とともに管体 1 0を回転させ、 このときの管体 1 0の外 周面 1 2の半径方向の変位量を管体 1 0の外側に配置された変位検出器 3 0…に よって検出するものである。 ぐ膨張:  As shown in FIG. 47, the method for measuring the shape of the tube according to the eleventh embodiment is such that a pair of expansion clamps 6 6 , 66 are inflated and brought into contact with the entire circumference of the inner peripheral surface 11 of the tubular body 10. In this state, a pair of expansion clamps 66, 66 with the central axis of rotation as the rotation axis is used. The tube 10 is rotated together with the expansion clamps 66, 66 of the tube, and the displacement amount in the radial direction of the outer peripheral surface 12 of the tube 10 at this time is detected by a displacement detector arranged outside the tube 10. 30 ... is detected. Swelling:
一対の膨張クランプ 6 6 , 6 6は、 管体 1 0の形状測定の基準を定めるもので ある。  The pair of inflation clamps 66, 66 define the standard for measuring the shape of the tube 10.
この一対の膨張クランプ 6 6, 6 6は略水平に並べて配置され、 形状測定対象 である管体 1 0は、 この一対の膨張クランプ 6 6 , 6 6によって略水平姿勢で支 持されるようになっている。  The pair of expansion clamps 66, 66 are arranged substantially horizontally, and the tubular body 10 whose shape is to be measured is supported in a substantially horizontal posture by the pair of expansion clamps 66, 66. Has become.
この一対の膨張クランプ 6 6 , 6 6は、 第 4 8図に示すように、 円柱形状で大 径部 6 7 1と小径部 6 7 2を有するクランプ本体 6 7と、 前記クランプ本体 6 7 の小径部 6 7 2の外周面を覆うように取り付けられた膨張リング (筒体) 6 8 5 とを備えている。  As shown in FIG. 48, the pair of expansion clamps 6 6 and 6 6 have a cylindrical main body 6 7 having a large-diameter portion 6 71 and a small-diameter portion 6 72, and a clamp main body 6 7. An expansion ring (cylindrical body) 685 attached so as to cover the outer peripheral surface of the small diameter portion 672 is provided.
一対の膨張クランプ 6 6 , 6 6は、 クランプ本体 6 7 , 6 7の大径部 6 7 1の 両外側において、 第 4 7図等に示すように、 回転駆動源 6 9 , 6 9に取り付けら れており、 膨張クランプ 6 6 , 6 6の中心軸回りに正確に回転できるように支持 されている。  The pair of expansion clamps 6 6, 6 6 are attached to the rotary drive sources 6 9, 6 9 on both outer sides of the large diameter portion 6 7 1 of the clamp body 6 7, 6 7, as shown in FIG. 47 etc. The expansion clamps 66 are supported so that they can rotate accurately around the central axis of the expansion clamps 66.
また、 膨張クランプ 6 6 , 6 6の少なくとも一方は、 図示しない出没駆動手段 により、 管体 1 oをセッ トする際にその邪魔にならないように軸方向外向きに退 避移動できるようになつている。 Further, at least one of the expansion clamps 66, 66 is provided with a not-shown protruding / retracting driving means. Thus, when the tube 1 o is set, it can be retracted axially outward so as not to obstruct it.
クランプ本体 6 7には、 作動油が充填される油路 6 8が形成されている。 この 油路 6 8は、 クランプ本体 6 7の小径部 6 7 2内において放射状に広がる複数の 管路によって膨張リング 6 8 5の内側に形成された膨張室 6 8 3に連通している この膨張室 6 8 3は、 クランプ本体 6 7の小径部 6 7 2の外周面と、 膨張リン グ 6 8 5の内周面との間に形成されている。 後述するように、 この膨張室 6 8 3 に作動油が供給され、 作動油圧 (流体圧) によってこの膨張室 6 8 3が膨張し、 膨張リング 6 8 5が半径方向に膨出した場合であっても、 膨張室 6 8 3が密閉さ れた状態を維持するため、 この膨張室 6 8 3の軸方向の両端部には密閉手段が設 けられている。  The clamp body 67 has an oil passage 68 filled with hydraulic oil. The oil passage 68 communicates with an expansion chamber 683 formed inside the expansion ring 685 by a plurality of radially extending pipes in the small diameter portion 672 of the clamp body 67. The chamber 683 is formed between the outer peripheral surface of the small diameter portion 672 of the clamp body 67 and the inner peripheral surface of the expansion ring 685. As described later, hydraulic oil is supplied to the expansion chamber 683, and the expansion chamber 683 is expanded by the operating oil pressure (fluid pressure), so that the expansion ring 685 expands in the radial direction. Even in this case, sealing means is provided at both ends in the axial direction of the expansion chamber 683 in order to keep the expansion chamber 683 sealed.
この実施形態では、 具体的には、 クランプ本体 6 7の全周にわたって形成され た溝部に Oリング 6 8 4 , 6 8 4がはめ込まれ、 この Oリング 6 8 4 , 6 8 4が 、 クランプ本体 6 7の外周面 (溝部) および膨張リング 6 8 5の内周面と密着す る構造により、 膨張室 6 8 3 3が密閉されるようになっている。 この 0リング 6 8 4 , 6 8 4は、 常時は膨張リング 6 8 5によって内側に押しつぶされた形態と なっており、 膨張リング 6 8 5が膨張して半径方向に膨出したときには、 0リン グ 6 8 4 , 6 8 4は膨張リング 6. 8 5の内周面に密着したままその外径が大きく なるように変形し、 膨張リング 6 8 5とクランプ本体 6 7の小径部 6 7 2の外周 面との密閉状態を維持できるようになつている。 この 0リング 6 8 4, 6 8 4の 材質としては、 たとえばゴムを挙げることができるが、 上記〇リングとしての機 能を果たすことができる弾性体であれば、 任意の材料を採用することができる。 クランプ本体 6 7の大径部 6 7 1内の油路 6 8は、 大径部 6 7 1の外側端面の 中心位置においてクランプ本体 6 7の外部に連通している。 この大径部 6 7 1内 の油路 6 8の端部には雌ねじ部 6 8 1が形成されており、 ここに操作ネジ 6 8 2 が装着されている。 この操作ネジ 6 8 2は、 図示しな モータ等の駆動源により 、 任意の方向に任意の量だけ回転操作することができるようになつている。 この膨張クランプ 6 6 , 6 6においては、 この操作ネジ 6 8 2を回転操作して 雌ねじ部 6 8 1内を進退させることにより、 雌ねじ部 6 8 1内の作動油 (流体) を油路 6 8の奥部に送り込み、 上述した膨張室 6 8 3を含む油路 6 8内の作動油 圧 (流体圧) を上げ、 これにより膨張室 6 8 3に作動油を送り込んで膨張室 6 8 3を膨張させることができるようになつている。 膨張室 6 8 3が膨張するとは、 具体的には、 上述した膨張リング 6 8 5が周方向に延び、 その外径が大きくなり 、 半径方向について膨出することである。 In this embodiment, specifically, O-rings 684, 684 are fitted into grooves formed over the entire circumference of the clamp body 67, and the O-rings 684, 684 The expansion chamber 683 3 is hermetically sealed by a structure that is in close contact with the outer peripheral surface (groove) of 67 and the inner peripheral surface of the expansion ring 685. The O-rings 684 and 684 are normally squeezed inward by the expansion ring 685, and when the expansion ring 685 expands and bulges in the radial direction, the 0-ring The small diameter portion of the expansion ring 685 and the clamp body 6 7 is deformed so that the outer diameter of the expansion ring 6 8 4, 6 84 It is possible to maintain a sealed state with the outer peripheral surface. The material of the O-rings 684 and 684 may be, for example, rubber, but any material may be used as long as it is an elastic body that can perform the function of the O-ring. it can. The oil passage 6.8 in the large diameter portion 671 of the clamp body 67 communicates with the outside of the clamp body 67 at the center position of the outer end surface of the large diameter portion 671. An internal thread 681 is formed at the end of the oil passage 68 in the large-diameter portion 671, where the operation screw 6882 is formed. Is installed. The operation screw 682 can be rotated by an arbitrary amount in an arbitrary direction by a driving source such as a motor (not shown). In the expansion clamps 6 6 and 6 6, the operating oil 6 82 is rotated to move the female screw 6 8 1 forward and backward, so that the hydraulic oil (fluid) in the internal screw 6 8 1 is passed through the oil passage 6. 8 and raises the hydraulic oil pressure (fluid pressure) in the oil passage 68 including the above-mentioned expansion chamber 683, whereby the hydraulic oil is sent into the expansion chamber 683 and the expansion chamber 683 Can be expanded. Specifically, the expansion chamber 683 expands when the above-described expansion ring 685 extends in the circumferential direction, its outer diameter increases, and the expansion ring expands in the radial direction.
膨張リング 6 8 5は、 所定の弾性を有する弾性体から形成されている。 この膨 張リングの材質としては、 たとえば、 合金鋼等の金属、 合成樹脂、 合成ゴム等を 挙げることができるが、 膨張リングとしての機能を果たすことができる弾性体で あれば、 任意の材料を採用することができる。  The expansion ring 685 is formed of an elastic body having a predetermined elasticity. As the material of the expansion ring, for example, metal such as alloy steel, synthetic resin, synthetic rubber, and the like can be mentioned. Any material can be used as long as it is an elastic body that can function as the expansion ring. Can be adopted.
この膨張リング 6 8 5は、 その内側の膨張室 6 8 3に作動油が送り込まれると 、 送り込まれる作動油による半径方向外向きの圧力 (作動油圧、 流体圧)' を受け ると、 周方向について均等に膨張し、 その外径が大きくなるように変形する。 こ の膨張変形により、 膨張リング 6 8 5の外周面は、 管体 1 0の内周面と全周にわ たって接触するようになっている。  When the hydraulic oil is fed into the expansion chamber 683 inside the expansion ring 685, the expansion ring 685 receives a radially outward pressure (working oil pressure, fluid pressure) 'by the sent hydraulic oil, and the circumferential direction is changed. Expands evenly and deforms so that its outer diameter increases. Due to this expansion deformation, the outer peripheral surface of the expansion ring 685 comes into contact with the inner peripheral surface of the tubular body 10 over the entire circumference.
この膨張リング 6 8 5は、 軸方向について所定の長さを有している。 第 4 9 B 図に示すように、 膨張時においてもその外周面が軸方向についてほぼ同一直径を 保ったままで膨張変形するようになっている。 このため、 管体 1 0は、 膨張リン グ 6 8 5と軸方向について所定の接触幅で面接触する。 したがって、 膨張クラン プ 6 6 , 6 6が管体 1 0の内周面 1 1に局所的に接触することで管体 1 0が実際 の使用時とは異なる形状に変形することを防止して、 正確な形状測定に寄与する ことができる。 また、 管体 1 0に不適正な変形を与えることなく、 大きな押圧力 をもって接触させることも可能となる。 gg また、 この膨張リング 6 8 5の外周表面は十分に平滑化されており、'管体 1 0 の内周面 1 1に密着状態で接触するようになっている。 The expansion ring 685 has a predetermined length in the axial direction. As shown in FIG. 49B, even when inflated, the outer peripheral surface expands and deforms while maintaining substantially the same diameter in the axial direction. Therefore, the tubular body 10 comes into surface contact with the expansion ring 685 with a predetermined contact width in the axial direction. Therefore, it is possible to prevent the tube 10 from being deformed into a shape different from that in actual use by the expansion clamps 66, 66 locally contacting the inner peripheral surface 11 of the tube 10. This can contribute to accurate shape measurement. In addition, the tube 10 can be brought into contact with a large pressing force without giving an inappropriate deformation. gg In addition, the outer peripheral surface of the expansion ring 685 is sufficiently smooth, so that it comes into close contact with the inner peripheral surface 11 of the tubular body 10.
この一対の膨張クランプ 6 6 , 6 6は、 管体 1 0の実際の使用時における支持 予定位置 (第 4図でハッチングを施した領域 S内) で、 管体 1 0と当接するよう になっている。 これにより管体 1 0が実際に使用されるときに回転動作の基準と なる部分を、 形状測定における基準とすることができ、 より実際に即した測定を 実現することができる。  The pair of expansion clamps 66, 66 come into contact with the tube 10 at the position where the tube 10 is to be supported during actual use (in the hatched area S in FIG. 4). ing. Thus, a portion serving as a reference for the rotational operation when the tube 10 is actually used can be used as a reference in the shape measurement, and more practical measurement can be realized.
このような膨張クランプ 6 6 , 6 6によると、 膨張クランプ 6 6 , 6 6は膨張 リング 6 8 5が周方向について均等に膨出して管体 1 0の内周面 1 1と全周にわ たって当接するから、 管体 1 0は実際の使用時にフランジによって支持される場 合とほぼ同一の条件で支持された状態となる。 すなわち、 一対の膨張クランプ 6 6 , 6 6の中心軸位置は、 管体 1 0の内周面 1 1がなす円の中心にほぼ一致する こととなる。  According to such expansion clamps 66 and 66, the expansion clamps 66 and 66 are formed such that the expansion ring 685 is evenly swelled in the circumferential direction, and extends around the inner peripheral surface 11 of the tube 10 and the entire circumference. Since the pipes 10 abut, the tube 10 is supported under almost the same conditions as those supported by the flange during actual use. That is, the center axis position of the pair of expansion clamps 66, 66 substantially coincides with the center of the circle formed by the inner peripheral surface 11 of the tubular body 10.
そして、 この状態で一対の膨張クランプ 6 6 , 6 6をその中心軸回りに回転さ せれることにより、 フランジによってその内周面 1 1で支持される管体 1 0が実 際に使用されるときに極めて近似した回転状態が実現でき、 この回転のもとでの 管体 1 0の挙動は、 実際の使用時とほぼ同一となる。 したがって、 このようにし て回転させた管体 1 0の外周面の変位量を検出すれば、 後述するように、 管体の 曲がり、 偏肉、 その他、 管体の断面形状 (真円度) 等の影響をすベて統合したフ レを検出することができる。  Then, by rotating the pair of expansion clamps 66 around the central axis in this state, the pipe body 10 supported on the inner peripheral surface 11 by the flange is actually used. Sometimes a very similar rotation state can be realized, and the behavior of the tube 10 under this rotation is almost the same as in actual use. Therefore, if the displacement of the outer peripheral surface of the tube 10 rotated in this way is detected, as described later, the tube bends, uneven thickness, the cross-sectional shape of the tube (roundness), etc. All integrated effects can be detected.
また、 一対の膨張クランプ 6 6, 6 6は管体 1 0の内周面 1 1の全周にわたつ て接触するため、 一対の膨張クランプ 6 6 , 6 6の中心軸位置を管体 1 0の内周 面 1 1がなす円の中心により確実に位置させ、 実際の使用時の回転状態に近似し た状態を実現することができる。  Further, since the pair of expansion clamps 66, 66 are in contact with the entire circumference of the inner peripheral surface 11 of the tube 10, the center axis position of the pair of expansion clamps 66, 66 is set to the tube 1 The inner peripheral surface of 0 can be positioned more reliably at the center of the circle formed by 1 and a state close to the rotating state in actual use can be realized.
また、 一対の膨張クランプ 6 6 , 6 6は管体 1 0の內周面 1 1の全周にわたつ て接触するため、 管体 1 0により大きな押圧力をもって接触しても、 その押圧力 gQ を周方向について略均等に分布させることができ、 正確な形状測定に寄与するこ とができる。 Also, since the pair of expansion clamps 66, 66 are in contact with the entire circumference of the outer circumferential surface 11 of the tube 10, even if the tube 10 comes into contact with a larger pressing force, the pressing force gQ can be distributed substantially uniformly in the circumferential direction, which can contribute to accurate shape measurement.
たとえば、 一般的なクランプとして、 いわゆる割れッメタイプのクランプ、 す なわち、 複数のッメ部において管体 1 0の内周面 1 1に接触し、 複数のッメ部の 間隔を拡げることで、 管体 1 0の内周面 1 1の複数箇所を半径方向外向きに押圧 して支持するクランプがある。 しかしながら、 このような割れッメタイプのクラ ンプでは、 管体 1 0の内周面 1 1のうち、 周方向について局所的にッメ部が接触 するため、 管体 1 0の断面を周方向について不均等に変形させてしまう恐れがあ る。 とくに、 管体 1 0が薄肉であったり、 柔らかい材質の場合には管体 1 0が不 均等に変形してしまうことで正確な形状測定ができない。 これに対し、 本発明に かかる管体の形状測定方法における膨張クランプ 6 6 , 6 6では、 膨張クランプ For example, as a general clamp, a so-called crack-type clamp, that is, by contacting the inner peripheral surface 11 of the tubular body 10 at a plurality of holes, and increasing the interval between the plurality of holes, There is a clamp that presses and supports a plurality of locations on the inner peripheral surface 11 of the tube 10 in a radially outward direction. However, in such a crack-type clamp, the cross-section of the tube 10 in the circumferential direction is inadequate in the circumferential direction because the inside of the inner surface 11 of the tube 10 comes into contact locally with the circumferential portion. There is a danger of even deformation. In particular, when the tube 10 is thin or made of a soft material, accurate shape measurement cannot be performed because the tube 10 is deformed unevenly. On the other hand, in the expansion clamps 66 and 66 in the method for measuring the shape of the tubular body according to the present invention, the expansion clamp
6 6 , 6 6は管体 1 0の内周面の全周にわたって接触するため、 前記従来の一般 的な割れッメタイプのク ンプのような不具合がない。 Since 66 and 66 are in contact with the entire circumference of the inner peripheral surface of the tubular body 10, there is no such a defect as the conventional general cracked-type pump.
また、 管体 1 0の内側に一対の膨張クランプ 6 6 , 6 6を挿入して膨張させ、 この膨張クランプ 6 6, 6 6ごと管体 1 0を回転させて外周面 1 2の変位量を検 出するだけであるから、 簡素な構成で実現でき、 測定誤差の累積を可及的に低減 して、 形状測定の高い精度を得ることができる。  Also, a pair of expansion clamps 66, 66 are inserted into the inside of the tube 10 to expand the tube, and the tube 10 is rotated together with the expansion clamps 66, 66 so that the displacement amount of the outer peripheral surface 12 is determined. Since only detection is required, it can be realized with a simple configuration, and accumulation of measurement errors can be reduced as much as possible, and high accuracy of shape measurement can be obtained.
また、 一対の膨張クランプ 6 6, 6 6は、 流体圧 (作動油圧) により膨張する ものとしたので、 周方向について略均等で十分に大きな膨張力を得て、 膨張クラ ンプ 6 6 , 6 6が管体 1 0の内周面 1 1を半径方向外向きに十分に大きな押圧力 で押圧することができる。 これにより、 膨張クランプ 6 6 , 6 6を管体 1 0の内 周面 1 1に確実に接触することができる。  Also, since the pair of expansion clamps 66, 66 are assumed to expand by the fluid pressure (operating oil pressure), a substantially large and sufficiently large expansion force is obtained in the circumferential direction, and the expansion clamps 66, 66 are obtained. Can press the inner peripheral surface 11 of the tube 10 radially outward with a sufficiently large pressing force. Thereby, the expansion clamps 66, 66 can be reliably brought into contact with the inner peripheral surface 11 of the tubular body 10.
また、 この実施形態では、 十分に大きな押圧力により、 管体 1 0の両端部 1 3 を拡管変形させるようになつている。  In this embodiment, both ends 13 of the tube 10 are expanded and deformed by a sufficiently large pressing force.
そして、 この拡管変形は、 管体 1 0の使用時にフランジ 8 0, 8 0が圧入され る際における管体 1 0の拡管変形と略同程度になっている。 これにより、 実際の 使用時にさらに近似した支持状態が実現でき、 これにより、 実際の使用時の回転 状態にさらに近似した状態を実現することができる。 And this pipe expansion deformation is almost the same as the pipe expansion deformation of the pipe 10 when the flanges 80 and 80 are press-fitted when the pipe 10 is used. This allows the actual A support state that is more approximated during use can be realized, thereby achieving a state that is more approximate to the rotational state during actual use.
また、 一対の膨張クランプ 6 6, 6 6が管体 1 0の内周面を押圧する押圧力は 、 管体 1 0の使用時にフランジ 8 0 , 8 0が圧入されることにより管体 1 0に作 用する拡管圧力と略同等となっている。 これにより、 実際の使用時に管体 1 0の 両端近傍にフランジ 8 0 , 8 0等を圧入される管体 1 0が実際の使用されるとき にさらに近似した支持状態が実現でき、 これにより、 実際の使用時の回転状態に さらに近似した状態を実現することができる。  The pressing force of the pair of expansion clamps 66, 66 pressing the inner peripheral surface of the tube 10 is such that the flanges 80, 80 are pressed into the tube 10 when the tube 10 is used. It is almost the same as the pipe expansion pressure applied to the pipe. As a result, it is possible to realize a supporting state that is more similar to the actual use of the tube 10 in which the flanges 80, 80, etc. are press-fitted near both ends of the tube 10 during actual use. It is possible to realize a state more approximate to the rotation state in actual use.
とくに、 管体 1 0は、 実際の使用時にフランジ 8 0 , 8 0が圧入されることに より、 その両端近傍の断面形状 (内周円) は、 フランジ 8 0 , 8 0の形状によつ てほぼ真円に矯正されるこ'とになるが、 流体圧で周方向に均等に膨張する膨張ク ランプ 6 6 , 6 6によって管体 1 0を拡管するため、 実際の使用時と同様に管 : 1 0の両端近傍を矯正した状態で管体 1 0の形状測定を行うことができる。  In particular, when the flanges 80 and 80 are press-fitted during actual use, the cross-sectional shape (inner circumference circle) near the both ends of the tube 10 depends on the shapes of the flanges 80 and 80. The tube 10 is expanded by the expansion clamps 66, 66, which expand evenly in the circumferential direction due to the fluid pressure, so that the tube is expanded as in actual use. Tube: The shape of the tube 10 can be measured with the vicinity of both ends of the tube 10 being corrected.
また、 一対の膨張クランプ 6 6 , 6 6による管体 1 0の拡管変形は、 管体 1 0 の実際の使用時における管体 1 0の拡管変形の程度に応じて、 管体 1 0の弾性変 形領域内で行われるようにしても、 管体 1 0の塑性変形領域まで達するようにし てもよい。 管体 1 0の拡管変形を弾性変形領域内に留めると、 形状測定時の管体 の拡管変形は形状測定後に戻り、 形状測定によって管体に与える影響を確実に小 さく押さえることができる。 一方、 実際の使用時に塑性変形領域まで達する拡管 変形が与えられる場合には、 これと同様の拡管変形を施すことにより、 実際の使 用時とほぼ同等の条件で形状測定を行うことができる。  The expansion of the tube 10 caused by the pair of inflation clamps 66, 66 depends on the degree of expansion of the tube 10 according to the degree of expansion of the tube 10 during actual use of the tube 10. It may be performed within the deformation region, or may reach the plastic deformation region of the tube 10. If the expansion of the tube 10 is kept within the elastic deformation region, the expansion of the tube at the time of shape measurement returns after the shape measurement, and the shape measurement can reliably suppress the influence on the tube. On the other hand, when tube expansion deformation that reaches the plastic deformation region is given during actual use, shape measurement can be performed under almost the same conditions as in actual use by performing tube expansion deformation similar to this.
(形状測定の例) ' (Example of shape measurement) ''
次に、 具体的な管体形状の例を挙げ、 第 1 1の実施形態にかかる管体の形状測 定方法の利点が特に発揮される場合について説明する。 ' ぐ両端潰れ形状管 > Next, a case where the advantage of the tube shape measuring method according to the first embodiment is particularly exhibited will be described with reference to a specific example of the tube shape. '' Tubes with crushed ends>
まず第 1の例は、 第 5 1図に示すように、 管体 1 0 6の両端部 1 0 6 a , 1 0 6 aのみが扁平な断面形状をなしているが、 その中央部 1 0 6 bは適正な真円形 状をなしている場合である。  First, in the first example, as shown in FIG. 51, only the both ends 106 a and 106 a of the tubular body 106 have a flat cross-sectional shape. 6b shows the case where the shape is an appropriate perfect circle.
感光ドラム用の基体等に供される管体は、 長尺の管材料を所定長さに切断して 製造されることが多いが、 この場合、 管体の両端近傍のみが切断によって扁平に 変形してしまう場合が往々にしてある。  A tube used as a substrate for a photosensitive drum or the like is often manufactured by cutting a long tube material into a predetermined length. In this case, only the vicinity of both ends of the tube is deformed flat by cutting. There are times when you do.
このように両端近傍が扁平に変形した形状では、 たとえば第 5 6図および第 5 7図等に示した従来の形状測定を行うと、 完全な円筒管形状からかけ離れた形状 として判定されてしまう。 所定の合格基準のある形状検查では不良品と判定され てしまう可能性も高い。  In such a shape in which the vicinity of both ends is deformed flat, for example, when the conventional shape measurement shown in FIGS. 56 and 57 is performed, it is determined as a shape far from a perfect cylindrical tube shape. It is highly likely that a shape inspection with a predetermined acceptance criterion will result in a defective product.
しかしながら、 このような管体 1 0 6は、 実際の使用時には第 4図に示したよ うにその両端にフランジ等を圧入することで、 両端近傍が真円形状に矯正され、 その形状不良は解消され、 実際の使用時の形態は完全な円筒形となり、 全く使用 するのに問題がない場合もある。 一方、 実際の使用時にフランジ等を圧入しても 完全な円筒形とは成らない本当の不良管もありうるが、 従来の形状測定方法では 、 これらを判別しようがなく、 本来は良品と判定しうるものを不良と判定してし まう可能性があった。  However, when such a tube 106 is actually used, the flanges and the like are press-fitted to both ends thereof as shown in FIG. 4 so that the vicinity of both ends is corrected to a perfect circular shape, and the defective shape is eliminated. However, in actual use, the configuration is completely cylindrical, and there are cases where there is no problem in using it at all. On the other hand, even if a flange or the like is press-fitted during actual use, there may be a real defective pipe that does not become a complete cylindrical shape. There was a possibility that what could be determined to be bad.
これに対し、 本発明にかかる形状測定方法によれば、 管体 1 0 6の両端近傍に 膨張クランプ 6 6 , 6 6を挿入し、 これを膨張させて管体 1 0 6の内周面に接触 させ、 実際の使用時により近似した拡管変形を施した状態で管体の形状測定を行 うことができるため、 第 5 1図のような両端近傍に実際の使用時には解消される 擬似不良が存在する管体に対しても、 実際の使用時に残る不良であるのか否かを 正確に判別することのできる形状測定結果を得ることができる。  On the other hand, according to the shape measuring method of the present invention, the expansion clamps 66, 66 are inserted near both ends of the tubular body 106, and are expanded to fit on the inner peripheral surface of the tubular body 106. The shape of the pipe can be measured in a state where it is brought into contact with the pipe and the pipe is deformed more closely in actual use.Therefore, pseudo defects that are eliminated in actual use near the both ends as shown in Fig. 51 It is possible to obtain a shape measurement result that can accurately determine whether or not an existing tube is a defect that remains during actual use.
このため、 従来は、 不良と判別せざるを得なかった管体についても正確に形状 測定を行い、 真の形状測定結果を提供することができる。 <材質分布不均一管 > For this reason, it is possible to accurately measure the shape of a tube that had to be determined to be defective in the past, and to provide a true shape measurement result. <Material with uneven material distribution>
本発明にかかる管体の形状測定方法の利点が特に発揮される第 2の例は、 実際 ' の使用時にフランジを圧入する前は、 完全な円筒形状をなしているが、 その材質 分布が周方向に不均一である場合である。  The second example in which the advantage of the method for measuring the shape of a tubular body according to the present invention is particularly exhibited is that, prior to press-fitting the flange during actual use, the tube has a perfect cylindrical shape, but its material distribution is circumferential. This is the case when the directions are not uniform.
第 5 2図は、 このような周方向に材質分布が不均一な管体 1 0 7の例であり、 第 5 2 A図はフランジを圧入する前の状態、 第 5 2 B図はフランジ 8 0を圧入し た後の状態を示している。  Fig. 52 is an example of such a pipe 107 in which the material distribution is not uniform in the circumferential direction. Fig. 52A shows the state before the flange is press-fitted. The state after the press-fit of 0 is shown.
この第 5 2 A図に示すように、 この管体 1 0 7は、 その全周の肉厚は均一であ る。 しかしながら、 その約左半分部分 Wが他の部分に比べて延び変形しやすいも のとなつている。 このような管体が製造される原因としては、 たとえば管体を押 出成形する時点で押出材料にムラがあった場合や、 管体に成形された後の温度条 件等の環境条件が周方向にばらついていた場合を挙げることができる。  As shown in FIG. 52A, the pipe 107 has a uniform wall thickness all around. However, its left half W is easier to deform and stretch than the other parts. The reasons why such a tube is manufactured include, for example, unevenness in the extruded material at the time of extruding the tube, and environmental conditions such as temperature conditions after the tube is formed. There can be mentioned a case where the directions vary.
このような管体 1 0の内側にフランジ 8 0を圧入すると、 元は第 5 2 A図のよ うに内周面がなす円 (内周円) の寧径が Dであった管体 1 0が、 たとえば第 5 2 B図に示すように、 内周面のなす円の直径が D' まで大きくなるように拡管変形 される。 このとき、 他の部分に比べて延び変形しやすい部分 Wは、 他の部分より 大きく延び変形してしまい、 他の部分より肉薄の部分 W' となる。  When the flange 80 is pressed into the inside of such a tube 10, the tube 10 whose original inner diameter is D as shown in Fig. 52A However, as shown in, for example, FIG. 52B, the pipe is deformed so that the diameter of the circle formed by the inner peripheral surface increases to D ′. At this time, the portion W that is easily extended and deformed compared to the other portions is extended and deformed larger than the other portions, and becomes a portion W ′ thinner than the other portions.
すなわち、 この第 2の例は、 上記第 1の例とは逆に、 実際の便用前は正常とし か判別のしょうがない形状であるにもかかわらず、 実際に使用する時には、 少な くともフランジ 8 0によって支持され、 回転中心が決定される管体の両端近傍部 分が偏肉管となってしまい、 その結果、 不良管となってしまう例といえる。 このような管体 1 0 7は、 たとえば第 5 6図および第 5 7図等に示した従来の 形状測定では、 形状測定時には完全な円筒管形状をなしているのであるから、 完 全な円筒形状であると判定せざるを得ず、 このような不良管は検出することがで きなかった。 これに対し、 本発明にかかる形状測定方法によれば、 管体 1 0の両端近傍に膨 張クランプ 6 6, 6 6を揷入し、 これを膨張させて管体 1 0の内周面に接触させ 、 実際の使用時により近似した拡管変形を施した状態で管体の形状測定を行うこ とができるため、 第 5 2図のような両端近傍に実際の使用時に発生する隠れた不 良をも検出して、 真の形状測定結果を提供することができる。 In other words, the second example, contrary to the first example, has at least a flange when it is actually used, although it has a shape that cannot be determined whether it is normal before actual use. It can be said that the tube near the both ends of the tube body supported by 80 and whose rotation center is determined becomes an uneven thickness tube, resulting in a defective tube. In the conventional shape measurement shown in, for example, FIGS. 56 and 57, such a tubular body 107 has a perfect cylindrical tube shape at the time of shape measurement. It was inevitable to determine the shape, and such a defective pipe could not be detected. On the other hand, according to the shape measuring method according to the present invention, the expansion clamps 66, 66 are inserted near both ends of the tube 10 and are expanded to fit on the inner peripheral surface of the tube 10. Since the shape of the pipe can be measured in a state where it is brought into contact with the pipe and the pipe is deformed more similar to that in actual use, hidden defects generated during actual use near both ends as shown in Fig. 52 Can also be detected to provide a true shape measurement.
<変形例 > <Modified example>
以上、 第 1 1の実施形態を説明したが、 本発明は上記に限定されず、 上述した 第 1〜第 1 0の実施形態と同様に、 種々の変形が可能であり、 また、 以下のよう に構成してもよい。  Although the first embodiment has been described above, the present invention is not limited to the above, and various modifications are possible as in the above-described first to tenth embodiments. May be configured.
( 1 ) 上記第 1 1の実施形態では、 一対の膨張クランプ 6 6 , 6 6を管体の使 用時における支持予定位置に当接させたが、 管体の内周面であれば他の位置であ つてもよい。 ただし、 支持予定位置の近傍であることが望ましい。 支持予定位置 と断面形状が近似している可能性が高いためである。  (1) In the above-described first embodiment, the pair of inflatable clamps 66, 66 are brought into contact with the planned support position when the tubular body is used. It may be a position. However, it is desirable to be near the planned support position. This is because there is a high possibility that the planned support position and the cross-sectional shape are similar.
( 2 ) 上記第 1 1の実施形態においては、 管体 1 0の軸方向を略水平方向にし て形状測定を行ったが、 管体 1. 0の軸方向を略鉛直方向に立てて形状測定を行う ようにしてもよい。 このようにすると、 管体 1 0が自重でたわむことが軽減され るため、 管体 1 0本来の形状を測定することができる。  (2) In the above-described first embodiment, the shape measurement was performed with the axial direction of the tube 10 being substantially horizontal. However, the shape measurement was performed with the axial direction of the tube 10 being substantially vertical. May be performed. In this way, the bending of the tube 10 due to its own weight is reduced, so that the original shape of the tube 10 can be measured.
( 3 ) 上記第 1 1の実施形態では、 変位検出器 3 0…を管体 1 0の複数の断面 に 1つずつ配置して管体 1 0の複数の断面 (軸方向位置) における外周面の変位 量を検出したが、 1あるいは複数の断面において、 複数の変位検出器 3 0…を配 置し、 一断面について複数の変位を検出してもよい。 このようにすると、 一断面 について複数検出される変位量から、 その断面形状についてより詳しく正確に知 ることが可能となる。  (3) In the eleventh embodiment, the displacement detectors 30 are arranged one by one on a plurality of cross sections of the tube 10 so that the outer peripheral surface of the tube 10 on the plurality of cross sections (axial position) is provided. Are detected, but a plurality of displacement detectors 30 may be arranged in one or more cross sections to detect a plurality of displacements in one cross section. By doing so, it becomes possible to know the cross-sectional shape more precisely from the displacement amounts detected for a plurality of cross-sections.
また、 第 5 3図に示すように、 管体 1 0の任意の断面 (軸方向位置) において 周方向位置が半周分異なる 2つの位置 3 1 ···, 3 2 ···, 3 3 -, 3 4… (対向す る位置) において外周面の変位を検出するようにすれば、 その断面における管体Also, as shown in FIG. 53, two positions 3 1 ····, 3 2 ···, 3 3-whose circumferential positions are different by half a circle at an arbitrary cross section (axial position) of the tube 10. , 3 4… (opposite If the displacement of the outer peripheral surface is detected at
1 0の直径を直接的に得ることができる。 すなわち、 管体.1 0を膨張クランプ 6 6 , 6 6で支持し、 膨張クランプ 6 6 , 6 6の中心軸回りに回転させる場合、 任 意の断面 (軸方向位置) 'において 1の変位検出器 3 0の変位検出量から、 回転角 度が 1 8 0度異なる位置における変位検出量を合わせることにより、 管体 1 0め 直径は理論的に得ることが可能である。 しかしながら、 この理論的に得られる直 径の精度は、 管体 1 0の回転角度の制御や回転角度の検出等の精度に影響を受け る。 これに対し、 第 5 3図に示すように周方向位置が半周分異なる位置において 外周面の変位量を検出するようにすると、 形状測定の各瞬間において 2つの変位 量を取り出してこれらを比較することで管体 1 0の直径が得られるため、 管体 1 0の回転角度の影響を受けない。 したがって、 このような管体 1 0の回転角度の 精度等の影響を受けることなく、 正確な直径を容易に得ることができる。 A diameter of 10 can be obtained directly. That is, when the tube .10 is supported by the expansion clamps 66 and 66 and rotated around the central axis of the expansion clamps 66 and 66, the displacement of 1 is detected at any cross-section (axial position). The diameter of the tube 10 can be theoretically obtained by matching the displacement detection amount at a position where the rotation angle differs by 180 degrees from the displacement detection amount of the vessel 30. However, the theoretically obtained accuracy of the diameter is affected by the accuracy of controlling the rotation angle of the tube 10 and detecting the rotation angle. On the other hand, as shown in Fig. 53, if the displacement of the outer peripheral surface is detected at a position where the circumferential position is different by half a circle, two displacements are extracted at each moment of shape measurement and compared. As a result, the diameter of the tube 10 is obtained, so that it is not affected by the rotation angle of the tube 10. Therefore, an accurate diameter can be easily obtained without being affected by the accuracy of the rotation angle of the tube 10 or the like.
