WO2004024303A2 - Faserkassette und modular aufgebautes kassettensystem - Google Patents

Faserkassette und modular aufgebautes kassettensystem Download PDF

Info

Publication number
WO2004024303A2
WO2004024303A2 PCT/DE2003/003066 DE0303066W WO2004024303A2 WO 2004024303 A2 WO2004024303 A2 WO 2004024303A2 DE 0303066 W DE0303066 W DE 0303066W WO 2004024303 A2 WO2004024303 A2 WO 2004024303A2
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cassette
cassettes
fibers
housing
Prior art date
Application number
PCT/DE2003/003066
Other languages
English (en)
French (fr)
Other versions
WO2004024303A3 (de
Inventor
Uwe Klaus
Original Assignee
Saxonia Bio Tec Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saxonia Bio Tec Gmbh filed Critical Saxonia Bio Tec Gmbh
Priority to DE10393754T priority Critical patent/DE10393754B4/de
Priority to CA002498187A priority patent/CA2498187A1/en
Priority to JP2004535013A priority patent/JP2005537924A/ja
Priority to US10/526,439 priority patent/US20060014274A1/en
Priority to EP03769191A priority patent/EP1549422A2/de
Priority to AU2003277803A priority patent/AU2003277803A1/en
Publication of WO2004024303A2 publication Critical patent/WO2004024303A2/de
Publication of WO2004024303A3 publication Critical patent/WO2004024303A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/026Wafer type modules or flat-surface type modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/024Hollow fibre modules with a single potted end
    • B01D63/0241Hollow fibre modules with a single potted end being U-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/10Hollow fibers or tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/16Hollow fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/54Modularity of membrane module elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/60Specific sensors or sensor arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/022Reject series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/66Other type of housings or containers not covered by B01J2220/58 - B01J2220/64

Definitions

  • the invention relates to a fiber cassette for use in the filtration, diffusion, elimination or adsorption of fluids or substances or for use as a bioreactor. Depending on the application, a wide variety of shapes and materials, especially hollow fibers, are used as fibers.
  • the invention further relates to a cassette system which is modularly constructed from individual cassettes.
  • Such fiber cassettes or cassette systems are particularly interesting for the most diverse applications in chemistry, pharmacy, medicine, cell biology, microbiology, food industry, technology or biotechnology.
  • Fluids include gases, gas mixtures, and generally liquids such as e.g. B. understand clear solutions, protein solutions, emulsions or suspensions.
  • Hollow fiber modules that are used for filtration, separation, adsorption or for bioreactors are generally built in tubular form according to the prior art. These generally consist of a tube and a hollow fiber type, but can also contain tubes which are separate from one another and also different fiber types (EP 0515034, EP 0514021, EP 0530670, EP 0285812, DE 3636583, DE 3839567, DE 3805414, DE 3423258, DE 3039336, DE 2825065, DE 2828549, EP 0282355, DE 3435883, EP 0414515, DE 3423258). These modules are identical to or derived from designs and fiber types as used in dialysis, hemofiltration or oxygenation. As a result, they are not specifically designed for use in filtration, separation or adsorption or in the field of bioreactors, but are only optimized for use in dialysis or hemofiltration or oxygenation.
  • the tubular design of the previously known systems is characterized by the fact that its height is longer than the other dimensions and the fibers are arranged parallel to the contour line.
  • the derivation from the tubular design which is generally used in medical technology, has decisive disadvantages for many applications and for the flexibility of the product.
  • it's a combination Different types of hollow fiber membranes only possible by using a housing specially made for the application or by external connection using a hose system.
  • the latter connection has the major disadvantage that there is no general, large-area, spatially close connection between the Kömpartimenten and thus the flexibility in the application is missing.
  • tubular bioreactors there are also other housing shapes, some of which work with crossed hollow fibers. It is possible to combine different types of hollow fibers in these systems. However, these systems are difficult and expensive to manufacture and are inflexible to use and therefore difficult to implement (DE 4230194, US 5516691). Both the arrangement and the materials of the hollow fibers used are specified in all existing systems.
  • a bioreactor which is composed of elements containing fibers to be combined in a modular manner (DE 19932439).
  • the elements contain only one compartment surrounding the outer fiber. A supply or discharge of fluids through the interior of the fibers is therefore excluded. A free flow of the liquid between the elements is not possible because they are separated by a semi-permeable membrane. Use of the device according to DE 19932439 for filtration purposes is not provided.
  • Hollow fiber modules for filtration purposes are also known which contain plates and fiber layers stacked on top of one another (DE 2650341 and EP 350853). There is a hollow fiber layer between each of the two panels that are open in the middle. The plates are inserted in a closed housing which contains a cavity surrounding the plates. The ends of the hollow fibers, which are attached between the individual plates, are open to the outside and protrude into the surrounding cavity.
  • EP 454918 describes a similar system, with the difference that the hollow fibers are not clamped between plates, but in a ring.
  • a diffusion cell for ion exchange purposes in which several layers of fiber mats and frames are stacked alternately.
  • the crossed arrangement of the hollow fibers causes the hollow fibers to deform at the crossing points.
  • the opening of the hollow fibers is achieved by cutting through the fiber layers after assembly, whereby due to the system no clean cut is achieved, but rather the fibers are frayed or squeezed.
  • the deformation and fraying of the fibers adversely affect the flow through the hollow fibers. Particles can also come loose from the frayed ends.
  • the cut through the fiber layers creates undesirable dead spaces in the diffusion cell, which u. a. favor the growth of bacteria. A single flow against the diffusion cell according to DT 1642811 is not possible.
  • the object of the present invention is to create a versatile cassette in which a wide variety of fiber and hollow fiber materials are used individually or in combination and which, as a module, allows the construction of a system.
  • the object is achieved by a fiber cassette consisting of a housing (1) which is delimited by 2 congruent base areas (G) and at least one lateral surface (M) and contains at least one cavity in its interior, with at least one layer of fibers or fiber bundles or hollow fibers (2) which are arranged in the interior of the housing (1) substantially parallel to at least one central plane and are firmly anchored with their ends in the interior of the housing, a cavity forming an outer compartment (6) which defines the exterior of the fibers (2) surrounds, the central plane (E) not intersecting the base areas (G) within the cavity which forms the outer compartment (6), the individual fibers (2) being arranged in a U-shape or substantially parallel to one another and end inside the housing and the housing (1) has at least one opening for the supply and / or discharge (9, 10, 11, 12, 13, 14) of
  • the fibers are arranged within the housing between the base areas.
  • the arrangement of the fibers is not perpendicular to the base surface, as in the conventional hollow fiber systems, but parallel to one or more central planes between the base surfaces.
  • the central plane is usually parallel between the base areas, or at least at an acute angle to them.
  • the central plane does not intersect the base areas within the housing or at least not within the cavity that forms the outer compartment. This arrangement of the fibers to the central plane advantageously results in a flow direction almost perpendicular to the fiber direction when connecting the outer compartments over the base area.
  • the housing of the fiber cassette preferably has the shape of a body with polygonal or circular base areas, for example a cuboid or cube or a cylinder.
  • a housing whose height (h) is small compared to its other dimensions is preferred.
  • the height (h) is the mean distance between the base areas.
  • This flat shape results in a large base area in relation to the volume of the cassette.
  • the cassettes can advantageously be stacked well over the congruent, large base areas. Another advantage of the flat shape of the cassette is that it can be used under the microscope with the appropriate translucent material.
  • the base areas (G) of the housing are preferably congruent circles or polygons; regular polygons are particularly preferred.
  • This shape of the base surface advantageously allows both a parallel arrangement and an arrangement of the fibers offset at different angles when arranging a plurality of cassettes one above the other.
  • a square base area when two cassettes are arranged one above the other enables an angle of 90 °, 180 ° 270 ° or 360 ° between the fibers of the individual cassettes.
  • a circular base surface enables the fibers to be arranged at any angle.
  • Both base surfaces (G) are preferably parallel to one another and the lateral surfaces are flat and perpendicular to these.
  • the housing has the shape of a straight line
  • fibers are arranged essentially perpendicular to the contour line (h) and consequently parallel to the base area (G) of the housing (1).
  • An embodiment of the invention is possible in which the base surfaces (G) are not arranged in parallel but offset at an angle, so that the assembly of a plurality of cassettes over their base surfaces (G) enables a body in the form of a regular prism or a cylinder or a hollow cylinder , in the
  • the individual cassette thus has the shape of a cylinder segment.
  • different shapes and materials come into consideration as fibers (2) and can also be combined in a cassette.
  • Tubular hollow fibers are preferably used.
  • a cassette that contains hollow fibers is also referred to below as a hollow fiber cassette.
  • the ends of the hollow fibers are firmly attached to the inside of the cassette.
  • the ends of the hollow fibers are open at one or both ends or sealed by the connection to the housing.
  • the open ends of the hollow fibers are preferably connected to at least one additional cavity in the housing.
  • the interior of the hollow fibers and the cavity (s) connected to them form an additional compartment, which is hereinafter referred to as the inner compartment (5).
  • the housing (1) forms a frame that holds the fibers (2) and the individual
  • Compartments (5, 6) surrounds inside the body.
  • the inner (5) and outer (6) compartment are according to the invention by the
  • the fibers are preferably fixed in the housing of the cassette by embedding them in a casting compound (3).
  • All common 1-, 2- or 3-component adhesives e.g. epoxy resin, polyurethane
  • thermoplastics e.g. PE hot melt adhesive
  • reactive thermoplastics e.g. thermally processable polyurethane
  • other hardening liquid masses e.g. liquid ceramics
  • fibers are arranged in parallel or in a U-shape with respect to one another on a base and the open ends are fused.
  • Such hollow fiber mats with non-crossing fibers are placed in a casting mold and the shape is fixed in a centrifuge. Potting compound is then introduced at the ends of the closed fiber ends with rotation. The rotation causes only the fiber ends in the potting compound be embedded. So that the interior of the hollow fibers is accessible, the casting blocks are cut parallel to their longitudinal axis and perpendicular to the hollow fibers after the casting compound has hardened, so that a clean, smooth cut is produced. If the fiber ends are to remain closed, no cut is made. The fiber unit manufactured in this way is then glued into the housing.
  • the fibers can also be cast directly into the material of the housing.
  • the entire fiber surface advantageously remains freely available and deformations of the fibers are avoided.
  • the exact cut of the fiber ends creates smooth fiber ends and prevents dead spaces that are difficult or impossible to flush.
  • avoiding dead spaces is crucial for use as a bioreactor, since biological substances can be deposited in dead spaces with little or no flow and decompose there.
  • This deposition and decomposition promotes, on the one hand, the undesirable settlement of contaminants (bacteria, fungi) and, on the other hand, decomposition products and bacterial endotoxins are carried out by diffusion, which negatively influence the growth of the cells.
  • the smooth cut of the fiber ends embedded in the sealing compound prevents fraying and deformation of the fiber ends.
  • the smooth fiber ends prevent turbulence at the openings and ensure an even flow.
  • a uniform flow is a prerequisite for an even supply of nutrients to the cells that grow outside on the capillary membranes.
  • the uniform nutrient supply is in turn a prerequisite for uniform growth and metabolism of the cells.
  • the cells would undesirably adjust their metabolism and growth according to the nutrient conditions.
  • the cassette can be used as a module in a system or individually.
  • the housing (1) is preferably designed so that it can be connected to the housings of other cassettes by gluing, plugging or welding and the inner and / or outer compartments of several cassettes can be connected to one another in a fluid-tight manner without hose connections.
  • the housing (1) contains at least one opening for supply and / or discharge to the outer compartment.
  • the opening can be a large-area opening (13) in the upper or lower base surface (G) or a lateral surface, which enables the direct connection to the outer compartment of other fiber cassettes.
  • the cassettes can advantageously be connected to one another over a large area due to the large congruent base area. Cavities of additional compartments can be connected accordingly via large openings (14) in the base surface (G) or a lateral surface (M).
  • the housing contains means for fixed or reversible, fluid-tight connection of these openings (13, 14) with those of other cassettes or at least one cover (4).
  • the connection can be made by gluing or welding.
  • the connection is reversible by means of plug or clip connections with appropriate seals.
  • the housing contains channels (7, 8, 9, 10, 11, 12) which act as supply and discharge lines for fluids to the individual compartments.
  • the connections of the channels to the outside are made in such a way that external connections, e.g. B. hoses, but also connections made of solid material, can be connected.
  • the connections can be made using injection molding technology in such a way that they can be opened easily, even by the user, according to requirements and applications. If individual openings are not required, they can be closed with suitable plugs or caps or remain closed.
  • the housing (1) and the cover (4) of the cassette preferably consist of a rigid or flexible polymer, composite material, glass, ceramic or metal. All common plastic materials, such as. B. polyethylene, polypropylene, polyvinyl chloride, polyester, such as polycarbonates, polysulfones, polyether sulfones, but also silicones and biopolymers or composites.
  • All common plastic materials such as. B. polyethylene, polypropylene, polyvinyl chloride, polyester, such as polycarbonates, polysulfones, polyether sulfones, but also silicones and biopolymers or composites.
  • a possible translucent design of the cover or the housing allows viewing in a microscope or other optical measurements.
  • a cover (4) can also be a membrane made of a material such.
  • B. silicone or another self-healing, transparent polymer can be used: Such a cover can be pierced with suitable instruments and reclose itself. This enables the inside of the cassette to be manipulated, even under the microscope.
  • the cover (4) can also consist of a semipermeable flat membrane or a filter fabric with a defined mesh size.
  • the cover (4) can also contain openings for supplying and / or discharging fluids to the inner and / or outer compartments.
  • the cover (4) can enclose one or more cavities, each of which is connected to one of the compartments of the cassette.
  • a cover can be designed in the form of a trough (4 ') or in the form of an additional cassette (without fibers).
  • the connection with the compartments of the cassette takes place via openings in the upper or lower base surface (G) or an outer surface (M).
  • the fibers (2) can be brought to a defined lateral distance or they can be disordered in a statistically defined manner Packing density (number of fibers per surface) introduced.
  • the arrangement of the fibers relative to one another is either U-shaped or parallel.
  • the fibers are connected to the housing in such a way that their two ends are in different chambers at the opposite ones
  • Connection to the housing is only necessary on the U-shaped arrangement on the side on which both ends of the fibers are located.
  • the hollow fibers can be locked either on a (dead-end module), or both ends open (flow module), or at both ends.
  • the hollow fibers open at one or both ends, depending on the pore size, allow gas or liquid and / or mass exchange according to the properties of the semi-permeable membrane used.
  • Liquids can be pumped by connecting external pumps or pressure systems either with continuous pressure through the membrane and through the interior of the hollow fibers or with alternating pressure (push-pull method), e.g. B. by connecting a syringe or piston pump.
  • Fibers closed at both ends and also filament fibers can be used as filler threads, as a carrier medium for adherent cells or microorganisms, as adsorption media or also for the substance-specific treatment of fluids.
  • the fiber cassette contains one to several hundred fiber layers of one or different fiber or hollow fiber materials.
  • the diameter of the fibers ranges from a few ⁇ m to several millimeters.
  • the pore size of the hollow fibers can range from a few nm to ⁇ m in diameter.
  • the use of closed-pore fibers is also possible. Gas-permeable hollow fibers with a pore size in the nanometer range are used, for example, for oxygenation and closed-pore hollow fibers, for example, for the transfer of heat.
  • the fibers mostly consist of organic polymers, but inorganic materials such as glass, ceramic, SiO, carbon or metal, or mixtures thereof, are also possible.
  • the materials can have a hydrophilic to hydrophobic character.
  • the polymers can be unmodified or modified, or mixtures of these groups.
  • biopolymers examples include cellulose, silk threads and polymers produced by microorganisms and their derivatives, such as, for. B. cellulose ester or ether.
  • Possible synthetic polymers are, for example, polyacrylonitriles, polyurethanes, alliphatic and aromatic polyamides, polyimides, polysulfones, polyaryl ether sulfones, polycarbonates, polyolefins, such as, for. B. polyethylene, polypropylene, polyvinyl chloride, polyvinylidene difluoride, polytetrafluoroethylene, Teflon, polyphenylene oxide,
  • polymers can also hydrophilic polymers such as polyethylene oxide, polyhydroxy ether, polyethylene glycol, polyvinyl pyrrolidone, adsorbent materials or other substances, such as. B. silicates, zeolites, activated carbon, aluminum oxide.
  • fibers with carrier materials such as. B. activated carbon or ion exchange resins.
  • microporous hollow fibers made of polysulfone with activated carbon fibers.
  • acceptors functional groups or substances
  • Such interactions can be, for example, cation or anion exchange, hydrophilic or hydrophobic interactions, hydrogen bonds, affinity or enzymatic or catalytic reactions.
  • Antibodies or proteins, or catalytically active substances such as, for example, enzymes or noble metals, complex compounds or nonionic, ionic or zwitterionic organic or inorganic substances or adsorbing substances, can act as acceptors.
  • catalytically active substances such as, for example, enzymes or noble metals, complex compounds or nonionic, ionic or zwitterionic organic or inorganic substances or adsorbing substances.
  • acceptors can act as acceptors.
  • substance-specific treatment of a fluid are, for example.
  • ion exchangers, immune adsorbers or hydrophobic acceptors can be used for adsorption.
  • substance-specific treatment also means the separation or retention of particles based on their size.
  • the hollow fiber cassettes according to the invention can advantageously be used for various applications, such as filtration, dialysis, osmosis, including reverse osmosis, separation, the concentration of liquids, the harvesting of cells, substances, antibodies or proteins, the catalytic conversion of substances, the adsorption or desorption of substances, the support of back-filtration processes, the gassing or degassing of media, the * physical transfer of heat, the measurement of various parameters such as pH, temperature or the combination of two or more applications.
  • applications such as filtration, dialysis, osmosis, including reverse osmosis, separation, the concentration of liquids, the harvesting of cells, substances, antibodies or proteins, the catalytic conversion of substances, the adsorption or desorption of substances, the support of back-filtration processes, the gassing or degassing of media, the * physical transfer of heat, the measurement of various parameters such as pH, temperature or the combination of two or more applications.
  • Another application of the fiber cassettes is the use as a bioreactor, for example for the culture of cells, bacteria and / or viruses. These can grow in the inner lumen of the fibers, in or on the fiber material or in suspension around the fibers.
  • Another component of the invention is a cassette system consisting of at least two fiber cassettes which are connected to one another in a fluid-tight, fixed or releasable manner. In this system, individual compartments (5, 6) of the individual cassettes are connected to one another. The connection takes place via an opening in the adjoining surfaces (13, 14) or via connection channels (11, 12) preformed in the frame.
  • the cassettes can be connected to a system, for example, by welding, gluing or by a clip system or other aids.
  • An important advantage of the invention is that a direct connection of the individual compartments of several cassettes is made possible without hose connections.
  • the fluid supply or fluid discharge to the system can take place through connections in the covers or the housing.
  • the cover can act as an additional fluid reservoir. If the individual compartments of the cassettes are connected to one another, the media can be supplied to individual cassettes by the connection to the neighboring cell.
  • cassettes according to the invention can be combined with one another in various arrangements and can be connected either in parallel or in series.
  • composition of the cassette system according to the invention and thus the desired materials can be carried out both by the user and by the manufacturer.
  • any number of cassettes can advantageously be assembled.
  • the direct connection between the compartments (5, 6) of two cassettes takes place over most of the adjoining surfaces of the cassettes.
  • the contact preferably occurs over a base area (G), since these are congruent and preferably large in relation to the lateral surfaces.
  • G base area
  • An additional advantage of the connection via the base areas is that it results in a flow direction perpendicular to the fiber direction. This and the large-area connection result in a very good material or gas exchange between the connected compartments.
  • connection also takes place via one of the other surfaces or by means of a suitable arrangement of preformed connecting channels in the housing.
  • a cassette system can be composed of cassettes (F) of various shapes.
  • the cassettes preferably have mutually parallel base surfaces (G) and the
  • Shape of a straight cylindrical or prismatic body such as one
  • the cassette system is constructed from cassettes arranged vertically one above the other, which are connected to one another via their base surfaces (G).
  • the cassettes have straight lateral surfaces (M), such as, for example, in the case of a prismatic shape, the cassette system can also be located laterally, over the lateral surfaces
  • the cassette system itself forms a cylindrical or prismatic body, the base of which consists of at least one base (G) of an individual cassette (F).
  • the cassette system is composed of cassettes (F), the base surfaces (G) of which are not parallel to one another.
  • the cassettes are connected to each other in a fan shape over the base areas (G).
  • the cassette system preferably forms a regular prism, a cylinder or a hollow cylinder, the base surfaces of which are composed of lateral surfaces (M) of the individual cassettes (F).
  • the cartridges (F) either hit directly together in the middle of the cassette system or, in the case of the hollow cylinder, form a tubular tunnel in the middle thereof (see, for example, FIG. 9).
  • the media is fed in here preferably through openings in the lateral surfaces of the cassettes, which together form the base of the prism or cylinder. Alternatively, the media can also be fed through openings to the tubular tunnel in the middle.
  • the cassette system forms a regular circular cylinder
  • a rolling movement of the system can be achieved by embedding the system on rollers.
  • the cylinder rolls over the outer surface of the cylinder, which is composed of outer surfaces (M) of the individual cassettes.
  • M outer surfaces
  • the latter system can be placed in a cell culture cabinet suitable for roller bottles (available, for example, from Wheaton Science Products, NJ, USA).
  • the system has a tubular opening in the middle, an axis can be inserted into it, which allows the entire system to rotate. This advantageously allows the cylinder to be rotated without having to be placed in a cell culture cabinet for roller bottles.
  • a bioreactor can be operated with a heating device and fluid supply and drainage independently of a cell culture cabinet.
  • the continuous movement of such a system by rolling or rotation advantageously prevents the cell from settling on the floor and achieves an optimal rinsing of the cells with media.
  • the fractionation of the substances contained in the fluids is made according to the interaction with the fiber materials (e.g. size exclusion, adsorption) possible.
  • the individual compartments of different cassettes can be separated from one another by the housing (1) or a cover (4).
  • At least two adjoining compartments (5, 6) of different cassettes are preferably connected to one another or separated from one another by a cover (4) in a semi-permeable manner.
  • the compartments can also be connected semi-permeably. This means that the cover can act as a partition, semi-permeable membrane or filter.
  • a plurality of cassettes with a base plate (P) form a common housing which contains channels for the supply and / or discharge of media to the individual cassettes.
  • the connection to a housing can e.g. B. can be achieved by gluing or by injection molding manufacturing from a single source.
  • compartments of different cassettes can be directly connected to a common compartment and / or channels in the carrier.
  • cells in the individual cassettes can be grown in parallel as well as examined. This makes this cassette system ideal for use in screening or similar applications.
  • the invention also includes an arrangement of at least one fiber cassette or at least one fiber cassette system and a carrier (T) which, for each fiber cassette or fiber cassette system, has devices for holding the cassette or the cassette system and devices for supplying and / or discharging media to the contains individual cassettes.
  • T carrier
  • the arrangement of several fiber cassettes or cassette systems in the carrier takes place horizontally next to one another and / or one above the other.
  • the individual cassettes can be connected to the carrier via a base surface or a lateral surface.
  • the carriers have the function of geometrically fixing the individual systems and supplying and discharging media and products to the cassettes through the channels or hoses contained in the carrier.
  • the cassettes can be supplied individually, in series or in parallel through the supply channels / hoses.
  • the cassettes / cassette systems can be fixedly or reversibly connected to the carrier.
  • a flexible connection is e.g. B. achieved by plug and / or clip connections.
  • the devices for holding are preferably designed in the form of slots or drawers in which cassettes can be reversibly inserted.
  • the holder is also held by special connectors that are inserted into recesses in a plate-shaped carrier. These connectors preferably contain in their inner channels, which are connected to the individual compartments in the cassettes as outgoing and incoming lines. By inserting the connectors, the channels in the connectors are reversibly and sterile connected to the channels in the carrier for media supply and removal.
  • a preferred embodiment of the carrier is in the form of a shelf in which several cassettes can be vertically stacked one above the other or next to one another to save space.
  • Another preferred embodiment of the carrier is a plate on which a plurality of cassettes can be mounted horizontally next to one another.
  • the horizontal arrangement of several cassettes on a carrier in the form of a plate allows easy access for manipulation and examination of individual cassettes / cassette systems without having to disconnect the plate.
  • the individual cassettes When arranged in a carrier in the form of a shelf, the individual cassettes can be removed for examination or manipulation. Automation through the use of robot arms is possible.
  • Fig. 1 Horizontal section through a hollow fiber cassette with open ends of the
  • FIG. 2 vertical section through a hollow fiber cassette according to FIG. 1
  • Fig. 3 Horizontal section through a hollow fiber cassette, in which the hollow fibers are open at one end and closed at the other.
  • Fig. 4 horizontal section through a hollow fiber cassette with closed
  • FIG. 7 sectional view of a hollow fiber cassette system with 2 fiber cassettes arranged side by side
  • Fig. 8 Vertical section through two hollow fiber cassettes with base surfaces arranged at an angle to one another.
  • FIG. 9 sectional view of a cassette system for growing cells under
  • FIG. 11 shows a three-dimensional representation of an arrangement consisting of a shelf-shaped carrier and 6 hollow fiber cassettes inserted therein, as well as a horizontal section through two hollow fiber cassettes with connectors for connection to a carrier.
  • FIGS. 12 shows a three-dimensional representation of a hollow fiber cassette analogous to FIGS. 1 and 2
  • Fig. 14 Recording a section through a potting compound with open
  • Fig. 1 shows a horizontal section through a hollow fiber cassette with two parallel square bases G, in which both hollow fiber ends (2) are open.
  • a planar layer of parallel hollow fibers (2) is arranged in a housing (1).
  • the ends of the hollow fibers (2) are encased in the housing (1) with the sealing compound (3), so that both open ends of the hollow fibers (2) point into the inner compartment (5).
  • a polysulfone ultrafiltration hollow fiber from Ascalon GmbH, Berg understandhübel, Germany (280 ⁇ m outside diameter) is wound in parallel around a 60 mm wide metal plate.
  • the wound hollow fiber on front and The back is fixed to both edges of the metal plate with a narrow adhesive tape (1 mm) that runs perpendicular to the hollow fibers.
  • the hollow fibers are now cut open on both edges of the metal plate with a knife. This results in two fiber mats in which the hollow fibers (2) open at both ends are held together by 2 adhesive tapes.
  • the open ends of the hollow fibers (2) are fused together using a beam welding device. The mats are placed in a casting mold and fixed.
  • the casting mold is fixed in a centrifuge and with rotation (600 revolutions per minute) statically mixed two-component adhesive polyurethane consisting of polyol and polyisocyanate from Morton is applied as casting compound (3). After 30 minutes, the mold is removed from the centrifuge. After another hour, the 5 mm rectangular hollow fiber mat is removed from the mold.
  • a polyurethane casting block (3) has the dimensions of 45 mm x 5 mm x 3 mm. After about 12 hours of post-curing, the polyurethane blocks (3) are cut parallel to their longitudinal axis and perpendicular to the hollow fibers (2), so that the interior of the hollow fibers is accessible and, as shown in FIG. 14, a clean, smooth cut is produced. Due to the supporting effect of the potting compound, the hollow fibers do not fray and are opened cleanly and smoothly without dead spaces. This ready-made fiber unit is glued into the housing (1) using polyurethane.
  • the housing (1) is divided into the inner compartment (5) and the outer compartment (6) by its construction, by the sealing compound (3) and the hollow fibers (2). An exchange of substances between the compartments can take place solely through the pores of the hollow fibers.
  • the housing (1) contains the channels (7 and 8) for supplying and removing gases and liquids to the inner compartment (5), and the corresponding channels (9 and 10) for supplying and removing gases and Liquids to the outer compartment (6).
  • Fig. 2 shows a vertical section through a hollow fiber cassette according to Fig. 1.
  • the outer compartment (6) is closed at the top and bottom by a cover (4) on the bases (G).
  • the covers are designed as flat lids, each spanning the entire base area.
  • the fluid-tight connection of the covers to the housing takes place via, in the graphic not illustrated, plug connections in the base areas.
  • the inlets and outlets (7,8) for compartment (5) in the lateral surfaces (M) are shown.
  • the supply and discharge lines (9, 10) for compartment (6) in the lateral surfaces on the front or rear of the cassette are not shown.
  • the hollow fiber cassette according to FIGS. 1 and 2 can be used for dialysis, for example.
  • a semi-permeable hollow fiber with an exclusion size in the range of 2-50 kD (50% cut-off) is selected as an example.
  • the liquid to be dialyzed is passed through the inlets and outlets (7, 8) through the inner compartment (5) of the hollow fibers (2).
  • the outer side of the hollow fibers (2) is rinsed in the compartment (6) through the inlets and outlets (9, 10) with the buffer solution against which dialysis is to be carried out.
  • the hollow fiber cassette shown in FIGS. 1 and 2 can also be used as a microscopic bioreactor.
  • the upper and lower cover (4) consists of a material that is suitable for optical microscopy. Cells or microorganisms grow adherently or in suspension in the outer compartment (6).
  • the supply of nutrient media, oxygen and carbon dioxide is advantageously provided by a hose system connected to supply and discharge lines (7,8). Inlets and outlets
  • the hollow fiber cassette is placed under a microscope.
  • the hollow fiber cassette shown in FIGS. 1 and 2 can also be used as a multi-phase reactor for the extraction.
  • Two different media A and B are placed in the inner and outer compartments. given.
  • the interior of the hollow fiber (2) is z. B. through the openings (7) and (8) with an aqueous medium A, which contains extracting substances.
  • the exterior of the hollow fiber is z. B. washed by an organic solvent as medium B.
  • the flavoring substances are more soluble in the organic medium B and enter the medium B through hollow fibers.
  • the separation of the medium is one effective extraction possible. Such an extraction can be used, for example, in the purification of flavorings.
  • Fig. 3 shows a horizontal section through a hollow fiber cassette in which the hollow fibers are only open at one end.
  • the device is analogous to that described in FIG. 1, with the difference that the hollow fibers are only open on one side. Accordingly, the inner compartment (5) has only one connection (7) through which fluids can be introduced or discharged into the interior of the hollow fibers (2).
  • connection (7) can be used, for example, for gassing media.
  • a gas is introduced through the hollow fibers through connection (7).
  • the liquid to be filtered is advantageously passed through the outlet lines (9, 10) into the outer compartment and the filtered liquid is discharged through the connection (7).
  • Fig. 4 shows a horizontal section through a hollow fiber cassette in which both hollow fiber ends are closed.
  • the device is analogous to that described in FIG. 1, with the difference that the hollow fibers are closed at both ends.
  • 4 can be used, for example, for the cultivation of adherent cells.
  • the cells grow on the outside of the hollow fibers.
  • the supply of nutrients and oxygen and carbon dioxide takes place either through the openings (9, 10) or advantageously through the combination with other cassettes analogous to FIG. 5.
  • 5 shows a vertical projection through a hollow fiber cassette system.
  • three different hollow fiber cassettes, each a cassette constructed analogously to FIGS. 3, 4 and 1, are connected to one another by plug connections (not shown in the graphic) in the base areas (G).
  • the cavities of the individual cassettes, which surround the fibers, are connected to one another over a large area via openings (14 - represented by a dashed line) in the base areas and form a common outer compartment (6).
  • Covers (4) which are connected to the base areas by plug-in connections, close the common outer compartment (6) in a fluid-tight manner upwards and downwards. Since the cassette system shown in FIG. 5 has only one common outer compartment (6), one inlet and one outlet (9, 10) is sufficient for the common outer compartment. These are located on the front or back of the cassettes and are not shown.
  • a system according to FIG. 5 is an example of a possible bioreactor in which adherent cells in the middle cassette (analogously to FIG. 4) grow on the hollow fibers or carrier fibers closed at both ends and through the other two hollow fiber cassettes with nutrients (top cassette analogously) Fig.l), oxygen and carbon dioxide (bottom cassette analogous to Fig 3.) are supplied.
  • the cells can not only be supplied with media, but also products secreted by them into the medium, e.g. B. Antibodies are separated and purified.
  • FIG. 6 The production of a protein by a cell culture and simultaneous purification by means of several substance-specific separation steps is explained by way of example in FIG. 6.
  • the system shown in FIG. 6 is made up of four hollow fiber cassettes stacked on top of one another and connected to one another over a large area, and is closed off at the top and bottom by two covers (4, 4 ').
  • the individual cassettes are connected to one another in a fluid-tight manner with one another and with the covers via plug connections (not shown) in the base areas.
  • the top cover (4) has a connection (9) for media supply to the outer compartment (6) of the top cassette.
  • the inner compartments of the first and second cassettes are largely connected to one another via openings (13 - represented by a dotted line) in the base areas connected.
  • the inner compartments of the third and fourth cassettes are connected in the same way.
  • the outer compartments of the second and third cassettes are connected analogously via corresponding openings in the grand areas (14 - represented by a dotted line
  • the lower cover (4 ') contains a cavity, which acts as a collecting container and is connected to the outer compartment of the lowest cassette, and a connection (10) to this.
  • the cells grow in the outer compartment (6) of the top cassette and secrete the desired protein into the medium.
  • the medium is fed through connection (9) in the upper cover (4) to the outer compartment of the uppermost cassette and flows down through the entire system and is discharged through connection (10) in the lower cover (4 ').
  • the connections (9) and (10) can be connected by a pump to ensure continuous media circulation.
  • the protein-containing medium is separated from suspended matter, cells and cell residues by the hollow fibers (2) with a coarse pore size, which act as a prefilter, and are passed into the second cassette by connecting the two inner compartments.
  • the protein solution is separated by hollow fibers with a smaller pore size, the protein from larger molecules and passes through the fiber material into the outer compartment of the second cassette, which is connected to the outer compartment of the third cassette.
  • the inner compartment of the second cassette can optionally be flushed through the connections (7) and (8).
  • the hollow fibers in the third cassette containing acceptor groups are used to separate other undesirable substances from the protein by affinity chromatography.
  • the solution containing the desired protein passes through the fiber material into the inner compartment of the third cassette, which is connected to the inner compartment of the lowest cassette.
  • the undesired substances remain in the outer compartment of the third cassette and can optionally be derived by an additional connection to the outer compartment, which is not visible in the sectional view.
  • the protein Due to the pore size of the hollow fibers of the lower cassette in the Namoter area, the protein is concentrated in the inner compartment and can be connected through the connections (7) and (8).
  • the liquid of the medium and smaller molecules flow through the hollow fibers into the outer compartment of the lowest chamber and into the collecting container connected to it in the cover (4).
  • the collection container can be emptied through the connection (10).
  • the cassettes concerned can advantageously be replaced individually.
  • the lower cassettes, whose inner compartments contain the concentrated protein solution, can continue to be used. This minimizes the possible loss of protein due to adsorption on surfaces.
  • top cassette For enlarge the system, for example, instead of the top cassette, several of the same type, connected to the inner compartments, can be placed on top of each other.
  • heating wires or closed-pore hollow fibers through which water heated to the desired temperature is passed, can be integrated.
  • a heating device enables culture outside a special incubator.
  • the concentrated protein solution can be cooled by a corresponding cooling device in the lower two cassettes.
  • FIG. 7 shows a horizontal projection through a hollow fiber cassette system.
  • FIGS. 8A and 8B each show a vertical section through a hollow fiber cassette, which is constructed analogously to FIGS. 1 and 2, with the difference that rectangular base areas are arranged at an angle to one another.
  • the fibers (2) are arranged almost parallel to one of the base surfaces (G) or an intermediate plane (E) between them.
  • the orientation of the fibers in FIG. 8A is perpendicular to the fiber orientation in FIG. 8B.
  • Both cassettes contain connections for fluid supply and discharge to the individual compartments, these are not shown in FIGS. 8A and 8B.
  • a hollow fiber layer (2) is arranged, which is represented by small circles. The inside of the circles represents the fiber lumen. The fibers are arranged parallel to the right and left lateral surface (M).
  • Fig. 8B three fiber layers (2) are shown, which are arranged perpendicular or almost perpendicular to the right and left lateral surface (M).
  • the fibers lie in a central plane (E1, E2, E3) between the base areas (G) of the cassette.
  • FIG. 9 shows a 3-dimensional representation of a cassette system for growing cells under rolling conditions.
  • This system is made up of 12 cassettes (F), as shown in FIG. 8A, with the difference that one lateral surface (M) is concave and the other convex.
  • the individual fiber cassettes are assembled so that the cassette system forms a cylinder with a circular base.
  • the individual cassettes are connected over a large area via a base area (G) by means of a plug-in system.
  • the convex outer surfaces of the individual cassettes point outwards and form the outer surface of the cylinder.
  • the concave outer surfaces of the individual cassettes point inwards and form a cavity in the middle of the cylinder, through which a further component (not shown in FIG. 9) can be inserted.
  • the component contains supply and discharge lines that can be connected to the supply and discharge lines to the individual compartments of the cassettes (5, 6).
  • the feed and discharge lines are not shown in FIG. 9.
  • the component simultaneously acts as an axis of rotation and can be designed such that rotation of the cylinder is achieved by a connection at one end to an electric motor.
  • Such a bioreactor can be operated independently of a cell culture cabinet with a heating device and fluid supply and discharge as described in FIG. 6.
  • Fig. 10 shows a plan view of a fiber cassette system consisting of 24 (4x6) hollow fiber cassettes (F) and a base plate (P) for use as a bioreactor for cellular screening.
  • a firm connection of the cassettes to the base plate is achieved in that the base plate (P) and the individual cassettes (F) are injection molded in one piece.
  • the individual cassettes and the base plate form a common housing (1) which contains channels (not shown in FIG. 10) inside and connectors (K) on the side for the supply and discharge of fluids.
  • the individual cassettes are constructed analogously to those shown in Fig. 1, with the difference that the channels in the interior of the base plate are connected directly to the interior of the hollow fibers and with the lumen of the hollow fibers form an internal compartment common to all cassettes and the outer ones Compartments do not have their own supply lines.
  • Each cassette (F) contains its own outer compartment, which is separate from the other cassettes and surrounds the hollow fibers (2).
  • the outer compartments are closed at the bottom by the base plate (P), but are largely open at the top.
  • the openings of the outer compartments upwards can be closed by individual lids each covering one compartment, or by a continuous lid covering the entire upper surface of the housing.
  • cassette system cells can be inserted upwards through the opening of the outer compartment and, depending on the cell type, grow in, on or in suspension around the fibers (2).
  • This form of the cassette system analogous to a multi-well plate (such as is often used for immunoassays) allows the examination of cells that grow in parallel in the individual cassettes (F).
  • the cassette system with 24 cassettes is shown for simpler representation, but a version with, for example, 96 (8x12) cassettes is also possible.
  • the complete Plate can also be automated z. B. inserted into a plate reader or examined under a microscope.
  • Such a fiber cassette system can, for. B. can be used for patient-specific screening in medicine for chemotherapy.
  • the patient's own cells; that is, tumor cells in the individual fiber cassettes are tested for the reaction to various chemotherapeutic agents.
  • the results of such examinations enable the creation of a more effective treatment concept and a therapy that is individually adapted to the patient.
  • FIG. 11A and 11B show cassettes which can be connected to a carrier (T) via special connectors (K). Such an arrangement of a carrier (T) and 6 cassettes (F) is shown in FIG. 11C.
  • the cassettes shown in FIGS. 11A and 11B are constructed analogously to the cassette from FIGS. 1 and 2, with the difference that the supply and discharge lines (7, 8, 9, 10) are all in one Shell surface (M) and are in the form of connectors (K), which allow the connection to a carrier (T).
  • the cassette shown in Fig. 11 A contains only supply and discharge lines (7,8) to the inner compartment (5).
  • the cassette shown in FIG. 11B also contains feed and discharge lines (9, 10) to the outer compartment (6). The direction of media flow through the cassette is shown by arrows.
  • Fig.l IC is an arrangement consisting of a plate-shaped, acting like a shelf, carrier (T) with 9 slots. Hollow fiber cassettes (F) are inserted into 6 slots, which are constructed analogously to that shown in FIG. HA. The top and the bottom two slots are left blank.
  • the inside of the carrier (T) contains channels, indicated by dashed double lines, for supplying and discharging media and cutouts (A) represented by circles for connection to the connectors (K) of the cassettes. The direction of media flow through the channels in the carrier is shown by arrows.
  • the connection of the connectors (K) with the recesses (A) serves for the reversible, sterile connection of the channels in the carrier with the compartments (5, 6) in the cassette (F). At the same time, this connection serves to fix the individual cassettes (F) in the carrier (T).
  • This arrangement advantageously allows a space-saving arrangement of a plurality of bioreactors and the removal of individual cassettes z. B. by a robot arm.
  • entire hollow fiber cassette systems can also be fixed via connectors or in drawers of a corresponding shelf-shaped support, for. B. those shown in Fig. 10.
  • Fig. 12 shows a three-dimensional representation of a hollow fiber cassette, constructed as in Fig.l and 2 with the difference that the inlet and outlet (9,10) to the inner and outer compartment are not distributed over 4 but only 2 lateral surfaces and the Base areas are cut off at your corners.
  • FIG. 13 shows a three-dimensional representation of a hollow fiber cassette system composed of 3 cassettes (F) corresponding to FIG. 12 and a flat cover (4) upwards and a trough-shaped cover (4 ') downwards.
  • the cassettes are placed one on top of the other in such a way that a vertically offset fiber direction results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • External Artificial Organs (AREA)

Abstract

Die Erfindung betrifft eine Faserkassette für den Einsatz zur Filtration, Diffusion, Elimination oder Adsorption von Fluiden bzw. Substanzen oder Einsatz als Bioreaktor. Als Fasern kommen je nach Anwendung unterschiedlichste Formen und Materialien, vor allem Hohlfasern zum Einsatz. Des weiteren betrifft die Erfindung ein aus einzelnen Kassetten modular aufgebautes Kassettensystem und eine Anordnung aus Kassetten oder Kassettensystemen und einem Träger, welcher der Halterung und Anschlüsse für die Mediumversorgung enthält

Description

Faserkassette und modular aufgebautes Kassettensystem
Die Erfindung betrifft eine Faserkassette für den Einsatz zur Filtration, Diffusion, Elimination oder Adsorption von Fluiden bzw. Substanzen oder Einsatz als Bioreaktor. Als Fasern kommen je nach Anwendung unterschiedlichste Formen und Materialien, vor allem Hohlfasern zum Einsatz. Des weiteren betrifft die Erfindung ein aus einzelnen Kassetten modular aufgebautes Kassettensystem.
Derartige Faserkassetten bzw. Kassettensysteme sind besonders interessant für vielseitigste Anwendungen in der Chemie, Pharmazie, Medizin, Zellbiologie, Mikrobiologie, Lebensmittelindustrie, Technik oder Biotechnologie.
Unter Fluiden sind dabei Gase, Gasgemische, sowie allgemein Flüssigkeiten wie z. B. klare Lösungen, Proteinlösungen, Emulsionen oder Suspensionen zu verstehen.
Hohlfasermodule, die für Filtration, Separation, Adsorption oder für Bioreaktoren Anwendung finden, werden nach dem Stand der Technik allgemein in Röhrenform gebaut. Diese bestehen im allgemeinen aus einer Röhre und einem Hohlfasertyp, können aber auch voneinander getrennte Röhren und auch unterschiedliche Fasertypen enthalten (EP 0515034, EP 0514021, EP 0530670, EP 0285812, DE 3636583, DE 3839567, DE 3805414, DE 3423258, DE 3039336, DE 2825065, DE 2828549, EP 0282355, DE 3435883, EP 0414515, DE 3423258). Diese Module sind identisch zu oder abgeleitet von Bauformen und Fasertypen wie sie in der Dialyse, Hemofiltration oder Oxygenation verwendet werden. Dadurch sind sie nicht speziell auf den Gebrauch für Filtrations-, Separations- oder Adsorptionszwecke oder den Bereich der Bioreaktoren abgestimmt, sondern nur für den Gebrauch in der Dialyse oder Hemofiltration oder Oxygenation optimiert.
Die röhrenförmige Bauform der bisher bekannten Systeme zeichnet sich dadurch aus, dass ihre Höhe länger als die übrigen Abmessungen ist und die Fasern parallel zur Höhenlinie angeordnet sind.
Durch die Ableitung von der röhrenförmigen Bauform, die in der Medizintechnik allgemein verwendet wird, ergeben sich für viele Anwendungen und für die Flexibilität des Produktes entscheidende Nachteile. So ist zum Beispiel eine Kombination verschiedener Hohlfasermembrantypen nur durch Verwendung eines speziell für die Anwendung hergestellten Gehäuses oder durch externe Konnektion mittels eines Schlauchsystems möglich. Letztere Konnektion hat den großen Nachteil, dass keine generelle, großflächig, räumlich nahe Verbindung zwischen den Kömpartimenten besteht und somit die Flexibilität in der Anwendung fehlt.
Neben den üblichen röhrenförmigen Bioreaktoren existieren auch andere Gehäuseformen, die zum Teil mit gekreuzten Hohlfasern arbeiten. Die Kombination unterschiedlicher Hohlfasertypen in diesen Systemen ist möglich. Diese Systeme sind jedoch nur schwierig und teuer herzustellen und unflexibel in der Anwendung und deshalb kaum umzusetzen (DE 4230194, US 5516691). Sowohl die Anordnung als auch die Materialien der verwendeten Hohlfasern sind in allen bestehenden Systemen vorgegeben.
Bekannt ist auch ein Bioreaktor, der aus zu modular zu kombinierenden Fasern enthaltenden Elemente zusammengesetzt wird (DE 19932439). Die Elemente enthalten in diesem jeweils nur ein, das äußere der Fasern umgebendes, Kompartiment. Eine Zu- oder Abführung von Fluiden durch das innere der Fasern ist daher ausgeschlossen. Eine freie Strömung der Flüssigkeit zwischen den Elementen ist nicht möglich, da diese durch eine semi-permeable Membran getrennt sind. Ein Einsatz der Vorrichtung nach DE 19932439 für Filtrationszwecke ist nicht vorgesehen.
Bekannt sind auch Hohlfasermodule für Filtrationszwecke, welche übereinander geschichtete Platten und Faserlagen enthalten (DE 2650341 und EP 350853). Zwischen je zwei Platten, die in Ihrer Mitte offen sind, befindet sich dabei je eine Hohlfaserschicht. Die Platten sind in ein geschlossenes Gehäuse eingesetzt, welches ein, die Platten umgebenden Hohlraum enthält. Die Enden der Hohlfasern, die zwischen den einzelnen Platten angebracht sind, sind nach außen geöffnet und ragen in den umgebenden Hohlraum. EP 454918 beschreibt ein ähnliches System, mit dem Unterschied, dass hier die Hohlfasem nicht zwischen Platten, sondern in einem Ring eingespannt sind.
Individuelle Zu- oder Ableitungen zu den einzelnen Faserschichten ist durch die Anordnung in den zuletzt genannten Systemen (DE 19932439, EP 454918 und EP 350853) nicht möglich. Der Einsatz dieser Vorrichtungen ist auf die Filtration beschränkt. Nachteilig werden durch das zusätzlich nötige Gehäuse, die Einsatz- und Variationsmöglichkeiten stark eingeschränkt.
Bekannt ist auch eine Diffusionszelle für lonenaustauschzwecke nach DT 1642811, in der mehrere Lagen von Fasermatten und Rahmen alternierend übereinandergeschichtet sind. Durch die gekreuzte Anordnung der Hohlfasern erfolgt eine Deformation der Hohlfasern an den Kreuzungsstellen. Die Öffnung der Hohlfasern wird durch Schneiden durch die Faserlagen nach dem Zusammenbau erreicht, wobei systembedingt kein sauberer Schnitt erreicht wird, sondern vielmehr die Fasern ausgefranst oder auch gequetscht werden. Die Deformation und das Ausfransen der Fasern beeinträchtigt negativ den Fluss durch die Hohlfasern. Von den ausgefransten Enden können sich auch Partikel lösen. Durch den Schnitt durch die Faserlagen entstehen unerwünschte Toträume in der Diffusionszelle, die u. a. das Wachstum von Bakterien begünstigen. Ein einzelnes Anströmen der Diffusionszelle nach DT 1642811 ist nicht möglich.
Der singuläre Einsatz eines einzelnen Elements ist bei den bekannten Systemen nicht möglich. Die bestehenden Systeme sind nicht für die Kombination verschiedener Elemente bei der Fabrikation oder eine modulare Kombination der Elemente durch den Anwender ausgelegt.
Eine Anpassung an individuelle Aufgabenstellungen des Anwenders ist mit den bestehenden Systemen nur sehr begrenzt und teuer durch individuelle Einzelfertigung umzusetzen. Die Flussgeometrie und Dimension des Systems lassen sich dabei nicht ändern.
Aufgabe der vorliegenden Erfindung ist es, eine vielseitig einsetzbare Kassette zu schaffen, in der verschiedenste Faser- und Hohlfasermaterialien einzeln oder kombiniert zur Anwendung kommen und die als Modul den Aufbau eines Systems erlaubt. Erfindungsgemäß wird die Aufgabe gelöst durch eine Faserkassette bestehend aus einem Gehäuse (1), das von 2 kongruenten Grundflächen (G) und mindestens einer Mantelfläche (M) begrenzt wird und in seinem Inneren mindestens einen Hohlraum enthält, mit mindestens einer Lage von Fasern oder Faserbündeln oder Hohlfasern (2), die im Inneren des Gehäuses (1) im wesentlichen parallel zu mindestens einer Mittelebene angeordnet und mit ihren Enden fest im Inneren des Gehäuses verankert sind, wobei ein Hohlraum ein äußeres Kompartiment (6) formt, welches das Äußere der Fasern (2) umgibt, wobei die Mittelebene (E) die Grundflächen (G) nicht innerhalb des Hohlraums, der das äußere Kompartiment (6) formt, schneidet, wobei die einzelnen Fasern (2) U-förmig oder im wesentlichen parallel zueinander angeordnet sind und im Innern des Gehäuses enden und wobei das Gehäuse (1) mindestens eine Öffnung zur Zu- und/oder Ableitung (9, 10, 11, 12, 13, 14) von Gasen und/oder Flüssigkeiten aufweist.
Die Fasern sind innerhalb des Gehäuses zwischen den Grundflächen angeordnet. Die Anordnung der Fasern ist dabei nicht wie bei den gebräuchlichen Hohlfasersystemen senkrecht zur Grundfläche, sondern parallel zu einer oder mehreren Mittelebenen zwischen den Grundflächen. Die Mittelebene liegt meist parallel zwischen den Grundflächen, oder zumindest in einem spitzen Winkel zu diesen. Die Mittelebene schneidet die Grundflächen nicht innerhalb des Gehäuses oder zumindest nicht innerhalb des Hohlraums der das äußere Kompartiment formt. Vorteilhaft ergibt sich durch diese Anordnung der Fasern zu der Mittelebene beim Verbinden der äußeren Kompartimente über die Grundfläche eine Strömungsrichtung nahezu senkrecht zur Faserrichtung. Das Gehäuse der Faserkassette hat vorzugsweise die Form eines Körpers mit polygonalen oder kreisförmigen Grundflächen, beispielsweise eines Quaders oder Würfels oder eines Zylinders. Bevorzugt ist ein Gehäuse dessen Höhe (h) klein gegenüber seinen anderen Abmessungen ist. Unter der Höhe (h) ist dabei der mittlere Abstand zwischen den Grundflächen zu verstehen. Durch diese flache Form ergibt sich eine, im Verhältnis zum Volumen der Kassette, große Grundfläche. Vorteilhaft lassen sich die Kassetten über die kongruenten, großen Grundflächen gut stapeln. Ein weiterer Vorteil der flachen Form der Kassette ist, dass sie bei entsprechendem lichtdurchlässigem Material einen Einsatz unter dem Mikroskop ermöglicht.
Vorzugsweise sind die Grundflächen (G) des Gehäuses kongruente Klreise oder Vielecke, besonders bevorzugt sind regelmäßige Vielecke.
Vorteilhaft wird durch diese Form der Grundfläche bei der Anordnung mehrerer Kassetten übereinander sowohl eine parallele als auch eine in verschiedene Winkel versetzte Anordnung der Fasern ermöglicht. So ermöglicht beispielsweise eine quadratische Grundfläche bei der Anordnung zweier Kassetten übereinander einen Winkel von 90°, 180° 270° oder 360° zwischen den Fasern der einzelnen Kassetten. Eine kreisförmige Grundfläche ermöglicht dementsprechend eine Anordnung der Fasern in beliebigen Winkeln.
Vorzugsweise sind beide Grundflächen (G) parallel zueinander und die Mantelflächen plan und senkrecht zu diesen. Das Gehäuse hat in diesem Falle die Form eines geraden
Prismas oder Zylinders.
In diesem Falle sind Fasern im wesentlichen senkrecht zur Höhenlinie (h) und folglich parallel zur Grundfläche (G) des Gehäuses (1) angeordnet.
Möglich ist eine Ausführung der Erfindung, bei der die Grundflächen (G) nicht parallel sondern in einem Winkel versetzt angeordnet sind, so dass das Zusammensetzen mehrerer Kassetten über deren Grundflächen (G) einen Körper in Form eines regelmäßigen Prismas oder eines Zylinders oder eines Hohlzylinders ermöglicht. Im
Falle des Zylinders hat die einzelne Kassette somit die Form eines Zylindersegments. Als Fasern (2) kommen je nach Verwendungszweck unterschiedliche Formen und Materialien in Betracht und können auch in einer Kassette kombiniert werden.
Vorzugsweise werden schlauchförmige Hohlfasem eingesetzt. Eine Kassette, die Hohlfasem enthält, wird nachfolgend auch Hohlfaserkassette genannt. Die Hohlfasem sind an ihren Enden fest im Inneren der Kassette angebracht. Die Enden der Hohlfasem sind dabei an jeweils einem oder beiden Enden offen oder durch die Verbindung mit dem Gehäuse abgedichtet.
Vorzugsweise sind die offenen Enden der Hohlfasern mit mindestens einem zusätzlichen Hohlraum im Gehäuse verbunden. Das Innere der Hohlfasem und der/die mit ihnen verbundenen Hohlraum/-räume formen dabei ein zusätzliches Kompartiment, welches nachfolgend inneres Kompartiment (5) genannt wird.
Das Gehäuse (1) formt dabei einen Rahmen, der die Fasern (2) und die einzelnen
Kompartimente (5, 6) im Inneren des Körpers umgibt.
Das innere (5) und äußere (6) Kompartiment sind erfindungsgemäß durch das
Hohlfasermaterial (2), das Gehäuse (1) und die Befestigung (3) der Hohlfasern im
Gehäuse so. getrennt, dass ein Stoffaustausch zwischen diesen beiden Kompartimenten allein über das Material der Hohlfasem erfolgen kann.
Die Befestigung der Fasern im Gehäuse der Kassette geschieht vorzugsweise durch ein Einbetten in eine Vergussmasse (3).
Als Vergussmasse kommen alle gängigen 1-, 2- oder 3 -Komponentenkleber (z. B.: Epoxydharz, Polyurethane) oder auch Thermoplaste (z. B.: PE-Heißkleber) oder reaktive Thermoplaste (z. B. thermisch verarbeitbares Polyurethan) oder andere aushärtende Flüssigmassen (z. B. Flüssigkeramik) in Frage.
Vorteilhaft wird dies dadurch erreicht, dass auf einer Unterlage Fasern entsprechend der benötigten Abmessung parallel oder U-Förmig zueinander angeordnet und die offenen Enden verschmolzen werden. Derartige Hohlfasermatten mit sich nichtüberkreuzenden Fasern werden in eine Vergussform eingelegt und die Form in einer Zentrifuge fixiert. Unter Rotation wird dann Vergussmasse an den Enden der verschlossenen Faserenden eingebracht. Die Rotation bewirkt, dass nur die Faserenden in die Vergussmasse eingebettet werden. Damit das Innere der Hohlfasem zugänglich wird, werden die Vergussblöcke nach Aushärten der Vergussmasse parallel zu ihrer Längsachse und senkrecht zu den Hohlfasem geschnitten, so dass ein sauberer glatter Schnitt entsteht. Sollen die Faserenden verschlossen bleiben, erfolgt kein Schnitt. Die so gefertigte Fasereinheit wird dann in das Gehäuse eingeklebt.
Alternativ können die Fasem auch direkt in das Material des Gehäuses eingegossen werden.
Durch die erfindungsgemäße parallele oder U-förmige Anordnung der Fasem bleibt vorteilhaft die gesamte Faseroberfläche freiverfügbar und werden Deformationen der Fasem vermieden. Durch den exakten Schnitt der Faserenden entstehen glatte Faserenden und werden schlecht oder nicht durchspülbare Toträume vermieden. Insbesondere das Vermeiden von Toträumen ist entscheidend für den Einsatz als Bioreaktor, da in Toträumen mit geringer oder keiner Strömung biologische Substanzen abgelagert werden können und sich dort zersetzen. Dieses Ablagern und Zersetzen fördert zum einen das unerwünschte Ansiedeln von Kontaminanten (Bakterien, Pilze) und zum anderen werden Zersetzungsprodukte und Bakterienendotoxine durch Diffusion ausgetragen, die das Wachstum der Zellen negativ beeinflussen.
Ein weiterer wichtiger Vorteil der Erfindung ist das effektive und exakte Schneiden der Kapillarenden. Durch den glatten Schnitt der in die Vergussmasse eingebetteten Faserenden werden Ausfransungen und Deformationen der Faserenden ausgeschlossen. Durch die glatten Faserenden werden Turbulenzen an den Öffnungen vermieden und eine gleichmäßige Durchströmung gewährleistet. Bei der Verwendung der Faserkassette als Bioreaktor ist die gleichmäßige Durchströmung Vorraussetzung für eine gleichmäßige Nährstoffversorgung der Zellen, die im Außenraum auf den Kapillarmembranen wachsen. Die gleichmäßige Nährstoffversorgung ist wiederum Vorrausetzung für gleichmäßiges Wachstum und Stoffwechsel der Zellen. In einem ungleichmäßig mit Nährstoff versorgten Bioreaktor würden die Zellen ihren Stoffwechsel und ihr Wachstum den Nährstoffbedingungen entsprechend in unerwünschte Weise unterschiedlich einstellen. Die Kassette kann je nach Ausführungsart als Modul in einem System oder auch einzeln eingesetzt werden. Das Gehäuse (1) ist vorzugsweise so konstruiert, dass es durch Kleben, Stecken oder Verschweißen mit den Gehäusen anderer Kassetten verbunden werden kann und die inneren und/oder äußeren Kompartimente mehrerer Kassetten ohne Schlauchverbindungen fluid-dicht miteinander verbunden werden können.
Das Gehäuse (1) enthält mindestens eine Öffnung zur Zu- und/oder Ableitung zu dem äußeren Kompartiment. Die Öffnung kann eine großflächige Öffnung (13) in der oberen oder unteren Grundfläche (G) oder einer Mantelfläche sein, welche die direkte Verbindung mit dem äußeren Kompartiment anderer Faserkassetten ermöglicht. Vorteilhaft lassen sich die Kassetten durch die große kongruente Grundfläche dabei großflächig mit einander verbinden. Hohlräume zusätzlicher Kompartimente lassen sich entsprechend über großflächige Öffnungen (14) in der Grundfläche (G) oder einer Mantelfläche (M) verbinden.
Das Gehäuse enthält dabei Mittel zur festen oder reversiblen, fluid-dichten Verbindung dieser Öffnungen (13, 14) mit denen anderer Kassetten oder mindestens einer Abdeckung (4). Die Verbindung kann durch Kleben oder Verschweißen erfolgen. Vorzugsweise geschieht die Verbindung aber reversibel durch Steck- oder Clipverbindungen mit entsprechenden Dichtungen.
Alternativ bzw. als zusätzliche Öffnungen enthält das Gehäuse Kanäle (7, 8, 9, 10, 11, 12), die als Zu- und Ableitungen für Fluide zu den einzelnen Kompartimenten wirken. Die Anschlüsse der Kanäle nach außen sind so -gefertigt, dass an sie externe Verbindungen, z. B. Schläuche, aber auch Verbindungen aus festem Material, angeschlossen werden können. Die Anschlüsse können spritzgusstechnisch so gefertigt werden, dass ein einfaches Öffnen, auch vom Anwender, nach Bedarf und Anwendung möglich ist. Werden einzelne Öffnungen nicht benötigt, können sie mit passenden Stopfen oder Kappen verschlossen werden oder verschlossen bleiben.
Das Gehäuse (1) und die Abdeckung (4) der Kassette bestehen vorzugsweise aus einem rigiden oder flexiblen Polymer, Verbundwerkstoff, Glas, Keramik oder Metall. Als Polymere kommen dabei alle gängigen Kunststoffmaterialien, wie z. B. Polyethylen, Polypropylen, Polyvinylchlorid, Polyester, wie Polycarbonate, Polysulfone, Polyethersulfone, aber auch Silikone und Biopolymere oder Verbundwerkstoffe in Betracht. Eine mögliche lichtdurchlässige Ausführung der Abdeckung bzw. des Gehäuses ermöglicht eine Betrachtung im Mikroskop oder andere optische Messungen.
Als Abdeckung (4) kann auch eine Membran, aus einem Material wie z. B. Silikon oder einem anderen selbstheilenden, transparenten Polymer, verwendet werden: Eine solche Abdeckung kann mit geeigneten Instrumenten durchstochen werden und sich selbst wiederverschließen. Dadurch wird eine Manipulation des Kassetteninneren, auch unter dem Mikroskop ermöglicht.
Die Abdeckung (4) kann auch aus einer semipermeablen Flachmembran oder einem Filtergewebe, mit definierter Maschenweite, bestehen.
Die Abdeckung (4) kann auch Öffnungen zum Zu- und/oder Ableiten von Fluiden zu den inneren und/oder äußeren Kompartimenten enthalten.
Die Abdeckung (4) kann dabei einen oder mehrere Hohlräume umschließen, der jeweils mit einem der Kompartimente der Kassette verbunden ist. Eine solche Abdeckung kann in Form einer Wanne (4') oder auch in Form einer zusätzlichen Kassette (ohne Fasem) ausgestaltet sein. Die Verbindung mit den Kompartimenten der Kassette geschieht über Öffnungen in der oberen bzw. unteren Grundfläche (G) oder einer Mantelfläche (M).
Zusätzlich ist es möglich, Kühl oder Heizvorrichtungen, Sensoren, wie z. B. optische und elektrochemische Sensoren, ionenselektive Elektroden, in das Gehäuse oder die Abdeckung der Kassette zu integrieren, um Parameter, wie zum Beispiel Temperatur, pH- Wert, O /CO -Partialdruck, Konzentrationen, Leitfähigkeit, Trübung zu messen. Die Fasem (2) können bei der Anordnung in der Kassette auf definierten seitlichen Abstand gebracht werden oder sie werden ungeordnet in einer statistisch definierten Packungsdichte (Anzahl Fasern pro Fläche) eingebracht. Die Anordnung der Fasern zueinander erfolgt dabei entweder U-förmig oder parallel.
In der parallelen Anordnung sind die Fasem so mit dem Gehäuse verbunden, dass sich ihre beiden Enden in unterschiedlichen Kammern an den jeweils gegenüberliegenden
Seiten des Gehäuses befinden.
In der U-förmigen Anordnung befinden sich beide Enden auf der gleichen
Kassettenseite. Durch Einbau einer Trennwand auf dieser Kassettenseite können aber beide Enden auch mit zwei unterschiedlichen Kammern verbunden sein. Eine feste
Verbindung mit dem Gehäuse ist bei der U-förmigen Anordnung nur an der Seite nötig, an der sich beide Enden der Fasem befinden.
Sowohl in der parallelen, als auch in der U-fb'rmigen Anordnung können die Hohlfasem entweder an einem (Dead-End-Modul), oder beiden Enden offen (Durchflussmodul), oder auch an beiden Enden verschlossen sein.
Die an einem oder beiden Enden offenen Hohlfasem erlauben je nach Porengröße einen Gas- bzw. Flüssigkeits- und/oder Stoffaustausch entsprechend der Eigenschaften der verwendeten semipermeablen Membran. Flüssigkeiten können dabei durch Anschluss externer Pumpen oder Drucksysteme entweder mit kontinuierlichem Druck durch die Membran und durch das Innere der Hohlfasem gepumpt werden oder auch mit alternierendem Druck (Push-Pull- Verfahren), z. B. durch Anschluss einer Spritzen- oder Kolbenpumpe.
An beiden Enden geschlossene Fasem und auch Filamentfasem können als Füllfäden, als Trägermedium für adhärente Zellen oder Mikroorganismen, als Adsorptionsmedien oder auch zur stof -spezifischen Behandlung von Fluiden eingesetzt werden.
Je nach Anwendung enthält die Faserkassette eine bis mehrere hundert Faserlagen eines oder verschiedener Faser- oder Hohlfasermaterialien.
Der Durchmesser der Fasem reicht je nach Anwendungszweck von wenigen μm bis zu mehreren Millimetern. Die Porengröße der Hohlfasem kann je nach Anwendung von wenigen nm bis zu μm Durchmesser reichen. Der Einsatz geschlossenporiger Fasem ist auch möglich. Gasdurchlässige Hohlfasem mit einer Porengröße im Nanometerbereich werden zum Beispiel zur Oxygenierung und geschlossenporige Hohlfasern zum Beispiel zum Transfer von Wärme eingesetzt.
Hinsichtlich des Faser- bzw. Hohlfasermaterials sind keine Einschränkungen gegeben. Die Fasem bestehen meist aus organischen Polymeren, möglich sind aber auch anorganische Materialien, wie Glas, Keramik, SiO , Kohlenstoff oder Metall, oder Mischungen daraus. Die Materialien können hydrophilen bis hydrophoben Charakter haben. Die Polymere können unmodifiziert oder modifiziert, oder Mischungen aus diesen Gruppen sein.
Mögliche Biopolymere sind beispielhaft Zellulose, Seidefäden und von Mikroorganismen hergestellte Polymere und deren Derivate, wie z. B. Zelluloseester oder -äther.
Mögliche synthetische Polymere sind beispielsweise Polyacrylnitrile, Polyurethane, alliphatische und aromatische Polyamide, Polyimide, Polysulfone, Polyarylethersulfone, Polycarbonate, Polyolefine, wie z. B. Polyethylen, Polypropylen, Polyvinylchlorid, Polyvinylidendifluorid, Polytetraflourethylen, Teflon, Polyphenylenoxid,
Polybenzimidazole und Polybenzimidazolone, Polybenzoxyzindione, sowie deren Modifikationen oder aus diesen zusammengesetzte Copolymere, einschließlich Pfropfcopolymeren, oder Mischungen.
Diesen Polymeren können auch hydrophile Polymere wie z. B. Polyethylenoxid, Polyhydroxyether, Polyethylenglykol, Polyvinylpyrrolidon, Adsorptionsmaterialien oder andere Stoffe, wie z. B. Silikate, Zeolithe, Aktivkohle, Aluminiumoxid beigemischt sein.
Zusätzlich können auch Fasem mit Trägermaterialien, wie z. B. Aktivkohle oder Ionenaustauscherharzen gefüllt sein.
Ein Beispiel für unterschiedliche Materialien in einer Hohlfaserkassette ist die Kombination von mikroporösen Hohlfasem aus Polysulfon mit Aktivkohlefaseπi. Zur stoffspezifischen Behandlung von Fluiden werden vorzugsweise auf und/oder im Fasermaterial von an den Enden offenen oder geschlossenen Fasem oder Hohlfasern funktionelle Gruppen oder Substanzen (nachfolgend Akzeptoren genannt) immobilisiert, die in spezifischer, selektiver Weise mit einer in dem Fluid enthaltenen Substanz wechselwirken. Solche Wechselwirkungen können beispielsweise Kationenoder Anionenaustausch, hydrophile oder hydrophobe Wechselwirkungen, Wasserstoffbrückenbindungen, Affinität oder enzymatische oder katalytische Reaktionen sein. Als Akzeptoren können beispielsweise Antikörper oder Proteine, oder katalytisch aktive Substanzen, wie zum Beispiel Enzyme oder Edelmetalle, Komplexverbindungen oder nichtionischen, ionischen oder zwitterionischen organischen oder anorganischen Substanzen oder adsorbierenden Substanzen wirken. Unter stoff-spezifischer Behandlung eines Fluids sind zum Beispiel die. Katalyse von chemischen Reaktionen, die selektive Adsorption von Substanzen oder Zellen, aber auch das selektive oder unspezifische Verhindern einer ebensolchen Bindung, zu verstehen. Zur Adsorption können dabei beispielsweise Ionenaustauscher, Immunadsorber oder hydrophobe Akzeptoren eingesetzt werden.
Unter stoffspezifischer Behandlung ist aber auch das Abscheiden oder Zurückhalten von Partikel auf Grund ihrer Größe zu verstehen.
Vorteilhaft können die erfindungsgemäßen Hohlfaserkassetten für verschiedene Anwendungen, wie zum Beispiel die Filtration, die Dialyse, die Osmose, einschließlich der Umkehrosmose, die Separation, die Aufkonzentrierung von Flüssigkeiten, das Ernten von Zellen, Substanzen, Antikörpern oder Proteinen, die katalytische Umsetzung von Stoffen, die Adsorption oder Desorption von Substanzen, die Unterstützung von Rückfiltrationsprozessen, das Begasen oder Entgasen von Medien, der* physikalische Transfer von Wärme, das Messen verschiedener Parameter, wie pH- Wert, Temperatur oder die Kombination zweier oder mehrerer Anwendungen eingesetzt werden.
Eine weitere Anwendung der Faserkassetten ist der Einsatz als Bioreaktor, beispielsweise zur Kultur von Zellen, Bakterien und/oder Viren. Dabei können diese im inneren Lumen der Fasem, in oder auf dem Fasermaterial oder in Suspension um die Fasem wachsen. Ein weiterer Bestandteil der Erfindung ist ein Kassettensystem bestehend aus mindestens zwei miteinander nach Außen hin fluid-dicht, fest oder lösbar verbundenen Faserkassetten. In diesem System sind einzelne Kompartimente (5,6) der einzelnen Kassetten miteinander verbunden. Die Verbindung geschieht dabei über eine Öffnung in den aneinander grenzenden Flächen (13,14) oder über im Rahmen vorgeformter Verbindungskanäle (11,12).
Alle möglichen Anwendungen der einzelnen Kassetten können nach Belieben in einem vom Anwender nach dessen Bedürf issen zusammengestellten Kassettensystem kombiniert und integriert werden.
Die Verbindung der Kassetten zu einem System kann beispielsweise durch Verschweißen, Verkleben oder durch ein Clip-System oder andere Hilfsmittel erfolgen.
Ein wichtiger Vorteil der Erfindung ist, dass eine direkte Verbindung der einzelnen Kompartimente mehrerer Kassetten ohne Schlauchverbindungen ermöglicht wird.
Die Fluidzufuhr oder Fluidabfuhr zum System kann dabei durch Anschlüsse in den Abdeckungen oder dem Gehäuse erfolgen. Die Abdeckung kann dabei als zusätzliches Fluidreservoir wirken. Sind die einzelnen Kompartimente der Kassetten miteinander verbunden, kann die Medienzufuhr zu einzelnen Kassetten durch die Verbindung zur Nachbarzelle erfolgen.
Die erfindungsgemäßen Kassetten können in verschiedener Anordnung miteinander kombiniert werden und können entweder parallel oder in Serie geschaltet werden.
Die Zusammensetzung des erfmdungsgemäßen Kassettensystems und damit der gewünschten Materialien kann, je nach Ausführung, sowohl vom Anwender vorgenommen werden, als auch vom Hersteller.
Vorteilhaft können beliebig viele Kassetten zusammengesetzt werden. Ein zusätzliches, die Kassetten umgebendes Gehäuse, welches die Kombinationsvielfalt einschränken würde, ist dabei nicht nötig. Vorzugsweise erfolgt die direkte Verbindung zwischen den Kompartimenten (5,6) zweier Kassetten dabei über den größten Teil der aneinandergrenzenden Flächen der Kassetten. Vorzugsweise geschieht der Kontakt über je eine Grundfläche (G), da diese kongruent und vorzugsweise groß in Relation zu den Mantelflächen sind. Ein zusätzlicher Vorteil der Verbindung über die Grundflächen ist, dass er in einer Fliesrichtung senkrecht zur Faserrichtung resultiert. Dadurch und durch die großflächige Verbindung ergibt sich ein sehr guter Stoff- bzw. Gasaustausch zwischen den verbundenen Kompartimenten.
Alternativ erfolgt die Verbindung auch über eine der anderen Flächen oder durch eine geeignete Anordnung im Gehäuse vorgeformter Verbindungskanäle.
Ein Kassettensystem kann aus Kassetten (F) verschiedenster Form zusammengesetzt sein.
Vorzugsweise haben die Kassetten dazu zueinander parallele Grundflächen (G) und die
Form eines geraden zylindrischen oder prismatischen Körpers, wie beispielsweise eines
Quaders oder Quadrats. In diesem Fall ist das Kassettensystem aus senkrecht übereinander angeordneten Kassetten, die über ihre Grundflächen (G) miteinander verbunden werden, aufgebaut.
Wenn die Kassetten gerade Mantelflächen (M) haben, wie Beispielsweise bei einer prismatischen Form, kann das Kassettensystem auch seitlich, über die Mantelflächen
(M) verbundene Kassetten (F) enthalten.
Das Kassettensystem formt dabei selbst einen zylindrischen oder prismatischen Körper, dessen Grundflächen aus mindestens einer Grundfläche (G) einer einzelnen Kassette (F) besteht.
In einer besonderen Ausführung der Erfindung ist das Kassettensystem aus Kassetten (F) zusammengesetzt, deren Grundflächen (G) nicht parallel zueinander sind. Die Kassetten sind dabei fächerförmig über die Grundflächen (G) miteinander verbunden. Das Kassettensystem formt dabei vorzugsweise ein regelmäßiges Prisma, einen Zylinder oder einen Hohlzylinder, dessen Grundflächen aus Mantelflächen (M) der einzelnen Kassetten (F) zusammengesetzt sind. Die Kassetten (F) treffen entweder in der Mitte des Kassettensystems direkt zusammen oder bilden in dessen Mitte, im Falle des Hohlzylinders, einen röhrenförmigen Tunnel (s. dazu beispielsweise Fig. 9). Die Medienzufuhr geschieht hier vorzugsweise durch Öffnungen in den Mantelflächen der Kassetten, die zusammen die Grundfläche des Prismas oder Zylinders bilden. Alternativ kann die Medienzufuhr auch über Öffnungen zu dem röhrenförmigen Tunnel in der Mitte geschehen.
Formt das Kassettensystem einen regelmäßigen Kreiszylinder, ist eine Rollbewegung des Systems dadurch erreichbar, dass man das System auf Rollen bettet. Der Zylinder rollt dabei über die Mantelfläche des Zylinders, welche aus Mantelflächen (M) der einzelnen Kassetten zusammengesetzt ist. Letzteres System kann in einem für Rollflaschen geeigneten Zellkulturschrank (erhältlich beispielsweise von Wheaton Science Products, NJ, USA) eingebracht werden.
Enthält das System eine röhrenförmige Öffnung in der Mitte, kann in diese eine Achse eingesetzt werden, die eine Rotation des ganzen Systems erlaubt. Vorteilhaft lässt sich dadurch eine Rotation des Zylinders erreichen, ohne dass dieser in einen Zellkulturschrank für Rollflaschen eingebracht werden müsste. Ein solcher Bioreaktor kann mit einer Heizvorrichtung und Fluid-zu- und -abfuhr unabhängig von einem Zellkulturschrank betrieben werden.
Vorteilhaft wird durch die kontinuierliche Bewegung eines solchen Systems durch Rollen oder Rotation ein Absetzen der Zelle auf dem Boden verhindert und ein optimales Umspülen der Zellen mit Medien erreicht.
Bei zahlreichen Anwendungen ist die nachfolgende Anwendung vieler stoffspezifischer Behandlungen wünschenswert bzw. nötig. Häufig müssen so beispielsweise zur Aufreinigung eines Proteins mehrere Chromatographie- und Filtrations- oder Dialyseschritte nacheinander angewandt werden. Im erfindungsgemäßen System wird dies durch eine Hintereinanderschaltung von Kassetten verschiedener Materialien stark vereinfacht. So kann zum Beispiel in der ersten Kassette nach der Molekülgröße, in der zweiten mit einem lonenaustauschmaterial und in der dritten nach der Immunoaffmität getrennt werden.
Vorteilhaft ist im erfindungsgemäßen System auch eine individuelle Zu- oder abfuhr von Fluiden zu einzelnen Kassetten möglich. Durch den Einsatz von Fasern verschiedener Materialien (z. B. verschiedener Porengröße, Akzeptorgruppen) in den einzelnen Kassetten wird zum Beispiel die Fraktionierung von den in den Fluiden enthaltenen Stoffen entsprechend der Wechselwirkung mit den Fasermaterialien (z. B. Ausschluss durch Größe, Adsorption) möglich.
Die einzelnen Kompartimente unterschiedlicher Kassetten können durch das Gehäuse (1) oder eine Abdeckung (4) voneinander getrennt sein.
Vorzugsweise sind in einem solchen Faserkassettensystem mindestens zwei aneinandergrenzende Kompartimente (5,6) unterschiedlicher Kassetten durch eine Abdeckung (4) semipermeabel miteinander verbunden oder voneinander getrennt.
Durch die Wahl einer Abdeckung (4) aus entsprechendem Material können die Kompartimente auch semipermeabel verbunden werden. Das heißt, die Abdeckung kann als Trennwand, semipermeable Membran oder Filter wirken.
In einer besonderen Ausführung des erfindungsgemäßen Kassettensystems formen mehrere Kassetten mit einer Bodenplatte (P) ein gemeinsames Gehäuse, welches Kanäle zur Zu- und/oder Ableitung von Medien zu den einzelnen Kassetten enthält. Die Verbindung zu einem Gehäuse kann z. B. durch verkleben oder auch durch die spritzgusstechnische Fertigung aus einem Guss erreicht werden. In diesem Gehäuse können Kompartimente unterschiedlicher Kassetten zu einem gemeinsamen Kompartiment und/oder Kanälen im Träger direkt verbunden sein. In einem solchen plattenförmiges Kassettensystem können Zellen in den einzelnen Kassetten sowohl in parallel gezüchtet, als auch untersucht werden. Damit ist dieses Kassettensystem optimal geeignet für die Verwendung in Reihenuntersuchungen oder ähnlichen Anwendungen. Zur Erfindung gehört auch eine Anordnung aus mindestens einer Faserkassette oder mindestens einem Faserkassettensystem und einem Träger (T), der für jede Faserkassette oder Faserkassettensystem Vorrichtungen zur Halterung der Kassette bzw. des Kassettensystems und Vorrichtungen für die Zu- und/oder Ableitungen von Medien zu den einzelnen Kassetten enthält. Die Anordnung mehrerer Faserkassetten oder Kassettensysteme im Träger erfolgt dabei horizontal nebeneinander und/oder übereinander. Die Verbindung der einzelnen Kassetten mit dem Träger kann über eine Grundfläche oder eine Mantelfläche erfolgen. Die Träger haben die Funktion der geometrischen Fixierung der Einzelsysteme sowie der Zu- bzw. Ableitung von Medien und Produkten zu den Kassetten durch die im Träger enthaltenen Kanäle oder Schläuche.
Die Kassetten können, je nach Medium und Verwendungszweck, durch die zuführenden Kanäle/Schläuche individuell, in Serie oder parallel versorgt werden. Die Kassetten/Kassettensysteme können hierbei fest oder reversible mit dem Träger verbunden sein. Eine flexible Verbindung wird z. B. durch Steck- und/oder Clipverbindungen erreicht.
Die Vorrichtungen zur Halterung sind vorzugsweise in Form von Steckplätzen oder Schubfächern ausgeführt, in die Kassetten reversibel eingesetzt werden können. Alternativ erfolgt die Halterung auch durch spezielle Konnektoren, die in Aussparungen in einem plattenförmigen Träger gesteckt werden. Diese Konnektoren enthalten vorzugsweise in ihrem inneren Kanäle, die als Ab- und Zuleitungen mit den einzelnen Kompartimenten in den Kassetten verbunden sind. Durch das Einstecken der Konnektoren werden die Kanäle in den Konnektoren reversibel und steril mit den Kanälen im Träger zur Medienzufuhr und Medienabfuhr verbunden.
Eine bevorzugte Ausführung des Trägers ist in Form eines Regals, in dem mehrere Kassetten platzsparend vertikal übereinander bzw. nebeneinander angebracht werden können. Eine andere vorzugsweise Ausführung des Trägers ist eine Platte, auf dem mehrere Kassetten horizontal nebeneinander angebracht werden können.
Durch eine solche Anordnung auf einem Träger ergibt sich ein System von Kassetten/Kassettensystemen, das optimal für die Verarbeitung in Reihenuntersuchungen oder ähnlichen Anwendungen geeignet ist.
Die horizontale Anordnung von mehreren Kassetten auf einem Träger in Form einer Platte erlaubt einen guten Zugang zur Manipulation und Untersuchung einzelner Kassetten/Kassettensystemen, ohne dass die Verbindung zur Platte gelöst werden müsste.
Bei einer Anordnung in einem Träger in Form eines Regals können die einzelnen Kassetten zur Untersuchung oder Manipulation entnommen werden. Die Automatisierung durch den Einsatz von Roboterarmen ist möglich.
Anhand beigefügter Zeichnungen werden Ausführungsbeispiele der Erfindung näher beschrieben. Dabei zeigen:
Fig. 1 Horizontaler Schnitt durch eine Hohlfaserkassette mit offenen Enden der
Hohlfasem
Fig. 2 Vertikaler Schnitt durch eine Hohlfaserkassette nach Fig. 1
Fig. 3 Horizontaler Schnitt durch eine Hohlfaserkassette, bei der die Hohlfasem an einem Ende offen und am anderen geschlossen sind.
Fig. 4 Horizontaler Schnitt durch eine Hohlfaserkassette mit verschlossenen
Enden der Hohlfasem
Fig. 5 Schnittdarstellung eines Hohlfaserkassettensystems mit 3 unterschiedlichen übereinander angeordneten Faserkassetten'. Fig. 6 Schnittdarstellung eines Hohlfaserkassettensystems mit 4 verschiedenen
Fasem enthaltenden Kassetten.
Fig. 7 Schnittdarstellung eines Hohlfaserkassettensystems mit 2 nebeneinander angeordneten Faserkassetten
Fig. 8 Vertikaler Schnitt durch zwei Hohlfaserkassetten mit in einem Winkel versetzt zueinander angeordneten Grundflächen.
Fig. 9 Schnittdarstellung eines Kassettensystems zur Aufzucht von Zellen unter
Rotation.
Fig. 10 Draufsicht auf ein Faserkassettensystem bestehend aus 24
Hohlfaserkassetten und einer Grundplatte
Fig. 11 Dreidimensionale Darstellung einer Anordnung bestehend aus einem regalförmigen Träger und 6 darin eingesetzten Hohlfaserkassetten, sowie Horizontaler Schnitt durch zwei Hohlfaserkassetten mit Konnektoren zur Verbindung mit einem Träger.
Fig. 12 Dreidimensionale Darstellung einer Hohlfaserkassette analog Fig.l und 2
Fig. 13 Dreidimensionale Darstellung eines Hohlfaserkassettensystems mit 3
Kassetten wie aus Fig.12
Fig. 14 Aufnahme eines Schnitts durch eine Vergussmasse mit offenen
Faserenden
Fig. 1 zeigt einen horizontalen Schnitt durch eine Hohlfaserkassette mit zwei parallelen quadratischen Grundflächen G, in der beide Hohlfaserenden (2) offen sind. In einem Gehäuse (1) ist eine planare Schicht parallel angeordneter Hohlfasem (2) angeordnet. Die Hohlfasem (2) sind an ihren Enden mit der Vergussmasse (3) in das Gehäuse (1) eingefasst, so dass beide offenen Enden der Hohlfasem (2) in das innere Kompartiment (5) zeigen. Dazu wird eine Polysulfon-Ultrafiltrations-Hohlfasern der Firma Ascalon GmbH, Bergießhübel, Deutschland (280 μm Außendurchmesser) um eine 60 mm breite Metallplatte parallel gewickelt. Nachdem die Faser emlagig auf einer Breite von 5 cm aufgewickelt ist, wird die aufgewickelte Hohlfaser auf Vorder- und Rückseite an jeweils beiden Kanten der Metallplatte mit jeweils einem schmalem Klebeband (1 mm), das senkrecht zu den Hohlfasem verläuft, fixiert. Die Hohlfasem werden nun an beiden Kanten der Metallplatte mit einem Messer aufgeschnitten. Dadurch erhält man zwei Fasermatten, in denen die an beiden Enden offenen Hohlfasem (2) jeweils durch 2 Klebebänder zusammengehalten werden. Die offenen Enden der Hohlfasem (2) werden mittels eines Balkenschweißgerätes verschmolzen. Die Matten werden in eine Vergussform eingelegt und fixiert. Die Vergussform wird in eine Zentrifuge fixiert und unter Rotation (600 Umdrehungen pro Minute) wird statisch gemischter Zweikomponentenkleber Polyurethan bestehend aus Polyol und Polyisocyanat der Firma Morton als Vergussmasse (3) appliziert. Nach 30 Minuten wird die Form aus der Zentrifuge entnommen. Nach einer weiteren Stunde wird die an den Enden 5 mm rechteckig vergossene Hohlfasermatte aus der Form entnommen. Ein Polyurethanvergussblock (3) hat die Dimension von 45 mm x 5 mm x 3 mm. Nach etwa 12 Stunden Nachhärten werden die Polyurethanblöcke (3) parallel zu ihrer Längsachse und senkrecht zu den Hohlfasem (2) geschnitten, so dass das Innere der Hohlfasern zugänglich und wie aus Fig. 14 ersichtlich ein sauberer glatter Schnitt entsteht. Durch die stützende Wirkung der Vergussmasse fransen die Hohlfasem nicht aus und werden sauber und glatt ohne Toträume geöffnet. Diese fertigkonfektionierte Fasereinheit wird mittels Polyurethan in das Gehäuse (1) eingeklebt.
Das Gehäuse (1) ist durch seine Konstruktion, durch die Vergussmasse (3) und die Hohlfasem (2) in das innere Kompartiment (5) und das äußere Kompartiment (6) aufgeteilt. Ein Stoffaustausch zwischen den Kompartimenten kann allein durch die Poren der Hohlfasern erfolgen.
Das Gehäuse (1) enthält die Kanäle (7 und 8) zur Zu- bzw. Abfuhr von Gasen und Flüssigkeiten zu dem inneren Kompartiment (5), und die entsprechenden Kanäle (9 und 10), zur Zu- bzw. Abfuhr von Gasen und Flüssigkeiten zum äußeren Kompartiment (6).
Fig. 2 zeigt einen vertikalen Schnitt durch eine Hohlfaserkassette nach Fig. 1. Das äußere Kompartiment (6) ist dabei nach oben und unten durch je eine Abdeckung (4) auf den Grundflächen (G) abgeschlossen. Die Abdeckungen sind hier als flache Deckel ausgeführt, welche jeweils die gesamte Grundfläche überspannen. Die fluid-dichte Verbindung der Abdeckungen mit dem Gehäuse geschieht über, in der Graphik nicht dargestellte, Steckverbindungen in den Grundflächen. Dargestellt sind die Zu und Ableitungen (7,8) für Kompartiment (5) in den Mantelflächen (M). Nicht dargestellt sind die Zu- und Ableitungen (9,10) für Kompartiment (6) in den Mantelflächen an der Stirn bzw. Rückseite der Kassette.
Die Hohlfaserkassette nach Fig. 1 und Fig. 2 kann zum Beispiel zur Dialyse eingesetzt werden. Für diesen Anwendungszweck wird beispielhaft eine semipermeable Hohlfaser mit einer Ausschlussgröße im Bereich um 2-50 kD (50% Cut-off) gewählt. Dabei wird die zu dialysierende Flüssigkeit durch die Zu- und Ableitungen (7,8) durch das innere Kompartiment (5) der Hohlfasem (2) geleitet.
Die äußere Seite der Hohlfasern (2) wird im Kompartiment (6) durch die Zu- und Ableitungen (9,10) mit der Pufferlösung, gegen die dialysiert werden soll, umspült.
Die nach Fig. 1 und Fig. 2 dargestellte Hohlfaserkassette kann auch als mikroskopierbarer Bioreaktor eingesetzt werden. Die obere und untere Abdeckung (4) besteht dabei aus einem Material, dass für die optische Mikroskopie geeignet ist. Dabei wachsen Zellen oder Mikroorganismen im äußeren Kompartiment (6) adhärent oder in Suspension. Die Versorgung mit Nährmedien, Sauerstoff und Kohlendioxid erfolgt vorteilhaft durch ein an Zu- und Ableitungen (7,8) angeschlossenes Schlauchsystem. Zu- und Ableitungen
(9,10) werden zum Beispiel zum Einbringen und Ernten der Zellen oder Mikroorganismen verwendet. Zur Verfolgung des Wachstums und der Morphologie der Zellen und anderer optisch auswertbarer Parameter wird die Hohlfaserkassette unter ein Mikroskop platziert.
Die nach Fig. 1 und Fig. 2 dargestellte Hohlfaserkassette kann auch als Mehrphasenreaktor für die Extraktion verwendet werden. Dabei werden in das innere und das äußere Kompartiment zwei unterschiedliche Medien (A und B). gegeben. Das innere der Hohlfasem (2) wird z. B. durch die Öffnungen (7) und (8) mit einem wässrigen Medium A, welches extrahierende Substanzen enthält, durchspült. Das äußere der Hohlfasem wird z. B. von einem organischen Lösungsmittel als Medium B umspült. Die Aromastoffe sind in dem organischen Medium B besser löslich und gelangen durch Hohlfasem in das Medium B. Durch die Trennung der Medium ist eine effektive Extraktion möglich. Eine derartige Extraktion kann z.B. bei der Aufreinigung von Aromastoffen Anwendung finden.
Fig. 3 zeigt einen horizontalen Schnitt durch eine Hohlfaserkassette, in der die Hohlfasem nur an einem Ende offen sind.
Die Vorrichtung ist analog der aus Fig. 1 beschriebenen, mit dem Unterschied, daß die Hohlfasem nur an einer Seite geöffnet sind. Dementsprechend hat das innere Kompartiment (5) nur einen Anschluss (7), durch den in das Innere der Hohlfasem (2) Fluide ein- oder abgeleitet werden können.
Die Hohlfaserkassette nach Fig. 3 kann zum Beispiel zur Begasung von Medien eingesetzt werden. Dazu wird ein Gas durch Anschluss (7) durch die Hohlfasern eingeleitet.
Die Hohlfaserkassette nach Fig. 3 kann auch zur Filtration verwendet werden. Dazu wird vorteilhaft die zu filtrierende Flüssigkeit durch die Zu- md Ableitungen (9,10) in das äußere Kompartiment geleitet und die filtrierte Flüssigkeit durch den Anschluss (7) abgeleitet.
Die Hohlfaserkassette nach Fig. 3 kann auch zum Beispiel zur selektiven Bindung oder
Umsetzung von Stoffen eingesetzt werden. Dabei befinden sich in oder auf den
Hohlfasem (2) entsprechenden stoffspezifisch bindenden oder katalytisch wirkenden
Gruppen. Die Lösung, die den umzusetzenden Stoff enthält, wird vorteilhaft durch die
Zu- und Ableitungen (9,10) in das äußere Kompartiment geleitet und die umgesetzte
Flüssigkeit durch den Anschluss 7 abgeleitet.
Fig. 4 zeigt einen horizontalen Schnitt durch eine Hohlfaserkassette, in der beide Hohlfaserenden geschlossen sind.
Die Vorrichtung ist analog der in Fig. 1 beschriebenen, mit dem Unterschied, dass die Hohlfasem an beiden Enden verschlossen sind. Die Hohlfaserkassette nach Fig. 4 kann zum Beispiel zur Kultivierung adhärenter Zellen eingesetzt werden. Die Zellen wachsen dabei an der Außenseite der Hohlfasem. Die Versorgung mit Nährstoffen und Sauerstoff und Kohlendioxid erfolgt dabei entweder durch die Öffnungen (9,10) oder vorteilhaft durch die Kombination mit anderen Kassetten analog Fig. 5. Fig. 5 zeigt eine vertikale Projektion durch ein Hohlfaserkassettensystem. In diesem System sind drei verschiedene Hohlfaserkassetten, jeweils eine Kassette analog Fig. 3, 4 und 1 aufgebaut, miteinander durch, in der Graphik nicht dargestellte, Steckverbindungen in den Grundflächen (G) verbunden. Die Hohlräume der einzelnen Kassetten, welche die Fasem umgeben, sind dabei großflächig über Öffnungen (14 - dargestellt durch eine gestrichelte Linie) in den Grundflächen miteinander verbunden und bilden ein gemeinsames äußeres Kompartiment (6). Abdeckungen (4), die durch Steckverbindungen mit den Grundflächen verbunden werden, schließen das gemeinsame äußere Kompartiment (6) fluid-dicht nach oben und unten ab. Da das in Fig. 5 dargestellte Kassettensystem nur ein gemeinsames äußeres Kompartiment (6) hat, ist jeweils eine Zu- und Ableitung (9,10) für das gemeinsame äußere Kompartiment ausreichend. Diese befinden sich an der Stirn bzw. Rückseite der Kassetten und sind nicht dargestellt.
Ein System nach Fig. 5 ist ein Beispiel für einen möglichen Bioreaktor, in dem adhärente Zellen in der mittleren Kassette (analog Fig. 4) an den an beiden Enden verschlossenen Hohlfasern oder Trägerfasem wachsen und durch die anderen beiden Hohlfaserkassetten mit Nährstoffen (oberste Kassette analog Fig.l), Sauerstoff und Kohlendioxid (unterste Kassette analog Fig 3.) versorgt werden.
Durch die Hohlfasern können die Zellen dabei nicht nur mit Medien versorgt werden, sondern auch von diesen ins Medium sekretierte Produkte, wie z. B. Antikörper abgetrennt und aufgereinigt werden.
Die Produktion eines Proteins durch eine Zellkultur und gleichzeitige Aufreinigung durch mehrere stoffspezifische Separationsschritte wird beispielhaft in Fig. 6 erläutert. Das in Fig. 6 dargestellte System ist aus vier übereinander gestapelten, großflächig miteinander verbunden Hohlfaserkassetten aufgebaut und durch 2 Abdeckungen (4,4') nach oben und unten abgeschlossen. Die einzelnen Kassetten sind untereinander und mit den Abdeckungen über, nicht dargestellte, Steckverbindungen in den' Grundflächen fluid-dicht miteinander verbunden. Die obere Abdeckung (4) besitzt einen Anschluss (9) zur Medienzufuhr zum äußeren Kompartiment (6) der obersten Kassette. Die inneren Kompartimente, der ersten und zweiten Kassette sind über Öffnungen (13 - dargestellt durch eine gepunktete Linie) in den Grundflächen großflächig miteinander verbunden. Auf gleiche Weise sind die inneren Kompartimente der dritten und der vierten Kassette miteinander verbunden. Die äußeren Kompartimente der zweiten und der dritten Kassette sind analog über entsprechende Öffnungen in den Grandflächen (14 - dargestellt durch eine gepunktete Linie) verbunden.
Die untere Abdeckung (4') enthält einen Hohlraum, der als Auffangbehälter wirkt und mit dem äußeren Kompartiment der untersten Kassette verbunden ist, sowie einen Anschluss (10) zu diesem.
Im äußeren Kompartiment (6) der obersten Kassette wachsen die Zellen und sekretieren das gewünschte Protein in das Medium. Das Medium wird durch Anschluß (9) in der oberen Abdeckung (4) zum äußeren Kompartiment der obersten Kassette zugeleitet und fließt durch das ganze System nach unten und wird durch Anschluss (10) in der unteren Abdeckung (4') abgeleitet. Die Anschlüsse (9) und (10) lassen sich durch eine Pumpe verbinden, um eine kontinuierliche Medienzirkulation zu gewährleisten. Durch die als Vorfilter wirkenden Hohlfasem (2) mit grober Porengröße wird das Protein enthaltende Medium in einem ersten Filtrationsschritt von Schwebstoffen, Zellen und Zellresten getrennt und durch die Verbindung der beiden inneren Kompartimente in die zweite Kassette geleitet. Dort wird die Proteinlösung durch Hohlfasem mit kleinerer Porengröße, das Protein von größeren Molekülen abgetrennt und tritt durch das Fasermaterial in das äußere Kompartiment der zweiten Kassette, welches mit dem äußeren Kompartiment der dritten Kassette verbunden ist. Das innere Kompartiment der zweiten Kassette kann gegebenenfalls durch die Anschlüsse (7) und (8) gespült werden.
Durch die Akzeptorgruppen enthaltenden Hohlfasem in der dritten Kassette werden durch eine Affmitätschromatographie von anderen unerwünschten Stoffe von dem Protein getrennt. Die das gewünschte Protein enthaltene Lösung tritt dabei durch das Fasermaterial in das innere Kompartiment der dritten Kassette, welches mit dem inneren Kompartiment der untersten Kassette verbunden ist. Die unerwünschten Stoffe bleiben im äußeren Kompartiment der dritten Kassette zurück und können gegebenenfalls durch einen zusätzlichen, in der Schnittdarstellung nicht sichtbaren, Anschluss zum äußeren Kompartiment abgeleitet werden.
Durch die Porengröße der Hohlfasem der unteren Kassette im Namoterbereich wird das Protein im inneren Kompartiment aufkonzentriert und kann durch die Anschlüsse (7) und (8) abgeleitet werden. Die Flüssigkeit des Mediums und kleinere Moleküle fließen durch die Hohlfasem in das äußere Kompartiment der untersten Kammer und in den damit verbunden Auffangbehälter in der Abdeckung (4). Der Auffangbehälter kann durch den Anschluss (10) geleert werden.
Vorteilhaft können bei der Erneuerung der Zellen, oder bei einem Verstopfen der Hohlfasem in den oberen Kassetten, die betroffenen Kassetten einzeln ausgewechselt werden. Die unteren Kassetten, deren innere Kompartimente die aufkonzentrierte Proteinlösung enthalten, können weiterverwendet werden. Dadurch wird ein möglicher Verlust an Protein durch Adsorption an Oberflächen minimiert.
Um das System zu vergrößern können beispielsweise, anstatt der obersten Kassette, mehrere des selben Typs, mit den inneren Kompartimenten verbunden, übereinander gesetzt werden.
In die oberste Kassette können Heizdrähte oder geschlossenporige Hohlfasern, durch die auf die gewünschte Temperatur temperiertes Wasser geleitet wird, integriert werden. Durch eine solche Heizvorrichtung wird die Kultur außerhalb eines speziellen Brutschranks möglich. Gleichzeitig lässt sich durch eine entsprechende Kühlvorrichtung in den unteren beiden Kassetten die aufkonzentrierte Proteinlösung kühlen.
Fig. 7 zeigt eine horizontale Projektion durch ein Hohlfaserkassettensystem.
In diesem System sind zwei Hohlfaserkassetten, je eine analog Fig. 1, bzw. Fig. 2 aufgebaut, miteinander verbunden. Die Kassetten sind dabei über, nicht dargestellte,
Steckverbindungen in ihren Mantelflächen (M) und Verbindungskanäle (11,12) zwischen den inneren (5) und äußeren (6) Kompartimenten verbunden.
Für das in Fig. 7 dargestellte System gelten die gleichen Anwendungsgebiete, wie für die Faserkassette aus Fig. 1 und 2, wobei durch die Reihenschaltung zweier Kassetten das Volumen des Systems vergrößert wird. Fig. 8A und Fig. 8B zeigen je einen vertikalen Schnitt durch eine Hohlfaserkassette, die analog Fig.l und Fig. 2 aufgebaut ist, mit dem Unterschied, dass rechteckige Grundflächen in einem Winkel versetzt zueinander angeordnet sind. In beiden Figuren sind die Fasem (2) nahezu parallel zu einer der Grundflächen (G) bzw. einer dazwischen liegenden Mittelebene (E) angeordnet. Die Orientierung der Fasern in Fig. 8A ist dabei senkrecht zu der Faserorientierung in Fig. 8B. Beide Kassetten enthalten Anschlüsse zur Fluid Zu- und Ableitung zu den einzelnen Kompartimenten, diese sind in Fig. 8A und Fig. 8B nicht dargestellt.
In Fig. 8A ist eine Hohlfaserlage (2) angeordnet, die durch kleine Kreise dargestellt ist. Das Innere der Kreise stellt das Faserlumen dar. Die Fasem sind parallel zur rechten und linken Mantelfläche (M) angeordnet.
In Fig. 8B sind drei Faserlagen (2) eingezeichnet, die senkrecht oder nahezu senkrecht zur rechten und linken Mantelfläche (M) angeordnet sind. Die Fasem liegen je in einer Mittelebene (El, E2, E3) zwischen den Grundflächen (G) der Kassette liegen.
Fig. 9 zeigt eine 3-dimensionale Darstellung eines Kassettensystems zur Aufzucht von Zellen unter rollenden Bedingungen. Dieses System ist aus 12 Kassetten (F), aufgebaut wie in Fig. 8A dargestellt, mit dem Unterschied, dass und je eine Mantelfläche (M) konkav und die andere konvex gewölbt ist. Die einzelnen Faserkassetten sind dabei so zusammengesetzt, dass das Kassettensystem einen Zylinder mit einer kreisförmigen Grundfläche formt. Die einzelnen Kassetten sind dazu über je eine Grundfläche (G) durch ein Stecksystem großflächig verbunden.
Die konvexen Mantelflächen der einzelnen Kassetten zeigen nach Außen und formen die Mantelfläche des Zylinders. Die konkaven Mantelflächen der einzelnen Kassetten zeigen nach innen und formen in der Mitte des Zylinders einen Hohlraum,, durch den ein weiteres in Fig.9 nicht dargestelltes Bauelement gesteckt werden kann. Das Bauelement enthält Zu- und Ableitungen, die mit den Zu- und Ableitungen zu den einzelnen Kompartimenten der Kassetten (5,6) verbunden werden können. Die Zu- und Ableitungen sind in Fig. 9 nicht dargestellt. Das Bauelement wirkt gleichzeitig als Rotationsachse und kann so ausgeführt sein, dass durch einen Anschluss an einem Ende an einen Elektromotor eine Rotation des Zylinders erreicht wird. Ein solcher Bioreaktor kann mit einer wie zu Fig. 6 beschriebenen Heizvorrichtung und Fluidzu- und abfuhr unabhängig von einem Zellkulturschrank betrieben werden.
Fig. 10 zeigt eine Draufsicht auf ein Faserkassettensystem bestehend aus 24 (4x6) Hohlfaserkassetten (F) und einer Grundplatte (P) zum Einsatz als Bioreaktor für zelluläre Reihenuntersuchungen. Eine feste Verbindung der Kassetten mit der Grundplatte wird dadurch erreicht, dass die Grundplatte (P) und die einzelnen Kassetten (F) spritzgusstechnisch in einem Stück geformt werden. Die einzelnen Kassetten und die Grundplatte formen dabei ein gemeinsames Gehäuse (1), das in seinem Inneren, in Fig. 10 nicht dargestellte, Kanäle und an der Seite Konnektoren (K) für die Zu- und Ableitung von Fluiden enthält.
Die einzelnen Kassetten sind dabei analog wie die in Fig. 1 dargestellten aufgebaut, mit dem Unterschied das die Kanäle im Inneren der Bodenplatte direkt mit dem Inneren der Hohlfasem verbunden sind und mit dem Lumen der Hohlfasem ein für alle Kassetten gemeinsames inneres Kompartiment formen und die äußeren Kompartimente keine eigenen Zuleitungen haben.
Die einzelnen Kompartimente und die Vergussmasse sind aus Gründen der Übersicht in Fig. 10 nicht dargestellt, die Hohlfasern sind nur schematisch durch Striche dargestellt. Jede Kassette (F) enthält ein eigenes, von den anderen Kassetten getrenntes äußeres Kompartiment, das die Hohlfasem (2) umgibt. Die äußeren Kompartimente sind durch die Grundplatte (P) nach unten verschlossen, nach oben jedoch großflächig geöffnet. Die Öffnungen der äußeren Kompartimente nach oben können durch einzelne, je ein Kompartiment abdeckende Deckel, oder durch einen durchgehenden, die ganze obere Fläche des Gehäuses abdeckenden, Deckel verschlossen werden.
In einem solchen Kassettensystem können Zellen durch die Öffnung des äußeren Kompartiments nach oben eingebracht werden und wachsen je nach Zelltyp in, auf oder in Suspension um die Fasem (2). Diese Form des Kassettensystems analog einer Multi wellplatte (wie z. B. häufig für Immunassays eingesetzt) erlaubt die Untersuchung von Zellen die parallel in den einzelnen Kassetten (F) wachsen. Der einfacheren Darstellung ist das Kassettensystem mit 24 Kassetten dargestellt, entsprechend ist aber auch eine Ausführung mit beispielsweise 96 (8x12) Kassetten möglich. Die komplette Platte kann so auch automatisierbar z. B. in ein Plattenlesegerät eingesetzt oder unter einem Mikroskop untersucht werden.
Ein derartiges Faserkassettensystem kann z. B. für ein patientenspezifisches Screening in der Medizin für die Chemotherapie angewendet werden. Dabei können patienteneigene Zellen; sprich Tumorzellen, in den einzelnen Faserkassetten auf die Reaktion gegenüber verschiedenen Chemotherapeutika getestet werden. Die Ergebnisse derartiger Untersuchungen ermöglichen die Erstellung eines effektiveren Behandlungskonzepts und einer individuell an den Patienten anpassten Therapie.
In Fig. 11 A und Fig. 11B sind Kassetten dargestellt, die man über spezielle Konnektoren (K) mit einem Träger (T) verbinden kann. In Fig. 11C ist eine solche Anordnung aus einem Träger (T) und 6 Kassetten (F) dargestellt.
Die in Fig. 11 A und Fig. 11B dargestellten Kassetten sind analog der Kassette aus Fig. 1. und Fig. 2 aufgebaut, mit dem Unterschied, dass sich die Zu- und Ableitungen (7,8,9,10) alle an einer Mantelfläche (M) befinden und in Form von Konnektoren (K) ausgeführt sind, welche die Verbindung mit einem Träger (T) erlauben. Die in Fig. 11 A dargestellte Kassette enthält ausschließlich Zu- und Ableitungen (7,8) zum inneren Kompartiment (5). Die in Fig. 11B dargestellte Kassette enthält zusätzlich auch Zu- und Ableitungen (9,10) zum äußeren Kompartiment (6). Die Medienflussrichtung durch die Kassette ist jeweils durch Pfeile dargestellt.
In Fig.l IC ist eine Anordnung bestehend aus einem plattenförmigen, wie ein Regal wirkenden, Träger (T) mit 9 Steckplätzen. In 6 Steckplätze sind Hohlfaserkassetten (F) eingesteckt, die analog zu der in Fig. HA dargestellten aufgebaut sind. Der oberste und die beiden untersten Steckplätze sind frei gelassen. Der Träger (T) enthält im Inneren durch gestrichelte Doppellinien angedeutete Kanäle zur Zu- und Ableitung von Medien und durch Kreise dargestellte Aussparungen (A) zur Verbindung mit den Konnektoren (K) der Kassetten. Die Medienflussrichtung durch die Kanäle im Träger ist durch Pfeile dargestellt. Die Verbindung der Konnektoren (K) mit den Aussparungen (A) dienen der reversiblen sterilen Verbindung der Kanäle im Träger mit den Kompartimenten (5,6) in der Kassette (F). Gleichzeitig dient diese Verbindung der Fixierung der einzelnen Kassetten (F) im Träger (T).
Eine Anwendung dieser Anordnung ist die Aufzucht von Zellen in den einzelnen, als Bioreaktor fungierenden Faserkassetten. Vorteilhaft erlaubt diese Anordnung eine platzsparende Anordnung einer Vielzahl von Bioreaktoren und die Entnahmen einzelner Kassetten z. B. durch ein Roboterarm.
Analog können über Konnektoren oder in Schubfacher eines entsprechenden regalförmigen Trägers auch ganze Hohlfaserkassettensysteme fixiert werden, z. B. die in Fig. 10 dargestellten.
Fig. 12 zeigt eine dreidimensionale Darstellung einer Hohlfaserkassette, aufgebaut wie in Fig.l und 2 mit dem Unterschied, dass die Zu- und Ableitungen (9,10) zu dem inneren und äußern Kompartiment nicht über 4 sondern nur 2 Mantelflächen verteilt sind und die Grundflächen an Ihren Ecken abgeschnittenen sind.
Fig. 13 zeigt eine dreidimensionale Darstellung eines Hohlfaser-Kassettensystems aufgebaut aus 3 Kassetten (F) entsprechend Fig.12 und einer flachen Abdeckung (4) nach oben, sowie einer wannenförmigen Abdeckung (4') nach unten. Die Kassetten sind in dieser Darstellung so aufeinander gesetzt, dass sich eine senkrecht versetzte Faserrichtung ergibt.
Fig. 14 zeigt eine lichtmikroskopische Aufnahme von offenen, in die Vergussmasse (3) eingebetteten Hohlfaserenden (2). Aufstellung der verwendeten Bezugszeichen:
In den beigefügten Zeichnungen sind die einzelnen Elemente der Hohlfaserkassette, wie folgt nummeriert:
1 Gehäuse
2 Hohlfasem
3 Vergussmasse
4 Abdeckung
5 inneres Kompartiment, mit dem Inneren der Hohlfasem verbunden
6 äußeres Kompartiment, mit dem Äußeren der Hohlfasem verbunden
7 und 8 Zu- und Ableitungen zum inneren Kompartiment 5 9 und 10 Zu- und Ableitungen zum äußeren Kompartiment 6
11 Verbindungskanal zwischen den inneren Kompartimenten zweier Kassetten
12 Verbindungskanal zwischen den äußeren Kompartimenten zweier Kassetten
13 großflächige Öffnung in der Grundfläche zum äußeren Kompartiment
14 großflächige Öffnung in der Grundfläche zum inneren Kompartiment A Aussparung in einem Träger zur Verbindung mit einem Konnektor E1, E2, E3 Mittelebenen
F einzelne Faserkassette in einem System oder in einer Anordnung
G Grundfläche h Höhenlinie
K Konnektoren
M Mantelfläche
P Grundplatte
T Träger

Claims

Patentansprüche:
1. Faserkassette bestehend aus einem Gehäuse (1), das von 2 kongruenten Grundflächen (G) und mindestens einer Mantelfläche
(M) begrenzt wird und in seinem Inneren mindestens einen Hohlraum enthält, mit mindestens einer Lage von Fasem oder Faserbündeln oder Hohlfasem (2), die im Inneren des Gehäuses (1) im wesentlichen parallel zu mindestens einer
Mittelebene angeordnet und mit ihren Enden fest im Inneren des Gehäuses verankert sind, wobei ein Hohlraum ein äußeres Kompartiment (6) formt, welches das Äußere der Fasem (2) umgibt, wobei die Mittelebene die Grundflächen nicht innerhalb des Hohlraums, der das äußere Kompartiment (6) formt, schneidet, wobei die einzelnen Fasem (2) U-förmig oder im wesentlichen parallel zueinander angeordnet sind und im Inneren des Gehäuses (1) enden, und dass das Gehäuse (1) mindestens eine Öffnung zur Zu- und/oder Ableitung von Fluiden aufweist.
2. Faserkassette nach Ansprach 1, dadurch gekennzeichnet, dass das Gehäuse (1) die Form eines Körpers mit polygonalen oder kreisförmigen Grundflächen hat.
3. Faserkassette nach Ansprach 1 oder 2, dadurch gekennzeichnet, dass unterschiedliche Fasermaterialien in einer Kassette miteinander kombiniert werden.
4. Faserkassette nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens ein Teil der Fasem (2) Hohlfasem oder Hohlfasermembranen sind.
5. Faserkassette nach Ansprach 4, dadurch gekennzeichnet, dass die Hohlfasern (2) an mindestens einem Ende offen sind und die Kassette mindestens ein zusätzliches inneres Kompartiment (5) enthält, mit dem die offenen Enden der Hohlfasem verbunden sind, so dass ein Stoffaustausch zwischen innerem und äußerem Kompartiment (5,6) nur über das Material der Hohlfasem erfolgen kann.
6. Faserkassette nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet,' dass das Gehäuse (1) mindestens eine großflächige Öffnung zu einem darin liegenden Kompartiment (5,6) enthält und Mittel zur fluid-dichten Verbindung mit Kompartimenten anderer Kassetten und/oder einer oder mehrer Abdeckung/-en (4) aufweist.
7. Faserkassette nach einem der Ansprüche 1 bis 6, dadurch gekemizeichnet, dass das Gehäuse (1) Kanäle (7,8,9,10,11,12) zur Zu- oder Ableitung von Fluiden zu dem inneren (5) und/oder äußeren Kompartiment (6) enthält.
8. Faserkassette nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Gehäuse (1) und/oder die Abdeckung (4) aus einem flexiblen oder rigiden Polymer oder Metall oder Glas oder Keramik oder aus einem lichtdurchlässigen Material besteht.
9. Faserkassette nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens eine Abdeckung (4) aus einem sich nach dem Durchstechen selbst wieder verschließenden Material oder einer semipermeablen Membran oder einem Filtergewebe besteht.
10. Faserkassette nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mindestens eine Abdeckung (4) mindestens eine Öffnung zur Zu- und/oder Ableitung von Fluiden aufweist.
11. Faserkassette nach Anspruch 10, wobei die Abdeckung (4) mindestens einen Hohlraum umschließt, der mit mit einem Kompartiment (5,6). der Kassette verbunden ist.
12. Faserkassette nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass auf und/oder im Fasermaterial (2) Reagenzien immobilisiert sind oder die Faserkassette Partikel enthält, die eine stoffspezifische Behandlung eines Fluids ermöglichen.
13. Faserkassette nach Ansprach 12, dadurch gekennzeichnet, dass die Reagenzien Substanzen oder Zellen aus dem Fluid binden oder eine solche Bindung verhindern oder chemische oder biochemische Katalysatoren oder Proteine, wie Enzyme oder Antikörper, oder Nukleinsäuren oder Komplexverbindungen oder Edelmetalle sind.
14. Faserkassettensystem, bestehend aus mindestens zwei fluiddicht, fest oder lösbar miteinander verbundenen Faserkassetten, wobei die Kompartimente (5,6) von mindestens zwei Faserkassetten über den größten Teil der aneinandergrenzenden Flächen oder durch eine Anordnung vorgeformter Verbindungskanäle (11,12) miteinander verbunden werden.
15. Faserkassettensystem nach Anspruch 14, dadurch gekennzeichnet, dass mindestens zwei aneinandergrenzende Kompartimente (5,6) unterschiedlicher Kassetten durch eine Abdeckung (4) semipermeabel miteinander verbunden oder voneinander getrennt sind.
16. Faserkassettensystem nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass mindestens zwei Faserkassetten mit einer Bodenplatte (P) ein gemeinsames Gehäuse (1) formen, welches Kanäle zur Zu- und/oder Ableitungen von Medien (11,12) zu den einzelnen Faserkassetten (F) enthält.
17. Anordnung aus mindestens einer Faserkassette nach einem der Ansprüche 1 bis 12 oder einem Faserkassettensystem nach einem der Ansprüche 13 bis 16 und einem Träger (T), wobei der Träger für jede/-s Faserkassette oder Faserkassettensystem Vorrichtungen zur Halterung und für die Zu- und/oder Ableitungen (15,16) von Medien zu den einzelnen Kassetten enthält.
PCT/DE2003/003066 2002-09-09 2003-09-09 Faserkassette und modular aufgebautes kassettensystem WO2004024303A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10393754T DE10393754B4 (de) 2002-09-09 2003-09-09 Hohlfaserkassette und modular aufgebautes Kassettensystem
CA002498187A CA2498187A1 (en) 2002-09-09 2003-09-09 Fiber cassette and modularly designed cassette system
JP2004535013A JP2005537924A (ja) 2002-09-09 2003-09-09 繊維カセットおよびモジュール構造のカセットシステム
US10/526,439 US20060014274A1 (en) 2002-09-09 2003-09-09 Fiber cassette and modularly designed cassette system
EP03769191A EP1549422A2 (de) 2002-09-09 2003-09-09 Faserkassette und modular aufgebautes kassettensystem
AU2003277803A AU2003277803A1 (en) 2002-09-09 2003-09-09 Fiber cassette and modularly designed cassette system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10242078A DE10242078A1 (de) 2002-09-09 2002-09-09 Faserkassette und modular aufgebautes Kassettensystem
DE10242078.5 2002-09-09

Publications (2)

Publication Number Publication Date
WO2004024303A2 true WO2004024303A2 (de) 2004-03-25
WO2004024303A3 WO2004024303A3 (de) 2004-05-13

Family

ID=31724633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003066 WO2004024303A2 (de) 2002-09-09 2003-09-09 Faserkassette und modular aufgebautes kassettensystem

Country Status (8)

Country Link
US (1) US20060014274A1 (de)
EP (1) EP1549422A2 (de)
JP (1) JP2005537924A (de)
KR (1) KR20050035303A (de)
AU (1) AU2003277803A1 (de)
CA (1) CA2498187A1 (de)
DE (2) DE10242078A1 (de)
WO (1) WO2004024303A2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119622A1 (en) 2005-05-09 2006-11-16 Saxonia Biotec Gmbh. Apparatus for providing media to cell culture modules
WO2008000306A1 (de) * 2006-06-27 2008-01-03 Hardy Lapot Hohlfaserstapelmodul
WO2008128165A2 (en) * 2007-04-13 2008-10-23 Caridianbct, Inc. Cell expansion system and methods of use
EP2164598A1 (de) * 2007-06-27 2010-03-24 Georgia Tech Research Corporation Sorptionsfaserzusammensetzungen und temperaturwechseladsorptionsverfahren
US7828854B2 (en) 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
US8658041B2 (en) 2007-06-27 2014-02-25 Georgia Tech Research Corporation Sorbent fiber compositions and methods of using the same
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10361473A1 (de) * 2003-12-23 2005-07-28 Mann + Hummel Gmbh Keramisches Hohlfaser-Membranmodul
JP4984542B2 (ja) * 2005-01-24 2012-07-25 Nok株式会社 中空糸膜モジュール製造方法及び中空糸膜モジュール
EP2089506A2 (de) * 2006-11-07 2009-08-19 Saxonia Bio Tec GmbH Versorgungssystem für zellkulturmodul
US20080305539A1 (en) * 2007-06-08 2008-12-11 Robert Hickey Membrane supported bioreactor for conversion of syngas components to liquid products
US8329456B2 (en) * 2008-02-22 2012-12-11 Coskata, Inc. Syngas conversion system using asymmetric membrane and anaerobic microorganism
GB0808373D0 (en) * 2008-05-09 2008-06-18 Synexa Life Sciences Pty Ltd Scalable cell culture bioreactor and cell culture process
US20100159579A1 (en) * 2008-10-20 2010-06-24 Schuring Christopher S Photobioreactor systems
DE102009039554A1 (de) * 2009-09-07 2011-03-10 Phytolutions Gmbh Verfahren zum Ernten von Algen aus einer Algensuspension, erstes, zweites und drittes Algensuspensionskonzentrat sowie erstes, zweites und drittes Nährflüssigkeitsfiltrat
JP2013506542A (ja) * 2009-09-30 2013-02-28 メムブラーナ ゲゼルシャフト ミット ベシュレンクテル ハフツング 流体不透過性セグメントを有する中空繊維メンブランマットおよび関連方法
JP2011103882A (ja) * 2009-11-16 2011-06-02 Shuhei Nakaji 細胞培養装置、細胞培養方法および細胞培養用プログラム
US11395980B2 (en) * 2010-01-25 2022-07-26 Spf Technologies Llc Chromatographic cassette
US20150017683A1 (en) * 2011-12-19 2015-01-15 Battelle Memorial Institute Stacked Membrane Bioreactor
CN102641664A (zh) * 2012-04-17 2012-08-22 浙江理工大学 一种聚四氟乙烯中空纤维膜组件的浇注方法
WO2013161679A1 (ja) * 2012-04-27 2013-10-31 株式会社カネカ 有核細胞捕捉フィルターまたはこれを利用した有核細胞調製法
US9683207B2 (en) * 2012-05-01 2017-06-20 FiberCell Production Solutions LLC Method for growing cells in hollow fibers
US20160030891A1 (en) * 2014-07-31 2016-02-04 Clark Technology, LLC Single-stage water treatment system
CN109562328B (zh) * 2016-08-18 2021-09-03 东洋纺株式会社 扁平型中空纤维膜组件以及膜分离单元
AU2017359115B2 (en) * 2016-11-11 2022-01-27 Biosurgical S.L. Filtration apparatus
DE102019115162A1 (de) * 2019-06-05 2020-12-10 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Vorrichtung für den Stoff- und/oder Energieaustausch zwischen zwei Medien und Verfahren zu dessen Herstellung
TWI740763B (zh) * 2020-12-30 2021-09-21 財團法人工業技術研究院 卡匣式電透析單元及包括其之模組
KR20230046841A (ko) * 2021-09-30 2023-04-06 코오롱인더스트리 주식회사 중공사막 카트리지 및 이를 포함하는 중공사막 모듈

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993816A (en) * 1973-07-11 1976-11-23 Rhone-Poulenc S.A. Hollow fiber assembly for use in fluid treatment apparatus
US5104535A (en) * 1990-08-17 1992-04-14 Zenon Environmental, Inc. Frameless array of hollow fiber membranes and module containing a stack of arrays
DE4230194A1 (de) * 1992-09-09 1994-03-10 Joerg Dr Med Gerlach Modul zur Züchtung und zur Nutzung der Stoffwechselleistung zum Erhalt von Mikroorganismen
US6103118A (en) * 1994-12-09 2000-08-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Modular transfer device for the transfer of material and/or heat from one medium stream to another medium stream, and module therefor
US6228607B1 (en) * 1995-04-28 2001-05-08 Organogenesis Inc. Bioreactor
WO2002058827A1 (en) * 2001-01-23 2002-08-01 Innovasep Technology Corporation Hollow fiber membrane cassette

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198335A (en) * 1965-08-03 Permeation apparatus
US3342719A (en) * 1963-06-05 1967-09-19 American Mach & Foundry Ion exchange membrane fabrication
US3342729A (en) * 1964-12-09 1967-09-19 Dow Chemical Co Permeability separatory cell and apparatus and method of using the same
IT1119541B (it) * 1979-11-23 1986-03-10 Sorin Biomedica Spa Apparecchio dializzatore a fibre cave
US4647539A (en) * 1985-05-24 1987-03-03 Endotronics, Inc. Method and apparatus for growing cells in vitro
DE3636583A1 (de) * 1986-10-28 1988-05-05 Draegerwerk Ag Verfahren zum herstellen eines hohlfaser-stoffaustauschmoduls und nach diesem verfahren hergestelltes modul
DE3803693A1 (de) * 1987-03-10 1988-09-22 Akzo Gmbh Mehrlagiger hohlfadenwickelkoerper
US4767533A (en) * 1987-03-13 1988-08-30 Baxter Travenol Laboratories, Inc. Method of making a family of blended fiber filtration devices
DE3805414C1 (de) * 1988-02-22 1989-09-07 Secon Gesellschaft Fuer Separations- Und Concentrationstechnik Mbh, 3402 Dransfeld, De
US5164081A (en) * 1989-03-24 1992-11-17 The Standard Oil Company Apparatus for separation and for treatment of fluid feedstreams, wafers for use therein and related methods
US5174900A (en) * 1989-03-24 1992-12-29 The Standard Oil Company Apparatus for separation and for treatment of fluid feedstreams, wafers for use therein and related methods
US4959152A (en) * 1989-03-24 1990-09-25 The Standard Oil Company Hollow fiber separation module and method for the use thereof
US5069788A (en) * 1989-08-24 1991-12-03 Pfizer Hospital Products Groups, Inc. Multi-pass blood washing and plasma removal device and method
US5017293A (en) * 1989-08-24 1991-05-21 Pfizer Hospital Products Group, Inc. Multi-pass blood washing and plasma removal device and method
JPH0783823B2 (ja) * 1990-06-01 1995-09-13 三機工業株式会社 膜濾過モジュール
US5182019A (en) * 1990-08-17 1993-01-26 Zenon Environmental Inc. Cartridge of hybrid frameless arrays of hollow fiber membranes and module containing an assembly of cartridges
US5169529A (en) * 1991-04-22 1992-12-08 Hoechst Celanese Corporation Liquid membrane modules with minimal effective membrane thickness and methods of making the same
JP3026516B2 (ja) * 1991-05-15 2000-03-27 株式会社クラレ 細胞培養器
DE4129400A1 (de) * 1991-09-04 1993-03-11 Akzo Nv Verfahren zum herstellen eines hohlfadenwickelkoerpers
US5366625A (en) * 1992-03-04 1994-11-22 Pedersen Steven K Cartridge of hybrid unitary wafers of hollow fiber membranes and module containing a stack of post-potted cartridges
US5380433A (en) * 1993-06-01 1995-01-10 E. I. Du Pont De Nemours And Company Hollow fiber membrane separation device with a housing made from a flexible material
DE19932439C2 (de) * 1999-07-12 2002-06-13 Sefar Ag Rueschlikon Bioreaktor
ATE321596T1 (de) * 2000-09-19 2006-04-15 Fibra Ltd Filtervorrichtung und filtrationsmethode
US7597677B2 (en) * 2001-11-16 2009-10-06 National Quality Care, Inc. Wearable ultrafiltration device
US20040045890A1 (en) * 2002-01-23 2004-03-11 Attila Herczeg Hollow fiber membrane cassette

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993816A (en) * 1973-07-11 1976-11-23 Rhone-Poulenc S.A. Hollow fiber assembly for use in fluid treatment apparatus
US5104535A (en) * 1990-08-17 1992-04-14 Zenon Environmental, Inc. Frameless array of hollow fiber membranes and module containing a stack of arrays
DE4230194A1 (de) * 1992-09-09 1994-03-10 Joerg Dr Med Gerlach Modul zur Züchtung und zur Nutzung der Stoffwechselleistung zum Erhalt von Mikroorganismen
US6103118A (en) * 1994-12-09 2000-08-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Modular transfer device for the transfer of material and/or heat from one medium stream to another medium stream, and module therefor
US6228607B1 (en) * 1995-04-28 2001-05-08 Organogenesis Inc. Bioreactor
WO2002058827A1 (en) * 2001-01-23 2002-08-01 Innovasep Technology Corporation Hollow fiber membrane cassette

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 0171, Nr. 90 (C-1048), 14. April 1993 (1993-04-14) & JP 04 341176 A (KURARAY CO LTD), 27. November 1992 (1992-11-27) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919307B2 (en) 2005-05-09 2011-04-05 Alpha Plan Gmbh Supply system for cell culture module
WO2006119622A1 (en) 2005-05-09 2006-11-16 Saxonia Biotec Gmbh. Apparatus for providing media to cell culture modules
JP2008539738A (ja) * 2005-05-09 2008-11-20 サクソニア バイオテック ゲーエムベーハー 細胞培養モジュール用供給システム
WO2008000306A1 (de) * 2006-06-27 2008-01-03 Hardy Lapot Hohlfaserstapelmodul
US9636207B2 (en) 2006-10-31 2017-05-02 Ethicon, Inc. Implantable repair device
US8591534B2 (en) 2006-10-31 2013-11-26 Ethicon, Inc. Implantable repair device
US7828854B2 (en) 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
US8388633B2 (en) 2006-10-31 2013-03-05 Ethicon, Inc. Implantable repair device
WO2008128165A3 (en) * 2007-04-13 2009-04-02 Caridianbct Inc Cell expansion system and methods of use
WO2008128165A2 (en) * 2007-04-13 2008-10-23 Caridianbct, Inc. Cell expansion system and methods of use
US8906688B2 (en) 2007-04-13 2014-12-09 Terumo Bct, Inc. Cell expansion system and methods of use
EP2164598A4 (de) * 2007-06-27 2011-08-24 Georgia Tech Res Inst Sorptionsfaserzusammensetzungen und temperaturwechseladsorptionsverfahren
US8409332B2 (en) 2007-06-27 2013-04-02 Georgia Tech Research Corporation Sorbent fiber compositions and methods of temperature swing adsorption
US8658041B2 (en) 2007-06-27 2014-02-25 Georgia Tech Research Corporation Sorbent fiber compositions and methods of using the same
US8257474B2 (en) 2007-06-27 2012-09-04 Georgia Tech Research Corporation Sorbent fiber compositions and methods of temperature swing adsorption
EP2164598A1 (de) * 2007-06-27 2010-03-24 Georgia Tech Research Corporation Sorptionsfaserzusammensetzungen und temperaturwechseladsorptionsverfahren
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11634677B2 (en) 2016-06-07 2023-04-25 Terumo Bct, Inc. Coating a bioreactor in a cell expansion system
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
US11999929B2 (en) 2016-06-07 2024-06-04 Terumo Bct, Inc. Methods and systems for coating a cell growth surface

Also Published As

Publication number Publication date
AU2003277803A1 (en) 2004-04-30
DE10242078A1 (de) 2004-03-18
US20060014274A1 (en) 2006-01-19
KR20050035303A (ko) 2005-04-15
DE10393754D2 (de) 2005-08-11
JP2005537924A (ja) 2005-12-15
WO2004024303A3 (de) 2004-05-13
DE10393754B4 (de) 2006-04-27
AU2003277803A8 (en) 2004-04-30
EP1549422A2 (de) 2005-07-06
CA2498187A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
DE10393754B4 (de) Hohlfaserkassette und modular aufgebautes Kassettensystem
EP2326364B1 (de) Gastransfervorrichtung
DE69608437T2 (de) Bioreaktor
EP2396052B1 (de) Vorrichtung zur behandlung einer biologischen flüssigkeit
DE69033032T2 (de) Integriertes zellkultur-proteinreinigungssystem zur automatisierten herstellung und reinigung von zellkulturprodukten
DE4432627B4 (de) Filtrationseinheit zur Abtrennung von Stoffen mit Membranadsorbern
JP2005537924A5 (de)
DE69126882T2 (de) Kulturvorrichtung mit lösbarer aufwuchsfläche für zellen oder gewebe
EP1289630A1 (de) Modul mit membranelementen in cross-flow und in dead-end anordnung
DE20002188U1 (de) Vorrichtung zum Konzentrieren und/oder Reinigen von Makromolekülen in einer Lösung
EP2776145B1 (de) Modulares filtersystem
EP1194240A1 (de) Einrichtung zum handhaben von flüssigkeitsproben und herstellungsverfahren sowie system zum handhaben von flüssigkeitsproben
EP3090768A1 (de) Vorrichtung mit einlassabschnitt zur behandlung einer biologischen flüssigkeit
EP0963239B1 (de) Membranmodul enthaltend mindestens zwei gruppen von hohlfasermembranen und verfahren zu seiner herstellung
WO1998033581A9 (de) Membranmodul enthaltend mindestens zwei gruppen von hohlfasermembranen und verfahren zu seiner herstellung
DE2444583A1 (de) Dialyse-geraet mit adsorber-einheit
WO2006069737A1 (de) Reaktor und reaktoreinheit mit hohlfasern
EP0925104A1 (de) Filtrationseinheit mit plissierten filterelementen
DE102004062828B4 (de) Reaktor mit einer rotierbar angeordneten Reaktoreinheit
DE102006038340A1 (de) Verfahren zur Abtrennung und Aufkonzentrierung von Biomasse
DE102005021305A1 (de) Reaktoreinheit und Reaktor mit einer derartigen Reaktoreinheit
EP1455943B1 (de) Einrichtungen und verfahren zur verarbeitung biologischer oder chemischer substanzen oder deren substanzgemische
WO2018229157A1 (de) Vorrichtung und verfahren für die kultivierung von zellen
DE102022123877B4 (de) Grundkörper eines Mehrkammer-Biochips, Herstellung des Mehrkammer-Biochips und dessen Verwendung für die Etablierung von Organ- und Krankheitsmodellen und Substanztestungen
WO2004082810A1 (de) Membranplattenmodul

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003769191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006014274

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526439

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2498187

Country of ref document: CA

Ref document number: 167320

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1020057004078

Country of ref document: KR

Ref document number: 2004535013

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020057004078

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003769191

Country of ref document: EP

REF Corresponds to

Ref document number: 10393754

Country of ref document: DE

Date of ref document: 20050811

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393754

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

WWP Wipo information: published in national office

Ref document number: 10526439

Country of ref document: US