MÉTODO DE PREPARACIÓN DE MICROCAPSU AS DE ASTAXANTINA EN QUITOSANO Y PRODUCTO OBTENIDO ASTAXANTINE MICROCAPSU AS PREPARATION METHOD IN QUITOSANE AND PRODUCT OBTAINED
DESCRIPCIÓN CAMPO TÉCNICODESCRIPTION TECHNICAL FIELD
La presente invención se refiere a un carotenoide microencapsulado en una matriz de quitosano, y un método de preparación de las microcápsulas. La invención se relaciona con el problema de estabilizar el carotenoide, y convertirlo en un polvo seco, que facilite su manejo y uso en alimentos. Específicamente, la presente invención se refiere al proceso de elaboración de microcápsulas de astaxantina, con una matriz de quitosano entrecruzado con glutaraldehído. ANTECEDENTESThe present invention relates to a microencapsulated carotenoid in a chitosan matrix, and a method of preparing the microcapsules. The invention relates to the problem of stabilizing the carotenoid, and converting it into a dry powder, which facilitates its handling and use in food. Specifically, the present invention relates to the process of making astaxanthin microcapsules, with a chitosan matrix crosslinked with glutaraldehyde. BACKGROUND
Los carotenoides son un grupo de pigmentos ampliamente distribuidos en la naturaleza. Son sintetizados por plantas, levaduras y algunas bacterias. Existen dos grupos de carotenoides: los carotenos, que están compuestos sólo por átomos de carbono e hidrogeno, y las xantófilas, derivados oxigenados, a cuyo grupo pertenece la astaxantina. Esta xantófila es el pigmento rojo predominante en la mayoría de los crustáceos y salmónidos. Un problema asociado con los carotenoides es su susceptibilidad a la oxidación por agentes externos como el oxígeno, luz y altas temperaturas. Al ser moléculas altamente insaturadas, son propensos a la oxidación durante el procesamiento y almacenamiento de los alimentos. Los productos secos o deshidratados sufren mayores pérdidas de carotenoides, debido a la porosidad y mayor superficie de área de contacto con agentes promotores de la oxidación (Rodríguez-Amaya. Archivos Latinoamericanos de Nutrición. 1999. 49:385-475). La degradación de estos compuestos puede ocasionar la pérdida de sus atributos nutritivos o biológicos, así como la formación de productos sin color y compuestos que contribuyen con aromas y sabores indeseables. Debido a su inestabilidad, generalmente los carotenoides no son utilizados en forma cristalina sino más bien en forma de emulsiones estabilizadas, o bien, encapsulados con diferentes matrices.Carotenoids are a group of pigments widely distributed in nature. They are synthesized by plants, yeasts and some bacteria. There are two groups of carotenoids: carotenes, which are composed only of carbon and hydrogen atoms, and xanthophylls, oxygenated derivatives, to whose group belongs astaxanthin. This xanthophyll is the predominant red pigment in most crustaceans and salmonids. A problem associated with carotenoids is their susceptibility to oxidation by external agents such as oxygen, light and high temperatures. Being highly unsaturated molecules, they are prone to oxidation during food processing and storage. Dried or dehydrated products suffer greater losses of carotenoids, due to the porosity and greater surface area of contact with oxidation promoting agents (Rodríguez-Amaya. Latin American Nutrition Archives. 1999. 49: 385-475). The degradation of these compounds can cause the loss of their nutritional or biological attributes, as well as the formation of colorless products and compounds that contribute with undesirable aromas and flavors. Due to their instability, carotenoids are generally not used in crystalline form but rather in the form of stabilized emulsions, or encapsulated with different matrices.
El proceso de encapsulación consiste en elaborar una cubierta o matriz polimérica alrededor del carotenoide para protegerlo de factores ambientales. Este es uno de los aspectos en los que radica la utilidad de la presente invención. Generalmente, los métodos de encapsulación más simples se basan en la elaboración de emulsiones entre el carotenoide (fase aceite) y una solución que contiene el material encapsulante seguida por secado. Se
obtiene así un producto seco en forma de polvo, para el caso de secado por aspersión, o bien, en forma de sólido que puede molerse hasta diferentes tamaños de partícula, como en el caso del secado por liofilización (Desobry y col. Journal of Food Sci. 1997. 62:1158-1162). Por ejemplo, Chen y Tang, (J. Agrie. Food Chem. 1998. 46:2312-2318), elaboraron un producto en polvo de carotenos extraídos de pulpa de zanahoria. Para lo anterior, emulsionaron el extracto de carotenos en un sustrato de gelatina y sacarosa, para posteriormente secarlo por aspersión. La desventaja de los métodos que utilizan secado por aspersión es que existen pérdidas del carotenoide durante el proceso (aproximadamente 11%) y el producto obtenido no tiene muy buena estabilidad. Además, el carotenoide puede degradarse fácilmente, dependiendo de las condiciones de almacenamiento (Desobry y col. Journal of Food Sci. 1997. 62:1158-1162). El almidón hidrolizado también se ha utilizado como matriz encapsulante de carotenos. Por ejemplo, una dispersión de β-caroteno o licopeno en aceite se emulsiona en una mezcla elaborada a base de almidón modificado, azúcar y un antioxidante grado alimenticio. Posteriormente la emulsión se seca por aspersión para obtener así un polvo fino para su uso en alimentos (Patente US5976575). Igualmente, se han elaborado productos en polvo o granulares, que contienen hasta aproximadamente 2% de astaxantina extraída de la levadura Phaffia rhodozyma, estabilizadas con matriz de gelatina, colágeno o goma arábiga (Patente EP0628258A1).The encapsulation process consists in developing a polymeric shell or matrix around the carotenoid to protect it from environmental factors. This is one of the aspects in which the utility of the present invention lies. Generally, the simplest encapsulation methods are based on the elaboration of emulsions between the carotenoid (oil phase) and a solution containing the encapsulating material followed by drying. I know it thus obtains a dry product in powder form, in the case of spray drying, or in the form of a solid that can be milled to different particle sizes, as in the case of freeze drying (Desobry et al. Journal of Food Sci. 1997. 62: 1158-1162). For example, Chen and Tang, (J. Agrie. Food Chem. 1998. 46: 2312-2318), made a powdered product of carotenes extracted from carrot pulp. For the above, they emulsified the carotene extract in a gelatin and sucrose substrate, and then spray dried. The disadvantage of the methods that use spray drying is that there are losses of the carotenoid during the process (approximately 11%) and the product obtained does not have very good stability. In addition, the carotenoid can be easily degraded, depending on storage conditions (Desobry et al. Journal of Food Sci. 1997. 62: 1158-1162). Hydrolyzed starch has also been used as an encapsulating matrix of carotenes. For example, a dispersion of β-carotene or lycopene in oil is emulsified in a mixture made from modified starch, sugar and a food grade antioxidant. Subsequently, the emulsion is spray dried to obtain a fine powder for use in food (US5976575). Similarly, powdered or granular products have been produced, containing up to about 2% of astaxanthin extracted from Phaffia rhodozyma yeast, stabilized with gelatin matrix, collagen or gum arabic (Patent EP0628258A1).
Actualmente, la astaxantina es utilizada en la elaboración de dietas de salmónidos y crustáceos de acuicultura para proporcionar el color rojo-naranja característico de estos organismos. Lo anterior debido a que las especies cultivadas no disponen de la dieta natural donde se encuentra este pigmento. Además, la astaxantina tiene otras funciones biológicas en dichos organismos, como son: actúa como provitamina A, está asociada con la reproducción y el desarrollo de embriones y con la protección de las células contra los efectos oxidativos (Putnam M. Aquaculture and the Environment. European Aquaculture Soc. Special publication.1991. No. 16. p 245-263).Currently, astaxanthin is used in the elaboration of salmon and crustacean aquaculture diets to provide the characteristic orange-red color of these organisms. This is because the cultivated species do not have the natural diet where this pigment is found. In addition, astaxanthin has other biological functions in these organisms, such as: it acts as provitamin A, is associated with the reproduction and development of embryos and with the protection of cells against oxidative effects (Putnam M. Aquaculture and the Environment. European Aquaculture Soc. Special publication. 1991. No. 16. p 245-263).
Aunque el principal uso de este pigmento es en la industria de acuicultura, recientemente se ha enfocado su uso hacia el consumo humano, con base en las propiedades nutricionales y fisiológicas de este compuesto. Para lo anterior se han elaborado diferentes preparaciones en forma de polvo o emulsiones, tanto de astaxantina libre como esterificada con ácidos grasos, obtenida de fuentes naturales como levaduras, algas y crustáceos. Por ejemplo, la Patente JP 10276721, describe la elaboración de un alimento adicionado con astaxantina y/o esteres de astaxantina para usarse como tratamiento para la prevención de
cataratas, o para evitar el progreso de las mismas. Otras aplicaciones de este pigmento, relacionadas con la salud humana son: se ha propuesto como agente antiinflamatorio (Patentes JP2049091, JP7099924), como potenciador del sistema inmunológico (Patentes WO01/24787A1, JP7099924, US6265450), para el tratamiento profiláctico o terapéutico contra infecciones por H. pylori en el estómago (Patente US6262316), y para tratar síntomas diversos asociados con el estrés (Patente US6265450). Actualmente existen en el mercado productos de astaxantina (The Astafactor™, Astacarotene AB™) elaborados a base de harina de algas del género Haematococcus. Estos productos se utilizan como suplemento alimenticio para humanos, por sus posibles beneficios que incluyen: efectos anticáncer de células, protección de los tejidos contra fotooxidación, propiedades antiinflamatorias y estimulación de parámetros de respuesta del sistema inmunológico. Asimismo, existen estudios que proponen el uso de esteres de astaxantina en animales, como por ejemplo, como medicamento para tratar enfermedades musculares (rabdomiolisis) en equinos (Patente US6245818), para aumentar la producción y disminuir la mortalidad de mamíferos recién nacidos (porcinos, bovinos y ovinos) (Patente US6054491), así como para aumentar la producción de huevo y mejorar el estado de salud de gallinas (Patente US5744502).Although the main use of this pigment is in the aquaculture industry, its use has recently been focused on human consumption, based on the nutritional and physiological properties of this compound. For the above, different preparations have been prepared in the form of powder or emulsions, both astaxanthin free and esterified with fatty acids, obtained from natural sources such as yeasts, algae and crustaceans. For example, JP 10276721 describes the preparation of a food added with astaxanthin and / or esters of astaxanthin for use as a treatment for the prevention of cataracts, or to prevent their progress. Other applications of this pigment, related to human health are: it has been proposed as an anti-inflammatory agent (Patents JP2049091, JP7099924), as an immune system enhancer (Patents WO01 / 24787A1, JP7099924, US6265450), for the prophylactic or therapeutic treatment against infections by H. pylori in the stomach (US6262316), and to treat various symptoms associated with stress (US6265450). Currently there are astaxanthin products (The Astafactor ™, Astacarotene AB ™) made from seaweed flour of the genus Haematococcus. These products are used as a food supplement for humans, for their possible benefits that include: anti-cancer cell effects, tissue protection against photooxidation, anti-inflammatory properties and stimulation of immune system response parameters. There are also studies that propose the use of astaxanthin esters in animals, for example, as a medicine to treat muscle diseases (rhabdomyolysis) in horses (US Pat. No. 6245818), to increase production and decrease the mortality of newborn mammals (pigs, cattle and sheep) (US6054491), as well as to increase egg production and improve the health status of chickens (US5744502).
Dos de los principales productos de astaxantina en el mercado de acuicultura son: Carophyll pink™ con 5 y 8% de astaxantina respectivamente. Están elaborados con astaxantina sintética, estabilizada con antioxidantes y encapsulada con una matriz de gelatina y carbohidratos cubierta con almidón. Su principal desventaja es su alto costo, pues representa alrededor del 15% del costo total de las dietas. Además, la disolución de la gelatina a bajas temperaturas es lenta, y el tiempo de almacenamiento del producto final es limitado debido al endurecimiento de la capa de gelatina.Two of the main astaxanthin products in the aquaculture market are: Carophyll pink ™ with 5 and 8% astaxanthin respectively. They are made with synthetic astaxanthin, stabilized with antioxidants and encapsulated with a matrix of gelatin and carbohydrates covered with starch. Its main disadvantage is its high cost, as it represents about 15% of the total cost of the diets. In addition, the dissolution of the gelatin at low temperatures is slow, and the storage time of the final product is limited due to the hardening of the gelatin layer.
La presente invención describe el uso de quitosano como matriz encapsulante para la estabilización de astaxantina. El quitosano es un copolímero formado por unidades de 2-N- acetil-D-glucosamina y 2-D-glucosamina, unidas mediante enlaces glucosídicos βl-4. Industrialmente se obtiene a partir de la desacetilación de la quitina. A su vez, la quitina (N- acetil-2-amino-2-deoxi-D-glucopiranosa) es un polímero lineal de alto peso molecular, formado por unidades de N-acetilglucosamina, que está presente en cantidades comerciales en el exoesqueleto de langostas, jaibas y camarón, los cuales contienen entre 15-20% de quitina. Por lo tanto, los biodesechos de crustáceos representan una fuente relativamente barata de quitosano. Debido al enlace glucosídico β 1-4, el quitosano tiene una configuración relativamente rígida, propiedad que ha sido la base para preparar películas, geles, fibras y
esferas. Este biopolímero se utiliza actualmente en diversas áreas como la biomédica, cosmética, agrícola, tecnología de alimentos, tratamiento de aguas residuales, entre otras. Numerosas publicaciones han mostrado el amplio potencial de aplicaciones de este compuesto, que incluyen: inmovilización de enzimas, como soporte cromatográfico, como adsorbente de iones metálicos o lipoproteínas y en cultivos celulares.The present invention describes the use of chitosan as an encapsulating matrix for the stabilization of astaxanthin. Chitosan is a copolymer consisting of 2-N-acetyl-D-glucosamine and 2-D-glucosamine units, linked by β-4-glucosidic bonds. Industrially it is obtained from the deacetylation of chitin. In turn, chitin (N-acetyl-2-amino-2-deoxy-D-glucopyranoside) is a linear polymer of high molecular weight, formed by units of N-acetylglucosamine, which is present in commercial quantities in the exoskeleton of lobsters, crabs and shrimp, which contain between 15-20% chitin. Therefore, crustacean biowastes represent a relatively cheap source of chitosan. Due to the β 1-4 glycosidic bond, the chitosan has a relatively rigid configuration, property that has been the basis for preparing films, gels, fibers and spheres. This biopolymer is currently used in various areas such as biomedical, cosmetic, agricultural, food technology, wastewater treatment, among others. Numerous publications have shown the wide potential of applications of this compound, which include: immobilization of enzymes, as chromatographic support, as adsorbent of metal ions or lipoproteins and in cell cultures.
Una de las principales aplicaciones del quitosano consiste en la elaboración de microcápsulas para sistemas de liberación prolongada de fármacos o vacunas. Para hacer tales sistemas, generalmente las cadenas de quitosano se entrecruzan químicamente. Por citar algunos ejemplos, la Patente US6207197 describe la elaboración de microcápsulas para liberación de fármacos como tratamiento contra infección estomacal de H. pylori o C. pylori en humanos. En este caso las microcápsulas se elaboran mediante métodos de emulsión y secado por aspersión, e incluyen un polímero insoluble en agua como etilcelulosa y una capa externa de quitosano, entrecruzado con glutaraldehído o formaldehído. La capa de quitosano actúa como polímero bioadhesivo en el estómago. Asimismo, el quitosano se ha empleado en la elaboración de microcápsulas semipermeables, insolubles en agua, para atrapar células viables, entrecruzando iónicamente los grupos amino del quitosano, con los grupos aniónicos de ácidos como el poliglutámico o poliaspártico (Patente US4803168). DESCRIPCIÓN DETALLADAOne of the main applications of chitosan is the development of microcapsules for prolonged release systems of drugs or vaccines. To make such systems, chitosan chains are generally chemically crosslinked. To cite some examples, US6207197 describes the preparation of microcapsules for drug release as a treatment against stomach infection of H. pylori or C. pylori in humans. In this case the microcapsules are made by emulsion and spray drying methods, and include a water insoluble polymer such as ethyl cellulose and an outer layer of chitosan, crosslinked with glutaraldehyde or formaldehyde. The chitosan layer acts as a bioadhesive polymer in the stomach. Also, chitosan has been used in the preparation of semipermeable, water insoluble microcapsules to trap viable cells, ionically cross-linking the amino groups of chitosan, with anionic groups of acids such as polyglutamic or polyaspartic (Patent US4803168). DETAILED DESCRIPTION
La presente invención consiste en un método para preparar un producto en polvo de astaxantina microencapsulada con una matriz de quitosano, con el fin de que dicho pigmento sea estable hacia la oxidación por exposición a agentes externos y facilitar su manejo y uso en alimentos. Las microcápsulas de quitosano pueden prepararse por diferentes métodos: emulsión o emulsión múltiple con entrecruzamiento, coacervación simple o compleja, secado por aspersión y emulsión o emulsión múltiple con evaporación del solvente. Genta y col. (Chitin Ηandbook. Muzzarelli R. A. A. y Peter M. Eds. European Chitin Soc. 1997. p 391-396) describieron este último método para preparar microcápsulas de quitosano para la liberación de drogas hidrofílicas o hidrofóbicas en general. Actualmente, este biopolímero no ha sido empleado para la microencapsulación de carotenoides. En la presente invención se empleó un método similar al de los autores anteriores, que consiste primeramente en la elaboración de una emulsión múltiple aceite/agua/aceite para elaborar las microcápsulas de astaxantina en quitosano. Posteriormente se eliminan los solventes acuosos mediante secado con calor a vacío, y finalmente las microcápsulas se recuperan mediante centrifugación y decantación de la fase aceite. Este método, aunque es similar, requirió de sus adaptaciones
para hacerlo viable para la microencapsulaciόn de carotenoides, en especial la astaxantina, las cuales no resultan obvias de los documentos antes mencionados, sino que representan el objeto de la presente invención, en la cual se planteó resolver el problema técnico que implicaba el tener un producto que proporcionara condiciones de estabilidad a este pigmento.The present invention consists of a method for preparing a microencapsulated astaxanthin powder product with a chitosan matrix, so that said pigment is stable towards oxidation by exposure to external agents and to facilitate its handling and use in food. Chitosan microcapsules can be prepared by different methods: emulsion or multiple emulsion with crosslinking, simple or complex coacervation, spray drying and emulsion or multiple emulsion with solvent evaporation. Genta et al. (Chitin Ηandbook. Muzzarelli RAA and Peter M. Eds. European Chitin Soc. 1997. p 391-396) described the latter method for preparing chitosan microcapsules for the release of hydrophilic or hydrophobic drugs in general. Currently, this biopolymer has not been used for microencapsulation of carotenoids. In the present invention, a method similar to that of the previous authors was employed, which consists primarily of the elaboration of a multiple oil / water / oil emulsion to make the astaxanthin microcapsules in chitosan. Subsequently, the aqueous solvents are removed by heat drying under vacuum, and finally the microcapsules are recovered by centrifugation and decantation of the oil phase. This method, although similar, required its adaptations to make it viable for microencapsulation of carotenoids, especially astaxanthin, which are not obvious from the aforementioned documents, but represent the object of the present invention, in which it was proposed to solve the technical problem involved in having a product which will provide stability conditions to this pigment.
La astaxantina que se utiliza en la presente invención puede ser de origen químico- sintético, o bien, preferentemente provenir de la extracción de fuentes naturales como levaduras, algas o crustáceos. En este último caso, la extracción se realiza con solventes orgánicos o con aceites vegetales, con metodología ya conocida. Además, el pigmento a utilizar puede encontrarse en tres formas: libre (sin esterificar), como en el caso de la astaxantina sintética, esterificada con diferentes ácidos grasos, o en una mezcla de las dos anteriores, como en el caso de algas y crustáceos. En la presente invención se utilizó astaxantina libre, en forma cristalina, de origen sintético (Sigma Chemical, Co.), pero la invención no se limita a dicha fuente de pigmento. Si se utiliza el pigmento en forma de polvo, proveniente de cualquiera de las fuentes antes mencionadas, primeramente se requiere solubilizar el pigmento en un solvente orgánico como diclorometano o cloroformo. Puede también utilizarse cualquier otro solvente no polar, que disuelva fácilmente el pigmento, y que pueda evaporarse en un rango de temperatura de 50-60 °C, para evitar la degradación del pigmento al momento de la evaporación. La relación solvente: pigmento debe ser tal, que el solvente lo permita, para que el producto final tenga, de preferencia, una alta concentración de carotenoide. Además, resulta ventajoso utilizar una materia prima que contenga alto contenido del carotenoide. En el caso de la astaxantina sintética, ésta contiene 98% de astaxantina. La solución de pigmento así elaborada, constituye la fase aceite, para preparar una emulsión primaria aceite/agua. La fase acuosa para preparar la emulsión aceite/agua, consiste en una solución de quitosano, preparada de la siguiente forma. Primeramente se disuelve un surfactante no iónico, del grupo de los polisorbatos, preferentemente polisorbato 80, en una mezcla de ácido acético :metanol. La relación peso/volumen entre el surfactante y la mezcla de solventes es de 1.6%. Posteriormente se agrega el quitosano, en una relación polímero/ solvente de 1.6 a 3%. Genta y col. (Chitin Handbook. Muzzarelli R. A. A. y Peter M. Eds. European Chitin Soc. 1997. p 391-396) utilizaron una concentración de quitosano de 1.6% (p/v) en la misma fase acuosa anterior, para lograr mayor estabilidad en la emulsión. Entre más baja sea la concentración de quitosano utilizada, es más fácil la disolución del polímero,
y la solución formada es menos viscosa, lo que facilita el manejo de la misma. En el caso de la presente invención, la desventaja de utilizar una baja concentración de quitosano radica en que la cubierta de polímero formada es más frágil, pudiéndose romper al momento de formar la emulsión. Además, la membrana de quitosano formada puede presentar mayor difusión del pigmento hacia el solvente, lo que ocasiona pérdidas de éste. Es por ello que en el presente trabajo se utiliza una concentración de 3% de quitosano, para evitar los problemas anteriores. Una vez preparadas las dos soluciones, se elabora la emulsión aceite en agua, en la cual la fase dispersa es la solución de astaxantina, y la fase continua es la solución acuosa de quitosano. La relación entre las dos fases es de 1:2.5 (v/v), pero se puede reducir, para incrementar la concentración del pigmento en el producto final, cuidando de no comprometer la estabilidad de la emulsión.The astaxanthin used in the present invention can be of chemical-synthetic origin, or, preferably, come from the extraction of natural sources such as yeasts, algae or crustaceans. In the latter case, the extraction is carried out with organic solvents or with vegetable oils, with already known methodology. In addition, the pigment to be used can be found in three forms: free (without esterification), as in the case of synthetic astaxanthin, esterified with different fatty acids, or in a mixture of the two above, as in the case of algae and crustaceans . In the present invention free astaxanthin, in crystalline form, of synthetic origin (Sigma Chemical, Co.) was used, but the invention is not limited to said pigment source. If the pigment is used as a powder, from any of the aforementioned sources, it is first necessary to solubilize the pigment in an organic solvent such as dichloromethane or chloroform. Any other non-polar solvent, which easily dissolves the pigment, and can evaporate in a temperature range of 50-60 ° C, can also be used to prevent degradation of the pigment at the time of evaporation. The solvent: pigment ratio should be such that the solvent allows it, so that the final product preferably has a high concentration of carotenoid. In addition, it is advantageous to use a raw material that contains high carotenoid content. In the case of synthetic astaxanthin, it contains 98% astaxanthin. The pigment solution thus prepared constitutes the oil phase, to prepare a primary oil / water emulsion. The aqueous phase for preparing the oil / water emulsion consists of a chitosan solution, prepared as follows. First, a non-ionic surfactant, from the group of polysorbates, preferably polysorbate 80, is dissolved in a mixture of acetic acid: methanol. The weight / volume ratio between the surfactant and the solvent mixture is 1.6%. Subsequently, chitosan is added, in a polymer / solvent ratio of 1.6 to 3%. Genta et al. (Chitin Handbook. Muzzarelli RAA and Peter M. Eds. European Chitin Soc. 1997. p 391-396) used a chitosan concentration of 1.6% (w / v) in the same previous aqueous phase, to achieve greater emulsion stability . The lower the concentration of chitosan used, the easier the dissolution of the polymer, and the solution formed is less viscous, which facilitates its handling. In the case of the present invention, the disadvantage of using a low concentration of chitosan is that the polymer shell formed is more fragile, being able to break at the time of forming the emulsion. In addition, the formed chitosan membrane may have a greater diffusion of the pigment to the solvent, which causes losses of the solvent. That is why in the present work a concentration of 3% chitosan is used, to avoid the above problems. Once the two solutions have been prepared, the oil-in-water emulsion is made, in which the dispersed phase is the astaxanthin solution, and the continuous phase is the aqueous chitosan solution. The ratio between the two phases is 1: 2.5 (v / v), but it can be reduced, to increase the concentration of the pigment in the final product, taking care not to compromise the stability of the emulsion.
La emulsión múltiple aceite/agua/aceite se prepara agregando la emulsión anterior en un aceite que puede ser de origen vegetal como girasol, cañóla o maíz, o aceite mineral, termorregulada a 50 °C, y adicionada de un emulsificante no iónico, como por ejemplo monolaureato de sorbitán, en una concentración de 1-2% (p/v). La relación entre las dos fases puede estar dentro del rango de 1:5-1:9, preferentemente 1:9. Al momento de preparar la emulsión múltiple, se agrega el agente entrecruzante de las cadenas de quitosano para formar la membrana o pared de las microcápsulas en la interfase agua/aceite de las gotas de la emulsión (Groboillot y col. Biotechnology and Bioengineering. 1993. 42:1157-1163). Para tal efecto, el agente entrecruzante que puede utilizarse es un ácido dicarboxílico como el glutaraldehído, o un ácido tricarboxílico como el cítrico. Genta y colaboradores (Chitin Handbook. Muzzarelli R. A. A. y Peter M. Eds. European Chitin Soc. 1997. p 391-396) llevaron a cabo este proceso en un equipo Nibromixer El, a 50 vibraciones/seg/2h. En nuestro caso resulta adecuada la utilización de un homogenizador de tejido adaptado a un reactor de laboratorio, con un sistema diferente de agitación, como se describirá mas adelante en el ejemplo 1. Posteriormente se procede a la eliminación de los solventes acuosos de la suspensión de microcápsulas obtenida en el paso anterior, mediante evaporación con calor, a vacío. Finalmente, las microcápsulas se recuperan por centrifugación, decantación del aceite mineral y lavado de las microcápsulas con éter de petróleo para eliminar los residuos de aceite.The multiple oil / water / oil emulsion is prepared by adding the previous emulsion in an oil that can be of vegetable origin such as sunflower, cane or corn, or mineral oil, thermoregulated at 50 ° C, and added a non-ionic emulsifier, as per example sorbitan monolaureate, in a concentration of 1-2% (w / v). The relationship between the two phases may be within the range of 1: 5-1: 9, preferably 1: 9. At the time of preparing the multiple emulsion, the chitosan chain crosslinking agent is added to form the membrane or wall of the microcapsules at the water / oil interface of the emulsion drops (Groboillot et al. Biotechnology and Bioengineering. 1993. 42: 1157-1163). For this purpose, the crosslinking agent that can be used is a dicarboxylic acid such as glutaraldehyde, or a tricarboxylic acid such as citric. Genta et al. (Chitin Handbook. Muzzarelli R. A. A. and Peter M. Eds. European Chitin Soc. 1997. p 391-396) carried out this process in a Nibromixer El equipment, at 50 vibrations / sec / 2h. In our case it is appropriate to use a tissue homogenizer adapted to a laboratory reactor, with a different agitation system, as will be described later in example 1. Subsequently, the aqueous solvents are removed from the suspension of microcapsules obtained in the previous step, by evaporation with heat, under vacuum. Finally, the microcapsules are recovered by centrifugation, decantation of the mineral oil and washing of the microcapsules with petroleum ether to remove oil residues.
Se presenta un ejemplo con el fin de ilustrar la presente invención. EJEMPLO 1 Paso 1. Se mezclan 48 mi de ácido acético al 2%, con 12 mi de metanol. Se agrega lg de
polisorbato 80, se agita perfectamente para la disolución completa del emulsificante, y finalmente se añaden 1.7 g de quitosano. Esta preparación se deja por el tiempo necesario, con agitación mecánica, hasta que todo el quitosano se haya disuelto perfectamente. Debido a que a medida que este biopolímero se va hidratando, la solución se va tornando cada vez más viscosa, por lo que es necesaria una agitación manual adicional para completar la disolución del quitosano.An example is presented in order to illustrate the present invention. EXAMPLE 1 Step 1. 48 ml of 2% acetic acid are mixed with 12 ml of methanol. Lg of Polysorbate 80, is perfectly stirred for the complete dissolution of the emulsifier, and finally 1.7 g of chitosan are added. This preparation is left for the necessary time, with mechanical agitation, until all the chitosan has dissolved perfectly. Because as this biopolymer hydrates, the solution becomes increasingly viscous, so additional manual agitation is necessary to complete the dissolution of the chitosan.
Paso 2. 200 mg de astaxantina cristalina en polvo obtenida de Sigma (Sigma Chemical Co.) se disuelven en 20 mi de diclorometano, en un vial color ámbar, para proteger la solución de la luz. Paso 3. Se prepara una emulsión aceite en agua. La solución anterior se gotea lentamente sobre la solución de quitosano, a medida que se agita a 9500 rpm en un homogenizador de alimentos ultraturrax , Janke & Kunkel T25.Step 2. 200 mg of crystalline astaxanthin powder obtained from Sigma (Sigma Chemical Co.) is dissolved in 20 ml of dichloromethane, in an amber vial, to protect the solution from light. Step 3. An oil-in-water emulsion is prepared. The above solution is dripped slowly over the chitosan solution, as it is stirred at 9500 rpm in an ultraturrax food homogenizer, Janke & Kunkel T25.
Paso 4. A 600 mi de aceite mineral, se le agregan 12 g de monolaureato de sorbitán, se agita, y se coloca en un reactor Janke & Kunkel Ika Labortechnick (Alemania), de 0.8L, equipado con una chaqueta hidráulica y un baño de circulación de agua, para calentar el aceite hasta una temperatura de 50 °C. El aceite se agita a una velocidad de 100 rpm, proporcionadas con las aspas del reactor, mas 8000 rpm, proporcionadas por el homogenizador ultraturrax, mismo que se ha adaptado previamente al reactor. Una vez alcanzada esta temperatura, la emulsión primaria citada en el paso 3, se agrega poco a poco al aceite mineral. Posteriormente se agregan lentamente 6 mi de una solución acuosa al 50% de glutaraldehído. Estas condiciones se mantienen por 5 minutos, se suspende la agitación del homogenizador, y la reacción se deja terminar a 50 °C, agitando a 100 rpm durante 1.5 horas. Paso 5. Los solventes acuosos de la suspensión de microcápsulas se evaporan a 60 °C, a vacío, por 6 horas. En este paso, la elevación de la temperatura de 50 a 60 °C debe ser gradual, en un lapso no menor de 30 rnin, para que no se pierda la estabilidad de la emulsión (Genta y colaboradores. Chitin Handbook. Muzzarelli R. A. A. y Peter M. Eds. European Chitin Soc. 1997. p 391-396).Step 4. To 600 ml of mineral oil, 12 g of sorbitan monolaureate are added, stirred, and placed in a 0.8L Janke & Kunkel Ika Labortechnick (Germany) reactor, equipped with a hydraulic jacket and a bath of water circulation, to heat the oil to a temperature of 50 ° C. The oil is stirred at a speed of 100 rpm, provided with the reactor blades, plus 8000 rpm, provided by the ultraturrax homogenizer, which has previously been adapted to the reactor. Once this temperature has been reached, the primary emulsion cited in step 3 is gradually added to the mineral oil. Subsequently, 6 ml of a 50% aqueous solution of glutaraldehyde is slowly added. These conditions are maintained for 5 minutes, stirring of the homogenizer is suspended, and the reaction is allowed to terminate at 50 ° C, stirring at 100 rpm for 1.5 hours. Step 5. The aqueous solvents of the microcapsule suspension are evaporated at 60 ° C, under vacuum, for 6 hours. In this step, the temperature rise from 50 to 60 ° C should be gradual, in a period not less than 30 rnin, so that the stability of the emulsion is not lost (Genta et al. Chitin Handbook. Muzzarelli RAA and Peter M. Eds. European Chitin Soc. 1997. p 391-396).
Paso 6. La suspensión de microcápsulas obtenida se centrifuga a 1590g por 5 min. El aceite se separa por decantación, y las microcápsulas se lavan 3 veces con pequeñas porciones de éter de petróleo para eliminar los residuos de aceite, centrifugando cada vez, bajo las condiciones ya mencionadas con anterioridad, y separando el éter por decantación. Paso 7. Las microcápsulas se secan a vacío a 45 °C.Step 6. The microcapsule suspension obtained is centrifuged at 1590g for 5 min. The oil is separated by decantation, and the microcapsules are washed 3 times with small portions of petroleum ether to remove oil residues, centrifuging each time, under the conditions already mentioned above, and separating the ether by decantation. Step 7. The microcapsules are dried under vacuum at 45 ° C.
Las propiedades de las microcápsulas son las siguientes: se obtiene un producto en
polvo, insoluble en agua. Las microcápsulas presentan forma esférica, y tamaño dentro del rango de 5-50 μm, determinados por microscopía óptica (Cari Zeiss, modelo axiolab).The properties of the microcapsules are as follows: a product is obtained in dust, insoluble in water. The microcapsules have a spherical shape, and size within the range of 5-50 μm, determined by optical microscopy (Cari Zeiss, axiolab model).
El quitosano forma parte de la dieta natural de muchos de los animales acuáticos, por lo que es compatible para aplicaciones en alimentos para acuicultura. Además, actualmente existen numerosos productos de quitosano en el mercado para consumo humano, que se usan como fibra dietética, y para atrapar grasa dietaria, impidiendo la absorción de ésta por el organismo. Por lo anterior, aunado a las propiedades nutricionales y biológicas de la astaxantina, descritas anteriormente, la presente invención propone el uso de quitosano para microencapsular astaxantina, para obtener un producto nuevo, cuyo potencial de utilización en nutrición humana y animal es muy amplio, como ya se ha descrito en el estado del arte.Chitosan is part of the natural diet of many aquatic animals, so it is compatible for applications in food for aquaculture. In addition, there are currently numerous chitosan products on the market for human consumption, which are used as dietary fiber, and to trap dietary fat, preventing its absorption by the body. Therefore, together with the nutritional and biological properties of astaxanthin, described above, the present invention proposes the use of chitosan to microencapsulate astaxanthin, to obtain a new product, whose potential for use in human and animal nutrition is very wide, as It has already been described in the state of the art.
Recientemente la astaxantina está adquiriendo gran importancia como suplemento alimenticio para humanos, gracias a sus propiedades antioxidantes, consideradas muy superiores a las de la vitamina E (Miki W. Puré & Appl. Chem. 1991. 63:141-146). Con la presente invención puede obtenerse un producto para consumo humano, elaborado con astaxantina natural y demás ingredientes grado alimenticio. En tal caso, el quitosano no es hidrolizado por las enzimas digestivas, pero bajo las condiciones de pH ácido del estómago, este biopolímero expande su volumen sin ser digerido. La condición anterior permite que la astaxantina no se degrade en el medio ácido del estómago, lo que puede representar mayor biodisponibilidad del pigmento a nivel intestinal, una vez liberada de las microcápsulas expandidas.Recently, astaxanthin is becoming very important as a food supplement for humans, thanks to its antioxidant properties, considered far superior to those of vitamin E (Miki W. Puré & Appl. Chem. 1991. 63: 141-146). With the present invention a product for human consumption, made with natural astaxanthin and other food grade ingredients, can be obtained. In such a case, chitosan is not hydrolyzed by digestive enzymes, but under conditions of acidic stomach pH, this biopolymer expands its volume without being digested. The previous condition allows astaxanthin not to degrade in the acidic environment of the stomach, which may represent greater bioavailability of the pigment at the intestinal level, once released from the expanded microcapsules.
Habiendo descrito el método de preparación y el producto obtenido como antecedió, reclamamos de nuestra propiedad lo expuesto en las siguientes reivindicaciones.
Having described the method of preparation and the product obtained as above, we claim from our property what is stated in the following claims.