( 4 ) 上記第 1 1の実施形態においては、 管体 1 0の外周面の変位量の検出位 置を複数設けたが、 少なくとも 1つあればよい。  (4) In the eleventh embodiment, a plurality of detection positions for the amount of displacement of the outer peripheral surface of the tubular body 10 are provided, but at least one position is sufficient.
( 5 ) 上記実施形態においては、 形状測定対象である管体 1 0として感光ドラ ム用の基体を挙げたが、 これに限らず、 複写機等に用いられる搬送ローラ、 現像 ローラ、 転写ローラでも好適に適用できる。 その他、 管体であれば本発明の測定 対象となりうる。  (5) In the above embodiment, a substrate for a photosensitive drum is described as the tube 10 whose shape is to be measured. However, the present invention is not limited to this. It can be suitably applied. In addition, a tubular body can be a measurement target of the present invention.
( 6 ) 上記第 1 1の実施形態においては、 一対の膨張クランプ 6 6 , 6 6によ つて実際の使用時の拡管変形と同程度に管体 1 0を拡管変形させたが、 一対の膨 張クランプ 6 6 , 6 6による管体 1 0の拡管変形は、 管体 1 0の使用時における 管体 1 0の拡管変形より小さいようにしてもよい。 このようにすると、 実際 1 0 の使用時に管体 1 0の両端近傍にフランジ 8 0 , 8 0を圧入される管体 1 0が実 際の使用されるときに近似した支持状態を実現しながら、 管体 1 0の使用時にお ける拡管変形より小さい拡管変形しか行わないため、 形状測定によって管体 1 0 に与える影響を小さく抑えることができる。 とくに、 実際の使用時には、 管体 1 0がフランジ 6 6 , 6 6が圧入されること によつて塑性変形を受ける場合であつても、 形状測定時には一対の膨張クランプ 2 0 , 2 0が弾性変形領域内の変形のみを与えるようにすると、 管体を形状測定 を行った後においても、 形状測定前と同様の形状を保たせることができる。 (6) In the eleventh embodiment, the pipe body 10 is expanded and deformed by the pair of expansion clamps 66 and 66 to the same extent as the expansion in actual use. The expansion deformation of the tube 10 by the tension clamps 66, 66 may be smaller than the expansion deformation of the tube 10 when the tube 10 is used. In this way, when the tube 10 is actually used, the flanges 80, 80 into which the flanges 80, 80 are press-fitted near both ends of the tube 10 realize a support state similar to that in actual use. However, since only the tube expansion deformation smaller than the tube expansion deformation at the time of use of the tube 10 is performed, the influence on the tube 10 by the shape measurement can be reduced. In particular, during actual use, even when the pipe 10 undergoes plastic deformation due to the press-fitting of the flanges 66, 66, the pair of expansion clamps 20 and 20 are elastic during shape measurement. If only the deformation in the deformation area is given, the same shape as before the shape measurement can be maintained even after the shape measurement of the tube is performed.
( 7 ) 上記第 1 1の実施形態においては、 実際の使用時にフランジ 8 0 , 8 0 が圧入されることによつて管体 1 0に作用する押圧力と同程度の押圧力を一対の 膨張クランプ 6 6, 6 6によって管体 1 0に作用させたが、 一 ¾"の膨張クランプ 6 6 , 6 6によって管体 1 0に作用させる押圧力は、 管体 1 0の使用時に管体 1 0に作用する拡管圧力より小さくしてもよい。 このようにすると、 実際の使用時 に管体 1 0の両端近傍にフランジ 8 0, 8 0等を圧入される管体が実際の使用さ れるときに近似した支持状態が実現しながら、 管体 1 0の使用時における拡管変 形より小さい拡管変形しか生じないため、 形状測定によって管体 1 0に与える影 響を小さく抑えることができる。  (7) In the eleventh embodiment, a pair of inflation is performed by pressing the flanges 80, 80 into a pair during the actual use by pressing the flanges 80, 80 to the same degree as the pressing force acting on the tube 10. The clamp 10 was applied to the tube 10 by the clamps 66 and 66. However, the pressing force applied to the tube 10 by the 1¾ "expansion clamps 66 and 66 was such that the tube 1 was not used when the tube 10 was used. It may be smaller than the pipe expansion pressure acting on 0. In this case, the pipe body into which the flanges 80, 80, etc. are press-fitted near both ends of the pipe body 10 during actual use is actually used While the approximated support state is sometimes realized, only expansion deformation smaller than the expansion deformation at the time of use of the tube 10 occurs, so that the influence on the tube 10 by shape measurement can be reduced.
( 8 ) 上記第 1 1の実施形態においては、 膨張クランプ 6 6 , 6 6を作動油に よる流体圧で膨張リングを膨出させるように構成したものを例として示したが、 本発明は流体圧に限定されない。 膨張させる駆動原理機構としては、 膨張動作が 、 クランプした時に前述した押圧力を得られるものであれば良い。 膨張させる駆 動原理機構としては、 膨張クランプを構成する材料が体積変化し、 温度、 電気な どにより変化量を制御できるものを用いることもできる。 例えば、 膨張クランプ 内に設けた膨張部を加熱して熱膨張させ、 この膨張力をもって管体の内周面に接 触し、 さらには拡管変形させるようにしてもよい。 あるいは、 通電されることに より膨張する材料を利用したいわゆるピエゾァクチユエ一タを用いて管体の内周 面に接触し、 さらには拡管変形させるようにしても良い。 [第 1 2実施形態]  (8) In the above-described first embodiment, the expansion clamps 66, 66 have been described as an example in which the expansion ring is expanded by the fluid pressure of the hydraulic oil. It is not limited to pressure. As a driving principle mechanism for expanding, any mechanism capable of obtaining the above-described pressing force when the expanding operation is clamped may be used. As the driving principle mechanism for expansion, a material whose expansion clamp material changes in volume and whose change amount can be controlled by temperature, electricity, or the like can be used. For example, the expansion portion provided in the expansion clamp may be heated and thermally expanded, and the expansion force may be brought into contact with the inner peripheral surface of the tubular body and further expanded. Alternatively, a so-called piezo actuator using a material that expands when energized may be used to make contact with the inner peripheral surface of the tubular body and further expand and deform the tubular body. [First and second embodiments]
次に、 本発明にかかる管体の検査装置について説明する。 第 5 4図は、 この検査装置 7 1の構成を示す機能ブロック図である。 Next, a tube inspection apparatus according to the present invention will be described. FIG. 54 is a functional block diagram showing the configuration of the inspection device 71.
この検査装置 7 1は、 上述した実施形態のうち、 たとえば第 2の実施形態にか かる自動型の形状測定装置 5と、 この形状測定装置 5によって検出された管体 1 0の外周面 1 2の変位量データから外周面 1 2のフレ量を算出するフレ量算出部 7 1 1と、 管体 1 0の外周面 1 2のフレ量の許容範囲が設定され、 記憶される許 容範囲記憶部 7 1 2と、 フレ量算出部 7 1 1において算出された管体 1 0のフレ 量が許容範囲内にあるか否かを検査する比較部 7 1 3と、 この検査結果を出力す る出力部 7 1 4とを備えている。  The inspection device 71 includes, for example, an automatic shape measurement device 5 according to the second embodiment of the above-described embodiment, and an outer peripheral surface 12 of a tubular body 10 detected by the shape measurement device 5. The deflection amount calculator 711 that calculates the deflection amount of the outer peripheral surface 12 from the displacement amount data of the outer peripheral surface 12 and the allowable range of the deflection amount of the outer peripheral surface 12 of the tubular body 10 are set and stored. Section 7 12, a comparison section 7 13 for checking whether or not the deflection amount of the tube 10 calculated in the deflection amount calculation section 7 11 is within an allowable range, and outputs the inspection result. And an output unit 7 14.
なお、 形状測定装置としては、 上記第 2の実施形態に限定されず、 他の実施形 態にかかるものでも、 あるいはそれを変形したものであってもよい。  The shape measuring device is not limited to the above-described second embodiment, but may be a device according to another embodiment or a modification thereof.
フレ量算出部 7 1 1、 許容範囲記憶部 7 1 2、 比較部 7 1 3、 および出力部 7 1 4は、 具体的には、 コンピュータからなるシーケンサ等においてそれぞれの機 能を果たすソフトウエアおよびハ一ドウヱァから構成される。  The blur amount calculation unit 7 11, the allowable range storage unit 7 12, the comparison unit 7 13, and the output unit 7 14 are, specifically, software and software that perform their functions in a sequencer or the like composed of a computer. Consists of hardware.
これらフレ量算出部 7 1 1、 許容範囲記憶部 7 1 2および比較部 7 1 3におい て取り扱われるフレ量は、 は、 たとえば形状測定装置 5により管体 1 0の軸方向 について 5箇所 (5断面) における外周面 1 2の変位量を検出する場合であれば 、 5箇所すベてのフレ量としても、 あるいは、 そのうちの一部としてもよい。 また、 複数箇所 (例えば 5箇所) のフレ量を用いる場合であっても、 最終検査 結果で合格とする条件としては、 全てのフレ量がそれぞれが所定の許容範囲内に あることとしても、 複数箇所のフレ量を組み合わせた結果が所定の許容範囲内に あることとしてもよい。 フレ量の組み合わせとは、 たとえば、 複数箇所のフレ量 のいずれもが所定の範囲内にあり、 かっこれらフレ量の合計が所定の範囲内にあ ること等を挙げることができる。  The deflection amount handled by the deflection amount calculation unit 711, the allowable range storage unit 7112, and the comparison unit 7113 is, for example, 5 points in the axial direction of the tube 10 by the shape measuring device 5 (5 If the displacement amount of the outer peripheral surface 12 in the (cross section) is to be detected, the deflection amount may be calculated for all the five places or may be a part of them. In addition, even when using the deflection amount at a plurality of locations (for example, five locations), the condition for passing the final inspection result is that even if all the deflection amounts are within a predetermined allowable range, The result of combining the amounts of runout at the points may be within a predetermined allowable range. The combination of the amounts of deflection is, for example, that all of the amounts of deflection at a plurality of locations are within a predetermined range, and the sum of the amounts of deflection is within a predetermined range.
なお、 ここでは、 形状測定装置 5で検出された管体 1 0の外周面の変位量の生 データを加工して、 外周面のフレ量等の管体 1 0の形状を表現する指標値等を算 出する算出手段を、 形状測定装置 5の外側に表現したが、 形状測定装置 5自身が 9 このような算出手段を有していてもよいことはいうまでもない。 また、 その算出 結果を出力する出力手段を有していてもよい。 Here, the raw data of the displacement amount of the outer peripheral surface of the tube 10 detected by the shape measuring device 5 is processed, and an index value or the like representing the shape of the tube 10 such as the amount of deflection of the outer peripheral surface is processed. The calculation means for calculating is expressed outside the shape measuring device 5, but the shape measuring device 5 itself 9 Needless to say, such a calculating means may be provided. Further, an output means for outputting the calculation result may be provided.
[第 1 3実施形態] [Third Embodiment]
次に、 本発明にかかる管体の製造シスデムについて説明する。  Next, a description will be given of a production system for the tubular body according to the present invention.
第 5 5図は、 この製造システム 7 2の構成を示す機能ブロック図である。 この製造システム 7 2は、 管体 1 0を製管する製管装置 7 2 1 と、 上述した検 查装置 7 1と、 検查装置 7 1の検査結果に基づいて管体 1 0を完成品とするか否 かを判定する合否判定部 7 2 2とを備えている。  FIG. 55 is a functional block diagram showing the configuration of this manufacturing system 72. As shown in FIG. The manufacturing system 72 includes a pipe-making device 72 1 for forming the tube 10, the above-described inspection device 71, and a completed tube 10 based on the inspection results of the inspection device 71. And a pass / fail determination unit 722 for determining whether or not to make the determination.
製管装置 7 2 1は、 たとえば感光ドラム用の基体を押出成形および引き抜き成 形を組み合わせることによって製管するものである。 具体的には、 アルミニウム 合金製の感光ドラム基体を製管する場合であれば、 原料を溶解させて押出加工材 料を製造する工程、 押出工程、 引き抜き加工工程、 矯正工程、 所定長さへの切断 工程、 洗浄工程等を実行する各機械装置の集合として構成されている。 なお、 製 管装置 7 2 1は、 管体を製管できるものであれば、 これに限定されるものではな く、 切削によって管体を製造するものでもよい。  The tube making device 721 is for making a tube for a photosensitive drum, for example, by combining extrusion molding and drawing molding. Specifically, in the case of producing a photosensitive drum substrate made of an aluminum alloy, a process of manufacturing an extruded material by dissolving the raw material, an extruding process, a drawing process, a straightening process, and a process of preparing a predetermined length. It is configured as a set of mechanical devices that execute the cutting process, the cleaning process, and the like. Note that the pipe producing device 721 is not limited to this as long as it can produce a tubular body, and may be one that produces a tubular body by cutting.
こうして製管された管体 1 0は、 上述した検査装置 7 1において形状が所定の 許容範囲内にあるか否かが検査され、 合否判定部 7 2 2は、 この検査結果に基づ いて所定の許容範囲内にあるのであれば、 その管体 1 0を完成品と判定する。 この製造システム 7 2においては、 製管装置 7 2 1から検査装置 7 1の形状測 定装置 5に管体 1 0を自動搬送する自動搬送装置を備えていることが望ましい。 また、 合否判定部 7 2 2において合格とされた完成品と、 .不合格と判定された 不良被疑品とを異なる場所に選別して搬送する搬送装置を備えることが望ましい また、 検査装置 7 1が備える管体の形状測定装置 5において、 管体 1 0に発生 している不良の種類や特徴等が判別された場合には、 これを製管装置 7 2 1にフ イードバックするフィードバック機能を備え、 これにより不良管の発生を未然に 防止するようにすることが好ましい。 The pipe 10 manufactured in this way is inspected by the above-described inspection device 71 to determine whether the shape is within a predetermined allowable range, and a pass / fail judgment unit 722 determines a predetermined value based on the inspection result. If it is within the allowable range, the tube 10 is determined to be a completed product. It is preferable that the manufacturing system 72 be provided with an automatic transfer device for automatically transferring the pipe 10 from the pipe forming device 7 21 to the shape measuring device 5 of the inspection device 71. In addition, it is desirable to provide a transport device for selecting and transporting the finished product passed in the pass / fail determination unit 7 22 and the suspected defective product determined to be rejected to different locations. If the type and characteristics of the defect occurring in the pipe 10 are determined by the pipe shape measuring device 5 provided in the It is preferable to provide a feedback function for performing feedback so as to prevent the occurrence of defective pipes.
[補足] [Supplement]
以上、 各実施形態に沿って本発明を説明したが、 第 9の実施形態に関する好ま しい構成として以下を挙げることができる。  As described above, the present invention has been described in accordance with the embodiments. Preferred configurations according to the ninth embodiment include the following.
このような管体の形状測定方法においては、 前記管体の両側端部にそれぞれ 3 つ以上の前記矯正ローラを接触させることが望ましい。 このようにすると、 管体 が安定するように保持しながら管体の端部形状を矯正することができる。  In such a method for measuring the shape of a tubular body, it is preferable that three or more of the straightening rollers are respectively brought into contact with both side ends of the tubular body. In this case, the end shape of the tubular body can be corrected while maintaining the tubular body in a stable state.
また、 このような管体の形状測定方法においては、 前記矯正ローラには、 前記 管体の内周面に接触する内側矯正ローラと、 前記管体の外周面に接触する外側矯 正ローラとがそれぞれ 1つ以上含まれることが望ましい。 このようにすると、 管 体を内外から挟み込むことで管体を安定して保持することができるとともに、 各 矯正ローラを互いに近くに配置することができる。 これにより、 複数の矯正ロー ラを強固に位置決めして、 管体の両側端部に対して正確な矯正を行うことができ る。 また、 管体の周方向について局所的な形状矯正を行うことも可能となる。 また、 このような管体の形状測定方法においては、 前記管体を形状測定位置へ 搬入および搬出するときには、 前記内側矯正ローラは前記管体の軸方向にスライ ド動作して前記管体の両側端部から前記管体の外部に退避することが望ましい。 このようにすると、 管体をセッ トするときに、 内側矯正ローラを軸方向外側に退 避させ、 管体を軸方向に移動動作させることなく、 形状測定位置にセットするこ とができる。  In the method for measuring the shape of a tubular body, the straightening roller includes an inner straightening roller that contacts an inner peripheral surface of the tubular body, and an outer straightening roller that contacts an outer peripheral surface of the tubular body. It is desirable to include at least one each. With this configuration, the tube can be stably held by sandwiching the tube from inside and outside, and the correction rollers can be arranged close to each other. Thereby, the plurality of correction rollers can be firmly positioned, and accurate correction can be performed on both end portions of the tubular body. It is also possible to perform local shape correction in the circumferential direction of the tube. In the method for measuring the shape of a tubular body, when the tubular body is carried into and out of the shape measuring position, the inner straightening roller slides in the axial direction of the tubular body to perform a sliding operation on both sides of the tubular body. It is desirable to retreat from the end to the outside of the tube. With this configuration, when the tube is set, the inner correction roller is retracted axially outward, and the tube can be set at the shape measurement position without moving the tube in the axial direction.
また、 このような管体の形状測定方法においては、 前記内側矯正ローラと前記 外側矯正ローラとは、 前記管体の形状測定時の前後には相対的に離間動作するこ とが望ましい。 このようにすると、 管体をセッ トするときに、 管体が内側矯正口 —ラと外側矯正ローラとによって挟まれないため、 管体を容易に形状測定位置に セッ トすることができる。 ' また、 このような管体の形状測定方法においては、 前記内側矯正ローラと前記 外側矯正ローラとは、 前記管体の周方向について異なる位置において前記管体の 内周面および外周面にそれぞれ接触することが望ましい。 このようにすると、 管 体の周方向位置が内側矯正ローラと外側矯正ローラとに挟まれる部分に対して効 率的に矯正力を加えることができる。 In such a tube shape measuring method, it is preferable that the inner straightening roller and the outer straightening roller relatively move apart before and after measuring the shape of the tubular body. In this way, when the tube is set, the tube is not pinched between the inner straightening opening and the outer straightening roller, so that the tube is easily positioned at the shape measurement position. Can be set. In addition, in such a method for measuring the shape of the tubular body, the inner straightening roller and the outer straightening roller contact the inner circumferential surface and the outer circumferential surface of the tubular body at different positions in the circumferential direction of the tubular body, respectively. It is desirable to do. With this configuration, the correcting force can be efficiently applied to a portion where the circumferential position of the tube is sandwiched between the inner correcting roller and the outer correcting roller.
また、 このような管体の形状測定方法においては、 前記外側矯正ローラが前記 管体の両側端部にそれぞれ 2つ以上あることが望ましい。 このようにすると、 2 つ以上の外側矯正ローラで管体を保持することができるため、 管体の姿勢を安定 させることができる。  Further, in such a method for measuring the shape of a tubular body, it is preferable that two or more outer straightening rollers are provided at both end portions of the tubular body. With this configuration, the pipe can be held by the two or more outer straightening rollers, so that the posture of the pipe can be stabilized.
また、 このような管体の形状測定方法においては、 前記管体の両側端部におい てそれぞれ 2つ以上の前記外側矯正ローラが前記管体の下側に当接することが望 ましい。 このようにすると、 管体下側の外側矯正ローラを、 管体を形状測定位置 へセットする前後に管体を一時的に支持させるための仮置き台として利用するこ とができる。  Further, in such a method for measuring the shape of a tubular body, it is preferable that at least two outer straightening rollers contact the lower side of the tubular body at both end portions of the tubular body. With this configuration, the outer straightening roller on the lower side of the tubular body can be used as a temporary placing table for temporarily supporting the tubular body before and after setting the tubular body at the shape measurement position.
また、 このような管体の形状測定方法においては、 前記矯正ローラは、 前記管 体の両側端部の断面形状を一時的に矯正している状態において、 それぞれ予め設 定された位置に固定することが望ましい。 このようにすると、 複雑な制御等を行 うことなく、 容易に管体の両側端部を適正な形状に矯正することができる。 また、 このような管体の形状測定方法においては、 前記矯正ローラは、 それぞ れ前記管体の両側端部の断面形状が適正であった場合の前記管体の内周面または 外周面にちようど接する位置に固定されることが望ましい。 このようにすると、 複雑な制御等を行うことなく、 容易かつ確実に管体の両側端部を適正な形状に矯 正することができる。 とくに、 矯正ローラが接触する部分の近傍についてはより 正確に管体を適正な形状に矯正することができる。  Further, in such a method for measuring the shape of a tubular body, the straightening roller is fixed to a preset position in a state where the cross-sectional shape of both end portions of the tubular body is temporarily corrected. It is desirable. In this case, both ends of the tube can be easily corrected to an appropriate shape without performing complicated control or the like. Further, in such a method for measuring the shape of the tubular body, the straightening roller may be provided on the inner peripheral surface or the outer peripheral surface of the tubular body when the cross-sectional shape of both ends of the tubular body is appropriate. It is desirable to be fixed at the position where it touches. By doing so, it is possible to easily and surely correct both end portions of the tube into an appropriate shape without performing complicated control or the like. In particular, in the vicinity of the portion where the straightening roller contacts, the pipe can be more accurately corrected to an appropriate shape.
また、 このような管体の形状測定方法においては、 前記矯正ローラの少なくと も 1つに対し、 前記管体に対して押し付ける押圧力を付与することが望ましい。 このようにすると、 矯正の自由度が得られる。 このため、 たとえば管体ごとの具 体的な形状に応じて適切な矯正を行うことも可能となる。 Further, in such a tube shape measuring method, at least the straightening roller is provided. It is preferable that a pressing force for pressing the tube be applied to one of them. In this way, a degree of freedom of correction is obtained. For this reason, for example, it is also possible to perform appropriate correction according to the specific shape of each tube.
また、 このような管体の形状測定方法においては、 前記矯正ローラに付与する 押圧力を、 前記管体の回転位相に応じて変動させることが望ましい。 このように すると、 管体の周方向位置ごどの形状に応じた矯正力を付与することができるた め、 より適切な矯正を行うことができる。  In such a tube shape measuring method, it is preferable that the pressing force applied to the correction roller is changed according to the rotation phase of the tube. By doing so, a correction force according to the shape of the pipe body in the circumferential direction and the like can be applied, so that more appropriate correction can be performed.
また、 このような管体の形状測定方法においては、 両側端部の断面形状が一時 的に矯正されている状態で回転する前記管体に対し、 その両側端部の断面形状を 検出し、 この両側端部の断面形状に応じて、 前記矯正ローラに付与する押圧力を 変動させることが望ましい。 このようにすると、 管体の両側端部の断面形状を検 出するため、 この検出結果に応じて確実に管体の形状に応じた矯正力を付与して 適切な矯正を行うことができる。  Further, in such a method for measuring the shape of the tubular body, the sectional shape of the tubular body rotating at a state where the sectional shape of the both end portions is temporarily corrected is detected. It is desirable to vary the pressing force applied to the straightening roller in accordance with the cross-sectional shape of both end portions. In this case, since the cross-sectional shape of both end portions of the tubular body is detected, a corrective force corresponding to the shape of the tubular body can be reliably applied in accordance with the detection result, and appropriate correction can be performed.
また、 このような管体の形状測定方法においては、 前記矯正ローラの少なくと も 1つは、 前記管体の両側端部の断面形状を一時的に矯正している状態において 、 予め設定された位置に固定されることが望ましい。 このようにすると、 予め設 定された位置に固定されている矯正ローラを管体の形状測定の基準として用いる ことができるため、 正確な形状測定に寄与することができる。  Further, in such a tube shape measuring method, at least one of the straightening rollers is set in advance in a state where the cross-sectional shape of both ends of the tube is temporarily corrected. It is desirable to be fixed in position. With this configuration, the correction roller fixed at a preset position can be used as a reference for measuring the shape of the tubular body, which can contribute to accurate shape measurement.
また、 このような管体の形状測定方法においては、 前記管体の両側端部に対す る一時的な矯正による変形は、 前記管体の弾性変形領域内で行われるようにする ことができる。 このようにすると、 形状測定時の管体の変形は形状測定後に戻る ため、 形状測定によって管体に与える影響を確実に小さく押さえることができる また、 このような管体の形状測定方法においては、 前記管体の両側端部に対す る一時的な矯正による変形は、 塑性変形領域まで達するようにしてもよい。 この ようにすると、 管体の両側端部の変形が塑性変形領域に達するか否かにとらわれ ることなく、 確実に管体の両側端部の断面形状を適正な形状に矯正することがで きるため、 さらに正確な形状測定を行うことができる。 In such a method for measuring the shape of a tubular body, the deformation by temporary correction of both side ends of the tubular body may be performed in an elastic deformation region of the tubular body. In this way, since the deformation of the tube at the time of shape measurement returns after the shape measurement, the influence on the tube by the shape measurement can be reliably suppressed to a small value.In such a tube shape measurement method, The deformation due to the temporary correction of both ends of the tubular body may be made to reach a plastic deformation region. In this way, it is determined whether the deformation at both ends of the tube reaches the plastic deformation region. Without this, the cross-sectional shape of both ends of the tubular body can be reliably corrected to an appropriate shape, so that more accurate shape measurement can be performed.
また、 このような管体の形状測定方法においては、 前記矯正ローラのうち少な くとも 1つが回転駆動されることが望ましい。 このようにすると、 矯正ローラが 管体を回転させる機能を果たすため、 管体に接触する部材を少なく抑えることが できる。 これにより誤差要因を排除して正確な形状測定に寄与することができ、 形状測定について高い信頼性を得ることができるとともに、 管体が損傷する可能 性を低減することができる。  Further, in such a tube shape measuring method, it is preferable that at least one of the straightening rollers is driven to rotate. In this case, since the straightening roller performs the function of rotating the tube, the number of members that come into contact with the tube can be reduced. As a result, it is possible to eliminate an error factor and contribute to accurate shape measurement, to obtain high reliability of the shape measurement, and to reduce the possibility of damage to the tube.
また、 このような管体の形状測定方法においては、 前記矯正ローラの回転駆動 は、 1つの回転駆動源によって行われることが望ましい。 このようにすると、 複 数の回転駆動源を用いた場合に生じやすい回転ムラを抑制することができるとと もに、 回転の制御を簡素化することができるため、 形状測定について高い信頼性 を得ることができる。  Further, in such a method for measuring the shape of a tubular body, it is preferable that the rotational drive of the correction roller is performed by one rotational drive source. By doing so, it is possible to suppress rotation unevenness that is likely to occur when a plurality of rotation drive sources are used, and to simplify the rotation control, thereby achieving high reliability in shape measurement. Obtainable.
また、 このような管体の形状測定方法においては、 前記変位量の検出位置には 、 前記管体の外側の複数の位置を含むことが望ましい。 このようにすると、 管体 の外側の複数の位置における外周面のフレを測定することができ、 これらを組み 合わせることで管体の形状をより具体的に把握することができる。  In such a method for measuring the shape of a tubular body, it is preferable that the detection position of the displacement amount includes a plurality of positions outside the tubular body. In this way, the deflection of the outer peripheral surface at a plurality of positions outside the tubular body can be measured, and by combining these, the shape of the tubular body can be grasped more specifically.
また、 このような管体の形状測定方法においては、 前記変位量の検出位置には In such a method for measuring the shape of a tubular body, the detection position of the displacement amount
、 前記管体の軸方向位韹が異なる複数の位置を含むことが望ましい。 このように すると、 管体の軸方向位置が異なる複数の位置において外周面のフレを測定する ことができ、 これらを組み合わせることで管体の軸方向についての形状の変化を 把握することができる。 It is desirable to include a plurality of positions where the axial positions of the tube are different. In this way, it is possible to measure the deflection of the outer peripheral surface at a plurality of positions where the axial position of the pipe is different, and it is possible to grasp a change in the shape of the pipe in the axial direction by combining these.
また、 このような管体の形状測定方法においては、 前記変位量の検出位置には In such a method for measuring the shape of a tubular body, the detection position of the displacement amount
、 前記管体の軸方向位置が一致し、 周方向位置が異なる複数の位置を含むことが 望ましい。 このようにすると、 これら複数の位置で検出される変位量を組み合わ せることにより、 この軸方向位置における管体の断面形状をより具体的に把握す ることができる。 ' It is preferable that the pipe body includes a plurality of positions where the axial position of the tubular body coincides and the circumferential position is different. In this way, by combining the displacement amounts detected at the plurality of positions, the cross-sectional shape of the tubular body at the axial position can be grasped more specifically. Can be '
また、 このような管体の形状測定方法においては、 前記変位量の検出位置には In such a method for measuring the shape of a tubular body, the detection position of the displacement amount
、 前記管体の軸方向位置が一致し、 周方向位置が半周分異なる 2つの位置を含む ことが望ましい。 このようにすると、 これら 2つの位置において検出される変位 量を組み合わせることにより、 これら 2つの位置を通る管体の直径を求めること ができ、 これにより、 より具体的に管体の形状を把握することができる。 It is desirable that the axial position of the tubular body is the same, and the circumferential position includes two positions that are different by half a circumference. In this way, by combining the displacement amounts detected at these two positions, the diameter of the tube passing through these two positions can be obtained, and thereby, the shape of the tube can be grasped more specifically. be able to.
また、 このような管体の形状測定方法においては、 前記管体の回転は、 1回転 以上とすることが望ましい。 このようにすると、 管体の周方向について全周の形 状を検出することができる。 '  Further, in such a tube shape measuring method, it is preferable that the rotation of the tube be one rotation or more. This makes it possible to detect the shape of the entire circumference in the circumferential direction of the tube. '
また、 このような管体の形状測定方法においては、 前記変位量の検出は、 前記 管体を回転させる全期間または一部期間において連続的に行うことができる。 こ のようにすると、 管体の周方向について局部的な形状変化も検出することができ る。  Further, in such a method of measuring the shape of the tubular body, the detection of the displacement amount can be continuously performed during the entire period or a partial period during which the tubular body is rotated. By doing so, it is possible to detect a local shape change in the circumferential direction of the tube.
また、 このような管体の形状測定方法においては、 前記変位量の検出は、 前記 管体を回転させる間に断続的に行うこととしてもよい。 このようにすると、 管体 の外周面の変位量を簡易に検出することができる。  In such a method for measuring the shape of a tubular body, the detection of the displacement amount may be performed intermittently while rotating the tubular body. This makes it possible to easily detect the amount of displacement of the outer peripheral surface of the tubular body.
また、 このような管体の形状測定方法においては、 前記管体の回転は断続的に 停止させ、 前記変位量の検出は、 前記管体の回転が停止しているときに行うよう にしてもよい。 このようにすると、 管体の外周面の変位量について安定した検出 ができる。  In such a method for measuring the shape of a tubular body, the rotation of the tubular body may be intermittently stopped, and the detection of the displacement may be performed when the rotation of the tubular body is stopped. Good. With this configuration, stable detection of the displacement amount of the outer peripheral surface of the tube can be performed.
また、 このような管体の形状測定方法においては、 前記変位量の検出は、 前記 管体の外周面に接触する検出器を用いて行うこととしてもよい。 このようにする と、 管体の外周面の変位量について確実な検出ができる。  Further, in such a method for measuring the shape of a tubular body, the detection of the displacement amount may be performed using a detector that comes into contact with the outer peripheral surface of the tubular body. In this way, the displacement of the outer peripheral surface of the tube can be reliably detected.
また、 このような管体の形状測定方法においては、 前記変位量の検出は、 前記 管体の外周面と接触しない検出器を用いて行うことが望ましい。 このようにする と、 管体の外周面を傷めるおそれなく、 管体の外周面 変位量を検出することが できる。 In such a method for measuring the shape of a tubular body, it is preferable that the displacement is detected using a detector that does not contact the outer peripheral surface of the tubular body. In this way, the displacement amount of the outer peripheral surface of the tubular body can be detected without fear of damaging the outer peripheral surface of the tubular body. it can.
また、 このような管体の形状測定方法においては、 前記変位量の検出は、 前記 管体に対してその外側から光を照射し、 前記管体によって遮られず透過した光を 検出することによって行うことが望ましい。 このようにすると、 管体の外周面の 位量を容易かつ正確に検出することができる。 ' 第 1 1の実施形態に関連する好ましい構成として、 以下を挙げることができる 前記一対の膨張クランプは、 前記管体の使用時における支持予定位置に接触す るようにすることが望ましい。 このようにすると、 管体の実際の使用時に回転動 作等の基準となる部分を基準として形状測定することができるため、 より実際に 即した測定を行うことができる。  Further, in such a shape measurement method for a tubular body, the displacement amount is detected by irradiating the tubular body with light from outside, and detecting light transmitted without being blocked by the tubular body. It is desirable to do. This makes it possible to easily and accurately detect the position of the outer peripheral surface of the tubular body. '' The preferred configuration related to the first embodiment includes the following. It is desirable that the pair of inflation clamps be brought into contact with a position to be supported when the tubular body is used. With this configuration, the shape can be measured with reference to a portion that serves as a reference for the rotation operation and the like when the tube is actually used, so that a measurement more practical can be performed.
また、 前記一対の膨張クランプは、 前記管体の内周面の全周にわたって所定の 接触幅で面接触するようにすることが望ましい。 このようにすると、 管体の内周 面に一対の膨張クランプが局所的に接触することで管体が実際の使用時とは異な る形状に変形することを防止して、 正確な形状測定に寄与することができる。 ま た、 管体に不適正な変形を与えることなく、 管体により大きな押圧力をもって接 触することができる。  It is preferable that the pair of expansion clamps make surface contact with a predetermined contact width over the entire inner peripheral surface of the tube. This prevents the pair of expansion clamps from locally contacting the inner peripheral surface of the tube, thereby preventing the tube from being deformed into a shape different from that in actual use, thereby enabling accurate shape measurement. Can contribute. Further, the pipe can be contacted with a larger pressing force without giving an inappropriate deformation to the pipe.
また、 前記一対の膨張クランプは、 前記管体の内周面の全周を略均等に半径方 向外向きに押圧するようにすることが望ましい。 このようにすると、 一対の膨張 クランプを管体の内周面に確実に接触させて、 実際の使用時の回転状態に近似し た状態をより確実に実現することができる。  Further, it is preferable that the pair of expansion clamps press the entire circumference of the inner peripheral surface of the tubular body in a radially outward direction substantially uniformly. With this configuration, the pair of inflation clamps can be reliably brought into contact with the inner peripheral surface of the tube, so that a state similar to a rotating state in actual use can be more reliably realized.
また、 前記一対の膨張クランプは、 前記管体の内周面を半径方向外向きに押圧 することにより前記管体を拡管変形させるようにすることが望ましい。 このよう にすると、 実際の使用時に管体の両端近傍にフランジ等を圧入される管体が実際 の使用されるときに極めて近似した支持状態が実現でき、 これにより、 実際の使 用時の回転状態により近似した状態を実現することができる。 したがって、 この 状態で外周面の半径方向の変位量を検出することにより、 実際に使用きれるとき に生じるフレをより正確に検出することができる。 Further, it is preferable that the pair of expansion clamps expands and deforms the tube by pressing an inner peripheral surface of the tube radially outward. In this way, when the tube is pressed into the vicinity of both ends of the tube during actual use, a very similar support state can be realized when the tube is actually used. A state closer to the rotating state at the time of use can be realized. Therefore, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection that occurs when the device can be actually used.
また、 前記一対の膨張クランプによる前記管体の拡管変形は、 前記管体の使用 時における前記管体の拡管変形と略同程度にすることが望ましい。 このようにす ると、 実際の使用時に管体の両端近傍にフランジ等を圧入される管体が実際の使 用されるときにさらに近似した支持状態が実現でき、 これにより、 実際の使用時 の回転状態にさらに近似した状態を実現することができる。 したがって、 この状 態で外周面の半径方向の変位量を検出することにより、 実際に使用されるときに 生じるフレをさらに正確に検出することができる。  In addition, it is desirable that the expansion of the tube by the pair of expansion clamps is substantially the same as the expansion of the tube when the tube is used. In this way, when the pipe is pressed into the vicinity of both ends of the pipe at the time of actual use, a more similar support state can be realized when the pipe is actually used. The rotation state can be further approximated. Accordingly, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection that occurs when actually used.
また、 前記一対の膨張クランプが前記管体の内周面を押圧する押圧力は、 前記 管体の使用時に前記管体に作用する拡管圧力と略同等であるようにすることが望 ましい。 このようにすると、 実際の使用時に管体の両端近傍にフランジ等を圧入 される管体が実際の使用されるときにさらに近似した支持状態が実現でき、 これ により、 実際の使用時の回転状態にさらに近似した状態を実現することができる 。 したがって、 この状態で外周面の半径方向の変位量を検出することにより、 実 際に使用されるときに生じるフレをさらに正確に検出することができる。  Further, it is preferable that the pressing force of the pair of expansion clamps pressing the inner peripheral surface of the tube is substantially equal to the expanding pressure acting on the tube when the tube is used. In this way, when the tube is pressed into the vicinity of both ends of the tube at the time of actual use, a more approximate support state can be realized when the tube is actually used. Can be realized. Therefore, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection occurring when actually used.
また、 前記一対の膨張クランプによる前記管体の拡管変形は、 前記管体の使用 時における前記管体の拡管変形より小さいようにすることが望ましい。 このよう にすると、 実際の使用時に管体の両端近傍にフランジ等を圧入される管体が実際 の使用されるときに近似した支持状態が実現でき、 これにより、 実際の使用時の 回転状態にさらに近似した状態を実現することができる。 したがって、 この状態 で外周面の半径方向の変位量を検出することにより、 実際に使用されるときに生 じるフレをさらに正確に検出することができる。 また、 管体の使用時における拡 管変形より小さい拡管変形しか行わないため、 形状測定によって管体に与える影 響を小さく抑えることができる。 また、 前記一対の膨張クランプが前記管体の内周面を押圧する押圧力は、 前記 管体の使用時に前記管体に作用する拡管圧力より小さいようにすることが望まし い。 このようにすると、 実際の使用時に管体の両端近傍にフランジ等を圧入され る管体が実際の使用されるときに近似した支持状態が実現でき、 これにより、 実 際の使用時の回転状態にさらに近似した状態を実現することができる。 したがつ て、 この状態で外周面の半径方向の変位量を検出することにより、 実際に使用さ れるときに生じるフレをさらに正確に検出することができる。 また、 管体の使用 時における拡管変形より小さい拡管変形しか行わないため、 形状測定によって管 体に与える影響を小さく抑えることができる。 In addition, it is desirable that the expansion of the tube by the pair of expansion clamps is smaller than the expansion of the tube when the tube is used. In this manner, a tube which is press-fitted with flanges or the like near both ends of the tube at the time of actual use can achieve a support state similar to that at the time of actual use, thereby achieving a rotational state at the time of actual use. A more approximate state can be realized. Therefore, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection occurring when actually used. Also, since only tube expansion deformation smaller than the tube expansion deformation during use of the tube is performed, the influence on the tube by shape measurement can be suppressed to a small value. Further, it is desirable that the pressing force for pressing the inner peripheral surface of the tube by the pair of expansion clamps is smaller than the expanding pressure acting on the tube when the tube is used. In this way, a tube that is press-fitted with flanges or the like near both ends of the tube during actual use can achieve a support state similar to that in actual use, thereby achieving a rotational state during actual use. Can be realized. Therefore, by detecting the amount of displacement of the outer peripheral surface in the radial direction in this state, it is possible to more accurately detect the deflection that occurs when actually used. Further, since only tube expansion deformation smaller than the tube expansion deformation at the time of use of the tube is performed, the influence on the tube by shape measurement can be reduced.
また、 前記一対の膨張クランプによる前記管体の拡管変形は、 前記管体の弾性 変形領域内で行われるようにすることが望ましい。 このようにすると、 形状測定 時の管体の拡管変形は形状測定後に戻り、 形状測定によつて管体に与える影響を 確実に小さく押さえることができる。  In addition, it is desirable that the tube expansion deformation of the tube by the pair of expansion clamps is performed in an elastic deformation region of the tube. In this way, the expansion deformation of the tube at the time of shape measurement returns after the shape measurement, and the influence of the shape measurement on the tube can be reliably suppressed to a small level.
また、 前記一対の膨張クランプによる前記管体の拡管変形は、 前記管体の塑性 変形領域まで達するようにすることが望ましい。 このようにすると、 管体が実際 に使用される際には塑性変形に至る拡管変形が加えられる場合にも、 その実際の 拡管変形の程度に応じた適当な形状測定のための拡管変形を適宜施すことができ る。  In addition, it is desirable that the tube expansion deformation of the tube by the pair of expansion clamps reaches the plastic deformation region of the tube. In this way, when the pipe is actually used, even if the pipe expands to plastic deformation, the pipe expansion for proper shape measurement according to the actual degree of the pipe expansion is appropriately adjusted. Can be applied.
また、 前記一対の膨張クランプは、 流体圧により膨張するものとすることが望 ましい。 このようにすると、 周方向について略均等で十分に大きな膨張力を得て 、 管体の内周面に確実に接触することができる。 また、 管体の内周面を押圧する 押圧力も十分に得ることができる。  Further, it is preferable that the pair of expansion clamps expands by a fluid pressure. With this configuration, a substantially large and sufficiently large inflation force is obtained in the circumferential direction, so that the inner peripheral surface of the tubular body can be reliably contacted. Further, a sufficient pressing force for pressing the inner peripheral surface of the tube can be obtained.
また、 前記一対の膨張クランプは、 弾性を有する膨張リングを有し、 この膨張 リングをその内側から流体圧で半径方向外向きに膨出させ、 この膨張リングにお いて管体の内周面と接触するものとすることが望ましい。 このようにすると、 周 方向について略均等で十分に大きな膨張力を得て、 膨張リングを管体の内周面に 確実に接触させることができる。 また、 管体の内周面を押圧する押圧力も十分に 得ることができる。 Further, the pair of expansion clamps has an expansion ring having elasticity, and the expansion ring is bulged radially outward from the inside thereof by a fluid pressure. It is desirable to make contact. In this way, a sufficiently large and substantially uniform circumferential expansion force is obtained, and the expansion ring is attached to the inner peripheral surface of the tubular body. The contact can be made surely. Further, a sufficient pressing force for pressing the inner peripheral surface of the tube can be obtained.
また、 前記一対の膨張クランプは、 水平方向に並べて配置することが望ましい 。 このようにすると、 管体はその軸方向を略水平にした姿勢となるが、 管体がこ の姿勢で使用される場合には、 その使用時に近似した測定結果を得ることができ る。  Further, it is desirable that the pair of expansion clamps be arranged side by side in the horizontal direction. By doing so, the tube has a posture in which the axial direction is substantially horizontal, but when the tube is used in this posture, it is possible to obtain a measurement result similar to that when the tube is used.
また、 前記一対の膨張クランプは、 鉛直方向に並べて配置することが望ましい 。 このようにすると、 重力により管体の軸方向中央部がたわむことを防止して、 管体本来の形状を測定することができる。  Further, it is desirable that the pair of expansion clamps be arranged side by side in the vertical direction. With this configuration, it is possible to prevent the central portion in the axial direction of the tubular body from bending due to gravity, and to measure the original shape of the tubular body.
また、 前記変位量の検出位置には、 前記管体の外側から前記一対の膨張クラン プに対峙する位置以外の位置を含むようにすることが望ましい。 このようにする と、 管体の肉厚を加味した外周面の変位量を測定することができる。  Further, it is preferable that the displacement detection position includes a position other than a position facing the pair of expansion clamps from the outside of the tube. By doing so, the displacement amount of the outer peripheral surface in consideration of the wall thickness of the tube can be measured.
また、 前記変位量の検出位置には、 前記管体の外側の複数の位置を含むように することが望ましい。 このようにすると、 管体の外側の複数の位置における外周 面のフレを測定することができ、 これらを組み合わせることで管体の形状をより 具体的に把握することができる。  In addition, it is preferable that the detection positions of the displacement include a plurality of positions outside the tubular body. In this way, the deflection of the outer peripheral surface at a plurality of positions outside the tubular body can be measured, and by combining these, the shape of the tubular body can be grasped more specifically.
また、 前記変位量の検出位置には、 前記管体の軸方向位置が異なる複数の位置 を含むようにすることが望ましい。 このようにすると、 管体の軸方向位置が異な る複数の位置において外周面のフレを測定することができ、 これらを組み合わせ ることで管体の軸方向についての形状の変化を把握することができる。  Further, it is preferable that the detection position of the displacement amount includes a plurality of positions where the axial position of the tube is different. In this way, it is possible to measure the deflection of the outer peripheral surface at a plurality of positions where the axial position of the pipe is different, and to grasp the change in the shape of the pipe in the axial direction by combining these. it can.
また、 前記変位量の検出位置には、 前記管体の軸方向位置が一致し、 周方向位 置が異なる複数の位置を含むようにすることが望ましい。 このようにすると、 こ れら複数の位置で検出される変位量を組み合わせることにより、 この軸方向位置 における管体の断面形状をより具体的に把握することができる。  In addition, it is preferable that the detection position of the displacement amount includes a plurality of positions where the axial position of the pipe body coincides and the circumferential position is different. In this way, by combining the displacement amounts detected at the plurality of positions, it is possible to more specifically grasp the cross-sectional shape of the tube at the axial position.
また、 前記変位量の検出位置には、 前記管体の軸方向位置が一致し、 周方向位 置が半周分異なる 2つの位置を含むようにすることが望ましい。 このようにする と、 これら 2つの位置において検出される変位量を組み合わせることにより、 こ れら 2つの位置を通る管体の直径を求めることができ、 これにより、 より具体的 に管体の形状を把握することができる。 In addition, it is preferable that the detection position of the displacement amount includes two positions where the axial position of the tubular body coincides and the circumferential position is different by half a circumference. Do this By combining the displacements detected at these two positions, the diameter of the tube passing through these two positions can be obtained, and this makes it possible to grasp the shape of the tube more specifically. Can be.
また、 前記変位量の検出位置には、 前記一対の膨張クランプの少なくともいず れか一方に対峙する前記管体の外側の位置を含むようにすることが望ましい。 こ のようにすると、 膨出クランプと当接している部分における管体の肉厚を検出す ることができる。 そして、 この肉厚を他の検出位置における検出結果と組み合わ せることで、 より具体的に管体の形状を把握することができる。 たとえば、 管体 の両端近傍の外周面を基準として他の部位の外周面の変位を計測する従来の検査 に準じた検査結果も算出することが可能である。  Further, it is preferable that the detection position of the displacement amount includes a position outside the tube facing at least one of the pair of expansion clamps. With this configuration, it is possible to detect the wall thickness of the pipe at the portion in contact with the bulging clamp. Then, by combining this thickness with the detection result at another detection position, the shape of the tube can be grasped more specifically. For example, it is also possible to calculate an inspection result according to a conventional inspection in which the displacement of the outer peripheral surface of another part is measured with reference to the outer peripheral surfaces near both ends of the tubular body.
また、 前記管体の回転は、 1回転以上とすることが望ましい。 このようにする と、 管体の周方向について全周の形状を検出することができる。  Further, it is desirable that the rotation of the tube be one rotation or more. By doing so, the shape of the entire circumference in the circumferential direction of the tube can be detected.
また、 前記変位量の検出は、 前記管体を回転させる全期間または一部期間にお いて連続的に行うこととすることが望ましい。 このようにすると、 管体の周方向 について局部的な形状変化も検出することができる。  Further, it is preferable that the detection of the displacement amount is continuously performed during the entire period or a partial period of rotating the tube. In this way, a local shape change in the circumferential direction of the tube can also be detected.
また、 前記変位量の検出は、 前記管体を回転させる間に断続的に行うこととす ることが望ましい。 このようにすると、 管体の外周面の変位量を簡易に検出する ことができる。  Further, it is desirable that the detection of the amount of displacement be performed intermittently while rotating the tube. This makes it possible to easily detect the amount of displacement of the outer peripheral surface of the tube.
また、 前記管体の回転は断続的に停止させ、 前記変位量の検出は、 前記管体の 回転が停止しているときに行うようにすることが望ましい。 このようにすると、 管体の外周面の変位量について安定した検出ができる。  Preferably, the rotation of the tube is intermittently stopped, and the detection of the displacement is performed when the rotation of the tube is stopped. With this configuration, the displacement amount of the outer peripheral surface of the tube can be stably detected.
また、 前記変位量の検出は、 前記管体の外周面に接触する検出器を用いて行う こととすることが望ましい。 このようにすると、 管体の外周面の変位量について 確実な検出ができる。  Preferably, the detection of the displacement amount is performed using a detector that comes into contact with the outer peripheral surface of the tubular body. In this way, the displacement of the outer peripheral surface of the tube can be reliably detected.
また、 前記変位量の検出は、 前記管体の外周面と接触しない検出器を用いて行 うこととすることが望ましい。 このようにすると、 管体の外周面を傷めるおそれ なく、 管体の外周面の変位量を検出することができる。 Further, it is preferable that the displacement is detected using a detector that does not contact the outer peripheral surface of the tubular body. In this case, the outer peripheral surface of the tube may be damaged. Therefore, the displacement of the outer peripheral surface of the tube can be detected.
また、 前記変位量の検出は、 前記管体に対してその外側から光を照射し、 前記 管体によつて遮られず透過した光を検出することによつて行うこととすることが 望ましい。 このようにすると、 管体の外周面の変位量を容易かつ正確に検出する 'ことができる。  Further, it is preferable that the displacement amount is detected by irradiating the tube with light from the outside thereof and detecting light transmitted without being blocked by the tube. This makes it possible to easily and accurately detect the displacement of the outer peripheral surface of the tube.
産業上の利用可能性 以上のように、 本発明によれば、 複写機の感光ドラム用の基体等の管体の形状 測定方法や同装置等を提供することができる。 INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to provide a method and an apparatus for measuring the shape of a tube such as a substrate for a photosensitive drum of a copying machine.

Claims

請 求 の 範 囲' The scope of the claims'
1 . 管体の両側端部近傍の内周面に一対の基準部を当接させ、 1. A pair of reference parts are brought into contact with the inner peripheral surface near both ends of the pipe,
前記一対の基準部の位置を固定した状態で、 前記管体と前記一対の基準部との 当接部分が前記管体の内周面上で周方向にずれていくように前記管体を回転させ 前記管体の外側であって、 前記管体の周方向について固定された少なくとも 1 の位置において、 前記管体の回転に伴う前記管体の外周面の半径方向の変位量を 検出することを特徴とする管体の形状測定方法。  In a state where the positions of the pair of reference portions are fixed, the tube is rotated so that the contact portions between the tube and the pair of reference portions are shifted in the circumferential direction on the inner peripheral surface of the tube. Detecting the amount of radial displacement of the outer peripheral surface of the tubular body accompanying rotation of the tubular body at at least one position outside the tubular body and fixed in the circumferential direction of the tubular body. Characteristic tube shape measurement method.
2. 前記一対の基準部は、 球体形状に構成され tいることを特徴とする請求の 範囲第 1項に記載の管体の形状測定方法。 2. The method for measuring the shape of a tubular body according to claim 1, wherein the pair of reference portions is formed in a spherical shape.
3. 前記一対の基準部は、 前記管体の内周面と軸方向について所定の接触長さ をもって接触することを特徴とする請求の範囲第 1項に記載の管体の形状測定方 法。 3. The method for measuring the shape of a tubular body according to claim 1, wherein the pair of reference portions are in contact with an inner peripheral surface of the tubular body with a predetermined contact length in an axial direction.
4. 前記一対の基準部は、 少なくとも前記管体の外周面の半径方向の変位量を 検出するべく前記管体を回転させるときには、 連れ回りしないように前記管体の 周方向について固定されることを特徴とする請求の範囲第 1項に記載の管体の形 状測定方法。 4. The pair of reference portions are fixed in the circumferential direction of the tubular body so as not to rotate when the tubular body is rotated to detect at least a radial displacement of an outer peripheral surface of the tubular body. 2. The method for measuring the shape of a tubular body according to claim 1, wherein:
5. 前記一対の基準部は、 回転自在に支持される回転体として構成され、 その 外周面において前記管体の内周面と接触し、 前記管体の回転に対して連れ回りす ることを特徴とする請求の範囲第 1項に記載の管体の形状測定方法。 5. The pair of reference portions is configured as a rotatable body that is rotatably supported, and has an outer peripheral surface that comes into contact with an inner peripheral surface of the tubular body and rotates with the rotation of the tubular body. The method for measuring the shape of a tubular body according to claim 1, characterized in that:
6. 前記一対の基準部は、 前記管体の両外側からそれぞれ基準部支持軸により 支持され、 前記基準部支持軸は、 それぞれ前記管体の両側端部より外側に配置さ れた軸受けにより回転自在に支持されていることを特徴とする請求の範囲第 5項 に記載の管体の形状測定方法。 6. The pair of reference portions are supported by reference portion support shafts from both outer sides of the tube, respectively, and the reference portion support shafts are rotated by bearings disposed outside both side ends of the tube, respectively. The method for measuring the shape of a tubular body according to claim 5, wherein the tubular body is freely supported.
7. 前記一対の基準部のうち少なくとも一方は、 前記管体の軸方向について複 数の位置を移動可能であって、 かつ各位置において固定可能に構成されているこ とを特徴とする請求の範囲第 1項に記載の管体の形状測定方法。 7. At least one of the pair of reference portions is configured to be movable at a plurality of positions in the axial direction of the tubular body and to be fixed at each position. 2. The method for measuring the shape of a tubular body according to claim 1.
8. 前記管体の両側にそれぞれ 2つずつ配置された支持ローラを、 前記管体の 両側の外周端部に当接させて、 前記管体を前記一対の基準部に押し付けることを 特徴とする請求の範囲第 1項に記載の管体の形状測定方法。 8. Two supporting rollers respectively disposed on both sides of the tube are brought into contact with outer peripheral ends on both sides of the tube, and the tube is pressed against the pair of reference portions. The method for measuring the shape of a tubular body according to claim 1.
9. 前記変位量の検出位置には、 前記管体の'内周面と前記一対の基準部とが当 接する 2つの当接部分を通る直線に対して前記管体の外側から対峙する位置であ つて、 前記一対の基準部には対峙しない位置を含むことを特徴とする請求の範囲 第 1項に記載の管体の形状測定方法。 9. The detection position of the displacement amount is a position facing the straight line passing through the two contact portions where the inner peripheral surface of the tube and the pair of reference portions contact each other from the outside of the tube. 2. The method for measuring the shape of a tubular body according to claim 1, wherein the pair of reference portions includes positions that do not face each other.
1 0. 前記変位量の検出位置には、 前記管体の外側から前記一対の基準部に対 峙する位置を含むことを特徴とする請求の範囲第 9項に記載の管体の形状測定方 法。 10. The method for measuring the shape of a tubular body according to claim 9, wherein the position for detecting the amount of displacement includes a position facing the pair of reference portions from outside the tubular body. Law.
1 1 . 前記変位量の撿出位置には、 前記管体の外側の複数の位置を含むことを 特徴とする請求の範囲第 9項に記載の管体の形状測定方法。 11. The method for measuring the shape of a tubular body according to claim 9, wherein the position from which the amount of displacement is detected includes a plurality of positions outside the tubular body.
1 2 . 前記変位量の検出位置には、 前記管体の軸方向位置が異なる複数の位置 を含むことを特徴とする請求の範囲第 1 1項に記載の管体の形状測定方法。 ' 1 2. A plurality of positions where the axial position of the tube is different from the displacement amount detection position 12. The method for measuring the shape of a tubular body according to claim 11, comprising: '
1 3. 前記変位量の検出位置には、 前記管体の軸方向位置が一致し、 周方向位 置が異なる複数の位置を含むことを特徴とする請求の範囲第 1 1項に記載の管体 の形状測定方法。 13. The pipe according to claim 11, wherein the displacement detection position includes a plurality of positions where the axial position of the pipe body coincides and the circumferential position is different. Body shape measurement method.
1 4. 前記変位量の検出位置には、 前記管体の軸方向位置が一致し、 周方向位 置が半周分異なる 2つの位置を含むことを特徴とする請求の範囲第 1 1項に記載 の管体の形状測定方法。 14. The detection position of the displacement amount includes two positions where the axial position of the pipe body coincides and the circumferential position is different by half a circumference. Of measuring the shape of a tubular body.
1 5. 略水平姿勢の管体に対し、 その両側端部近傍の内周側面に当接する一対 の基準部と、 1 5. A pair of reference parts abutting on the inner peripheral side surface near both side ends of the pipe in a substantially horizontal posture,
前記管体の内周側面の高さが前記一対の基準部と略同一高さに位置するように 、 前記管体の外周面に下側から当接して前記管体を支持する台座部と、  A pedestal portion that abuts the outer peripheral surface of the tubular body from below so as to support the tubular body such that the height of the inner peripheral side surface of the tubular body is positioned at substantially the same height as the pair of reference portions,
前記管体の外側に設けられ、 前記管体を前記一対の基準部に押しつけるように 前記管体の外周側面を押圧する押圧部と、  A pressing portion that is provided outside the tubular body and presses an outer peripheral side surface of the tubular body so as to press the tubular body against the pair of reference portions;
前記管体の内周面と前記一対の基準部とが当接する 2つの当接部分を通る仮想 的な直線に対し、 前記管体の外側から対峙する位置において、 前記管体が前記一 対の基準部に当接した状態で回転したときに、 この回転に伴う前記管体の外周面 の半径方向の変位量を検出する変位検出器と、  At a position facing an imaginary straight line passing through two abutting portions where the inner peripheral surface of the tubular body and the pair of reference portions abut with each other, the tubular body is located at a position facing the outside of the tubular body. A displacement detector that detects a radial displacement amount of the outer peripheral surface of the tubular body caused by the rotation when the tube rotates in a state of contact with the reference portion;
を備えたことを特徴とする管体の形状測定装置。' A shape measuring device for a tubular body, comprising: '
1 6. 前記管体は手動で回転されることを特徴とする請求の範囲第 1 5項に記 載の管体の形状測定装置。 16. The tube shape measuring apparatus according to claim 15, wherein the tube is manually rotated.
1 7. 前記変位検出器は、 前記管体の外周面に接触する接触部と、 1 7. The displacement detector A contact portion that contacts the outer peripheral surface of the tubular body;
前記接触部を前記管体の外周面に押し付けるように付勢する付勢手段と、 を備 !、  Urging means for urging the contact portion to press against the outer peripheral surface of the tubular body.
前記管体の回転に伴う前記接触部の移動動作から前記変位量を検出するととも に、 前記管体を前記一対の基準部に押し付けるように前記管体の外周側面を押圧 する前記押圧部としての機能を兼ね備えることを特徴とする請求の範囲第 1 5項 に記載の管体の形状測定装置。  The pressing portion detects the amount of displacement from the movement of the contact portion accompanying the rotation of the tube, and presses the outer peripheral side surface of the tube so as to press the tube against the pair of reference portions. The tube shape measuring device according to claim 15, wherein the tube shape measuring device has a function.
1 8. 前記管体の端面に当接して、 前記管体の軸方向位置を規制するストツバ —を、 前記管体の一方側のみに備えたことを特徴とする請求の範囲第 1 5項に記 載の管体の形状測定装置。 18. The stop according to claim 15, wherein a stop which abuts on an end surface of the tube to regulate an axial position of the tube is provided only on one side of the tube. The pipe shape measurement device described.
1 9. 略水平姿勢の管体に対し、 その両側端部近傍の内周下面に当接する一対 の基準部と、 1 9. A pair of reference parts abutting on the lower surface of the inner periphery near both ends of the pipe in a substantially horizontal posture,
前記管体の両側端部にそれぞれ 2つずつ配置され、 前記管体の外周下面に当接 して前記管体を支持するとともに前記管体を前記一対の基準部に押し付ける支持 ローラと、  Two support rollers are disposed on both side ends of the tube body, respectively, and support rollers for supporting the tube body by contacting the outer peripheral lower surface of the tube body and pressing the tube body against the pair of reference portions;
前記管体の内周面と前記一対の基準部とが当接する 2つの当接部分を通る直線 に対し、 前記管体の外側から対峙する位置において、 前記管体が前記一対の基準 部に当接した状態で回転したときに、 この回転に伴う前記管体の外周面の半径方 向の変位量を検出する変位検出器と、  At a position facing the straight line passing through two contact portions where the inner peripheral surface of the tube body and the pair of reference portions contact each other from the outside of the tube body, the tube body contacts the pair of reference portions. A displacement detector for detecting a radial displacement amount of the outer peripheral surface of the tubular body caused by the rotation when the tube rotates in contact with the tube;
を備えたことを特徴とする管体の形状測定装置。 A shape measuring device for a tubular body, comprising:
2 0. 前記支持ローラ上に支持された前記管体を、 その内周下面が前記一対の 基準部に当接する測定位置と、 その内周下面が前記一対の基準部から離間する離 間位置との間で昇降動作させるベく、 前記支持ローラを略上下方向に昇降動作さ せる昇降手段を備えることを特徴とする請求の範囲第 1 9項に記載の管体の形状 測定装置。 20. The pipe body supported on the support roller is positioned at a measurement position where the lower inner peripheral surface is in contact with the pair of reference portions, and a separation position where the lower inner peripheral surface is separated from the pair of reference portions. The support roller is moved up and down in a substantially vertical direction. 10. The tube shape measuring device according to claim 19, further comprising a lifting means for raising and lowering.
2 1 . '前記昇降手段は、 前記管体の両側端部それぞれにおいて、 2つの支持口 ーラが回転可能に支持された昇降部材と、 前記昇降部材の動作方向を略上下方向 に規制する動作方向規制手段と、 前記昇降部材を昇降駆動する昇降駆動手段と、 を備えたことを特徴とする請求の範囲第 2 0項に記載の管体の形状測定装置。 21.'The elevating means comprises an elevating member in which two support rollers are rotatably supported at both side ends of the tube, and an operation for regulating the operation direction of the elevating member in a substantially vertical direction. 20. The tube shape measuring apparatus according to claim 20, further comprising: a direction regulating unit; and an elevating drive unit that drives the elevating member up and down.
2 2. 前記支持ローラは仮置き台をなすことを特徴とする請求の範囲第 1 9項 に記載の形状測定装置。 - 22. The shape measuring apparatus according to claim 19, wherein the support roller forms a temporary placing table. -
2 3. 前記支持ローラは、 前記管体の外周下面に当接する小径部と、 前記小径 部の外側に大径部を形成するべく形成され、 前記管体の両側端面に当接して前記 管体の軸方向位置を規定する立ち上がり面と、 をそれぞれ有することを特徴とす る請求の範囲第 1 9項に記載の管体の形状測定装置。 2 3. The support roller is formed so as to form a small-diameter portion in contact with the outer peripheral lower surface of the tubular body, and a large-diameter portion outside the small-diameter portion, and abuts on both side end surfaces of the tubular body to form the tubular body. 10. The tube shape measuring apparatus according to claim 19, further comprising: a rising surface that defines an axial position of the tubular body.
2 4. 前記支持ローラは、 前記一対の基準部と前記管体との当接位置とは前記 管体の軸方向位置が異なる位置において前記管体と接蝕することを特徴とする請 求の範囲第 1 9項に記載の管体の形状測定装置。 2 4. The claim, wherein the supporting roller is in contact with the tube at a position where the pair of reference portions and the tube are in contact with each other at an axial position of the tube. Item 19. A tube shape measuring apparatus according to Item 19.
2 5. 前記管体を所定の搬入位置から前記支持ローラ上まで搬送する管体搬送 手段を備えたことを特徴とする請求の範囲第 1 9項に記載の管体の形状測定装置 20. The pipe shape measuring apparatus according to claim 19, further comprising: pipe transfer means for transferring the pipe from a predetermined loading position to above the support roller.
2 6. 管体の両側端部にそれぞれ複数の矯正ローラを接触させることにより前 記管体の両側端部の断面形状を一時的に矯正し、 WO 2004/025214 l i b PCT/JP2003/011737 両側端部の断面形状が一時的に矯正されている状態で前記管体を回転させ、 この回転に伴う前記管体の外周面の半径方向の変位量を検出することを特徴と する管体の形状測定方法。 2 6. The cross-sectional shape of both ends of the tube is temporarily corrected by contacting a plurality of straightening rollers with both ends of the tube, WO 2004/025214 lib PCT / JP2003 / 011737 Rotate the tubular body in a state where the cross-sectional shape of both side ends is temporarily corrected, and determine the radial displacement of the outer peripheral surface of the tubular body due to the rotation. A method for measuring the shape of a tubular body, characterized in that it is detected.
2 7. 前記管体の両側端部に対する一時的な矯正による変形は、 前記管体の弾 性変形領域内で行われることを特徴とする請求の範囲第 2 6項に記載の管体の形 状測定方法。 27. The shape of the tubular body according to claim 26, wherein the deformation by temporary correction on both side ends of the tubular body is performed within an elastic deformation region of the tubular body. Condition measurement method.
2 8. 前記管体の両側端部に対する一時的な矯正による変形は、 塑性変形領域 まで達することを特徴とする請求の範囲第 2 6項に記載の管体の形状測定方法。 28. The method for measuring the shape of a tubular body according to claim 26, wherein the deformation by temporary correction to both side ends of the tubular body reaches a plastic deformation region.
2 9. 前記矯正ローラは、 前記管体の両側端部の断面形状を一時的に矯正して いる状態において、 それぞれ前記管体の両側端部の断面形状が適正であった場合 の前記管体の内周面または外周面にちょうど接する位置に固定されることを特徴 とする請求の範囲第 2 6項に記載の管体の形状測定方法。 2 9. The tube body when the cross-sectional shape of both side ends of the tube is appropriate in a state where the straightening roller temporarily corrects the cross-sectional shape of both sides of the tube. 27. The method for measuring the shape of a tubular body according to claim 26, wherein the tubular body is fixed at a position just in contact with an inner peripheral surface or an outer peripheral surface of the tube.
3 0. 前記矯正ローラの少なくとも 1.つを、 前記管体の回転位相に応じて変動 する押圧力で前記管体に対して押し付けることを特徴とする請求の範囲第 2 6項 に記載の管体の形状測定方法。 30. The tube according to claim 26, wherein at least one of said straightening rollers is pressed against said tube with a pressing force that varies according to a rotation phase of said tube. Body shape measurement method.
3 1 . 管体の両側端部それぞれを複数の矯正ローラで押圧しながら前記管体を 回転させることにより前記管体の両側端部を塑性変形させてその断面形状を矯正 し、 31. By rotating the tube while pressing each side end of the tube with a plurality of correcting rollers, plastically deforming the both ends of the tube to correct its cross-sectional shape,
前記管体の両側端部に対する前記矯正ローラの押圧力を弱め、 引き続き前記矯 正ローラの少なくとも一部を接触させたまま前記管体を回転させ、 この回転に伴 う前記管体の外周面の半径方向の変位量を検出することにより、 前記管体の形状 測定を行うことを特徴とする管体の形状測定方法。 The pressing force of the straightening roller against both side ends of the tubular body is reduced, and the tubular body is rotated while at least a part of the straightening roller is kept in contact, and the outer peripheral surface of the tubular body accompanying the rotation is rotated. By detecting the amount of displacement in the radial direction, the shape of the tube A method for measuring the shape of a tubular body, comprising performing measurement.
3 2. 前記管体の両側端部の断面形状の矯正の後、 前記矯正ローラの少なくと も一部を前記管体の両側端部に弱い押圧力で接触させながら前記管体を回転させ 、 この回転に伴う前記管体の両側端部の内周面および/または外周面の半径方向 の変位量を検出することにより、 前記管体の両側端部の断面形状の事後測定を行 い、 3 2. After correcting the cross-sectional shape of both ends of the tubular body, rotating the tubular body while contacting at least a part of the straightening roller with both ends of the tubular body with a weak pressing force, Post-measurement of the cross-sectional shape of both ends of the tube is performed by detecting the amount of radial displacement of the inner and / or outer surfaces of both ends of the tube due to this rotation,
この事後測定の結果が所定の基準を満たしていない場合には、 前記矯正を再度 行うことを特徴とする請求の範囲第 3 1項に記載の管体の形状測定方法。  31. The method for measuring the shape of a tubular body according to claim 31, wherein the correction is performed again when the result of the subsequent measurement does not satisfy a predetermined standard.
3 3. 管体の両側端部近傍の内側に一対の膨張クランプを挿入し、 3 3. Insert a pair of inflatable clamps inside near the both ends of the tube,
前記一対の膨張クランプを膨張させて、 前記管体の内周面の全周にわたつて接 触させ、 .  Inflating the pair of inflatable clamps to make contact with the entire inner peripheral surface of the tubular body,
前記一対の膨張クランプの中心軸を回転軸として前記膨張クランプとともに前 記管体を回転させ、  Rotating the tube together with the expansion clamp around the center axis of the pair of expansion clamps as a rotation axis,
前記管体の外側であって、 前記管体の周方向について固定された少なくとも 1 の位置において、 前記管体の回転に伴う前記管体の外周面の半径方向の変位量を 検出することを特徴とする管体の形状測定方法。  Detecting a radial displacement of an outer peripheral surface of the tubular body accompanying rotation of the tubular body at at least one position outside the tubular body and fixed in a circumferential direction of the tubular body; The method for measuring the shape of the tubular body.
3 4. 前記一対の膨張クランプは、 前記管体の使用時における支持予定位置に 接触させることを特徴とする請求の範囲第 3 3項に記載の管体の形状測定方法。 34. The method for measuring the shape of a tubular body according to claim 33, wherein the pair of expansion clamps is brought into contact with a position to be supported when the tubular body is used.
3 5. 前記一対の膨張クランプは、 前記管体の内周面の全周にわたって所定の 接触幅で面接触することを特徴とする請求の範囲第 3 3項に記載の管体の形状測 定方法。 35. The shape measurement of the tubular body according to claim 33, wherein the pair of expansion clamps are in surface contact with a predetermined contact width over the entire circumference of the inner peripheral surface of the tubular body. Method.
3 6. 前記一対の膨張クランプは、 前記管体の内周面の全周を略均等に半径方 向外向きに押圧することを特徴とする請求の範囲第 3 3項に記載の管体の形状測 定方法。 36. The tubular body according to claim 33, wherein the pair of expansion clamps presses the entire circumference of the inner circumferential surface of the tubular body substantially uniformly radially and outward. Shape measurement method.
3 7. 前記一対の膨張クランプは、 前記管体の内周面を半径方向外向きに押圧 することにより前記管体を拡管変形させることを特徴とする請求の範囲第 3 6項 に記載の管体の形状測定方法。 37. The pipe according to claim 36, wherein the pair of expansion clamps expands and deforms the pipe by pressing an inner peripheral surface of the pipe radially outward. Body shape measurement method.
3 8. 前記管体は感光ドラムである感光ドラム用基体であることを特徴とする 請求の範囲第 1.項に記載の管体の形状測定方法。 3. The method for measuring the shape of a tubular body according to claim 1, wherein the tubular body is a photosensitive drum substrate that is a photosensitive drum.
3 9. 請求の範囲第 1項に記載の管体の形状測定方法により、 管体の形状を測 定し、 この測定結果に基づいて、 前記管体の形状が予め設定された所定の許容範 囲内にあるか否かを検査することを特徴とする管体の検査方法。 3 9. The shape of the tube is measured by the method for measuring the shape of the tube according to claim 1. Based on the measurement result, the shape of the tube is set to a predetermined allowable range. A method for inspecting a tubular body, which comprises inspecting whether or not the pipe is inside an enclosure.
4 0. 管体を製造し、 請求の範囲第 3 9項に記載の管体の検査方法により前記 管体の形状を検査し、 この検査結果において前記管体の形状が前記所定の許容範 囲内にある場合には、 その管体を完成品と判定することを特徴とする管体の製造 方法。 40. A tubular body is manufactured, and the shape of the tubular body is inspected by the tubular body inspection method according to claim 39. In the inspection result, the shape of the tubular body is within the predetermined allowable range. A method of manufacturing a tube, wherein the method determines that the tube is a finished product.
4 1 . 請求の範囲第 4 0項に記載の管体の製造方法によって製造された管体。 41. A tube manufactured by the method for manufacturing a tube according to claim 40.
4 2. 請求の範囲第 4 0項に記載の管体の製造方法によって製造された感光ド ラム用基体。 4 2. A substrate for a photosensitive drum produced by the method for producing a tube according to claim 40.
4 3. 管体を製造し、 請求の範囲第 8項に記載の管体の形状測定方法により''、 管体の形状を測定し この測定結果に基づいて、 前記管体の形状が予め設定された所定の許容範囲内 にあるか否かを検査し、 4 3. Manufacture the tube, The shape of the tube is measured by the method for measuring the shape of the tube according to claim 8.The shape of the tube is within a predetermined allowable range based on the measurement result. Test whether
この検査結果において前記管体の形状が前記所定の許容範囲内にある場合には 、 その管体を完成品と判定することを特徴とする管体の製造方法。  If the shape of the tubular body is within the predetermined allowable range as a result of the inspection, the tubular body is determined to be a completed product.
4 4. 請求の範囲第 4 3項に記載の管体の製造方法によって製造され、 両端部 以外の外周面には周方向に延びる接触の痕跡がないことを特徴とする感光ドラム 用素管。 4. A tube for a photosensitive drum manufactured by the method for manufacturing a tube according to claim 43, wherein the outer circumferential surface other than both ends has no trace of contact extending in the circumferential direction.
4 5. 管体を製造し、 4 5. Manufacture the tube,
請求の範囲第 9項に記載の管体の形状測定方法により、 管体の形状を測定し、 前記管体の内周面と前記一対の基準部とが当接する 2つの当接部分を通る直線 に対して前記管体の外側から対峙する位置であつて、 前記一対の基準部には対峙 しない位置における前記管体の外周面の半径方向の変位量の測定結果が、 予め設 定された所定の許容範囲内にあるか否かを検査し、  The shape of the tube is measured by the method for measuring the shape of a tube according to claim 9, and a straight line passing through two contact portions where an inner peripheral surface of the tube and the pair of reference portions contact each other. The measurement result of the radial displacement of the outer peripheral surface of the tubular body at a position facing the outside of the tubular body from the outside of the tubular body and not facing the pair of reference portions is a predetermined predetermined value. To see if it is within the allowable range,
この検査結果において前記管体の形状が前記所定の許容範囲内にある場合には When the shape of the tube is within the predetermined allowable range in the inspection result,
、 その管体を完成品と判定することを特徴とする管体の製造方法。 A method for manufacturing a tube, wherein the tube is determined to be a finished product.
4 6. 請求の範囲第 4 5項に記載の管体の製造方法によって製造され、 前記管体の内周面と前記一対の基準部とが当接する 2つの当接部分を通る直線 に対して前記管体の外側から対峙する位置であって、 前記一対の基準部には対峙 しない位置における前記管体の外周面の半径方向の変位量が 2 0 m以下である ことを特徴とする管体。 4 6. A straight line passing through two contact portions where the inner peripheral surface of the tubular body and the pair of reference portions are in contact with each other, which is manufactured by the method for manufacturing a tubular body according to claim 45. A pipe body, wherein a radial displacement of an outer peripheral surface of the pipe body at a position facing the outside of the pipe body and not facing the pair of reference portions is 20 m or less. .
4 7. 複数本の管体の集合であって、 請求の範囲第 4 5項に記載の管体の製造方法によって製造され、 当該集合に含まれるすべての管体は、 前記管体の内周面と前記 対の基準部と が当接する 2つの当接部分を通る直線に対して前記管体の外側から対峙する位置 であって、 前記一対の基準部には対峙しない位置における前記管体の外周面の半 径方向の変位量が 2 0 // m以下であることを特徴とする管体の集合。 4 7. A collection of multiple tubes, A pipe manufactured by the method for manufacturing a pipe according to claim 45, wherein all the pipes included in the assembly include two pipes in which an inner peripheral surface of the pipe and the pair of reference portions are in contact with each other. A radial displacement amount of the outer peripheral surface of the tubular body at a position facing the straight line passing through the contact portion from the outside of the tubular body and not facing the pair of reference portions is 20 // A set of tubes characterized by being less than or equal to m.
4 8. 請求の範囲第 1 9項に記載の管体の形状測定装置と、 前記変位検出器に よって検出された前記変位量に基づいて、 前記管体の形状が予め設定された所定 の許容範囲内にあるか否かを検査する比較手段と、 を備えたことを特徴とする管 体の検査装置。 4 8. A predetermined tolerance in which the shape of the tube is set in advance based on the tube shape measuring device according to claim 19, and the displacement amount detected by the displacement detector. A tube inspection apparatus, comprising: comparison means for inspecting whether or not the area is within a range.
4 9. 管体を製管する製管装置と、 4 9. A pipe making device for making pipes,
請求の範囲第 4 8項に記載の管体の検査装置と、  An inspection apparatus for a tubular body according to claim 48,
前記検査装置による検査結果において前記管体の形状が前記所定の許容範囲内 にある場合には、 その管体を完成品と判定する合否判定手段と、  When the shape of the tube is within the predetermined allowable range as a result of the inspection by the inspection device, a pass / fail determination unit that determines the tube as a completed product,
を備えたことを特徴とする管体の製造システム。 A pipe manufacturing system comprising:
PCT/JP2003/011737 2002-09-12 2003-09-12 Method and apparatus for measuring shape of tube body WO2004025214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003268643A AU2003268643A1 (en) 2002-09-12 2003-09-12 Method and apparatus for measuring shape of tube body

Applications Claiming Priority (22)

Application Number Priority Date Filing Date Title
JP2002266651A JP4363830B2 (en) 2002-09-12 2002-09-12 Tube shape measuring method, apparatus, tube inspection method, apparatus, tube manufacturing method and system
JP2002/266651 2002-09-12
US41343902P 2002-09-26 2002-09-26
US60/413,439 2002-09-26
JP2002289933 2002-10-02
JP2002/289933 2002-10-02
JP2002296382 2002-10-09
JP2002/296382 2002-10-09
US42107902P 2002-10-25 2002-10-25
US60/421,079 2002-10-25
JP2003009014A JP4118148B2 (en) 2003-01-17 2003-01-17 Tube shape measuring method, tube inspection method
JP2003/9014 2003-01-17
JP2003031281 2003-02-07
JP2003/31281 2003-02-07
US44774503P 2003-02-19 2003-02-19
US60/447,745 2003-02-19
JP2003054126 2003-02-28
JP2003/54126 2003-02-28
JP2003105558 2003-04-09
JP2003/105558 2003-04-09
JP2003/193624 2003-07-08
JP2003193624 2003-07-08

Publications (1)

Publication Number Publication Date
WO2004025214A1 true WO2004025214A1 (en) 2004-03-25

Family

ID=31999952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011737 WO2004025214A1 (en) 2002-09-12 2003-09-12 Method and apparatus for measuring shape of tube body

Country Status (2)

Country Link
AU (1) AU2003268643A1 (en)
WO (1) WO2004025214A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398651A (en) * 2013-07-26 2013-11-20 中国航天空气动力技术研究院 Device used for testing guided missile model wing or rudder assembling precision
CN106017392A (en) * 2016-07-21 2016-10-12 赵艳丽 Method for detecting circular cross section contour and coaxiality of electric iron tower steel pipe from multiple points simultaneously

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196410A (en) * 1983-02-03 1984-11-07 ヴイ−ラント ヴエルケ アクチ−エン ゲゼルシヤフト Device for measuring size of transverse section of hollow cylindrical workpiece
JPS6170406A (en) * 1985-09-06 1986-04-11 Hitachi Ltd Instrument for measuring deviation value of centroid position in radius direction of rotary center axis of cylindrical body
JPS61117406A (en) * 1984-11-13 1986-06-04 Toshiba Corp Measuring instrument for curvature of rotating cylinder
DE3816130A1 (en) * 1988-05-11 1989-11-23 Althaus P Gerhard Dr Ing Device for measuring the length, the diameters, the wall thickness and the ovality of tubes (pipes), in particular of large tubes
JPH0419450Y2 (en) * 1983-01-31 1992-05-01
JPH05248842A (en) * 1992-03-05 1993-09-28 Fuji Electric Co Ltd Apparatus for measuring straightness of shape of cylindrical body
JPH07308715A (en) * 1994-05-20 1995-11-28 Kubota Corp Device for correcting ellipse of tube
JPH08141643A (en) * 1994-11-14 1996-06-04 Sumitomo Metal Ind Ltd Large tube shape correcting method and device for measuring dimension and shape of large tube
JPH09170912A (en) * 1995-12-20 1997-06-30 Kurimoto Ltd Automatic tube dimension inspection device for cast iron pipe
JPH1094807A (en) * 1996-05-24 1998-04-14 Formflo Ltd Device and method for roll-forming annular work-piece

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419450Y2 (en) * 1983-01-31 1992-05-01
JPS59196410A (en) * 1983-02-03 1984-11-07 ヴイ−ラント ヴエルケ アクチ−エン ゲゼルシヤフト Device for measuring size of transverse section of hollow cylindrical workpiece
JPS61117406A (en) * 1984-11-13 1986-06-04 Toshiba Corp Measuring instrument for curvature of rotating cylinder
JPS6170406A (en) * 1985-09-06 1986-04-11 Hitachi Ltd Instrument for measuring deviation value of centroid position in radius direction of rotary center axis of cylindrical body
DE3816130A1 (en) * 1988-05-11 1989-11-23 Althaus P Gerhard Dr Ing Device for measuring the length, the diameters, the wall thickness and the ovality of tubes (pipes), in particular of large tubes
JPH05248842A (en) * 1992-03-05 1993-09-28 Fuji Electric Co Ltd Apparatus for measuring straightness of shape of cylindrical body
JPH07308715A (en) * 1994-05-20 1995-11-28 Kubota Corp Device for correcting ellipse of tube
JPH08141643A (en) * 1994-11-14 1996-06-04 Sumitomo Metal Ind Ltd Large tube shape correcting method and device for measuring dimension and shape of large tube
JPH09170912A (en) * 1995-12-20 1997-06-30 Kurimoto Ltd Automatic tube dimension inspection device for cast iron pipe
JPH1094807A (en) * 1996-05-24 1998-04-14 Formflo Ltd Device and method for roll-forming annular work-piece

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398651A (en) * 2013-07-26 2013-11-20 中国航天空气动力技术研究院 Device used for testing guided missile model wing or rudder assembling precision
CN106017392A (en) * 2016-07-21 2016-10-12 赵艳丽 Method for detecting circular cross section contour and coaxiality of electric iron tower steel pipe from multiple points simultaneously
CN106017392B (en) * 2016-07-21 2018-09-11 浙江海澄德畅机械有限公司 The method that multiple spot detects electric power tower steel pipe circular section profile and concentricity simultaneously

Also Published As

Publication number Publication date
AU2003268643A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US6954991B2 (en) Method and apparatus for measuring shape of tubular body
US6327788B1 (en) Surface form measurement
US7617965B2 (en) Method for measuring loads on a friction stir welding tool
US7499813B2 (en) Device and method for inspecting for flaw on surface of work
CN100523711C (en) Method and apparatus for measuring shape of tubular body
US11298776B2 (en) Friction welding method and friction welding apparatus
US7389594B2 (en) Peripheral surface shape measuring apparatus of roll-like object
JPH025489B2 (en)
JP4732349B2 (en) Internal / external shape automatic measuring device at pipe end
JP4610555B2 (en) Equipment for straightening pipes and tubular materials
WO2004025214A1 (en) Method and apparatus for measuring shape of tube body
KR20170045689A (en) auto straightening equipments and method for metal rod
US20220324190A1 (en) Electric cylinder system and method of detecting abnormality of electric cylinder
JP2010071778A (en) Apparatus for measuring outer diameter of large diameter tube
JP2006272365A (en) Equipment and method for pipe-end sizing of uoe steel pipe
US7019817B2 (en) Edge-holding aligner
RU2397854C2 (en) Method for preparing pipeline pipes butt-ends for welding and centering skid for preparing pipeline pipes butt-ends for welding
JP4382512B2 (en) Method and apparatus for measuring shape of tubular body
JP2007111726A (en) Spring production device
JP4490749B2 (en) Tube shape measuring apparatus and method
JP4431422B2 (en) Method and apparatus for measuring shape of tubular body
JP7348768B2 (en) nut tightening device
JP2022162744A (en) Curvature radius instrumentation system and bending roll using it
US5773711A (en) Can internal pressure inspection apparatus
JP2004219344A (en) Method and apparatus for measuring shape of tube, method and apparatus for inspecting tube, and method and system for manufacturing tube

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038250608

Country of ref document: CN

122 Ep: pct application non-entry in european phase