WO2004024186A2 - Inhibition de maladies et de troubles induits par la cyclooxygenase-3 - Google Patents

Inhibition de maladies et de troubles induits par la cyclooxygenase-3 Download PDF

Info

Publication number
WO2004024186A2
WO2004024186A2 PCT/US2003/028471 US0328471W WO2004024186A2 WO 2004024186 A2 WO2004024186 A2 WO 2004024186A2 US 0328471 W US0328471 W US 0328471W WO 2004024186 A2 WO2004024186 A2 WO 2004024186A2
Authority
WO
WIPO (PCT)
Prior art keywords
nitric oxide
group
cyclooxygenase
cancer
inhibitor
Prior art date
Application number
PCT/US2003/028471
Other languages
English (en)
Other versions
WO2004024186A3 (fr
Inventor
Gordon Letts
Original Assignee
Nitromed, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitromed, Inc. filed Critical Nitromed, Inc.
Priority to AU2003270540A priority Critical patent/AU2003270540A1/en
Publication of WO2004024186A2 publication Critical patent/WO2004024186A2/fr
Publication of WO2004024186A3 publication Critical patent/WO2004024186A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/401Proline; Derivatives thereof, e.g. captopril
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the invention describes methods for treating and/or preventing diseases and/or disorders resulting from elevated levels of cyclooxygenase-3 comprising administration of at least one cyclooxygenase inhibitor that is optionally nitrosated and/or nitrosylated, and, optionally, at least one compound that donates, transfers or releases nitric oxide, stimulates endogenous synthesis of nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor or is a substrate for nitric oxide synthase and/or at least one therapeutic agent.
  • the invention also provides methods for treating and/or preventing diseases and/or disorders resulting from elevated levels of cyclooxygenase-3 comprising administration of at least one compound that donates, transfers or releases nitric oxide, stimulates endogenous synthesis of nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor or is a substrate for nitric oxide synthase, and, optionally, at least one therapeutic agent.
  • the invention also provides methods for treating and/or improving the gastrointestinal properties of cyclooxygenase-2 (COX-2) selective inhibitors; for treating and/or preventing renal and/or respiratory toxicities of COX-2 selective inhibitors; for treating and for improving the cardiovascular profile of COX-2 selective inhibitors comprising administration of at least one cyclooxygenase-3 (COX- 3) inhibitor that is optionally nitrosated and/or nitrosylated, and, optionally, at least one compound that donates, transfers or releases nitric oxide, stimulates endogenous synthesis of nitric oxide, elevates endogenous levels of endothelium-derived relaxing factor or is a substrate for nitric oxide synthase and/or at least one therapeutic agent.
  • COX-2 cyclooxygenase-2
  • COX-3 cyclooxygenase-3
  • cyclooxygenase inhibitors of the invention include, but are not limited to, cyclooxygenase-3 selective inhibitors, cyclooxygenase-2 selective inhibitors, cyclooxygenase- 1 selective inhibitors, non-steroidal anti-inflammatory compounds, and mixtures of two or more thereof.
  • Nonsteroidal anti-inflammatory compounds are widely used for the treatment of pain, inflammation, and acute and chronic inflammatory disorders such as osteoarthritis and rheumatoid arthritis. These compounds inhibit the activity of the enzyme cyclooxygenase (COX), also known as prostaglandin G/H synthase, which is the enzyme that converts arachidonic acid into prostanoids.
  • COX cyclooxygenase
  • the NSAIDs also inhibit the production of other prostaglandins, especially prostaglandin G 2 , prostaglandin H 2 and prostaglandin E , thereby reducing the prostaglandin-induced pain and swelling associated with the inflammation process.
  • the chronic use of NSAIDs has been associated with adverse effects, such as gastrointestinal ulceration and renal toxicity. The undesirable side effects are also due to the inhibition of prostaglandin in the affected organ.
  • COX-2 whereas the side effects seem to be caused by the inhibition of COX-1.
  • the NSAIDs currently on the market either inhibit both isoforms of COX with little selectivity for either isoform or are COX-1 selective.
  • Compounds that are COX-2 selective inhibitors have been developed and marketed. These COX-2 selective inhibitors have the desired therapeutic profile of an antiinflammatory drug without the adverse effects commonly associated with the inhibition of COX-1.
  • these compounds can result in dyspepsia and can cause gastropathy (Mohammed et al, N. Engl. J. Med., 340(25) 2005 (1999)).
  • COX-2 selective inhibitors can increase the risk of cardiovascular events in a patient (Mukherjee et al., JAMA 286(8) 954-959 (2001)); Hennan et al, Circulation, 104:820-825 (2001)).
  • cyclooxygenase-3 has been proposed (Willoughby et al., Lancet, 355(9204) 646-648 (2000); Botting, Clinical Infectious Diseases, 31:S202-210 (2000); Chandrasekharan et al., Proc. Natl. Acad. Sci., 99:13926-13931 (2002). It is postulated that the cyclooxygenase-3 enzyme may be a product of the same gene that encodes the cyclooxygenase-2 enzyme but has different molecular characteristics.
  • the invention provides methods for treating and/or preventing cyclooxygnease-3 (COX-3) mediated disorders (i.e., disorders resulting from elevated levels of COX-3) in a patient in need thereof which comprises administering to a patient a therapeutically effective amount of at least one cyclooxygenase inhibitor, that is optionally substituted with at least one NO and/or NO 2 group (i.e., nitrosylated and/or nitrosated), and, optionally, at least one compound that donates, transfers or releases nitric oxide as a charged species, i.e., nitrosonium (NO + ) or nitroxyl (NO-), or as the neutral species, nitric oxide (NO*), and/or stimulates endogenous production of nitric oxide or EDRF in vivo and/or is a substrate for nitric oxide synthase (i.e.
  • the methods can optionally further comprise the administration of at least one therapeutic agent, such as, for example, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5-lipoxygenase (5-LO) inhibitors, leukotriene B 4 (LTB 4 ) receptor antagonists, leukotriene (LTA ) hydrolase inhibitors, 5-HT agonists, HMG CoA inhibitors, H 2 antagonists, antineoplastic agents, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, decongestants, diuretics, sedating or non- sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and mixtures of two or more thereof.
  • NSAID nonsteroidal antiinflammatory compounds
  • 5-LO 5-lipoxygenase
  • LTB 4 leukotriene
  • LTA leukotriene
  • the COX inhibitors can be nitrosated and/or nitrosylated through one or more sites, such as oxygen (hydroxyl condensation), sulfur (sulfhydryl condensation) and/or nitrogen.
  • the methods can involve administering the COX inhibitors, that are optionally nitrosated and/or nitrosylated, administering the COX inhibitors, that are optionally nitrosated and/or nitrosylated, and NO donors, administering the COX inhibitors, that are optionally nitrosated and/or nitrosylated, and therapeutic agents, or administering the COX inhibitors, that are optionally nitrosated and/or nitrosylated, NO donors, and therapeutic agents.
  • COX inhibitors can be administered separately or as components of the same composition in one or more pharmaceutically acceptable carriers.
  • Another embodiment of the invention provides methods for treating and/or preventing cyclooxygnease-3 (COX-3) mediated disorders (i.e., disorders resulting from elevated levels of COX-3) in a patient in need thereof which comprises administering to the patient a therapeutically effective amount of at least one compound that donates, transfers or releases nitric oxide as a charged species, i.e., nitrosonium (NO + ) or nitroxyl (NO-), or as the neutral species, nitric oxide (NO*), and/or stimulates endogenous production of nitric oxide or EDRF in vivo and/or is a substrate for nitric oxide synthase (i.e.
  • the methods can optionally further comprise the administration of at least one therapeutic agent, such as, for example, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5- lipoxygenase (5-LO) inhibitors, leukotriene B 4 (LTB 4 ) receptor antagonists, leukotriene A 4 (LTA 4 ) hydrolase inhibitors, 5-HT agonists, HMG CoA inhibitors, H 2 antagonists, antineoplastic agents, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, decongestants, diuretics, sedating or non-sedating anti- histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics,
  • NSAID nonsteroidal antiinflammatory compounds
  • 5-LO 5- lipoxygenase
  • LTB 4 leukotriene B 4
  • LTA 4 leukotriene A 4 hydrolase inhibitors
  • 5-HT agonists 5-HT agonists
  • HMG CoA inhibitors H 2 antagonists
  • the methods can involve administering the NO donors, administering the NO donors, and therapeutic agents.
  • the nitric oxide donors, and/or therapeutic agents can be administered separately or as components of the same composition in one or more pharmaceutically acceptable carrier.
  • Another embodiment of the invention provides methods for treating and/or improving the gastrointestinal properties of cyclooxygenase-2 (COX-2) selective inhibitors; and for treating and/or preventing renal and/or respiratory toxicity of cyclooxygenase-2 (COX-2) selective inhibitors in a patient in need thereof which comprises administering to the patient a therapeutically effective amount of at least one COX-3 selective inhibitor, that is optionally substituted with at least one NO and/or NO 2 group (i.e., nitrosylated and/or nitrosated), and, optionally, at least one compound that donates, transfers or releases nitric oxide as a charged species, i.e., nitrosonium (NO + ) or nitroxyl (NO-), or as the neutral species, nitric oxide (NO*), and/or stimulates endogenous production of nitric oxide or EDRF in vivo and/or is a substrate for nitric oxide synthase (i.e.
  • the methods can optionally further comprise the administration of at least one therapeutic agent, such as, for example, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5- lipoxygenase (5-LO) inhibitors, leukotriene B 4 (LTB 4 ) receptor antagonists, leukotriene (LTA 4 ) hydrolase inhibitors, 5-HT agonists, HMG CoA inhibitors, H 2 antagonists, antineoplastic agents, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, decongestants, diuretics, sedating or non-sedating anti- histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and mixtures of two or more thereof.
  • NSAID nonsteroidal antiinflammatory compounds
  • 5-LO 5- lipoxygenase
  • LTB 4 leukotriene
  • LTA 4 leukotriene
  • the COX-3 inhibitor can be nitrosated and/or nitrosylated through one or more sites, such as oxygen (hydroxyl condensation), sulfur (sulfhydryl condensation) and/or nitrogen.
  • the methods can involve administering the COX-3 inhibitors, that are optionally nitrosated and/or nitrosylated, administering the COX-3 inhibitors, that are optionally nitrosated and/or nitrosylated, and NO donors, administering the COX-3 inhibitors, that are optionally nitrosated and/or nitrosylated, and therapeutic agents, or administering the COX-3 inhibitors, that are optionally nitrosated and/or nitrosylated, NO donors, and therapeutic agents.
  • the COX-3 inhibitors, nitric oxide donors, and/or therapeutic agents can be administered separately or as components of the same composition in one or more pharmaceutically acceptable carriers.
  • Yet another embodiment of the invention provides methods for improving the cardiovascular profile of COX-2 selective inhibitors in a patient in need thereof which comprises administering to the patient a therapeutically effective amount of at least one COX-3 selective inhibitor, optionally substituted with at least one NO and/or NO 2 group (i.e., nitrosylated and/or nitrosated), and, optionally, at least one compound that donates, transfers or releases nitric oxide as a charged species, i.e., nitrosonium (NO + ) or nitroxyl (NO-), or as the neutral species, nitric oxide (NO*), and/or stimulates endogenous production of nitric oxide or EDRF in vivo and/or is a substrate for nitric oxide synthase (i.e.
  • the methods can optionally further comprise the administration of at least one of 3-hydroxy-3-methylglutaryl coenzyme A (HMG- CoA) inhibitors, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, and mixtures of two or more thereof.
  • HMG- CoA 3-hydroxy-3-methylglutaryl coenzyme A
  • the methods can involve administering the nitrosated and/or nitrosylated COX-3 selective inhibitors, administering the COX-3 selective inhibitors, that are optionally nitrosated and/or nitrosylated, and NO donors, administering the COX-3 selective inhibitors, that are optionally nitrosated and/or nitrosylated, and at least one of 3-hydroxy-3- methylglutaryl coenzyme A (HMG-CoA) inhibitors, antiplatelet agents, thrornbin inhibitors or thromboxane inhibitors, or administering the COX-3 selective inhibitors, that are optionally nitrosated and/or nitrosylated, NO donors, and at least one of 3- hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors, antiplatelet agents, thrornbin inhibitors or thromboxane inhibitors.
  • HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A
  • COX-3 inhibitors nitric oxide donors, and/or 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors, antiplatelet agents, thrornbin inhibitors or thromboxane inhibitors can be administered separately or as components of the same composition in one or more pharmaceutically acceptable carriers.
  • HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A
  • Cyclooxygenase (COX) inhibitor refers to a compound that inhibits any cyclooxygenase enzyme, including, but not limited to cyclooxygenase- 1 enzyme, cyclooxygenase-2 enzyme and/or cyclooxygenase-3 enzyme and mixtures of two or more thereof.
  • COX inhibitors include, for example, NSAIDs, cyclooxygenase- 1 (COX-1) selective inhibitors, cyclooxygenase-2 (COX-2) selective inhibitors, cyclooxygenase-3 (COX-3) selective inhibitors, cyclooxygenase- 1 (COX-1) and cyclooxygenase-2 (COX-2) selective inhibitors, cyclooxygenase- 1 (COX-1) and cyclooxygenase-3 (COX-3) selective inhibitors, cyclooxygenase-2 (COX-2) and cyclooxygenase-3 (COX-3) selective inhibitors, cyclooxygenase- 1 (COX-1), cyclooxygenase-2 (COX-2) and cyclooxygenase-3 (COX-3) selective inhibitors, cyclooxygenase- 1 (COX-1), cyclooxygenase-2 (COX-2) and cyclooxygena
  • NSAID refers to a nonsteroidal anti-inflammatory compound or a nonsteroidal anti-inflammatory drug. NSAIDs inhibit cyclooxygenase, the enzyme responsible for the biosyntheses of the prostaglandins and certain autocoid inhibitors, including inhibitors of the various isozymes of cyclooxygenase (including but not limited to cyclooxygenase- 1 and -2), and as inhibitors of both cyclooxygenase and lipoxygenase
  • Cyclooxygenase-2 (COX-2) selective inhibitor refers to a compound that selectively inhibits the cyclooxygenase-2 enzyme over the cyclooxygenase- 1 enzyme.
  • the compound has a cyclooxygenase-2 IC 50 of less than about 2 ⁇ M and a cyclooxygenase- 1 IC 50 of greater than about 5 ⁇ M, in the human whole blood COX-2 assay (as described in Brideau et al., Inflamm Res., 45: 68-74 (1996)) and also has a selectivity ratio of cyclooxygenase-2 inhibition over cyclooxygenase- 1 inhibition of at least 10, and preferably of at least 40.
  • the compound has a cyclooxygenase- 1 IC 50 of greater than about 1 ⁇ M, and preferably of greater than 20 ⁇ M.
  • the compound can also inhibit the enzyme, lipoxygenase. Such selectivity may indicate an ability to reduce the incidence of common NS AID-induced side effects.
  • Cyclooxygenase-3 (COX-3) selective inhibitor refers to a compound that selectively inhibits the cyclooxygenase-3 enzyme over the cyclooxygenase- 1 enzyme or the cyclooxygenase-2 enzyme.
  • Therapeutic agent includes any therapeutic agent that can be used to treat or prevent the diseases described herein.
  • “Therapeutic agents” include, for example, steroids, nonsteroidal antiinflammatory compounds, 5-lipoxygenase inhibitors, leukotriene B 4 receptor antagonists, leukotriene A 4 hydrolase inhibitors, 3-hydroxy-3- methylglutaryl coenzyme A inhibitors, H 2 antagonists, antineoplastic agents, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and the like.
  • Therapeutic agent includes the pro-drugs and pharmaceutical derivatives thereof including but not limited to the corresponding nitrosated and/or nitrosylated derivatives. Although nitric oxide donors have therapeutic activity, the term "therapeutic agent" does not include the nitric oxide donors described herein, since nitric oxide donors are separately defined.
  • Cardiovascular disease or disorder refers to any cardiovascular disease or disorder known in the art, including, but not limited to, restenosis, atherosclerosis, atherogenesis, angina, (particularly chronic, stable angina pectoris), ischemic disease, congestive heart failure or pulmonary edema associated with acute myocardial infarction, thrombosis, controlling blood pressure in hypertension (especially hypertension associated with cardiovascular surgical procedures), thromboembolic events, platelet aggregation, platelet adhesion, smooth muscle cell proliferation, vascular complications associated with the use of medical devices, wounds associated with the use of medical devices, cerebrovascular ischemic events, and the like.
  • Complications associated with the use of medical devices may occur as a result of increased platelet deposition, activation, thrombus formation or consumption of platelets and coagulation proteins.
  • Such complications which are within the definition of "cardiovascular disease or disorder,” include, for example, myocardial infarction, ischemic stroke, transient ischemic stroke, thromboembolic events, pulmonary thromboembolism, cerebral thromboembolism, thrombophlebitis, thrombocytopenia, bleeding disorders and/or any other complications which occur either directly or indirectly as a result of the foregoing disorders.
  • Restenosis is a cardiovascular disease or disorder that refers to the closure of a peripheral or coronary artery following trauma to the artery caused by an injury such as, for example, angioplasty, balloon dilation, atherectomy, laser ablation treatment or stent insertion. Restenosis can also occur following a number of invasive surgical techniques, such as, for example, transplant surgery, vein grafting, coronary artery bypass surgery, endarterectomy, heart transplantation, balloon angioplasty, atherectomy, laser ablation, endovascular stenting, and the like.
  • Atherosclerosis is a form of chronic vascular injury in which some of the normal vascular smooth muscle cells in the artery wall, which ordinarily control vascular tone regulating blood flow, change their nature and develop “cancer-like” behavior. These vascular smooth muscle cells become abnormally proliferative, secreting substances such as growth factors, tissue-degradation enzymes and other proteins, which enable them to invade and spread into the inner vessel lining, blocking blood flow and making that vessel abnormally susceptible to being completely blocked by local blood clotting, resulting in the death of the tissue served by that artery.
  • Atherosclerotic cardiovascular disease, coronary heart disease (also known as coronary artery disease or ischemic heart disease), cerebrovascular disease and peripheral vessel disease are all common manifestations of atherosclerosis and are therefore encompassed by the terms “atherosclerosis” and "atherosclerotic disease”.
  • “Improving the cardiovascular profile” refers to and includes reducing the risk of thromboembolic events, reducing the risk of developing atherosclerosis and atherosclerotic diseases, and inhibiting platelet aggregation of the parent COX-2 inhibitor.
  • Thromboembolic events includes, but is not limited to, ischemic stroke, transient ischemic stroke, myocardial infarction, angina pectoris, thrombosis, thromboembolism, thrombotic occlusion and reocclusion, acute vascular events, restenosis, transient ischemic attacks, and first and subsequent thrombotic stroke.
  • Patients who are at risk of developing thromboembolic events may include those with a familial history of, or genetically predisposed to, thromboembolic disorders, who have had ischemic stroke, transient ischemic stroke, myocardial infarction, and those with unstable angina pectoris or chronic stable angina pectoris and patients with altered prostacyclin/thromboxane A 2 homeostasis or higher than normal thromboxane A 2 levels leading to increase risk for thromboembolism, including patients with diabetes and rheumatoid arthritis.
  • Thromboxane inhibitor refers to any compound that reversibly or irreversibly inhibits thromboxane synthesis, and includes compounds which are the so-called thromboxane A 2 receptor antagonists, thromboxane A 2 antagonists, thromboxane A 2 /prostaglandin endoperoxide antagonists, thromboxane receptor (TP) antagonists, thromboxane antagonists, thromboxane synthase inhibitors, and dual acting thromboxane synthase inhibitors and thromboxane receptor antagonists.
  • thromboxane A 2 receptor antagonists thromboxane A 2 antagonists
  • thromboxane A 2 /prostaglandin endoperoxide antagonists thromboxane receptor (TP) antagonists
  • thromboxane antagonists thromboxane synthase inhibitors
  • dual acting thromboxane synthase inhibitors and thromboxane receptor antagonists
  • the characteristics of the preferred thromboxane inhibitor should include the suppression of thromboxane A 2 formation (thromboxane synthase inhibitors) and/or blockade of thromboxane A 2 and prostaglandin H 2 platelet and vessel wall (thromboxane receptor antagonists). The effects should block platelet activation and therefore platelet function.
  • Thromboxane A 2 receptor antagonist refers to any compound that reversibly or irreversibly blocks the activation of any thromboxane A 2 receptor.
  • Thiboxane synthase inhibitor refers to any compound that reversibly or irreversibly inhibits the enzyme thromboxane synthesis thereby reducing the formation of thromboxane A 2 .
  • Thromboxane synthase inhibitors may also increase the synthesis of antiaggregatory prostaglandins including prostacyclin and prostaglandin D 2 .
  • Thromboxane A 2 receptor antagonists and thromboxane synthase inhibitors and can be identified using the assays described in Tai, Methods of Enzymology, Vol. 86,
  • Double acting thromboxane receptor antagonist and thromboxane synthase inhibitor refers to any compound that simultaneously acts as a thromboxane A 2 receptor antagonist and a thromboxane synthase inhibitor.
  • Thrornbin inhibitors refers to and includes compounds that inhibit hydrolytic activity of thrornbin, including the catalytic conversion of fibrinogen to fibrin, activation of Factor V to Va, Factor VHI to VHIa, Factor XHI to XHIa and platelet activation. Thrornbin inhibitors may be identified using assays described in Lewis et at, Thrombosis Research. 70: 173-190 (1993).
  • Platelet aggregation refers to the binding of one or more platelets to each other. Platelet aggregation is commonly referred to in the context of generalized atherosclerosis, not with respect to platelet adhesion on vasculature damaged as a result of physical injury during a medical procedure. Platelet aggregation requires platelet activation which depends on the interaction between the ligand and its specific platelet surface receptor.
  • Plate activation refers either to the change in conformation (shape) of a cell, expression of cell surface proteins (e.g., the Hb/HIa receptor complex, loss of GPIb surface protein), and secretion of platelet derived factors (e.g., serotonin, growth factors).
  • cell surface proteins e.g., the Hb/HIa receptor complex, loss of GPIb surface protein
  • platelet derived factors e.g., serotonin, growth factors
  • “Patient” refers to animals, preferably mammals, most preferably humans, and includes males and females, and children and adults. "Therapeutically effective amount” refers to the amount of the compound and/or composition that is effective to achieve its intended purpose.
  • Transdermal refers to the delivery of a compound by passage through the skin and into the blood stream.
  • Transmucosal refers to delivery of a compound by passage of the compound through the mucosal tissue and into the blood stream.
  • “Penetration enhancement” or “permeation enhancement” refers to an increase in the permeability of the skin or mucosal tissue to a selected pharmacologically active compound such that the rate at which the compound permeates through the skin or mucosal tissue is increased.
  • “Carriers” or “vehicles” refers to carrier materials suitable for compound administration and include any such material known in the art such as, for example, any liquid, gel, solvent, liquid diluent, solubilizer, or the like, which is non-toxic and which does not interact with any components of the composition in a deleterious manner.
  • Nitric oxide adduct or “NO adduct” refers to compounds and functional groups which, under physiological conditions, can donate, release and/or directly or indirectly transfer any of the three redox forms of nitrogen monoxide (NO + , NO " , NO*), such that the biological activity of the nitrogen monoxide species is expressed at the intended site of action.
  • Nitric oxide releasing or “nitric oxide donating” refers to methods of donating, releasing and/or directly or indirectly transferring any of the three redox forms of nitrogen monoxide (NO + , NO ⁇ , NO » ), such that the biological activity of the nitrogen monoxide species is expressed at the intended site of action.
  • Nitric oxide donor or “NO donor” refers to compounds that donate, release and/or directly or indirectly transfer a nitrogen monoxide species, and/or stimulate the endogenous production of nitric oxide or endothelium-derived relaxing factor (EDRF) in vivo and/or elevate endogenous levels of nitric oxide or EDRF in vivo.
  • NO donor also includes compounds that are substrates for nitric oxide synthase.
  • Alkyl refers to a lower alkyl group, a haloalkyl group, a hydroxyalkyl group, an alkenyl group, an alkynyl group, a bridged cycloalkyl group, a cycloalkyl group or a heterocyclic ring, as defined herein.
  • An alkyl group may also comprise one or more radical species, such as, for example a cycloalkylalkyl group or a heterocyclicalkyl group.
  • “Lower alkyl” refers to branched or straight chain acyclic alkyl group comprising one to about ten carbon atoms (preferably one to about eight carbon atoms, more preferably one to about six carbon atoms).
  • Exemplary lower alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, pentyl, neopentyl, iso-amyl, hexyl, octyl, and the like.
  • Substituted lower alkyl refers to a lower alkyl group, as defined herein, wherein one or more of the hydrogen atoms have been replaced with one or more R 10 groups, wherein each R 100 is independently a hydroxy, an oxo, a carboxyl, a carboxamido, a halo, a cyano or an amino group, as defined herein.
  • Haloalkyl refers to a lower alkyl group, an alkenyl group, an alkynyl group, a bridged cycloalkyl group, a cycloalkyl group or a heterocyclic ring, as defined herein, to which is appended one or more halogens, as defined herein.
  • exemplary haloalkyl groups include trifluoromethyl, chloromethyl, 2-bromobutyl, l-bromo-2- chloro-pentyl, and the like.
  • alkenyl refers to a branched or straight chain C 2 -C 10 hydrocarbon (preferably a C 2 -C 8 hydrocarbon, more preferably a C 2 -C 6 hydrocarbon) that can comprise one or more carbon-carbon double bonds.
  • alkenyl groups include propylenyl, buten-1-yl, isobutenyl, penten-1-yl, 2,2-methylbuten-l-yl, 3- methylbuten-1-yl, hexan-1-yl, hepten-1-yl, octen-1-yl, and the like.
  • “Lower alkenyl” refers to a branched or straight chain C 2 -C 4 hydrocarbon that can comprise one or two carbon-carbon double bonds.
  • Substituted alkenyl refers to a branched or straight chain C . - o hydrocarbon (preferably a C 2 -C 8 hydrocarbon, more preferably a C 2 -C 6 hydrocarbon) which can comprise one or more carbon-carbon double bonds, wherein one or more of the hydrogen atoms have been replaced with one or more R 100 groups, wherein each R 100 is independently a hydroxy, an oxo, a carboxyl, a carboxamido, a halo, a cyano or an amino group, as defined herein.
  • Alkynyl refers to an unsaturated acyclic C 2 -C ⁇ o hydrocarbon (preferably a C 2 -C 8 hydrocarbon, more preferably a C 2 -C 6 hydrocarbon) that can comprise one or more carbon-carbon triple bonds.
  • exemplary alkynyl groups include ethynyl, propynyl, butyn-1-yl, butyn-2-yl, pentyl- 1-yl, pentyl-2-yl, 3-methylbutyn-l-yl, hexyl- 1-yl, hexyl-2-yl, hexyl-3-yl, 3,3-dimethyl-butyn-l-yl, and the like.
  • Bridged cycloalkyl refers to two or more cycloalkyl groups, heterocyclic groups, or a combination thereof fused via adjacent or non-adjacent atoms. Bridged cycloalkyl groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylamino, dialkylamino, hydroxy, halo, carboxyl, alkylcarboxylic acid, aryl, amidyl, ester, alkylcarboxylic ester, carboxamido, alkylcarboxamido, oxo and nitro.
  • Exemplary bridged cycloalkyl groups include adamantyl, decahydronapthyl, quinuclidyl, 2,6- dioxabicyclo(3.3.0)octane, 7-oxabycyclo(2.2.1 )heptyl, 8-azabicyclo(3 ,2, 1 )oct-2-enyl and the like.
  • Cycloalkyl refers to a saturated or unsaturated cyclic hydrocarbon comprising from about 3 to about 10 carbon atoms. Cycloalkyl groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylamino, dialkylamino, arylamino, diarylamino, alkylarylamino, aryl, amidyl, ester, hydroxy, halo, carboxyl, alkylcarboxylic acid, alkylcarboxylic ester, carboxamido, alkylcarboxamido, oxo, alkylsulfinyl, and nitro.
  • cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cyclohepta-l,3-dienyl, and the like.
  • Heterocyclic ring or group refers to a saturated or unsaturated cyclic hydrocarbon group having about 2 to about 10 carbon atoms (preferably about 4 to about 6 carbon atoms) where 1 to about 4 carbon atoms are replaced by one or more nitrogen, oxygen and/or sulfur atoms. Sulfur maybe in the thio, sulfinyl or sulfonyl oxidation state.
  • the heterocyclic ring or group can be fused to an aromatic hydrocarbon group.
  • Heterocyclic groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, amino, alkylthio, aryloxy, arylthio, arylalkyl, hydroxy, oxo, thial, halo, carboxyl, carboxylic ester, alkylcarboxylic acid, alkylcarboxylic ester, aryl, arylcarboxylic acid, arylcarboxylic ester, amidyl, ester, alkylcarbonyl, arylcarbonyl, alkylsulfinyl, carboxamido, alkylcarboxamido, arylcarboxamido, sulfonic acid, sulfonic ester, sulfonamido and nitro.
  • heterocyclic groups include pyrrolyl, furyl, thienyl, 3- pyrrolinyl,4,5,6-trihydro-2H-pyranyl, pyridinyl, 1,4-dihydropyridinyl, pyrazolyl, triazolyl, pyrimidinyl, pyridazinyl, oxazolyl, thiazolyl, imidazolyl, indolyl, thiophenyl, furanyl, tetrhydrofuranyl, tetrazolyl, pyrrolinyl, pyrrolindinyl, oxazolindinyl 1,3- dioxolanyl, imidazolinyl, imidazolindinyl, pyrazolinyl, pyrazolidinyl, isoxazolyl, isothiazolyl, 1,2,3-oxadiazolyl, 1,2,3-triazolyl, 1,3,4-thiadiazolyl,
  • Heterocyclic compounds refer to mono- and polycyclic compounds comprising at least one aryl or heterocyclic ring.
  • Aryl refers to a monocyclic, bicyclic, carbocyclic or heterocyclic ring system comprising one or two aromatic rings.
  • exemplary aryl groups include phenyl, pyridyl, napthyl, quinoyl, tetrahydronaphthyl, furanyl, indanyl, indenyl, indoyl, and the like.
  • Aryl groups can be unsubstituted or substituted with one, two or three substituents independently selected from alkyl, alkoxy, alkylthio, amino, alkylamino, dialkylamino, arylamino, diarylamino, alkylarylamino, halo, cyano, alkylsulfinyl, hydroxy, carboxyl, carboxylic ester, alkylcarboxylic acid, alkylcarboxylic ester, aryl, arylcarboxylic acid, arylcarboxylic ester, alkylcarbonyl, arylcarbonyl, amidyl, ester, carboxamido, alkylcarboxamido, carbomyl, sulfonic acid, sulfonic ester, sulfonamido and nitro.
  • Exemplary substituted aryl groups include tetrafluorophenyl, pentafluorophenyl, sulfonamide, alkylsulfonyl, arylsulfonyl, and the like.
  • Cycloalkenyl refers to an unsaturated cyclic C 2 -C 10 hydrocarbon (preferably a C -C 8 hydrocarbon, more preferably a C 2 -C 6 hydrocarbon) which can comprise one or more carbon-carbon triple bonds.
  • Alkylaryl refers to an alkyl group, as defined herein, to which is appended an aryl group, as defined herein.
  • exemplary alkylaryl groups include benzyl, phenylethyl, hydroxybenzyl, fluorobenzyl, fluorophenylethyl, and the like.
  • Arylalkyl refers to an aryl radical, as defined herein, attached to an alkyl radical, as defined herein.
  • exemplary arylalkyl groups include benzyl, phenylethyl, 4- hydroxybenzyl, 3 -fluorobenzyl, 2-fluorophenylethyl, and the like.
  • Arylalkenyl refers to an aryl radical, as defined herein, attached to an alkenyl radical, as defined herein.
  • exemplary arylalkenyl groups include styryl, propenylphenyl, and the like.
  • Cycloalkylalkyl refers to a cycloalkyl radical, as defined herein, attached to an alkyl radical, as defined herein.
  • Cycloalkylalkoxy refers to a cycloalkyl radical, as defined herein, attached to an alkoxy radical, as defined herein.
  • Cycloalkylalkylthio refers to a cycloalkyl radical, as defined herein, attached to an alkylthio radical, as defined herein.
  • Heterocyclicalkyl refers to a heterocyclic ring radical, as defined herein, attached to an alkyl radical, as defined herein.
  • Arylheterocyclic ring refers to a bi- or tricyclic ring comprised of an aryl ring, as defined herein, appended via two adjacent carbon atoms of the aryl ring to a heterocyclic ring, as defined herein.
  • Exemplary arylheterocyclic rings include dihydroindole, 1,2,3,4-tetra-hydroquinoline, and the like.
  • Alkylheterocyclic ring refers to a heterocyclic ring radical, as defined herein, attached to an alkyl radical, as defined herein.
  • Exemplary alkylheterocyclic rings include 2-pyridylmethyl, l-methylpiperidin-2-one-3-methyl, and the like.
  • Alkoxy refers to R 50 O-, wherein R 50 is an alkyl group, as defined herein (preferably a lower alkyl group or a haloalkyl group, as defined herein).
  • alkoxy groups include methoxy, ethoxy, t-butoxy, cyclopentyloxy, trifluoromethoxy, and the like.
  • Aryloxy refers to R 55 O-, wherein R 55 is an aryl group, as defined herein.
  • exemplary arylkoxy groups include napthyloxy, quinolyloxy, isoquinolizinyloxy, and the like.
  • Alkylthio refers to R 50 S-, wherein R 50 is an alkyl group, as defined herein.
  • Lower alkylthio refers to a lower alkyl group, as defined herein, appended to a thio group, as defined herein.
  • Arylalkoxy or “alkoxyaryl” refers to an alkoxy group, as defined herein, to which is appended an aryl group, as defined herein.
  • exemplary arylalkoxy groups include benzyloxy, phenylethoxy, chlorophenylethoxy, and the like.
  • Alkoxyalkyl refers to an alkoxy group, as defined herein, appended to an alkyl group, as defined herein.
  • exemplary alkoxyalkyl groups include methoxymethyl, methoxyethyl, isopropoxymethyl, and the like.
  • Alkoxyhaloalkyl refers to an alkoxy group, as defined herein, appended to a haloalkyl group, as defined herein.
  • exemplary alkoxyhaloalkyl groups include 4- methoxy-2-chlorobutyl and the like.
  • Cycloalkoxy refers to R 5 O-, wherein R 5 is a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • Exemplary cycloalkoxy groups include cyclopropyloxy, cyclopentyloxy, cyclohexyloxy, and the like.
  • Cycloalkylthio refers to R 54 S-, wherein R 54 is a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • Exemplary cycloalkylthio groups include cyclopropylthio, cyclopentylthio, cyclohexylthio, and the like.
  • Haloalkoxy refers to an alkoxy group, as defined herein, in which one or more of the hydrogen atoms on the alkoxy group are substituted with halogens, as defined herein.
  • exemplary haloalkoxy groups include 1,1,1-trichloroethoxy, 2- bromobutoxy, and the like.
  • Oxy refers to -O " R 7 + wherein R 7 is an organic or inorganic cation.
  • Organic cation refers to a positively charged organic ion.
  • exemplary organic cations include alkyl substituted ammonium cations, and the like.
  • Inorganic cation refers to a positively charged metal ion.
  • Exemplary inorganic cations include Group I metal cations such as for example, sodium, potassium, and the like.
  • Hydroalkyl refers to a hydroxy group, as defined herein, appended to an alkyl group, as defined herein.
  • Nirate refers to -O-NO 2 .
  • Nirite refers to -O-NO.
  • Thionitrate refers to -S-NO 2 .
  • Niro refers to the group -NO 2 and “nitrosated” refers to compounds that have been substituted therewith. “Nitroso” refers to the group -NO and “nitrosylated” refers to compounds that have been substituted therewith.
  • Halogen or “halo” refers to iodine (I), bromine (Br), chlorine (CI), and/or fluorine (F).
  • Amino refers to -NH 2 , an alkylamino group, a dialkylamino group, an arylamino group, a diarylamino group, an alkylarylamino group or a heterocyclic ring, as defined herein.
  • Alkylamino refers to R 50 NH-, wherein R 50 is an alkyl group, as defined herein.
  • alkylamino groups include memylamino, ethylamino, butylamino, cyclohexylamino, and the like.
  • Arylamino refers to R 55 NH-, wherein R 55 is an aryl group, as defined herein.
  • Dialkylamino refers to R 52 R 53 N-, wherein Rs 2 and R 53 are each independently an alkyl group, as defined herein.
  • Exemplary dialkylamino groups include dimethylamino, diethylamino, methyl propargylamino, and the like.
  • Diarylamino refers to R 55 R 60 N-, wherein R 55 and R 60 are each independently an aryl group, as defined herein.
  • Alkylarylamino or arylalkylamino refers to R 52 R 55 N-, wherein Rs 2 is an alkyl group, as defined herein, and R 55 is an aryl group, as defined herein.
  • Alkylarylalkylamino refers to Rs 2 R 79 N-, wherein R 52 is an alkyl group, as defined herein, and R 9 is an arylalkyl group, as defined herein.
  • Alkylcycloalkylamino refers to R 52 R 8 oN-, wherein R 52 is an alkyl group, as defined herein, and R 80 is an cycloalkyl group, as defined herein.
  • Aminoalkyl refers to an amino group, an alkylamino group, a dialkylamino group, an arylamino group, a diarylamino group, an alkylarylamino group or a heterocyclic ring, as defined herein, to which is appended an alkyl group, as defined herein.
  • exemplary aminoalkyl groups include dimethylaminopropyl, diphenylaminocyclopentyl, methylaminomethyl, and the like.
  • aminoaryl refers to an aryl group to which is appended an alkylamino group, a arylamino group or an arylalkylamino group.
  • exemplary aminoaryl groups include anilino, N-methylanilino, N-benzylanilino, and the like.
  • Method refers to -C(S)-.
  • Sulfonic acid refers to -S(O) 2 OR 6 , wherein R 6 is a hydrogen, an organic cation or an inorganic cation, as defined herein.
  • Alkylsulfonic acid refers to a sulfonic acid group, as defined herein, appended to an alkyl group, as defined herein.
  • Arylsulfonic acid refers to a sulfonic acid group, as defined herein, appended to an aryl group, as defined herein
  • Sulfonic ester refers to -S(O) 2 ORs 8 , wherein R 58 is an alkyl group, an aryl group, or an aryl heterocyclic ring, as defined herein.
  • “Sulfonamido” refers to -S(O) 2 -N(R 5 i)(R 5 ), wherein R 51 and Rs 7 are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein, or R 51 and R 5 when taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • “Alkylsulfonamido” refers to a sulfonamido group, as defined herein, appended to an alkyl group, as defined herein.
  • Arylsulfonamido refers to a sulfonamido group, as defined herein, appended to an aryl group, as defined herein.
  • Alkylthio refers to R 50 S-, wherein R 50 is an alkyl group, as defined herein (preferably a lower alkyl group, as defined herein).
  • Arylthio refers to R 55 S-, wherein R 55 is an aryl group, as defined herein.
  • Arylalkylthio refers to an aryl group, as defined herein, appended to an alkylthio group, as defined herein.
  • Alkylsulfinyl refers to R 50 -S(O)-, wherein R 50 is an alkyl group, as defined herein.
  • Alkylsulfonyl refers to R 5 o-S(O) 2 -, wherein R 50 is an alkyl group, as defined herein.
  • Alkylsulfonyloxy refers to R 5 o-S(O) 2 -O-, wherein R 50 is an alkyl group, as defined herein.
  • Arylsulfinyl refers to R 55 -S(O)-, wherein R 55 is an aryl group, as defined herein.
  • Arylsulfonyl refers to R 55 -S(O) 2 -, wherein R 55 is an aryl group, as defined herein.
  • Arylsulfonyloxy refers to Rs5-S(O) 2 -O-, wherein R 55 is an aryl group, as defined herein.
  • “Amidyl” refers to R 51 C(O)N(R 5 )- wherein R 51 and R 57 are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein.
  • Ester refers to Rs 1 C(O)O- wherein R 51 is a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein.
  • Carbamoyl refers to -O-C(O)N(R 51 )(R 57 ), wherein Rsi and R 57 are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein, or R 51 and R 57 taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • Carboxyl refers to -C(O)OR 6 , wherein R 76 is a hydrogen, an organic cation or an inorganic cation, as defined herein.
  • Carbonyl refers to -C(O)-.
  • Alkylcarbonyl refers to R 52 -C(O)-, wherein R 52 is an alkyl group, as defined herein.
  • Arylcarbonyl refers to R 55 -C(O)-, wherein R 55 is an aryl group, as defined herein.
  • Arylalkylcarbonyl refers to R 55 -R 52 -C(O)-, wherein R 55 is an aryl group, as defined herein, and R 52 is an alkyl group, as defined herein.
  • Alkylarylcarbonyl refers to R 52 -R 55 -C(O)-, wherein R 55 is an aryl group, as defined herein, and R 52 is an alkyl group, as defined herein.
  • Heterocyclicalkylcarbonyl refer to R 78 C(O)- wherein R 78 is a heterocyclicalkyl group, as defined herein.
  • Carboxylic ester refers to -C(O)OR 58 , wherein Rs 8 is an alkyl group, an aryl group or an aryl heterocyclic ring, as defined herein.
  • Alkylcarboxylic acid and “alkylcarboxyl” refer to an alkyl group, as defined herein, appended to a carboxyl group, as defined herein.
  • Alkylcarboxylic ester refers to an alkyl group, as defined herein, appended to a carboxylic ester group, as defined herein.
  • Arylcarboxylic acid refers to an aryl group, as defined herein, appended to a carboxyl group, as defined herein.
  • Arylcarboxylic ester and “arylcarboxyl” refer to an aryl group, as defined herein, appended to a carboxylic ester group, as defined herein.
  • Carboxamido refers to -C(O)N(R5i)(R 5 ), wherein R 51 and R 5 are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein, or R 51 and R 57 when taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • Alkylcarboxamido refers to an alkyl group, as defined herein, appended to a carboxamido group, as defined herein.
  • Arylcarboxamido refers to an aryl group, as defined herein, appended to a carboxamido group, as defined herein.
  • Rea refers to -N(R 59 )-C(O)N(R 5 ⁇ )(R 5 7) wherein R 51 , R 57 , and R 59 are each independently a hydrogen atom, an alkyl group, an aryl group or an arylheterocyclic ring, as defined herein, or R 51 and R 5 taken together are a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group, as defined herein.
  • Phosphoryl refers to -P(R o)(R 1 )(R72), wherein R 70 is a lone pair of electrons, thial or oxo, and R 71 and R 72 are each independently a covalent bond, a hydrogen, a lower alkyl, an alkoxy, an alkylamino, a hydroxy, an oxy or an aryl, as defined herein.
  • “Silyl” refers to -Si(R 3 )(R )(R 75 ), wherein R 73 , R 4 and R 5 are each independently a covalent bond, a lower alkyl, an alkoxy, an aryl or an arylalkoxy, as defined herein.
  • Compounds that donate, transfer or release nitric oxide species in vivo have been recognized as having a wide spectrum of advantages and applications.
  • the invention is based on the unexpected discovery of the effects of such compounds alone and together with one or more COX inhibitors.
  • Treatment or prevention of cyclooxygenase-3 mediated diseases and/or disorders can be obtained by the use of COX inhibitors; or by the use of COX inhibitors in conjunction with one or more compounds that donate, release or transfer nitric oxide and/or stimulate endogenous production of NO and/or EDRF in vivo and/or is a substrate for nitric oxide synthase, and, with one or more therapeutic agents.
  • Suitable cyclooxygenase-2 selective inhibitors for use in the invention include, but are not limited to, those disclosed in, for example, U. S. Patent Nos. 3,196,162, 3,271,416, 5,134,142, 5,344,991, 5,360,925, 5,380,738, 5,393,790,
  • cyclooxygenase-2 selective inhibitors include, but are not limited to, NS-386, nimesulide, flosulide, celecoxib, rofecoxib, COX-189, etoracoxib, Bextra, Dynastat, Arcoxia, SC-57666,
  • the COX inhibitor compounds can be nitrosated and/or nitrosylated through one or more sites such as oxygen, sulfur and/or nitrogen using the methods described in the examples herein and using conventional methods known to one skilled in the art.
  • known methods for nitrosating and/or nitrosylatmg compounds are described in U.S. Patent Nos.
  • Suitable nitrosated and/or nitrosylated cyclooxygenase inhibitors include, but are not limited to, those disclosed in, for example, WO 01/45703 and WO 02/60378, and in U.S. Patent Application Nos. 10/102,865, 10/024,046, 10/603,098, 10/608,333, 10/628,375 and 60/387,433; the disclosures of each of which are incorporated by reference herein in their entirety.
  • Suitable NSAIDs include, but are not limited to, acetaminophen, acemetacin, aceclofenac, alminoprofen, amfenac, bendazac, benoxaprofen, bromfenac, bucloxic acid, butibufen, carprofen, cinmetacin, clopirac, diclofenac, etodolac, felbinac, fenclozic acid, fenbufen, fenoprofen, fentiazac, flunoxaprofen, flurbiprofen, ibufenac, ibuprofen, indomethacin, isofezolac, isoxepac, indoprofen, ketoprofen, lonazolac, loxoprofen, metiazinic acid, mofezolac, miroprofen, naproxen, oxaprozin, pirozolac, pirprofen
  • Suitable NSAIDs are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995; the Merck Index on CD-ROM, 13 th Edition; and in U.S. Patent
  • Suitable nitrosated and/or nitrosylated NSAIDs include, but are not limited to, those disclosed in, for example, U U.S. Patent Nos. 5,380,758, 5,621,000, 5,700,947, 5,780,495, 5,859,053, 5,703,073, 6,297,260, 6,429,223 and 6,355,666; and in WO 94/03421,
  • the compounds of the invention include the COX-2 inhibitors, including those described herein, which have been nitrosated and/or nitrosylated through one or more sites such as oxygen (hydroxyl condensation), sulfur (sulfhydryl condensation) and/or nitrogen.
  • the nitrosated and/or nitrosylated COX inhibitors of the invention donate, transfer or release a biologically active form of nitrogen monoxide (i.e., nitric oxide).
  • Nitrogen monoxide can exist in three forms: NO- (nitroxyl), NO» (uncharged nitric oxide) and NO + (nitrosonium).
  • NO* is a highly reactive short-lived species that is potentially toxic to cells.
  • NO nitric oxide radical
  • NO + nitrosonium
  • O 2 or O 2 " species functionalities capable of transferring and/or releasing NO + and NO- are also resistant to decomposition in the presence of many redox metals. Consequently, administration of charged NO equivalents (positive and or negative) is a more effective means of delivering a biologically active NO to the desired site of action.
  • COX inhibitor that can be optionally nitrosated and/or nitrosylated, through one or more sites such as oxygen (hydroxyl condensation), sulfur (sulfhydryl condensation) and/or nitrogen, are, optionally, used in combination with nitric oxide and compounds that release nitric oxide or otherwise directly or indirectly deliver or transfer a biologically active form of nitrogen monoxide to a site of its intended activity, such as on a cell membrane in vivo.
  • nitric oxide encompasses uncharged nitric oxide (NO » ) and charged nitrogen monoxide species, preferably charged nitrogen monoxide species, such as nitrosonium ion (NO + ) and nitroxyl ion (NO-).
  • the reactive form of nitric oxide can be provided by gaseous nitric oxide.
  • the nitrogen monoxide releasing, delivering or transferring compounds have the structure F-NO, wherein F is a nitrogen monoxide releasing, delivering or transferring moiety, and include any and all such compounds which provide nitrogen monoxide to its intended site of action in a form active for its intended purpose.
  • NO adducts encompasses any nitrogen monoxide releasing, delivering or transferring compounds, including, for example, S- nitrosothiols, nitrites, nitrates, S-nitrothiols, sydnonimines, 2-hydroxy-2- nitrosohydrazines, (NONOates), (E)-alkyl-2-((E)- hydroxyimino)-5-nitro-3- hexeneamide (FK-409), (E)-alkyl-2-((E)-hydroxyimino)-5-nitro-3- hexeneamines, N- ((2Z, 3E)-4-ethyl-2-(hydroxyimino)-6-methyl-5-nitro-3-heptenyl)-3- pyridinecarboxamide (FR 146801), nitrosoamines, furoxans as well as substrates for the endogenous enzymes which synthesize nitric oxide.
  • NONOates include, but are not limited to,
  • NONOates are also described in U.S. Patent Nos. 6,232,336, 5,910,316 and 5,650,447, the disclosures of which are incorporated herein by reference in their entirety.
  • the "NO adducts" can be mono-nitrosylated, poly-nitrosylated, mono-nitrosated and/or poly- nitrosated at a variety of naturally susceptible or artificially provided binding sites for biologically active forms of nitrogen monoxide.
  • S-nitrosothiols are compounds that include at least one -S-NO group. These compounds include S-nitroso-polypeptides (the term "polypeptide” includes proteins and polyamino acids that do not possess an ascertained biological function, and derivatives thereof); S -nitrosylated amino acids
  • S-nitrosylated sugars including natural and synthetic amino acids and their stereoisomers and racemic mixtures and derivatives thereof; S -nitrosylated sugars; S -nitrosylated, modified and unmodified, oligonucleotides (preferably of at least 5, and more preferably 5-200 nucleotides); straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted S-nitrosylated hydrocarbons; and S-nitroso heterocyclic compounds.
  • S-nitrosothiols and methods for preparing them are described in U.S. Patent Nos. 5,380,758 and 5,703,073; WO 97/27749; WO 98/19672; and Oae et al, Org.
  • S-nitroso amino acids where the nitroso group is linked to a sulfur group of a sulfur-containing amino acid or derivative thereof.
  • Such compounds include, for example, S-nitroso-N-acetylcysteine, S-nitroso-captopril, S-nitroso-N-acetylpenicillamine, S-nitroso-homocysteine, S- nitroso-cysteine, S-nitroso-glutathione, S-nitroso-cysteinyl-glycine, and the like.
  • Suitable S-nitrosylated proteins include thiol-containing proteins (where the
  • NO group is attached to one or more sulfur groups on an amino acid or amino acid derivative thereof) from various functional classes including enzymes, such as tissue- type plasminogen activator (TPA) and cathepsin B; transport proteins, such as lipoproteins; heme proteins, such as hemoglobin and serum albumin; and biologically protective proteins, such as immunoglobulins, antibodies and cytokines.
  • TPA tissue- type plasminogen activator
  • heme proteins such as hemoglobin and serum albumin
  • biologically protective proteins such as immunoglobulins, antibodies and cytokines.
  • nitrosylated proteins are described in WO 93/09806, the disclosure of which is incorporated by reference herein in its entirety. Examples include polynitrosylated albumin where one or more thiol or other nucleophilic centers in the protein are modified.
  • suitable S-nitrosothiols include:
  • R e and R are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring, a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a dialkylamino, an arylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an ary
  • Ri can be a substituent on any disubstituted nitrogen contained within the radical wherein Ri is as defined herein.
  • Nitrosothiols can be prepared by various methods of synthesis. In general, the thiol precursor is prepared first, then converted to the S-nitrosothiol derivative by nitrosation of the thiol group with NaNO 2 under acidic conditions (pH is about 2.5) which yields the S-nitroso derivative. Acids which can be used for this purpose include aqueous sulfuric, acetic and hydrochloric acids.
  • the thiol precursor can also be nitrosylated by reaction with an organic nitrite such as tert-butyl nitrite, or a nitrosonium salt such as nitrosonium tetrafmoroborate in an inert solvent.
  • NO adducts for use in the invention, where the NO adduct is a compound that donates, transfers or releases nitric oxide, include compounds comprising at least one ON-O- or ON-N- group.
  • the compounds that include at least one ON-O- or ON-N- group are preferably ON-O- or ON-N-polypeptides (the term
  • polypeptide includes proteins and polyamino acids that do not possess an ascertained biological function, and derivatives thereof); ON-O- or ON-N-amino acids (including natural and synthetic amino acids and their stereoisomers and racemic mixtures); ON-O- or ON-N-sugars; ON-O- or -ON-N- modified or unmodified oligonucleotides (comprising at least 5 nucleotides, preferably 5-200 nucleotides);
  • NO adducts for use in the invention include nitrates that donate, transfer or release nitric oxide, such as compounds comprising at least one
  • O 2 N-N- or O 2 N-S- group Preferred among these compounds are O 2 N-O-, O N-N- or O 2 N-S- polypeptides (the term "polypeptide” includes proteins and also polyamino acids that do not possess an ascertained biological function, and derivatives thereof); O 2 N-O-, O 2 N-N- or
  • O 2 N-S- amino acids including natural and synthetic amino acids and their stereoisomers and racemic mixtures
  • O 2 N-O-, O 2 N-N- or O 2 N-S- sugars O 2 N-O-, O 2 N-N- or O 2 N-S- modified and unmodified oligonucleotides (comprising at least 5 nucleotides, preferably 5-200 nucleotides); O 2 N-O-, O 2 N-N- or O 2 N-S- straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbons; and O 2 N-O-, O 2 N-N- or O 2 N-S- heterocyclic compounds.
  • Preferred examples of compounds comprising at least one O 2 N-O-, O 2 N-N- or O 2 N-S- group include isosorbide dinitrate, isosorbide mononitrate, clonitrate, erythrityl tetranitrate, mannitol hexanitrate, nitroglycerin, pentaerythritoltetranitrate, pentrinitrol, propatylnitrate and organic nitrates with a sulfhydryl-containing amino acid such as, for example SPM 3672, SPM 5185, SPM 5186 and those disclosed in U. S. Patent Nos.
  • R 1 R 2 N-N(O-M + )-NO N-oxo-N-nitrosoamines that donate, transfer or release nitric oxide and are represented by the formula: R 1 R 2 N-N(O-M + )-NO, where R 1 and R 2 are each independently a polypeptide, an amino acid, a sugar, a modified or unmodified oligonucleotide, a straight or branched, saturated or unsaturated, aliphatic or aromatic, substituted or unsubstituted hydrocarbon, or a heterocyclic group, and where M + is an organic or inorganic cation, such as, for example, an alkyl substituted ammonium cation or a Group I metal cation.
  • the invention is also directed to compounds that stimulate endogenous NO or elevate levels of endogenous endothelium-derived relaxing factor (EDRF) in vivo or are substrates for nitric oxide synthase.
  • Such compounds include, for example, L- arginine, L-homoarginine, and N-hydroxy-L-arginine, including their nitrosated and nitrosylated analogs (e.g., nitrosated L-arginine, nitrosylated L-arginine, nitrosated N- hydroxy-L-arginine, nitrosylated N-hydroxy-L-arginine, nitrosated L-homoarginine and nitrosylated L-homoarginine), precursors of L-arginine and/or physiologically acceptable salts thereof, including, for example, citrulline, ornithine, glutamine, lysine, polypeptides comprising at least one of these amino acids, inhibitors of the enzyme arginase (e.
  • EDRF is a vascular relaxing factor secreted by the endothelium, and has been identified as nitric oxide (NO) or a closely related derivative thereof (Palmer et al, Nature, 327:524-526 (1987); Ignarro et al, Proc. Natl.
  • the invention is also based on the discovery that compounds and compositions of the invention may be used in conjunction with other therapeutic agents for co- therapies, partially or completely, in place of other conventional antiinflammatory compounds, such as, for example, together with steroids, NSAIDs, 5-lipoxygenase (5- LO) inhibitors, leukotriene B 4 (LTB 4 ) receptor antagonists, leukotriene A (LTA ) hydrolase inhibitors, 5-HT agonists, HMG-CoA inhibitors, H 2 receptor antagonists, antineoplastic agents, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opiods, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and mixtures of two or more thereof.
  • other conventional antiinflammatory compounds such as, for example,
  • Leukotriene A 4 (LTA ) hydrolase inhibitors refer to compounds that selectively inhibit leukotriene A 4 hydrolase with an IC 50 of less than about lO ⁇ M, and preferably with an IC 50 of less than about 1 ⁇ M.
  • Suitable LTA t hydrolase inhibitors include, but are not limited to, RP-64966, (S,S)-3-amino-4-(4-benzyloxyphenyl)-2- hydroxybutyric acid benzyl ester, N-(2(R)-(cyclohexylmethyl)-3- (hydroxycarbamoyl)propionyl)-L-alanine, 7-(4-(4-ureidobenzyl)phenyl) heptanoic acid and 3 (3-(lE,3E-tetradecadienyl)-2-oxiranyl)benzoic acid lithium salt, and mixtures of two or more thereof.
  • Suitable LTB 4 receptor antagonists include, but are not limited to, ebselen, linazolast, ontazolast; WAY 121006; Bay-x-1005; BI-RM-270; CGS-25019C; ETH- 615; MAFP; TMK-688; T-0757; LY 213024, LY 210073, LY 223982, LY 233469, LY 255283, LY 264086, LY 292728 and LY 293111; ONO-LB457, ONO-4057, and ONO-LB-448, S-2474, calcitrol; PF 10042; Pfizer 105696; RP 66153; SC-53228, SC-
  • LTB 4 receptor antagonists are calcitrol, ebselen, Bay-x-1005, CGS-25019C, ETH-615, LY-293111, ONO-4057 and TMK-688, and mixtures of two or more thereof.
  • Suitable 5-LO inhibitors include, but are not limited to, A-76745, 78773 and ABT761; Bay-x-1005; CMI-392; E-3040; EF-40; F-1322; ML-3000; PF-5901; R-840; rilopirox, flobufen, linasolast, lonapolene, masoprocol, ontasolast, tenidap, zileuton, pranlukast, tepoxalin, rilopirox, flezelastine hydrochloride, enazadrem phosphate, and bunaprolast, and mixtures of two or more thereof.
  • Suitable 5-LO inhibitors are also described more fully in WO 97/29776, the disclosure of which is incorporated herein by reference in its entirety
  • Suitable 5-HT agonists include, but are not limited to, rizatriptan, sumatriptan, naratriptan, zolmitroptan, eleptriptan, almotriptan, ergot alkaloids. ALX 1323, Merck L 741604 SB 220453 and LAS 31416. Suitable 5-HT agonists are described more fully in WO 0025779, and in WO 00/48583. 5-HT agonists refers to a compound that is an agonist to any 5-HT receptor, including but not limited to, 5-HT ⁇ agonists, 5- HT IB agonists and 5-HTt ⁇ agonists, and the like.
  • Suitable steroids include, but are not limited to, budesonide, dexamethasone, corticosterone, prednisolone, and the like. Suitable steroids are described more fully in the literature, such as in the Merck Index on CD-ROM, 13 th Edition.
  • Suitable HMG CoA inhibitors include, but are not limited to, reductase and synthase inhibitors, such as, for example, squalene synthetase inhibitors, benzodiazepine squalene synthase inhibitors, squalene epoxidase inhibitors, acyl- coenzyme A, bile acid sequestrants, cholesterol absorption inhibitors, and the like.
  • Suitable HMG CoA inhibitors include simvastatin, pravastatin, lovastatin, mevastatin, fluvastatin, atorvastatin, cerivastatin, and the like, and are described more fully in U.S. Patent No. 6,245,797 and WO 99/20110, the disclosures of which are incorporated herein by reference in their entirety.
  • Suitable NSAIDs include, but are not limited to, acetaminophen, acemetacin, aceclofenac, alminoprofen, amfenac, bendazac, benoxaprofen, bromfenac, bucloxic acid, butibufen, carprofen, cinmetacin, clopirac, diclofenac, etodolac, felbinac, fenclozic acid, fenbufen, fenoprofen, fentiazac, flunoxaprofen, flurbiprofen, ibufenac, ibuprofen, indomethacin, isofezolac, isoxepac, indoprofen, ketoprofen, lonazolac, loxoprofen, metiazinic acid, mofezolac, miroprofen, naproxen, oxaprozin, pirozolac, pirprofen
  • Suitable NSAIDs are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995, Pgs. 617-657; the Merck Index on CD-ROM, 13 th Edition; and in U.S. Patent Nos. 6,057,347 and 6,297,260 assigned to NitroMed Inc., the disclosures of which are incorporated herein by reference in their entirety.
  • Suitable H 2 receptor anatgonists include, but are not limited to, burimamide, cimetidine, ebrotidin, famotidine, nizatidine, roxatidine, rantidine, tiotidine, and the like.
  • Suitable H 2 receptor antagonists are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995, Pgs. 901-915; the Merck Index on CD-ROM, 13 th Edition; and in WO 00/28988 assigned to NitroMed Inc., the disclosures of which are incorporated herein by reference in their entirety.
  • Suitable antineoplastic agents include but are not limited to, 5-FU-fibrinogen, acanthifolic acid, aminothiadiazole, altretamine, anaxirone, aclarubicin and the like. Suitable antineoplastic agents are also described in U. S. Patent No. 6,025,353 and WO 00/38730, the disclosures of which are incorporated herein by reference in their entirety.
  • Suitable antiplatelet agents include but are not limited to, aspirin, ticlopidine, dipyridamole, clopidogrel, glycoprotein Ilb/ ⁇ ia receptor antagonists, and the like. Suitable antineoplastic agents are also described in WO 99/45913, the disclosure of which is incorporated herein by reference in its entirety.
  • the antiplatelet agent is aspirin, more preferably, low-dose aspirin (i.e. 75 mg - 100 mg/day).
  • Suitable thrornbin inhibitors include but are not limited to, N'-((l- (a r ⁇ inoiminomethyl)-4-piperidinyl)methyl)-N-(3,3-diphenylpropinyl)-L-proline amide),3-(2-phenylethylamino)-6-methyl-l-(2-amino-6-methyl-5-methylene- carboxamidomethylpyridinyl)-2-pyrazinone, 3-(2-phenethylamino)-6-methyl-l-(2- amino-6-methyl-5- methylenecarboxamidomethylpyridinyl)-2-pyridinone, and the like.
  • Suitable thrornbin inhibitors are also described in WO 00/18352, the disclosure of which is incorporated herein by reference in its entirety.
  • Suitable thromboxane inhibitors include but are not limited to thromboxane synthase inhibitors, thromboxane receptor antagonists, and the like. Suitable thromboxane inhibitors, are also described in WO 01/87343, the disclosure of which is incorporated herein by reference in its entirety.
  • Suitable decongestants include, but are not limited to, phenylephrine, phenylpropanolamine, pseudophedrine, oxymetazoline, ephinephrine, naphazoline, xylometazoline, propylhexedrine, levo-desoxyephedrine, and the like.
  • Suitable antitussives include, but are not limited to, codeine, hydrocodone, caramiphen, carbetapentane, dextramethorphan, and the like.
  • Suitable proton pump inhibitors include, but are not limited to, omeprazole, lansoprazole, pantoprazole, rabeprazole, leminoprazole, timoprazole, tenatoprazole, disulprazole, esomeprazole, 2-(2-benzimidazolyl)-pyridine, tricyclic imidazole, thienopydidine benzimidazole, fluoroalkoxy substituted benzimidazole, dialkoxy benzimidazole, N-substituted 2-(pyridylalkenesulfinyl) benzimidazole, cycloheptenepyridine, 5-pyrrolyl-2-pyridylmethylsulfinyl benzimidazole, alkylsulfinyl benzimidazole, fluoro-pyridylmethylsulfinyl benzimidazole, imidazo[4,5-b]p
  • Suitable proton pump inhibitors are described more fully in the literature, such as in Goodman and Gilman, The Pharmacological Basis of Therapeutics (9th Edition), McGraw-Hill, 1995; the Merck Index on CD-ROM, 13 th Edition; and in WO 00/50037 assigned to NitroMed Inc., the disclosures of which are incorporated herein by reference in their entirety.
  • Suitable diuretics include but are not limited to, thiazides (such as, for example, althiazide, bendroflumethiazide, benzclortriazide, benzthiazide, buthiazide, chlorothiazide, cyclopenethiazide, cyclothiazide, ethiazide, hydrochlorothiazide, methyclothiazide, penflutazide, polythiazide, teclothiazide, trichlormethiazide, triflumethazide, and the like); ambuside, amiloride, aminometradine, azosemide, bemetizide, bumetanide, butazolamide, butizide, ethacrynic acid, canrenone, chloraminophenamide, chlorazanil, chlormerodrin, chlorthalidone, clofenamide, clopamide, clorexolone, disulfamide, e
  • the compounds and compositions of the invention may also be used in combination therapies with opioids and other analgesics, including, but not limited to, narcotic analgesics, Mu receptor antagonists, Kappa receptor antagonists, non-narcotic (i.e. non-addictive) analgesics, monoamine uptake inhibitors, adenosine regulating agents, cannabinoid derivatives, neurokinin 1 receptor antagonists, Substance P antagonists, neurokinin-1 receptor antagonists, sodium channel blockers, N-methyl-D- aspartate receptor antagonists, and mixtures of two or more thereof.
  • opioids and other analgesics including, but not limited to, narcotic analgesics, Mu receptor antagonists, Kappa receptor antagonists, non-narcotic (i.e. non-addictive) analgesics, monoamine uptake inhibitors, adenosine regulating agents, cannabinoid derivatives, neurokinin 1 receptor antagonists, Substance P antagonists,
  • Preferred combination therapies would be with morphine, meperidine, codeine, pentazocine, buprenorphine, butorphanol, dezocine, meptazinol, hydrocodone, oxycodone, methadone, Tramadol ((+) enantiomer), DuP 747, Dynorphine A, Enadoline, RP- 60180, HN-11608, E-2078, ICI-204448, acetominophen (paracetamol), propoxyphene, nalbuphine, E-4018, filenadol, mirtentanil, amitriptyline, DuP631,
  • Another embodiment of the invention provides methods to treat or prevent disorders resulting from elevated levels of COX-3 by administering to a patient in need thereof a therapeutically effective amount of the compounds and/or compositions described herein.
  • the patient can be administered a therapeutically effective amount of at least one COX inhibitor, that is optionally nitrosated and/or nitrosylated.
  • the patient can be administered a therapeutically effective amount of at least one COX inhibitor, that is optionally nitrosated and/or nitrosylated, and at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase.
  • the patient can be administered a therapeutically effective amount of at least one COX inhibitor, that is optionally nitrosated and/or nitrosylated, and at least one therapeutic agent, including but not limited to, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5- lipoxygenase (5-LO) inhibitors, leukotriene B (LTB 4 ) receptor antagonists, leukotriene 4 (LTA ) hydrolase inhibitors, 5-HT agonists, 3-hydroxy-3- methylglutaryl coenzyme A (HMG-CoA) inhibitors, H 2 antagonists, antineoplastic agents, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter pylori inhibitors, proton pump inhibitors, isoprostane inhibitors, and, optionally,
  • the patient can be administered a therapeutically effective amount of at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase.
  • the patient can be administered a therapeutically effective amount of at least one compound that donates, transfers or releases nitric oxide, or elevates levels of endogenous EDRF or nitric oxide, or is a substrate for nitric oxide synthase, and at least one therapeutic agent, including but not limited to, steroids, nonsteroidal antiinflammatory compounds (NSAID), 5-lipoxygenase (5-LO) inhibitors, leukotriene B (LTB 4 ) receptor antagonists, leukotriene (LTA ) hydrolase inhibitors, 5-HT agonists, 3-hydroxy-3-methylglutaryl coenzyme A (HMG- CoA) inhibitors, H 2 antagonists, antineoplastic agents, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, decongestants, diuretics, sedating or non-sedating anti-histamines, inducible nitric oxide synthase inhibitors, opioids, analgesics, Helicobacter py
  • disorders resulting from elevated levels of COX-3 include, but are not limited to, for example, angiogenisis, arthritis, asthma, bronchitis, menstrual cramps, premature labor, tendinitis, bursitis; skin-related conditions, such as, for example, psoriasis, eczema, surface wounds, burns and dermatitis; post-operative inflammation including from ophthalmic surgery, such as, for example, cataract surgery and refractive surgery, and the like; treatment of neoplasia, such as, for example, brain cancer, bone cancer, epithelial cell-derived neoplasia (epithelial carcinoma), such as, for example, basal cell carcinoma, adenocarcinoma, gastrointestinal cancer, such as, for example, lip cancer, mouth cancer, esophageal cancer, small bowel cancer and stomach cancer, colon cancer, liver cancer, bladder cancer, pancreas cancer, ovary cancer, cervical cancer
  • Another embodiment of the invention provides methods for treating and/or improving the gastrointestinal properties of the COX-2 selective inhibitors; and for decreasing or reversing renal and or other toxicities (such as, for example, kidney toxicity, respiratory toxicity) by administering to a patient in need thereof a therapeutically effective amount of the compounds and/or compositions described herein.
  • the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-3 selective inhibitor.
  • the patient can be administered a therapeutically effective amount of at least one COX-3 selective inhibitor.
  • the patient can be administered a therapeutically effective amount of at least one COX-3 selective inhibitor, that is optionally nitrosated and/or nitrosylated, and at least one nitric oxide donor.
  • the patient can be administered a therapeutically effective amount of at least one COX-3 selective inhibitor, that is optionally nitrosated and/or nitrosylated, and at least one therapeutic agent, and, optionally, at least one nitric oxide donor.
  • the compounds can be administered separately or in the form of a composition.
  • Another embodiment of the invention provides methods for improving the cardiovascular profile of COX-2 selective inhibitors by administering to a patient in need thereof a therapeutically effective amount of the compounds and/or compositions described herein.
  • the patient can be administered a therapeutically effective amount of at least one nitrosated and/or nitrosylated COX-3 selective inhibitor of the invention.
  • the patient can be administered a therapeutically effective amount of at least one COX-3 selective inhibitor, that is optionally nitrosated and/or nitrosylated, and at least one nitric oxide donor.
  • the patient can be administered a therapeutically effective amount of at least one COX-3 selective inhibitor, that is optionally nitrosated and/or nitrosylated, at least one of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitors, antiplatelet agents, thrornbin inhibitors, thromboxane inhibitors, and, optionally, at least one nitric oxide donor.
  • the compounds can be administered separately or in the form of a composition.
  • the COX inhibitor that is optionally nitrosated and/or nitrosylated, can be administered about the same time as part of the overall treatment regimen, i.e., as a combination therapy.
  • “About the same time” includes administering the COX inhibitor, that is optionally nitrosated and/or nitrosylated, simultaneously, sequentially, at the same time, at different times on the same day, or on different days, as long as they are administered as part of an overall treatment regimen, i.e., combination therapy or a therapeutic cocktail.
  • the compounds and compositions of the invention can be administered in combination with pharmaceutically acceptable carriers and in dosages described herein.
  • the compounds and compositions of the invention When administered in vivo, the compounds and compositions of the invention can be administered in combination with pharmaceutically acceptable carriers and in dosages described herein.
  • the compounds and compositions of the invention When administered as a combination of at least one COX inhibitor and/or at least one nitrosated and/or nitrosylated COX inhibitor and/or at least one nitric oxide donor and/or therapeutic agent, they can also be used in combination with one or more additional compounds which are known to be effective against the specific disease state targeted for treatment.
  • the nitric oxide donors, therapeutic agents and/or other additional compounds can be administered simultaneously with, subsequently to, or prior to administration of the COX inhibitor and/or nitrosated and/or nitrosylated COX inhibitor.
  • the compounds and compositions of the invention can be administered by any available and effective delivery system including, but not limited to, orally, bucally, parenterally, by inhalation spray, by topical application, by injection, transdermally, or rectally (e.g., by the use of suppositories) in dosage unit formulations containing conventional nontoxic pharmaceutically acceptable carriers, adjuvants, and vehicles, as desired.
  • Parenteral includes subcutaneous injections, intravenous, intramuscular, intrasternal injection, or infusion techniques.
  • Transdermal compound administration which is known to one skilled in the art, involves the delivery of pharmaceutical compounds via percutaneous passage of the compound into the systemic circulation of the patient.
  • Topical administration can also involve the use of transdermal administration such as transdermal patches or iontophoresis devices. Other components can be incorporated into the transdermal patches as well.
  • compositions and/or transdermal patches can be formulated with one or more preservatives or bacteriostatic agents including, but not limited to, methyl hydroxybenzoate, propyl hydroxybenzoate, chlorocresol, benzalkonium chloride, and the like.
  • Dosage forms for topical administration of the compounds and compositions can include creams, sprays, lotions, gels, ointments, eye drops, nose drops, ear drops, and the like.
  • the compositions of the invention can be mixed to form white, smooth, homogeneous, opaque cream or lotion with, for example, benzyl alcohol 1% or 2% (wt/w ) as a preservative, emulsifying wax, glycerin, isopropyl palmitate, lactic acid, purified water and sorbitol solution.
  • the compositions can contain polyethylene glycol 400. They can be mixed to form ointments with, for example, benzyl alcohol 2% (wt/wt) as preservative, white petrolatum, emulsifying wax, and tenox II (butylated hydroxy anisole, propyl gallate, citric acid, propylene glycol).
  • Woven pads or rolls of bandaging material e.g., gauze, can be impregnated with the compositions in solution, lotion, cream, ointment or other such form can also be used for topical application.
  • compositions can also be applied topically using a transdermal system, such as one of an acrylic-based polymer adhesive with a resinous crosslinking agent impregnated with the composition and laminated to an impermeable backing.
  • Solid dosage forms for oral administration can include capsules, tablets, effervescent tablets, chewable tablets, pills, powders, sachets, granules and gels.
  • the active compounds can be admixed with at least one inert diluent such as sucrose, lactose or starch.
  • Such dosage forms can also comprise, as in normal practice, additional substances other than inert diluents, e.g., lubricating agents such as magnesium stearate.
  • the dosage forms can also comprise buffering agents.
  • Soft gelatin capsules can be prepared to contain a mixture of the active compounds or compositions of the invention and vegetable oil.
  • Hard gelatin capsules can contain granules of the active compound in combination with a solid, pulverulent carrier such as lactose, saccharose, sorbitol, mannitol, potato starch, corn starch, amylopectin, cellulose derivatives of gelatin. Tablets and pills can be prepared with enteric coatings.
  • Liquid dosage forms for oral administration can include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water.
  • Such compositions can also comprise adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, and perfuming agents.
  • Suppositories for vaginal or rectal administration of the compounds and compositions of the invention can be prepared by mixing the compounds or compositions with a suitable nonirritating excipient such as cocoa butter and polyethylene glycols which are solid at room temperature but liquid at rectal temperature, such that they will melt in the rectum and release the drug.
  • a suitable nonirritating excipient such as cocoa butter and polyethylene glycols which are solid at room temperature but liquid at rectal temperature, such that they will melt in the rectum and release the drug.
  • sterile injectable preparations for example, sterile injectable aqueous or oleaginous suspensions can be formulated according to the known art using suitable dispersing agents, wetting agents and/or suspending agents.
  • the sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
  • acceptable vehicles and solvents that can be used are water, Ringer's solution, and isotonic sodium chloride solution.
  • Sterile fixed oils are also conventionally used as a solvent or suspending medium.
  • compositions of this invention can further include conventional excipients, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral application which do not deleteriously react with the active compounds.
  • suitable pharmaceutically acceptable carriers include, for example, water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, surfactants, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethyl- cellulose, polyvinylpyrrolidone, and the like.
  • the pharmaceutical preparations can be sterilized and if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavoring and/or aromatic substances and the like which do not deleteriously react with the active compounds.
  • particularly suitable vehicles consist of solutions
  • the composition can also contain minor amounts of wetting agents, emulsifying agents and/or pH buffering agents.
  • the composition can be a liquid solution, suspension, emulsion, tablet, pill, capsule, sustained release formulation, or powder.
  • the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides.
  • Oral formulations can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the like.
  • compositions of the invention including, for example, encapsulation in liposomes, microbubbles, emulsions, microparticles, microcapsules and the like.
  • the required dosage can be administered as a single unit or in a sustained release form.
  • the bioavailability of the compositions can be enhanced by micronization of the formulations using conventional techniques such as grinding, milling, spray drying and the like in the presence of suitable excipients or agents such as phospholipids or surfactants.
  • Sustained release dosage forms of the invention may comprise microparticles and/or nanoparticles having a therapeutic agent dispersed therein or may comprise the therapeutic agent in pure, preferably crystalline, solid form.
  • microparticle dosage forms comprising pure, preferably crystalline, therapeutic agents are preferred.
  • the therapeutic dosage forms of this aspect of the invention may be of any configuration suitable for sustained release.
  • Nanoparticle sustained release therapeutic dosage forms are preferably biodegradable and, optionally, bind to the vascular smooth muscle cells and enter those cells, primarily by endocytosis.
  • the biodegradation of the nanoparticles occurs over time (e.g., 30 to 120 days; or 10 to 21 days) in prelysosomic vesicles and lysosomes.
  • Preferred larger microparticle therapeutic dosage forms of the invention release the therapeutic agents for subsequent target cell uptake with only a few of the smaller microparticles entering the cell by phagocytosis.
  • a practitioner in the art will appreciate that the precise mechanism by which a target cell assimilates and metabolizes a dosage form of the invention depends on the morphology, physiology and metabolic processes of those cells.
  • the size of the particle sustained release therapeutic dosage forms is also important with respect to the mode of cellular assimilation.
  • the smaller nanoparticles can flow with the interstitial fluid between cells and penetrate the infused tissue.
  • the larger microparticles tend to be more easily trapped interstitially in the infused primary tissue, and thus are useful to deliver anti-proliferative therapeutic agents.
  • biodegradable microparticles or nanoparticles comprise biodegradable microparticles or nanoparticles. More particularly, biodegradable microparticles or nanoparticles are formed of a polymer containing matrix that biodegrades by random, nonenzymatic, hydrolytic scissioning to release therapeutic agent, thereby forming pores within the particulate structure.
  • the compositions of the invention are orally administered as a sustained release tablet or a sustained release capsule.
  • the sustained release formulations can comprise a therapeutically effective amount of at least one COX inhibitors, that is optionally nitrosated and/or nitrosylated, or the sustained release formulations can comprise a therapeutically effective amount of at least one COX inhibitor, that is optionally nitrosated and/or nitrosylated, and NO donor, or the sustained release formulations can comprise a therapeutically effective amount of at least one COX inhibitor, that is optionally nitrosated and/or nitrosylated, and therapeutic agents, or the sustained release formulations can comprise a therapeutically effective amount of at least one COX inhibitor, that is optionally nitrosated and/or nitrosylated, NO donors, and therapeutic agents.
  • the preferred methods of administration of the COX inhibitors and compositions for the treatment of gastrointestinal disorders are orally, bucally or by inhalation.
  • the preferred methods of administration for the treatment of inflammation and microbial infections are orally, bucally, topically, transdermally or by inhalation.
  • compositions of the invention can be formulated as pharmaceutically acceptable salt forms.
  • Pharmaceutically acceptable salts include, for example, alkali metal salts and addition salts of free acids or free bases.
  • the nature of the salt is not critical, provided that it is pharmaceutically-acceptable.
  • Suitable pharmaceutically-acceptable acid addition salts may be prepared from an inorganic acid or from an organic acid.
  • inorganic acids include, but are not limited to, hydrochloric, hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid and the like.
  • organic acids include, but are not limited to, aliphatic, cycloaliphatic, aromatic, heterocyclic, carboxylic and sulfonic classes of organic acids, such as, for example, formic, acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutarnic, benzoic, anthranilic, mesylic, salicylic, p-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2- hydroxyethanesuifonic, sulfanilic, stearic, algenic, ⁇ -hydroxybutyric, cyclohexylaminosulfonic, galactaric and
  • Suitable pharmaceutically-acceptable base addition salts include, but are not limited to, metallic salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc or organic salts made from primary, secondary and tertiary amines, cyclic amines, N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-methylglucamine) and procaine and the like. All of these salts may be prepared by conventional means from the corresponding compound by reacting, for example, the appropriate acid or base with the compound.
  • the dosage required to provide an effective amount of the compounds and compositions will vary depending on the age, health, physical condition, sex, diet, weight, extent of the dysfunction of the recipient, frequency of treatment and the nature and scope of the dysfunction or disease, medical condition of the patient, the route of administration, pharmacological considerations such as the activity, efficacy, pharmacokinetic and toxicology profiles of the particular compound used, whether a drug delivery system is used, and whether the compound is administered as part of a drug combination.
  • the amount of a given COX inhibitor of the invention that will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques, including reference to Goodman and Gilman, supra; The Physician's Desk Reference, Medical Economics Company, Inc., Oradell, N.J., 1995; and Drug Facts and Comparisons, Inc., St. Louis, MO, 1993.
  • the precise dose to be used in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided by the physician and the patient's circumstances.
  • the amount of nitric oxide donor in a pharmaceutical composition can be in amounts of about 0.1 to about 10 times the molar equivalent of the COX inhibitor.
  • the usual daily doses of the COX inhibitors are about 0.001 mg to about 140 mg/kg of body weight per day, preferably 0.005 mg to 30 mg/kg per day, or alternatively about 0.5 mg to about 7 g per patient per day.
  • inflammations may be effectively treated by the administration of from about 0.01 mg to 50 mg of the compound per kilogram of body weight per day, or alternatively about 0.5 mg to about 3.5 g per patient per day.
  • the compounds may be administered on a regimen of up to
  • Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems and are in the same ranges or less than as described for the commercially available compounds in the Physician's Desk Reference, supra.
  • the disclosure of each patent, patent application and publication cited or described in the present specification is hereby incorporated by reference herein in its entirety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne des procédés de traitement et/ou de prévention de maladies et/ou de troubles entraînés par des niveaux élevés de cyclooxygénase-3 qui consistent à administrer au moins un inhibiteur de cyclooxygénase étant éventuellement nitrosé et/ou nitrosylé et, éventuellement au moins un composé offrant, transférant ou libérant de l'oxyde nitrique, stimulant la synthèse endogène de l'oxyde nitrique, élevant les niveaux endogènes du facteur de détente dérivé de l'endothélium ou consistant en un substrat destiné à la synthase de l'oxyde nitrique et/ou au moins un agent thérapeutique. L'invention concerne également des procédés de traitement et/ou de prévention de maladies et/ou de troubles entraînés par des niveaux élevés de cyclooxygénase-3 qui consistent à administrer au moins un composé offrant, transférant ou libérant de l'oxyde nitrique, stimulant la synthèse endogène de l'oxyde nitrique, élevant les niveaux endogènes du facteur de détente dérivé de l'endothélium ou consistant en un substrat destiné à la synthase de l'oxyde nitrique, et, éventuellement au moins un agent thérapeutique. L'invention concerne également des procédés de traitement et/ou d'amélioration des propriétés gastro-intestinales d'inhibiteurs sélectifs de la cyclooxygénase-2 (COX-2) ; de traitement et/ou de prévention contre les toxicités rénales ou autres des inhibiteurs sélectifs de COX-2; de traitement et d'amélioration du profil cardiovasculaire des inhibiteurs sélectifs de COX-2 qui consistent à administrer au moins un inhibiteur de cyclooxygénase-3 (COX-3) éventuellement nitrosé et/ou nitrosylé, et éventuellement, au moins un donneur d'oxyde nitrique et/ou au moins un agent thérapeutique. Les inhibiteurs de cyclooxygénase de l'invention consistent, entre autre, en des inhibiteurs sélectifs de cyclooxygénase-3, des inhibiteurs sélectifs de cyclooxygénase-2, des inhibiteurs sélectifs de cyclooxygénase-1, des composés anti-inflammatoires non stéroïdes, et des mélanges de deux ou plusieurs de ces composés.
PCT/US2003/028471 2002-09-11 2003-09-11 Inhibition de maladies et de troubles induits par la cyclooxygenase-3 WO2004024186A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003270540A AU2003270540A1 (en) 2002-09-11 2003-09-11 Treatment of cyclooxygenase-3 mediated diseases and disorders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40991302P 2002-09-11 2002-09-11
US60/409,913 2002-09-11

Publications (2)

Publication Number Publication Date
WO2004024186A2 true WO2004024186A2 (fr) 2004-03-25
WO2004024186A3 WO2004024186A3 (fr) 2004-08-12

Family

ID=31994030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/028471 WO2004024186A2 (fr) 2002-09-11 2003-09-11 Inhibition de maladies et de troubles induits par la cyclooxygenase-3

Country Status (2)

Country Link
AU (1) AU2003270540A1 (fr)
WO (1) WO2004024186A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087630B2 (en) 2002-06-27 2006-08-08 Nitromed, Inc. Cyclooxygenase 2 selective inhibitors, compositions and methods of use
US7507531B2 (en) 2002-10-17 2009-03-24 Decode Genetics Chf. Use of 5-lipoxygenase activating protein (FLAP) gene to assess susceptibility for myocardial infarction
US7521435B2 (en) 2005-02-18 2009-04-21 Pharma Diagnostics, N.V. Silicon containing compounds having selective COX-2 inhibitory activity and methods of making and using the same
US7851486B2 (en) 2002-10-17 2010-12-14 Decode Genetics Ehf. Susceptibility gene for myocardial infarction, stroke, and PAOD; methods of treatment
WO2011055379A1 (fr) * 2009-11-05 2011-05-12 Alkem Laboratories Ltd. Composition pharmaceutique injectable stable d'acéclofénac et procédé de préparation associé
EP3057386A1 (fr) * 2015-02-13 2016-08-17 King Slide Works Co., Ltd. Ensemble de rail de glissement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016645A1 (fr) * 1994-11-25 1996-06-06 The Wellcome Foundation Limited Utilisation de donneurs d'oxyde nitrique dans le domaine medical

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996016645A1 (fr) * 1994-11-25 1996-06-06 The Wellcome Foundation Limited Utilisation de donneurs d'oxyde nitrique dans le domaine medical

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COLIN DOLLERY: "THERAPEUTIC DRUGS, SECOND EDITION" THERAPEUTIC DRUGS, XX, XX, 1999, pages a216-a221, XP002266593 *
COLIN DOLLERY: "THERAPEUTIC DRUGS, SECOND EDITION" THERAPEUTIC DRUGS, XX, XX, 1999, pages I1-I3, XP002266594 *
SCHWAB J M ET AL: "COX-3: just another COX or the solitary elusive target of paracetamol?" LANCET THE, LANCET LIMITED. LONDON, GB, vol. 361, no. 9362, 22 March 2003 (2003-03-22), pages 981-982, XP004415846 ISSN: 0140-6736 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087630B2 (en) 2002-06-27 2006-08-08 Nitromed, Inc. Cyclooxygenase 2 selective inhibitors, compositions and methods of use
US7442802B2 (en) 2002-06-27 2008-10-28 Nitromed, Inc. Cyclooxygenase-2 selective inhibitors, compositions and methods of use
US7507531B2 (en) 2002-10-17 2009-03-24 Decode Genetics Chf. Use of 5-lipoxygenase activating protein (FLAP) gene to assess susceptibility for myocardial infarction
US7851486B2 (en) 2002-10-17 2010-12-14 Decode Genetics Ehf. Susceptibility gene for myocardial infarction, stroke, and PAOD; methods of treatment
US7521435B2 (en) 2005-02-18 2009-04-21 Pharma Diagnostics, N.V. Silicon containing compounds having selective COX-2 inhibitory activity and methods of making and using the same
WO2011055379A1 (fr) * 2009-11-05 2011-05-12 Alkem Laboratories Ltd. Composition pharmaceutique injectable stable d'acéclofénac et procédé de préparation associé
EP3057386A1 (fr) * 2015-02-13 2016-08-17 King Slide Works Co., Ltd. Ensemble de rail de glissement

Also Published As

Publication number Publication date
AU2003270540A8 (en) 2004-04-30
AU2003270540A1 (en) 2004-04-30
WO2004024186A3 (fr) 2004-08-12

Similar Documents

Publication Publication Date Title
US7589124B2 (en) Nitrosated and/or nitrosylated cyclooxygenase-2 selective inhibitors, compositions and methods of use
US7163958B2 (en) Nitrosated nonsteroidal antiinflammatory compounds, compositions and methods of use
US20090048219A1 (en) Organic nitric oxide donor salts of nonsteroidal antiinflammatory compounds, compositions and methods of use
AU2002249812B2 (en) Substituted aryl compounds as novel cyclooxygenase-2 selective inhibitors, compositions and methods of use
US20030220228A1 (en) Nitrosated and nitrosylated cyclooxygenase-2 inhibitors, compositions and methods of use
WO2006099416A1 (fr) Inhibiteurs selectifs de la 2-methyle-indole cyclooxygenase-2, compositions et procedes d’utilisation
AU2002249812A1 (en) Substituted aryl compounds as novel cyclooxygenase-2 selective inhibitors, compositions and methods of use
US7087630B2 (en) Cyclooxygenase 2 selective inhibitors, compositions and methods of use
US20070155734A1 (en) Oxime and/or hydrazone containing nitrosated and/or nitrosylated cyclooxygenase-2 selective inhibitors, compositions and methods of use
US20070238735A1 (en) Cyclooxygenase-2 selective inhibitors, compositions and methods of use
WO2007016136A2 (fr) Sels d'inhibiteurs selectifs de la cyclo-oxygenase-2 activant l'acide nitrique organique, compositions et methodes d'utilisation
WO2004012686A2 (fr) Composes d'acide ursodeoxycholique nitroses et/ou nitrosyles, compositions les contenant et methodes d'utilisation
US20020183366A1 (en) Cyclooxygenase-2 inhibitors, compositions and methods of use
WO2004024186A2 (fr) Inhibition de maladies et de troubles induits par la cyclooxygenase-3
WO2007016095A2 (fr) Composes d'inhibiteurs selectifs de cyclo-oxygenase-2 comprenant des groupes activant l'oxyde nitrique, compositions et procedes d'utilisation correspondants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP