WO2004021282A1 - Animal behavior analysis method, animal behavior analysis system, animal behavior analysis program, and computer-readable recorded medium on which the program is recorded - Google Patents

Animal behavior analysis method, animal behavior analysis system, animal behavior analysis program, and computer-readable recorded medium on which the program is recorded Download PDF

Info

Publication number
WO2004021282A1
WO2004021282A1 PCT/JP2003/010979 JP0310979W WO2004021282A1 WO 2004021282 A1 WO2004021282 A1 WO 2004021282A1 JP 0310979 W JP0310979 W JP 0310979W WO 2004021282 A1 WO2004021282 A1 WO 2004021282A1
Authority
WO
WIPO (PCT)
Prior art keywords
animal
behavior
behavior analysis
zebrafish
tracking
Prior art date
Application number
PCT/JP2003/010979
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Kato
Ken-Ichiro Muramoto
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Publication of WO2004021282A1 publication Critical patent/WO2004021282A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion

Definitions

  • the present invention relates to an animal behavior analysis method and an animal behavior analysis system, and more particularly, to an animal behavior analysis method for quantitatively analyzing animal behavior, an animal behavior analysis system, an animal behavior analysis program, and
  • the present invention relates to a computer-readable recording medium on which the information is recorded.
  • zebrafins are the most suitable animal species for genetic modification and gene knockout due to their extremely advantageous features in developmental biology, and in recent years, genomic It is one of the most advanced animals analyzed.
  • zeprafish is a small tropical fish with a length of 5 to 6 cm, and unlike other fish, it lays eggs at any time of the year.
  • a fluorescent protein such as GFP (red fluorescent protein).
  • Japanese published patent publication Japanese Patent Application Laid-Open No. Hei 7-63 747 (published on: March 10, 1995)” identifies the activities and survival of fish schools in aquariums. Accordingly, a “water quality inspection device” for detecting an abnormality in water quality is described. This water quality inspection device takes an image of the fish school released into the aquarium with an ITV camera, and executes sampling and binarization processing with the image input unit. By setting the threshold value for binarization, the influence of disturbance noise can be eliminated.
  • the image processing unit converts the binarized image It extracts the images of the individual fish that make up the fish school from the data, attaches a label to each image, and identifies the activity status and survival status of the fish school based on the amount of movement per unit time.
  • An object of the present invention is to provide an animal behavior analysis method and an animal behavior analysis system capable of performing quantitative behavior analysis as precisely as possible to meet the requirements of gene research. Further, an object of the present invention includes providing an animal behavior analysis program for realizing the above-described animal behavior analysis system, and a computer-readable recording medium recording the program.
  • an animal behavior analysis method of the present invention comprises: an imaging step for imaging an aquatic animal in an aquarium at a frame rate of 8 or more per second; and an image captured in the imaging step. And an analysis step for analyzing the behavior of aquatic animals based on.
  • the animal behavior analysis method of the present invention is characterized in that the aquatic animal is zebrafish.
  • the animal behavior analysis system of the present invention captures aquatic animals in an aquarium.
  • An animal behavior analysis system for analyzing the behavior of the aquatic animal based on the obtained image characterized by comprising imaging means for imaging the image at a frame rate of eight or more seconds. ing.
  • zebrafish has extremely advantageous features in terms of its developmental biology, such as behavioral analysis as a phenotype, that is, genetic modification and genetic modification.
  • behavioral analysis as a phenotype
  • genetic modification and genetic modification.
  • the animal behavior analysis method of the present invention includes an observation data acquisition step of acquiring the positions and velocities of the first animal and the second animal; and the first animal and the second animal acquired in the observation data acquisition step. And a tracking action evaluation step for evaluating a tracking action of the first animal with respect to the second animal based on the position and velocity of the second animal.
  • the animal behavior analysis system of the present invention comprises: observation data acquisition means for acquiring the position and velocity of the first animal and the second animal; and the first behavior data acquired by the observation data acquisition means.
  • a tracking line that evaluates the tracking behavior of the first animal with the second animal based on the position and velocity of the animal and the second animal And dynamic evaluation means.
  • the tracking behavior of the animal can be quantitatively evaluated based on the position and the speed.
  • the first animal and the second animal may be of the same species or different species.
  • the first animal and the second animal may be aquatic animals such as zebrafish or resident animals such as Drosophila and mouse.
  • specific evaluation methods of the tracking behavior include, for example, the condition of the distance between the first animal and the second animal (distance between individuals), the progress direction of the first animal and the second direction. All three conditions are required: the condition of the angle to the position of the animal (angle condition), and the condition of whether the first animal is approaching and the second animal is leaving (approaching condition). When the conditions are established at the same time, it can be determined that the first animal is tracking the second animal. And, as an evaluation index of the tracking behavior,
  • Tracking distance ratio Moving distance while tracking Z Total moving distance
  • Etc. can be used.
  • the animal behavior analysis method of the present invention includes: an observation data acquisition step of acquiring a movement locus of an animal; and a fractal dimension calculation step of calculating a fractal dimension of the movement locus acquired in the observation data acquisition step. It is characterized by including.
  • the animal behavior analysis system of the present invention comprises: observation data acquisition means for acquiring a movement locus of an animal; and fractal dimension calculation means for calculating a fractal dimension of the movement locus acquired by the observation data acquisition means. It is specially equipped.
  • the above method and configuration quantitatively evaluate the complexity of the animal's trajectory.
  • the animal may be an aquatic animal such as zebrafish or a terrestrial animal such as drosophila and mouse.
  • animal behavior analysis program of the present invention is a computer program that causes a computer to function as each of the above means.
  • the above animal behavior analysis system can be realized. Therefore, as the animal behavior analysis system described above, it becomes possible to analyze the behavior of the animal precisely and regularly, to the extent that it can respond to the needs of gene research.
  • a computer-readable recording medium on which the animal behavior analysis program of the present invention is recorded is a computer-readable recording medium that realizes each of the above-mentioned IS and operates the above-described animal behavior analysis system. This is a computer-readable recording medium recorded by IB.
  • the behavior analysis system for animals can be realized on a computer by using the behavior analysis program for office work read from the recording medium.
  • FIG. 1 is an explanatory diagram schematically showing a configuration of a behavior analysis system according to one embodiment of the present invention.
  • Fig. 2 shows the decision made by the tracking behavior evaluation unit of the behavior analysis system shown in Fig. 1. It is a figure explaining the distance condition between individuals. .
  • Figs. 3 (a) and 3 (b) are diagrams illustrating the angle condition determined by the tracking behavior evaluation unit of the behavior analysis system shown in Fig. 1.
  • Fig. 3 (a) shows the case where the angle condition is satisfied.
  • 3 (b) shows the case where the angle condition is satisfied but the approach condition is not satisfied.
  • Figs. 4 (a) and 4 (b) are diagrams illustrating the approach conditions determined by the tracking behavior evaluation unit of the behavior analysis system shown in Fig. 1.
  • Fig. 4 (a) is a diagram when the approach conditions are satisfied.
  • 4 (b) shows the case where the approach condition is not satisfied.
  • Fig. 5 shows an example of the analysis of the tracking behavior of Zebrafish, using the tracking time rate calculated by the tracking behavior evaluation unit of the behavior analysis system shown in Fig. 1 to quantitatively evaluate the effects of optic nerve transection. It is a graph.
  • FIG. 6 is a graph showing the results of observing the recovery of the visual function of zebrafish using the tracking time rate and the tracking distance rate calculated by the tracking action evaluation unit of the action analysis system shown in FIG.
  • FIG. 7 is a diagram illustrating a method of calculating a fractal dimension of a fish swimming locus in a fractal dimension calculating unit of the behavior analysis system shown in FIG.
  • FIG. 8 is a diagram for explaining a method of calculating a fractal dimension of a swimming locus of a fish in a fractal dimension calculating unit of the behavior analysis system shown in FIG.
  • Figure 9 shows an example of analyzing the swimming trajectory of a zebrafish, using the fractal dimension calculated by the fractal dimension calculator of the behavior analysis system shown in Fig. 1 to quantitatively evaluate the effect of optic nerve transection.
  • Figure 10 shows the swimming trajectory of the zebrafin fry immediately after hatching (within 3 days) with a body length of less than 1 cm, taken by the behavior analysis system shown in Fig. 1. (30 minutes).
  • Fig. 11 is a photograph showing the swimming locus of zebrafish (30 minutes) one month after hatching with a body length of 2 cm and taken by the behavior analysis system shown in Fig. 1.
  • Fig. 12 is a drawing substitute photograph showing the swimming locus (30 minutes) of adult zebrafish fish four months after hatching with a body length of 4 cm and hatched by the behavior analysis system shown in Fig. 1.
  • Fig. 13 is a drawing substitute photograph showing the swimming trajectory (10 minutes) of two normal zebrafish, taken by the behavior analysis system shown in Fig. 1.
  • Fig. 14 is a drawing substitute photograph showing the swimming locus (10 minutes) of two blind zebrafish taken by the behavior analysis system shown in Fig. 1.
  • the behavior analysis system 1 includes a water tank 2 containing zebrafish F in water, two CCD cameras 3.3, two monitors 4.4, and a video mixer 5 And an image processing device 10.
  • the behavior analysis system 1 performs behavior analysis of the zebrafish F based on a surface image of the zebrafish F in the water tank 2.
  • Aquarium 2 is the observation space.
  • the shape of the water tank 2 is, for example, 24 cm long, 37 cm wide, and 29 cm high.
  • one or more zebrafish F are swimming freely.
  • the aquarium 2 is illuminated by four lamps (.150 W each) (not shown) installed diagonally above the aquarium 2 to prevent reflection and backlight from occurring on the CCD camera 3.
  • the CCD cameras 3 and 3 are installed above and about 1.5 m from the side of the aquarium 2, and are set so that the entire aquarium 2 can be photographed in two directions: upward and sideways.
  • the CCD camera 3.3 has a zebrafish F with a small size and a high swimming speed of 70 mm / s, so that the shutter speed is 1 to 60 seconds and the frame rate is 10 sheets.
  • Seconds, Resolution (pixels) You can shoot with settings such as 25 6 (vertical) X 1 28 (horizontal) or 25 6 (vertical) X 25 6 (horizontal).
  • the color tone is full color and a composite video terminal is used for the video signal transmission connector.
  • the frame rate 3 is preferably S sheets / sec or more, more preferably 10 sheets / sec. In the case of goldfish, 4 fish / sec was sufficient.
  • the monitor 4 is a display monitor having a composite video input terminal for displaying an image from the CCD camera 3.
  • the monitor 4 allows the user to check the image being shot with the CCD camera 3 in real time.
  • the video mixer 5 combines the two images captured by the two CCD cameras 3 and 3 into a single upper and lower image, and outputs it to an image input board 11 (described later).
  • the image processing device 10 captures an image captured by the CCD camera 3 and 3 010979
  • the data is binarized in real time and stored in the data storage unit 13. After the observation, analysis is performed based on the binarized image.
  • the image processing device 10 includes an image input board 11, a binarization processing unit 12, a data storage unit 13, and an analysis processing unit 1.
  • the image input board 11 is an interface of the image processing device 10.
  • the I-image input board 11 can output an input image from a composite video terminal (snow 1 ⁇ 1 out) to an external monitor (not shown).
  • the binarization processing unit 12 compares the image captured from the image input board 11 with the threshold value for each pixel and records the binarized image in the data storage 13 I do.
  • the data storage unit 13 is a storage device such as a hard disk, and stores a binarized image generated by the binarization processing unit 12 and a calculation result by the analysis processing unit 14.
  • the analysis processing unit 14 recognizes the zebrafish F based on the binarized image stored in the data storage 13 and performs general measurement of a swimming locus and the like, a tracking action evaluation and a swimming locus. Performs special measurement for total dimension calculation. Therefore, the analysis processing unit 14 includes a general measurement unit 14A, a tracking behavior evaluation unit 14B, and a fractal dimension calculation unit 14C. The analysis results of the general measurement and the special measurement can be stored in the data storage unit 13 or output to a monitor or a printer (not shown).
  • the general measurement unit 14A converts the observation data (position, speed, swimming trajectory, etc.) of Zepprait F based on the binarized image generated by the binarization processing unit 12. decide. Specifically, the general measurement unit 14A first reads the binarized W image from the data storage 13 and recognizes zebrafish F from the difference in color from the background. Next, the coordinates of the center of gravity of the region of Zebrahui Shish F are obtained. Then, based on the data of the center of gravity, the position coordinates, swimming locus (two-dimensional, three-dimensional), position distribution, moving speed, moving distance, body axis tilt, left and right rotation (right rotation, left rotation) Rotation, straight ahead, etc.). The general measurement unit 14 ⁇ performs image processing such as labeling processing and separation processing in order to prevent rapid separation of surface images and apparent overlap. This makes it possible to handle multiple fish.
  • the binarization is first performed at a quarter resolution, for example, Only the area around the area determined to be present may be binarized at the original resolution. As a result, the number of processes can be significantly reduced, and a favorable frame rate and resolution can be obtained.
  • the tracking behavior evaluation unit 14B reads the position and velocity, which are the observation data determined by the general measurement unit 14A, from the data storage unit 13 and evaluates the tracking behavior of the target individual to other individuals. I do.
  • the fractal dimension calculating unit 14C reads the swimming trajectory, which is the observation data determined by the general measuring unit 14A, from the data storage unit 13 and calculates the fractal dimension of the swimming trajectory.
  • the tracking behavior evaluation unit 14B and the fractal dimension calculation unit 14C will be described later in detail.
  • the behavior analysis system 1 first allowed the zebrafish F to swim freely in the aquarium 2, Images taken continuously for a predetermined time by the D camera 3 3 are taken into the image processing device 10, binarized and stored in the data storage unit 13. After observation at a predetermined time, the analysis processing unit 14 recognizes zebrafish F from the binary image and performs various analyzes of general measurement and special measurement.
  • FIGS. 10 to 12 show the swimming locus of one zebrafish F taken by the behavior analysis system 1 for 30 minutes.
  • Figure 10 shows the swimming trajectory of zebrafish F juveniles that have just hatched (less than 3 S) with a body length of less than 1 cm.
  • Figure 11 shows the swimming trajectory of zebrafish F one month after hatching with a body length of 2 cm.
  • Figure 12 shows the swimming locus of adult zebrafish F four months after hatching with a length of 4 cm.
  • FIGS. 13 and 14 show the swimming locus of two zebrafish F for 10 minutes taken by the behavior analysis system 1.
  • the red and black lines indicate the swimming locus of one zebrafish F, respectively.
  • Figure 13 shows the swimming trajectory of the normal zebrafish F at the tail. According to FIG. 13, it can be seen that the frequency of two normal zebrafish F swimming on the edge of the aquarium 2 is small.
  • Figure 14 shows the swimming tracks of two blind zebrafish F. According to FIG. 14, it can be seen that two blind zebrafish F are swimming around the entire aquarium 2.
  • swimming traces of two or more zebrafish F can be obtained. Then, based on the data of the swimming trajectory, it is possible to quantitatively analyze an interaction such as approaching two fishes.
  • the tracking action evaluation performed by the tracking action evaluation unit 14B will be described with reference to FIGS.
  • the tracking action evaluation unit 14B determines three conditions, (i) an inter-individual distance condition, (ii) an angle condition, and (iii) an approach condition, respectively, and when all are simultaneously established, the tracking action is determined. It is determined that the condition holds. Then, the tracking action evaluation unit 14B evaluates the tracking action by time and distance as a tracking rate.
  • the distance L between the two tails is too far apart, it is not regarded as tracking. Furthermore, if it is too close when viewed from the top of the aquarium 2, it can be determined that swimming is occurring at a position that is overlapping, that is, at a different depth, so that it is determined that tracking is not performed. In the present embodiment, empirically,
  • swimming may occur in parallel, so the following conditions are determined.
  • the condition is that there is a fish that is being chased within a certain angle 0 from the traveling direction of the chasing fish.
  • FIG. 4B shows an example when tracking is not determined (L> L1 and L> L2).
  • the tracking action evaluation unit 14 B sets the tracking action evaluation index as:
  • Tracking time rate tracking time Z observation time
  • Tracking distance ratio travel distance while tracking / total travel distance
  • Figure 5 shows the results of an analysis of the tracking behavior of zebrafish 'mesh using the tracking time rate. On the left is the tracking rate of normal zebrafish (control experiment), and on the right is the tracking rate of zebrafin on day 1 of bilateral optic nerve transection. About 30% are normal and about 8% are cut, indicating that tracking becomes extremely difficult when blind.
  • Figure 6 shows the recovery of the visual function of the Zeppraite tissue with the tracking time rate and tracking distance. The result of observation using the separation rate is shown. As shown in Fig. 6, when the optic nerve was cut unilaterally or bilaterally, the behavior of the fish was observed, and it was found that optic nerve regeneration had two phases: fast recovery and slow recovery.
  • the inventor has confirmed that the behavior analysis system 1 can objectively evaluate visual function recovery from the analysis of fish behavior.
  • the fractal dimension is a parameter representing the complexity of the curve.
  • the fractal dimension D is given by the following relational expression:
  • ⁇ ( ⁇ ) k ⁇ ⁇ ' -D
  • the fractal dimension D can be obtained by obtaining the regression line of the points on the graph using the least squares method and examining the slope.
  • Figure 9 shows the results of analyzing the swimming trajectory of zebrafish using fractal dimensions. On the left is the fractal dimension of a normal zebrafish (control experiment), and on the right is the fractal dimension of the first zebrafish after bilateral optic nerve transection. The larger the value of the fractal dimension is, the more complicated the trajectory of the swim is. Therefore, the results show that the trajectory becomes simpler when blind.
  • the behavior analysis system 1 consists of a CCD camera 3 that captures images of zebrafish F in the aquarium 2 at a frame rate of 8 or more per second, and a general measurement unit 1 that acquires observation data from the images. 4 A. Then, the tracking behavior evaluation unit 14B evaluates the tracking behavior between the zebrafish F based on the position velocity, which is the observation data of the zebrafish F. The fractal dimension calculator 14C calculates the fractal dimension of the swimming trajectory based on the swimming trajectory that is the observation data of zebrafish F. You.
  • the present embodiment does not limit the scope of the present invention, and various changes can be made within the scope of the present invention.
  • the present invention can be configured as follows.
  • the observation data may be acquired by, for example, position detection using a transmitter mounted on an animal.
  • a feeding device is installed in the water channel 2, and this feeding device, CCD camera 3, video mixer 5, image processing device 10 (image input board 11, binarization processing unit 12, data storage unit 1) By controlling 3) with a timer, long-term observations as shown in Fig. 6 can be performed automatically.
  • the behavior analysis system 1 can be variously used in a field that uses quantification of animal behavior analysis. For example, as described above, quantitative analysis of abnormal behavior after optic nerve transection (visual blockage) is possible. That is, it can be used for evaluation of nerve damage, regeneration, etc. It can also be used for genetic modification and screening for mutant phenotypic abnormalities. 'Comparison between nocout fish and wild fish allows us to analyze the correlation between gene and phenotype (behavior). Furthermore, it can be used to evaluate the effects and duration of drug effects (especially neuroactive drugs).
  • the behavior analysis system 1 can be used for screening external factors (water quality, environmental hormones). Therefore, it is possible to monitor the deep swimming boundaries of fish (dissolved oxygen, environmental sources, water temperature, poisons, etc.).
  • the behavior analysis system 1 can be used to compare natural fish with artificially reared fish, and to analyze the behavior of schools of fish. Therefore, the behavior analysis system 1 can be applied to fishing techniques such as fishing and aquaculture.
  • the behavior analysis system 1 can be applied to three-dimensional behavior observation of terrestrial animals such as Drosophila and mice, as well as aquatic animals such as zebrafish. It can also be applied to the behavioral psychology of animals, for example, by observing changes in fish behavior by applying colors and patterns to the walls of the aquarium.
  • the image processing apparatus 10 can be configured based on a general-purpose computer such as a workstation or a personal computer. Ie
  • the image processing device 10 includes a CPU (central processing unit) that executes instructions of a program for realizing the function, a ROM (read only memory) storing boot logic, and a RAM (random access memory), storage devices (recording media) such as a hard disk for storing the top sc programs and various databases, input devices such as keyboards and mice, and output devices such as moyuta, speakers and printers. Are connected to each other.
  • a CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • storage devices recording media
  • input devices such as keyboards and mice
  • output devices such as moyuta, speakers and printers.
  • an object of the present invention is to provide a program for executing an animal behavior analysis program (executable program, A recording medium in which an intermediate code program and a source program) are recorded so as to be readable by a computer is supplied to a system or an apparatus, and the computer (or CPU, MPU, or DSP) of the system or the apparatus is recorded on the recording medium.
  • This can also be achieved by reading and executing a program code.
  • the program code itself read from the recording medium realizes the above-described function, and the recording medium on which the program code is recorded constitutes the present invention.
  • the binarization processing unit 12 and the analysis processing unit 14 included in the image processing device execute a predetermined program stored in a memory (not shown) of the surface image processing device 10. This is realized by execution by a microprocessor or the like.
  • the recording medium for supplying the program code can be configured to be separable from the system or the device. Further, the recording medium may be a medium which is fixedly supported so that a program code can be supplied. The recording medium is connected to the system or the device as an external storage device even if the recording medium is mounted on the system or the device so that the recorded program code can be directly read by the computer. It may be mounted so that it can be read via a connected program reader.
  • the recording medium may be a tape such as a magnetic tape or a cassette tape, or a magnetic disk such as a floppy (registered trademark) disk hard disk.
  • a semiconductor memory system such as a flash ROM can be used.
  • the program code may be read out from the recording medium and directly executed by the computer, or may be transferred from the recording medium to the program storage area of the main memory, and then transferred to the main memory by the computer. It may be recorded so that it can be read out from and executed.
  • the system or device may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited. Specifically, the Internet, the intranet, the extranet, the LAN, the ISDN, the VAN, the CATV communication network, and the virtual private network ( virtual private network), telephone line network, mobile communication network, satellite communication network, etc. are applicable.
  • the transmission medium constituting the communication network is not particularly limited, and specific examples include IEEE1394, USB, power line carrier, cable TV line, telephone line, and ADSL line. It can be applied to wireless communication such as infrared communication such as IrDA and remote control, Bluetooth, 80.2.11 wireless, HDR, mobile phone network, satellite line, and terrestrial digital network.
  • the present invention can also be realized in the form of a carrier wave or a data signal sequence in which the program code is embodied by electronic transmission.
  • the program for reading the program code from the recording medium and storing the program code in the main memory and the program for downloading the program code from the communication network can be executed by a computer beforehand in a system or apparatus. It shall be stored.
  • the functions described above are realized not only by executing the above-described program code read by a computer, but also by executing the program code. Based on the instructions, the OS running on the computer performs the actual processing.
  • the program code read from the recording medium is written in a memory provided in a function expansion board connected to a function expansion board attached to a computer or a computer. Thereafter, based on the instructions of the program, the CPU or the like provided in the function expansion board or the function expansion unit performs a part or all of the actual processing.
  • the animal behavior analysis method and the animal behavior analysis system according to the present invention which are optimal as experimental animals for genetic research, can quantitatively and precisely analyze the behavior analysis of zebrafish having a high swimming speed. It allows you to do that. Therefore, the animal behavior analysis method and the animal behavior analysis system according to the present invention can be used for precise quantitative behavior analysis for genetic research. Further, the animal behavior analysis method and the animal behavior analysis system according to the present invention can be widely applied to behavioral analysis of animals that perform high-speed and complicated behaviors, in addition to experimental animals for genetic research.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

A behavior analysis system comprises a CCD camera for capturing images of a zebrafish in an aquarium at a frame rate of 8 images/sec and a general measurement unit for acquiring observation data from the images. A pursuing behavior evaluating unit evaluates the pursuing behavior of a zebrafish pursuing another zebrafish with reference to the position and speed of the zebrafish, which are observation data on the zebrafish. A fractal dimension calculating unit calculates the fractal dimension of a swim track from the measured data on the zebra fish, which is observation data. Thus, the analysis of behavior of a zebrafish, which is most suitable as a laboratory animal for gene research and swims fast, can be made quantitatively and accurately.

Description

明 細 書 動物の行動解析方法、 動物の行動解析システム、 動物の行動解析プログ ラムならびにそれを記録したコンピュータ読み取り可能な記録媒体 技術分野  Description Animal behavior analysis method, animal behavior analysis system, animal behavior analysis program, and computer-readable recording medium recording the program
本発明は、 動物の行動解析方法おょぴ動物の行動解析システムに関し 、 さらに詳しく は、 動物の行動を定量的に解析する動物の行動解析方法 、 動物の行動解析システム、 動物の行動解析プログラムならびにそれを 記録したコンピュータ読み取り可能な記録媒体に関するものである。 背景技術  The present invention relates to an animal behavior analysis method and an animal behavior analysis system, and more particularly, to an animal behavior analysis method for quantitatively analyzing animal behavior, an animal behavior analysis system, an animal behavior analysis program, and The present invention relates to a computer-readable recording medium on which the information is recorded. Background art
最近の遗伝子研究の発展はめざましく、 研究対象も線虫、 ショ ウジョ ゥバエ、 酵母等の下等な生物から、 マウス、 魚、 ヒ ト等の高等な動物へ と変遷してきた。 また、 遗伝子研究は、 全ゲノ ムの解析が終了し:たボス トゲノムには、 ゲノムのコー ドするタンパク質 (prot e i n) の機能を解 析するプロテオミ タ スの時代に入り、 さ らに、 表現型 (pheno t yp e ) を 解析するフエノ ミ クスの時代へと移ることが予想される。  Recent progress in gene research has been remarkable, and the research subjects have shifted from lower creatures such as nematodes, fruit flies, and yeast to higher animals such as mice, fish, and humans. In gene research, analysis of all genomes has been completed: the boss genome has entered the era of proteomics, which analyzes the function of the protein (protein) encoded by the genome. It is anticipated that we will move into the phenomena of analyzing phenotypes.
ここで、 魚の研究対象と しては、 ゼブラフィ ンシュが、 その発生生物 学上極めて有利な特長から、 遺伝子改変や還伝子ノ ックァゥ トに最適な 動物種であるこ とがひろく認識され、 近年ゲノム解析が最も進んだ動物 の 1つとなってレ、る。  Here, it has been widely recognized that zebrafins are the most suitable animal species for genetic modification and gene knockout due to their extremely advantageous features in developmental biology, and in recent years, genomic It is one of the most advanced animals analyzed.
具体的には、 ゼプラフィ ッシュは、 体長 5 〜 6 c mの小型の熱帯魚で あり、 他の魚と異なり、 ①一年中いつでも産卵するため、 卵が通年にわ た り手に入る、 ②幼魚期体が透明であるため、 遣伝子発現を G F P (緣 色蛍光タンパク) のよ うな蛍光タンパクで外から追跡、 観察することが 可能である、 という特長を有している。 More specifically, zeprafish is a small tropical fish with a length of 5 to 6 cm, and unlike other fish, it lays eggs at any time of the year. (2) Since the juvenile body is transparent, gene expression can be tracked and observed from outside using a fluorescent protein such as GFP (red fluorescent protein). are doing.
そして、 ゼブラフイ ツシュの遣伝子研究は全ゲノムの解析が間近であ り 、 今後発生生物学をはじめと して、 表現型と しての魚の行動解析、 す なわち遣伝子改変や遣伝子ノ ックァゥ トを施した魚の行動解析の需要は 計り知れない。  In zebrafish gene research, analysis of the whole genome is imminent, and in the future, developmental biology, fish behavior analysis as a phenotype, that is, genetic modification and gene transfer The demand for behavioral analysis of fish subjected to knockouts is immense.
しかし、 ラッ トやマウス等の小動物用の行動解析装置はよく 医学研究 に使われ、 市販もされているが、 魚用のものはほとんどないのが現状で ある。  However, behavioral analyzers for small animals such as rats and mice are often used for medical research and are commercially available, but few are for fish at present.
なお、 発明者らは、 Kato, S. , Tamada, K. , Shimada, Υ. and Chujo, T. , A quantification of goldfish behavior by an image processing s ystem, Behavioural Brain Research, 80 (1996) 51— 55, こぉレヽて、 水 槽中の金魚を撮影し、 金魚の位置分布および進行方向を解析する金魚の 行動解析のための画像処理システムを提案した。 発明者らは、 この画像 処理システムを用いて、 金魚の行動解析、 特に視神経切断後の異常行動 の定量的解析を行ってきた。  In addition, the inventors described Kato, S., Tamada, K., Shimada, Υ. And Chujo, T., A quantification of goldfish behavior by an image processing system, Behavioral Brain Research, 80 (1996) 51-55. In this study, we proposed an image processing system for analyzing the behavior of goldfish, which captures goldfish in an aquarium and analyzes the position distribution and direction of travel of the goldfish. The inventors have used this image processing system to analyze the behavior of goldfish, particularly quantitative analysis of abnormal behavior after optic nerve transection.
また、 日本国公開特許公報 「特開平 7— 6 3 7 4 7号 (公開日 : 1 9 9 5年 3月 1 0 日) 」 には、 水槽内の魚群の活動状況および生存状況の 識別することにより 、 水質の異常を検出する 「水質検査装置」 が記載さ れている。 この水質検査装置は、 水槽内に放された魚群の面像を I T V カメラによって撮影し、 画像入力部によってサンプリ ング処理おょぴ 2 値化処理を実行する。 2値化に係るしきい値の設定によって、 外乱ゃノ ィズの影響を排除することができる。 画像処理部は、 2値化された画像 データから魚群を構成する個々の魚の画像を抽出し、 個々の画像にラベ ルを付与すると と もに、 その単位時間当たり移動量に基づき魚群の活動 状況および生存状況の識別を実行する。 In addition, the Japanese published patent publication “Japanese Patent Application Laid-Open No. Hei 7-63 747 (published on: March 10, 1995)” identifies the activities and survival of fish schools in aquariums. Accordingly, a “water quality inspection device” for detecting an abnormality in water quality is described. This water quality inspection device takes an image of the fish school released into the aquarium with an ITV camera, and executes sampling and binarization processing with the image input unit. By setting the threshold value for binarization, the influence of disturbance noise can be eliminated. The image processing unit converts the binarized image It extracts the images of the individual fish that make up the fish school from the data, attaches a label to each image, and identifies the activity status and survival status of the fish school based on the amount of movement per unit time.
上述のよ うに、 ゼブラフイ ツシュの行動の定量的解析が必要かつ緊急 を要するものであるにもかかわらず、 適当な行動解析方法や行動解析シ ステムが存在しなかった。 すなわち、 金魚用の行動解析システムや水質 検查装置では、 ゼブラフィ ッシュが高速で複雑な 3次元の行動をするた めに、 遗伝子研究の要求にも応えるこ とができる程度に精密な定量的行 動解析が不可能であった。  As described above, there is no appropriate behavior analysis method or behavior analysis system, although quantitative analysis of the behavior of zebrafish is necessary and urgent. In other words, in the behavior analysis system and the water quality inspection device for goldfish, zebrafish perform high-speed and complicated three-dimensional behavior, so that quantification is precise enough to meet the needs of gene research. Objective behavior analysis was not possible.
発明の開示 Disclosure of the invention
本発明の目的は、 遗伝子研究の要求にも応えることができる程度に精 密な定量的行動解析が可能な動物の行動解析方法おょぴ動物の行動解析 システムを提供することにある。 また、 本発明の目的には、 上記動物の 行動解析システムを実現する動物の行動解析プログラム、 およびこれを 記録したコンピュータ読み取り可能な記録媒体を提供するこ とも含まれ る。  An object of the present invention is to provide an animal behavior analysis method and an animal behavior analysis system capable of performing quantitative behavior analysis as precisely as possible to meet the requirements of gene research. Further, an object of the present invention includes providing an animal behavior analysis program for realizing the above-described animal behavior analysis system, and a computer-readable recording medium recording the program.
上記の目的を達成するために、 本発明の動物の行動解析方法は、 水槽 中の水棲動物を 8枚/秒以上のフ レームレー トで撮像する撮像ステッブ と、 上記撮像ステ ップにおいて撮像した画像に基づき、 水棲動物の行動 解析を行う解析ステップと、 を含むことを特徴と している。  In order to achieve the above object, an animal behavior analysis method of the present invention comprises: an imaging step for imaging an aquatic animal in an aquarium at a frame rate of 8 or more per second; and an image captured in the imaging step. And an analysis step for analyzing the behavior of aquatic animals based on.
さらに、 本発明の動物の行動解析方法は、 上記水棲動物がゼブラフィ ッシュであるこ とを特徴と している。  Further, the animal behavior analysis method of the present invention is characterized in that the aquatic animal is zebrafish.
また、 本発明の動物の行動解析システムは、 水槽中の水棲動物を撮像 した画像に基づき、 当該水棲動物の行動解析を行う動物の行動解析シス テムであって、 上記画像を 8枚ノ秒以上のフレームレ一 トで撮像する撮 像手段を具備することを特徴と している。 Also, the animal behavior analysis system of the present invention captures aquatic animals in an aquarium. An animal behavior analysis system for analyzing the behavior of the aquatic animal based on the obtained image, characterized by comprising imaging means for imaging the image at a frame rate of eight or more seconds. ing.
上記の方法および構成により、 行動解析の基礎となる画像を 8枚 Z秒 以上のフ レームレー トで撮像することによ り、 髙速で複雑な行動をする 水棲動物の行動解析が可能となる。  With the above method and configuration, by capturing images that serve as the basis for behavior analysis at a frame rate of 8 or more Z-seconds, behavior analysis of aquatic animals that perform fast and complex behavior becomes possible.
背景技術において説明したよ うに、 ゼブラフィ ッシュは、 その発生生 物学上極めて有利な特長を有しており、 表現型と しての行動解析、 すな わち遣伝子改変や遣伝子ノ ックアウ トを施したゼブラフィ ッシュの行動 を定量的に解析する技術の確立が強く求められている。  As explained in the background art, zebrafish has extremely advantageous features in terms of its developmental biology, such as behavioral analysis as a phenotype, that is, genetic modification and genetic modification. There is a strong demand for the establishment of a technique for quantitatively analyzing the behavior of a zebrafish that has been subjected to a knockout.
そこで、 上記の方法および構成によれば、 高速で複雑な 3次元の行動 をするゼブラフィ ッシュ等の水棲動物であっても、 その行動を確実に撮 像することができるため、 行動解析が可能となる。 それゆえ、 ゼブラフ ィ ッシュの行動を、 遗伝子研究の要求にも応えるこ とができる程度に精 密に定量的に行動解析することが可能となる。  Therefore, according to the above-described method and configuration, even aquatic animals such as zebrafish that perform high-speed and complicated three-dimensional behavior can be imaged with certainty. Become. Therefore, it is possible to analyze the behavior of zebrafish precisely and quantitatively to the extent that it can meet the needs of gene research.
また、 本発明の動物の行動解析方法は、 第 1の動物と第 2の動物の位 置および速度を取得する観測データ取得ステップと、 上記観測データ取 得ステップにおいて取得した第 1の動物と第 2の動物の位置および速度 に基づいて、 第 1の動物の第 2の動物に対する追尾行動を評価する追尾 行動評価ステ シプと、 を含むことを特徴と している。  Further, the animal behavior analysis method of the present invention includes an observation data acquisition step of acquiring the positions and velocities of the first animal and the second animal; and the first animal and the second animal acquired in the observation data acquisition step. And a tracking action evaluation step for evaluating a tracking action of the first animal with respect to the second animal based on the position and velocity of the second animal.
また、 本発明の動物の行動解析システムは、 第 1 の動物と第 2の動物 の位笸および速度を取得する観測データ取得手段と、 上記観測デ一タ取 得手段によって取得された第 1の動物と第 2の動物の位置および速度に 基づいて、 第 1 の動物の第 2の動物に対する追尾行動を評価する追尾行 動評価手段と、 を具備することを特徴と している。 Further, the animal behavior analysis system of the present invention comprises: observation data acquisition means for acquiring the position and velocity of the first animal and the second animal; and the first behavior data acquired by the observation data acquisition means. A tracking line that evaluates the tracking behavior of the first animal with the second animal based on the position and velocity of the animal and the second animal And dynamic evaluation means.
上記の方法および構成によ り、 動物の追尾行動を位置および速度に基 づいて定量的に評価できる。 なお、 第 1の動物と第 2の動物とは、 同種 であっても異種であってもよい。 また、 第 1 の動物および第 2の動物は 、 ゼブラフィ ッシュ等の水棲動物であっても、 ショ ウジヨ ウバエやマウ ス等の喹棲動物であってもよい。  According to the above method and configuration, the tracking behavior of the animal can be quantitatively evaluated based on the position and the speed. Note that the first animal and the second animal may be of the same species or different species. In addition, the first animal and the second animal may be aquatic animals such as zebrafish or resident animals such as Drosophila and mouse.
ここで、 追尾行動の具体的な評価方法と しては、 例えば、 第 1 の動物 と第 2の動物との距離の条件 (個体間距離条件) 、 第 1 の動物の進行方 向と第 2の動物の位置との角度の条件 (角度条件) 、 第 1の動物が近づ こう と し、 第 2の動物が離れよ う と しているか否かの条件 (接近条件) の 3条件が全て同時に成立しているとき、 第 1 の動物が第 2の動物を追 尾していると判定できる。 そして、 追尾行動の評価指標と して、  Here, specific evaluation methods of the tracking behavior include, for example, the condition of the distance between the first animal and the second animal (distance between individuals), the progress direction of the first animal and the second direction. All three conditions are required: the condition of the angle to the position of the animal (angle condition), and the condition of whether the first animal is approaching and the second animal is leaving (approaching condition). When the conditions are established at the same time, it can be determined that the first animal is tracking the second animal. And, as an evaluation index of the tracking behavior,
追尾時間率-追尾していた時間 観測時間  Tracking time rate-tracking time Observation time
追尾距離率 =追尾しながらの移動距離 Z総移動距離  Tracking distance ratio = Moving distance while tracking Z Total moving distance
などを用いるこ とができる。 Etc. can be used.
また、 本発明の動物の行動解析方法は、 動物の移動軌跡を取得する観 測データ取得ステップと、 上記観測データ取得ステップにおいて取得し た移動軌跡のフラクタル次元を算出するフラクタル次元算出ステップと 、 を含むことを特徴と している。  Further, the animal behavior analysis method of the present invention includes: an observation data acquisition step of acquiring a movement locus of an animal; and a fractal dimension calculation step of calculating a fractal dimension of the movement locus acquired in the observation data acquisition step. It is characterized by including.
また、 本発明の動物の行動解析システムは、 動物の移動軌跡を取得す る観測データ取得手段と、 上記観測データ取得手段によって取得された 移動軌跡のフラクタル次元を算出するフラクタル次元算出手段と、 を具 備することを特徵と している。  Further, the animal behavior analysis system of the present invention comprises: observation data acquisition means for acquiring a movement locus of an animal; and fractal dimension calculation means for calculating a fractal dimension of the movement locus acquired by the observation data acquisition means. It is specially equipped.
上記の方法および構成によ り、 動物の移動軌跡の複雑さを定量的に評 価できる。 動物は、 ゼブラフィ ッシュ等の水棲動物であっても、 ショ ウ ジョ ゥバエやマウス等の陸棲動物であってもよい。 The above method and configuration quantitatively evaluate the complexity of the animal's trajectory. Worth it. The animal may be an aquatic animal such as zebrafish or a terrestrial animal such as drosophila and mouse.
また、 本発明の動物の行動解析プログラムは、 コ ンピュータを上記の 各手段と して機能させるコンピュータ ' プロ グラムである。  Further, the animal behavior analysis program of the present invention is a computer program that causes a computer to function as each of the above means.
上 IEの構成によ り、 コンピュータで上 IH動物の行動解析システムの各 手段を実現することによって、 上記動物の行動解析システムを実現する ことができる。 したがって、 上 |Eした動物の行動解析システムと して、 動物の行動を、 遣伝子研究の要求にも応えることができ る程度に精密に 定曩的に行動解析することが可能となる。  With the configuration of the upper IE, by implementing each means of the upper IH animal behavior analysis system using a computer, the above animal behavior analysis system can be realized. Therefore, as the animal behavior analysis system described above, it becomes possible to analyze the behavior of the animal precisely and regularly, to the extent that it can respond to the needs of gene research.
また、 本発明の動物の行動解析プログラムを記録したコンピュータ読 み取り可能な記録媒体は、 上 ISの各手段をコンピュータに実現させて、 上記動物の行動解析システムを動作させる動物の行動解析プログラムを IB録したコンピュータ読み取り可能な記録媒体である。  Further, a computer-readable recording medium on which the animal behavior analysis program of the present invention is recorded is a computer-readable recording medium that realizes each of the above-mentioned IS and operates the above-described animal behavior analysis system. This is a computer-readable recording medium recorded by IB.
上記の構成によ り、 上記記録媒体から読み出された勤物の行動解析プ tiグラムによって、 上 |5動物の行動解析システムをコンピュータ上に実 現することができる。  With the configuration described above, the behavior analysis system for animals can be realized on a computer by using the behavior analysis program for office work read from the recording medium.
本発明のさ らに他の目的、 特徴、 および優れた点は、 以下に示す記截 によって十分わかるであろう。 また、 本発明の利益は、 添忖図面を参照 した次の説明で明白になるであろう。 図面の簡単な説明  Still other objects, features, and strengths of the present invention will be made clear by the description below. Also, the advantages of the present invention will become apparent in the following description with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施の形態に係る行動解析システムの構成の概略 を示す説明図で る。  FIG. 1 is an explanatory diagram schematically showing a configuration of a behavior analysis system according to one embodiment of the present invention.
図 2は、 図 1に示した行動解析システムの追尾行動評価部で判定する 個体間距離条件を説明する図である。 . Fig. 2 shows the decision made by the tracking behavior evaluation unit of the behavior analysis system shown in Fig. 1. It is a figure explaining the distance condition between individuals. .
図 3 ( a ) ( b ) は、 図 1 に示した行動解析システムの追尾行動評価 部で判定する角度条件を説明する図であり、 図 3 ( a ) は角度条件を満 たす場合、 図 3 ( b ) は角度条件を満たすが接近条件を満たさない場合 をそれぞれ示す。  Figs. 3 (a) and 3 (b) are diagrams illustrating the angle condition determined by the tracking behavior evaluation unit of the behavior analysis system shown in Fig. 1.Fig. 3 (a) shows the case where the angle condition is satisfied. 3 (b) shows the case where the angle condition is satisfied but the approach condition is not satisfied.
図 4 ( a ) ( b ) は、 図 1 に示した行動解析システムの追尾行動評価 部で判定する接近条件を説明する図であり、 図 4 ( a ) は接近条件を満 たす場合、 図 4 ( b ) は接近条件を満たさない場合をそれぞれ示す。 図 5は、 図 1に示した行動解析システムの追尾行動評価部で算出した 追尾時間率を用いて、 視神経切断による影響を定量評価するために、 ゼ ブラフイ ツシュの追尾行動を解析した例を示すグラフである。  Figs. 4 (a) and 4 (b) are diagrams illustrating the approach conditions determined by the tracking behavior evaluation unit of the behavior analysis system shown in Fig. 1.Fig. 4 (a) is a diagram when the approach conditions are satisfied. 4 (b) shows the case where the approach condition is not satisfied. Fig. 5 shows an example of the analysis of the tracking behavior of Zebrafish, using the tracking time rate calculated by the tracking behavior evaluation unit of the behavior analysis system shown in Fig. 1 to quantitatively evaluate the effects of optic nerve transection. It is a graph.
図 6は、 図 1 に示した行動解析システムの追尾行動評価部で算出した 追尾時間率および追尾距離率を用いて、 ゼブラフィ ッシュの視覚機能回 復を観察した結果を示すグラフである。  FIG. 6 is a graph showing the results of observing the recovery of the visual function of zebrafish using the tracking time rate and the tracking distance rate calculated by the tracking action evaluation unit of the action analysis system shown in FIG.
図 7は、 図 1に示した行動解析システムのフ ラ ク タル次元算出部にお ける魚の遊泳軌跡のフラクタル次元の算出方法を説明する図である。 図 8は、 図 1 に示した行動解析システムのフラク タル次元算出部にお ける魚の遊泳軌跡のフラクタル次元の算出方法を説明する図である。 図 9は、 図 1に示した行動解析システムのフラクタル次元算出部で算 出したフラクタル次元を用いて、 視神経切断による影響を定量評価する ために、 ゼブラフイ ツシュの遊泳軌跡を解析した例を示すダラフである 図 1 0は、 図 1 に示した行動解析システムによ り撮影した、 体長 1 c m未満のふ化直後 ( 3 日以内) のゼブラフィ ンシュの稚魚の遊泳軌跡 ( 3 0分間) を示す図面代用写真である。 FIG. 7 is a diagram illustrating a method of calculating a fractal dimension of a fish swimming locus in a fractal dimension calculating unit of the behavior analysis system shown in FIG. FIG. 8 is a diagram for explaining a method of calculating a fractal dimension of a swimming locus of a fish in a fractal dimension calculating unit of the behavior analysis system shown in FIG. Figure 9 shows an example of analyzing the swimming trajectory of a zebrafish, using the fractal dimension calculated by the fractal dimension calculator of the behavior analysis system shown in Fig. 1 to quantitatively evaluate the effect of optic nerve transection. Figure 10 shows the swimming trajectory of the zebrafin fry immediately after hatching (within 3 days) with a body length of less than 1 cm, taken by the behavior analysis system shown in Fig. 1. (30 minutes).
図 1 1 は、 図 1 に示した行動解析システムによ り撮影した、 体長 2 c mのふ化 1 力月後のゼブラフィ ッ シュの遊泳軌跡 ( 3 0分間) を示す図 面代用写真である。  Fig. 11 is a photograph showing the swimming locus of zebrafish (30 minutes) one month after hatching with a body length of 2 cm and taken by the behavior analysis system shown in Fig. 1.
図 1 2は、 図 1 に示した行動解析システムによ り撮影した、 体長 4 c mのふ化 4力月後のゼブラフイ シシュの成魚の遊泳軌跡 ( 3 0分聞) を 示す図面代用写真である。  Fig. 12 is a drawing substitute photograph showing the swimming locus (30 minutes) of adult zebrafish fish four months after hatching with a body length of 4 cm and hatched by the behavior analysis system shown in Fig. 1.
図 1 3は、 図 1 に示した行動解析システムによ り撮影した、 2尾の正 常なゼブラフイ ツシュの遊泳軌跡 ( 1 0分間) を示す図面代用写真であ る。  Fig. 13 is a drawing substitute photograph showing the swimming trajectory (10 minutes) of two normal zebrafish, taken by the behavior analysis system shown in Fig. 1.
図 1 4は、 図 1 に示した行動解析システムにより撮影した、 2尾の盲 目なゼブラフィ ッシュの遊泳軌跡 ( 1 0分間) を示す図面代用写真であ る。 発明を実施するための最良の形態  Fig. 14 is a drawing substitute photograph showing the swimming locus (10 minutes) of two blind zebrafish taken by the behavior analysis system shown in Fig. 1. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施の形態について図 1から図 9に基づいて説明すれば、 以下のとおりである。 なお、 本実施の形態では、 一例と してゼブラフィ ッシュの行動解析、 特に視神経切断 (視覚遮断) による影響を定量評価 する場合について説明する。  One embodiment of the present invention will be described below with reference to FIGS. In this embodiment, as an example, a description will be given of a case in which the behavioral analysis of zebrafish, in particular, the case of quantitatively evaluating the effect of optic nerve transection (visual blockage).
図 1 に示すよ うに、 本実施の形態に係る行動解析システム 1 は、 水中 にゼブラフィ ンシュ Fを含む水槽 2 、 2台の C C Dカメ ラ 3 · 3 、 2台 のモニタ 4 · 4、 ビデオミキサ 5、 画像処理装置 1 0を備えて構成され ている。 行動解析システム 1は、 水槽 2中のゼブラフィ ッシュ Fを撮像 した面像に基づき、 ゼブラフィ ンシュ Fの行動解析を行う ものである。 水槽 2は観測空間である。 水槽 2の形状は、 例えば、 縦 2 4 c m、 横 3 7 c m、 高さ 2 9 c mである。 水槽 2中には、 1 または複数のゼブラ フィ ッシュ Fが自由に遊泳している。 水槽 2は、 C C Dカメ ラ 3に反射 や逆光の起こらないよ うに水槽 2の斜め上方に設置された 4個のレフラ ンプ (各.1 5 0 W) (図示せず) によって照明されている。 As shown in FIG. 1, the behavior analysis system 1 according to the present embodiment includes a water tank 2 containing zebrafish F in water, two CCD cameras 3.3, two monitors 4.4, and a video mixer 5 And an image processing device 10. The behavior analysis system 1 performs behavior analysis of the zebrafish F based on a surface image of the zebrafish F in the water tank 2. Aquarium 2 is the observation space. The shape of the water tank 2 is, for example, 24 cm long, 37 cm wide, and 29 cm high. In the aquarium 2, one or more zebrafish F are swimming freely. The aquarium 2 is illuminated by four lamps (.150 W each) (not shown) installed diagonally above the aquarium 2 to prevent reflection and backlight from occurring on the CCD camera 3.
C C Dカメ ラ 3 · 3は、 水槽 2の上方および側方約 1. 5 mの位置に 設置され、 水槽 2の全体を上方向と横方向との 2方向から撮影できるよ うに設定されている。 また、 C C Dカメ ラ 3 · 3は、 ゼブラフイ ツシュ Fが小型でしかも遊泳速度が 7 0 mm/秒と速いため、 シャ ッタース ピ — ドが 1ノ 6 0秒、 フ レームレ ^" トが 1 0枚 秒、 解像度 (画素) 2 5 6 (縦) X 1 2 8 (横) や 2 5 6 (縦) X 2 5 6 (横) などの設定で 撮影できる。 撮影は、 例えば 3 0分間連続して行う。 色調はフルカラー である。 また、 映像信号の伝送コネクタにはコンポジッ トビデオ端子を 使用する。  The CCD cameras 3 and 3 are installed above and about 1.5 m from the side of the aquarium 2, and are set so that the entire aquarium 2 can be photographed in two directions: upward and sideways. In addition, the CCD camera 3.3 has a zebrafish F with a small size and a high swimming speed of 70 mm / s, so that the shutter speed is 1 to 60 seconds and the frame rate is 10 sheets. Seconds, Resolution (pixels) You can shoot with settings such as 25 6 (vertical) X 1 28 (horizontal) or 25 6 (vertical) X 25 6 (horizontal). The color tone is full color and a composite video terminal is used for the video signal transmission connector.
このよ う に、 実験動物がゼブラフィ ッシュである場合、 C C Dカメ ラ Thus, when the experimental animal is zebrafish, the CCD camera
3のフ レームレー トは S枚/秒以上が好ましく 、 1 0枚/秒がよ り好ま しい。 なお、 金魚の場合には、 4枚/秒で十分であった。 The frame rate 3 is preferably S sheets / sec or more, more preferably 10 sheets / sec. In the case of goldfish, 4 fish / sec was sufficient.
モニタ 4は、 C C Dカメラ 3からの画像を表示するための、 コンポジ ッ ト ビデオ入力端子を備えたディスブレイモニタである。 モニタ 4によ り、 C C Dカメ ラ 3で撮影中の画像をリ アルタイムで確認できる。  The monitor 4 is a display monitor having a composite video input terminal for displaying an image from the CCD camera 3. The monitor 4 allows the user to check the image being shot with the CCD camera 3 in real time.
ビデオミ キサ 5は、 2台の C C Dカメ ラ 3 · 3でそれぞれ撮影された 2枚の閩像を上下 2分割の 1枚の画像に合成して、 画像入力ボード 1 1 (後述) へ出力する。  The video mixer 5 combines the two images captured by the two CCD cameras 3 and 3 into a single upper and lower image, and outputs it to an image input board 11 (described later).
画像処理装置 1 0は、 C C Dカメ ラ 3で撮影された画像を取り込み、 3 010979 The image processing device 10 captures an image captured by the CCD camera 3 and 3 010979
1 0 Ten
リ アルタイ ムで 2値化してデータ格納部 1 3に |£錄し、 観測終了後に 2 値化画像に基づき解析を行う。 そのために、 画像処理装置 1 0は、 画像 入力ボー ド 1 1、 2値化処理部 1 2、 データ格納部 1 3、 解析処理部 1The data is binarized in real time and stored in the data storage unit 13. After the observation, analysis is performed based on the binarized image. For this purpose, the image processing device 10 includes an image input board 11, a binarization processing unit 12, a data storage unit 13, and an analysis processing unit 1.
4を備えている。 It has four.
画像入力ボー ド 1 1 は、 画像処理装置 1 0のイ ンターフェイスであり  The image input board 11 is an interface of the image processing device 10.
、 フルカラー 1 像入力ボー ドである。 本実施の形態では、 画像の有効範 囲を 5 1 2 X 5 1 2面秦と し、 フ レームモードで使用する。 また、 I像 入力ボード 1 1は、 入力画像をコンポジッ トビデオ端子 (スノ 1 ^一アウ ト ) から外部モニタ (図示せず) へ出力できる。 , It is a full-color one-image input board. In the present embodiment, the effective range of the image is set to 512 × 512, and is used in the frame mode. The I-image input board 11 can output an input image from a composite video terminal (snow 1 ^ 1 out) to an external monitor (not shown).
2値化処理部 1 2は、 画像入力ボー ド 1 1 よ り取り込んだ画像を画素 ごとにしきい値と比較することによ り 2値化した 2値化画像をデータ格 納都 1 3に記録する。  The binarization processing unit 12 compares the image captured from the image input board 11 with the threshold value for each pixel and records the binarized image in the data storage 13 I do.
データ格納部 1 3は、 ハー ドデイスク等の記憶装置であり、 2値化処 理部 1 2で生成された 2値化画像や、 解析処理部 1 4での演算結果を格 納する。  The data storage unit 13 is a storage device such as a hard disk, and stores a binarized image generated by the binarization processing unit 12 and a calculation result by the analysis processing unit 14.
解析処理部 1 4は、 データ格納都 1 3に格納された 2値化画像に基づ き、 ゼブラフィ ッシュ Fを認識すると ともに、 遊泳軌跡等の一般計測や 、 追尾行動評価と遊泳軌跡のフラ ク タル次元算出の特殊計測を行う。 そ のため、 解析処理部 1 4は、 一般計測部 1 4 A、 追尾行動評価部 1 4 B 、 フラクタル次元算出部 1 4 Cを備えている。 なお、 一般計測および特 殊計測の各解析結果は、 データ格納部 1 3に格納したり、 図示しないモ ユタやプリ ンタ等に出力できる。  The analysis processing unit 14 recognizes the zebrafish F based on the binarized image stored in the data storage 13 and performs general measurement of a swimming locus and the like, a tracking action evaluation and a swimming locus. Performs special measurement for total dimension calculation. Therefore, the analysis processing unit 14 includes a general measurement unit 14A, a tracking behavior evaluation unit 14B, and a fractal dimension calculation unit 14C. The analysis results of the general measurement and the special measurement can be stored in the data storage unit 13 or output to a monitor or a printer (not shown).
—般計測部 1 4 Aは、 2値化処理部 1 2で生成された 2値化画像に基 づき、 ゼプラフイ ツシュ Fの観測データ (位置、 速度、 遊泳軌跡等〉 を 決定する。 具体的には、 一般計測部 1 4 Aは、 まず、 データ格納都 1 3 から 2値化 W像を読み出し, 背景との色の差分からゼブラフイ ツシュ F を認識する。 次に、 ゼブラフイ シシュ Fの領域の重心座標を求める。 つ づいて、 この重心座镙デ一タを基に、 位置座標、 遊泳軌跡 ( 2次元、 3 次元) 、 位置分布、 移動速度、 移動距離、 体軸の傾き、 左右の回転 (右 回転、 左回転、 直進等) などを求める。 なお、 一般計測部 1 4 Αは、 速 やかな面像の分離や見かけ上の重なり を防ぐため、 ラベリ ング処理ゃォ クルージョ ンの分離処理等の画像処理を行う。 これによ り、 複数の魚に 対応できる。 The general measurement unit 14A converts the observation data (position, speed, swimming trajectory, etc.) of Zepprait F based on the binarized image generated by the binarization processing unit 12. decide. Specifically, the general measurement unit 14A first reads the binarized W image from the data storage 13 and recognizes zebrafish F from the difference in color from the background. Next, the coordinates of the center of gravity of the region of Zebrahui Shish F are obtained. Then, based on the data of the center of gravity, the position coordinates, swimming locus (two-dimensional, three-dimensional), position distribution, moving speed, moving distance, body axis tilt, left and right rotation (right rotation, left rotation) Rotation, straight ahead, etc.). The general measurement unit 14 部 performs image processing such as labeling processing and separation processing in order to prevent rapid separation of surface images and apparent overlap. This makes it possible to handle multiple fish.
さらに、 ゼブラフィ ッシュのよ う に高速で複雑に遊泳する魚を撮影す る場合には、 フレームレー トおょぴ解像度を上げるため、 まず例えば 1 / 4の解像度で 2値化を行い、 魚であると判定された領域の周りだけを 本来の解像度で 2値化してもよい。 これによ り、 処理数を大幅に少なく でき、 好ましいフ レームレー ト、 解像度が得られる。  Furthermore, when shooting fish that swim at high speed and complexity, such as zebrafish, to increase the frame rate, the binarization is first performed at a quarter resolution, for example, Only the area around the area determined to be present may be binarized at the original resolution. As a result, the number of processes can be significantly reduced, and a favorable frame rate and resolution can be obtained.
追尾行動評価部 1 4 Bは, 一般計測部 1 4 Aによって決定された観測 データである位置および速度をデータ格納部 1 3から読み出し、 注目 し ている個体による他の個体への追尾行動を評価する。  The tracking behavior evaluation unit 14B reads the position and velocity, which are the observation data determined by the general measurement unit 14A, from the data storage unit 13 and evaluates the tracking behavior of the target individual to other individuals. I do.
フラクタル次元算出部 1 4 Cは、 一般計測部 1 4 Aによって決定され た観測データである遊泳軌跡をデータ格納部 1 3から読み出し、 その遊 泳軌跡のフラク タル次元を算出する  The fractal dimension calculating unit 14C reads the swimming trajectory, which is the observation data determined by the general measuring unit 14A, from the data storage unit 13 and calculates the fractal dimension of the swimming trajectory.
なお、 追尾行動評価部 1 4 Bおよびフラク タル次元算出都 1 4 Cにつ いては、 後に詳細に説明する。  The tracking behavior evaluation unit 14B and the fractal dimension calculation unit 14C will be described later in detail.
以上より、 行動解析システム 1 は、 まず、 ゼブラフィ ッシュ Fを水槽 2中に自由に遊泳させ、 水槽 2の上方向および側方向の 2方向から C C Dカメ ラ 3 ■ 3で所定時間連続して撮影した画像を画像処理装置 1 0に 取り込み、 2値化してデータ格納部 1 3に格納する。 所定時聞の観測後 , 解析処理部 1 4において、 2値化画像からゼブラフィ ッシュ Fを認識 し, 一般計測および特殊計測の各種の解析を行う。 Based on the above, the behavior analysis system 1 first allowed the zebrafish F to swim freely in the aquarium 2, Images taken continuously for a predetermined time by the D camera 3 3 are taken into the image processing device 10, binarized and stored in the data storage unit 13. After observation at a predetermined time, the analysis processing unit 14 recognizes zebrafish F from the binary image and performs various analyzes of general measurement and special measurement.
ここで、 図 1 0〜図 1 2に、 行動解析システム 1 によ り撮影した 1尾 のゼブラフィ ッシュ Fの 3 0分聞の遊泳軌跡を示す。 図 1 0は、 体長 1 c m未満のふ化直後 ( 3 S以內) のゼブラフィ ッシュ Fの稚魚の遊泳軌 跡である。 図 1 1 は、 体長 2 c mのふ化 1 力月後のゼブラフイ ンシュ F の遊泳軌跡である。 図 1 2は、 体長 4 c mのふ化 4力月後のゼプラフィ ッシュ Fの成魚の遊泳軌跡である。  Here, FIGS. 10 to 12 show the swimming locus of one zebrafish F taken by the behavior analysis system 1 for 30 minutes. Figure 10 shows the swimming trajectory of zebrafish F juveniles that have just hatched (less than 3 S) with a body length of less than 1 cm. Figure 11 shows the swimming trajectory of zebrafish F one month after hatching with a body length of 2 cm. Figure 12 shows the swimming locus of adult zebrafish F four months after hatching with a length of 4 cm.
また、 図 1 3、 図 1 4に、 行動解析システム 1によ り撮影した、 2尾 のゼブラフィ シシュ Fの 1 0分間の遊泳軌跡を示す。 赤、 黒の線がそれ ぞれ 1尾のゼブラフィ ッシュ Fの遊泳軌跡である。 図 1 3は、 2.尾の正 常なゼプラフィ ッシュ Fの遊泳軌跡である。 図 1 3によれば、 2尾の正 常なゼブラフィ ッシュ Fが水槽 2のへり を泳ぐ頻度の髙ぃことがわかる 。 これに対して、 図 1 4は、 2尾の盲目なゼブラフィ ッシュ Fの遊泳軌 跡である。 図 1 4によれば、 2尾の盲目なゼブラフィ ッシュ Fが水槽 2 全体を泳ぎ回っていることがわかる。  FIGS. 13 and 14 show the swimming locus of two zebrafish F for 10 minutes taken by the behavior analysis system 1. The red and black lines indicate the swimming locus of one zebrafish F, respectively. Figure 13 shows the swimming trajectory of the normal zebrafish F at the tail. According to FIG. 13, it can be seen that the frequency of two normal zebrafish F swimming on the edge of the aquarium 2 is small. In contrast, Figure 14 shows the swimming tracks of two blind zebrafish F. According to FIG. 14, it can be seen that two blind zebrafish F are swimming around the entire aquarium 2.
このよ う に、 行動解析システム 1 によれば、 2尾あるいはそれ以上の ゼブラフィ ッシュ Fの遊泳軌跡を取得できる。 そして、 この遊泳軌跡の データに基づいて、 例えば 2尾の接近などのイ ンターラク ショ ンを定量 的に解析することが可能となる。  As described above, according to the behavior analysis system 1, swimming traces of two or more zebrafish F can be obtained. Then, based on the data of the swimming trajectory, it is possible to quantitatively analyze an interaction such as approaching two fishes.
つづいて、 特殊計測である追尾行動評価および遊泳軌跡のフラクタル 次元算出について詳細に説明する。 ( 1 ) 追尾行動評価 Subsequently, the tracking action evaluation and the fractal dimension calculation of the swimming trajectory, which are special measurements, will be described in detail. (1) Tracking behavior evaluation
図 2から図 6を参照しながら、 追尾行動評価部 1 4 Bによる追尾行動 評価について説明する。  The tracking action evaluation performed by the tracking action evaluation unit 14B will be described with reference to FIGS.
ゼブラフィ ッシュ等の魚は、 2尾以上が群れをなし、 あたかも前の魚 を後の魚が追いかけるよ うに泳ぐ習性がある。 追尾行動評価部 1 4 Bは 、 3つの条件、 (i)個体間距離条件、 (ii)角度条件、 (iii)接近条件、 を それぞれ判定し、 全てが同時に成立しているときに追尾行動が成立して いると判定する。 そして、 追尾行動評価部 1 4 Bは、 追尾行動を時間、 距離でそれぞれ追尾率と して評価する。  Two or more fish, such as zebrafish, form a school and have the habit of swimming as if the following fish followed the preceding fish. The tracking action evaluation unit 14B determines three conditions, (i) an inter-individual distance condition, (ii) an angle condition, and (iii) an approach condition, respectively, and when all are simultaneously established, the tracking action is determined. It is determined that the condition holds. Then, the tracking action evaluation unit 14B evaluates the tracking action by time and distance as a tracking rate.
(i)個体聞距離条件  (i) Individual listening distance condition
2尾の間隔 Lが離れすぎているときは、 追尾とみなさない。 さらに、 水槽 2の上から見て近すぎる場合は、 重なっている、 つま り、 深さの異 なる位置を泳いでいると判断できるので、 追尾は行われていないと判定 する。 本実施の形態では、 個体間距離条件と して、 経験的に、  If the distance L between the two tails is too far apart, it is not regarded as tracking. Furthermore, if it is too close when viewed from the top of the aquarium 2, it can be determined that swimming is occurring at a position that is overlapping, that is, at a different depth, so that it is determined that tracking is not performed. In the present embodiment, empirically,
l c m< L < 1 0 c m  l c m <L <10 cm
と設定した。 しかし、 図 2のよ うに、 並列に泳ぐときもあるので次の条 件を判定する。 Was set. However, as shown in Fig. 2, swimming may occur in parallel, so the following conditions are determined.
(ii〉角度条件  (ii) Angle condition
追尾状態においては、 追いかけている魚の前方には必ず追いかけられ ている魚がいるはずである。 したがって、 図 3 ( a ) のよ うに、 追いか けている魚の進行方向からある角度 0以内に追いかけられている魚がい ることを条件とする。 本実施の形態では、 角度条件と して、 経験的に、 Θ ≤ 5 0 β In the tracking state, there should always be a chase fish in front of the chase fish. Therefore, as shown in Fig. 3 (a), the condition is that there is a fish that is being chased within a certain angle 0 from the traveling direction of the chasing fish. In the present embodiment, as an angle condition, empirically, Θ ≤ 50 β
と設定した。 しかし、 図 3 ( b ) のよ うに、 お互い向き合って泳ぐとき もあるので次の条件を判定する。 Was set. However, when facing each other and swimming, as shown in Fig. 3 (b) Therefore, the following condition is determined.
(i i i )接近条件  (i i i) Approach conditions
追尾状態においては、 追いかける魚は近づこ う と し、 追いかけられる 魚は離れよ う とする。 したがって、 図 4 ( a ) のよ うに、 L, L 1 , L 2を定めたとき、 接近条件は、  In the tracking state, the chase fish approaches and the chase fish moves away. Therefore, as shown in Fig. 4 (a), when L, L1, and L2 are determined, the approach condition is
L > L 1 かつ L < L 2  L> L 1 and L <L 2
となる。 なお、 図 4 ( b ) は、 追尾と判定されないとき (L > L 1かつ L > L 2 ) の例である。 It becomes. FIG. 4B shows an example when tracking is not determined (L> L1 and L> L2).
そして、 追尾行動評価部 1 4 Bは、 上記 3条件の全てが同時に成立し ているとき、 追尾行動の評価指標と して、  Then, when all of the above three conditions are satisfied at the same time, the tracking action evaluation unit 14 B sets the tracking action evaluation index as:
追尾時間率 =追尾していた時間 Z観測時間  Tracking time rate = tracking time Z observation time
追尾距離率 =追尾しながらの移動距離/総移動距離  Tracking distance ratio = travel distance while tracking / total travel distance
を算出する。 Is calculated.
よって、 追尾行動評価部 1 4 Bで算出した追尾時間率や追尾距離率に よ り、 視覚機能回復を、 金魚ゃゼブラフィ ッシュの行動解析から客観的 に評価することが可能である s Thus, Ri by the tracking time rate and tracking distance rate calculated by the tracking behavior evaluation unit 1 4 B, the visual function recovery, it is possible to objectively evaluate from behavioral analysis of goldfish Ya zebrafish s
図 5に、 ゼブラフィ 'メシュの追尾行動を追尾時問率を用いて解析した 結果を示す。 左側が正常なゼブラフイ シシュの追尾率 (対照実験) 、 右 側が両側視神経切断 1 日 目のゼブラフィ ンシュの追尾率である。 正常な ものは約 3 0 %、 切断されたものは約 8 %となり、 盲目になると追尾が 著しく 困難になることがわかる。  Figure 5 shows the results of an analysis of the tracking behavior of zebrafish 'mesh using the tracking time rate. On the left is the tracking rate of normal zebrafish (control experiment), and on the right is the tracking rate of zebrafin on day 1 of bilateral optic nerve transection. About 30% are normal and about 8% are cut, indicating that tracking becomes extremely difficult when blind.
また、 魚の視神経は哺乳類と異なり切断しても再生する。 そこで、 本 当に魚が視党機能を回復したかを評価することはきわめて重要である。 図 6に、 ゼプラフイ ツシュの視覚機能回復を追尾時間率および追尾距 離率を用いて観察した結果を示す。 図 6に示すように、 視神経を片側な いし両側切断した時の魚の行動観察の結果, 視神経の再生は速い回復と 遅い回復の 2相があることがわかる。 Also, unlike mammals, fish optic nerves regenerate when cut. Therefore, it is extremely important to evaluate whether the fish have restored visual function. Figure 6 shows the recovery of the visual function of the Zeppraite tissue with the tracking time rate and tracking distance. The result of observation using the separation rate is shown. As shown in Fig. 6, when the optic nerve was cut unilaterally or bilaterally, the behavior of the fish was observed, and it was found that optic nerve regeneration had two phases: fast recovery and slow recovery.
すなわち、 ① 1側を切断した時、 魚の上下軸が正常視神経側に傾き、 また正常視神経側によ く 回転する。 この傾きや回転の回復は、 金魚では 約 1 力月、 ゼブラフィ ッシュでは約 2週間で完了した。 この回復は、 一 般計測部 1 4 Aによ り、 傾き と回転方向を解析することによって確認で きた。  That is, ① When the 1 side is cut, the vertical axis of the fish tilts to the normal optic nerve side and rotates well to the normal optic nerve side. The recovery of tilt and rotation was completed in about one month for goldfish and about two weeks for zebrafish. This recovery was confirmed by analyzing the tilt and rotation direction using the general measurement section 14A.
また、 ②視神経を両側切断すると、 追尾行動が大き く乱れる。 この追 尾行動の回復は、 金魚では 4〜 5 力月、 ゼプラフィ ッ シュでは 2〜 3 力 月で完了した。 この回復は、 追尾行動評価部 1 4 Bによ り、 追尾行動を 解析することによつて確認できた。  Also, (2) when the optic nerve is cut bilaterally, the tracking behavior is greatly disturbed. The recovery of this tracking action was completed in 4-5 months for goldfish and 2-3 months for Zeprfish. This recovery was confirmed by analyzing the tracking behavior by the tracking behavior evaluation unit 14B.
このよ うに、 行動解析システム 1 によれば、 視覚機能回復を、 魚の行 動解析から客観的に評価することができることを発明者は確認した。 なお、 図 6の 1 日および 1適の追尾時間率および追尾距離率の値 (約 As described above, the inventor has confirmed that the behavior analysis system 1 can objectively evaluate visual function recovery from the analysis of fish behavior. The values of the tracking time rate and tracking distance rate for 1 day and 1
8 % ) は、 水槽 2にゼブラフィ ッシュ Fを 1尾だけ入れて撮影した異な る 2つの画像を重ね合わせた画像から算出した追尾時間率および追尾距 離率に等しいことが確認されている。 よって、 この約 8 %は、 2尾のゼ ブラフィ ッシュが追尾の判定条件を満たす位置関係に偶然なつたものと して無視できる。 8%) has been confirmed to be equal to the tracking time rate and tracking distance rate calculated from an image obtained by superimposing two different images taken with only one zebrafish F in water tank 2. Therefore, about 8% can be ignored as a coincidence that the two zebrafish accidentally have a positional relationship that satisfies the tracking determination condition.
( 2 ) 遊泳軌跡のフラクタル次元  (2) Fractal dimension of swimming trajectory
図 7から図 9 を参照しながら、 フラ ク タル次元算出部 1 4 Cによる魚 の遊泳軌跡の複雑さの評価を説明する。 なお、 本奚施の形態において、 フラク タル次元とは、 曲線の複雑さを表すパラメ一タである。 図 7に示すよ う に、 曲線を長さ ε のものさ しを使って近似したときに 必要と したものさ しの数を Ν ( Ϊ ) とすると、 フラクタル次元 Dは次の 関係式、 The evaluation of the complexity of the swimming locus of the fish by the fractal dimension calculating unit 14C will be described with reference to FIGS. In the present embodiment, the fractal dimension is a parameter representing the complexity of the curve. As shown in Fig. 7, assuming that the number of measures required when approximating a curve using a measure of length ε is Ν (Ϊ), the fractal dimension D is given by the following relational expression:
Ν ( ε ) = k ■ ε '-D Ν (ε) = k ■ ε ' -D
で定義される。 この式の両辺の対数をとると、 Is defined by Taking the log of both sides of this equation gives
logN ( ε ) = - D ■ log s + k '  logN (ε) =-D ■ log s + k '
となる。 ただし、 k , k ' は定数である。 It becomes. Here, k and k 'are constants.
ここで、 上記の数式は、 曲線にフラク タル性がある場合、 N ( ε ) とHere, if the curve has fractal properties, N ( ε ) and
£ を対数グラフにプロ ッ トしたときに、 ある範囲で直線状に並ぶことを 意味している。 よって、 図 8に示すよ うに、 最小 2乗法を用いてグラフ 上の点の回帰直線を求め、 その傾きを調べることでフラクタル次元 Dを 求めることができる。 This means that when you plot £ on a logarithmic graph, it is arranged in a straight line over a certain range. Therefore, as shown in FIG. 8, the fractal dimension D can be obtained by obtaining the regression line of the points on the graph using the least squares method and examining the slope.
図 9に、 ゼブラフイ ツシュの遊泳軌跡をフラクタル次元を用いて解析 した結果を示す。 左側が正常なゼブラフィ ッシュのフラク タル次元 (対 照実験) 、 右側が両側視神経切断 1 ョ 目のゼブラフィ ッシュのフラクタ ル次元である。 フラクタル次元の値が大きいほど遊泳軌跡が複雑である ので、 結果よ り盲目になると遊泳軌跡が単純になることがわかる。  Figure 9 shows the results of analyzing the swimming trajectory of zebrafish using fractal dimensions. On the left is the fractal dimension of a normal zebrafish (control experiment), and on the right is the fractal dimension of the first zebrafish after bilateral optic nerve transection. The larger the value of the fractal dimension is, the more complicated the trajectory of the swim is. Therefore, the results show that the trajectory becomes simpler when blind.
以上のよ うに、 行動解析システム 1は、 水槽 2中のゼブラフィ ッシュ Fの画像を 8枚/秒以上のフレームレー トで撮像する C C Dカメ ラ 3 と 、 画像から観測データを取得する一般計測部 1 4 Aとを備える。 そして 、 追尾行動評価部 1 4 Bが、 ゼブラフィ ッシュ Fの観測データである位 置おょぴ速度に基づいて、 ゼブラフィ ツシュ F同士の追尾行動を評価す る。 また、 フラクタル次元算出部 1 4 Cが、 ゼブラフィ ッシュ Fの観測 データである遊泳軌跡に基づいて、 遊泳軌跡のフラクタル次元を算出す る。 As described above, the behavior analysis system 1 consists of a CCD camera 3 that captures images of zebrafish F in the aquarium 2 at a frame rate of 8 or more per second, and a general measurement unit 1 that acquires observation data from the images. 4 A. Then, the tracking behavior evaluation unit 14B evaluates the tracking behavior between the zebrafish F based on the position velocity, which is the observation data of the zebrafish F. The fractal dimension calculator 14C calculates the fractal dimension of the swimming trajectory based on the swimming trajectory that is the observation data of zebrafish F. You.
これにより、 遣伝子研究の実験動物と して最適であるが、 高速で複雑 に遊泳するゼブラフィ ッシュの行動解析を、 定量的かつ精密に行う こ と が可能となる。 そして、 ゼブラフィ ッシュの複雑な行動をリ アルタイム で取得し、 定量的に解析できる。 また、 ふ化直後から成魚に到るまでゼ ブラフイ ツシュの行動を簡単に計測できる。  This makes it possible to quantitatively and precisely analyze the behavior of zebrafish, which is optimal as an experimental animal for genetic research, but swims at high speed and in a complicated manner. Then, the complex behavior of the zebrafish can be obtained in real time and quantitatively analyzed. In addition, the behavior of zebrafish can be easily measured from immediately after hatching to adult fish.
なお、 本実施の形態は本発明の範囲を限定するものではなく 、 本発明 の範囲内で種々の変更が可能であり、 例えば、 以下のよ うに構成するこ とができる。  Note that the present embodiment does not limit the scope of the present invention, and various changes can be made within the scope of the present invention. For example, the present invention can be configured as follows.
追尾行動評価のためには、 動物の位置お 'よび速度が観測データと して 利用できればよく 、 また、 フラク タル次元の算出のためには、 移動軌跡 が観測データと して利用できればよい。 よって、 これらの観測データを 、 画像から生成するのではなく 、 例えば動物に装着した発信機を用いた 位置検出等によつて取得してもよレ、。  In order to evaluate the tracking behavior, it is sufficient that the position and speed of the animal can be used as observation data, and in order to calculate the fractal dimension, it is sufficient that the movement trajectory can be used as observation data. Therefore, instead of generating these observation data from images, the observation data may be acquired by, for example, position detection using a transmitter mounted on an animal.
また、 水榷 2に給餌装置を設け、 この給餌装置と、 C C Dカメ ラ 3、 ビデオミキサ 5、 画像処理装置 1 0 (画像入力ボー ド 1 1 、 2値化処理 部 1 2、 データ格納部 1 3 ) をタイマで制御することにより、 図 6に示 したよ うな長期間の観察を自動的に行う こ とができる。  In addition, a feeding device is installed in the water channel 2, and this feeding device, CCD camera 3, video mixer 5, image processing device 10 (image input board 11, binarization processing unit 12, data storage unit 1) By controlling 3) with a timer, long-term observations as shown in Fig. 6 can be performed automatically.
上記行動解析システム 1によれば、 魚等の行動解析の定惫化を実現で きる。 よって、 行動解析システム 1は、 動物の行動解析の定量化を利用 する分野において様々に利用できる。 例えぱ、 上述したよ うに、 視神経 切断 (視覚遮断) 後の異常行動の定量的解析が可能である。 すなわち、 神経損傷, 再生等の評価に利用できる。 また、 遣伝子改変や突然変異体 の表現型異常のスク リ ーニングに利用できる- また、 遗伝子改変魚ゃノ 'ノクアウ ト魚と野性魚との比較によ り、 遗伝子と表現型 (行動) との相 関を分析できる。 さらに、 薬効 (特に神経作用薬等) の影響や持続時間 の評価に利用できる。 According to the behavior analysis system 1, it is possible to standardize the behavior analysis of fish and the like. Therefore, the behavior analysis system 1 can be variously used in a field that uses quantification of animal behavior analysis. For example, as described above, quantitative analysis of abnormal behavior after optic nerve transection (visual blockage) is possible. That is, it can be used for evaluation of nerve damage, regeneration, etc. It can also be used for genetic modification and screening for mutant phenotypic abnormalities. 'Comparison between nocout fish and wild fish allows us to analyze the correlation between gene and phenotype (behavior). Furthermore, it can be used to evaluate the effects and duration of drug effects (especially neuroactive drugs).
また、 行動解析システム 1は、 外的要因 (水質、 環境ホルモン) のス ク リーニングに利用できる。 よって、 魚の遊泳深境 (溶存酸素、 環境変 異原、 水温、 毒物等) をモニターリ ングすることが可能となる。  In addition, the behavior analysis system 1 can be used for screening external factors (water quality, environmental hormones). Therefore, it is possible to monitor the deep swimming boundaries of fish (dissolved oxygen, environmental sources, water temperature, poisons, etc.).
また、 行動解析システム 1は、 天然魚と人工飼育魚との比較や、 魚の 群れ行動の分析に利用できるため、 漁獲法や養殖法など漁業の技術に応 用できる。  In addition, the behavior analysis system 1 can be used to compare natural fish with artificially reared fish, and to analyze the behavior of schools of fish. Therefore, the behavior analysis system 1 can be applied to fishing techniques such as fishing and aquaculture.
さ らに、 行動解析システム 1は、 ゼブラフイ シシュ等の水棲動物はも と よ り 、 ショ ウジヨ ウバエやマウス等の陸棲動物の 3次元的行動観察に も応用可能である。 また、 水槽の壁面に色や模様をつけて魚の行動の変 化を観察するなど、 動物の行動心理学等への応用も可能である。  Furthermore, the behavior analysis system 1 can be applied to three-dimensional behavior observation of terrestrial animals such as Drosophila and mice, as well as aquatic animals such as zebrafish. It can also be applied to the behavioral psychology of animals, for example, by observing changes in fish behavior by applying colors and patterns to the walls of the aquarium.
最後に、 上記画像処理装置 1 0は、 ワークステーショ ンやパーソナル コンピュータ等の汎用のコンピュータをベースに構成できる。 すなわち Finally, the image processing apparatus 10 can be configured based on a general-purpose computer such as a workstation or a personal computer. Ie
、 上記 ϋ像処理装置 1 0は、 その機能を実現するプログラムの命令を実 行する C P U ( central processing unit ) 、 ブー トロジック を格納 した R OM (read only memory) , 上記プログラムを展開する R A M (random access memory) 、 上 scプロ グラムおよび各種データベース を格納するハー ドディスク等の記憶装置 (記録媒体) 、 キーボー ドやマ ウス等の入力機器、 モユタ、 ス ピーカー、 プリ ンタ等の出力機器が内部 バスによつて接続されて構成されている。 The image processing device 10 includes a CPU (central processing unit) that executes instructions of a program for realizing the function, a ROM (read only memory) storing boot logic, and a RAM (random access memory), storage devices (recording media) such as a hard disk for storing the top sc programs and various databases, input devices such as keyboards and mice, and output devices such as moyuta, speakers and printers. Are connected to each other.
また、 本発明の目的は、 上述した機能を実現するソフ トウェアである 動物の行動解析プログラムのプログラムコー ド (実行形式プログラム、 中間コー ドプログラム、 ソースプログラム) をコンピュータで読み取り 可能に記録した記録媒体を、 システムあるいは装置に供給し、 そのシス テムあるいは装置のコンピュータ (または C P Uや MP U、 D S P) が 記録媒体に記録されているプログラムコー ドを読み出し実行することに よっても、 達成可能である。 この場合、 記録媒体から読み出されたプ i グラムコー ド自体が上述した機能を実現することになり、 そのプロダラ ムコー ドを記録した記録媒体は本発明を構成することになる。 Further, an object of the present invention is to provide a program for executing an animal behavior analysis program (executable program, A recording medium in which an intermediate code program and a source program) are recorded so as to be readable by a computer is supplied to a system or an apparatus, and the computer (or CPU, MPU, or DSP) of the system or the apparatus is recorded on the recording medium. This can also be achieved by reading and executing a program code. In this case, the program code itself read from the recording medium realizes the above-described function, and the recording medium on which the program code is recorded constitutes the present invention.
具体的には、 上記画像処理装置が備える 2値化処理部 1 2、 解析処理 部 1 4は、 面像処理装置 1 0のメ モ リ (図示せず〉 に格納された所定の プログラムを、 マイク ロプロセッサなどが実行することによ り実現され る。  More specifically, the binarization processing unit 12 and the analysis processing unit 14 included in the image processing device execute a predetermined program stored in a memory (not shown) of the surface image processing device 10. This is realized by execution by a microprocessor or the like.
上記プログラムコー ドを供給するための記録媒体は、 システムあるい は装置と分離可能に構成することができる。 また、 上記記録媒体は、 プ ログラムコ一 ドを供給可能であるよ うに固定的に担持する媒体であって もよい。 そして、 上記記録媒体は、 記録したプログラムコー ドをコンビ ユ ータが直接読み取ることができるよ うにシステムあるいは装置に装着 されるものであっても、 外部記億装置と してシステムあるいは装置に接 続されたプログラム読み取り装置を介して読み取るこ とができるよ うに 装着されるものであってもよい。  The recording medium for supplying the program code can be configured to be separable from the system or the device. Further, the recording medium may be a medium which is fixedly supported so that a program code can be supplied. The recording medium is connected to the system or the device as an external storage device even if the recording medium is mounted on the system or the device so that the recorded program code can be directly read by the computer. It may be mounted so that it can be read via a connected program reader.
例えば、 上記記錄媒体と しては、 磁気テープゃカセッ トテープ等のテ ープ系、 フロ ッピ一 (登録商標) ディスク ハー ドディスク等の磁気デ イスクゃ CD— ROM/MO/MD/DVD/C D— R等の光ディスク を含むディスク系、 I Cカー ド (メモリカー ドを含む) Z光カー ド等の 力一 ド系、 あるレ、はマス ク R OM/E P ROM/E E P R OM フラ シ シュ R O M等の半導体メモリ系などを用いることができる。 For example, the recording medium may be a tape such as a magnetic tape or a cassette tape, or a magnetic disk such as a floppy (registered trademark) disk hard disk. CD-ROM / MO / MD / DVD / Discs including optical discs such as CD-R, IC cards (including memory cards), force cards such as Z optical cards, and some masks ROM / EP ROM / EEPROM flash. A semiconductor memory system such as a flash ROM can be used.
また、 上記プログラムコー ドは、 コンピュータが記録媒体から読み出 して直接実行できるよ うに 15錄されていてもよいし、 記録媒体から主記 憶のプログラム記憶領域へ転送された後コンピュータが主記憶から読み 出して実行できるよ うに記録されていてもよい。  The program code may be read out from the recording medium and directly executed by the computer, or may be transferred from the recording medium to the program storage area of the main memory, and then transferred to the main memory by the computer. It may be recorded so that it can be read out from and executed.
さらに、 システムあるいは装置を通信ネ 'ン ト ワーク と接続可能に構成 し、 上記プログラムコードを通信ネッ トワークを介して供給してもよい 。 そして、 通信ネッ トワーク と しては、 特に限定されず、 具体的には、 イ ンターネッ ト、 イ ン トラネッ ト、 エキス トラネッ ト、 L AN、 I S D N、 VAN, C AT V通信網、 仮想専用網 (virtual private network ) 、 電話回線網、 移動体通信網、 衛星通信網等が適用可能である。 また 、 通信ネッ トワークを構成する伝送媒体と しては、 特に限定されず、 具 体的には、 I E E E 1 3 9 4 , U S B、 電力線搬送、 ケ一ブル T V回線 、 電話線、 AD S L回線等の有線でも、 I r DAやリ モコンのよ うな赤 外線、 B l u e t o o t h , 8 0 2. 1 1無線、 HD R、 携帯電話網、 衛星回線、 地上波デジタル網等の無線でも適用可能である。 なお、 本発 明は、 上記プログラムコー ドが電子的な伝送で具現化された搬送波ある いはデータ信号列の形態でも実現され得る。  Further, the system or device may be configured to be connectable to a communication network, and the program code may be supplied via the communication network. The communication network is not particularly limited. Specifically, the Internet, the intranet, the extranet, the LAN, the ISDN, the VAN, the CATV communication network, and the virtual private network ( virtual private network), telephone line network, mobile communication network, satellite communication network, etc. are applicable. Further, the transmission medium constituting the communication network is not particularly limited, and specific examples include IEEE1394, USB, power line carrier, cable TV line, telephone line, and ADSL line. It can be applied to wireless communication such as infrared communication such as IrDA and remote control, Bluetooth, 80.2.11 wireless, HDR, mobile phone network, satellite line, and terrestrial digital network. Note that the present invention can also be realized in the form of a carrier wave or a data signal sequence in which the program code is embodied by electronic transmission.
なお、 プログラムコー ドを記録媒体から読み出して主記憶に格納する ためのプログラム、 および、 通信ネッ トワークからプログラムコー ドを ダウン口一 ドするためのプログラムは、 コンピュータによって実行可能 にあらかじめシステムあるいは装置に格納されているものとする。  The program for reading the program code from the recording medium and storing the program code in the main memory and the program for downloading the program code from the communication network can be executed by a computer beforehand in a system or apparatus. It shall be stored.
上述した機能は、 コンピュータが読み出した上記プログラムコー ドを 実行するこ とによって実現されるだけでなく、 そのプログラムコ一 ドの 指示に基づき、 コンピュータ上で稼働している O Sなどが実際の処理のThe functions described above are realized not only by executing the above-described program code read by a computer, but also by executing the program code. Based on the instructions, the OS running on the computer performs the actual processing.
—部または全部を行う ことによつても実現される。 —It is also realized by performing part or all.
さらに、 上述した機能は、 上記記録媒体から読み出された上記プログ ラムコー ドが、 コンピュータに装着された機能拡張ボー ドゃコンピュー タに接続された機能拡張ュュッ トに備わるメモ リ に書込まれた後、 その プログラム ードの指示に基づき、 その機能拡張ボ一 ドゃ機能拡張ュニ ッ トに備わる C P Uなどが実際の処理の一部または全部を行う ことによ つても実現される。  Further, in the above-described function, the program code read from the recording medium is written in a memory provided in a function expansion board connected to a function expansion board attached to a computer or a computer. Thereafter, based on the instructions of the program, the CPU or the like provided in the function expansion board or the function expansion unit performs a part or all of the actual processing.
発明の詳細な説明の項においてなされた具体的な実施態様または実施 例は、 あく までも、 本発明の技術内容を明らかにするものであって、 そ のよ うな具体例にのみ限定して狭義に解釈されるべきものではなく 、 本 発明の精神と特許請求事項との範囲內で、 いろいろと変更して実施する ことができるものである。 産業上の利用の可能性  Specific embodiments or examples made in the section of the detailed description of the invention clarify the technical contents of the present invention, and are limited to only such specific examples. However, the present invention can be variously modified and implemented within the spirit of the present invention and the scope of the claims. Industrial potential
本発明に係る動物の行動解析方法、 動物の行動解析システムは、 還伝 子研究の実験動物と して最適であるが、 遊泳速度が速いゼブラフィ ッシ ュの行動解析を、 定量的かつ精密に行う ことを可能とするものである。 よって、 本発明に係る動物の行動解析方法、 動物の行動解析システムは 、 遺伝子研究のための精密な定量的行動解析に利用できる。 さ らに、 本 発明に係る動物の行動解析方法、 動物の行動解析システムは、 遣伝子研 究の実験動物の他、 高速で複雑な行動をする動物の行動解析に広く適用 可能である。  The animal behavior analysis method and the animal behavior analysis system according to the present invention, which are optimal as experimental animals for genetic research, can quantitatively and precisely analyze the behavior analysis of zebrafish having a high swimming speed. It allows you to do that. Therefore, the animal behavior analysis method and the animal behavior analysis system according to the present invention can be used for precise quantitative behavior analysis for genetic research. Further, the animal behavior analysis method and the animal behavior analysis system according to the present invention can be widely applied to behavioral analysis of animals that perform high-speed and complicated behaviors, in addition to experimental animals for genetic research.

Claims

請 求 の 範 囲  The scope of the claims
1 · 水槽中の水棲動物を 8枚/秒以上のフ レームレ一トで撮像する撮 像ステップと、 1) an imaging step of imaging aquatic animals in the aquarium at a frame rate of 8 or more per second;
上記撮像ステップにおいて撮像した画像に基づき、 水楱動物の行動解 析を行う解析ステ、ノブと、 を食む動物の行動解析方法。  An analysis step and a knob for analyzing the behavior of aquatic animals based on the image captured in the imaging step.
2 . 上記水棲動物がゼブラフィ ンシュである請求項 1に記載の動物の 行動解析方法。  2. The animal behavior analysis method according to claim 1, wherein the aquatic animal is a zebrafish.
3 . 水槽中の水棲動物を撮像した画像に基づき、 当該水棲動物の行動 解析を行う動物の行動解析システムであって、  3. An animal behavior analysis system that analyzes the behavior of the aquatic animal based on an image of the aquatic animal in the aquarium,
上? B面像を 8枚 Z秒以上のフ レームレー トで撮像する撮像手段を具備 する動物の行動解析システム。  Up? An animal behavior analysis system equipped with imaging means that captures a B-side image at a frame rate of eight or more Z-seconds.
4 . 第 1 の動物と第 2の動物の位笸および速度を取得する観測データ 取得ステップと 、  4. Observation data acquisition step for acquiring the position and velocity of the first animal and the second animal;
上記観測データ取得ステシブにおいて取得した第 1 の動物と第 2の動 物の位置おょぴ速度に基づいて、 第 1の動物の第 2の動物に対する追尾 行動を評価する追尾行動評価ステップと、 を含む動物の行動解析方法。  A tracking behavior evaluation step of evaluating a tracking behavior of the first animal with respect to the second animal based on the position and velocity of the first animal and the second animal acquired in the observation data acquisition step. Animal behavior analysis method including:
5 . 第 1 の動物と第 2の動物の位置および速度を取得する観測データ 取得手段と、  5. Observation data acquisition means for acquiring the position and velocity of the first animal and the second animal;
上記観測データ取得手段によって取得された第 1 の動物と第 2の動物 の位置および速度に基づいて、 第 1の動物の第 2の動物に対する追尾行 動を評価する追尾行動評価手段と、 を具備する動物の行動解析システム  Tracking behavior evaluation means for evaluating the tracking behavior of the first animal with respect to the second animal based on the positions and velocities of the first animal and the second animal obtained by the observation data obtaining means; Behavior analysis system for animals
6 . 動物の移動軌跡を取得する観測データ取得ステップと、 上記観測データ取得ステシプにおいて取得した移動軌跡のフラクタル 次元を算出するフラクタル次元算出ステップと、 を含む動物の行動解析 方法。 6. Observation data acquisition step for acquiring the trajectory of the animal; A fractal dimension calculating step of calculating a fractal dimension of the movement locus acquired in the observation data acquisition step.
7 . 動物の移動軌跡を取得する観測データ取得手段と、  7. Observation data acquisition means for acquiring the trajectory of the animal,
上記観測データ取得手段によって取得された移動軌跡のフラクタル次 元を算出するフラクタル次元算出手段と、 を具備する動物の行動解析シ ステム。  A fractal dimension calculating means for calculating a fractal dimension of the movement trajectory acquired by the observation data acquiring means.
8 . 請求項 5または 7に記載の動物の行動解析システムを動作させる 動物の行動解析プログラムであって、 コンピュータを上記の各手段と し て機能させるための動物の行動解析プログラム。  8. An animal behavior analysis program for operating the animal behavior analysis system according to claim 5 or 7, which causes a computer to function as each of the above means.
9 . 請求項 8に記載の動物の行動解析プログラムを記録したコンピュ ータ読み取り可能な記録媒体。  9. A computer-readable recording medium on which the animal behavior analysis program according to claim 8 is recorded.
PCT/JP2003/010979 2002-08-29 2003-08-28 Animal behavior analysis method, animal behavior analysis system, animal behavior analysis program, and computer-readable recorded medium on which the program is recorded WO2004021282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002252172A JP2004089027A (en) 2002-08-29 2002-08-29 Method for analyzing behavior of animal, system for analyzing behavior of animal, program for analyzing behavior of animal, and recording medium recording the program and readable with computer
JP2002-252172 2002-08-29

Publications (1)

Publication Number Publication Date
WO2004021282A1 true WO2004021282A1 (en) 2004-03-11

Family

ID=31972720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010979 WO2004021282A1 (en) 2002-08-29 2003-08-28 Animal behavior analysis method, animal behavior analysis system, animal behavior analysis program, and computer-readable recorded medium on which the program is recorded

Country Status (2)

Country Link
JP (1) JP2004089027A (en)
WO (1) WO2004021282A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2479628A (en) * 2010-04-12 2011-10-19 Ge Healthcare Uk Ltd Determining motion of biological organisms using difference images
CN103704164A (en) * 2013-12-24 2014-04-09 四川大学 Fish behavior and nerve observation and research device and method
CN104137800A (en) * 2014-08-08 2014-11-12 青岛中仁药业有限公司 Zebra fish electroconvulsive testing device
CN104766346A (en) * 2015-04-15 2015-07-08 楚雄师范学院 Zebra fish tracking method based on video images
CN110287812A (en) * 2019-06-04 2019-09-27 安徽中盛溯源生物科技有限公司 Animal turn-takes the calculation method and its application of behavior
CN113951200A (en) * 2021-09-15 2022-01-21 杭州环特生物科技股份有限公司 Multichannel device for detecting color preference of zebra fish juvenile fish and use method and application thereof
CN114487315A (en) * 2021-12-21 2022-05-13 苏州大学 Method for screening drugs influencing biorhythm behaviors by using juvenile zebra fish
CN114500882A (en) * 2022-01-24 2022-05-13 中国科学院烟台海岸带研究所 Method for measuring behavioral parameters of sports animals
CN114667956A (en) * 2021-12-16 2022-06-28 杭州环特生物科技股份有限公司 Method for constructing zebra fish memory evaluation model and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007110555A1 (en) * 2006-03-28 2007-10-04 The University Court Of The University Of Edinburgh A method for automatically characterizing the behavior of one or more objects
KR100936115B1 (en) * 2007-12-20 2010-01-11 김세호 Mouse Activity Measuring Instrument
KR101394050B1 (en) 2012-12-18 2014-05-09 현대자동차 주식회사 Method for image recognition using backlight in a vehicle
JP6624629B2 (en) * 2014-10-10 2019-12-25 Necソリューションイノベータ株式会社 Fish counting device, fish counting method, fish number prediction device, fish number prediction method, fish counting system and fish number prediction system
EP3733873A4 (en) * 2017-12-27 2021-10-20 Suntory Holdings Limited Method for producing library for use in prediction of action of substance of interest on living body, and method for evaluating action of substance of interest on living body based on change in action parameter or the like of zebrafish
JP7310925B2 (en) * 2019-12-25 2023-07-19 日本電気株式会社 Movement speed estimation device, feeding determination device, movement speed estimation method, and movement speed estimation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888703A (en) * 1986-09-09 1989-12-19 Hitachi Engineering Co., Ltd. Apparatus for monitoring the toxicant contamination of water by using aquatic animals
JPH0832959A (en) * 1994-07-11 1996-02-02 Muromachi Kikai Kk Automatic behavioral analyzer for experimental animal
JPH09289637A (en) * 1996-04-24 1997-11-04 Matsushita Electric Ind Co Ltd Image recorder
JPH11296651A (en) * 1998-03-20 1999-10-29 Katsuyoshi Kawasaki Automation method for behavior observation of experimental animal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668489B2 (en) * 1986-09-09 1994-08-31 株式会社日立製作所 Aquatic animal monitoring device
JPS63175766A (en) * 1987-01-16 1988-07-20 Hitachi Ltd Abnormal water quality detector
JPH0789115B2 (en) * 1987-01-21 1995-09-27 株式会社日立製作所 Fish poison detector
JPH0785080B2 (en) * 1986-11-25 1995-09-13 株式会社日立製作所 Fish condition monitor
JPH0616034B2 (en) * 1986-12-05 1994-03-02 株式会社日立製作所 Aquatic animal image monitoring apparatus and method
JPS6366460A (en) * 1986-09-09 1988-03-25 Hitachi Ltd Image monitor for aquatic animal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888703A (en) * 1986-09-09 1989-12-19 Hitachi Engineering Co., Ltd. Apparatus for monitoring the toxicant contamination of water by using aquatic animals
JPH0832959A (en) * 1994-07-11 1996-02-02 Muromachi Kikai Kk Automatic behavioral analyzer for experimental animal
JPH09289637A (en) * 1996-04-24 1997-11-04 Matsushita Electric Ind Co Ltd Image recorder
JPH11296651A (en) * 1998-03-20 1999-10-29 Katsuyoshi Kawasaki Automation method for behavior observation of experimental animal

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9064143B2 (en) 2010-04-12 2015-06-23 Ge Healthcare Uk Limited System and method for determining motion of a biological object
GB2479628B (en) * 2010-04-12 2014-10-15 Ge Healthcare Uk Ltd System and method for determining the cyclic cellular motion of a cardiomyocyte cell culture
GB2479628A (en) * 2010-04-12 2011-10-19 Ge Healthcare Uk Ltd Determining motion of biological organisms using difference images
CN103704164A (en) * 2013-12-24 2014-04-09 四川大学 Fish behavior and nerve observation and research device and method
CN104137800B (en) * 2014-08-08 2016-02-24 青岛中仁药业有限公司 A kind of zebra fish electroshock seizure test device
CN104137800A (en) * 2014-08-08 2014-11-12 青岛中仁药业有限公司 Zebra fish electroconvulsive testing device
CN104766346A (en) * 2015-04-15 2015-07-08 楚雄师范学院 Zebra fish tracking method based on video images
CN104766346B (en) * 2015-04-15 2017-06-20 楚雄师范学院 A kind of zebra fish tracking based on video image
CN110287812A (en) * 2019-06-04 2019-09-27 安徽中盛溯源生物科技有限公司 Animal turn-takes the calculation method and its application of behavior
CN110287812B (en) * 2019-06-04 2023-04-07 安徽中盛溯源生物科技有限公司 Calculation method of animal circling behavior and application thereof
CN113951200A (en) * 2021-09-15 2022-01-21 杭州环特生物科技股份有限公司 Multichannel device for detecting color preference of zebra fish juvenile fish and use method and application thereof
CN114667956A (en) * 2021-12-16 2022-06-28 杭州环特生物科技股份有限公司 Method for constructing zebra fish memory evaluation model and application thereof
CN114487315A (en) * 2021-12-21 2022-05-13 苏州大学 Method for screening drugs influencing biorhythm behaviors by using juvenile zebra fish
CN114500882A (en) * 2022-01-24 2022-05-13 中国科学院烟台海岸带研究所 Method for measuring behavioral parameters of sports animals
CN114500882B (en) * 2022-01-24 2023-12-15 中国科学院烟台海岸带研究所 Method for measuring behavioral parameters of sports animal

Also Published As

Publication number Publication date
JP2004089027A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
Delcourt et al. Video multitracking of fish behaviour: a synthesis and future perspectives
Zhou et al. Near-infrared imaging to quantify the feeding behavior of fish in aquaculture
Kato et al. A computer image processing system for quantification of zebrafish behavior
WO2004021282A1 (en) Animal behavior analysis method, animal behavior analysis system, animal behavior analysis program, and computer-readable recorded medium on which the program is recorded
Ohayon et al. Automated multi-day tracking of marked mice for the analysis of social behaviour
CN107077626A (en) Animal non-intrusion type multi-modal biological characteristic identification system
Lavender et al. Ontogenetic investigation of underwater hearing capabilities in loggerhead sea turtles (Caretta caretta) using a dual testing approach
Lefort et al. Impaired cerebellar Purkinje cell potentiation generates unstable spatial map orientation and inaccurate navigation
Stien et al. A video analysis procedure for assessing vertical fish distribution in aquaculture tanks
Kretschmer et al. OMR-arena: automated measurement and stimulation system to determine mouse visual thresholds based on optomotor responses
Duarte et al. Measurement of sole activity by digital image analysis
Duteil et al. European sea bass show behavioural resilience to near-future ocean acidification
Leocádio et al. Using UWTV surveys to assess and advise on Nephrops stocks
Coro et al. An intelligent and cost-effective remote underwater video device for fish size monitoring
Harpaz et al. Collective behavior emerges from genetically controlled simple behavioral motifs in zebrafish
Li et al. CMFTNet: Multiple fish tracking based on counterpoised JointNet
Bacheler et al. Spatial distribution of reef fish species along the southeast US Atlantic coast inferred from underwater video survey data
Kollis et al. Weight estimation using image analysis and statistical modelling: A preliminary study
Stayton Terrestrial feeding in aquatic turtles: environment-dependent feeding behavior modulation and the evolution of terrestrial feeding in Emydidae
Morimura et al. Social responses of travelling finless porpoises to boat traffic risk in Misumi West Port, Ariake Sound, Japan
Sokolova et al. Towards sustainable demersal fisheries: NepCon image acquisition system for automatic Nephrops norvegicus detection
Ranjan et al. Effects of image data quality on a convolutional neural network trained in-tank fish detection model for recirculating aquaculture systems
Shreesha et al. Pattern detection and prediction using deep learning for intelligent decision support to identify fish behaviour in aquaculture
Lai et al. Automatic measuring shrimp body length using CNN and an underwater imaging system
Glimm et al. Capturing and analyzing pattern diversity: an example using the melanistic spotted patterns of leopard geckos

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase