WO2004025164A1 - Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank - Google Patents
Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank Download PDFInfo
- Publication number
- WO2004025164A1 WO2004025164A1 PCT/US2003/027260 US0327260W WO2004025164A1 WO 2004025164 A1 WO2004025164 A1 WO 2004025164A1 US 0327260 W US0327260 W US 0327260W WO 2004025164 A1 WO2004025164 A1 WO 2004025164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheath
- polymeric
- strands
- electrically conductive
- polymeric strands
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims description 24
- 238000007689 inspection Methods 0.000 title claims description 18
- 231100001261 hazardous Toxicity 0.000 claims abstract description 12
- 238000000576 coating method Methods 0.000 claims abstract description 10
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims description 49
- -1 polytetrafluoroethylene Polymers 0.000 claims description 30
- 239000000835 fiber Substances 0.000 claims description 28
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 23
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 23
- 239000004677 Nylon Substances 0.000 claims description 23
- 229920001778 nylon Polymers 0.000 claims description 23
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 18
- 229920002313 fluoropolymer Polymers 0.000 claims description 18
- 239000004811 fluoropolymer Substances 0.000 claims description 18
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 17
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 claims description 17
- 229920000728 polyester Polymers 0.000 claims description 16
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 16
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- 229910001369 Brass Inorganic materials 0.000 claims description 9
- 239000010951 brass Substances 0.000 claims description 9
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- 239000010931 gold Substances 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 229910052697 platinum Inorganic materials 0.000 claims description 9
- 238000009941 weaving Methods 0.000 claims description 6
- 230000003068 static effect Effects 0.000 abstract description 15
- 238000005299 abrasion Methods 0.000 abstract 3
- 235000004879 dioscorea Nutrition 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- 239000003502 gasoline Substances 0.000 description 7
- 229920000508 Vectran Polymers 0.000 description 4
- 239000004979 Vectran Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 210000003954 umbilical cord Anatomy 0.000 description 3
- 229920006355 Tefzel Polymers 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical compound C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920013666 Celanese acetate Polymers 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- SMEGJBVQLJJKKX-HOTMZDKISA-N [(2R,3S,4S,5R,6R)-5-acetyloxy-3,4,6-trihydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@@H]1[C@H]([C@@H]([C@H]([C@@H](O1)O)OC(=O)C)O)O SMEGJBVQLJJKKX-HOTMZDKISA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L11/00—Hoses, i.e. flexible pipes
- F16L11/22—Multi-channel hoses
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04C—BRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
- D04C1/00—Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof
- D04C1/02—Braid or lace, e.g. pillow-lace; Processes for the manufacture thereof made from particular materials
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/14—Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
- D07B1/147—Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising electric conductors or elements for information transfer
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2083—Jackets or coverings
- D07B2201/209—Jackets or coverings comprising braided structures
Definitions
- This invention relates to an umbilical connection that includes one or more hydraulic lines and one or more electric lines or wire harnesses linking a robotic inspection vehicle deployed in a liquid-filled tank to a control station located outside such tank.
- the hydraulic and electric lines and the umbilical connection formed from a plurality of such lines have static dissipative sheathing to prevent spark generation that could lead to explosions when the inspection vehicle is deployed in flammable or other hazardous environments, such as the vapor space above a floating roof in a floating roof storage tank for gasoline or other hydrocarbon fuels.
- a floating roof storage tank generally has a solid cylindrical outer wall covered by a solid sloped or dome-shaped roof.
- a floating roof is held within the volume defined by the outer wall and roof.
- the floating roof extends over the liquid contents held within the volume, and forms a vapor seal around the internal circumference of the cylindrical wall.
- the height within the tank at which the floating roof is positioned varies according to the amount of liquid being stored within the tank at any given time.
- Floating roof storage tanks generally are used to store flammable liquids, such as gasoline.
- a vapor space is formed inside the tank, between the floating roof covering the gasoline and the outer tank roof. Vapors emitted from the internal volume of the storage tanlc are collected in the vapor space to prevent significant amounts of vapor from being expelled to the atmosphere outside the tank.
- Environmental protection regulations restrict the amount of hydrocarbon vapors that may be released to the atmosphere. Air quality may be impacted adversely if hydrocarbon vapor emissions exceed permitted amounts.
- vapor space Manual access to the internal volume of the tank is provided within the vapor space.
- One or more access ports or doorways are formed in the roof or outer wall of the tank, and a ladder or gangway may be supported within the vapor space. Persons may enter the vapor space to service the tank, the internal floating roof and any equipment housed inside the tank. Because of the hazards associated with confined space entry within the vapor space, particularly in flammable atmospheres, entry for inspection purposes is rarely permitted. UL 913-1988 sets forth the standards that must be satisfied before equipment may be introduced into a floating roof storage tank or the vapor space above the floating roof in such tank.
- “Intrinsically safe" apparatus are protected against ignition by (1) limiting the maximum current and voltage that may be applied so that the energy available in a hazardous location is not capable of igniting the flammable mixture in such location; and (2) taking precautions against spark ignition and thermal ignition.
- Floating roof storage tanks are inspected at regular intervals to locate cracks, corrosion or other defects that might lead to tank failure.
- Environmental protection regulations specify the frequency and recommended procedures for inspecting tanks for structural integrity.
- One method involves introducing a remote controlled submersible vehicle into the tank while the tank remains in service.
- U.S. Patent No. 5,205,174 discloses a scavenger submersible vehicle that inspects the internal surfaces of a liquid filled tank using a video camera and/or ultrasound pulses.
- One or more umbilical hose(s) and wire harness(es) connect the remote-controlled vehicle to its power source and air or vacuum source, and further provide a link for transmitting navigation and inspection data from the vehicle to one or more computers located outside the tank.
- Known hydraulic hoses formed from rubber or nylon reinforced thermoplastics are not "intrinsically safe” because excessive heat energy builds from friction as the hose surface contacts the pulley or the surfaces of the internal floating roof tank when the inspection vehicle is deployed into the tank.
- rubber materials may degrade in caustic chemical environments.
- Known PTFE hydraulic hoses can withstand caustic environments, but have not been found conductive enough to dissipate static charges.
- a metallic braided outer sheath such as stainless steel
- the stainless braid can also scrape the surfaces of the internal floating roof, generating a spark or building up heat toward possible ignition in the vapor space.
- the umbilical cord connection to a robotic inspection vehicle generally includes a bundle of hydraulic hoses and electrical cables wrapped in an outer sheath.
- the sheath itself should be static dissipative, should not build up heat from frictional forces as the cord is deployed through a vapor space or hazardous environment, and should not abrade or damage the materials covering the hoses and cables within the sheath. Prior sheathing materials have not satisfied these rigorous requirements.
- a sheath for covering a hydraulic hose has a length substantially co-extensive with the length of the hose and has a plurality of polymeric strands woven or braided with at least one electrically conductive strand, such that the electrically conductive strand extends along the length of the sheath.
- the electrically conductive strand helps to dissipate dynamic and static charges that may build up along the surface of the sheath when the hydraulic hose is moved.
- the polymeric strands in the sheath preferably are formed from a material selected from the group consisting of: polytetrafluoroethylene, polyester, ethylene-tetrafluoroethylene, and other fluoropolymers, liquid crystal polymer fibers, nylon, and combinations of these materials.
- the at least one electrically conductive strand preferably is formed from a material selected from the group consisting of: copper, brass, gold, and platinum. Copper is the most preferred. If the sheath is formed as an overbraid over the hydraulic hoses, the plurality of polymeric strands together with the at least one electrically conductive strand preferably form a bias weaving having a braid angle in the range of 45 to 80 degrees, most preferably 50 to 65 degrees.
- a most-preferred overbraid is a triaxial or multi-axial overbraid having the plurality of polymeric strands together with the at least one electrically conductive strand forming a bias weaving with a braid angle in the range of 45 to 80 degrees and with a second plurality of polymeric strands extending axially within the overbraid.
- a sheath envelops or wraps around one or more hydraulic hoses, or electrical cables, or a combination of hydraulic hoses and electrical cables to form an umbilical connection that may link hydraulically or electrically powered equipment with a control station.
- the sheath of the umbilical connection has an open mesh or braid formed from a first plurality of polymeric strands, a second plurality of polymeric strands, and one or more electrically conductive strands, such that said electrically conductive strand or strands extends along the length of the sheath.
- the electrically conductive strand or strands serve to dissipate the dynamic or static charges that build along the length of the umbilical connection as the umbilical connection is moved or comes into contact with metal surfaces.
- the first and second pluralities of polymeric strands are made from a material selected from the group consisting of: polytetrafluoroethylene, polyester, ethylene- tetrafluoroethylene, and other fluoropolymers, liquid crystal polymer fibers, nylon, and combinations of these materials.
- the polymeric strands in the first plurality may be the same material or a different material from the polymeric strands in the second plurality.
- the first plurality of polymeric strands most preferably are nylon-coated polymeric fiber, and the second plurality of polymeric strands most preferably are liquid crystal polymer fibers.
- the at least one electrically conductive strand preferably is formed from a material selected from the group consisting of: copper, brass, gold, and platinum. Copper is the most preferred electrically conductive material.
- the outer sheath of the umbilical connection may be formed as a triaxial or multi- axial braid in which the first plurality of polymeric strands form a bias weaving together with the one or more electrically conductive strands, and the second plurality of polymeric strands extends axially, such that when the sheath is installed around the hoses the second plurality of polymeric strands extends along such length.
- the first plurality of polymeric strands are formed from nylon-coated polymeric fiber
- the second plurality of polymeric strands are liquid crystal polymer fibers
- the electrically conductive strand(s) are copper.
- the braid angle preferably is in the range of 45 to 80 degrees, and gaps preferably are left between the strands in the braid. With such braid with gaps, liquids that contact the umbilical connection will more rapidly drain away from the umbilical connection when the umbilical connection emerges from a liquid containing tank or other liquid environment.
- the umbilical connection is used to connect equipment, such as an inspection vehicle deployed into a hazardous environment, with control and analytic systems outside the hazardous environment.
- the invention also includes a method for inspecting a liquid-containing storage tank, in which an inspection vehicle is deployed into the tank and such vehicle is linked to a source of hydraulic and/or electric power with an umbilical connection according the invention as described above.
- Tank liquids drain rapidly away from the umbilical connection with the open mesh or braid sheath around the bundle of hoses and/or cables. Rapid draining and rapid evaporation of hazardous chemicals after the vehicle has been removed from a storage tank means the less exposure to hazardous conditions and more rapid removal of the equipment.
- the umbilical connection also dissipates static charges and limits heat build up from frictional contact, making it intrinsically safe for use with inspection vehicles deployed within floating roof storage tanks. Description of the Drawings
- FIG. 1 is a schematic front elevational view of a floating roof storage tank into which a remote-controlled inspection vehicle has been deployed, showing an umbilical connection linking the vehicle to pumping and control equipment (not shown) outside the tank;
- FIG. 2 is a perspective view of the umbilical connection according to the invention;
- FIG. 3 is a side elevational view showing the mesh sheath covering the umbilical connection of FIG. 2;
- FIG. 4 is a side elevational view of a hydraulic hose covered with a static dissipative sheath according to the invention
- FIG. 5 is a perspective view of an electrical cable covered with a static dissipative coating according to the invention.
- a floating roof storage tank 10 has a sloped or dome-shaped roof 12 over a cylindrical side wall 14 and a floor 16.
- the floating roof storage tank 10 includes a floating roof 18 separating the liquid 22 within the liquid holding volume from the vapor space 24 above the liquid holding volume.
- the floating roofs most frequently are formed from aluminum.
- a vapor seal 20 is formed at the edges of the floating roof 18 and contacts the internal wall of the side wall 14 to limit or prevent vapors from a volatile liquid stored in the tank from escaping the liquid holding volume under the floating roof 18.
- a manway access port 26 through the roof 12 provides access to the vapor space 24 above the floating roof 18 for inspection and maintenance personnel.
- the tank may include one or a series of ladders (not shown) adjacent the internal side wall 14 of the tank leading from the access port 26 to the upper surface of the floating roof 18.
- an inspection vehicle 30 has been introduced into the liquid holding volume within the floating roof tank 10.
- the vehicle 30 traverses along the internal surface of the floor 16 to inspect the floor 16 for cracks or corrosion that could lead to tank failure.
- the vehicle 30 is equipped with a camera 32 to transmit video signals to a computer (not shown) located outside the tank 10.
- the vehicle 30 is hydraulic motor 38 controlled and is provided an electronic control module 36 that is linked via electric cable within an umbilical connection 37 to a power source (not shown) located outside the tank 10.
- the vehicle 30 is also equipped with sensors (sonic transducers) 42 that communicate with transducers 44 mounted in an array on the outer surface of the side wall 14 of the tank 10.
- the sensors 42 and transducers 44 transmit and/or receive signals, and the data from the sensors is transmitted to a computer (not shown) located outside the tank, which computer analyzes such data to determine the position of the vehicle within the tank 10.
- the vehicle 30 is also provided with a blower and blower line 40 and a vacuum or suction line 34 that work independently or in combination to clear away debris from the internal surface of the floor 16 prior to inspecting that surface. Additional details about inspection vehicles and the means for operating and navigating such vehicles are shown in U.S. Patent Nos. 5,205,174 and 5,627,800, the disclosures of which are incorporated herein by reference.
- Hydraulic tubing forming a suction line 34 in combination with a blower line 40 is joined with one or more cables for transmitting electric signals to the vehicle and transmitting electric signals back to the computer.
- the tubing and blower line and cable(s) together form an umbilical cord 48 that is installed over a pulley 41.
- the pulley 41 is mounted to a tripod 43 installed over the outer roof 12.
- the umbilical cord 48 may have sufficient strength to hold the vehicle 30 as it is lowered into the liquid holding volume inside the tank 10 and when it is lifted out of the liquid holding volume inside the tank 10.
- a tether rope (not shown) may be attached to the vehicle 30 and strung through the pulley 41 to assist with lowering the vehicle 30 into the tank 10 and lifting the vehicle 30 from the tank 10.
- a hatchway 46 is provided through the floating roof 18.
- the vehicle 30 preferably has a height and width that allow the vehicle to be passed through the hatchway 46 when the existing hatch cover provided on the floating roof 18 has been removed. It is also possible to install a second tripod with a pulley (not shown) on the floating roof 18 and over the hatchway 46 where the internal floating roof has sufficient stability to support such weight.
- FIG. 2 the umbilical connection or cable 48 between the vehicle and the hydraulic pump and electronic controls is shown in greater detail.
- the umbilical connection 48 comprises a bundle of a plurality of hydraulic hoses 60 and an electrical cable 70, positioned in parallel and closely adjacent to one another.
- the bundle of hoses 60 and cable 70 is encased within an open mesh sheath 50.
- the sheath 50 is braided in the form of a triaxial braid having a series of substantially straight parallel axial or longitudinal polymeric strands 52 within a braided grid of polymeric strands 54 and at least one electrically conductive strand 56.
- the axial polymeric strands 52 are held in the sheath in spaced apart, parallel relation.
- the polymeric strands 54 and electrically conductive strand(s) 56 are braided or woven in an open weave or bias braid pattern to leave spaces or gaps between the strands such that the lengths of the hydraulic hoses 60 adjacent to the sheath remain visible therethrough.
- the braid angle shown in Fig. 3 is 60 degrees. The gap size between the strands may vary according to design preferences.
- a plurality of axially extending electrically conductive strands 57 may be incorporated into the sheath adjacent to the polymeric strands 52.
- the polymeric strands 52 may be supplemented with additional polymeric strands located adjacent thereto.
- the additional polymeric strands may be formed from the same or different polymeric material as the polymeric strands 52.
- the materials forming the sheath should be resistant to chemical attack and have high tensile strength.
- the polymeric strands 54 resist stretching, cracking and tearing.
- the polymeric strands 54 preferably are made from polytetrafluoroethylene, polyester, ethylene- tetrafluoroethylene, and other fluoropolymers, liquid crystal polymer fibers, nylon, and combinations of these materials. Most preferably, the polymeric strands 54 are made from nylon-coated VECTRAN® liquid crystal polymer.
- the VECTRAN® polymeric fibers are offered by Celanese Acetate LLC of Charlotte, North Carolina. Nylon-coated polymeric fibers can be obtained from Cortland Cable of Cortland, New York.
- the axially extending polymeric strands 52 are formed from polytetrafluoroethylene, polyester, ethylene-tetrafluoroethylene, and other fluoropolymers, liquid crystal polymer fibers, nylon, and combinations of these materials.
- the polymeric strands 52 are formed from VECTRAN® liquid crystal polymer.
- Other alternatives for such strands 52 are KEVLAR® para-aramid polymer fiber or TEFLON® PTFE coated strands.
- the polymeric strands 52 may be formed from the same or different polymer materials as the polymeric strands 54 in the sheath 50.
- the axially extending polymeric strands 52 also resist chemical attack and resist stretching, cracking and tearing.
- the electrically conductive strands 56, 57 are formed from static dissipative materials that preferably have sufficient electrical conductivity to prevent substantial build up of static charges along the surface of the sheath.
- the electrically conductive strands have less than lohm resistance end to end, and a surface resistivity of less than 10 ohm/square.
- Preferred electrically conductive or static dissipative materials include copper, brass, gold, and platinum.
- the umbilical connection and sheath will be exposed for various chemicals and flammable materials that are stored in storage tanks, including but not limited to, gasoline, diesel fuel, kerosene, methanol and naptha.
- the materials selected for the polymeric strands and the electrically conductive strands should be resistant to corrosion within these chemicals and flammable materials.
- each hydraulic hose 60 has a tubular hose 62 encased or covered with a braided covering 64.
- the braided covering 64 is braided or woven from polymeric strands 66 combined with at least one electrically conductive strand 68. Most preferably, at least two electrically conductive strands are included in the covering.
- the covering 64 may also be completely formed from electrically conductive strands 68.
- the polymeric strands may comprise polytetrafluoroethylene, polyester, ethylene-tetrafluoroethylene, and other fluoropolymers, liquid crystal polymer fibers, nylon, and combinations of these materials.
- the conductive strands may comprise copper, brass, gold, and platinum.
- the polymeric strands are VECTRAN® liquid crystal polymer fiber, and the conductive strand is copper.
- Another preferred embodiment has polymeric strands of a modified ethylene-tetrafluoroethylene fluoropolymer sold under the brand name TEFZEL ® by E.I. DuPont de Nemours & Co., Wilmington, Delaware.
- the conductive strands should extend along the entire length of the hose.
- the conductive strands 68 should have sufficient electrical conductivity to prevent substantial build up of static charges along the surface of the hydraulic hose, whether generated by movement of fluids within the hose or by movement of the hose.
- the electrically conductive strands 68 have less than 1 ohm resistance end to end, and a surface resistivity of less than 10 ohm/square.
- the covering 64 must not abrade or crack after being exposed to repeated abrasive forces, nor be damaged by chemicals or flammable materials, so the fibrous strands and conductive strands should be able to withstand such exposure.
- Each electrical cable 70 has one or more cables or wires 72 encased by a polymeric coating 74 as shown in FIG. 5.
- the polymeric coating must resist chemical attack and damage from abrasive forces. It is important for the polymeric coating to remain integral over the cables or wires so that the current through such wires is fully insulated from any hazardous environments.
- Suitable polymeric coating materials include polytetrafluoroethylene, polyester, ethylene-tetrafluoroethylene, and other fluoropolymers.
- a particularly preferred polymeric coating is a modified ethylene-tetrafluoroethylene fluoropolymer sold under the brand name TEFZEL ® by E.I. DuPont de Nemours & Co., Wilmington, Delaware.
- the umbilical connection 48 can be repeatedly introduced into and removed from hazardous environments, such as above ground or below ground tanks for chemical storage or internal floating roof storage tanks storing gasoline or other petrochemicals.
- the covering for the hydraulic hoses and the covering for the electrical cables are intrinsically safe. These coverings, combined with the open mesh sheath for wrapping a bundle of hydraulic hoses and electrical cables, form an umbilical connection that can be safely deployed into the vapor space of an internal floating roof storage tank and into the volume of such tank holding chemicals or petroleum products.
- the umbilical connection has particular application for delivering hydraulic and electric power to a robotic inspection vehicle deployed to inspect the surfaces of the tank while the tank remains in service.
- the Table below sets out a strand composition for a triaxial overbraid sheath for an umbilical connection.
- the "Diameter” is the nominal outer diameter of the finished braid.
- the “Angle” represents the angle of the bias yams in relation to the axial yams. The angle is reported in degrees.
- the “Carrier” concerns the total number of yams of a particular type running in the same direction.
- “Ends per carrier” concerns the number of yam bobbins per carrier.
- FT/LB refers to the number of feet of each yam in one pound.
- PPI is an abbreviation for picks per inch. This is the number of yam crossing per inch as running lengthwise along the braid.
- EPI is an abbreviation for ends per inch.
- Yam centerline spacing is the accumulation of yam diameter plus gap size between the yams.
- the "Hot Melt” is an adhesive strand incorporated preferably within the axial yams.
- the hot melt adhesive is activated to help hold the open- weave overbraid in the desired configuration and with the desired spacing between the bias yams.
- "0.008" copper” refers to copper wire incorporated into the bias and axial yams in the braid.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Textile Engineering (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Woven Fabrics (AREA)
- Examining Or Testing Airtightness (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MXPA05002658A MXPA05002658A (en) | 2002-09-10 | 2003-09-03 | Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank. |
EP03795641A EP1540224A1 (en) | 2002-09-10 | 2003-09-03 | Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank |
CA002498350A CA2498350A1 (en) | 2002-09-10 | 2003-09-03 | Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank |
BR0314173-0A BR0314173A (en) | 2002-09-10 | 2003-09-03 | Sheath for a combination of one or more hydraulic hoses and one or more electrical cables, umbilical connection for hazardous environment equipment, and method for inspecting a storage tank. |
AU2003263012A AU2003263012A1 (en) | 2002-09-10 | 2003-09-03 | Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/241,004 US6838614B2 (en) | 2002-09-10 | 2002-09-10 | Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank |
US10/241,004 | 2002-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004025164A1 true WO2004025164A1 (en) | 2004-03-25 |
Family
ID=31991074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/027260 WO2004025164A1 (en) | 2002-09-10 | 2003-09-03 | Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank |
Country Status (8)
Country | Link |
---|---|
US (2) | US6838614B2 (en) |
EP (1) | EP1540224A1 (en) |
AU (1) | AU2003263012A1 (en) |
BR (1) | BR0314173A (en) |
CA (1) | CA2498350A1 (en) |
MX (1) | MXPA05002658A (en) |
SA (1) | SA03240461B1 (en) |
WO (1) | WO2004025164A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7418436B2 (en) * | 2002-01-31 | 2008-08-26 | Matsushita Electric Industrial Co., Ltd. | Information processing apparatus, memory management apparatus, memory management method, and information processing method |
AU2003270850A1 (en) * | 2002-09-24 | 2004-04-19 | Ast Services, Llc | Broadband long pulse ultrasonic inspection |
US20070036640A1 (en) * | 2003-03-12 | 2007-02-15 | Randy Boudreaux | Methods, systems and apparatuses for retrieving an entity from a confined space |
US10861146B2 (en) | 2005-04-15 | 2020-12-08 | Custom Industrial Automation Inc. | Delayed petroleum coking vessel inspection device and method |
US7940298B2 (en) * | 2005-04-15 | 2011-05-10 | Custom Industrial Automation, Inc. | Delayed petroleum coking vessel inspection device and method |
US9524542B1 (en) | 2005-04-15 | 2016-12-20 | Custom Industrial Automation Inc. | Delayed petroleum coking vessel inspection device and method |
US20100180672A1 (en) * | 2008-12-20 | 2010-07-22 | William Thor Zollinger | Methods for inspecting atmospheric storage tanks above ground and in floating vessels |
CH703891A1 (en) * | 2010-09-20 | 2012-03-30 | Alstom Technology Ltd | Robot platform for remote and / or self-inspection of technical facilities. |
US9540170B2 (en) * | 2013-02-28 | 2017-01-10 | Robert Franklin Morris, III | Electrostatic charge dissipator for storage tanks |
US9540749B2 (en) * | 2014-07-16 | 2017-01-10 | Milliken & Company | Monofilament jacketed woven tape |
US10480261B2 (en) | 2014-08-15 | 2019-11-19 | Halliburton Energy Services, Inc. | Enhanced radial support for wireline and slickline |
US10012561B2 (en) | 2014-11-03 | 2018-07-03 | Sonasearch, Inc. | Integrity testing of storage tank structure using robotic ultrasound |
WO2017008131A1 (en) * | 2015-07-15 | 2017-01-19 | Petróleo Brasileiro S.A. - Petrobras | System for assessing the quality of stored fuels |
WO2018071352A1 (en) | 2016-10-13 | 2018-04-19 | Parker-Hannifin Corporation | High performance aramid braided hose |
US11181438B2 (en) | 2017-12-15 | 2021-11-23 | Tankbots, Inc. | Methods for performing tasks in a tank containing hazardous substances |
US10807849B2 (en) * | 2018-05-03 | 2020-10-20 | Hyster-Yale Group, Inc. | Pantograph assembly for lift truck |
US11274022B2 (en) | 2018-05-03 | 2022-03-15 | Hyster-Yale Group, Inc. | Pantograph assembly for lift truck |
US11925824B2 (en) * | 2018-08-13 | 2024-03-12 | Phillips 66 Company | Method and apparatus for launching and recovering a remote inspection device from a volatile liquid storage tank |
CA3136306C (en) | 2019-02-20 | 2023-10-03 | Tankbots, Inc. | Methods for performing tasks inherently safely in a tank containing hazardous substances |
WO2021142178A1 (en) * | 2020-01-09 | 2021-07-15 | Gates Corporation | Dual line hose and manufacturing method |
ES2946965T3 (en) * | 2020-06-12 | 2023-07-28 | Tankbots Inc | Method for recovering a mobile platform from a tank containing energetic substances |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US627800A (en) | 1898-09-19 | 1899-06-27 | Herman Carter | Machine for weaving cross-wires in wire fences. |
DE2923286A1 (en) * | 1978-06-19 | 1979-12-20 | Bekaert Sa Nv | Antistatic network for incorporation into carpets, filter cloths - is woven from threads of metal or contg. metal |
US4777859A (en) * | 1983-09-16 | 1988-10-18 | Plummer Jr Walter A | Pre-expanded braided sleeving |
US4836080A (en) * | 1987-07-29 | 1989-06-06 | The Bentley-Harris Manufacturing Company | Vibration abrasive resistant fabric covering |
GB2211266A (en) * | 1987-12-16 | 1989-06-28 | Shrinemark Limited | Anti-static tubing |
US5205174A (en) | 1991-05-24 | 1993-04-27 | Silverman Eugene B | Scavenger submersible visual and acoustical tank inspection system and method |
US5690014A (en) * | 1994-05-20 | 1997-11-25 | Larkin; William J. | Small diameter ionizing cord for removing static charge |
US6104970A (en) * | 1998-02-17 | 2000-08-15 | Raytheon Company | Crawler inspection vehicle with precise mapping capability |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2719851C3 (en) * | 1977-05-04 | 1982-01-28 | Gummi-Roller Gmbh & Co, 6236 Eschborn | Monotube with lead-out electrically conductive wires and method for leading the wires out of the monotube |
US4158104A (en) * | 1977-06-03 | 1979-06-12 | Southern Weaving Company | Curved woven cable and method |
US4281211A (en) * | 1979-04-13 | 1981-07-28 | Southern Weaving Company | Woven cover for electrical transmission cable |
US4567917A (en) * | 1981-07-13 | 1986-02-04 | Stratoflex, Inc. | Hose with wire braid reinforcement |
US4746769A (en) * | 1983-02-15 | 1988-05-24 | Woven Electronics Corporation | Multilayer woven high density electrical transmission cable and method |
US4559411A (en) * | 1983-02-15 | 1985-12-17 | Piper Douglas E | Unitary woven jacket and electrical transmission cable and method for production |
US4599712A (en) * | 1983-03-15 | 1986-07-08 | Bolt Technology Corporation | Modular airgun array method, apparatus and system |
US4599411A (en) * | 1985-06-03 | 1986-07-08 | Olin Corporation | Process for the production of alkali metal salts of dichloroisocyanuric acid |
US5908049A (en) * | 1990-03-15 | 1999-06-01 | Fiber Spar And Tube Corporation | Spoolable composite tubular member with energy conductors |
JP2535550Y2 (en) * | 1990-06-05 | 1997-05-14 | 三菱重工業株式会社 | Underwater mobile inspection system |
US5102727A (en) * | 1991-06-17 | 1992-04-07 | Milliken Research Corporation | Electrically conductive textile fabric having conductivity gradient |
US5613522A (en) * | 1991-11-05 | 1997-03-25 | Bentley-Harris Inc. | Shaped fabric products |
NO174940B3 (en) * | 1992-02-21 | 1997-08-06 | Kvaerner Oilfield Prod As | Method for making and assembling a cable string, cable string made by the method and machine for practicing the method |
JP2559093Y2 (en) * | 1992-05-08 | 1998-01-14 | ワイケイケイ株式会社 | Hook-and-loop fastener |
US5373103A (en) * | 1993-08-09 | 1994-12-13 | Woven Electronics Corp. | Ribbon electrical transmission cable with woven shielding |
US5380954A (en) * | 1993-10-04 | 1995-01-10 | Woven Electronics Corp. | Woven electrical transmission cable with cut line |
US5627800A (en) * | 1994-01-28 | 1997-05-06 | Kotler; Seymour R. | Method and apparatus for determining position of a moving object in a tank |
US5650579A (en) * | 1995-12-05 | 1997-07-22 | General Electric Company | Miniature air gap inspection crawler |
NO307354B1 (en) * | 1996-04-26 | 2000-03-20 | Norsk Subsea Cable As | Device by hydroelectric control cable |
US5819863A (en) * | 1996-08-28 | 1998-10-13 | Lockheed Martin Idaho Technologies Company | Vehicle for carrying an object of interest |
US5769045A (en) * | 1997-05-01 | 1998-06-23 | Chrysler Corporation | Modular air induction system with isolated throttle body |
US6079285A (en) * | 1997-10-01 | 2000-06-27 | Baker; Jack T. | Robotic sampler for remote sampling of liquids in a process stream |
US6313869B1 (en) * | 1999-03-09 | 2001-11-06 | Edward J. Hyp | J nozzle articulating camera system |
US6283206B1 (en) * | 1999-07-01 | 2001-09-04 | Kellogg, Brown & Root, Inc. | Gas lift umbilical cable and termination assemblies therefor |
US20020170727A1 (en) * | 2001-05-18 | 2002-11-21 | Holland John E. | Protective cover |
JP3786594B2 (en) * | 2001-10-01 | 2006-06-14 | 矢崎総業株式会社 | Electromagnetic shield braid |
-
2002
- 2002-09-10 US US10/241,004 patent/US6838614B2/en not_active Expired - Fee Related
-
2003
- 2003-09-03 CA CA002498350A patent/CA2498350A1/en not_active Abandoned
- 2003-09-03 EP EP03795641A patent/EP1540224A1/en not_active Withdrawn
- 2003-09-03 AU AU2003263012A patent/AU2003263012A1/en not_active Abandoned
- 2003-09-03 BR BR0314173-0A patent/BR0314173A/en not_active IP Right Cessation
- 2003-09-03 MX MXPA05002658A patent/MXPA05002658A/en unknown
- 2003-09-03 WO PCT/US2003/027260 patent/WO2004025164A1/en not_active Application Discontinuation
- 2003-12-28 SA SA3240461A patent/SA03240461B1/en unknown
-
2004
- 2004-11-12 US US10/985,957 patent/US7017432B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US627800A (en) | 1898-09-19 | 1899-06-27 | Herman Carter | Machine for weaving cross-wires in wire fences. |
DE2923286A1 (en) * | 1978-06-19 | 1979-12-20 | Bekaert Sa Nv | Antistatic network for incorporation into carpets, filter cloths - is woven from threads of metal or contg. metal |
US4777859A (en) * | 1983-09-16 | 1988-10-18 | Plummer Jr Walter A | Pre-expanded braided sleeving |
US4836080A (en) * | 1987-07-29 | 1989-06-06 | The Bentley-Harris Manufacturing Company | Vibration abrasive resistant fabric covering |
GB2211266A (en) * | 1987-12-16 | 1989-06-28 | Shrinemark Limited | Anti-static tubing |
US5205174A (en) | 1991-05-24 | 1993-04-27 | Silverman Eugene B | Scavenger submersible visual and acoustical tank inspection system and method |
US5690014A (en) * | 1994-05-20 | 1997-11-25 | Larkin; William J. | Small diameter ionizing cord for removing static charge |
US6104970A (en) * | 1998-02-17 | 2000-08-15 | Raytheon Company | Crawler inspection vehicle with precise mapping capability |
Also Published As
Publication number | Publication date |
---|---|
US7017432B2 (en) | 2006-03-28 |
BR0314173A (en) | 2005-07-26 |
US20040045379A1 (en) | 2004-03-11 |
EP1540224A1 (en) | 2005-06-15 |
US6838614B2 (en) | 2005-01-04 |
MXPA05002658A (en) | 2005-09-20 |
CA2498350A1 (en) | 2004-03-25 |
AU2003263012A1 (en) | 2004-04-30 |
SA03240461B1 (en) | 2008-03-24 |
US20050087362A1 (en) | 2005-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6838614B2 (en) | Hydraulic and electric umbilical connection for an inspection vehicle for inspecting a liquid-filled tank | |
ES2550159T3 (en) | High temperature fire cuff | |
US11231132B2 (en) | Unbonded flexible pipe | |
AU2006205539C1 (en) | Enhanced wellbore electrical cables | |
DK2795281T3 (en) | Method for monitoring the integrity of a flexible conduit extending through a liquid extraction plant, corresponding flexible conduit and method of manufacture thereof | |
US5341128A (en) | Sensor element for detection of hydrocarbons | |
US11604180B2 (en) | Voltage differential reduction methods used while retrieving a mobile platform from a tank containing a hazardous, non-conductive substance | |
US20130153260A1 (en) | ESP Power Cables | |
EP2165043B1 (en) | Tear cord for jacketed tube | |
MXPA06013225A (en) | Optical fiber cables for wellbore applications. | |
MXPA05001175A (en) | Removable hatch cover for an internal floating roof manway. | |
EP3005501B1 (en) | Methods of protecting or repairing a cable or cables and related apparatus | |
US7709731B2 (en) | Electric power supply and a method of production thereof | |
US20130036604A1 (en) | Static dissipation in composite structural components | |
US8122780B1 (en) | Explosion proof vehicle for tank inspection | |
US11828731B2 (en) | Methods for performing tasks inherently safely in a tank containing hazardous substances | |
EP3947234B1 (en) | Method for retrieving a mobile platform from a tank having energetic substances | |
US20130037155A1 (en) | Static dissipation in composite structural components | |
Garrity et al. | Design, test and commercialization considerations of OTEC pilot plant riser cables | |
CN112735649A (en) | Cable for oil exploration | |
CN110797147A (en) | Control nuclear cable for offshore nuclear power platform | |
Kimura et al. | Newly developed meta-seal SP underground cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2003795641 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2005/002658 Country of ref document: MX Ref document number: 2498350 Country of ref document: CA |
|
WWP | Wipo information: published in national office |
Ref document number: 2003795641 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |