WO2004021342A1 - Recording medium, and recording apparus and method - Google Patents

Recording medium, and recording apparus and method Download PDF

Info

Publication number
WO2004021342A1
WO2004021342A1 PCT/JP2003/010467 JP0310467W WO2004021342A1 WO 2004021342 A1 WO2004021342 A1 WO 2004021342A1 JP 0310467 W JP0310467 W JP 0310467W WO 2004021342 A1 WO2004021342 A1 WO 2004021342A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
recording medium
substrate
magnetic
light
Prior art date
Application number
PCT/JP2003/010467
Other languages
French (fr)
Japanese (ja)
Inventor
Akiyoshi Itoh
Katsuji Nakagawa
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to AU2003257561A priority Critical patent/AU2003257561A1/en
Publication of WO2004021342A1 publication Critical patent/WO2004021342A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers

Definitions

  • the present invention relates to a recording medium in which a plurality of recording layers having different temperature characteristics are formed, and a recording apparatus and method for multilevel recording of information on the recording medium.
  • the recording and reproducing apparatus includes a recording light irradiation unit and a recording magnetic field application unit.
  • the recording light irradiator irradiates the recording light to a predetermined place of the magneto-optical recording medium.
  • the coercivity H e of each recording layer is lowered by the above-mentioned irradiation.
  • the recording magnetic field application unit applies a recording magnetic field of an arbitrary magnitude to the place where the coercive force H c is lowered.
  • the recording magnetic field application unit changes the magnetization state of each recording layer according to the magnitude and / or direction of the recording magnetic field to be applied.
  • the recording / reproducing apparatus performs multi-value recording by combining the magnetization states in the perpendicular direction of each recording layer. Also, the recording / reproducing apparatus detects the magnetization state in the perpendicular direction of the recording layer using the magneto-optical effect, and reproduces the recorded information.
  • the recording and reproducing apparatus includes a recording light irradiator, a reproduction light irradiator, and a reflected light detector.
  • the recording light irradiation unit irradiates the recording light to a predetermined place of the optical recording medium.
  • the crystalline and amorphous states are selected by the temperature elevation level of the recording light to be irradiated, and the information is recorded.
  • an arbitrary recording layer is crystallized by changing the focal position of the objective lens to be condensed when irradiating the recording light to the optical recording medium in the vertical direction.
  • the recording and reproducing apparatus performs multi-value recording by combining the crystallization states in the vertical direction of each recording layer. Further, the recording and reproducing apparatus detects the crystallization state in the vertical direction of the recording layer based on the reflectance, and reproduces the recorded information.
  • the magnitude / direction of the recording magnetic field applied is changed by the recording magnetic field application unit.
  • the apparatus since it is technically sophisticated to rapidly change the magnitude and / or direction of the recording magnetic field, the apparatus itself becomes expensive.
  • the focal position of the objective lens is changed to the vertical direction (focusing direction) of the optical recording medium.
  • Select an arbitrary recording layer irradiate the recording light of a predetermined level to the selected recording layer, select the crystalline and amorphous states according to the temperature rise level of the irradiated recording light, and record the information.
  • vertical movement of the focal position takes time for focus etc., and it takes time for recording information.
  • multilayer magnetic recording is not performed on a magnetic recording medium that can miniaturize the recording marks by the optically assisted magnetic recording method.
  • a recording medium in which a plurality of recording layers having different temperature characteristics are stacked, and multilevel recording is performed by irradiating a recording light having an intensity corresponding to the information to be recorded on the recording medium. It aims to provide a possible recording device and method.
  • the optical recording medium according to the present invention is characterized in that a plurality of recording layers having different crystallization temperatures or amorphization temperatures are stacked in the vertical direction from the substrate surface.
  • a magnetic recording medium according to the present invention is characterized in that a plurality of recording layers having different Curie temperatures in the vertical direction from the substrate surface are laminated.
  • a recording apparatus is a recording light modulated on the basis of information to be recorded on an optical recording medium in which a plurality of recording layers having different crystallization temperatures or amorphization temperatures are stacked in the vertical direction from the substrate surface.
  • multi-value recording means for multi-value recording.
  • a recording apparatus comprises: irradiating means for irradiating a recording light intensity-modulated based on information to be recorded on a recording medium in which a plurality of recording layers having different Curie temperatures are laminated in the vertical direction from the substrate surface; And recording magnetic field application means for applying a recording magnetic field of constant intensity to the place where the light source is irradiated.
  • the recording method according to the present invention comprises: irradiating a recording medium in which a plurality of recording layers having a higher Curie temperature are stacked at a position which is deeper from the substrate surface in the vertical direction, recording light whose intensity is modulated based on information to be recorded; And a magnetic field applying step of applying a constant recording magnetic field to a place irradiated with the recording light whose intensity is modulated by the irradiation step.
  • FIG. 1 is a cross-sectional view of an optical recording medium according to the present invention.
  • FIG. 2 is a block diagram showing the configuration of a recording and reproducing apparatus for recording and reproducing information on the optical recording medium according to the present invention.
  • FIG. 3 is a view showing the cross section of the optical recording medium and the direction of the magnetic moment when multi-value recording of information is performed on the optical recording medium according to the present invention by the recording / reproducing apparatus.
  • FIG. 4 is a view showing the cross section of the magnetic recording medium according to the present invention along with the direction of the magnetic moment.
  • FIG. 5 is a block diagram showing the configuration of a recording and reproducing apparatus for recording and reproducing information on a magnetic recording medium according to the present invention.
  • FIG. 6 shows that the recording / reproducing apparatus recorded multi-value information on the magnetic recording medium according to the present invention.
  • FIG. 6 is a view showing a cross section of the optical recording medium at the time of 4th in the same time as the direction of the magnetic moment.
  • FIG. 7 is a cross-sectional view of the magneto-optical recording medium according to the present invention.
  • FIG. 8 is a block diagram showing the configuration of a recording and reproducing apparatus for recording and reproducing information on the magneto-optical recording medium according to the present invention.
  • FIG. 9 is a view showing a cross section of the optical recording medium when multi-value information is recorded on the magneto-optical recording medium according to the present invention by the recording / reproducing apparatus, together with the direction of the magnetic moment.
  • FIG. 10 is a view showing the cross section of the magneto-optical recording medium on which the expansion reproducing layer according to the present invention is formed, along with the direction of the magnetic moment.
  • FIG. 11 is a view showing the cross section of the optical recording medium when multi-value information is recorded on the magneto-optical recording medium on which the enlargement reproduction layer according to the present invention is formed by the recording and reproducing device, along with the direction of the magnetic moment. is there.
  • FIG. 12 is a diagram showing how the recording magnetic domain magnetically transferred to the expansion reproducing layer by MAMMOS is expanded and reproduced.
  • the optical recording medium 1 of the present invention a plurality of recording layers having different crystallization temperatures are formed, for example, the recording layer formed at a deeper position in the vertical direction from the recording and reproducing surface of the optical recording medium 1.
  • the crystallization temperature is high.
  • a first recording layer 11, a second recording layer 12, and a third recording layer 13 are stacked on a substrate 10. There is.
  • Each recording layer is, for example, in an amorphous state at the initial stage.
  • the first recording layer 11 has a crystallization temperature T 1 and crystallizes when the temperature is raised to the crystallization temperature T 1 or more.
  • the second recording layer 12 has a crystallization temperature T 2, and crystallizes when the temperature is raised to the crystallization temperature T 2 or more.
  • the third recording layer 13 has a crystallization temperature T3 and crystallizes when the temperature is raised to the crystallization temperature T3 or more.
  • the crystallization temperature of each recording layer is: crystallization temperature T 1 ⁇ crystallization temperature T 2 ⁇ crystallization temperature T 3.
  • the optical recording medium 1 has different crystallization temperatures. As long as a plurality of recording layers are formed, the crystallization temperature may be lower as the recording layer is formed at a deeper position in the vertical direction from the recording and reproducing surface of the optical recording medium 1, or the recording layer may be stacked in random. May be
  • the optical recording medium 1 is, for example, a CD-R (CD Recordable) or a CD-RW (CD-Rewritable) or the like in which a plurality of recording layers having different crystallization temperatures or reaction temperatures described above are formed.
  • CD-R is a medium that can be reproduced and recorded additionally, and recording layers such as porphyrin dyes, cyanine dyes, azo dyes, dipyrromethene dyes, polymethylene dyes, naphthoquinone dyes, etc. Organic dyes are used.
  • CD-RW is a medium on which data can be recorded, reproduced, and erased.
  • the recording layer is made of an alloy material mainly composed of Ge, Sb, Te, etc., Ag, In, S The phase change inorganic material of the alloy material which makes b, T e a main raw material is used.
  • the optical recording medium 1 is, as shown in FIG. 2, a recording light irradiator 14, a reproduction light irradiator 15, a first half mirror 16, a second half mirror 17, and an objective lens.
  • Information is recorded by the recording and reproducing apparatus 2 provided with 18, the detecting unit 19, and the reproducing unit 20, and the recorded information is reproduced.
  • the recording and reproducing apparatus 2 provided with 18, the detecting unit 19, and the reproducing unit 20, and the recorded information is reproduced.
  • an operation of recording information on the optical recording medium 1 by the recording and reproducing apparatus 2 and reproducing the recorded information will be described.
  • the recording light irradiator 14 irradiates the recording light onto the optical recording medium 1 through the first half mirror 16, the second half mirror 17 and the objective lens 18.
  • the recording light is incident from the side of the substrate 10 of the optical recording medium 1.
  • the recording light irradiator 14 raises the temperature of a predetermined place of the optical recording medium 1 to, for example, a crystallization temperature T 1 based on the information to be recorded.
  • the first recording layer 11 of the optical recording medium 1 is crystallized as shown in FIG. 3 (a).
  • the recording light irradiator 14 raises the temperature of a predetermined place of the optical recording medium 1 to, for example, the crystallization temperature T 2 based on the information to be recorded.
  • the first recording layer 11 and the second recording layer 12 of the optical recording medium 1 are crystallized as shown in FIG. 3 and (b).
  • the recording light irradiator 14 raises the temperature of a predetermined place of the optical recording medium 1 to, for example, the crystallization temperature T 3 based on the information to be recorded.
  • the first recording layer 11, the second recording layer 12, and the third recording layer 13 of the optical recording medium 1 are crystallized as shown in FIG. 3 (c).
  • the amount of light reflected by the recording layer after crystallization (hereinafter referred to as reflectance) is smaller than the reflectance of the recording layer before the change. Therefore, as shown in FIG. 3 (d), when the recording layer is not crystallized, the reflectance is the highest, and FIG. 3 (a) s FIG. 3 (b), FIG.
  • the reflectance decreases in the order of c).
  • the recording / reproducing apparatus 2 reproduces information by using the difference in reflectance.
  • the recording state as shown in FIG. 3 (a) is "1”
  • the recording state as shown in FIG. 3 (b) is "2”
  • the recording as shown in FIG. 3 (c) It is assumed that the state is "3”
  • the recording state as shown in FIG. 3 (d) is "0"
  • information is recorded / reproduced by four values. The following describes the playback operation.
  • the reproduction light irradiator 15 irradiates the reproduction light onto the optical recording medium 1 through the first half mirror 16, the second half mirror 17 and the objective lens 18.
  • the reproduction light is incident from the side of the substrate 10 of the optical recording medium 1.
  • the reproduction light irradiated to the optical recording medium 1 is reflected, and is input to the detection unit 19 via the objective lens 18 and the second half mirror 17.
  • the detection unit 19 detects the reflectance from the incident light and outputs it to the reproduction unit 20.
  • the reproducing unit 20 reproduces the information recorded in the optical recording medium 1 based on the inputted reflectance.
  • the recording / reproducing apparatus 2 configured in this way irradiates the recording light to the optical recording medium 1 in which a plurality of recording layers having different crystallization temperatures are formed, and the temperature is raised based on the information to be recorded to record the information Since the recorded information is reproduced, the information can be multi-valued recorded on the optical recording medium 1 by changing the power of the recording light to be irradiated, and the multi-valued recorded information can be multi-valued based on the reflectance. It can be played back.
  • the initial state may be a crystallized state, and recording layers having different amorphization temperatures may be stacked.
  • the recording layers may not be in direct contact with each other, and for example, a dielectric layer or a nonmagnetic layer may be formed between the recording layers.
  • the magnetic recording medium of the present invention a plurality of magnetic recording layers having different Curie temperatures are formed. Is high.
  • the magnetic recording medium 3 is, for example, as shown in FIG. A layer 31, a second magnetic recording layer 32, and a third magnetic recording layer 33 are stacked.
  • the magnetization direction of each magnetic recording layer may be either a perpendicular magnetization film or an in-plane magnetization film.
  • the former will be described as an example.
  • the magnetization of each recording layer is assumed to be downward as shown in FIG. 4 in the initial state.
  • the first magnetic recording layer 31 has a Curie temperature T1, and becomes paramagnetic when the temperature is raised to the Curie temperature T1 or more.
  • the second magnetic recording layer 32 has a single temperature T 2 and becomes paramagnetic when the temperature is raised to the Curie temperature T 2 or more.
  • the third magnetic recording layer 33 has a Curie temperature T3 and becomes paramagnetic when heated to the Curie temperature T3 or more.
  • the Curie temperature of each magnetic recording layer is Curie temperature T 1 ⁇ curly temperature T 2 ⁇ curly temperature T 3.
  • the magnetic recording medium 3 is, for example, a recording medium such as an HDD in which a plurality of magnetic recording layers such as CoCr or FePt having different Curie temperatures described above are formed.
  • the magnetic recording medium 3 may have a plurality of recording layers having different Curie temperatures, and the Curie temperature is lower as the recording layer is formed at a deeper position in the perpendicular direction from the recording and reproducing surface of the magnetic recording medium 3. It may be stacked at random.
  • the magnetic recording medium 3 has information recorded and recorded by a recording / reproducing apparatus 4 having a recording light irradiation unit 34, an objective lens 35, and a magnetic head 36, as shown in FIG. Is played.
  • a recording / reproducing apparatus 4 having a recording light irradiation unit 34, an objective lens 35, and a magnetic head 36, as shown in FIG. Is played.
  • the recording / reproducing apparatus 4 records information on the magnetic recording medium 3 by the optically assisted magnetic recording method.
  • the recording light irradiator 34 irradiates the recording light onto the magnetic recording medium 3 through the objective lens 35, and raises the temperature to, for example, the Curie temperature T1 based on the information to be recorded.
  • the recording light is incident from the substrate 30 side of the magnetic recording medium 3, the recording light is not limited to the incident method of the recording light, and the recording light may be incident from the magnetic head side.
  • the magnetic head 36 applies a recording magnetic field of constant intensity at the position heated by the recording light irradiator 34. Then, the recording light irradiation unit 34 stops the irradiation of the recording light and cools it down. As a result, the magnetization of the first magnetic recording layer 31 of the magnetic recording medium 3 is reversed as shown in FIG. 6 (a).
  • the recording light irradiator 34 is, for example, based on Curie temperature T 2 based on the information to be recorded. Heat up to.
  • the magnetic head 36 moves to a position heated by the recording light irradiator 34 and applies a recording magnetic field of a constant intensity.
  • the recording light irradiation unit 34 stops the irradiation of the recording light and lowers the temperature.
  • the magnetizations of the first magnetic recording layer 31 and the second magnetic recording layer 32 of the magnetic recording medium 3 are reversed as shown in FIG. 6 (b).
  • the recording light irradiator 34 raises the temperature to, for example, the Curie temperature T3 based on the information to be recorded.
  • the magnetic head 36 moves to a position heated by the recording light irradiator 34 and applies a recording magnetic field of a constant intensity. Then, the recording light irradiation unit 34 stops the irradiation of the recording light and cools it down. As a result, the magnetization of the first magnetic recording layer 31, the second magnetic recording layer 32 and the third magnetic recording layer 33 of the magnetic recording medium 3 is reversed as shown in FIG. 6 (b). In the state shown in Fig. 6 (c), the leakage magnetic field is the largest, and the leakage magnetic field decreases in the order of Fig. 6 (b), Fig. 6 (a) and Fig. 6 (d).
  • the recording / reproducing apparatus 4 reproduces information using the difference in magnitude of the leakage magnetic field.
  • the magnetization state as shown in FIG. 6 (a) is “1”
  • the magnetization state as shown in FIG. 6 (b) is “2”
  • the magnetization state as shown in FIG. 6 (c) Let “3”, and let the magnetization state as shown in Fig. 6 (d) be “0”, and information be recorded / reproduced with four values.
  • the leakage magnetic field is the largest, and the leakage magnetic field decreases in the order of Fig. 6 (b), Fig. 6 (a) and Fig. 6 (d).
  • the magnetic head 36 detects this leaked magnetic field from the substrate 30 side of the magnetic recording medium 3 and reproduces the information recorded in the magnetic recording medium 3.
  • the recording / reproducing apparatus 4 configured in this manner records information by optically assisted magnetic recording on the magnetic recording medium 3 in which a plurality of magnetic recording layers having different temperatures are formed, and the recorded information is recorded as a magnetic head 3 6 Since the reproduction is performed according to the above, it is possible to record information on the magnetic recording medium 3 in multiple levels by modulating the intensity of the recording light to be irradiated, and by detecting the leakage magnetic field output according to the magnetization state. Information can be reproduced.
  • the magnetic recording layers may not be in direct contact with each other, and for example, a dielectric layer or a nonmagnetic layer may be formed between the magnetic recording layers.
  • the temperature is higher.
  • the magneto-optical recording medium 5 includes a first magnetic recording layer 41, a second magnetic recording layer 42, and a third magnetic recording layer 43 on a substrate 40. And are stacked.
  • the magnetization direction of each magnetic recording layer may be a perpendicular magnetization film or an in-plane magnetization film, and the former will be described as an example here.
  • the magnetization of each recording layer is assumed to be downward as shown in FIG. 7 in the initial state.
  • the first magnetic recording layer 41 has a Curie temperature T1, and becomes paramagnetic when heated to a temperature above T1.
  • the second magnetic recording layer 42 has a single temperature T 2 and becomes paramagnetic when the temperature is raised to the Curie temperature T 2 or more.
  • the third magnetic recording layer 43 has a Curie temperature T3 and becomes paramagnetic when heated to the Curie temperature T3 or more.
  • the Curie temperature of each magnetic recording layer is such that Curie temperature T 1 ⁇ Curie temperature T 2 ⁇ Curie temperature T 3.
  • the magneto-optical recording medium 5 is, for example, a recording medium such as M ⁇ in which a plurality of magnetic recording layers such as T e F e C o having different Curie temperatures described above are formed.
  • the magneto-optical recording medium 5 is only required to have a plurality of recording layers having different temperatures, and the recording layer formed at a deeper position in the vertical direction from the recording and reproducing surface of the magneto-optical recording medium 5 is The Curie temperature may be low, or may be stacked randomly. As shown in FIG. 8, the magneto-optical recording medium 5 has a recording light irradiation unit 44, a reproduction light irradiation unit 45, a first half mirror 46, a second half mirror 47, and an objective. Information is recorded by the recording and reproducing apparatus 6 including the lens 48, the recording magnetic field applying unit 49, the detecting unit 50, and the reproducing unit 51, and the recorded information is reproduced.
  • the recording and reproducing apparatus 6 including the lens 48, the recording magnetic field applying unit 49, the detecting unit 50, and the reproducing unit 51, and the recorded information is reproduced.
  • an operation of recording information on the magneto-optical recording medium 5 by the recording and reproducing device 6 and reproducing the recorded information will be described.
  • the recording light irradiator 44 irradiates the recording light to the magneto-optical recording medium 5 through the first half mirror 46, the second half mirror 47 and the objective lens 48, and based on the information to be recorded, For example, the temperature is raised to the Curie temperature T1.
  • the recording light is incident from the substrate 40 side of the magneto-optical recording medium 5.
  • the recording magnetic field application unit 49 applies a recording magnetic field of a constant intensity to the location heated by the recording light irradiation unit 44.
  • Recording light irradiation The unit 44 stops the irradiation of the recording light and lowers the temperature. As a result, the magnetization of the first magnetic recording layer 41 of the magneto-optical recording medium 5 is reversed as shown in FIG. 9 (a).
  • the recording light irradiator 44 raises the temperature to, for example, the Curie temperature T 2 based on the information to be recorded.
  • the recording magnetic field application unit 49 moves to a position heated by the recording light irradiation unit 44 and applies a recording magnetic field of a constant intensity. Then, the recording light irradiation unit 44 stops the irradiation of the recording light and lowers the temperature.
  • the magnetization of the first magnetic recording layer 41 and the second magnetic recording layer 42 of the magneto-optical recording medium 5 is reversed as shown in FIG. 9 (b). Further, the recording light irradiator 44 raises the temperature to, for example, the Curie temperature T3 based on the information to be recorded.
  • the recording magnetic field application unit 49 moves to a position heated by the recording light irradiation unit 44 and applies a recording magnetic field of a constant intensity. Then, the recording light irradiation unit 4 4 stops the irradiation of the recording light and lowers the temperature. As a result, the magnetizations of the first magnetic recording layer 41, the second magnetic recording layer 42, and the third magnetic recording layer 43 of the magneto-optical recording medium 5 are reversed as shown in FIG. 9 (c). Do. In the magneto-optical recording medium 5, the magnetization state as shown in FIG. 9 (a) is "1", the magnetization state as shown in FIG. 9 (b) is "2", and the magnetization as shown in FIG. 9 (c).
  • the recording / reproducing apparatus 6 reproduces information from the magneto-optical recording medium 5 by the magneto-optical effect.
  • the reproduction light irradiator 45 irradiates the magneto-optical recording medium 5 with reproduction light through the first half mirror 46, the second half mirror 47 and the objective lens 48.
  • the reproduction light is incident from the substrate 40 side of the magneto-optical recording medium 5.
  • the reproduction light emitted to the magneto-optical recording medium 5 is reflected, and is incident on the detection unit 50 through the objective lens 48 and the second half mirror 47.
  • the detection unit 50 includes a wave plate 5 0 a, a splitter 5 0 b, a first light detector 5 0 c, and a second light detector 5 0 d.
  • the light (hereinafter referred to as "reflected light") incident from the second half mirror 47 is separated into the P-polarization component and the S-polarization component by the wave plate 50a and the beam splitter 50b.
  • the P-polarization component is incident on a first light detector 50 c
  • the S-polarization component is incident on a second light detector 5 0 c.
  • the photodetector 50 d detects the rotation and phase change of the polarization plane of the reflected light from each polarization component.
  • the reproducing unit 51 reproduces the information recorded on the magneto-optical recording medium 5 according to the detection result of the detecting unit 50.
  • an auxiliary layer 52 and an enlargement reproducing layer 53 are formed between the substrate 40 and the first magnetic recording layer 41. It may be one (hereinafter referred to as magneto-optical recording medium 7).
  • the auxiliary layer 52 is a nonmagnetic layer having no magnetic property.
  • the enlargement reproduction layer 53 is, for example, an amorphous film of alloying a rare earth element (hereinafter referred to as RE) and a transition metal element (hereinafter referred to as TM).
  • RE rare earth element
  • TM transition metal element
  • the magneto-optical recording medium 7 is only required to have a plurality of recording layers having different Curie temperatures, and the recording layer formed at a position deeper in the vertical direction from the recording and reproducing surface of the magneto-optical recording medium 7 is Lee temperature may be low or may be stacked randomly.
  • the magneto-optical recording medium 7 is subjected to multi-value recording and reproduction of information by the recording and reproduction apparatus 6 shown in FIG.
  • the recording operation of the recording / reproducing apparatus 6 is the same as described above.
  • the magneto-optical recording medium 7 is assumed to be recorded in a magnetized state as shown in FIG. 11 (a) to (c).
  • the first magnetic recording film 41, the second magnetic recording film 42 and the third magnetic recording film 42 are formed on the expansion reproducing layer 53 through the nonmagnetic auxiliary layer 52.
  • the magnetization state of the magnetic recording film 43 (hereinafter referred to as “magnetic recording layer m”) is magnetically transferred.
  • magnetic recording layer m the magnetization state of the magnetic recording film 43
  • FIG. 12 (b) the reproduction light L irradiated from the reproduction light irradiating section 45.
  • the recording / reproducing device 6 reaches the position below the recording light L with the following information: It generates a magnetic field that inverts the expanded magnetic domain, and disappears the recording magnetic domain expanded and transferred to the expanded reproducing layer 53.
  • the recording / reproducing apparatus 6 configured in this manner irradiates the recording light to the magneto-optical recording medium 5 in which a plurality of magnetic recording layers having different Curie temperatures are formed, and raises the temperature based on the information to be recorded. Since information is recorded by applying a recording magnetic field of a constant intensity and the magnetization state is reversed, and the recorded information is reproduced, the information is multi-valued to the magneto-optical recording medium 5 by changing the power of the recording light to be irradiated. Recording can be performed, and multi-valued recorded information can be reproduced based on the magneto-optical effect.
  • the recording / reproducing apparatus 6 a plurality of magnetic recording layers having different Curie temperatures are formed, and the recording light is irradiated to the magneto-optical recording medium 7 in which the auxiliary layer and the enlargement reproduction layer are formed above the magnetic recording layer.
  • the temperature is raised based on the information to be recorded, a recording magnetic field of constant intensity is applied to the temperature rising location, the information is recorded by reversing the magnetization state, and the recorded information is reproduced by the MAMMOS.
  • the information can be multi-value recorded on the magneto-optical recording medium 5 by the small recording mark size by changing 1 and information on the multi-value recording micro recording mark size can be reproduced based on the magneto-optical effect. it can.
  • the respective magnetic recording layers may not be in direct contact, and for example, a dielectric layer or a nonmagnetic layer may be formed between the respective magnetic recording layers.
  • the present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications, substitutions or equivalents thereof may be made without departing from the scope of the appended claims and the subject matter thereof. It will be apparent to one skilled in the art that the Industrial Applicability As described above in detail, since the recording medium according to the present invention is formed by laminating a plurality of recording layers having a higher crystallization temperature in the vertical direction from the substrate surface, the light intensity modulation ( Multi-level recording can be easily performed by LIM s Light Intensity Modulation.
  • the recording medium according to the present invention since a plurality of recording layers having a higher temperature are further stacked in the vertical direction from the surface of the substrate, Magnetization states with different depths can be easily formed by intensity modulation (LIM, Light Intensity Modulation), and multi-level recording can be easily performed by applying a constant recording magnetic field thereto. Furthermore, in the recording medium according to the present invention, since the enlarged reproduction layer is formed between the substrate and the recording layer via the auxiliary layer, reproduction of the minute recording marks recorded in the recording layer is performed by MA MM OS It can be done by
  • the recording apparatus and method according to the present invention record on an optical recording medium in which a plurality of recording layers having higher crystallization temperatures are stacked at positions deeper in the vertical direction from the substrate surface. Since the recording light having the intensity modulated based on the information is irradiated and the multi-value recording means for multi-value recording is provided, multi-value recording can be performed by irradiating the recording light of the intensity according to the information to be recorded.
  • the recording apparatus and method according to the present invention the information to be recorded on the recording medium in which a plurality of recording layers having a higher temperature are accumulated in the vertical direction from the substrate surface
  • the recording magnetic field applying means for applying the recording magnetic field of constant intensity to the place where the recording light is irradiated, recording of the intensity according to the information to be recorded.
  • Light can be irradiated to form magnetization states of different depths, and multi-valued recording can be performed by applying a constant recording magnetic field thereto.

Abstract

A multi-value recording means which conducts a multi-value recording by irradiating an optical recording medium (1), which is formed by vertically stacking, on a substrate surface, a plurality of recording layers having different crystallization or noncrystallization temperatures, with a recording light whose intensity is modulated the information to be recorded.

Description

明細書 記録媒体、 記録装置及び方法 技術分野 本発明は、 温度特性の異なる記録層が複数形成されている記録媒体と、 上記記 録媒体に情報を多値記録する記録装置及び方法に関する。  TECHNICAL FIELD The present invention relates to a recording medium in which a plurality of recording layers having different temperature characteristics are formed, and a recording apparatus and method for multilevel recording of information on the recording medium.
また、 本出願は、 日本国において 2 0 0 2年 8月 2 8日に出願した日本特許出 願番号 2 0 0 2— 2 4 9 1 5 8を基礎として優先権を主張するものであり、 この 出願を参照することにより、 本出願に援用される。 背景技術 近年、 I T産業の目覚ましい発展により、 家庭等においてもデ一タ量の大きな 情報を扱う機会が多くなつてきている。 これにともない、 記録媒体の大容量化が 求められている。 例えば、 記録媒体の記録層を多層化し、 多値記録を行うことに より記録密度を向上させる方法がある。 以下に、 上記記録媒体に情報を記録し、 記録した情報を再生する記録再生装置について説明する。なお、記録媒体として、 記録層が複数形成されている光磁気記録媒体を用いる。  In addition, this application claims priority based on the Japanese Patent Application No. 2 0 0 2-2 4 9 1 5 8 filed on Aug. 28, 2002 in Japan, This application is incorporated by reference into this application. BACKGROUND ART In recent years, with the remarkable development of IT industry, there are many opportunities to handle large amounts of information in homes and the like. Along with this, there is a demand for increasing the capacity of recording media. For example, there is a method of improving the recording density by forming the recording layer of the recording medium in multiple layers and performing multi-value recording. Hereinafter, a recording and reproducing apparatus for recording information on the recording medium and reproducing the recorded information will be described. As a recording medium, a magneto-optical recording medium in which a plurality of recording layers are formed is used.
記録再生装置は、 記録光照射部と記録磁界印加部とを備えている。 記録光照射 部は、 光磁気記録媒体の所定の場所に記録光を照射する。 光磁気記録媒体は、 上 記照射により各記録層の保持力 H eが下げられる。 記録磁界印加部は、 保持力 H cの下がった場所に任意の大きさの記録磁界を印加する。 記録磁界印加部は、 印 加する記録磁界の大きさ及び/又は向きにより各記録層の磁化状態を変えている。 記録再生装置では、 各記録層の垂直方向の磁化状態の組み合わせにより多値記録 を行う。 また、 記録再生装置は、 記録層の垂直方向の磁化状態を磁気光学効果を 利用して検出し、 記録されている情報を再生する。  The recording and reproducing apparatus includes a recording light irradiation unit and a recording magnetic field application unit. The recording light irradiator irradiates the recording light to a predetermined place of the magneto-optical recording medium. In the magneto-optical recording medium, the coercivity H e of each recording layer is lowered by the above-mentioned irradiation. The recording magnetic field application unit applies a recording magnetic field of an arbitrary magnitude to the place where the coercive force H c is lowered. The recording magnetic field application unit changes the magnetization state of each recording layer according to the magnitude and / or direction of the recording magnetic field to be applied. The recording / reproducing apparatus performs multi-value recording by combining the magnetization states in the perpendicular direction of each recording layer. Also, the recording / reproducing apparatus detects the magnetization state in the perpendicular direction of the recording layer using the magneto-optical effect, and reproduces the recorded information.
次に、 記録層が複数形成されている光記録媒体に情報を記録し、 記録した情報 を再生する記録再生装置について説明する。 Next, information is recorded on an optical recording medium in which a plurality of recording layers are formed, The recording and reproducing apparatus for reproducing the
記録再生装置は、 記録光照射部と、 再生光照射部と、 反射光検出部とを備えて いる。 記録光照射部は、 光記録媒体の所定の場所に記録光を照射する。 光記録媒 体は、 照射される記録光の昇温レベルにより、 結晶と非晶質の状態が選択され、 情報が記録される。 記録再生装置では、 記録光を光記録媒体に照射する際に集光 する対物レンズの焦点位置を垂直方向に変えることにより任意の記録層を結晶化 する。 記録再生装置では、 各記録層の垂直方向の結晶化状態の組み合わせにより 多値記録を行う。 また、 記録再生装置は、 記録層の垂直方向の結晶化状態を反射 率に基づき検出し、 記録されている情報を再生する。  The recording and reproducing apparatus includes a recording light irradiator, a reproduction light irradiator, and a reflected light detector. The recording light irradiation unit irradiates the recording light to a predetermined place of the optical recording medium. In the optical recording medium, the crystalline and amorphous states are selected by the temperature elevation level of the recording light to be irradiated, and the information is recorded. In the recording and reproducing apparatus, an arbitrary recording layer is crystallized by changing the focal position of the objective lens to be condensed when irradiating the recording light to the optical recording medium in the vertical direction. The recording and reproducing apparatus performs multi-value recording by combining the crystallization states in the vertical direction of each recording layer. Further, the recording and reproducing apparatus detects the crystallization state in the vertical direction of the recording layer based on the reflectance, and reproduces the recorded information.
ところで、 記録層が複数形成されている光磁気記録媒体に多値記録する記録再 生装置では、 上述したように、 記録磁界印加部により印加する記録磁界の大きさ /又は向きを変えている。 しかし、 記録磁界の大きさ及び/又は向きを高速に変 調するのは技術的に高度であるため、 装置自体が高価となってしまう。  Incidentally, in the recording / reproducing apparatus for multi-value recording on a magneto-optical recording medium in which a plurality of recording layers are formed, as described above, the magnitude / direction of the recording magnetic field applied is changed by the recording magnetic field application unit. However, since it is technically sophisticated to rapidly change the magnitude and / or direction of the recording magnetic field, the apparatus itself becomes expensive.
また、 記録層が複数形成されている光記録媒体に多値記録する記録再生装置で は、 上述したように、 対物レンズの焦点位置を当該光記録媒体の垂直方向 (フォ —カシング方向) に変えることで任意の記録層を選択し、 選択した記録層に所定 のレベルの記録光を照射し、 照射した記録光の昇温レベルにより結晶と非晶質の 状態を選択し、 情報を記録している。 しかし、 焦点位置の垂直方向の移動は、 フ オーカス等に時間が掛かり、 情報の記録に時間が掛かる問題がある。  Further, in the recording / reproducing apparatus for performing multi-value recording on an optical recording medium in which a plurality of recording layers are formed, as described above, the focal position of the objective lens is changed to the vertical direction (focusing direction) of the optical recording medium. Select an arbitrary recording layer, irradiate the recording light of a predetermined level to the selected recording layer, select the crystalline and amorphous states according to the temperature rise level of the irradiated recording light, and record the information. There is. However, vertical movement of the focal position takes time for focus etc., and it takes time for recording information.
また、 光アシスト磁気記録方法により記録マークの微小化を行うことが可能な 磁気記録媒体では、 多層多値記録は行われていない。 発明の鬨示 本発明では、 温度特性の異なる記録層を複数積層した記録媒体と、 上記記録媒 体に記録する情報に応じた強度の記録光を照射することにより多値記録を行うこ とが可能な記録装置及び方法を提供することを目的とする。  In addition, multilayer magnetic recording is not performed on a magnetic recording medium that can miniaturize the recording marks by the optically assisted magnetic recording method. In the present invention, there is provided a recording medium in which a plurality of recording layers having different temperature characteristics are stacked, and multilevel recording is performed by irradiating a recording light having an intensity corresponding to the information to be recorded on the recording medium. It aims to provide a possible recording device and method.
本発明に係る光記録媒体は、 基板表面から垂直方向に結晶化温度又は非晶質化 温度の異なる記録層が複数積層されてなることを特徴とする。 03 010467 The optical recording medium according to the present invention is characterized in that a plurality of recording layers having different crystallization temperatures or amorphization temperatures are stacked in the vertical direction from the substrate surface. 03 010467
3 本発明に係る磁気記録媒体は、 基板表面から垂直方向にキュリー温度の異なる 記録層が複数積層されてなることを特徴とする。 3. A magnetic recording medium according to the present invention is characterized in that a plurality of recording layers having different Curie temperatures in the vertical direction from the substrate surface are laminated.
本発明に係る記録装置は、 基板表面から垂直方向に結晶化温度又は非晶質化温 度の異なる記録層が複数積層されてなる光記録媒体に、 記録する情報に基づき強 度変調した記録光を照射し、 多値記録する多値記録手段を備える。  A recording apparatus according to the present invention is a recording light modulated on the basis of information to be recorded on an optical recording medium in which a plurality of recording layers having different crystallization temperatures or amorphization temperatures are stacked in the vertical direction from the substrate surface. And multi-value recording means for multi-value recording.
本発明に係る記録方法は、 基板表面から垂直方向に結晶化温度又は非晶質化温 度の異なる記録層が複数積層されてなる光記録媒体に、 記録する情報に基づき強 度変調した記録光を照射し、 多値記録する。  According to the recording method of the present invention, a recording light intensity-modulated based on information to be recorded on an optical recording medium in which a plurality of recording layers having different crystallization temperatures or amorphization temperatures in the vertical direction from the substrate surface is laminated. And multi-value recording.
本発明に係る記録装置は、 基板表面から垂直方向にキュリー温度の異なる記録 層が複数積層されてなる記録媒体に、 記録する情報に基づき強度変調した記録光 を照射する照射手段と、 上記記録光が照射されている場所に一定強度の記録磁界 を印加する記録磁界印加手段とを備える。  A recording apparatus according to the present invention comprises: irradiating means for irradiating a recording light intensity-modulated based on information to be recorded on a recording medium in which a plurality of recording layers having different Curie temperatures are laminated in the vertical direction from the substrate surface; And recording magnetic field application means for applying a recording magnetic field of constant intensity to the place where the light source is irradiated.
本発明に係る記録方法は、 基板表面から垂直方向に深い位置ほどキュリー温度 の高い記録層が複数積層されてなる記録媒体に、 記録する情報に基づき強度変調 した記録光を照射する照射工程と、 上記照射工程により強度変調された記録光が 照射されている場所に一定の記録磁界を印加する磁界印加工程とを有する。 図面の簡単な説明 図 1は、 本発明に係る光記録媒体の断面図である。  The recording method according to the present invention comprises: irradiating a recording medium in which a plurality of recording layers having a higher Curie temperature are stacked at a position which is deeper from the substrate surface in the vertical direction, recording light whose intensity is modulated based on information to be recorded; And a magnetic field applying step of applying a constant recording magnetic field to a place irradiated with the recording light whose intensity is modulated by the irradiation step. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an optical recording medium according to the present invention.
図 2は、 本発明に係る光記録媒体に情報の記録再生を行う記録再生装置の構成 を示すプロック図である。  FIG. 2 is a block diagram showing the configuration of a recording and reproducing apparatus for recording and reproducing information on the optical recording medium according to the present invention.
図 3は、 本発明に係る光記録媒体に記録再生装置により情報を多値記録した際 の当該光記録媒体の断面と磁気モーメントの向きを表す図である。  FIG. 3 is a view showing the cross section of the optical recording medium and the direction of the magnetic moment when multi-value recording of information is performed on the optical recording medium according to the present invention by the recording / reproducing apparatus.
図 4は、 本発明に係る磁気記録媒体の断面を磁気モーメントの向きとともに示 す図である。  FIG. 4 is a view showing the cross section of the magnetic recording medium according to the present invention along with the direction of the magnetic moment.
図 5は、 本発明に係る磁気記録媒体に情報の記録再生を行う記録再生装置の構 成を示すプロック図である。  FIG. 5 is a block diagram showing the configuration of a recording and reproducing apparatus for recording and reproducing information on a magnetic recording medium according to the present invention.
図 6は、 本発明に係る磁気記録媒体に記録再生装置により情報を多値記録した T/JP2003/010467 FIG. 6 shows that the recording / reproducing apparatus recorded multi-value information on the magnetic recording medium according to the present invention. T / JP2003 / 010467
4 際の当該光記録媒体の断面を磁気モーメン卜の向きとともに示す図である。 FIG. 6 is a view showing a cross section of the optical recording medium at the time of 4th in the same time as the direction of the magnetic moment.
図 7は、 本発明に係る光磁気記録媒体の断面図である。  FIG. 7 is a cross-sectional view of the magneto-optical recording medium according to the present invention.
図 8は、 本発明に係る光磁気記録媒体に情報の記録再生を行う記録再生装置の 構成を示すプロック図である。  FIG. 8 is a block diagram showing the configuration of a recording and reproducing apparatus for recording and reproducing information on the magneto-optical recording medium according to the present invention.
図 9は、 本発明に係る光磁気記録媒体に記録再生装置により情報を多値記録し た際の当該光記録媒体の断面を磁気モ一メントの向きとともに示す図である。 図 1 0は、 本発明に係る拡大再生層が形成された光磁気記録媒体の断面を磁気 モーメントの向きとともに示す図である。  FIG. 9 is a view showing a cross section of the optical recording medium when multi-value information is recorded on the magneto-optical recording medium according to the present invention by the recording / reproducing apparatus, together with the direction of the magnetic moment. FIG. 10 is a view showing the cross section of the magneto-optical recording medium on which the expansion reproducing layer according to the present invention is formed, along with the direction of the magnetic moment.
図 1 1は、 本発明に係る拡大再生層が形成された光磁気記録媒体に記録再生装 置により情報を多値記録した際の当該光記録媒体の断面を磁気モーメン トの向き とともに示す図である。  FIG. 11 is a view showing the cross section of the optical recording medium when multi-value information is recorded on the magneto-optical recording medium on which the enlargement reproduction layer according to the present invention is formed by the recording and reproducing device, along with the direction of the magnetic moment. is there.
図 1 2は、 M A M M O Sにより拡大再生層に磁気転写されている記録磁区 を拡大再生する様子を示す図である。 発明を実施するための最良の形態 以下、 本発明の実施の形態について図面を参照しながら詳細に説明する。  FIG. 12 is a diagram showing how the recording magnetic domain magnetically transferred to the expansion reproducing layer by MAMMOS is expanded and reproduced. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本発明の光記録媒体 1は、結晶化温度の異なる記録層が複数層形成されており、 例えば、 当該光記録媒体 1 ·の記録再生面から垂直方向に深い位置に形成されてい る記録層ほど結晶化温度が高い。 光記録媒体 1は、 例えば、 図 1に示すように、 基板 1 0上に第 1の記録層 1 1と、 第 2の記録層 1 2と、 第 3の記録層 1 3とが 積層されている。 なお、 各記録層は、 例えば、 イニシャルでは非晶質状態にある こととする。  In the optical recording medium 1 of the present invention, a plurality of recording layers having different crystallization temperatures are formed, for example, the recording layer formed at a deeper position in the vertical direction from the recording and reproducing surface of the optical recording medium 1. The crystallization temperature is high. In the optical recording medium 1, for example, as shown in FIG. 1, a first recording layer 11, a second recording layer 12, and a third recording layer 13 are stacked on a substrate 10. There is. Each recording layer is, for example, in an amorphous state at the initial stage.
第 1の記録層 1 1は、 結晶化温度 T 1を有しており、 上記結晶化温度 T 1以上 に昇温された場合に結晶化する。 第 2の記録層 1 2は、 結晶化温度 T 2を有して おり、 上記結晶化温度 T 2以上に昇温された場合に結晶化する。 第 3の記録層 1 3は、 結晶化温度 T 3を有しており、 上記結晶化温度 T 3以上に昇温された場合 に結晶化する。 なお、 各記録層の結晶化温度は、 結晶化温度 T 1 <結晶化温度 T 2 <結晶化温度 T 3となっている。 なお、 光記録媒体 1は、 結晶化温度の異なる 記録層が複数形成されていれば良く、 当該光記録媒体 1の記録再生面から垂直方 向に深い位置に形成されている記録層ほど結晶化温度が低くても良いし、 ランダ ムに積層されていても良い。 The first recording layer 11 has a crystallization temperature T 1 and crystallizes when the temperature is raised to the crystallization temperature T 1 or more. The second recording layer 12 has a crystallization temperature T 2, and crystallizes when the temperature is raised to the crystallization temperature T 2 or more. The third recording layer 13 has a crystallization temperature T3 and crystallizes when the temperature is raised to the crystallization temperature T3 or more. The crystallization temperature of each recording layer is: crystallization temperature T 1 <crystallization temperature T 2 <crystallization temperature T 3. The optical recording medium 1 has different crystallization temperatures. As long as a plurality of recording layers are formed, the crystallization temperature may be lower as the recording layer is formed at a deeper position in the vertical direction from the recording and reproducing surface of the optical recording medium 1, or the recording layer may be stacked in random. May be
また、 光記録媒体 1は、 例えば、 上述した結晶化温度あるいは反応温度の異な る記録層が複数形成された C D— R (CD Recordable) 又は C D— RW (CD Rewritable)等である。なお、 CD— Rは、再生及び追記録が可能な媒体であり、 記録層には、 ポルフィ リン系色素、 シァニン系色素、 ァゾ系色素、 ジピロメテン 系色素、 ポリメチレン系色素、 ナフトキノン系色素等の有機色素が使用される。 また、 CD— RWは、 データの記録、 再生及び消去が可能な媒体であり、 記録層 には、 G e, S b, T e等を主原料とする合金材料や、 Ag, I n, S b, T e を主原料とする合金材料の相変化無機材料が使用される。  The optical recording medium 1 is, for example, a CD-R (CD Recordable) or a CD-RW (CD-Rewritable) or the like in which a plurality of recording layers having different crystallization temperatures or reaction temperatures described above are formed. CD-R is a medium that can be reproduced and recorded additionally, and recording layers such as porphyrin dyes, cyanine dyes, azo dyes, dipyrromethene dyes, polymethylene dyes, naphthoquinone dyes, etc. Organic dyes are used. CD-RW is a medium on which data can be recorded, reproduced, and erased. The recording layer is made of an alloy material mainly composed of Ge, Sb, Te, etc., Ag, In, S The phase change inorganic material of the alloy material which makes b, T e a main raw material is used.
上記光記録媒体 1は、 図 2に示すような、 記録光照射部 1 4と、 再生光照射部 1 5と、 第 1のハーフミラー 1 6と、 第 2のハーフミラー 1 7と、 対物レンズ 1 8と、 検出部 1 9と、 再生部 2 0とを備える記録再生装置 2により情報が記録さ れ、 記録された情報が再生される。 ここで、 記録再生装置 2により光記録媒体 1 に情報を記録し、 記録した情報を再生する動作について説明する。  The optical recording medium 1 is, as shown in FIG. 2, a recording light irradiator 14, a reproduction light irradiator 15, a first half mirror 16, a second half mirror 17, and an objective lens. Information is recorded by the recording and reproducing apparatus 2 provided with 18, the detecting unit 19, and the reproducing unit 20, and the recorded information is reproduced. Here, an operation of recording information on the optical recording medium 1 by the recording and reproducing apparatus 2 and reproducing the recorded information will be described.
記録光照射部 1 4は、 第 1のハーフミラー 1 6、 第 2のハーフミラー 1 7及び 対物レンズ 1 8を介して、 記録光を光記録媒体 1に照射する。 なお、 記録光は、 光記録媒体 1の基板 1 0側から入射される。 記録光照射部 1 4は、 記録する情報 に基づき、 例えば結晶化温度 T 1まで光記録媒体 1の所定の場所を昇温する。 そ の結果、 光記録媒体 1の第 1の記録層 1 1は、 図 3 (a) に示すように結晶化さ れる。  The recording light irradiator 14 irradiates the recording light onto the optical recording medium 1 through the first half mirror 16, the second half mirror 17 and the objective lens 18. The recording light is incident from the side of the substrate 10 of the optical recording medium 1. The recording light irradiator 14 raises the temperature of a predetermined place of the optical recording medium 1 to, for example, a crystallization temperature T 1 based on the information to be recorded. As a result, the first recording layer 11 of the optical recording medium 1 is crystallized as shown in FIG. 3 (a).
また、 記録光照射部 1 4は、 記録する情報に基づき、 例えば結晶化温度 T 2ま で光記録媒体 1の所定の場所を昇温する。 その結果、 光記録媒体 1の第 1の記録 層 1 1及び第 2の記録層 1 2は、 図 3 ,(b) に示すように結晶化される。  In addition, the recording light irradiator 14 raises the temperature of a predetermined place of the optical recording medium 1 to, for example, the crystallization temperature T 2 based on the information to be recorded. As a result, the first recording layer 11 and the second recording layer 12 of the optical recording medium 1 are crystallized as shown in FIG. 3 and (b).
さらに、 記録光照射部 1 4は、 記録する情報に基づき、 例えば結晶化温度 T 3 まで光記録媒体 1の所定の場所を昇温する。 その結果、 光記録媒体 1の第 1の記 録層 1 1、 第 2の記録層 1 2及び第 3の記録層 1 3は、 図 3 (c) に示すように 結晶化される。 このように記録層を結晶化させると、結晶化後の記録層による反射光の光量(以 下、 反射率という。) は、 変化前の記録層による反射率よりも減少する。 したがつ て、 図 3 ( d ) に示すように、 記録層が結晶化されていない場合には、 反射率が 最も高く、 また、 図 3 ( a )s 図 3 ( b )、 図 3 ( c ) の順番で反射率が減少する。 記録再生装置 2は、 この反射率の相異を利用して情報の再生を行う。 なお、 光記 録媒体 1では、 図 3 ( a ) のような記録状態を 「 1」 とし、 図 3 ( b ) のような 記録状態を 「2」 とし、 図 3 ( c ) のような記録状態を 「3」 とし、 図 3 ( d ) のような記録状態を「0」として、 4値により情報が記録再生されるものとする。 以下に、 再生動作について述べる。 Furthermore, the recording light irradiator 14 raises the temperature of a predetermined place of the optical recording medium 1 to, for example, the crystallization temperature T 3 based on the information to be recorded. As a result, the first recording layer 11, the second recording layer 12, and the third recording layer 13 of the optical recording medium 1 are crystallized as shown in FIG. 3 (c). When the recording layer is crystallized in this manner, the amount of light reflected by the recording layer after crystallization (hereinafter referred to as reflectance) is smaller than the reflectance of the recording layer before the change. Therefore, as shown in FIG. 3 (d), when the recording layer is not crystallized, the reflectance is the highest, and FIG. 3 (a) s FIG. 3 (b), FIG. The reflectance decreases in the order of c). The recording / reproducing apparatus 2 reproduces information by using the difference in reflectance. In the optical recording medium 1, the recording state as shown in FIG. 3 (a) is "1", the recording state as shown in FIG. 3 (b) is "2", and the recording as shown in FIG. 3 (c). It is assumed that the state is "3", the recording state as shown in FIG. 3 (d) is "0", and information is recorded / reproduced by four values. The following describes the playback operation.
再生光照射部 1 5は、 第 1のハーフミラー 1 6、 第 2のハーフミラ一 1 7及び 対物レンズ 1 8を介して、 再生光を光記録媒体 1に照射する。 なお、 再生光は、 光記録媒体 1の基板 1 0側から入射される。光記録媒体 1に照射された再生光は、 反射され、 対物レンズ 1 8及び第 2のハーフミラー 1 7を介して検出部 1 9に入 射される。 検出部 1 9は、 入射光から反射率を検出し、 再生部 2 0に出力する。 再生部 2 0は、 入力された反射率に基づき、 光記録媒体 1に記録されている情報 を再生する。  The reproduction light irradiator 15 irradiates the reproduction light onto the optical recording medium 1 through the first half mirror 16, the second half mirror 17 and the objective lens 18. The reproduction light is incident from the side of the substrate 10 of the optical recording medium 1. The reproduction light irradiated to the optical recording medium 1 is reflected, and is input to the detection unit 19 via the objective lens 18 and the second half mirror 17. The detection unit 19 detects the reflectance from the incident light and outputs it to the reproduction unit 20. The reproducing unit 20 reproduces the information recorded in the optical recording medium 1 based on the inputted reflectance.
このように構成された記録再生装置 2は、 結晶化温度が異なる記録層が複数形 成された光記録媒体 1に記録光を照射し、 記録する情報に基づき昇温して情報を 記録し、 記録した情報を再生するので、 照射する記録光のパワーを変えることに より当該光記録媒体 1に情報を多値記録することができ、 また、 多値記録した情 報を反射率に基づき多値再生することができる。 なお、 光記録媒体 1は、 初期状 態を結晶化状態とし、 非晶質化温度の異なる記録層を積層しても良い。 また、 光 記録媒体 1は、 各記録層が直接接していなくても良く、 各記録層間に例えば、 誘 電体層や非磁性層が形成されていても良い。  The recording / reproducing apparatus 2 configured in this way irradiates the recording light to the optical recording medium 1 in which a plurality of recording layers having different crystallization temperatures are formed, and the temperature is raised based on the information to be recorded to record the information Since the recorded information is reproduced, the information can be multi-valued recorded on the optical recording medium 1 by changing the power of the recording light to be irradiated, and the multi-valued recorded information can be multi-valued based on the reflectance. It can be played back. In the optical recording medium 1, the initial state may be a crystallized state, and recording layers having different amorphization temperatures may be stacked. In the optical recording medium 1, the recording layers may not be in direct contact with each other, and for example, a dielectric layer or a nonmagnetic layer may be formed between the recording layers.
次に、 第 2の実施の形態について以下に述べる。  Next, a second embodiment will be described below.
本発明の磁気記録媒体は、 キュリー温度の異なる磁気記録層が複数層形成され ており、 例えば、 当該磁気記録媒体の記録再生面から垂直方向に深い位置に形成 されている磁気記録層ほどキュリー温度が高い。  In the magnetic recording medium of the present invention, a plurality of magnetic recording layers having different Curie temperatures are formed. Is high.
磁気記録媒体 3は、 例えば、 図 4に示すように、 基板 3 0上に第 1の磁気記録 層 3 1と、第 2の磁気記録層 3 2と、第 3の磁気記録層 3 3とが積層されている。 なお、 各磁気記録層の磁化方向は、 垂直磁化膜でも面内磁化膜でも良く、 ここで は、 前者を例に説明する。 まず、 各記録層の磁化は、 イニシャルでは図 4に示す ように下向きであることとする。 The magnetic recording medium 3 is, for example, as shown in FIG. A layer 31, a second magnetic recording layer 32, and a third magnetic recording layer 33 are stacked. The magnetization direction of each magnetic recording layer may be either a perpendicular magnetization film or an in-plane magnetization film. Here, the former will be described as an example. First, the magnetization of each recording layer is assumed to be downward as shown in FIG. 4 in the initial state.
第 1の磁気記録層 3 1は、 キュリー温度 T 1を有しており、 上記キュリー温度 T 1以上に昇温された場合に、 常磁性になる。 第 2の磁気記録層 3 2は、 キユリ 一温度 T 2を有しており、 上記キュリー温度 T 2以上に昇温された場合に、 常磁 性になる。 第 3の磁気記録層 3 3は、 キュリー温度 T 3を有しており、 上記キュ リー温度 T 3以上に昇温された場合に、 常磁性になる。 なお、 各磁気記録層のキ ュリー温度は、 キュリー温度 T 1 <キュリ一温度 T 2 <キュリ一温度 T 3となつ ている。 また、 磁気記録媒体 3は、 例えば、 上述したキュリー温度の異なる C o C r又は F e P t等の磁気記録層が複数形成された H D D等の記録媒体である。 なお、 磁気記録媒体 3は、 キュリー温度の異なる記録層が複数形成されていれば 良く、 当該磁気記録媒体 3の記録再生面から垂直方向に深い位置に形成されてい る記録層ほどキュリー温度が低くても良いし、ランダムに積層されていても良い。 上記磁気記録媒体 3は、 図 5に示すような、 記録光照射部 3 4と、 対物レンズ 3 5と、 磁気ヘッ ド 3 6とを備える記録再生装置 4により情報が記録され、 記録 された情報が再生される。 ここで、 記録再生装置 4により磁気記録媒体 3に情報 を記録し、 記録した情報を再生する動作について説明する。 なお、 記録再生装置 4は、 光アシスト磁気記録方法により磁気記録媒体 3に情報を記録する。  The first magnetic recording layer 31 has a Curie temperature T1, and becomes paramagnetic when the temperature is raised to the Curie temperature T1 or more. The second magnetic recording layer 32 has a single temperature T 2 and becomes paramagnetic when the temperature is raised to the Curie temperature T 2 or more. The third magnetic recording layer 33 has a Curie temperature T3 and becomes paramagnetic when heated to the Curie temperature T3 or more. The Curie temperature of each magnetic recording layer is Curie temperature T 1 <curly temperature T 2 <curly temperature T 3. The magnetic recording medium 3 is, for example, a recording medium such as an HDD in which a plurality of magnetic recording layers such as CoCr or FePt having different Curie temperatures described above are formed. The magnetic recording medium 3 may have a plurality of recording layers having different Curie temperatures, and the Curie temperature is lower as the recording layer is formed at a deeper position in the perpendicular direction from the recording and reproducing surface of the magnetic recording medium 3. It may be stacked at random. The magnetic recording medium 3 has information recorded and recorded by a recording / reproducing apparatus 4 having a recording light irradiation unit 34, an objective lens 35, and a magnetic head 36, as shown in FIG. Is played. Here, an operation of recording information on the magnetic recording medium 3 by the recording / reproducing apparatus 4 and reproducing the recorded information will be described. The recording / reproducing apparatus 4 records information on the magnetic recording medium 3 by the optically assisted magnetic recording method.
記録光照射部 3 4は、 対物レンズ 3 5を介して、 記録光を磁気記録媒体 3に照 射し、 記録する情報に基づき、 例えばキュリー温度 T 1まで昇温する。 なお、 記 録光は、 磁気記録媒体 3の基板 3 0側から入射されるが、 記録光の入射方法を限 定するものではなく、 磁気へッ ド側から記録光を入射しても良い。 磁気へッ ド 3 6は、 記録光照射部 3 4により昇温されている位置で一定強度の記録磁界を印加 する。 そして、 記録光照射部 3 4は、 記録光の照射を停止し、 降温する。 その結 果、 磁気記録媒体 3の第 1の磁気記録層 3 1は、 図 6 ( a ) に示すように磁化が 反転する。  The recording light irradiator 34 irradiates the recording light onto the magnetic recording medium 3 through the objective lens 35, and raises the temperature to, for example, the Curie temperature T1 based on the information to be recorded. Although the recording light is incident from the substrate 30 side of the magnetic recording medium 3, the recording light is not limited to the incident method of the recording light, and the recording light may be incident from the magnetic head side. The magnetic head 36 applies a recording magnetic field of constant intensity at the position heated by the recording light irradiator 34. Then, the recording light irradiation unit 34 stops the irradiation of the recording light and cools it down. As a result, the magnetization of the first magnetic recording layer 31 of the magnetic recording medium 3 is reversed as shown in FIG. 6 (a).
また、 記録光照射部 3 4は、 記録する情報に基づき、 例えばキュリー温度 T 2 まで昇温する。 磁気ヘッド 3 6は、 記録光照射部 3 4により昇温されている位置 まで移動し、 一定強度の記録磁界を印加する。 そして、 記録光照射部 3 4は、 記 録光の照射を停止し、 降温する。 その結果、 磁気記録媒体 3の第 1の磁気記録層 3 1及び第 2の磁気記録層 3 2は、 図 6 ( b ) に示すように磁化が反転する。 さらに、 記録光照射部 3 4は、 記録する情報に基づき、 例えばキュリー温度 T 3まで昇温する。 磁気ヘッド 3 6は、 記録光照射部 3 4により昇温されている位 置まで移動し、 一定強度の記録磁界を印加する。 そして、 記録光照射部 3 4は、 記録光の照射を停止し、 降温する。 その結果、 磁気記録媒体 3の第 1の磁気記録 層 3 1、 第 2の磁気記録層 3 2及び第 3の磁気記録層 3 3は、 図 6 ( b ) に示す ように磁化が反転する。 なお、 図 6 ( c ) に示す状態が漏れ磁界が一番大きく、 図 6 ( b )、 図 6 ( a )、 図 6 ( d ) の順番で漏れ磁界が小さくなる。 In addition, the recording light irradiator 34 is, for example, based on Curie temperature T 2 based on the information to be recorded. Heat up to. The magnetic head 36 moves to a position heated by the recording light irradiator 34 and applies a recording magnetic field of a constant intensity. Then, the recording light irradiation unit 34 stops the irradiation of the recording light and lowers the temperature. As a result, the magnetizations of the first magnetic recording layer 31 and the second magnetic recording layer 32 of the magnetic recording medium 3 are reversed as shown in FIG. 6 (b). Furthermore, the recording light irradiator 34 raises the temperature to, for example, the Curie temperature T3 based on the information to be recorded. The magnetic head 36 moves to a position heated by the recording light irradiator 34 and applies a recording magnetic field of a constant intensity. Then, the recording light irradiation unit 34 stops the irradiation of the recording light and cools it down. As a result, the magnetization of the first magnetic recording layer 31, the second magnetic recording layer 32 and the third magnetic recording layer 33 of the magnetic recording medium 3 is reversed as shown in FIG. 6 (b). In the state shown in Fig. 6 (c), the leakage magnetic field is the largest, and the leakage magnetic field decreases in the order of Fig. 6 (b), Fig. 6 (a) and Fig. 6 (d).
記録再生装置 4は、この漏れ磁界の大きさの相異を利用して情報の再生を行う。 なお、磁気記録媒体 3では、 図 6 ( a )のような磁化状態を「 1」 とし、 図 6 ( b ) のような磁化状態を 「2」 とし、 図 6 ( c ) のような磁化状態を 「3」 とし、 図 6 ( d ) のような磁化状態を 「0」 として、 4値により情報が記録再生されるも のとする。  The recording / reproducing apparatus 4 reproduces information using the difference in magnitude of the leakage magnetic field. In the magnetic recording medium 3, the magnetization state as shown in FIG. 6 (a) is “1”, the magnetization state as shown in FIG. 6 (b) is “2”, and the magnetization state as shown in FIG. 6 (c) Let “3”, and let the magnetization state as shown in Fig. 6 (d) be “0”, and information be recorded / reproduced with four values.
また、 図 6 ( c ) のような磁化状態では、 漏れ磁界が最も大きく、 図 6 ( b )、 図 6 ( a )、 図 6 ( d ) の順に漏れ磁界が小さくなる。 磁気へヅ ド 3 6は、 この漏 れ磁界を磁気記録媒体 3の基板 3 0側から検出し、 磁気記録媒体 3に記録されて いる情報を再生する。  In the magnetized state as shown in Fig. 6 (c), the leakage magnetic field is the largest, and the leakage magnetic field decreases in the order of Fig. 6 (b), Fig. 6 (a) and Fig. 6 (d). The magnetic head 36 detects this leaked magnetic field from the substrate 30 side of the magnetic recording medium 3 and reproduces the information recorded in the magnetic recording medium 3.
このように構成された記録再生装置 4は、 キュリ一温度が異なる磁気記録層が 複数形成された磁気記録媒体 3に光アシスト磁気記録により情報を記録し、 記録 した情報を磁気へッド 3 6により再生するので、 照射する記録光の強度を変調す ることにより当該磁気記録媒体 3に情報を多値記録することができ、 また、 磁化 状態に応じて出力される漏れ磁界を検出することにより情報を再生することがで きる。 なお、 磁気記録媒体 3は、 各磁気記録層が直接接していなくても良く、 各 磁気記録層間に例えば、 誘電体層や非磁性層が形成されていても良い。  The recording / reproducing apparatus 4 configured in this manner records information by optically assisted magnetic recording on the magnetic recording medium 3 in which a plurality of magnetic recording layers having different temperatures are formed, and the recorded information is recorded as a magnetic head 3 6 Since the reproduction is performed according to the above, it is possible to record information on the magnetic recording medium 3 in multiple levels by modulating the intensity of the recording light to be irradiated, and by detecting the leakage magnetic field output according to the magnetization state. Information can be reproduced. In the magnetic recording medium 3, the magnetic recording layers may not be in direct contact with each other, and for example, a dielectric layer or a nonmagnetic layer may be formed between the magnetic recording layers.
次に、 第 3の実施の形態について以下に述べる。  Next, a third embodiment will be described below.
本発明の光磁気記録媒体は、 キュリー温度の異なる磁気記録層が複数層形成さ JP2003/010467 In the magneto-optical recording medium of the present invention, a plurality of magnetic recording layers having different Curie temperatures are formed. JP 2003/010467
9 れており、 例えば、 当該光磁気記録媒体の記録再生面から垂直方向に深い位置に 形成されている磁気記録層ほどキュリ一温度が高い。 · For example, as the magnetic recording layer is formed at a deep position in the vertical direction from the recording and reproducing surface of the magneto-optical recording medium, the temperature is higher. ·
光磁気記録媒体 5は、 例えば、 図 7に示すように、 基板 4 0上に第 1の磁気記 録層 4 1 と、 第 2の磁気記録層 4 2と、 第 3の磁気記録層 4 3とが積層されてい る。 なお、 各磁気記録層の磁化方向は、 垂直磁化膜でも面内磁化膜でも良く、 こ こでは、 前者を例に説明する。 まず、 各記録層の磁化は、 イニシャルでは図 7に 示すように下向きであることとする。  For example, as shown in FIG. 7, the magneto-optical recording medium 5 includes a first magnetic recording layer 41, a second magnetic recording layer 42, and a third magnetic recording layer 43 on a substrate 40. And are stacked. The magnetization direction of each magnetic recording layer may be a perpendicular magnetization film or an in-plane magnetization film, and the former will be described as an example here. First, the magnetization of each recording layer is assumed to be downward as shown in FIG. 7 in the initial state.
第 1の磁気記録層 4 1は、 キュリー温度 T 1を有しており、 上記キユリ一温度 T 1以上に昇温された場合に、 常磁性になる。 第 2の磁気記録層 4 2は、 キユリ 一温度 T 2を有しており、 上記キュリー温度 T 2以上に昇温された場合に、 常磁 性になる。 第 3の磁気記録層 4 3は、 キュリー温度 T 3を有しており、 上記キュ リー温度 T 3以上に昇温された場合に、 常磁性になる。 なお、 各磁気記録層のキ ュリー温度は、 キュリ一温度 T 1 <キュリー温度 T 2 <キュリー温度 T 3となつ ている。 また、 光磁気記録媒体 5は、 例えば、 上述したキュリー温度の異なる T e F e C o等の磁気記録層が複数形成された M〇等の記録媒体である。 なお、 光 磁気記録媒体 5は、 キュリ一温度の異なる記録層が複数形成されていれば良く、 当該光磁気記録媒体 5の記録再生面から垂直方向に深い位置に形成されている記 録層ほどキュリー温度が低くても良いし、 ランダムに積層されていても良い。 上記光磁気記録媒体 5は、 図 8に示すような、 記録光照射部 4 4と、 再生光照 射部 4 5と、 第 1のハーフミラ一 4 6と、 第 2のハーフミラ一 4 7と、 対物レン ズ 4 8と、 記録磁界印加部 4 9と、 検出部 5 0と、 再生部 5 1 とを備える記録再 生装置 6により情報が記録され、 記録された情報が再生される。 ここで、 記録再 生装置 6により光磁気記録媒体 5に情報を記録し、 記録した情報を再生する動作 について説明する。  The first magnetic recording layer 41 has a Curie temperature T1, and becomes paramagnetic when heated to a temperature above T1. The second magnetic recording layer 42 has a single temperature T 2 and becomes paramagnetic when the temperature is raised to the Curie temperature T 2 or more. The third magnetic recording layer 43 has a Curie temperature T3 and becomes paramagnetic when heated to the Curie temperature T3 or more. The Curie temperature of each magnetic recording layer is such that Curie temperature T 1 <Curie temperature T 2 <Curie temperature T 3. Also, the magneto-optical recording medium 5 is, for example, a recording medium such as M〇 in which a plurality of magnetic recording layers such as T e F e C o having different Curie temperatures described above are formed. The magneto-optical recording medium 5 is only required to have a plurality of recording layers having different temperatures, and the recording layer formed at a deeper position in the vertical direction from the recording and reproducing surface of the magneto-optical recording medium 5 is The Curie temperature may be low, or may be stacked randomly. As shown in FIG. 8, the magneto-optical recording medium 5 has a recording light irradiation unit 44, a reproduction light irradiation unit 45, a first half mirror 46, a second half mirror 47, and an objective. Information is recorded by the recording and reproducing apparatus 6 including the lens 48, the recording magnetic field applying unit 49, the detecting unit 50, and the reproducing unit 51, and the recorded information is reproduced. Here, an operation of recording information on the magneto-optical recording medium 5 by the recording and reproducing device 6 and reproducing the recorded information will be described.
記録光照射部 4 4は、 第 1のハーフミラ一 4 6、 第 2のハーフミラ一 4 7及び 対物レンズ 4 8を介して、 記録光を光磁気記録媒体 5に照射し、 記録する情報に 基づき、 例えばキュリー温度 T 1まで昇温する。 なお、 記録光は、 光磁気記録媒 体 5の基板 4 0側から入射される。 記録磁界印加部 4 9は、 記録光照射部 4 4に より昇温されている場所に一定強度の記録磁界を印加する。 そして、 記録光照射 部 4 4は、 記録光の照射を停止し、 降温する。 その結果、 光磁気記録媒体 5の第 1の磁気記録層 4 1は、 図 9 ( a ) に示すように磁化が反転する。 The recording light irradiator 44 irradiates the recording light to the magneto-optical recording medium 5 through the first half mirror 46, the second half mirror 47 and the objective lens 48, and based on the information to be recorded, For example, the temperature is raised to the Curie temperature T1. The recording light is incident from the substrate 40 side of the magneto-optical recording medium 5. The recording magnetic field application unit 49 applies a recording magnetic field of a constant intensity to the location heated by the recording light irradiation unit 44. And, Recording light irradiation The unit 44 stops the irradiation of the recording light and lowers the temperature. As a result, the magnetization of the first magnetic recording layer 41 of the magneto-optical recording medium 5 is reversed as shown in FIG. 9 (a).
また、 記録光照射部 4 4は、 記録する情報に基づき、 例えばキュリー温度 T 2 まで昇温する。 記録磁界印加部 4 9は、 記録光照射部 4 4により昇温されている 位置まで移動し、一定強度の記録磁界を印加する。そして、記録光照射部 4 4は、 記録光の照射を停止し、 降温する。 その結果、 光磁気記録媒体 5の第 1の磁気記 録層 4 1及び第 2の磁気記録層 4 2は、図 9 ( b )に示すように磁化が反転する。 さらに、 記録光照射部 4 4は、 記録する情報に基づき、 例えばキュリー温度 T 3まで昇温する。 記録磁界印加部 4 9は、 記録光照射部 4 4により昇温されてい る位置まで移動し、 一定強度の記録磁界を印加する。 そして、 記録光照射部 4 4 は、 記録光の照射を停止し、 降温する。 その結果、 光磁気記録媒体 5の第 1の磁 気記録層 4 1、 第 2の磁気記録層 4 2及び第 3の磁気記録層 4 3は、 図 9 ( c ) に示すように磁化が反転する。 なお、 光磁気記録媒体 5では、 図 9 ( a ) のよう な磁化状態を 「 1」 とし、 図 9 ( b ) のような磁化状態を 「2」 とし、 図 9 ( c ) のような磁化状態を 「3」 .とし、 図 9 ( d ) のような磁化状態を 「0」 として、 4値により情報が記録再生されるものとする。以下に、再生動作について述べる。 なお、 記録再生装置 6は、 磁気光学効果により光磁気記録媒体 5から情報を再生 する。  Also, the recording light irradiator 44 raises the temperature to, for example, the Curie temperature T 2 based on the information to be recorded. The recording magnetic field application unit 49 moves to a position heated by the recording light irradiation unit 44 and applies a recording magnetic field of a constant intensity. Then, the recording light irradiation unit 44 stops the irradiation of the recording light and lowers the temperature. As a result, the magnetization of the first magnetic recording layer 41 and the second magnetic recording layer 42 of the magneto-optical recording medium 5 is reversed as shown in FIG. 9 (b). Further, the recording light irradiator 44 raises the temperature to, for example, the Curie temperature T3 based on the information to be recorded. The recording magnetic field application unit 49 moves to a position heated by the recording light irradiation unit 44 and applies a recording magnetic field of a constant intensity. Then, the recording light irradiation unit 4 4 stops the irradiation of the recording light and lowers the temperature. As a result, the magnetizations of the first magnetic recording layer 41, the second magnetic recording layer 42, and the third magnetic recording layer 43 of the magneto-optical recording medium 5 are reversed as shown in FIG. 9 (c). Do. In the magneto-optical recording medium 5, the magnetization state as shown in FIG. 9 (a) is "1", the magnetization state as shown in FIG. 9 (b) is "2", and the magnetization as shown in FIG. 9 (c). Assuming that the state is “3”, and the magnetization state as shown in FIG. 9 (d) is “0”, information is recorded and reproduced by four values. The reproduction operation will be described below. The recording / reproducing apparatus 6 reproduces information from the magneto-optical recording medium 5 by the magneto-optical effect.
再生光照射部 4 5は、 第 1のハーフミラ一 4 6、 第 2のハーフミラ一 4 7及び 対物レンズ 4 8を介して、 再生光を光磁気記録媒体 5に照射する。 なお、 再生光 は、 光磁気記録媒体 5の基板 4 0側から入射される。 光磁気記録媒体 5に照射さ れた再生光は、 反射され、 対物レンズ 4 8及び第 2のハーフミラー 4 7を介して 検出部 5 0に入射される。  The reproduction light irradiator 45 irradiates the magneto-optical recording medium 5 with reproduction light through the first half mirror 46, the second half mirror 47 and the objective lens 48. The reproduction light is incident from the substrate 40 side of the magneto-optical recording medium 5. The reproduction light emitted to the magneto-optical recording medium 5 is reflected, and is incident on the detection unit 50 through the objective lens 48 and the second half mirror 47.
ここで、 検出部 5 0の構成と動作について説明する。 検出部 5 0は、 波長板 5 0 aと、 ビ一ムスプリ ヅタ 5 0 bと、 第 1の光検出器 5 0 cと、 第 2の光検出器 5 0 dとを備えている。 第 2のハーフミラ一 4 7から入射された光 (以下、 反射 光という。)は、波長板 5 0 a及びビームスプリヅタ 5 0 bにより P偏光成分と S 偏光成分に分離される。 P偏光成分は、 第 1の光検出器 5 0 cに入射され、 S偏 光成分は、 第 2の光検出器 5 0 c こ入射される。 第 1の光検出器 5 0 c及び第 2 の光検出器 5 0 dは、 各偏光成分から反射光の偏光面の回転及び位相変化を検出 する。 再生部 5 1は、 検出部 50の検出結果に応じて、 光磁気記録媒体 5に記録 されている情報を再生する。 Here, the configuration and operation of the detection unit 50 will be described. The detection unit 50 includes a wave plate 5 0 a, a splitter 5 0 b, a first light detector 5 0 c, and a second light detector 5 0 d. The light (hereinafter referred to as "reflected light") incident from the second half mirror 47 is separated into the P-polarization component and the S-polarization component by the wave plate 50a and the beam splitter 50b. The P-polarization component is incident on a first light detector 50 c, and the S-polarization component is incident on a second light detector 5 0 c. First photodetector 5 0 c and second The photodetector 50 d detects the rotation and phase change of the polarization plane of the reflected light from each polarization component. The reproducing unit 51 reproduces the information recorded on the magneto-optical recording medium 5 according to the detection result of the detecting unit 50.
また、 本発明に係る光磁気記録媒体 5は、 図 1 0に示すように、 基板 40と第 1の磁気記録層 4 1 との間に補助層 5 2及び拡大再生層 5 3が形成されたもの (以下、 光磁気記録媒体 7という。) であっても良い。 補助層 5 2は、 磁気的性質 のない非磁性層である。 拡大再生層 53は、 例えば、 希土類元素 (以下、 REと いう。) と遷移金属元素 (以下、 TMという。) の合金性の非晶質膜である。 この ような光磁気記録媒体 7は、 記録されている情報が M AMMO S (Magnetic Amplifying Magneto-Optical System) により再生される。 なお、 光磁気記録媒体 7は、 キュリー温度の異なる記録層が複数形成されていれば良く、 当該光磁気記 録媒体 7の記録再生面から垂直方向に深い位置に形成されている記録層ほどキュ リー温度が低くても良いし、 ランダムに積層されていても良い。  In the magneto-optical recording medium 5 according to the present invention, as shown in FIG. 10, an auxiliary layer 52 and an enlargement reproducing layer 53 are formed between the substrate 40 and the first magnetic recording layer 41. It may be one (hereinafter referred to as magneto-optical recording medium 7). The auxiliary layer 52 is a nonmagnetic layer having no magnetic property. The enlargement reproduction layer 53 is, for example, an amorphous film of alloying a rare earth element (hereinafter referred to as RE) and a transition metal element (hereinafter referred to as TM). In such a magneto-optical recording medium 7, recorded information is reproduced by MAMMOS (Magnetic Amplifying Magneto-Optical System). The magneto-optical recording medium 7 is only required to have a plurality of recording layers having different Curie temperatures, and the recording layer formed at a position deeper in the vertical direction from the recording and reproducing surface of the magneto-optical recording medium 7 is Lee temperature may be low or may be stacked randomly.
光磁気記録媒体 7は、 図 8に示す、 記録再生装置 6により情報の多値記録及び 再生が行われる。 記録再生装置 6の記録動作は、 上述と同様である。  The magneto-optical recording medium 7 is subjected to multi-value recording and reproduction of information by the recording and reproduction apparatus 6 shown in FIG. The recording operation of the recording / reproducing apparatus 6 is the same as described above.
ここで、 MAMMO Sによる再生動作について以下に述べる。 なお、 光磁気記 録媒体 7は、 図 1 1 (a) 〜 (c) に示すような磁化状態で記録されているもの とする。  Here, the reproduction operation by MAMMOS will be described below. The magneto-optical recording medium 7 is assumed to be recorded in a magnetized state as shown in FIG. 11 (a) to (c).
拡大再生層 5 3には、 図 1 2 (a) に示すように、 非磁性である補助層 5 2を 介して第 1の磁気記録膜 4 1、 第 2の磁気記録膜 42及び第 3の磁気記録膜 43 (以下「磁気記録層 m」 という。) の磁化状態が磁気転写されている。 MAMMO Sでは、 拡大再生層 5 3に磁気転写により記録磁区が形成されており、 上記記録 磁区を再生光照射部 4 5から照射される再生光 Lにより、 図 1 2 (b) に示すよ うに、 再生光 Lの口径一杯まで拡大する。  As shown in FIG. 12 (a), the first magnetic recording film 41, the second magnetic recording film 42 and the third magnetic recording film 42 are formed on the expansion reproducing layer 53 through the nonmagnetic auxiliary layer 52. The magnetization state of the magnetic recording film 43 (hereinafter referred to as “magnetic recording layer m”) is magnetically transferred. In MAMMOS, recording magnetic domains are formed in the magnifying reproduction layer 53 by magnetic transfer, and the recording magnetic domains are shown in FIG. 12 (b) by the reproduction light L irradiated from the reproduction light irradiating section 45. , Reproduction light Expand to full diameter of L.
こうすることにより、 磁気記録層 mに記録されている微小磁区が発生する磁界 を従来と同程度の大きさまで拡大することが可能となる。 なお、 磁気記録層 mか ら拡大再生層 5 3への磁気転写は、 磁気記録層 mからの磁界により行われ、 拡大 再生層 53上での磁気拡大は、 外部磁界 Hbの印加により行われる。 その後、 記 録再生装置 6は、 図 1 2 (c) に示すように、 次の情報が記録光 Lの下に到達す る前に拡大された磁区を反転させる磁界を発生し、 拡大再生層 5 3に拡大転写さ れている記録磁区を消失する。 By this, it becomes possible to expand the magnetic field generated by the minute magnetic domain recorded in the magnetic recording layer m to the same level as the conventional one. The magnetic transfer from the magnetic recording layer m to the expansion reproducing layer 53 is performed by the magnetic field from the magnetic recording layer m, and the magnetic expansion on the expansion reproducing layer 53 is performed by the application of the external magnetic field Hb. After that, as shown in Fig. 12 (c), the recording / reproducing device 6 reaches the position below the recording light L with the following information: It generates a magnetic field that inverts the expanded magnetic domain, and disappears the recording magnetic domain expanded and transferred to the expanded reproducing layer 53.
このように構成された記録再生装置 6は、 キュリー温度が異なる磁気記録層が 複数形成された光磁気記録媒体 5に記録光を照射し、 記録する情報に基づき昇温 し、 昇温した場所に一定強度の記録磁界を印加し、 磁化状態を反転させることで 情報を記録し、 記録した情報を再生するので、 照射する記録光のパワーを変える ことにより当該光磁気記録媒体 5に情報を多値記録することができ、 また、 多値 記録した情報を磁気光学効果に基づき再生することができる。  The recording / reproducing apparatus 6 configured in this manner irradiates the recording light to the magneto-optical recording medium 5 in which a plurality of magnetic recording layers having different Curie temperatures are formed, and raises the temperature based on the information to be recorded. Since information is recorded by applying a recording magnetic field of a constant intensity and the magnetization state is reversed, and the recorded information is reproduced, the information is multi-valued to the magneto-optical recording medium 5 by changing the power of the recording light to be irradiated. Recording can be performed, and multi-valued recorded information can be reproduced based on the magneto-optical effect.
また、 記録再生装置 6は、 キュリー温度が異なる磁気記録層が複数形成され、 上記磁気記録層の上部に補助層及び拡大再生層が形成された光磁気記録媒体 7に 記録光を照射し、 記録する情報に基づき昇温し、 昇温した場所に一定強度の記録 磁界を印加し、 磁化状態を反転させることで情報を記録し、 記録した情報を M A M M O Sにより再生するので、 照射する記録光のパヮ一を変えることにより当該 光磁気記録媒体 5に情報を微小記録マークサイズで多値記録することができ、 ま た、 多値記録した微小記録マークサイズの情報を磁気光学効果に基づき再生する ことができる。 なお、 光磁気記録媒体 5及び光磁気記録媒体 7は、 各磁気記録層 が直接接していなくても良く、 各磁気記録層間に例えば、 誘電体層や非磁性層が 形成されていても良い。  In the recording / reproducing apparatus 6, a plurality of magnetic recording layers having different Curie temperatures are formed, and the recording light is irradiated to the magneto-optical recording medium 7 in which the auxiliary layer and the enlargement reproduction layer are formed above the magnetic recording layer. The temperature is raised based on the information to be recorded, a recording magnetic field of constant intensity is applied to the temperature rising location, the information is recorded by reversing the magnetization state, and the recorded information is reproduced by the MAMMOS. The information can be multi-value recorded on the magneto-optical recording medium 5 by the small recording mark size by changing 1 and information on the multi-value recording micro recording mark size can be reproduced based on the magneto-optical effect. it can. In the magneto-optical recording medium 5 and the magneto-optical recording medium 7, the respective magnetic recording layers may not be in direct contact, and for example, a dielectric layer or a nonmagnetic layer may be formed between the respective magnetic recording layers.
なお、 本発明は、 図面を参照して説明した上述の実施例に限定されるものでは なく、 添付の請求の範囲及びその主旨を逸脱することなく、 様々な変更、 置換又 はその同等のものを行うことができることは当業者にとって明らかである。 産業上の利用可能性 以上詳細に説明したように、 本発明に係る記録媒体は、 基板表面から垂直方向 に深い位置ほど結晶化温度の高い記録層が複数積層されてなるので、 光強度変調 ( L I Ms Light Intensity Modulation) により容易に多値記録が行える。 The present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications, substitutions or equivalents thereof may be made without departing from the scope of the appended claims and the subject matter thereof. It will be apparent to one skilled in the art that the Industrial Applicability As described above in detail, since the recording medium according to the present invention is formed by laminating a plurality of recording layers having a higher crystallization temperature in the vertical direction from the substrate surface, the light intensity modulation ( Multi-level recording can be easily performed by LIM s Light Intensity Modulation.
また、 以上詳細に説明したように、 本発明に係る記録媒体は、 基板表面から垂 直方向に深い位置ほどキュリ一温度の高い記録層が複数積層されてなるので、 光 強度変調 (L I M、 Light Intensity Modulation) により容易に深度の異なる磁 化状態を形成でき、 かつ、 そこに一定の記録磁界を印加することで容易に多値記 録が行える。 さらに、 本発明に係る記録媒体は、 上記基板と記録層との間に補助 層を介して拡大再生層が形成されているので、 記録層に記録されている微小記録 マークの再生を M A MM O Sにより行える。 In addition, as described above in detail, in the recording medium according to the present invention, since a plurality of recording layers having a higher temperature are further stacked in the vertical direction from the surface of the substrate, Magnetization states with different depths can be easily formed by intensity modulation (LIM, Light Intensity Modulation), and multi-level recording can be easily performed by applying a constant recording magnetic field thereto. Furthermore, in the recording medium according to the present invention, since the enlarged reproduction layer is formed between the substrate and the recording layer via the auxiliary layer, reproduction of the minute recording marks recorded in the recording layer is performed by MA MM OS It can be done by
また、 以上詳細に説明したように、 本発明に係る記録装置及び方法は、 基板表 面から垂直方向に深い位置ほど結晶化温度の高い記録層が複数積層されてなる光 記録媒体に、 記録する情報に基づき強度変調した記録光を照射し、 多値記録する 多値記録手段を備えるので、 記録する情報に応じた強度の記録光を照射すること により多値記録を行うことができる。  In addition, as described above in detail, the recording apparatus and method according to the present invention record on an optical recording medium in which a plurality of recording layers having higher crystallization temperatures are stacked at positions deeper in the vertical direction from the substrate surface. Since the recording light having the intensity modulated based on the information is irradiated and the multi-value recording means for multi-value recording is provided, multi-value recording can be performed by irradiating the recording light of the intensity according to the information to be recorded.
また、 以上詳細に説明したように、 本発明に係る記録装置及び方法は、 基板表 面から垂直方向に深い位置ほどキュリ一温度の高い記録層が複数積層されてなる 記録媒体に、 記録する情報に基づき強度変調した記録光を照射する照射手段と、 上記記録光が照射されている場所に一定強度の記録磁界を印加する記録磁界印加 手段とを備えるので、 記録する情報に応じた強度の記録光を照射して深度の異な る磁化状態を形成でき、 かつそこに一定の記録磁界を印加することで多値記録を 行うことができる。  Further, as described above in detail, in the recording apparatus and method according to the present invention, the information to be recorded on the recording medium in which a plurality of recording layers having a higher temperature are accumulated in the vertical direction from the substrate surface And the recording magnetic field applying means for applying the recording magnetic field of constant intensity to the place where the recording light is irradiated, recording of the intensity according to the information to be recorded. Light can be irradiated to form magnetization states of different depths, and multi-valued recording can be performed by applying a constant recording magnetic field thereto.

Claims

請求の範囲 The scope of the claims
1 . 複数の記録層が基板上に積層されてなる光記録媒体において、 1. In an optical recording medium in which a plurality of recording layers are laminated on a substrate,
上記複数の記録層は、 それそれ異なる結晶化温度又は非晶質化温度を有してい ることを特徴とする光記録媒体。  An optical recording medium characterized in that the plurality of recording layers have different crystallization temperatures or amorphization temperatures.
2 . 上記複数の記録層は、 記録光が入射される側から結晶化温度又は非晶質化温 度が高い順に上記基板上に積層されていることを特徴とする請求の範囲第 1項記 載の光記録媒体。  2. The plurality of recording layers are stacked on the substrate in the order of higher crystallization temperature or amorphization temperature from the side on which the recording light is incident. Optical recording media.
3 . 上記複数の記録層は、 記録光が入射される側から結晶化温度又は非晶質化温 度が低い順に上記基板上に積層されていることを特徴とする請求の範囲第 1項記 載の光記録媒体。  3. The plurality of recording layers are stacked on the substrate in order of decreasing crystallization temperature or amorphization temperature from the side on which the recording light is incident. Optical recording media.
4 . 記録光が入射されている側から結晶化温度又は非晶質化温度が異なる複数の 記録層が上記基板上にランダムに積層されていることを特徴とする請求の範囲第 1項記載の光記録媒体。  4. A plurality of recording layers different in crystallization temperature or amorphization temperature from the side on which the recording light is incident are randomly stacked on the substrate. Optical recording medium.
5 . 複数の記録層が基板上に積層されてなる磁気記録媒体において、  5. A magnetic recording medium in which a plurality of recording layers are laminated on a substrate,
上記複数の記録層は、 それそれ異なるキュリー温度を有していることを特徴と する磁気記録媒体。 '  A magnetic recording medium characterized in that the plurality of recording layers have different Curie temperatures. '
6 . 上記複数の記録層は、 記録光が入射される側からキュリー温度が高い順に上 記基板上に積層されていることを特徴とする請求の範囲第 5項記載の磁気記録媒 体。  6. The magnetic recording medium according to claim 5, wherein the plurality of recording layers are stacked on the substrate in descending order of the Curie temperature from the side where the recording light is incident.
7 . 上記複数の記録層は、 記録光が入射される側からキュリー温度が低い順に上 記基板上に積層されていることを特徴とする請求の範囲第 5項記載の磁気記録媒 体。  7. The magnetic recording medium according to claim 5, wherein the plurality of recording layers are stacked on the substrate in order of decreasing Curie temperature from the side where the recording light is incident.
8 . 記録光が入射される側からキュリー温度が異なる複数の記録層が上記基板上 にランダムに積層されていることを特徴とする請求の範囲第 5項記載の磁気記録 媒体。  8. A magnetic recording medium according to claim 5, wherein a plurality of recording layers having different Curie temperatures from the side on which the recording light is incident are randomly stacked on the substrate.
9 . 上記基板と記録層との間に補助層を介して拡大再生層が形成されていること を特徴とする請求の範囲第 5項記載の磁気記録媒体。  9. A magnetic recording medium according to claim 5, wherein a magnifying reproduction layer is formed between the substrate and the recording layer via an auxiliary layer.
1 0 . 基板表面から垂直方向に結晶化温度又は非晶質化温度の異なる記録層が複 数積層されてなる光記録媒体に、 記録する情報に基づき強度変調した記録光を照 射し、 多値記録する多値記録手段を備えることを特徴とする記録装置。 1 0. Multiple recording layers with different crystallization or amorphization temperatures in the vertical direction from the substrate surface What is claimed is: 1. A recording apparatus comprising: multi-level recording means for irradiating a recording light intensity-modulated based on information to be recorded onto a plurality of optical recording media stacked, and performing multi-level recording.
1 1 . 上記光記録媒体は、 上記複数の記録層が上記基板上に結晶化温度又は非晶 質化温度が高い順に積層されており、  1 1. In the optical recording medium, the plurality of recording layers are stacked on the substrate in the order of higher crystallization temperature or amorphization temperature,
上記多値記録手段は、 上記光記録媒体の基板側から記録光を照射することを特 徴とする請求の範囲第 1 0項記載の記録装置。  The recording apparatus according to claim 10, wherein said multi-value recording means irradiates recording light from the substrate side of said optical recording medium.
1 2 . 上記光記録媒体は、 上記複数の記録層が上記基板上に結晶化温度又は非晶 質化温度が低い順に積層されており、  1 2. In the optical recording medium, the plurality of recording layers are stacked on the substrate in the order of low crystallization temperature or low amorphization temperature,
上記多値記録手段は、 上記光記録手段の基板側から記録光を照射することを特 徴とする請求の範囲第 1 0項記載の記録装置。  The recording apparatus according to claim 10, wherein said multi-value recording means irradiates recording light from the substrate side of said optical recording means.
1 3 . 上記光記録媒体は、 上記基板上に結晶化温度又は非晶質化温度が異なる複 数の記録層がランダムに積層されており、  1 3. In the optical recording medium, a plurality of recording layers having different crystallization temperatures or amorphization temperatures are randomly stacked on the substrate,
上記多値記録手段は、 上記光記録媒体の基板側から記録光を照射することを特 徴とする請求の範囲第 1 0項記載の記録装置。  The recording apparatus according to claim 10, wherein said multi-value recording means irradiates recording light from the substrate side of said optical recording medium.
1 4 . 基板表面から垂直方向に結晶化温度又は非晶質化温度の異なる記録層が複 数積層されてなる光記録媒体に、 記録する情報に基づき強度変調した記録光を照 射し、 多値記録することを特徴とする記録方法。  1 4. The recording light whose intensity is modulated based on the information to be recorded is irradiated to the optical recording medium in which a plurality of recording layers having different crystallization temperatures or amorphization temperatures are stacked in the vertical direction from the substrate surface. A recording method characterized in that a value is recorded.
1 5 . 上記光記録媒体は、 上記複数の記録層が上記基板上に結晶化温度又は非晶 質化温度が高い順に積層されており、  In the optical recording medium, the plurality of recording layers are stacked on the substrate in the order of higher crystallization temperature or amorphization temperature,
上記光記録媒体の基板側から記録光を照射することを特徴とする請求の範囲第 1 4項記載の記録方法。  15. A recording method according to claim 14, wherein the recording light is irradiated from the substrate side of the optical recording medium.
1 6 . 上記記録媒体は、 上記複数の記録層が上記基板上に結晶化温度又は非晶質 化温度が低い順に積層されており、  In the recording medium, the plurality of recording layers are stacked on the substrate in the order of low crystallization temperature or amorphization temperature,
上記光記録媒体の基板側から記録光を照射することを特徴とする請求の範囲第 1 4項記載の記録方法。 .  15. A recording method according to claim 14, wherein the recording light is irradiated from the substrate side of the optical recording medium. .
1 7 . 上記光記録媒体は、 上記基板上に結晶化温度又は非晶質化温度が異なる複 数の記録層がランダムに積層されており、  In the optical recording medium, a plurality of recording layers having different crystallization temperatures or amorphization temperatures are randomly stacked on the substrate,
上記光記録媒体の基板側から記録光を照射することを特徴とする請求の範囲第 1 4項記載の記録方法。 15. A recording method according to claim 14, wherein the recording light is irradiated from the substrate side of the optical recording medium.
1 8 . 基板表面から垂直方向にキュリー温度の異なる記録層が複数積層されてな る記録媒体に、記録する情報に基づき強度変調した記録光を照射する照射手段と、 上記記録光が照射されている場所に一定強度の記録磁界を印加する記録磁界印加 手段とを備えることを特徴とする記録装置。 8. A recording medium in which a plurality of recording layers having different Curie temperatures are stacked in the vertical direction from the substrate surface is irradiated with the recording light whose intensity is modulated based on the information to be recorded, and the recording light is irradiated. And a recording magnetic field application unit that applies a recording magnetic field of a constant intensity to a place where the recording medium is located.
1 9 . 上記記録媒体は、 上記基板上にキュリー温度が高い順に積層されている光 磁気記録媒体又は磁気記録媒体であり、  The recording medium is a magneto-optical recording medium or a magnetic recording medium which is stacked on the substrate in the order of higher Curie temperature,
上記光磁気記録媒体又は磁気記録媒体の基板側から記録光を照射することを特 徴とする請求の範囲第 1 8項記載の記録装置。  The recording apparatus according to claim 18, wherein the recording light is irradiated from the substrate side of the magneto-optical recording medium or the magnetic recording medium.
2 0 . 上記記録媒体は、 上記基板上にキュリー温度が低い順に積層されている光 磁気記録媒体又は磁気記録媒体であり、  2 0. The recording medium is a magneto-optical recording medium or a magnetic recording medium which is stacked on the substrate in the order of low Curie temperature,
上記光磁気記録媒体又は磁気記録媒体の基板側から記録光を照射することを特 徴とする請求の範囲第 1 8項記載の記録装置。  The recording apparatus according to claim 18, wherein the recording light is irradiated from the substrate side of the magneto-optical recording medium or the magnetic recording medium.
2 1 . 上記記録媒体は、 上記基板上にキュリー温度が異なる複数の記録層がラン ダムに積層されている光磁気記録媒体又は磁気記録媒体であり、  The recording medium is a magneto-optical recording medium or a magnetic recording medium in which a plurality of recording layers having different Curie temperatures are stacked on a random basis on the substrate.
上記光磁気記録媒体又は磁気記録媒体の基板側から記録光を照射することを特 徴とする請求の範囲第 1 8項記載の記録装置。  The recording apparatus according to claim 18, wherein the recording light is irradiated from the substrate side of the magneto-optical recording medium or the magnetic recording medium.
2 2 . 基板表面から垂直方向にキュリー温度の異なる記録層が複数積層されてな る記録媒体に、記録する情報に基づき強度変調した記録光を照射する照射工程と、 上記照射工程により強度変調された記録光が照射されている場所に一定の記録磁 界を印加する磁界印加工程とを有することを特徴とする記録方法。  2 2. A recording medium in which a plurality of recording layers having different Curie temperatures are stacked in the vertical direction from the substrate surface is irradiated with the recording light whose intensity is modulated based on the information to be recorded; And a magnetic field applying step of applying a constant recording magnetic field to the place where the recording light is irradiated.
2 3 . 上記記録媒体は、 上記基板上にキュリー温度が高い順に積層されている光 磁気記録媒体又は磁気記録媒体であり、 2 3. The recording medium is a magneto-optical recording medium or a magnetic recording medium which is stacked on the substrate in the order of higher Curie temperature,
上記照射工程は、 上記光磁気記録媒体又は磁気記録媒体の基板側から記録光を 照射することを特徴とする請求の範囲第 2 2項記載の記録方法。  The recording method according to claim 22, wherein the irradiating step irradiates the recording light from the substrate side of the magneto-optical recording medium or the magnetic recording medium.
2 4 . 上記記録媒体は、 上記基板上にキュリー温度が低い順に積層されている光 磁気記録媒体又は磁気記録媒体であり、 The recording medium is a magneto-optical recording medium or a magnetic recording medium stacked on the substrate in the order of low Curie temperature,
上記照射工程は、 上記光磁気記録媒体又は磁気記録媒体の基板側から記録光を 照射することを特徴とする請求の範囲第 2 2項記載の記録方法。  The recording method according to claim 22, wherein the irradiating step irradiates the recording light from the substrate side of the magneto-optical recording medium or the magnetic recording medium.
2 5 . 上記記録媒体は、 上記基板上にキュリー温度が異なる複数の記録層がラン ダムに積層されている上記光磁気記録媒体又は磁気記録媒体であり、 In the recording medium, a plurality of recording layers having different Curie temperatures run on the substrate. The magneto-optical recording medium or the magnetic recording medium stacked on a dam;
上記照射工程は、 上記光磁気記録媒体又は磁気記録媒体の基板側から記録光を 照射することを特徴とする請求の範囲第 2 2項記載の記録方法。  The recording method according to claim 22, wherein the irradiating step irradiates the recording light from the substrate side of the magneto-optical recording medium or the magnetic recording medium.
PCT/JP2003/010467 2002-08-28 2003-08-19 Recording medium, and recording apparus and method WO2004021342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003257561A AU2003257561A1 (en) 2002-08-28 2003-08-19 Recording medium, and recording apparus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002249158A JP2004087041A (en) 2002-08-28 2002-08-28 Recording medium, recording device and method
JP2002-249158 2002-08-28

Publications (1)

Publication Number Publication Date
WO2004021342A1 true WO2004021342A1 (en) 2004-03-11

Family

ID=31972555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010467 WO2004021342A1 (en) 2002-08-28 2003-08-19 Recording medium, and recording apparus and method

Country Status (3)

Country Link
JP (1) JP2004087041A (en)
AU (1) AU2003257561A1 (en)
WO (1) WO2004021342A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285451B2 (en) 2005-07-06 2009-06-24 株式会社日立製作所 Information recording medium, information reproducing method and information recording method
CN111902867B (en) 2018-03-29 2022-07-29 国立大学法人东京大学 Recording method, recording apparatus, reproducing method, reproducing apparatus, and high-speed response element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209341A (en) * 1990-11-30 1992-07-30 Toshiba Corp Information recording medium
JPH08212551A (en) * 1995-02-01 1996-08-20 Nikon Corp Optical recording method and optical recording medium
JPH097224A (en) * 1995-06-26 1997-01-10 Hitachi Ltd Recording member and recording method and recording device using the same member
JPH10241205A (en) * 1997-02-26 1998-09-11 Toshiba Corp Multi-level phase transition optical recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209341A (en) * 1990-11-30 1992-07-30 Toshiba Corp Information recording medium
JPH08212551A (en) * 1995-02-01 1996-08-20 Nikon Corp Optical recording method and optical recording medium
JPH097224A (en) * 1995-06-26 1997-01-10 Hitachi Ltd Recording member and recording method and recording device using the same member
JPH10241205A (en) * 1997-02-26 1998-09-11 Toshiba Corp Multi-level phase transition optical recording medium

Also Published As

Publication number Publication date
JP2004087041A (en) 2004-03-18
AU2003257561A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
JPH10124950A (en) Information recording method of optical recording medium
KR100239812B1 (en) Magneto-optic recording method and magneto-optic recording/reproducing apparatus
WO1999039341A1 (en) Optomagnetic recording medium, reproducing method therefor, and reproducing device therefor
JP3647219B2 (en) Method of reproducing signal from magnetic recording medium
JP2001307393A (en) Magneto-optical reproducing device
TW565827B (en) Method for annealing domain wall displacement type magneto-optical disc and magneto-optical disc
JPH04255946A (en) Magneto-optical recording and reproducing system
JPH02173933A (en) Multiple recording method and multiple recording and reproducing device
WO2004021342A1 (en) Recording medium, and recording apparus and method
US20030202430A1 (en) Domain wall displacement type magneto-optical recording medium and method of producing same
JPH11110839A (en) Magneto-optical recording medium
KR100565187B1 (en) Magneto-optical Recording Medium and Method of Recording/Reproducing Data on the Same
JP2009080887A (en) Magneto-optical recording medium
JP3952524B2 (en) Optical disc recording method
JP2000231744A (en) Optical recording medium
JP2002163849A (en) Magnetooptical information reproducing method and device for it
JPH087385A (en) Magneto-optical signal recording/reproducing method
JP2001229585A (en) Magneto-optical recording medium, and magneto-optical disk device for reproduction of the same or method for reproduction
KR20000042134A (en) Optical magnetic recording medium and playback method thereof
JP2001283485A (en) Optical disk device, and recording and reproducing method
JPH10172189A (en) Information recording medium and its reproducing method
JP2006018943A (en) Method and device for recording/reproducing magneto-optical recording medium
JP2003296982A (en) Reproducing method for optical disk, and optical disk apparatus
JP2004178668A (en) Manufacturing method of magnetic domain wall moving type magneto-optical recording medium
JP2001266426A (en) Magneto-optical recording medium and reproducing unit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase