WO2004020694A1 - Substrate processor and method of cleaning the same - Google Patents

Substrate processor and method of cleaning the same Download PDF

Info

Publication number
WO2004020694A1
WO2004020694A1 PCT/JP2003/010938 JP0310938W WO2004020694A1 WO 2004020694 A1 WO2004020694 A1 WO 2004020694A1 JP 0310938 W JP0310938 W JP 0310938W WO 2004020694 A1 WO2004020694 A1 WO 2004020694A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
active species
container
transport pipe
material gas
Prior art date
Application number
PCT/JP2003/010938
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Oshima
Hiroshi Kannan
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2003261791A priority Critical patent/AU2003261791A1/en
Publication of WO2004020694A1 publication Critical patent/WO2004020694A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present invention relates to a substrate processing apparatus and a cleaning method for the substrate processing apparatus.
  • a film forming apparatus for forming a thin film on a semiconductor wafer (hereinafter simply referred to as “wafer”), a film forming apparatus for forming a thin film chemically is known.
  • a thin film is formed on a wafer by generating a radical from a processing gas by plasma or the like.
  • the reaction products adhere to the inner wall of the processing chamber after the thin film is formed on the wafer, the susceptor disposed in the processing chamber, and the like. If a thin film is formed on a wafer in a state where the reaction product adheres to the inner wall of the processing chamber, the reaction product may peel off from the inner wall of the processing chamber and contaminate the wafer. In order to suppress such a situation, the inside of the processing chamber is periodically cleaned to remove reaction products attached to the inner wall of the processing chamber.
  • the cleaning inside the processing chamber uses various methods of force S, one of which is to generate radicals in an external chamber installed outside the processing chamber, and to generate radicals in the processing chamber.
  • force S one of which is to generate radicals in an external chamber installed outside the processing chamber, and to generate radicals in the processing chamber.
  • the liquid is supplied to the processing chamber to perform talling in the processing chamber.
  • An object of the present invention is to provide a substrate processing apparatus capable of suppressing deactivation of active species in a transport pipe and a cleaning of the substrate processing apparatus.
  • Processing container an external container disposed outside the processing container, a cleaning source gas supply system for supplying a cleaning source gas into the external container, and a tarry source supplied into the external container.
  • An active species generation mechanism that excites the gas and generates active species for cleaning the inside of the processing vessel from the cleaning source gas, and transports the active species generated in the external vessel into the processing vessel It has a transport pipe and a cooling mechanism for cooling the inner wall surface of the transport pipe.
  • the “active species” of the present invention includes radicals and ions. Since the substrate processing apparatus of the present invention includes such a cooling mechanism, it is possible to suppress the deactivation of the active species in the transport pipe.
  • Another substrate processing apparatus of the present invention includes: a processing container for storing a substrate; an external container disposed outside the processing container; a cleaning source gas supply system for supplying a cleaning source gas into the external container; An active species generating mechanism that excites the raw material gas supplied into the outer container and generates active species for cleaning the inside of the processing container from the cleaning raw material gas;
  • the inner wall surface is formed of a substance that hardly reacts with the active species, and includes a transport pipe for transporting the active species generated in the outer container into the processing container. Since the substrate processing apparatus of the present invention is provided with such a transport pipe, it is possible to suppress the deactivation of active species in the transport pipe.
  • the transport pipe may be formed of at least two kinds of substances. By constructing the transport piping with at least two types of substances, even if substances other than the substances forming the inner wall surface of the transport pipe are easily reactive with active species, loss of the active species in the transport pipe will occur. Activity can be suppressed.
  • the transport pipe may be made of one type of substance. By configuring the transport pipe with one type of substance, deactivation of active species in the transport pipe can be reliably suppressed.
  • the cleaning raw material gas may be a fluorine-containing gas
  • the inner wall surface of the transport pipe may be made of a substance containing any of A1, F, and Cr.
  • the fluorine-containing gas include NF 3 , SF 6 , CF 4 , C 2 F 6 , CHF 3 , HF, F 2 , and CF 3 COOH.
  • the material containing A 1 for example, solid A 1, A 1 is anodized, and A 1 2 0 3 and the like.
  • the substance containing F include a fluororesin such as polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the material containing C r for example, C r 2 0 3 or the like.
  • the cleaning raw material gas may be a chlorine-containing gas
  • the inner wall surface of the transport pipe may be made of a substance containing any of Si and C.
  • a chlorine-containing gas for example, HC 1, C 1 2, ⁇ Pi BC 1 3, etc. can be mentioned, et al are.
  • Ru include S i ⁇ 2.
  • the substance containing C include, for example, DLC (Diamond Like Carbon).
  • the cleaning method for a substrate processing apparatus includes: a transport pipe cooling step of cooling an inner wall surface of a transport pipe disposed between a processing chamber of the substrate processing apparatus and an external container; A cleaning raw material gas supply process for supplying gas, and an active species generation that excites the cleaning raw material gas supplied to the external container (2) to generate active species for cleaning the inside of the processing container from the cleaning raw material gas And an active species transporting step of transporting active species generated in the outer container into the processing container via a transport pipe. Since the cleaning method of the substrate processing apparatus of the present invention includes such a transportation pipe cooling step, it is possible to suppress deactivation of active species in the transportation pipe.
  • a cleaning method of another substrate processing apparatus includes a cleaning raw material gas supply step of supplying a cleaning raw material gas into an external container, and a cleaning raw material supplied to the external container.
  • FIG. 1 is a schematic configuration diagram of a film forming apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing a flow of film formation performed by the film formation apparatus according to the first embodiment.
  • FIG. 3 shows a flow of cleaning performed by the film forming apparatus according to the first embodiment. It is a flowchart showing this.
  • FIG. 4A to FIG. 4D are schematic process diagrams of the cleaning according to the first embodiment.
  • FIG. 5 is a schematic configuration diagram of a film forming apparatus according to the second embodiment.
  • FIG. 6 is a flowchart showing the flow of the cleaning performed by the film forming apparatus according to the second embodiment.
  • FIG. 7 is a schematic process diagram of cleaning according to the second embodiment.
  • Figure 8 is c 9 is a schematic vertical cross-sectional view of the transport pipe according to the third embodiment implementing the c invention is a schematic vertical cross-sectional view of the transport pipe according to the fourth embodiment Best form for
  • FIG. 1 is a schematic configuration diagram of a film forming apparatus according to the present embodiment.
  • a film forming apparatus 1 includes a processing chamber 2 formed of, for example, aluminum / stainless steel.
  • the treatment chamber 2 may be subjected to a surface treatment such as an alumite treatment.
  • An opening 2A is formed on the side of the processing chamber 2, and when the wafer W is loaded into the processing chamber 2 or the wafer W is unloaded from the processing chamber 2 near the opening 2A.
  • a gate valve 3 that opens and closes is installed.
  • a substantially disk-shaped susceptor 4 on which the wafer W is placed is disposed in the processing champer 2.
  • the susceptor 4 is formed, for example, from ceramic task such as A 1 N and A 1 2 0 3.
  • An electrode 5 serving as a lower electrode is provided in the susceptor 4. The electrode 5 is grounded.
  • a heater 6 for heating the susceptor 4 to a predetermined temperature is provided in the susceptor 4. Has been established. When a current flows through the heater 6, the susceptor 4 is heated to a predetermined temperature, and the wafer W placed on the susceptor 4 is heated to a predetermined temperature.
  • the three of the susceptor 4 are formed in the holes 4 A is vertical Direction for raising and lowering the the wafer W, holes 4 A to be inserted wafer lift pins 7 are disposed respectively below the hole 4 A ing.
  • the wafer elevating pins 7 are fixed to the wafer elevating pin support 8 so that the wafer elevating pins 7 stand upright.
  • An air cylinder 9 is fixed to the wafer lifting pin support 8. When the rod 9A of the air cylinder 9 is retracted by the driving of the air cylinder 9, the wafer elevating pins 7 are lowered, and the wafer W is placed on the susceptor 4. Further, when the air cylinder 9 is driven to extend the opening 9A, the wafer elevating pins 7 are raised, and the wafer W is separated from the susceptor 4.
  • An elastic bellows 10 that covers the rod 9A is disposed inside the processing chamber 2. By covering the rod 9A with the bellows 10, the airtightness in the processing chamber 2 is maintained.
  • a heater 11 for heating the processing chamber 2 to a predetermined temperature is wound outside the processing chamber 2.
  • the processing chamber 2 is heated to a predetermined temperature.
  • An opening is formed in the upper part of the processing chamber 2.
  • a shower head 12 that supplies Si (OC 2 H 5) 4 (tetraethoxysilane: TEOS) and O 2 toward the susceptor 4 and acts as an upper electrode is introduced.
  • a high frequency power supply 13 is connected to the shower head 12.
  • TEOS and O 2 are supplied into the processing chamber 2 and the high-frequency power supply 13 is operated, a high-frequency voltage is applied between the shower head 12 and the electrode 5, and the shower head 1 2 Plasma is generated between the susceptor and the susceptor.
  • Head 1 2 to shower it has become a T EO S TEOS supply unit 1 2 A supplies, 0 2 was divided into an O 2 supply unit 1 2 B supplies structure. With such a structure of the shear head 12, TEOS and O 2 are mixed outside the shear head 12.
  • TEOS supply holes for supplying TEOS are formed in the TEOS supply section 12A. Further, likewise 0 2 supply unit 1 2 B, a number of O 2 supply hole you supplied is formed a 0 2.
  • a TEOS supply system 20 that supplies TEOS to the TEOS supply unit 12A is connected to the TEOS supply unit 12A. Moreover, 0 the second supply unit 1 2 B, O 2 supply unit 1 2 0 2 supply system 3 0 supplying O 2 to B are connected.
  • the TEOS supply system 20 includes a TEOS supply source 21 containing TEOS.
  • the TEOS supply source 21 is connected to a TEOS supply pipe 22 having one end connected to the TEOS supply section 12A.
  • a valve 23 and a mass flow controller (MFC) 24 for adjusting the flow rate of TEOS are interposed in the TEOS supply pipe 22. By opening the valve 23 with the mass flow controller 24 adjusted, TEOS is supplied from the TEOS supply source 21 to the TEOS supply unit 12A at a predetermined flow rate.
  • MFC mass flow controller
  • O 2 supply system 3 0 has a O 2 source 3 1 containing the O 2.
  • the O 2 supply source 31 is connected to an O 2 supply pipe 32 having one end connected to the O 2 supply unit 12 B.
  • a valve 33 and a mass flow controller 34 for adjusting the flow rate of O 2 are interposed.
  • 0 2 supply 3 0 to 1 at a predetermined flow rate 2 is supplied to the 0 2 supply unit 1 2 B.
  • An exhaust system 40 for exhausting the inside of the processing chamber 2 is connected to the bottom of the processing chamber 2.
  • the exhaust system 40 includes an exhaust pipe 41 to which one end is connected to a pressure reducing pump (not shown). Check that the vacuum pump (not shown) Thus, the inside of the processing chamber 2 is exhausted through the exhaust pipe 41.
  • An auto pressure controller (APC) 42 for controlling the pressure in the processing chamber 2 is interposed between the processing chamber 2 and the exhaust pipe 41. By adjusting the conductance by the auto-pressure controller 42, the pressure in the processing chamber 2 ⁇ is controlled to a predetermined pressure.
  • the NF 3 supply system 52 includes an NF 3 supply source 53 containing NF 3 .
  • the NF 3 supply source 53 is connected to an NF 3 supply pipe 54 whose one end is connected to the external chamber 51.
  • the NF 3 supply pipe 54 has a valve 55 and a mass flow controller (MFC) 56 for adjusting the flow rate of the NF 3 interposed therebetween.
  • MFC mass flow controller
  • a radical generating mechanism 57 that excites NF 3 supplied into the external chamber 51 to generate F radicals from NF 3 is provided.
  • the radical generating mechanism 57 is mainly composed of a copper wire 58 wound around the external chamber 51 and a high-frequency power source 59 connected to the copper wire 58.
  • a high-frequency current is supplied to the copper wire 58 by the operation of the high-frequency power supply 59, the NF 3 supplied into the external chamber 51 is excited to generate F radicals.
  • F radicals F ions and the like are also generated.
  • a transport pipe 60 for transporting F radicals generated in the external chamber 51 to the processing chamber 2 is provided between the external chamber 51 and the processing chamber 2.
  • Transportation pipeline 6 0 of this embodiment the shape of S I_ ⁇ 2 Has been established.
  • a Peltier element 61 for cooling the inner wall surface of the transport pipe 60 is attached to the outer wall surface of the transport pipe 60. When a current flows through the Peltier element 61, the temperature of the Peltier element 61 decreases, and the inner wall surface of the transport pipe 60 is cooled to a predetermined temperature.
  • the transport pipe 60 is provided with a gut valve 62 which is closed at the time of film formation and opened at the time of cleaning.
  • a flange 60A is formed at the end of the transport pipe 60 on the processing chamber 2 side.
  • Annular heat insulating members 65 and 66 are interposed between the flange 60 A and the interposition member 64 and between the flange 60 A and the processing chamber 2, respectively. By interposing the heat insulating members 65 and 66 respectively, it becomes difficult for heat to be transmitted from the processing champ 2 to the transport pipe 60.
  • Seal members 67 and 68 are interposed between the flange 60 A and the heat insulating member 66 and between the processing chamber 2 and the heat insulating member 66, respectively. The airtightness in the processing chamber 2 is maintained by interposing the seal members 67 and 68.
  • FIG. 2 is a flowchart showing a flow of film formation performed by the film forming apparatus 1 according to the present embodiment.
  • a vacuum pump (not shown) is operated to evacuate the processing chamber 2 (step 10l). C Then, current flows through the heaters 6, 11 Then, the susceptor 4 and the processing channel 2 are heated (step 102).
  • the pressure in the processing chamber 2 drops to a predetermined pressure, and the temperature of the susceptor 4 stabilizes at about 350 to 400 ° C and the temperature of the processing chamber 2 stabilizes at about 100 ° C.
  • the gate valve 3 is opened, the transfer arm (not shown) holding the wafer W is extended, and the wafer W is loaded into the processing chamber 2 (Step 103).
  • the transfer arm is retracted, and the wafer W is placed on the wafer elevating pins 7.
  • the wafer elevating pins 7 are lowered by driving the air cylinder 9, and the wafer W is placed on the susceptor 4 (Step 104).
  • valves 23 and 33 are opened while the pressure in the processing chamber 2 is maintained at about 7 ° Pa, and the flow rate of TEOS is set at about 100 sccm. There about 1 0 0 0 ⁇ 2 0 0 sccm flow 2 is supplied into the processing chamber 2 is supplied into the processing chamber 2 (step 1 0 5).
  • Step 106 a high frequency voltage of 13.56 MHz is applied between the shower head 12 and the electrode 5 from the high frequency power supply 13.
  • a high-frequency voltage is applied between the shear head 12 and the electrode 4, so that the shower head 12 and the susceptor 4 During this time, plasma is generated, and a SiO 2 film is formed on the wafer W.
  • valve 2 3, 3 3 is closed, Ding £ 0 3 with the supply of ⁇ Pi 0 2 is stopped both the high-frequency voltage is stopped, the formation of S io 2 film is terminated (Step 107).
  • FIG. 3 is a flowchart showing the flow of the cleaning performed by the film forming apparatus 1 according to the present embodiment
  • FIGS. 4A to 4D are schematic processes of the cleaning according to the present embodiment.
  • a vacuum pump (not shown) is operated to evacuate the processing chamber 2 (step 201A).
  • an electric current is applied to the heaters 6 and 11 to heat the susceptor 4 and the processing chamber 2, and an electric current is applied to the Peltier element 61 as shown in FIG.
  • the walls are cooled (Step 202A).
  • C The pressure in the processing chamber 2 is maintained at about 100 OPa, the temperature of the susceptor 4 is about 200 ° C, and the temperature of the processing chamber 2 is about 1
  • the valve 55 is opened, and the flow rate of NF 3 is about 500 sccm as shown in Figure 4B.
  • NF 3 is supplied together with a carrier gas.
  • the high-frequency power supply 59 is operated, and as shown in FIG. High-frequency current flows (step 204 A).
  • NF 3 is supplied into the external chamber 51
  • a high-frequency current is applied to the copper wire 58, whereby the NF 3 in the external chamber 51 is excited and radicals are generated.
  • the generated F radicals are pushed out by the exhaust gas in the processing chamber 2 and the supplied NF 3 , and are transported into the processing chamber 2 through the transport pipe 60 as shown in FIG. 4D (step 2). 0 5 A).
  • F radical When transported into the processing chamber 2, F radicals react with SiO 2 adhering to the inner wall surface of the processing chamber 2 to generate Si F 4 . Since the generated SiF 4 is vaporized, it is quickly discharged from the processing chamber 2 by exhaust. NF 3 is always supplied during the tally jungle.
  • Step 206A After a lapse of a predetermined time, the valve 55 is closed, the supply of the high-frequency current is stopped, and the cleaning in the processing chamber 2 is completed.
  • F radicals are transported while cooling the inner wall surface of transport pipe 60, so that the deactivation of F radicals in transport pipe 60 can be suppressed. That is, one of the causes of F radical deactivation in the transport pipe is that the F radical collides with the transport pipe and the F radical reacts with the transport pipe.
  • the temperature decreases, the number of substances exceeding the activation energy decreases, so that the reaction becomes difficult. Therefore, by cooling the inner wall surface of the transport pipe 60, the reaction of the F radical with the transport pipe 60 becomes difficult, and the deactivation of the F radical in the transport pipe 60 is suppressed.
  • Equation (1) When ⁇ , ⁇ F , and ⁇ a are constant and the etch rate at a temperature of 120 ° C is compared with that at a temperature of 0 ° C using Equation (1), the temperature is 0.
  • the etch rate for the same case is about 1/10 of the etch rate for a temperature of 120 ° C. From this result, by cooling the inner wall surface of the transportation pipe 60, It can be said that the deactivation of the F radical is suppressed. Equation (1) can be applied to the case where another substance is used.
  • FIG. 5 is a schematic configuration diagram of a film forming apparatus according to the present embodiment.
  • a cooling pipe 71 for cooling the inner wall surface of the transport pipe 60 is wound around the transport pipe 60. Both ends of the cooling pipe 71 are connected to a cooling tank 72 storing cooling water.
  • a pump 73 for pumping cooling water from a cooling tank 72 is interposed in the cooling pipe 71. By operating the pump 73, the cooling water in the cooling tank 72 is pumped out, and the cooling water circulates in the cooling pipe 71.
  • the Peltier element 61 is not attached to the outer wall surface of the transportation pipe 60.
  • FIG. 6 is a flowchart showing the flow of the cleaning performed in the film deposition apparatus 1 according to the present embodiment
  • FIG. 7 is a schematic process diagram of the cleaning according to the present embodiment.
  • valve 55 is opened, and NF 3 is supplied into the external chamber 51 (step 203B).
  • the high-frequency power supply 59 is operated, and a high-frequency current flows through the copper wire 58 (step 204B).
  • the generated F radicals are pushed out by the exhaust gas in the processing chamber 2 and the supplied NF 3 , and are transported into the processing chamber 2 via the transport pipe 60 (step 205B).
  • Step 206B After a lapse of a predetermined time, the valve 55 is closed, the supply of the high-frequency current is stopped, and the cleaning of the inside of the processing chamber 2 is completed (Step 206B).
  • FIG. 8 is a schematic vertical sectional view of the transport pipe according to the present embodiment.
  • the transportation pipeline 6 0 composed of a S i 0 2 formed from S i O 2 pipe 6 0 B and PTFE layer 6 formed from F radicals react with hard PTFE 0 C Have been.
  • the PTFE layer 60 C is coated on the inner wall surface of the SiO 2 tube 60 B.
  • FIG. 9 is a schematic vertical sectional view of the transport pipe according to the present embodiment.
  • the transport piping 60 is formed from A1.
  • the transportation pipe 60 is formed from A1.
  • F radicals are not deactivated in the transportation pipe 60. Be suppressed. That is, A 1 reacts with the F radical to produce a reaction S, and A 1 reacts with the F radical to produce aluminum fluoride.
  • aluminum fluoride has low reactivity with F radical.
  • a 1 reacts with the F radical to form a thin film of aluminum fluoride on the inner wall surface of the transport pipe 60, the activity of the F radical is less likely to be lost. Therefore, even when the transport pipe 60 is formed from A 1, the deactivation of F radical in the transport pipe 60 is suppressed.
  • plasma is generated to generate F radicals, but F radicals may be generated by light irradiation.
  • SiO 2 adhering to the inner wall surface or the like of the processing chamber is removed, but Ti N may be removed.
  • C 1 radicals are generated to remove T i N.
  • C 1 radical is, for example, can be generated from any such HC 1, C 1 2, and BC 1 3.
  • the wafer W is used, but a glass substrate may be used.
  • the film forming apparatus has been described, the present invention is not limited to the film forming apparatus but can be applied to an etching apparatus. Industrial applicability
  • the substrate processing apparatus and the method for cleaning a substrate processing apparatus according to the present invention can be used in the semiconductor manufacturing industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

A substrate processor comprising a processing container for accommodating substrates; an external container disposed outside the processing container; a cleaning raw gas supply system for feeding cleaning raw gas into the external container; active species generating means for exciting cleaning raw gas fed into the external container to thereby generate active species for cleaning the inside of the processing container from the cleaning raw gas; a transport piping for transporting the active species generated in the external container into the processing container; and cooling means for cooling the inside wall surface of the transport piping.

Description

明 細 書 基板処理装置及び基板処理装置のクリーニング方法 技術分野  Technical Field Substrate processing apparatus and method of cleaning substrate processing apparatus
本発明は、 基板処理装置及び基板処理装置のクリ一二ング方法に関す る。 背景技術  The present invention relates to a substrate processing apparatus and a cleaning method for the substrate processing apparatus. Background art
従来から、 半導体ウェハ (以下、 単に 「ウェハ」 という。) 上に薄膜を 形成する成膜装置としては、 化学的に薄膜を形成する成膜装置が知られ ている。 このような成膜装置では、 プラズマ等により処理ガスからラジ カルを発生させて、 ウェハ上に薄膜を形成している。  Conventionally, as a film forming apparatus for forming a thin film on a semiconductor wafer (hereinafter simply referred to as “wafer”), a film forming apparatus for forming a thin film chemically is known. In such a film forming apparatus, a thin film is formed on a wafer by generating a radical from a processing gas by plasma or the like.
ところで、 ウェハに薄膜が形成された後の処理チャンバ内壁及び処理 チャンバ内に配設されたサセプタ等には、 反応生成物が付着している。 この処理チャンバ内壁等に反応生成物が付着している状態で、 ウェハに 薄膜を形成すると、 反応生成物が処理チャンバ内壁等から剥離し、 ゥェ ハを汚染することがある。 このようなことを抑制するために、 定期的に 処理チャンバ内をクリーニングして、 処理チャンバ内壁等に付着してい る反応生成物を取り除いている。  By the way, the reaction products adhere to the inner wall of the processing chamber after the thin film is formed on the wafer, the susceptor disposed in the processing chamber, and the like. If a thin film is formed on a wafer in a state where the reaction product adheres to the inner wall of the processing chamber, the reaction product may peel off from the inner wall of the processing chamber and contaminate the wafer. In order to suppress such a situation, the inside of the processing chamber is periodically cleaned to remove reaction products attached to the inner wall of the processing chamber.
現在、処理チャンバ内のクリ一ユングは様々な方式で行われている力 S、 その一つに、 処理チャンバの外部に配設された外部チャンバ内でラジカ ルを発生させ、 そのラジカルを処理チャンバに供給して、 処理チャンバ 内のタリ一ニングを行う方式がある。  At present, the cleaning inside the processing chamber uses various methods of force S, one of which is to generate radicals in an external chamber installed outside the processing chamber, and to generate radicals in the processing chamber. There is a method in which the liquid is supplied to the processing chamber to perform talling in the processing chamber.
しかしながら、 この方式では、 外部チャンバと処理チャンバとの間に 配設され、 ラジカルを輸送するための輸送配管でラジカルの活性が失わ れ易い (失活) という問題がある。 ラジカルが失活すると、 タリーニン グ効率が低下してしまうので、 クリーニング効率を向上させる点からラ ジカルの失活を抑制することが望ましい。 発明の開示 However, in this method, the radical activity is lost in the transport piping that is installed between the external chamber and the processing chamber and transports the radicals. There is a problem that it is easy to inactivate (deactivate). If radicals are deactivated, the efficiency of talling decreases. Therefore, it is desirable to suppress the deactivation of radicals from the viewpoint of improving cleaning efficiency. Disclosure of the invention
本発明は、 輸送配管内での活性種の失活を抑制することができる基板 処理装置及び基板処理装置のクリ一ユングを提供することを目的とする 本発明の基板処理装置は、 基板を収容する処理容器と、 処理容器の外 部に配設された外部容器と、 外部容器内にクリ一二ング原料ガスを供給 するクリーニング原料ガス供給系と、 外部容器内に供給されたタリー二 ング原料ガスを励起させて、 クリ一ユング原料ガスから処理容器内をク リ一二ングするための活性種を発生させる活性種発生機構と、 外部容器 内で発生した活性種を処理容器内に輸送する輸送配管と、 輸送配管の内 壁面を冷却する冷却機構とを備えている。 本発明の 「活性種」 には、 ラ ジカル、 イオンが含まれる。 本発明の基板処理装置は、 このような冷却 機構を備えているので、 輸送配管内での活性種の失活を抑制することが できる。  An object of the present invention is to provide a substrate processing apparatus capable of suppressing deactivation of active species in a transport pipe and a cleaning of the substrate processing apparatus. Processing container, an external container disposed outside the processing container, a cleaning source gas supply system for supplying a cleaning source gas into the external container, and a tarry source supplied into the external container. An active species generation mechanism that excites the gas and generates active species for cleaning the inside of the processing vessel from the cleaning source gas, and transports the active species generated in the external vessel into the processing vessel It has a transport pipe and a cooling mechanism for cooling the inner wall surface of the transport pipe. The “active species” of the present invention includes radicals and ions. Since the substrate processing apparatus of the present invention includes such a cooling mechanism, it is possible to suppress the deactivation of the active species in the transport pipe.
本発明の他の基板処理装置は、 基板を収容する処理容器と、 処理容器 の外部に配設された外部容器と、 外部容器内にクリ一ユング原料ガスを 供給するクリーニング原料ガス供給系と、 外部容器内に供給されたタリ 一二ング原料ガスを励起させて、 クリ一二ング原料ガスから処理容器内 をク リ一ユングするための活性種を発生させる活性種発生機構と、 少な く とも内壁面が活性種と反応し難い物質から形成され、 外部容器内で発 生した活性種を処理容器内に輸送する輸送配管とを備えている。 本発明 の基板処理装置は、 このような輸送配管を備えているので、 輸送配管内 での活性種の失活を抑制することができる。 上記輸送配管は少なく とも 2種類の物質で形成されていてもよい。 輸 送配管を少なく とも 2種類の物質で構成することにより、 輸送配管の内 壁面を構成する物質以外の物質が活性種と反応し易い物質であっても、 輸送配管内での活性種の失活を抑制することができる。 Another substrate processing apparatus of the present invention includes: a processing container for storing a substrate; an external container disposed outside the processing container; a cleaning source gas supply system for supplying a cleaning source gas into the external container; An active species generating mechanism that excites the raw material gas supplied into the outer container and generates active species for cleaning the inside of the processing container from the cleaning raw material gas; The inner wall surface is formed of a substance that hardly reacts with the active species, and includes a transport pipe for transporting the active species generated in the outer container into the processing container. Since the substrate processing apparatus of the present invention is provided with such a transport pipe, it is possible to suppress the deactivation of active species in the transport pipe. The transport pipe may be formed of at least two kinds of substances. By constructing the transport piping with at least two types of substances, even if substances other than the substances forming the inner wall surface of the transport pipe are easily reactive with active species, loss of the active species in the transport pipe will occur. Activity can be suppressed.
上記輸送配管は 1種類の物質で形成されていてもよい。 輸送配管を 1 種類の物質で構成することにより、 輸送配管内での活性種の失活を確実 に抑制することができる。  The transport pipe may be made of one type of substance. By configuring the transport pipe with one type of substance, deactivation of active species in the transport pipe can be reliably suppressed.
上記クリ一ユング原料ガスはフッ素含有ガスであり、 かつ輸送配管の 内壁面は A 1、 F、 及び C rのいずれかを含む物質で構成されていても よい。 フッ素含有ガスと しては、 例えば、 N F 3、 S F 6、 C F 4、 C 2 F 6、 CHF 3、 HF、 F 2、 及び C F 3 C O O H等が挙げられる。 また、 A 1 を含む物質としては、 例えば、 無垢 A 1、 陽極酸化処理された A 1、 及び A 1 203等が挙げられる。 Fを含む物質と しては、 例えば、 ポリテ トラフルォロエチレン (P T F E) のようなフッ素樹脂等が挙げられる。 C rを含む物質としては、 例えば、 C r 203等が挙げられる。 クリ一二 ング原料ガスと してフッ素含有ガスを使用する場合おいて、 これらのい ずれかを含む物質で輸送配管の内壁面を構成することにより、 フッ素含 有ガスから発生した活性種が輸送配管内で失活し難い。 The cleaning raw material gas may be a fluorine-containing gas, and the inner wall surface of the transport pipe may be made of a substance containing any of A1, F, and Cr. Examples of the fluorine-containing gas include NF 3 , SF 6 , CF 4 , C 2 F 6 , CHF 3 , HF, F 2 , and CF 3 COOH. As the material containing A 1, for example, solid A 1, A 1 is anodized, and A 1 2 0 3 and the like. Examples of the substance containing F include a fluororesin such as polytetrafluoroethylene (PTFE). The material containing C r, for example, C r 2 0 3 or the like. When a fluorine-containing gas is used as the cleaning raw material gas, the active species generated from the fluorine-containing gas are transported by forming the inner wall of the transport pipe with a substance containing any of these. Hard to deactivate in piping.
上記クリ一二ング原料ガスは塩素含有ガスであり、 かつ輸送配管の内 壁面は S i、 及び Cのいずれかを含む物質で構成されていてもよい。 塩 素含有ガスと しては、 例えば、 HC 1、 C 1 2、 及ぴ B C 1 3等が挙げら れる。 また、 S i を含む物質としては、 例えば、 S i 〇2等が挙げられ る。 Cを含む物質としては、 例えば、 D L C (D i a m o n d L i k e C a r b o n) 等が挙げられる。 クリーニング原料ガスと して塩素 含有ガスを使用する場合おいて、 これらのいずれかを含む物質で輸送配 管の内壁面を構成することにより、 塩素含有ガスから発生した活性種が 輸送配管内で失活し難い。 The cleaning raw material gas may be a chlorine-containing gas, and the inner wall surface of the transport pipe may be made of a substance containing any of Si and C. And a chlorine-containing gas, for example, HC 1, C 1 2,及Pi BC 1 3, etc. can be mentioned, et al are. As the material containing S i, for example, Ru include S i 〇 2. Examples of the substance containing C include, for example, DLC (Diamond Like Carbon). When a chlorine-containing gas is used as a cleaning source gas, the active species generated from the chlorine-containing gas can be reduced by forming the inner wall of the transport pipe with a substance containing any of these. Hard to be deactivated in transport piping.
本発明の基板処理装置のク リーニング方法は、 基板処理装置の処理チ ヤンバと外部容器との間に配設された輸送配管の内壁面を冷却する輸送 配管冷却工程と、 外部容器内にクリーユング原料ガスを供給するクリー ニング原料ガス供給工程と、 外部容器內に供給されたクリーニング原料 ガスを励起させて、 クリ一エング原料ガスから処理容器内をクリーニン グするための活性種を発生させる活性種発生工程と、輸送配管を介して、 外部容器内に発生した活性種を処理容器内に輸送する活性種輸送工程と を備えている。 本発明の基板処理装置のクリーニング方法は、 このよう な輸送配管冷却工程を備えているので、 輸送配管内での活性種の失活を 抑制することができる。  The cleaning method for a substrate processing apparatus according to the present invention includes: a transport pipe cooling step of cooling an inner wall surface of a transport pipe disposed between a processing chamber of the substrate processing apparatus and an external container; A cleaning raw material gas supply process for supplying gas, and an active species generation that excites the cleaning raw material gas supplied to the external container (2) to generate active species for cleaning the inside of the processing container from the cleaning raw material gas And an active species transporting step of transporting active species generated in the outer container into the processing container via a transport pipe. Since the cleaning method of the substrate processing apparatus of the present invention includes such a transportation pipe cooling step, it is possible to suppress deactivation of active species in the transportation pipe.
本発明の他の基板処理装置のクリ一エング方法は、 外部容器内にクリ 一二ング原料ガスを供給するクリー-ング原料ガス供給工程と、 外部容 器内に供給されたクリ一二ング原料ガスを励起させて、 ク リ一エング原 料ガスから基板処理装置の処理容器内をクリ一エングするための活性種 を発生させる活性種発生工程と、 少なく とも内壁面が活性種と反応し難 い物質から形成された輸送配管を介して、 外部容器内に発生した活性種 を処理容器内に輸送する活性種輸送工程とを備えている。 本発明の基板 処理装置のクリ一二ング方法は、 このよ うな活性種輸送工程を備えてい るので、 輸送配管内での活性種の失活を抑制することができる。 図面の簡単な説明  A cleaning method of another substrate processing apparatus according to the present invention includes a cleaning raw material gas supply step of supplying a cleaning raw material gas into an external container, and a cleaning raw material supplied to the external container. An active species generating step of exciting the gas to generate active species for cleaning the inside of the processing vessel of the substrate processing apparatus from the cleaning source gas, and at least the inner wall surface is unlikely to react with the active species And an active species transporting step of transporting the active species generated in the outer container into the processing container via a transport pipe formed of a non-reactive substance. Since the cleaning method of the substrate processing apparatus of the present invention includes such an active species transporting step, it is possible to suppress deactivation of the active species in the transport pipe. BRIEF DESCRIPTION OF THE FIGURES
図 1は第 1の実施の形態に係る成膜装置の模式的な構成図である。 図 2は第 1の実施の形態に係る成膜装置で行われる成膜の流れを示し たフローチャー トである。  FIG. 1 is a schematic configuration diagram of a film forming apparatus according to the first embodiment. FIG. 2 is a flowchart showing a flow of film formation performed by the film formation apparatus according to the first embodiment.
図 3は第 1の実施の形態に係る成膜装置で行われるクリ一ニングの流 れを示したフローチヤ一トである。 FIG. 3 shows a flow of cleaning performed by the film forming apparatus according to the first embodiment. It is a flowchart showing this.
図 4 A〜図 4 Dは第 1の実施の形態に係るクリ一ユングの模式的なプ ロセス図である。  FIG. 4A to FIG. 4D are schematic process diagrams of the cleaning according to the first embodiment.
図 5は第 2の実施の形態に係る成膜装置の模式的な構成図である。 図 6は第 2の実施の形態に係る成膜装置で行われるクリーユングの流 れを示したフローチヤ一トである。  FIG. 5 is a schematic configuration diagram of a film forming apparatus according to the second embodiment. FIG. 6 is a flowchart showing the flow of the cleaning performed by the film forming apparatus according to the second embodiment.
図 7は第 2の実施の形態に係るクリ一ニングの模式的なプロセス図で ある。  FIG. 7 is a schematic process diagram of cleaning according to the second embodiment.
図 8は第 3の実施の形態に係る輸送配管の模式的な垂直断面図である c 図 9は第 4の実施の形態に係る輸送配管の模式的な垂直断面図である c 発明を実施するための最良の形態 Figure 8 is c 9 is a schematic vertical cross-sectional view of the transport pipe according to the third embodiment implementing the c invention is a schematic vertical cross-sectional view of the transport pipe according to the fourth embodiment Best form for
(第 1 の実施形態)  (First Embodiment)
以下、 本発明の第 1の実施の形態について説明する。 図 1は本実施の 形態に係る成膜装置の模式的な構成図である。  Hereinafter, a first embodiment of the present invention will be described. FIG. 1 is a schematic configuration diagram of a film forming apparatus according to the present embodiment.
図 1に示されるように、 成膜装置 1は、 例えばアルミニウムゃステン レス鋼により形成された処理チャンバ 2を備えている。 なお、 処理チヤ ンバ 2は、 アルマイ ト処理等の表面処理が施されていてもよい。 処理チ ャンバ 2の側部には開口 2 Aが形成されており、 開口 2 A付近にはゥェ ハ Wを処理チヤンパ 2内に搬入する際或いはウェハ Wを処理チヤンバ 2 内から搬出する際に開閉するゲートバルブ 3が取り付けられている。 処理チャンパ 2内には、 ウェハ Wを載置する略円板状のサセプタ 4が 配設されている。 サセプタ 4は、 例えば A 1 Nや A 1 2 0 3等のセラミッ タスから形成されている。 サセプタ 4内には、 下部電極として作用する 電極 5が配設されている。 なお、 電極 5は、 接地されている。 As shown in FIG. 1, a film forming apparatus 1 includes a processing chamber 2 formed of, for example, aluminum / stainless steel. The treatment chamber 2 may be subjected to a surface treatment such as an alumite treatment. An opening 2A is formed on the side of the processing chamber 2, and when the wafer W is loaded into the processing chamber 2 or the wafer W is unloaded from the processing chamber 2 near the opening 2A. A gate valve 3 that opens and closes is installed. A substantially disk-shaped susceptor 4 on which the wafer W is placed is disposed in the processing champer 2. The susceptor 4 is formed, for example, from ceramic task such as A 1 N and A 1 2 0 3. An electrode 5 serving as a lower electrode is provided in the susceptor 4. The electrode 5 is grounded.
サセプタ 4内には、 サセプタ 4を所定の温度に加熱するヒータ 6が配 設されている。 ヒータ 6に電流が流されることにより、 サセプタ 4が所 定の温度に加熱され、 サセプタ 4に載置されたウェハ Wが所定の温度に 加熱される。 A heater 6 for heating the susceptor 4 to a predetermined temperature is provided in the susceptor 4. Has been established. When a current flows through the heater 6, the susceptor 4 is heated to a predetermined temperature, and the wafer W placed on the susceptor 4 is heated to a predetermined temperature.
サセプタ 4の 3箇所にはウェハ Wを昇降させるための孔 4 Aが上下方 向に形成されており、 孔 4 Aの下方には孔 4 Aに挿入可能なウェハ昇降 ピン 7がそれぞれ配設されている。 ウェハ昇降ピン 7は、 ウェハ昇降ピ ン 7が立設するようにウェハ昇降ピン支持台 8に固定されている。 ゥェ ハ昇降ピン支持台 8には、 エアシリンダ 9が固定されている。 エアシリ ンダ 9の駆動でエアシリ ンダ 9のロッ ド 9 Aが縮退することにより、 ゥ ェハ昇降ピン 7が下降して、 ウェハ Wがサセプタ 4に載置される。 また、 エアシリンダ 9の駆動で口ッ ド 9 Aが伸長することにより、 ウェハ昇降 ピン 7が上昇して、 ウェハ Wがサセプタ 4から離れる。 The three of the susceptor 4 are formed in the holes 4 A is vertical Direction for raising and lowering the the wafer W, holes 4 A to be inserted wafer lift pins 7 are disposed respectively below the hole 4 A ing. The wafer elevating pins 7 are fixed to the wafer elevating pin support 8 so that the wafer elevating pins 7 stand upright. An air cylinder 9 is fixed to the wafer lifting pin support 8. When the rod 9A of the air cylinder 9 is retracted by the driving of the air cylinder 9, the wafer elevating pins 7 are lowered, and the wafer W is placed on the susceptor 4. Further, when the air cylinder 9 is driven to extend the opening 9A, the wafer elevating pins 7 are raised, and the wafer W is separated from the susceptor 4.
処理チャンバ 2内部には、 ロッ ド 9 Aを覆う伸縮自在なベローズ 1 0 が配設されている。 ベローズ 1 0でロッ ド 9 Aを覆うことにより、 処理 チャンバ 2内の気密性が保持される。  An elastic bellows 10 that covers the rod 9A is disposed inside the processing chamber 2. By covering the rod 9A with the bellows 10, the airtightness in the processing chamber 2 is maintained.
処理チャンバ 2の外側には、 処理チヤンバ 2を所定の温度に加熱する ヒータ 1 1が巻回されている。ヒータ 1 1に電流が流されることにより、 処理チャンバ 2が所定の温度に加熱される。  Outside the processing chamber 2, a heater 11 for heating the processing chamber 2 to a predetermined temperature is wound. When a current flows through the heater 11, the processing chamber 2 is heated to a predetermined temperature.
処理チャンバ 2の上部には、 開口が形成されている。 開口には、 S i ( O C 2 H 5 ) 4 (テ トラエ トキシシラン : T E O S ) 及び O 2をサセプ タ 4に向けて供給すると ともに上部電極と して作用するシャワーへッ ド 1 2が揷入されている。 シャワーヘッ ド 1 2には、 高周波電源 1 3が接 続されている。 T E O S と O 2とを処理チャンバ 2内に供給した状態で、 高周波電源 1 3が作動することにより、 シャワーへッ ド 1 2 と電極 5 と の間に高周波電圧が印加され、 シャワーヘッ ド 1 2 とサセプタ 4 との間 にプラズマが発生する。 シャワーへッ ド 1 2は、 T EO Sを供給する T E O S供給部 1 2 Aと、 02を供給する O 2供給部 1 2 Bとに分かれた構造になっている。 シャヮ 一へッ ド 1 2をこのような構造にすることにより、 T E O Sと 02とが シャヮ一へッ ド 1 2の外部で混合される。 An opening is formed in the upper part of the processing chamber 2. Into the opening, a shower head 12 that supplies Si (OC 2 H 5) 4 (tetraethoxysilane: TEOS) and O 2 toward the susceptor 4 and acts as an upper electrode is introduced. ing. A high frequency power supply 13 is connected to the shower head 12. When TEOS and O 2 are supplied into the processing chamber 2 and the high-frequency power supply 13 is operated, a high-frequency voltage is applied between the shower head 12 and the electrode 5, and the shower head 1 2 Plasma is generated between the susceptor and the susceptor. Head 1 2 to shower, it has become a T EO S TEOS supply unit 1 2 A supplies, 0 2 was divided into an O 2 supply unit 1 2 B supplies structure. With such a structure of the shear head 12, TEOS and O 2 are mixed outside the shear head 12.
T E O S供給部 1 2 Aには、 T E O Sを供給する多数の T E O S供給 孔が形成されている。 また、 同様に 02供給部 1 2 Bには、 02を供給す る多数の O 2供給孔が形成されている。 Many TEOS supply holes for supplying TEOS are formed in the TEOS supply section 12A. Further, likewise 0 2 supply unit 1 2 B, a number of O 2 supply hole you supplied is formed a 0 2.
T E O S供給部 1 2 Aには、 T E O S供給部 1 2 Aに T EO Sを供給 する T E O S供給系 2 0が接続されている。 また、 02供給部 1 2 Bに は、 O2供給部 1 2 Bに O 2を供給する 02供給系 3 0が接続されている。 A TEOS supply system 20 that supplies TEOS to the TEOS supply unit 12A is connected to the TEOS supply unit 12A. Moreover, 0 the second supply unit 1 2 B, O 2 supply unit 1 2 0 2 supply system 3 0 supplying O 2 to B are connected.
TE O S供給系 2 0は、 T EO Sを収容した T E O S供給源 2 1を備 えている。 T E O S供給源 2 1には、 一端が T E O S供給部 1 2 Aに接 続された T E O S供給配管 2 2が接続されている。 T E O 給配管 2 2には、 バルブ 2 3及び T E O Sの流量を調節するマスフローコント口 ーラ (MF C) 2 4が介在している。 マスフローコントローラ 2 4が調 節された状態で、 バルブ 2 3が開かれることにより、 T E O S供給源 2 1から所定の流量で T E O Sが T E O S供給部 1 2 Aに供給される。  The TEOS supply system 20 includes a TEOS supply source 21 containing TEOS. The TEOS supply source 21 is connected to a TEOS supply pipe 22 having one end connected to the TEOS supply section 12A. A valve 23 and a mass flow controller (MFC) 24 for adjusting the flow rate of TEOS are interposed in the TEOS supply pipe 22. By opening the valve 23 with the mass flow controller 24 adjusted, TEOS is supplied from the TEOS supply source 21 to the TEOS supply unit 12A at a predetermined flow rate.
O2供給系 3 0は、 O 2を収容した O 2供給源 3 1を備えている。 02 供給源 3 1には、一端が O 2供給部 1 2 Bに接続された O 2供給配管 3 2 が接続されている。 O 2供給配管 3 2には、 バルブ 3 3及び O 2の流量を 調節するマスフローコントローラ 3 4が介在している。 マスフローコン トローラ 3 4が調節された状態で、 バルブ 3 3が開かれることにより、 02供給源 3 1から所定の流量で 02が 02供給部 1 2 Bに供給される。 処理チャンバ 2の底部には、 処理チヤンバ 2内を排気する排気系 4 0 が接続されている。 排気系 4 0は、 一端が図示しない減圧ポンプが接続 された排気配管 4 1を備えている。 図示しない減圧ポンプが作動するこ とにより、 排気配管 4 1を介して処理チャンバ 2内が排気される。 O 2 supply system 3 0 has a O 2 source 3 1 containing the O 2. The O 2 supply source 31 is connected to an O 2 supply pipe 32 having one end connected to the O 2 supply unit 12 B. In the O 2 supply pipe 32, a valve 33 and a mass flow controller 34 for adjusting the flow rate of O 2 are interposed. In a state in which the mass flow controller 3 4 is adjusted by the valve 3 3 is opened, 0 2 supply 3 0 to 1 at a predetermined flow rate 2 is supplied to the 0 2 supply unit 1 2 B. An exhaust system 40 for exhausting the inside of the processing chamber 2 is connected to the bottom of the processing chamber 2. The exhaust system 40 includes an exhaust pipe 41 to which one end is connected to a pressure reducing pump (not shown). Check that the vacuum pump (not shown) Thus, the inside of the processing chamber 2 is exhausted through the exhaust pipe 41.
処理チャンバ 2と排気配管 4 1 との間には、 処理チャンバ 2内の圧力 を制御するオートプレツシャコン トローラ (A P C ) 4 2が介在してい る。 オートプレツシャコントローラ 4 2でコンダクタンスを調節するこ とにより、 処理チャンバ 2內の圧力が所定の圧力に制御される。  An auto pressure controller (APC) 42 for controlling the pressure in the processing chamber 2 is interposed between the processing chamber 2 and the exhaust pipe 41. By adjusting the conductance by the auto-pressure controller 42, the pressure in the processing chamber 2 內 is controlled to a predetermined pressure.
処理チャンバ 2の外部には A 1 2 0 3から形成された外部チヤンバ 5 1が配設されており、 外部チヤンバ 5 1には N F 3を外部チヤンバ 5 1 に供給する N F 3供給系 5 2が接続されている。 N F 3供給系 5 2は、 N F 3を収容した N F 3供給源 5 3を備えている。 N F 3供給源 5 3には、 一端が外部チャンバ 5 1に接続された N F 3供給配管 5 4が接続されて いる。 N F 3供給配管 5 4には、 バルブ 5 5及び N F 3の流量を調節する マスフローコントローラ ( M F C ) 5 6が介在している。 マスフローコ ントローラ 5 6が調節された状態で、バルブ 5 5が開かれることにより、 N F 3供給源 5 3から所定の流量で N F 3が外部チヤンバ 5 1内に供給 される。 Treatment on the outside of the chamber 2 is disposed external Chiyanba 5 1 formed from A 1 2 0 3, NF 3 feed system 5 2 for supplying NF 3 outside Chiyanba 5 1 outside Chiyanba 5 1 It is connected. The NF 3 supply system 52 includes an NF 3 supply source 53 containing NF 3 . The NF 3 supply source 53 is connected to an NF 3 supply pipe 54 whose one end is connected to the external chamber 51. The NF 3 supply pipe 54 has a valve 55 and a mass flow controller (MFC) 56 for adjusting the flow rate of the NF 3 interposed therebetween. In a state in which the mass flow controller 5 6 is adjusted by the valve 5 5 is opened, NF 3 from NF 3 source 3 at a predetermined flow rate is supplied to the external Chiyanba 5 1.
外部チヤンバ 5 1の外部には、 外部チャンバ 5 1内に供給された N F 3を励起させて、 N F 3から Fラジカルを発生させるラジカル発生機構 5 7が配設されている。 ラジカル発生機構 5 7は、 主に、 外部チャンバ 5 1に卷回された銅線 5 8と銅線 5 8に接続された高周波電源 5 9 とから 構成されている。 高周波電源 5 9の作動で銅線 5 8に高周波電流が流さ れることにより、 外部チャンバ 5 1内に供給された N F 3が励起して、 Fラジカルが発生する。 なお、 Fラジカルの他に、 Fイオン等も発生す る。 Outside the external chamber 51, a radical generating mechanism 57 that excites NF 3 supplied into the external chamber 51 to generate F radicals from NF 3 is provided. The radical generating mechanism 57 is mainly composed of a copper wire 58 wound around the external chamber 51 and a high-frequency power source 59 connected to the copper wire 58. When a high-frequency current is supplied to the copper wire 58 by the operation of the high-frequency power supply 59, the NF 3 supplied into the external chamber 51 is excited to generate F radicals. In addition to the F radicals, F ions and the like are also generated.
外部チヤンバ 5 1 と処理チャンバ 2との間には、 外部チャンバ 5 1内 で発生した Fラジカルを処理チャンバ 2内に輸送するための輸送配管 6 0が配設されている。 本実施の形態の輸送配管 6 0は、 S i〇 2から形 成されている。 輸送配管 6 0の外壁面には、 輸送配管 6 0の内壁面を冷 却するペルチヱ素子 6 1が取り付けられている。 ペルチェ素子 6 1に電 流が流されることにより、 ペルチェ素子 6 1の温度が低下し、 輸送配管 6 0の内壁面が所定の温度に冷却される。 A transport pipe 60 for transporting F radicals generated in the external chamber 51 to the processing chamber 2 is provided between the external chamber 51 and the processing chamber 2. Transportation pipeline 6 0 of this embodiment, the shape of S I_〇 2 Has been established. A Peltier element 61 for cooling the inner wall surface of the transport pipe 60 is attached to the outer wall surface of the transport pipe 60. When a current flows through the Peltier element 61, the temperature of the Peltier element 61 decreases, and the inner wall surface of the transport pipe 60 is cooled to a predetermined temperature.
輸送配管 6 0には、 成膜時に閉じられ、 かつクリーニング時に開かれ るグートバルブ 6 2が介在している。 輸送配管 6 0の処理チャンバ 2側 の先端にはフランジ 6 0 Aが形成されている。 フランジ 6 ◦ Aをポルト 6 3と環状の介装部材 6 4とで処理チャンバ 2に固定することにより、 輸送配管 6 0が処理チャンバ 2に固定される。  The transport pipe 60 is provided with a gut valve 62 which is closed at the time of film formation and opened at the time of cleaning. A flange 60A is formed at the end of the transport pipe 60 on the processing chamber 2 side. By fixing the flange 6 ◦A to the processing chamber 2 with the port 63 and the annular interposition member 64, the transport pipe 60 is fixed to the processing chamber 2.
フランジ 6 0 Aと介装部材 6 4との間及びフランジ 6 O Aと処理チヤ ンバ 2 との間には、 環状の熱絶縁性部材 6 5、 6 6がそれぞれ介在して いる。 熱絶縁性部材 6 5、 6 6をそれぞれ介在させることにより、 処理 チャンパ 2から熱が輸送配管 6 0に伝わり難くなる。  Annular heat insulating members 65 and 66 are interposed between the flange 60 A and the interposition member 64 and between the flange 60 A and the processing chamber 2, respectively. By interposing the heat insulating members 65 and 66 respectively, it becomes difficult for heat to be transmitted from the processing champ 2 to the transport pipe 60.
フランジ 6 0 Aと熱絶縁性部材 6 6との間及び処理チャンバ 2と熱絶 縁性部材 6 6 との間には、 シール部材 6 7、 6 8がそれぞれ介在してい る。 シール部材 6 7、 6 8を介在させることにより、 処理チャンバ 2内 の気密性が保持される。  Seal members 67 and 68 are interposed between the flange 60 A and the heat insulating member 66 and between the processing chamber 2 and the heat insulating member 66, respectively. The airtightness in the processing chamber 2 is maintained by interposing the seal members 67 and 68.
以下、 成膜装置 1で行われる成膜について図 2に沿って説明する。 図 2は本実施の形態に係る成膜装置 1で行われる成膜の流れを示したフロ —チャートである。  Hereinafter, the film formation performed by the film forming apparatus 1 will be described with reference to FIG. FIG. 2 is a flowchart showing a flow of film formation performed by the film forming apparatus 1 according to the present embodiment.
まず、 ゲートバルブ 6 2が閉じられた状態で、 図示しない減圧ポンプ が作動して、処理チャンバ 2内の真空引きが行われる (ステップ 1 0 l ) c 次いで、 ヒータ 6、 1 1に電流が流されて、 サセプタ 4及び処理チャン ノ 2が加熱される (ステップ 1 0 2 )。 First, with the gate valve 62 closed, a vacuum pump (not shown) is operated to evacuate the processing chamber 2 (step 10l). C Then, current flows through the heaters 6, 11 Then, the susceptor 4 and the processing channel 2 are heated (step 102).
処理チャンバ 2内の圧力が所定圧力まで低下し、 かつサセプタ 4の温 度が約 3 5 0〜 4 0 0 °C及ぴ処理チャンバ 2の温度が約 1 0 0 °Cに安定 した後、 ゲートバルブ 3が開かれ、 ウェハ Wを保持した図示しない搬送 アームが伸長して、 処理チャンバ 2内にウェハ Wが搬入される (ステツ プ 1 0 3 )。 The pressure in the processing chamber 2 drops to a predetermined pressure, and the temperature of the susceptor 4 stabilizes at about 350 to 400 ° C and the temperature of the processing chamber 2 stabilizes at about 100 ° C. After that, the gate valve 3 is opened, the transfer arm (not shown) holding the wafer W is extended, and the wafer W is loaded into the processing chamber 2 (Step 103).
その後、 搬送アームが縮退して、 ウェハ Wがウェハ昇降ピン 7に載置 される。 ウェハ Wがウェハ昇降ピン 7に載置された後、 エアシリンダ 9 の駆動により ウェハ昇降ピン 7が下降して、 ウェハ Wがサセプタ 4に载 置される (ステップ 1 0 4 )。  Thereafter, the transfer arm is retracted, and the wafer W is placed on the wafer elevating pins 7. After the wafer W is placed on the wafer elevating pins 7, the wafer elevating pins 7 are lowered by driving the air cylinder 9, and the wafer W is placed on the susceptor 4 (Step 104).
ウェハ Wが所定の温度に安定した後、 処理チャンバ 2内の圧力が約 7 ◦ P aに維持された状態で、 バルブ 2 3、 3 3が開かれて、 約 1 0 0 s c c mの流量で T E O Sが処理チャンバ 2内に供給されるとともに約 1 0 0 〜 2 0 0 s c c mの流量で 0 2が処理チャンバ 2内に供給される (ステップ 1 0 5 )。 After the wafer W is stabilized at a predetermined temperature, the valves 23 and 33 are opened while the pressure in the processing chamber 2 is maintained at about 7 ° Pa, and the flow rate of TEOS is set at about 100 sccm. There about 1 0 0 0 ~ 2 0 0 sccm flow 2 is supplied into the processing chamber 2 is supplied into the processing chamber 2 (step 1 0 5).
次いで、 処理チヤンバ 2内に T E O S及び O 2が供給されている状態 で、 高周波電源 1 3からシャワーヘッ ド 1 2 と電極 5 との間に 1 3 . 5 6 M H zの高周波電圧が印加される (ステップ 1 0 6 )。 処理チャンバ 2 内に T E O S及び O 2が供給されている状態で、 シャヮ一へッ ド 1 2 と 電極 4 との間に高周波電圧が印加されることにより、 シャワーへッ ド 1 2とサセプタ 4 との間にプラズマが発生し、 ウェハ W上に S i O 2膜が 形成される。 Next, while TEOS and O 2 are being supplied into the processing chamber 2, a high frequency voltage of 13.56 MHz is applied between the shower head 12 and the electrode 5 from the high frequency power supply 13. (Step 106). When TEOS and O 2 are supplied into the processing chamber 2, a high-frequency voltage is applied between the shear head 12 and the electrode 4, so that the shower head 12 and the susceptor 4 During this time, plasma is generated, and a SiO 2 film is formed on the wafer W.
所定時間経過後、 バルブ 2 3、 3 3が閉じられて、 丁 £ 0 3及ぴ0 2 の供給が停止されると ともに高周波電圧の印加が停止されて、 S i o 2 膜の形成が終了される (ステップ 1 0 7 )。 After a predetermined time, valve 2 3, 3 3 is closed, Ding £ 0 3 with the supply of及Pi 0 2 is stopped both the high-frequency voltage is stopped, the formation of S io 2 film is terminated (Step 107).
S i 0 2膜の形成が終了された後、 エアシリ ンダ 9の駆動によ り ゥェ ハ昇降ピン 7が上昇して、 ウェハ Wがサセプタ 4から離れる (ステップ 1 0 8 )。 After formation of the S i 0 2 film is terminated, © E c elevating pins 7 Ri by the driving of Eashiri Sunda 9 rises, the wafer W is separated from the susceptor 4 (Step 1 0 8).
その後、 ゲートバルブ 3が開かれた後、 図示しない搬送アームが伸長 して、 搬送アームにウェハ wが保持される。 最後に、 搬送アームが縮退 して、 ウェハ Wが処理チャンバ 2から搬出される (ステップ 1 0 9)。 以下、 成膜装置 1で行われるクリ一ユングについて図 3及び図 4に沿 つて説明する。 図 3は本実施の形態に係る成膜装置 1で行われるクリー ユングの流れを示したフローチャートであり、 図 4 A〜図 4 Dは本実施 の形態に係るク リ一ユングの模式的なプロセス図である。 Then, after gate valve 3 is opened, the transfer arm (not shown) extends. Then, the wafer w is held by the transfer arm. Finally, the transfer arm is retracted, and the wafer W is unloaded from the processing chamber 2 (Step 109). Hereinafter, the cleaning performed in the film forming apparatus 1 will be described with reference to FIGS. FIG. 3 is a flowchart showing the flow of the cleaning performed by the film forming apparatus 1 according to the present embodiment, and FIGS. 4A to 4D are schematic processes of the cleaning according to the present embodiment. FIG.
まず、 ゲートバルブ 6 2が開かれた状態で、 図示しない減圧ポンプが 作動して、処理チャンバ 2内の真空引きが行われる (ステップ 2 0 1 A)。 次いで、 ヒータ 6、 1 1に電流が流されてサセプタ 4及ぴ処理チャンバ 2が加熱されるとともに、 図 4 Aに示されるようにペルチェ素子 6 1に 電流が流されて輸送配管 6 0の内壁面が冷却される(ステップ 2 0 2 A)c 処理チヤンバ 2内の圧力が約 1 0 O P aに維持され、 かつサセプタ 4 の温度が約 2 0 0°C、 処理チャンバ 2の温度が約 1 0 0 °C、 及び輸送配 管 6 0の内壁面の温度が室温程度に安定した後、バルブ 5 5が開かれて、 図 4 Bに示されるように N F 3が約 5 0 0 s c c mの流量で外部チヤン ノ 5 1内に供給される (ステップ 2 0 3 A)。 なお、 NF 3は、 キャリア ガスとともに供給される。 First, with the gate valve 62 open, a vacuum pump (not shown) is operated to evacuate the processing chamber 2 (step 201A). Next, an electric current is applied to the heaters 6 and 11 to heat the susceptor 4 and the processing chamber 2, and an electric current is applied to the Peltier element 61 as shown in FIG. The walls are cooled (Step 202A). C The pressure in the processing chamber 2 is maintained at about 100 OPa, the temperature of the susceptor 4 is about 200 ° C, and the temperature of the processing chamber 2 is about 1 After the temperature at 0 ° C and the temperature of the inner wall of the transport pipe 60 stabilize to about room temperature, the valve 55 is opened, and the flow rate of NF 3 is about 500 sccm as shown in Figure 4B. At the outside channel 51 (step 203A). NF 3 is supplied together with a carrier gas.
次いで、 外部チャンバ 5 1内に N F 3が供給されている状態で、 高周 波電源 5 9が作動して、 図 4 Cに示されるように銅線 5 8に約 1 3 · 5 6 MH zの高周波電流が流れる (ステップ 2 0 4 A)。外部チャンバ 5 1 内に N F 3が供給されている状態で、 銅線 5 8に高周波電流が流される ことにより、 外部チャンバ 5 1内の N F 3が励起し、 ラジカルが発生 する。 Next, with the NF 3 being supplied into the external chamber 51, the high-frequency power supply 59 is operated, and as shown in FIG. High-frequency current flows (step 204 A). When NF 3 is supplied into the external chamber 51, a high-frequency current is applied to the copper wire 58, whereby the NF 3 in the external chamber 51 is excited and radicals are generated.
発生した Fラジカルは、 処理チャンバ 2内の排気及び供給されてくる NF 3により押し出され、 図 4 Dに示されるように輸送配管 6 0を介し て、 処理チャンバ 2内に輸送される (ステップ 2 0 5 A)。 Fラジカルが 処理チャンバ 2内に輸送されると、 Fラジカルと処理チャンバ 2の内壁 面等に付着している S i O 2とが反応し、 S i F 4が生成される。 生成さ れた S i F 4は、 気化しているので、 排気により処理チャンバ 2内から 速やかに排出される。 なお、 N F 3はタリーユングが行われている間中、 常に供給されている。 The generated F radicals are pushed out by the exhaust gas in the processing chamber 2 and the supplied NF 3 , and are transported into the processing chamber 2 through the transport pipe 60 as shown in FIG. 4D (step 2). 0 5 A). F radical When transported into the processing chamber 2, F radicals react with SiO 2 adhering to the inner wall surface of the processing chamber 2 to generate Si F 4 . Since the generated SiF 4 is vaporized, it is quickly discharged from the processing chamber 2 by exhaust. NF 3 is always supplied during the tally jungle.
所定時間経過後、 バルブ 5 5が閉じられるとともに高周波電流の供給 が停止されて、 処理チャンバ 2内のク リーニングが終了される (ステツ プ 2 0 6 A)。  After a lapse of a predetermined time, the valve 55 is closed, the supply of the high-frequency current is stopped, and the cleaning in the processing chamber 2 is completed (Step 206A).
本実施の形態では、 輸送配管 6 0の内壁面を冷却しながら Fラジカル を輸送するので、 輸送配管 6 0内での Fラジカルの失活を抑制すること ができる。 即ち、 輸送配管内で Fラジカルが失活する原因の一つは、 F ラジカルが輸送配管に衝突し、 Fラジカルが輸送配管と反応してしまう ことにある。 ここで、 一般に温度が低下する程、 活性化エネルギーを超 える物質の数が低減するので、 反応し難くなる。 それ故、 輸送配管 6 0 の内壁面を冷却することにより、 Fラジカルと輸送配管 6 0 とが反応し 難くなり、 輸送配管 6 0内での Fラジカルの失活が抑制される。  In the present embodiment, F radicals are transported while cooling the inner wall surface of transport pipe 60, so that the deactivation of F radicals in transport pipe 60 can be suppressed. That is, one of the causes of F radical deactivation in the transport pipe is that the F radical collides with the transport pipe and the F radical reacts with the transport pipe. Here, in general, as the temperature decreases, the number of substances exceeding the activation energy decreases, so that the reaction becomes difficult. Therefore, by cooling the inner wall surface of the transport pipe 60, the reaction of the F radical with the transport pipe 60 becomes difficult, and the deactivation of the F radical in the transport pipe 60 is suppressed.
また、 S i O 2に対する Fラジカルのエツチレー トの温度依存性は、 次式 ( 1 ) により示されることが知られている。 Further, it is known that the temperature dependence of the F radical etchate with respect to SiO 2 is represented by the following equation (1).
E R= 1 0 An FT 1 /2 e X p (- E ^ /R T) …式 ( 1 ) ER = 10 An F T 1/2 eX p (-E ^ / RT)… Equation ( 1 )
(E R : エッチレート (nmZm i n)、 A : 頻度因子、 n F : F原子 濃度、 T : 絶対温度 (K)、 E a : 活性化エネルギー (K j /m o 1 )、 R : 気体定数 ( 8. 3 1 J /m o 1 · K)) (ER: etch rate (nmZm in), A: frequency factor, n F: F atom concentration, T: absolute temperature (K), E a: activation energy (K j / mo 1), R: gas constant (8 . 3 1 J / mo 1 · K))
Α、 η F、 及び Ε a を一定とし、 式 ( 1 ) を使用して、 温度が 1 2 0 °C の場合と温度が 0°Cの場合のエッチレートを比較すると、 温度が 0。じの 場合のエッチレートは温度が 1 2 0°Cの場合のェツチレートの約 1 / 1 0になる。 この結果から、輸送配管 6 0の内壁面を冷却することにより、 Fラジカルの失活が抑制されるということが言える。 なお、 式 ( 1 ) は 他の物質を使用した場合にも適用することができる。 When Α, η F , and Ε a are constant and the etch rate at a temperature of 120 ° C is compared with that at a temperature of 0 ° C using Equation (1), the temperature is 0. The etch rate for the same case is about 1/10 of the etch rate for a temperature of 120 ° C. From this result, by cooling the inner wall surface of the transportation pipe 60, It can be said that the deactivation of the F radical is suppressed. Equation (1) can be applied to the case where another substance is used.
本実施の形態では、 輸送配管 6 0に S i O 2を使用しているので、 ゥ ェハ Wの金属汚染を低減させることができる。 ここで、 S i 〇2は Fラ ジカルと反応し易い。 従って、 S i O 2で輸送配管を形成した場合には、 輸送配管は劣化し易い。 しかしながら、 本実施の形態では、 輸送配管 6 0の内壁面を冷却しているので、 S i O 2と Fラジカルとの反応が抑制 される。 それ故、 輸送配管を s i o 2で形成した場合であっても、 輸送 配管が劣化し難くなり、輸送配管 6 0と して使用することが可能になる。 In the present embodiment, since SiO 2 is used for the transport piping 60, metal contamination of the wafer W can be reduced. Here, S i 〇 2 easily reacts with F radical. Therefore, when the transport pipe is formed of SiO 2 , the transport pipe is easily deteriorated. However, in the present embodiment, since the inner wall surface of the transport pipe 60 is cooled, the reaction between SiO 2 and the F radical is suppressed. Therefore, even when forming a transportation pipeline with sio 2, transportation pipeline is hardly deteriorated, it is possible to use as a transportation pipeline 6 0.
(第 2の実施の形態)  (Second embodiment)
以下、 本発明の第 2の実施の形態について説明する。 なお、 以下本実 施の形態以降の実施の形態のうち先行する実施の形態と重複する内容に ついては説明を省略することもある。 本実施の形態では、 冷却水を用い て輸送配管を冷却する例について説明する。 図 5は本実施の形態に係る 成膜装置の模式的な構成図である。  Hereinafter, a second embodiment of the present invention will be described. In the following description, among the embodiments after this embodiment, the description of the same contents as those of the preceding embodiment may be omitted. In the present embodiment, an example will be described in which a transportation pipe is cooled using cooling water. FIG. 5 is a schematic configuration diagram of a film forming apparatus according to the present embodiment.
図 5に示されるように、 輸送配管 6 0には、 輸送配管 6 0の内壁面を 冷却するための冷却配管 7 1が巻回されている。冷却配管 7 1の両端は、 冷却水を貯留した冷却槽 7 2に接続されている。 冷却配管 7 1には冷却 槽 7 2から冷却水を汲み出すポンプ 7 3が介在している。 ポンプ 7 3が 作動することにより、 冷却槽 7 2内の冷却水が汲み出され、 冷却配管 7 1内を冷却水が循環する。 なお、 本実施の形態では、 ペルチェ素子 6 1 は、 輸送配管 6 0の外壁面に取り付けられていない。  As shown in FIG. 5, a cooling pipe 71 for cooling the inner wall surface of the transport pipe 60 is wound around the transport pipe 60. Both ends of the cooling pipe 71 are connected to a cooling tank 72 storing cooling water. A pump 73 for pumping cooling water from a cooling tank 72 is interposed in the cooling pipe 71. By operating the pump 73, the cooling water in the cooling tank 72 is pumped out, and the cooling water circulates in the cooling pipe 71. In the present embodiment, the Peltier element 61 is not attached to the outer wall surface of the transportation pipe 60.
以下、 成膜装置 1で行われるクリーニングについて図 6及ぴ図 7に沿 つて説明する。 図 6は本実施の形態に係る成膜装匱 1で行われるクリー ユングの流れを示したフローチャートであり、 図 7は本実施の形態に係 るクリーニングの模式的なプロセス図である。 まず、 ゲートバルブ 6 2が開かれた状態で、 図示しない減圧ポンプが 作動して、処理チャンバ 2内の真空引きが行われる (ステップ 2 0 1 B)c 次いで、 ヒータ 6、 1 1に電流が流されて処理チャンバ 2等が加熱され るとともに、 図 7に示されるようにポンプ 7 3の作動により冷却配管 7 1内に冷却水が供給されて、 冷却配管 7 2が冷却される (ステップ 2 0 2 B )。 Hereinafter, the cleaning performed in the film forming apparatus 1 will be described with reference to FIGS. FIG. 6 is a flowchart showing the flow of the cleaning performed in the film deposition apparatus 1 according to the present embodiment, and FIG. 7 is a schematic process diagram of the cleaning according to the present embodiment. First, with the gate valve 62 open, a vacuum pump (not shown) is operated to evacuate the processing chamber 2 (step 201B). C Then, current is supplied to the heaters 6, 11. As the processing chamber 2 and the like are heated, the cooling water is supplied into the cooling pipe 71 by the operation of the pump 73 as shown in FIG. 7, and the cooling pipe 72 is cooled (step 2). 0 2 B).
その後、 バルブ 5 5が開かれて、 N F 3が外部チャンバ 5 1内に供給 される (ステップ 2 0 3 B)。 次いで、 外部チャンバ 5 1内に N F 3が供 給されている状態で、 高周波電源 5 9が作動して、 銅線 5 8に高周波電 流が流れる (ステップ 2 0 4 B)。 Thereafter, the valve 55 is opened, and NF 3 is supplied into the external chamber 51 (step 203B). Next, while the NF 3 is being supplied into the external chamber 51, the high-frequency power supply 59 is operated, and a high-frequency current flows through the copper wire 58 (step 204B).
発生した Fラジカルは、 処理チャンバ 2内の排気及び供給されてくる NF 3により押し出され、 輸送配管 6 0を介して、 処理チャンバ 2内に 輸送される (ステップ 2 0 5 B)。 The generated F radicals are pushed out by the exhaust gas in the processing chamber 2 and the supplied NF 3 , and are transported into the processing chamber 2 via the transport pipe 60 (step 205B).
所定時間経過後、 バルブ 5 5が閉じられるとともに高周波電流の供給 が停止されて、 処理チャンバ 2内のクリーニングが終了される (ステツ プ 2 0 6 B )。  After a lapse of a predetermined time, the valve 55 is closed, the supply of the high-frequency current is stopped, and the cleaning of the inside of the processing chamber 2 is completed (Step 206B).
(第 3の実施の形態)  (Third embodiment)
以下、 第 3の実施の形態について説明する。 本実施の形態では、 輸送 配管を S i 02とポリテ トラフルォロエチレン (P T F E) とから形成 した例について説明する。 図 8は本実施の形態に係る輸送配管の模式的 な垂直断面図である。 Hereinafter, a third embodiment will be described. In the present embodiment, an example will be described in which the transport pipe is formed of SiO 2 and polytetrafluoroethylene (PTFE). FIG. 8 is a schematic vertical sectional view of the transport pipe according to the present embodiment.
図 8に示されるように、 輸送配管 6 0は、 S i 02から形成された S i O 2管 6 0 Bと Fラジカルと反応し難い P T F Eから形成された P T F E層 6 0 Cとから構成されている。 P T F E層 6 0 Cは、 S i O 2管 6 0 Bの内壁面にコーティングされている。 As shown in FIG. 8, the transportation pipeline 6 0 composed of a S i 0 2 formed from S i O 2 pipe 6 0 B and PTFE layer 6 formed from F radicals react with hard PTFE 0 C Have been. The PTFE layer 60 C is coated on the inner wall surface of the SiO 2 tube 60 B.
本実施の形態では、 S i 02管 6 0 Bの内壁面に Fラジカルと反応し 難い P T F E層 6 0 Cが形成されているので、 輸送配管 6 0内での Fラ ジカルの失活が抑制される。 In this embodiment, to react with F radicals on the inner wall surface of the S i 0 2 pipe 6 0 B Since the difficult PTFE layer 60 C is formed, the deactivation of F radical in the transport piping 60 is suppressed.
(第 4の実施の形態)  (Fourth embodiment)
以下、 第 4の実施の形態について説明する。 本実施の形態では、 輸送 配管を A 1で形成した例について説明する。 図 9は本実施の形態に係る 輸送配管の模式的な垂直断面図である。  Hereinafter, a fourth embodiment will be described. In the present embodiment, an example in which a transport pipe is formed of A1 will be described. FIG. 9 is a schematic vertical sectional view of the transport pipe according to the present embodiment.
図 9に示されるように、 輸送配管 6 0は、 A 1から形成されている。 本実施の形態では、 A 1から輸送配管 6 0を形成しているが、 A 1から 輸送配管 6 0を形成した場合であっても、 輸送配管 6 0内での Fラジカ ルの失活が抑制される。 即ち、 A 1 と Fラジカルとは反応してしまう力 S、 A 1 と Fラジカルとが反応するとアルミフッ化物が生成される。ここで、 アルミフッ化物は Fラジカルとの反応性が低い。 これにより、 A 1 と F ラジカルとが反応して、 輸送配管 6 0の内壁面にアルミフッ化物の薄膜 が形成されると、 Fラジカルの活性が失われ難くなる。 それ故、 A 1か ら輸送配管 6 0を形成した場合であっても、 輸送配管 6 0内での Fラジ カルの失活が抑制される。  As shown in FIG. 9, the transport piping 60 is formed from A1. In the present embodiment, the transportation pipe 60 is formed from A1. However, even when the transportation pipe 60 is formed from A1, F radicals are not deactivated in the transportation pipe 60. Be suppressed. That is, A 1 reacts with the F radical to produce a reaction S, and A 1 reacts with the F radical to produce aluminum fluoride. Here, aluminum fluoride has low reactivity with F radical. As a result, when A 1 reacts with the F radical to form a thin film of aluminum fluoride on the inner wall surface of the transport pipe 60, the activity of the F radical is less likely to be lost. Therefore, even when the transport pipe 60 is formed from A 1, the deactivation of F radical in the transport pipe 60 is suppressed.
なお、 本発明は、 上記実施の形態の記載内容に限定されるものではな く、 構造や材質、 各部材の配置等は、 本発明の要旨を逸脱しない範囲で 適宜変更可能である。 第 1〜第 4の実施の形態では、 Fラジカルを発生 させるためにプラズマを発生させているが、 光照射により Fラジカルを 発生させてもよい。  It should be noted that the present invention is not limited to the description in the above embodiment, and the structure, the material, the arrangement of each member, and the like can be appropriately changed without departing from the gist of the present invention. In the first to fourth embodiments, plasma is generated to generate F radicals, but F radicals may be generated by light irradiation.
第 1〜第 4の実施の形態では、 処理チャンバの内壁面等に付着した S i O 2を取り除いているが、 T i Nを取り除いてもよい。 この場合、 C 1 ラジカルを発生させて T i Nを取り除く。 ここで、 C 1 ラジカルは、 例えば、 H C 1、 C 1 2、 及び B C 1 3等のいずれかから発生させること が可能である。 第 1〜第 4の実施の形態では、 ウェハ Wを使用しているが、 ガラス基 板であってもよい。 また、 成膜装置について説明しているが、 成膜装置 に限らず、 ェツチング装置にも適用することが可能である。 産業上の利用可能性 In the first to fourth embodiments, SiO 2 adhering to the inner wall surface or the like of the processing chamber is removed, but Ti N may be removed. In this case, C 1 radicals are generated to remove T i N. Here, C 1 radical is, for example, can be generated from any such HC 1, C 1 2, and BC 1 3. In the first to fourth embodiments, the wafer W is used, but a glass substrate may be used. Further, although the film forming apparatus has been described, the present invention is not limited to the film forming apparatus but can be applied to an etching apparatus. Industrial applicability
本発明に係る基板処理装置及び基板処理装置のク リ一ユング方法は、 半導体製造産業において利用することが可能である。  The substrate processing apparatus and the method for cleaning a substrate processing apparatus according to the present invention can be used in the semiconductor manufacturing industry.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基板を収容する処理容器と、 1. A processing container for accommodating the substrate;
前記処理容器の外部に配設された外部容器と、  An external container disposed outside the processing container,
前記外部容器内にクリーユング原料ガスを供給するクリーエング原料 ガス供給系と、  A cleaning raw material gas supply system for supplying a cleaning raw material gas into the outer container;
前記外部容器内に供給されたクリ一-ング原料ガスを励起させて、 前 記タリ一ユング原料ガスから前記処理容器内をクリーニングするための 活性種を発生させる活性種発生機構と、  An active species generating mechanism that excites the cleaning raw material gas supplied into the external container and generates active species for cleaning the inside of the processing container from the above-mentioned tarry raw material gas;
前記外部容器内で発生した前記活性種を前記処理容器内に輸送する輸 送配管と、  A transport pipe for transporting the active species generated in the outer container into the processing container,
前記輸送配管の内壁面を冷却する冷却機構と、  A cooling mechanism for cooling the inner wall surface of the transport pipe,
を具備することを特徴とする基板処理装置。  A substrate processing apparatus comprising:
2 . 基板を収容する処理容器と、  2. A processing container for accommodating the substrate;
前記処理容器の外部に配設された外部容器と、  An external container disposed outside the processing container,
前記外部容器内にクリ一ユング原料ガスを供給するクリ一ユング原料 ガス供給系と、  A cleaning material gas supply system for supplying a cleaning material gas into the external container;
前記外部容器内に供給されたクリ一二ング原料ガスを励起させて、 前 記タリ一ユング原料ガスから前記処理容器内をクリーニングするための 活性種を発生させる活性種発生機構と、  An active species generating mechanism that excites the cleaning source gas supplied into the external container and generates an active species for cleaning the inside of the processing container from the above-described tarry source gas;
少なく とも内壁面が前記活性種と反応し難い物質から形成され、 前記 外部容器内で発生した前記活性種を前記処理容器内に輸送する輸送配管 と、  At least an inner wall surface is formed of a substance that does not easily react with the active species, and a transport pipe that transports the active species generated in the outer container into the processing container;
を具備することを特徴とする基板処理装匱。  A substrate processing equipment comprising:
3 . 前記輸送配管は少なく とも 2種類の物質で形成されていることを特 徵とするクレーム 2記載の基板処理装置。 3. The substrate processing apparatus according to claim 2, wherein the transport pipe is formed of at least two kinds of substances.
4 . 前記輸送配管は 1種類の物質で形成されていることを特徴とするク レーム 2記載の基板処理装置。 4. The substrate processing apparatus according to claim 2, wherein the transport pipe is formed of one type of substance.
5 . 前記クリーニング原料ガスはフッ素含有ガスであり、 かつ前記輸送 配管の内壁面は A 1、 F、 及び C rのいずれかを含む物質で形成されて いることを特徴とするクレーム 2記載の基板処理装置。  5. The substrate according to claim 2, wherein the cleaning raw material gas is a fluorine-containing gas, and an inner wall surface of the transport pipe is formed of a substance containing any of A1, F, and Cr. Processing equipment.
6 . 前記クリーニング原料ガスは塩素含有ガスであり、 かつ前記輸送配 管の内壁面は S i、 及び Cのいずれかを含む物質で形成されていること を特徴とするクレーム 2記載の基板処理装置。  6. The substrate processing apparatus according to claim 2, wherein the cleaning raw material gas is a chlorine-containing gas, and an inner wall surface of the transport pipe is formed of a substance containing one of Si and C. .
7 . 基板処理装置の処理チャンバと外部容器との間に配設された輸送配 管の内壁面を冷却する輸送配管冷却工程と、  7. A transportation pipe cooling step of cooling an inner wall surface of the transportation pipe provided between the processing chamber of the substrate processing apparatus and the external container;
前記外部容器内にクリーユング原料ガスを供給するクリーニング原料 ガス供給工程と、  A cleaning raw material gas supplying step of supplying a cleaning raw material gas into the external container,
前記外部容器内に供給された前記クリ一二ング原料ガスを励起させて、 前記クリ一二ング原料ガスから前記処理容器内をク リーニングするため の活性種を発生させる活性種発生工程と、  An active species generating step of exciting the cleaning source gas supplied into the outer container to generate active species for cleaning the inside of the processing container from the cleaning source gas;
前記輸送配管を介して、 前記外部容器内に発生した活性種を前記処理 容器内に輸送する活性種輸送工程と、  An active species transporting step of transporting the active species generated in the external container into the processing container via the transport pipe;
を具備することを特徴とする基板処理装置のクリ一ユング方法。  A method for cleaning a substrate processing apparatus, comprising:
8 . 外部容器内にクリ一二ング原料ガスを供給するクリ一二ング原料ガ ス供給工程と、  8. A cleaning material gas supply step of supplying a cleaning material gas into the outer container;
前記外部容器内に供給されたクリ一二ング原料ガスを励起させて、 前 記タリ一ユング原料ガスから基板処理装置の処理容器内をクリーニング するための活性種を発生させる活性種発生工程と、  An active species generation step of exciting the cleaning source gas supplied into the external container to generate an active species for cleaning the inside of the processing container of the substrate processing apparatus from the above-described source material gas;
少なく とも内壁面が前記活性種と反応し難い物質から形成された輸送 配管を介して、 前記外部容器内に発生した活性種を前記処理容器内に輸 送する活性種輸送工程と、 を具備することを特徴とする基板処理装置のクリ一ユング方法。 An active species transporting step of transporting the active species generated in the outer container into the processing container via a transport pipe at least an inner wall surface of which is formed of a substance that is unlikely to react with the active species; A method for cleaning a substrate processing apparatus, comprising:
9 . 前記クリーニング原料ガスはフッ素含有ガスであり、 かつ前記輸送 配管の内壁面は A 1、 F、 及ぴ C rのいずれかを含む物質で形成されて いることを特徴とするクレーム 8記載の基板処理装置のクリーユング方 法。  9. The cleaning raw material gas according to claim 8, wherein the cleaning raw material gas is a fluorine-containing gas, and an inner wall surface of the transport pipe is formed of a substance containing any of A1, F, and Cr. Cleaning method for substrate processing equipment.
1 0 . 前記クリーニング原料ガスは塩素含有ガスであり、 かつ前記輸送 配管の内壁面は S i、 及び Cのいずれかを含む物質で形成されているこ とを特徴とするクレーム 8記載の基板処理装置のク リ一二ング方法。  10. The substrate processing according to claim 8, wherein the cleaning raw material gas is a chlorine-containing gas, and an inner wall surface of the transport pipe is formed of a substance containing any of Si and C. How to clean the equipment.
PCT/JP2003/010938 2002-08-30 2003-08-28 Substrate processor and method of cleaning the same WO2004020694A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003261791A AU2003261791A1 (en) 2002-08-30 2003-08-28 Substrate processor and method of cleaning the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/252268 2002-08-30
JP2002252268 2002-08-30

Publications (1)

Publication Number Publication Date
WO2004020694A1 true WO2004020694A1 (en) 2004-03-11

Family

ID=31972728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010938 WO2004020694A1 (en) 2002-08-30 2003-08-28 Substrate processor and method of cleaning the same

Country Status (3)

Country Link
AU (1) AU2003261791A1 (en)
TW (1) TWI227511B (en)
WO (1) WO2004020694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110899271A (en) * 2018-09-17 2020-03-24 北京北方华创微电子装备有限公司 Adjusting device of remote plasma source and remote plasma source cleaning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111501024A (en) * 2020-05-08 2020-08-07 Tcl华星光电技术有限公司 Vapor deposition apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788799A (en) * 1996-06-11 1998-08-04 Applied Materials, Inc. Apparatus and method for cleaning of semiconductor process chamber surfaces
JPH11219937A (en) * 1998-01-30 1999-08-10 Toshiba Corp Process device
US5976992A (en) * 1993-09-27 1999-11-02 Kabushiki Kaisha Toshiba Method of supplying excited oxygen
WO2000003064A1 (en) * 1998-07-13 2000-01-20 Applied Komatsu Technology, Inc. Gas distributor plate for a processing apparatus
JP2000164572A (en) * 1998-11-27 2000-06-16 Kyocera Corp Plasma-resistant member and manufacture thereof
US6095085A (en) * 1998-08-20 2000-08-01 Micron Technology, Inc. Photo-assisted remote plasma apparatus and method
EP1118692A1 (en) * 2000-01-18 2001-07-25 Asm Japan K.K. Remote plasma apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976992A (en) * 1993-09-27 1999-11-02 Kabushiki Kaisha Toshiba Method of supplying excited oxygen
US5788799A (en) * 1996-06-11 1998-08-04 Applied Materials, Inc. Apparatus and method for cleaning of semiconductor process chamber surfaces
JPH11219937A (en) * 1998-01-30 1999-08-10 Toshiba Corp Process device
WO2000003064A1 (en) * 1998-07-13 2000-01-20 Applied Komatsu Technology, Inc. Gas distributor plate for a processing apparatus
US6095085A (en) * 1998-08-20 2000-08-01 Micron Technology, Inc. Photo-assisted remote plasma apparatus and method
JP2000164572A (en) * 1998-11-27 2000-06-16 Kyocera Corp Plasma-resistant member and manufacture thereof
EP1118692A1 (en) * 2000-01-18 2001-07-25 Asm Japan K.K. Remote plasma apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110899271A (en) * 2018-09-17 2020-03-24 北京北方华创微电子装备有限公司 Adjusting device of remote plasma source and remote plasma source cleaning system
CN110899271B (en) * 2018-09-17 2021-10-15 北京北方华创微电子装备有限公司 Adjusting device of remote plasma source and remote plasma source cleaning system

Also Published As

Publication number Publication date
TW200411719A (en) 2004-07-01
TWI227511B (en) 2005-02-01
AU2003261791A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
JP6368732B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JP5941491B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
KR101847575B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
JP5762602B1 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
KR101656790B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device, and non-transitory computer-readable recording medium
US20060081182A1 (en) Method of cleaning thin film deposition system, thin film deposition system and program
KR101749434B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
JPH1116858A (en) Method of cleaning and processing film forming device
JP2015178644A (en) Substrate processing device, semiconductor device manufacturing method, program, and recording medium
JP5726281B1 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2004285469A (en) Installation table, treatment apparatus, and treatment method
KR20170077013A (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
KR20160001609A (en) Substrate processing apparatus, semiconductor device manufacturing method and storage meduim
WO2004021425A1 (en) Method of etching and etching apparatus
US20090194237A1 (en) Plasma processing system
JP2010065309A (en) Film forming method of ti type film and storage medium thereof
JPH07273053A (en) Treatment device and coating of aluminum-based member
KR20210081214A (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
WO2002068711A1 (en) Heat treating device
JP4260590B2 (en) Cleaning method for substrate processing apparatus
WO2004020694A1 (en) Substrate processor and method of cleaning the same
WO2004070079A1 (en) Semiconductor processing method for processing substrate to be processed and its apparatus
JP3581890B2 (en) Heat treatment method and heat treatment apparatus
JPH1088372A (en) Surface treating device and surface treating method
JP2008276984A (en) Plasma processing device and dielectric window

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP