WO2004023599A1 - Pulsed radar sensor - Google Patents

Pulsed radar sensor Download PDF

Info

Publication number
WO2004023599A1
WO2004023599A1 PCT/DE2003/001960 DE0301960W WO2004023599A1 WO 2004023599 A1 WO2004023599 A1 WO 2004023599A1 DE 0301960 W DE0301960 W DE 0301960W WO 2004023599 A1 WO2004023599 A1 WO 2004023599A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar sensor
crosstalk
pulse radar
recesses
antenna
Prior art date
Application number
PCT/DE2003/001960
Other languages
German (de)
French (fr)
Inventor
Frank Gottwald
Michael Klar
Martin Reiche
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004023599A1 publication Critical patent/WO2004023599A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/525Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between emitting and receiving antennas

Definitions

  • the invention relates to a pulse radar sensor according to the preamble of claim 1.
  • a device based on a pulse radar in vehicles is therefore suitable, for example, as a parking aid or as a pre-crash sensor or for the detection of objects in the area of the so-called blind spot.
  • the immediate vicinity of a vehicle is to be monitored to determine whether there are collision obstacles in this area and the distance between these obstacles and the vehicle.
  • Radar sensors that monitor the close range of the vehicle are called short range radar sensors.
  • internal crosstalk from the transmitting to the receiving side and a resulting interference voltage in the receiver cannot be completely avoided.
  • This crosstalk means that detection of objects in the range of very short distances is hardly possible if the transit time of a wave reflected by a very close object roughly corresponds to the transit time of signals crosstalk, so that the reflected reception signal, the crosstalk signal is superimposed. The measurement of signals that are reflected on objects that are close together is thus falsified.
  • Pulse radar sensors are known for example from DE-OS 28 35 867 and DE 199 34 670 A1. Due to the design, a distance scan at distances around the zero point results in direct crosstalk from the transmitting antenna into the receiving path of the sensor. There, this crosstalk leads to an overload of the amplifiers for the signal evaluation. The immediate consequence of this is that the short-range power of the sensor is clearly limited in the distance range in which the initial crosstalk operates.
  • the pulse radar sensor according to the invention with the features mentioned in claim 1 offers the advantage that a direct coupling of the transmission pulse (crosstalk) is significantly damped. Because the housing surface between the transmitting antenna and the receiving antenna is provided with a geometric structure and partially metallized, the amplitude of the crosstalk signal can be significantly reduced, so that the input signal is not overdriven.
  • at least one recess or recess is arranged in or on the area of the housing of a pulse radar sensor lying between the transmitting antenna and receiving antenna, in or on which one of these recesses tion or recess partially or completely covering metallic layer is arranged.
  • Another advantage is that the detection of radar targets is also much easier to achieve at close range, because the amplifiers of the signal evaluation no longer overdrive due to the damped initial crosstalk. Furthermore, the detection of the position of the initial crosstalk can be determined much more precisely, since the amplitude of the initial crosstalk is completely in the display range of the signal evaluation and can therefore be processed more precisely.
  • the depressions or recesses arranged in the area of the housing of a pulse radar sensor located between the transmitting antenna and the receiving antenna can be cuboid. Furthermore, several depressions can be provided above, below or within the housing.
  • the depressions within the housing of a pulse radar sensor are internal cavities or cutouts.
  • a metallic layer is arranged on or in these depressions or recesses.
  • the cuboid-shaped recesses or recesses can be arranged parallel to one another, and these can optionally be arranged parallel, perpendicularly or obliquely to the connecting line between the transmitter antenna and the receiving antenna.
  • Figures 1 to 9 each show a pulse radar sensor according to the invention with depressions, some without a metallic layer, which on the top (Fig. 1, 2, 7, 8), the bottom (Fig. 3 to 6) or inside ( FIG. 9) of the housing are arranged.
  • Each figure shows a top view and a cross section of a pulse radar sensor according to the invention.
  • the pulse radar sensors of FIGS. 1, 3, 5 and 7 do not have a metallic layer, but only the depressions or cutouts according to the invention.
  • FIG. 1 shows a top view and a cross section of a pulse radar sensor 100, in which depressions 14 are arranged vertically to the connection line AA ' of the transmitting and receiving antenna 10, 12 on the upper side 20 of the housing 18, but there are none yet metallic layers 16 have been applied.
  • depressions 14 are machined into the housing surface. These depressions 14 are then metallized on the floor and the side walls, that is to say coated with a metallic layer 16, as shown in FIG.
  • the metallized recesses or cutouts 14, 16 arranged in the housing dampen the propagation of the surface waves between the transmitting antenna 10 and the receiving antenna 12.
  • the introduction of the depressions 14 can already be taken into account in the construction of the housing 18, for example by production using an injection mold.
  • the depressions 14 can also be manufactured later, for example by milling.
  • FIG. 3 shows a top view and a cross section of a pulse radar sensor 100, in which depressions 14 are arranged vertically to the connecting line AA ' of the transmitting and receiving antenna 10, 12 on the underside 22 of the housing 18, but here no metallic layers 16 have yet been applied.
  • the pulse radar sensor 100 according to the invention with a metallic layer 16 is shown in FIG.
  • the orientation of the depressions 14 is not necessarily perpendicular to the connection line AA 'of the antennas. It is also possible for recess structures or extending obliquely or parallel to the connecting line AA ' Recesses 14 can be used to reduce crosstalk. These structures can be arranged both on the upper side 20 and on the lower side 22 or also within the housing 18 of the pulse radar sensor 100.
  • FIG. 1 shows a top view and a cross section of a pulse radar sensor 100, in which depressions 14 are arranged vertically to the connecting line AA ' of the transmitting and receiving antenna 10, 12 on the underside 22 of the housing 18, but here no metallic layers 16
  • FIG. 5 shows a top view and a cross section of a pulse radar sensor 100, in which depressions 14 are arranged obliquely to the connecting line AA ' of the transmitting and receiving antenna 10, 12 on the underside 22 of the housing 18, but there are none yet metallic layers 16 have been applied.
  • the pulse radar sensor 100 according to the invention with a metallic layer 16 is shown in FIG. 6.
  • the depressions 14 can also be arranged on the upper side 20 of the housing 18. Such an embodiment is shown in Figures 7 and 8.
  • FIG. 9 shows a top view and a cross section of a pulse radar sensor 100 according to the invention, in which recesses 14 with metallic layers 16 are arranged vertically to the connecting line AA ' of the transmitting and receiving antenna 10, 12 within the housing 18. These recesses 14 are cavities arranged within the housing 18, in which a metallic layer 16 is arranged.

Abstract

Distances between objects can be very precisely determined by means of a pulsed radar sensor. When the objects are very close to each other, internal crosstalk from the emission side to the reception side and a resulting interference voltage in the receiver cannot be completely avoided. Said crosstalk hinders detection as the reflected reception signal is superimposed by the crosstalk signal, and the measurement of signals which are reflected on close objects is thus falsified. The aim of the invention is to provide a pulsed radar sensor which enables the amplitude of the crosstalk to be reduced in such a way that the input signal is not overdriven, significantly improving the local performance of the sensor. To this end, the housing surface between the emission antenna and the reception antenna is provided with a geometric structure and is partially metallised in such a way that the crosstalk signal is damped by the emission antenna.

Description

Beschreibung description
Puls-Radar-SensorPulse radar sensor
Technisches GebietTechnical field
Die Erfindung betrifft einen Puls-Radar-Sensor gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a pulse radar sensor according to the preamble of claim 1.
Stand der TechnikState of the art
Mit einem Puls-Radar-Sensor lassen sich Abstände von Objekten sehr exakt bestimmen. Deshalb eignet sich eine auf einem Puls-Radar basie- rende Vorrichtung in Fahrzeugen zum Beispiel als Einparkhilfe oder als Pre-Crash-Sensor oder zur Detektion von Objekten im Bereich des sogenannten toten Winkels. Bei all diesen Einsatzfällen soll die nähere Umgebung eines Fahrzeugs daraufhin überwacht werden, ob sich Kollisionshin- demisse in diesem Bereich befinden und welchen Abstand diese Hinder- nisse zum Fahrzeug haben. Radar-Sensoren, die den Nahbereich des Fahrzeugs überwachen, werden als Nahbereichssensor (short ränge radar) bezeichnet. Insbesondere bei einem Nahbereichsradar tritt das Problem auf, dass die an Objekten in einem sehr kleinen Abstand reflektierten Signale zu einem Übersteuern im Empfänger führen. Außerdem kann ein internes Übersprechen von der Sende- auf die Empfangsseite und eine daraus entstehende Störspannung im Empfänger nicht ganz vermieden werden. Dieses Übersprechen führt dazu, dass eine Detektion von Objekten im Bereich sehr kleiner Entfernungen kaum möglich ist, wenn die Laufzeit einer von einem sehr nahen Objekt reflektierten Welle in etwa mit der Laufzeit übersprechender Signale übereinstimmt, so dass dem reflektierten Empfangssignal das Ubersprechsignal überlagert wird. Die Messung von Signalen, die an gering beabstandeten Objekten reflektiert werden, ist somit verfälscht.With a pulse radar sensor, distances between objects can be determined very precisely. A device based on a pulse radar in vehicles is therefore suitable, for example, as a parking aid or as a pre-crash sensor or for the detection of objects in the area of the so-called blind spot. In all of these applications, the immediate vicinity of a vehicle is to be monitored to determine whether there are collision obstacles in this area and the distance between these obstacles and the vehicle. Radar sensors that monitor the close range of the vehicle are called short range radar sensors. In particular with a short-range radar, the problem arises that the signals reflected from objects at a very short distance lead to overmodulation in the receiver. In addition, internal crosstalk from the transmitting to the receiving side and a resulting interference voltage in the receiver cannot be completely avoided. This crosstalk means that detection of objects in the range of very short distances is hardly possible if the transit time of a wave reflected by a very close object roughly corresponds to the transit time of signals crosstalk, so that the reflected reception signal, the crosstalk signal is superimposed. The measurement of signals that are reflected on objects that are close together is thus falsified.
Puls-Radar-Sensoren sind zum Beispiel aus der DE-OS 28 35 867 und DE 199 34 670 A1 bekannt. Konstruktionsbedingt ergibt sich bei einem Entfernungsscan bei Entfernungen um den Nullpunkt ein direktes Übersprechen von der Sendeantenne in den Empfangspfad des Sensors. Dort führt dieser Übersprecher zu einer Übersteuerung der Verstärker für die Signalauswertung. Das hat unmittelbar zur Folge, dass die Nahbereichsleistung des Sensors in dem Entfernungsbereich, in dem sich der Anfangsübersprecher auswirkt, deutlich eingeschränkt ist.Pulse radar sensors are known for example from DE-OS 28 35 867 and DE 199 34 670 A1. Due to the design, a distance scan at distances around the zero point results in direct crosstalk from the transmitting antenna into the receiving path of the sensor. There, this crosstalk leads to an overload of the amplifiers for the signal evaluation. The immediate consequence of this is that the short-range power of the sensor is clearly limited in the distance range in which the initial crosstalk operates.
Darstellung der Erfindung. Aufgabe, Lösung. VorteilePresentation of the invention. Task, solution. benefits
Es ist daher Aufgabe der vorliegenden Erfindung, einen Puls-Radar- Sensor anzugeben, bei welchem die Amplitude des Übersprechers derart reduziert wird, dass keine Übersteuerung des Eingangssignals erfolgt. Dadurch soll die Nahbereichsleistung des Sensors deutlich gesteigert werden.It is therefore an object of the present invention to provide a pulse radar sensor in which the amplitude of the crosstalk is reduced in such a way that the input signal is not overdriven. This should significantly increase the short-range performance of the sensor.
Diese Aufgabe wird durch eine Vorrichtung der oben genannten Art mit den im Anspruch 1 gekennzeichneten Merkmalen gelöst.This object is achieved by a device of the type mentioned above with the features characterized in claim 1.
Der erfindungsgemäße Puls-Radar-Sensor mit den im Anspruch 1 genannten Merkmalen bietet den Vorteil, dass eine direkte Einkopplung des Sendepulses (Übersprecher) deutlich gedämpft wird. Dadurch, dass die Gehäuseoberfläche zwischen Sendeantenne und Empfangsantenne mit einer geometrischen Struktur versehen und teilweise metallisiert wird, kann die Amplitude des Übersprechersignals deutlich reduziert werden, so dass keine Übersteuerung des Eingangssignals erfolgt. Dazu ist in oder auf dem zwischen Sendeantenne und Empfangsantenne liegenden Bereich des Gehäuses eines Puls-Radar-Sensors mindestens eine Vertie- fung oder Aussparung angeordnet, in oder auf welcher eine diese Vertie- fung oder Aussparung teilweise oder vollständig bedeckende metallische Schicht angeordnet ist.The pulse radar sensor according to the invention with the features mentioned in claim 1 offers the advantage that a direct coupling of the transmission pulse (crosstalk) is significantly damped. Because the housing surface between the transmitting antenna and the receiving antenna is provided with a geometric structure and partially metallized, the amplitude of the crosstalk signal can be significantly reduced, so that the input signal is not overdriven. For this purpose, at least one recess or recess is arranged in or on the area of the housing of a pulse radar sensor lying between the transmitting antenna and receiving antenna, in or on which one of these recesses tion or recess partially or completely covering metallic layer is arranged.
Ein weiterer Vorteil ist, dass eine Erkennung von Radarzielen auch im Nahbereich deutlich einfacher zu realisieren ist, weil die Verstärker der Signalauswertung aufgrund des gedämpften Anfangsübersprechers nicht mehr übersteuern. Weiterhin ist die Erkennung der Position des Anfangsübersprechers deutlich genauer bestimmbar, da sich die Amplitude des Anfangsübersprechers komplett im darstellbaren Bereich der Signalaus- wertung befindet und somit genauer verarbeitet werden kann.Another advantage is that the detection of radar targets is also much easier to achieve at close range, because the amplifiers of the signal evaluation no longer overdrive due to the damped initial crosstalk. Furthermore, the detection of the position of the initial crosstalk can be determined much more precisely, since the amplitude of the initial crosstalk is completely in the display range of the signal evaluation and can therefore be processed more precisely.
Die im zwischen Sendeantenne und Empfangsantenne liegenden Bereich des Gehäuses eines Puls-Radar-Sensors angeordneten Vertiefungen oder Aussparungen können quaderförmig ausgeführt sein. Weiterhin kön- nen oberhalb, unterhalb oder innerhalb des Gehäuses mehrere Vertiefungen vorgesehen sein. Die Vertiefungen innerhalb des Gehäuses eines Puls-Radar-Sensors sind innen liegende Hohlräume oder Aussparungen. Auf oder in diese Vertiefungen oder Aussparungen wird eine metallische Schicht angeordnet. Die quaderförmigen Vertiefungen oder Aussparungen können dabei parallel zueinander angeordnet werden, wobei diese zu der Verbindungslinie zwischen Senderantenne und Empfangsantenne wahlweise parallel, senkrecht oder schräg angeordnet sein können.The depressions or recesses arranged in the area of the housing of a pulse radar sensor located between the transmitting antenna and the receiving antenna can be cuboid. Furthermore, several depressions can be provided above, below or within the housing. The depressions within the housing of a pulse radar sensor are internal cavities or cutouts. A metallic layer is arranged on or in these depressions or recesses. The cuboid-shaped recesses or recesses can be arranged parallel to one another, and these can optionally be arranged parallel, perpendicularly or obliquely to the connecting line between the transmitter antenna and the receiving antenna.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention result from the features mentioned in the subclaims.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Nachstehend wird die Erfindung in Ausführungsbeispielen anhand der beigefügten Zeichnungen näher erläutert.The invention is explained in more detail in exemplary embodiments with reference to the accompanying drawings.
Die Figuren 1 bis 9 zeigen jeweils einen erfindungsgemäßen Puls-Radar- Sensor mit Vertiefungen, teilweise ohne metallische Schicht, die auf der Oberseite (Fig. 1 , 2, 7, 8), der Unterseite (Fig. 3 bis 6) oder innerhalb (Fig. 9) des Gehäuses angeordnet sind. In jeder Figur ist eine Draufsicht und ein Querschnitt eines erfindungsgemäßen Puls-Radar-Sensors dargestellt. Zur Veranschaulichung weisen die Puls-Radar-Sensoren der Fig. 1 , 3, 5 und 7 keine metallische Schicht, sondern lediglich die erfindungsge- mäßen Vertiefungen oder Aussparungen auf.Figures 1 to 9 each show a pulse radar sensor according to the invention with depressions, some without a metallic layer, which on the top (Fig. 1, 2, 7, 8), the bottom (Fig. 3 to 6) or inside ( FIG. 9) of the housing are arranged. Each figure shows a top view and a cross section of a pulse radar sensor according to the invention. For illustration, the pulse radar sensors of FIGS. 1, 3, 5 and 7 do not have a metallic layer, but only the depressions or cutouts according to the invention.
Bester Weg zur Ausführung der ErfindungBest way to carry out the invention
In Figur 1 sind eine Draufsicht und ein Querschnitt eines Puls-Radar- Sensors 100 dargestellt, bei welchem Vertiefungen 14 vertikal zur Verbindungslinie A-A' von Sende- und Empfangsantenne 10,12 auf der Oberseite 20 des Gehäuses 18 angeordnet sind, jedoch sind hier noch keine metallischen Schichten 16 aufgebracht worden. Zur Realisierung des erfindungsgemäßen Puls-Radar-Sensors 100 werden Vertiefungen 14 in die Gehäuseoberfläche eingearbeitet. Diese Vertiefungen 14 werden im An- schluss auf dem Boden und den Seitenwänden metallisiert, das heißt mit einer metallischen Schicht 16 überzogen, wie in Figur 2 dargestellt ist.FIG. 1 shows a top view and a cross section of a pulse radar sensor 100, in which depressions 14 are arranged vertically to the connection line AA ' of the transmitting and receiving antenna 10, 12 on the upper side 20 of the housing 18, but there are none yet metallic layers 16 have been applied. To implement the pulse radar sensor 100 according to the invention, depressions 14 are machined into the housing surface. These depressions 14 are then metallized on the floor and the side walls, that is to say coated with a metallic layer 16, as shown in FIG.
Durch die im Gehäuse angeordneten metallisierten Vertiefungen oder Aussparungen 14, 16 wird die Ausbreitung der Oberflächenwellen zwischen der Sendeantenne 10 und der Empfangsantenne 12 gedämpft. Die Einbringung der Vertiefungen 14 kann schon bei der Konstruktion des Gehäuses 18, zum Beispiel durch Herstellung mit einer Spritzgießform, berücksichtigt werden. Die Vertiefungen 14 können aber auch später, zum Beispiel durch Fräsen, gefertigt werden.The metallized recesses or cutouts 14, 16 arranged in the housing dampen the propagation of the surface waves between the transmitting antenna 10 and the receiving antenna 12. The introduction of the depressions 14 can already be taken into account in the construction of the housing 18, for example by production using an injection mold. The depressions 14 can also be manufactured later, for example by milling.
In Figur 3 sind eine Draufsicht und ein Querschnitt eines Puls-Radar- Sensors 100 dargestellt, bei welchem Vertiefungen 14 vertikal zur Verbindungslinie A-A' von Sende- und Empfangsantenne 10, 12 auf der Unter- seite 22 des Gehäuses 18 angeordnet sind, jedoch sind hier noch keine metallischen Schichten 16 aufgebracht worden. Der erfindungsgemäße Puls-Radar-Sensor 100 mit metallischer Schicht 16 ist in Figur 4 dargestellt. Die Ausrichtung der Vertiefungen 14 ist nicht zwingend senkrecht zur Verbindungslinie A-A' der Antennen. Es können weiterhin schräg oder parallel zur Verbindungslinie A-A' verlaufende Vertiefungsstrukturen oder Aussparungen 14 zur Reduktion der Übersprechung verwendet werden. Diese Strukturen können sowohl auf der Oberseite 20 als auch auf der Unterseite 22 oder auch innerhalb des Gehäuses 18 des Puls-Radar- Sensors 100 angeordnet sein. In Figur 5 sind eine Draufsicht und ein Querschnitt eines Puls-Radar- Sensors 100 dargestellt, bei welchem Vertiefungen 14 schräg zur Verbindungslinie A-A' von Sende- und Empfangsantenne 10, 12 auf der Unterseite 22 des Gehäuses 18 angeordnet sind, jedoch sind hier noch keine metallischen Schichten 16 aufgebracht worden. Der erfindungsgemäße Puls-Radar-Sensor 100 mit metallischer Schicht 16 ist in Figur 6 dargestellt. Im Gegensatz zum Ausführungsbeispiel der Figuren 5 und 6 können die Vertiefungen 14 auch auf der Oberseite 20 des Gehäuses 18 angeordnet sein. Ein solches Ausführungsbeispiel ist in den Figuren 7 und 8 dargestellt.FIG. 3 shows a top view and a cross section of a pulse radar sensor 100, in which depressions 14 are arranged vertically to the connecting line AA ' of the transmitting and receiving antenna 10, 12 on the underside 22 of the housing 18, but here no metallic layers 16 have yet been applied. The pulse radar sensor 100 according to the invention with a metallic layer 16 is shown in FIG. The orientation of the depressions 14 is not necessarily perpendicular to the connection line AA 'of the antennas. It is also possible for recess structures or extending obliquely or parallel to the connecting line AA ' Recesses 14 can be used to reduce crosstalk. These structures can be arranged both on the upper side 20 and on the lower side 22 or also within the housing 18 of the pulse radar sensor 100. FIG. 5 shows a top view and a cross section of a pulse radar sensor 100, in which depressions 14 are arranged obliquely to the connecting line AA ' of the transmitting and receiving antenna 10, 12 on the underside 22 of the housing 18, but there are none yet metallic layers 16 have been applied. The pulse radar sensor 100 according to the invention with a metallic layer 16 is shown in FIG. 6. In contrast to the exemplary embodiment in FIGS. 5 and 6, the depressions 14 can also be arranged on the upper side 20 of the housing 18. Such an embodiment is shown in Figures 7 and 8.
In Figur 9 sind eine Draufsicht und ein Querschnitt eines erfindungsgemäßen Puls-Radar-Sensors 100 dargestellt, bei welchem Aussparungen 14 mit metallischen Schichten 16 vertikal zur Verbindungslinie A-A' von Sende- und Empfangsantenne 10, 12 innerhalb des Gehäuses 18 ange- ordnet sind. Diese Aussparungen 14 sind innerhalb des Gehäuses 18 angeordnete Hohlräume, in denen eine metallische Schicht 16 angeordnet ist.FIG. 9 shows a top view and a cross section of a pulse radar sensor 100 according to the invention, in which recesses 14 with metallic layers 16 are arranged vertically to the connecting line AA ' of the transmitting and receiving antenna 10, 12 within the housing 18. These recesses 14 are cavities arranged within the housing 18, in which a metallic layer 16 is arranged.
Die Erfindung ist nicht beschränkt auf die hier dargestellten Ausführungs- beispiele. Vielmehr ist es möglich, durch Kombination und Modifikation der genannten Mittel und Merkmale weitere Ausführungsvarianten zu realisieren, ohne den Rahmen der Erfindung zu verlassen. The invention is not restricted to the exemplary embodiments shown here. Rather, it is possible to implement and implement further embodiment variants by combining and modifying the means and features mentioned, without leaving the scope of the invention.

Claims

Patentansprüche claims
1. Puls-Radar-Sensor (100) mit einer Sendeantenne (10) und einer Empfangsantenne (12), welche innerhalb oder auf dem Gehäuse (18) des Puls-Radar-Sensors (100) angeordnet sind, dadurch gekennzeichnet, dass in oder auf dem zwischen Sendeantenne (10) und Empfangsantenne (12) liegenden Bereich des Gehäuses (18) mindestens eine Vertiefung oder Aussparung (14) angeordnet ist, in oder auf welcher eine diese Vertiefung oder Aussparung (14) teilweise oder vollständig bedeckende metallische Schicht (16) angeordnet ist.1. pulse radar sensor (100) with a transmitting antenna (10) and a receiving antenna (12) which are arranged inside or on the housing (18) of the pulse radar sensor (100), characterized in that in or At least one recess or recess (14) is arranged on the area of the housing (18) lying between the transmitting antenna (10) and the receiving antenna (12), in or on which a metallic layer (16) partially or completely covering this recess or recess (14) ) is arranged.
2. Puls-Radar-Sensor (100) nach Anspruch 1 , dadurch gekennzeichnet, dass die mindestens eine Vertiefung oder Aussparung (14) quaderförmig ausgeführt ist.2. Pulse radar sensor (100) according to claim 1, characterized in that the at least one depression or recess (14) is cuboid.
3. Puls-Radar-Sensor (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Puls-Radar-Sensor (100) mehrere Vertiefungen oder Aussparungen (14) mit darauf angeordneten metallischen Schichten (16) aufweist.3. Pulse radar sensor (100) according to claim 1 or 2, characterized in that the pulse radar sensor (100) has a plurality of depressions or cutouts (14) with metallic layers (16) arranged thereon.
4. Puls-Radar-Sensor (100) nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass mehrere Vertiefungen oder Aussparungen (14) mit darin befindlichen metallischen Schichten (16) parallel zueinander angeordnet sind.4. pulse radar sensor (100) according to claim 1 to 3, characterized in that a plurality of recesses or recesses (14) with therein metallic layers (16) are arranged parallel to each other.
5. Puls-Radar-Sensor (100) nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass das Gehäuse (18) aus Kunststoff besteht.5. pulse radar sensor (100) according to claim 1 to 4, characterized in that the housing (18) consists of plastic.
6. Puls-Radar-Sensor (100) nach Anspruch 4, dadurch gekennzeichnet, dass die parallel zueinander angeordneten Vertiefungen oder Aussparungen (14) mit darauf befindlichen metallischen Schichten (16) senkrecht zur Verbindungslinie von Sendeantenne (10) und Empfangsantenne (12) angeordnet sind.6. pulse radar sensor (100) according to claim 4, characterized in that the mutually parallel recesses or recesses (14) with metallic layers (16) located thereon are arranged perpendicular to the connecting line of the transmitting antenna (10) and receiving antenna (12) are.
7. Puls-Radar-Sensor (100) nach Anspruch 4, dadurch gekennzeichnet, dass die parallel zueinander angeordneten Vertiefungen oder Aussparungen (14) mit darauf befindlichen metallischen Schichten (16) waagerecht zur Verbindungslinie von Sendeantenne (10) und Empfangsan- tenne (12) angeordnet sind.7. pulse-radar sensor (100) according to claim 4, characterized in that the mutually parallel recesses or recesses (14) with metallic layers (16) located thereon horizontally to the connecting line of the transmitting antenna (10) and receiving antenna (12th ) are arranged.
8. Puls-Radar-Sensor (100) nach Anspruch 4, dadurch gekennzeichnet, dass die parallel zueinander angeordneten Vertiefungen oder Aussparun- gen (14) mit darauf befindlichen metallischen Schichten (16) schräg zur Verbindungslinie von Sendeantenne (10) und Empfangsantenne (12) angeordnet sind. 8. pulse radar sensor (100) according to claim 4, characterized in that the mutually parallel recesses or recesses (14) with metallic layers (16) located thereon obliquely to the connecting line of the transmitting antenna (10) and receiving antenna (12th ) are arranged.
PCT/DE2003/001960 2002-09-03 2003-06-12 Pulsed radar sensor WO2004023599A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002140494 DE10240494A1 (en) 2002-09-03 2002-09-03 Pulse radar sensor
DE10240494.1 2002-09-03

Publications (1)

Publication Number Publication Date
WO2004023599A1 true WO2004023599A1 (en) 2004-03-18

Family

ID=31502283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001960 WO2004023599A1 (en) 2002-09-03 2003-06-12 Pulsed radar sensor

Country Status (2)

Country Link
DE (1) DE10240494A1 (en)
WO (1) WO2004023599A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105759248A (en) * 2015-12-01 2016-07-13 中国科学院上海技术物理研究所 Radar data processing device and signal data processing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119289A1 (en) * 2006-03-16 2007-10-25 Mitsubishi Electric Corporation Antenna assembly and method for manufacturing the same
US9972917B2 (en) 2013-10-03 2018-05-15 Honeywell International Inc. Digital active array radar
US9897695B2 (en) 2013-10-03 2018-02-20 Honeywell International Inc. Digital active array radar
US9761939B2 (en) * 2015-08-17 2017-09-12 The Boeing Company Integrated low profile phased array antenna system
CN109478720B (en) * 2016-09-08 2021-09-07 康普技术有限责任公司 High performance panel antenna for dual band, wideband and bipolar operation
US11264712B2 (en) * 2019-06-21 2022-03-01 Veoneer Us, Inc. Radar sensor with radome having trenches for reducing coupling between transmit and receive antennas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301456A (en) * 1979-06-27 1981-11-17 Lockheed Corporation Electromagnetic wave attenuating surface
JPS61256801A (en) * 1985-05-09 1986-11-14 Mitsubishi Electric Corp Radio wave transmitter-receiver
US5495255A (en) * 1991-09-04 1996-02-27 Honda Giken Kogyo Kabushiki Kaisha FM radar system
EP0732762A1 (en) * 1995-03-15 1996-09-18 Robert Bosch Gmbh Planar filter
US5616538A (en) * 1994-06-06 1997-04-01 Superconductor Technologies, Inc. High temperature superconductor staggered resonator array bandpass filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4301456A (en) * 1979-06-27 1981-11-17 Lockheed Corporation Electromagnetic wave attenuating surface
JPS61256801A (en) * 1985-05-09 1986-11-14 Mitsubishi Electric Corp Radio wave transmitter-receiver
US5495255A (en) * 1991-09-04 1996-02-27 Honda Giken Kogyo Kabushiki Kaisha FM radar system
US5616538A (en) * 1994-06-06 1997-04-01 Superconductor Technologies, Inc. High temperature superconductor staggered resonator array bandpass filter
EP0732762A1 (en) * 1995-03-15 1996-09-18 Robert Bosch Gmbh Planar filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 108 (E - 495) 4 April 1987 (1987-04-04) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105759248A (en) * 2015-12-01 2016-07-13 中国科学院上海技术物理研究所 Radar data processing device and signal data processing method
CN105759248B (en) * 2015-12-01 2019-04-02 中国科学院上海技术物理研究所 A kind of radar data processing unit and signal-data processing method

Also Published As

Publication number Publication date
DE10240494A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
EP2176681B1 (en) Radar sensor for motor vehicles
DE3519254C2 (en)
DE102007044490B4 (en) Ultrasonic sensor for use in a motor vehicle
DE112009003590B4 (en) ultrasound transducer
EP2569650A1 (en) Method and apparatus for determining the position of an object relative to a vehicle, in particular a motor vehicle, for use in a driver assistance system for the vehicle
DE60214755T2 (en) Horn antenna for a level measuring device
EP3452847B1 (en) Motor vehicle having at least two radar sensors
DE19917862A1 (en) Ultrasound sensor for object detection, e.g. for automobile driving aid
DE102006058437A1 (en) Force measuring bolt for measuring mechanical stresses
DE102007045809A1 (en) Detector device for an obstacle
EP2734860B1 (en) Composite assembly for a motor vehicle
DE102007030847A1 (en) Sensor according to the TDR principle with a coaxial probe and manufacturing process for it
DE102005042729A1 (en) Motor vehicle radar system with horizontal and vertical resolution
DE102011076395A1 (en) TRANSDUCER
DE102008048307A1 (en) Device and method for determining an extension length of an extendable machine part
DE102010043393B4 (en) Pressure sensor housing with flow obstacle to reduce guard vibration
DE102007047274A1 (en) ultrasonic sensor
DE102015111264B4 (en) Method for detecting an object in an area surrounding a motor vehicle by emitting ultrasonic signals with different directional characteristics, driver assistance system and motor vehicle
WO2000068707A1 (en) Device for detecting objects in the area surrounding a vehicle
DE102015211539A1 (en) Motor vehicle with an ultrasonic sensor arrangement
EP1728055A1 (en) Vehicle sensor for detecting impact sound
WO2004023599A1 (en) Pulsed radar sensor
DE102016100732A1 (en) Method for operating an ultrasonic sensor of a motor vehicle. Ultrasonic sensor device, driver assistance system and motor vehicle
EP1750329A1 (en) Radome for a vehicle radar system and method of manufacturing a radome
WO2012031957A1 (en) Ultrasonic sensor arrangement for a motor vehicle with a central ultrasonic sensor which is attached outside of the vehicle center and the ultrasonic sensor emission characteristic of which is tilted in the azimuth direction

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP