WO2004020615A1 - Method for the production of virus-analog particles for packing biologically active macromolecule by in vitro assembly of capsomers to which the macromolecules are bound - Google Patents

Method for the production of virus-analog particles for packing biologically active macromolecule by in vitro assembly of capsomers to which the macromolecules are bound Download PDF

Info

Publication number
WO2004020615A1
WO2004020615A1 PCT/DE2003/002688 DE0302688W WO2004020615A1 WO 2004020615 A1 WO2004020615 A1 WO 2004020615A1 DE 0302688 W DE0302688 W DE 0302688W WO 2004020615 A1 WO2004020615 A1 WO 2004020615A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsomers
macromolecules
virus
bound
biologically active
Prior art date
Application number
PCT/DE2003/002688
Other languages
German (de)
French (fr)
Inventor
Rainer Rudolph
Hauke Lilie
Thomas Jahn
Stefan Gleiter
Kay Stubenrauch
Original Assignee
Martin-Luther-Universität Halle-Wittenberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Martin-Luther-Universität Halle-Wittenberg filed Critical Martin-Luther-Universität Halle-Wittenberg
Priority to DE10393561T priority Critical patent/DE10393561D2/en
Priority to EP03790708A priority patent/EP1539939A1/en
Priority to AU2003263132A priority patent/AU2003263132A1/en
Publication of WO2004020615A1 publication Critical patent/WO2004020615A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/22011Polyomaviridae, e.g. polyoma, SV40, JC
    • C12N2710/22022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/22011Polyomaviridae, e.g. polyoma, SV40, JC
    • C12N2710/22023Virus like particles [VLP]

Definitions

  • the invention relates to a method for the in vitro assembly of capsomers or of capsomers, to which biologically active macromolecules are bound, into virus-analogous particles or for packaging biologically active macromolecules into these virus-analogous particles during in vitro assembly.
  • These complexes represent vectors suitable for gene therapy. They make it possible to transduce biologically active macromolecules in cells so that they are functional there.
  • capsomeres refer to naturally occurring virus envelope proteins, recombinantly produced virus envelope proteins or genetically engineered variants of virus envelope proteins.
  • VLP's represent a virus envelope consisting of one or more virus envelope proteins. They can take various forms; in the case of the VLPs derived from Polyoma VP1, for example hollow spheres with a diameter of approximately 40-50 nm, which are composed of 360 VP1 molecules arranged in 72 pentamers. In addition to this type of VLP's, Polyoma VP1 can also form smaller shapes and rod-shaped VLP's (Salunke et al., 1989, Biophys. J. 56, 887-900). The VLP's can be produced by the recombinant production of the capsomeres in insect cells or yeast. VLPs are isolated directly in this production.
  • capsomeres in Escherichia coli leads to the recovery of non-assembled capsomeres, which can be assembled in vitro to VLP's.
  • This assembly process is often carried out in the presence of a stabilizing salt such as ammonium sulfate.
  • a stabilizing salt such as ammonium sulfate.
  • Polyoma VP1 is assembled under these conditions to form homogeneously structured VLPs.
  • the use of required high concentrations of this salt in the assembly results in high ionic strengths of the buffer, which is binding of nucleic acids and other biologically active macromolecules affecting the capsomeres.
  • Ammonium sulfate is therefore unsuitable for use in the packaging of biologically active macromolecules associated with the assembly of capsomers to which macromolecules are bound.
  • the capsomer of polyomavirus VP1 is able to bind biologically active macromolecules.
  • a binding site of the protein for nucleic acids is located in the N-terminal sequence, which contains a high proportion of positively charged amino acids (Moreland et al., 1991, J. Virol. 65, 1168-1176). Other macromolecules can also bind to this sequence.
  • the binding of Polyoma VP1 to plasmid DNA prevents in vitro assembly into VLP's. Therefore, the current procedures of. Complex formation of Polyoma VP1 with plasmid DNA on the interaction of already assembled VLP's with DNA. The procedure described leads to an interaction of VP1 and DNA, in which the DNA is partially protected against DNase digestion.
  • the invention is based on the problem of developing a new method for the in vitro assembly of capsomers in VLPs or for packaging biologically active macromolecules during the in vitro assembly of capsomers, in which a high efficiency of the assembly and a high degree of packaging for biologically active Macromolecules is achieved.
  • capsomers or capsomers to which biologically active macromolecules are bound by means of ionic interactions, are assembled in the presence of an oxidizing redox system and non-ionic stabilizers in a buffer with an ionic strength below 250 mM.
  • Suitable macromolecules are, in particular, but not exclusively, nucleic acids such as double-stranded DNA, double-stranded RNA, single-stranded DNA and single-stranded RNA, PNA's, proteins or peptides.
  • the size of the nucleic acid to be packaged is preferred, but not exclusively 10 to 5400 bases, preferably 20 to 1000 bases.
  • Viral envelope proteins that can be assembled in vitro to VLP's come into consideration as capsomers. This is described for virus envelope proteins or capsid proteins from, for example, polyoma and related viruses, papilloma virus, poliovirus, hepatitis virus, lentiviruses, Rous Sarcoma virus or adeno-associated virus. The process is based on the surprising effect that the non-ionic stabilizers
  • Substances can serve sugar with C3, C4, C5 and C6 units such as glycerin,
  • Oligosaccharides such as amylose or amylopectin.
  • polyols such as ethylene glycol or
  • Polyethylene glycol of various chain lengths can be used.
  • the non-ionic substance is added to the buffer in concentrations of 5-50% (w / v), preferably in the concentration range of 15-30% (w / v).
  • Capsomeres or capsomeres with bound macromolecules are assembled in a concentration range from 50 ⁇ g / ml - 5 mg / ml to VLPs, preferably from 0.25 - 2 mg / ml, at a pH of pH 7-8.5 and temperatures between 15 and 30 ° C. preferably pH 7.2 - 7.5 and a temperature of 20 - 25 ° C.
  • Tris, Hepes and phosphate for example, can be used as buffer substances, preferably in concentrations of 10-100 mM.
  • the assembly is carried out under oxidizing conditions.
  • This can include the oxidation by molecular oxygen or, preferably, the oxidation using a redox system composed of oxidized and reduced thiol-containing substances such as reduced and oxidized glutathione, cysteine / cystine, cysteamine / cystamine, reduced / oxidized ⁇ -mercaptoethanol or aromatic thiol-containing substances.
  • oxidized and reduced thiol-containing substances such as reduced and oxidized glutathione, cysteine / cystine, cysteamine / cystamine, reduced / oxidized ⁇ -mercaptoethanol or aromatic thiol-containing substances.
  • These are preferably used as a mixture of oxidized to reduced substance in a ratio of 1:10 to 10: 1 or by exclusive addition of the oxidizing substance.
  • the capsomeres to be assembled or the capsomeres to which contact is to be brought into contact biologically active macromolecules are bound to the assembly buffer by diluting the capsomers with the assembly buffer and / or dialyzing. Basically, a rebuffering of the capsomeres into the assembly buffer must be guaranteed.
  • the packaging of biologically active macromolecules during assembly is preferably carried out by incubating the macromolecules with the capsomeres.
  • the protein concentration is in the range of 0.05 - 5 mg / ml, preferably 0.25 - 2 mg / ml.
  • the macromolecules bound to the capsomeres are packaged with high efficiency during assembly into the resulting VLPs. This concerns both the amount of packaged macromolecules per VLP and the relative proportion of VLP's in which macromolecules were packed.
  • the unpackaged macromolecules are digested with the help of DNases, RNases or proteases and the packaged and thus protected from degradation is quantified using agarose gel electrophoresis or chromatography. It is particularly important to ensure that macromolecules that are non-specifically associated with the VLP's are also broken down. This can be analyzed by determining the efficiency of the packaging as a function of the DNase, RNase or protease concentration used.
  • the present invention is described in the following with reference to examples. The following figures are referred to:
  • Illustration 1
  • Polyoma VPl was dialyzed at 20 ° C for 2 days against 20 mM Tris, pH 7.4, 1 mM CaCl 2 ,
  • Formwar and coal-coated copper grid adsorbed washed several times with water and then colored with 2% uranyl acetate.
  • Figure 1A shows the measurement of the sedimentation rate by means of analytical
  • Figure 1B shows an electron micrograph of the
  • Example 2 Packing of DNA by in vitro assembly of VPl To assemble into VLPs while simultaneously packing dsDNA, 1.98 ⁇ M pentameric VPl (0.42 mg / ml) with 8.42 nM dsDNA with a length of 100 bp, 184 bp or 300 bp were used incubated for 30 minutes at 25 ° C.
  • VLPs were used against assembly buffer (50 mM Tris, 50 mM NaCl, 5% glycerol (v / v), 25% D-sorbitol (w / v), 2 mM CaCl 2 , 4.5 mM GSSG, 0 , 5 mM GSH, pH 7.4) dialyzed for 48 h at 24 ° C.
  • assembly buffer 50 mM Tris, 50 mM NaCl, 5% glycerol (v / v), 25% D-sorbitol (w / v), 2 mM CaCl 2 , 4.5 mM GSSG, 0 , 5 mM GSH, pH 7.4
  • a stop mix 0.5 M NaH PO, 0.5 M EDTA, 1 M DTT, pH 6.0
  • 50 ⁇ l of a stop mix 0.5 M NaH PO, 0.5 M EDTA, 1 M DTT, pH 6.0
  • the samples were then boiled at 95 ° C. for 15 minutes.
  • a phenol-chloroform extraction and then a concentration using the GFX TM PCR Kit was carried out.
  • the packaged fragments could be displayed by agarose gel electrophoresis (2% agarose) and subsequent ethidium bromide staining.
  • Figure 2 shows the results of the DNA packaging described here. 100 bp, 180 bp and 300 bp dsDNA fragments were packaged. An unassembled pentamer / DNA sample served as a control. Lanes 4, 7 and 10 show the approaches under native conditions. Lanes 5, 8 and 11 under denatured conditions. Lanes 6, 9 and 12 show samples of the concentrated DNA after the benzonase digestion procedure, i.e. DNA packaged in wtVPl capsid.
  • a gel shift assay was used to detect dsDNA bound to pentameric Polyoma VPl. 10 ⁇ g VPl were incubated with 0.5 ⁇ g DNA of an 1kb or 100 bp conductor from NEB at 25 ° C. for 30 minutes. The samples were then mixed with glycerol and analyzed by agarose gel electrophoresis (1.8% agarose) and ethidium bromide staining.
  • Figure 3 shows the running behavior of the lkb ladder dsDNA in the presence (lane 1) and absence of VPl (lane 2). The running behavior of the lOObp ladder dsDNA is also shown in the presence (lane 3) and absence of VPl (lane 4). In both cases it becomes clear that the binding of the DNA to Polyoma VPl changes its running behavior.
  • the fluorescence polarization method was used to quantify DNA binding. 23 nM of a Rhodamine-labeled DNA fragment of 184 bp in length was also analyzed
  • Figure 4 shows the change in the polarization signal of the labeled DNA with increasing
  • Example 6 Detection of the binding of single-stranded DNA (ssDNA) to VPl.
  • ssDNA single-stranded DNA
  • a gel shift assay was used to detect ssDNA bound to pentameric Polyoma VPl
  • Figure 6 shows the running behavior of the ⁇ X174 Virion DNA in the presence (lane 1)
  • Lane 4 represents a molecular weight standard. It becomes clear that the binding of the DNA to Polyoma VP1 changes its running behavior.
  • Example 7 Detection of the binding of single-stranded RNA (ssRNA) to VPl.
  • ssRNA single-stranded RNA
  • a gel shift assay was used to detect ssRNA bound to Pentameres Polyoma VPl.
  • 10 ⁇ g VPl which had previously been mixed with SUPERaseln RNase inhibitor from Ambion for 10 minutes, were incubated with 1.5 ⁇ g of the RNA ladder from NEB at 25 ° C. for 30 minutes. The samples were then mixed with glycerol and analyzed by agarose gel electrophoresis (1% agarose) and ethidium bromide staining.
  • Figure 7 shows the running behavior of the RNA molecular weight ladder in the presence (lane 1) and absence of VPl (lane 2.3). It becomes clear that the binding of the RNA to Polyoma VPl changes its running behavior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Virus-analog particles are predominantly produced recombinantly. Recombinant expression of capsomers in Escherichia coli makes it possible to obtain non-assembled capsomers which can be assembled in vitro. However, the degree of assembly is low. In fact, in vitro assembly into virus-analog particles is prevented if the macromolecules are bound to the capsomers. Complexes with macromolecules can only be obtained by interaction of the macromolecules with the already assembled virus-analog capsomers. The degree of packing of the macromolecules is nevertheless low. Virus-analog particles are produced by means of a method for the production of virus-analog particles by in vitro assembly of capsomers or capsomers, biologically active macromolecules being bound to the charged amino acids of said capsomers with simultaneous packing to macromolecules in the presence of non-ionic stabilizers. Said complexes are suitable vectors for gene therapy.

Description

VERFAHREN ZUR HERSTELLUNG VON VIRUSANALOGEN PARTIKELN ZUR VERPACKUNG VON BIOLOGISCH AKTIVEN MAKROMOLEKÜLEN DURCH IN VITRO-ASSEMBLIERUNG VON KAPSOMEREN AN DIE DIE MAKROMOLEKÜLE GEBUNDEN SIND METHOD FOR PRODUCING VIRUS ANALOG PARTICLES FOR PACKING BIOLOGICALLY ACTIVE MACROMOLECULES BY IN VITRO ASSEMBLY OF CAPSOMERS TO WHICH THE MACROMOLECULES ARE TIED
Die Erfindung betrifft ein Verfahren zur in vitro-Assemblierung von Kapsomeren oder von Kapsomeren, an die biologisch aktive Makromoleküle gebunden sind, zu virusanalogen Partikeln oder zur Verpackung biologisch aktiver Makromoleküle in diese virusanalogen Partikel während der in vitro-Assemblierung. Diese Komplexe stellen für die Gentherapie geeignete Vektoren dar. Sie ermöglichen es, biologisch aktive Makromoleküle in Zellen zu transduzieren, so dass diese dort funktionell sind. Als Kapsomere werden in diesem Fall natürlich vorkommende Virushüllproteine, rekombinant produzierte Virushüllproteine oder gentechnisch hergestellte Varianten von Virushüllproteinen bezeichnet.The invention relates to a method for the in vitro assembly of capsomers or of capsomers, to which biologically active macromolecules are bound, into virus-analogous particles or for packaging biologically active macromolecules into these virus-analogous particles during in vitro assembly. These complexes represent vectors suitable for gene therapy. They make it possible to transduce biologically active macromolecules in cells so that they are functional there. In this case, capsomeres refer to naturally occurring virus envelope proteins, recombinantly produced virus envelope proteins or genetically engineered variants of virus envelope proteins.
Virusanaloge Partikel, im folgenden als VLP's abgekürzt, stellen eine aus einem oder mehreren Virushüllproteinen bestehende Virushülle dar. Sie können verschiedene Formen annehmen; im Fall der von Polyoma VP1 abgeleiteten VLP's etwa Hohlkugeln mit einem Durchmesser von ca. 40-50 nm, die aus 360 VP1 Molekülen, angeordnet in 72 Pentamere, aufgebaut sind. Neben dieser Art von VLP's kann Polyoma VP1 auch noch kleinere Formen sowie stäbchenförmige VLP's ausbilden (Salunke et al., 1989, Biophys. J. 56, 887-900). Die VLP's können durch die rekombinante Produktion der Kapsomere in Insektenzellen oder Hefe hergestellt werden. Bei dieser Produktion werden direkt VLP's isoliert. Die rekombinante Expression von Kapsomeren in Escherichia coli führt zur Gewinnung von nicht-assemblierten Kapsomeren, diese können in vitro zu VLP's assembliert werden. Dieser Assemblierungsprozess wird häufig in Gegenwart stabilisierender Salz wie Ammoniumsulfat durchgeführt. So erfolgt eine Assemblierung von Polyoma VP1 unter diesen Bedingungen zu homogen strukturierten VLP's. Der Einsatz erforderlicher hoher Konzentrationen dieses Salzes bei der Assemblierung resultiert in hohen Ionenstärken des Puffers, was eine Bindung von Nukleinsäuren und anderen biologisch aktiven Makromolekülen an die Kapsomere beeinträchtigt. Daher ist Ammoniumsulfat ungeeignet für den Einsatz bei einer mit der Assemblierung von Kapsomeren, an die Makromoleküle gebunden sind, einhergehenden Verpackung von biologisch aktiven Makromolekülen.Virus-analogous particles, hereinafter abbreviated as VLP's, represent a virus envelope consisting of one or more virus envelope proteins. They can take various forms; in the case of the VLPs derived from Polyoma VP1, for example hollow spheres with a diameter of approximately 40-50 nm, which are composed of 360 VP1 molecules arranged in 72 pentamers. In addition to this type of VLP's, Polyoma VP1 can also form smaller shapes and rod-shaped VLP's (Salunke et al., 1989, Biophys. J. 56, 887-900). The VLP's can be produced by the recombinant production of the capsomeres in insect cells or yeast. VLPs are isolated directly in this production. The recombinant expression of capsomeres in Escherichia coli leads to the recovery of non-assembled capsomeres, which can be assembled in vitro to VLP's. This assembly process is often carried out in the presence of a stabilizing salt such as ammonium sulfate. Thus, Polyoma VP1 is assembled under these conditions to form homogeneously structured VLPs. The use of required high concentrations of this salt in the assembly results in high ionic strengths of the buffer, which is binding of nucleic acids and other biologically active macromolecules affecting the capsomeres. Ammonium sulfate is therefore unsuitable for use in the packaging of biologically active macromolecules associated with the assembly of capsomers to which macromolecules are bound.
Das Kapsomer des Polyomavirus VP1 zum Beispiel ist in der Lage, biologisch aktive Makromoleküle zu binden. Eine Bindungsstelle des Proteins für Nukleinsäuren ist in der N- terminalen Sequenz lokalisiert, die einen hohen Anteil an positiv geladenen Aminosäuren enthält (Moreland et al., 1991, J. Virol. 65, 1168-1176). An diese Sequenz können auch andere Makromoleküle binden. Die Bindung von Polyoma VP1 an Plasmid-DNA verhindert die in vitro-Assemblierung zu VLP's. Daher beruhen die aktuellen Verfahren der . Komplexbildung von Polyoma VP1 mit Plasmid-DNA auf der Wechselwirkung von bereits assemblierten VLP's mit DNA. Die beschriebene Prozedur führt zu einer Interaktion von VP1 und DNA, in der die DNA partiell gegen DNase- Verdau geschützt wird. Mit diesen Komplexen können Zellen sowohl in vitro als auch in vivo transduziert werden. Die Effizienz der Komplexbildung von VLP's und DNA sowie der Grad des DNase-Schutzes erweist sich allerdings als sehr gering (Forstova et al., 1995, Hum. Gene Ther. 6, 297-306). Dies ist darauf zurückzuführen, daß Plasmid-DNA bei Inkubation mit VLP's nur in sehr geringem Maße in die VLP's aufgenommen werden, der Großteil der von VLP's gebundenen DNA verbleibt außerhalb der VLP's und liegt bestenfalls mit der Oberfläche der VLP's assoziiert vor, ohne verpackt zu sein. Vergleichbare Ergebnisse wurden auch für die Verpackung von Oligonukleotiden erhalten. In beiden Fällen konnte die Effizienz der Komplexbildung durch Absenken des pH- Wertes während der Komplexbildung auf pH 5 deutlich verbessert werden, dennoch führt dieses Verfahren nicht zu einer Verpackung der eingesetzten Nukleinsäuren. Zur Ve ackung speziell von Proteinen in VLP's wurde an den N-Terminus von Polyoma VP1 eine WW-Domäne fusioniert, die Prolin-reiche Sequenzen binden kann. Mit dieser Variante konnte GFP, an das eine Prolin-reiche Sequenz anfusioniert wurde, gebunden und in die VLP's verpackt werden (Schmidt et al, 2001, FASEB J. 15, 1646-1648).For example, the capsomer of polyomavirus VP1 is able to bind biologically active macromolecules. A binding site of the protein for nucleic acids is located in the N-terminal sequence, which contains a high proportion of positively charged amino acids (Moreland et al., 1991, J. Virol. 65, 1168-1176). Other macromolecules can also bind to this sequence. The binding of Polyoma VP1 to plasmid DNA prevents in vitro assembly into VLP's. Therefore, the current procedures of. Complex formation of Polyoma VP1 with plasmid DNA on the interaction of already assembled VLP's with DNA. The procedure described leads to an interaction of VP1 and DNA, in which the DNA is partially protected against DNase digestion. With these complexes cells can be transduced both in vitro and in vivo. However, the efficiency of the complex formation of VLPs and DNA and the degree of DNase protection have proven to be very low (Forstova et al., 1995, Hum. Gene Ther. 6, 297-306). This is due to the fact that plasmid DNA is only incorporated into the VLPs to a very small extent when incubated with VLPs, the majority of the DNA bound by VLPs remains outside the VLPs and is at best associated with the surface of the VLPs without being packaged , Comparable results were also obtained for the packaging of oligonucleotides. In both cases, the efficiency of the complex formation was significantly improved by lowering the pH during the complex formation to pH 5, but this method does not lead to packaging of the nucleic acids used. In order to specifically cover proteins in VLP's, a WW domain was fused to the N-terminus of Polyoma VP1, which can bind proline-rich sequences. With this variant, GFP, to which a proline-rich sequence was fused, could be bound and packed into the VLPs (Schmidt et al., 2001, FASEB J. 15, 1646-1648).
Der Erfindung liegt das Problem zugrunde, ein neues Verfahrens zur in vitro-Assemblierung von Kapsomeren in VLP's oder zur Verpackung biologisch aktiver Makromoleküle während der in vitro-Assemblierung von Kapsomeren zu entwickeln, bei dem eine hohe Effizienz der Assemblierung und ein hoher Verpackungsgrad für biologisch aktive Makromoleküle erzielt wird.The invention is based on the problem of developing a new method for the in vitro assembly of capsomers in VLPs or for packaging biologically active macromolecules during the in vitro assembly of capsomers, in which a high efficiency of the assembly and a high degree of packaging for biologically active Macromolecules is achieved.
Gelöst wird das Problem dadurch, dass Kapsomere oder Kapsomere, an die mittels ionischer Interaktionen biologisch aktive Makromoleküle gebunden sind, in Gegenwart eines oxidierenden Redoxsystems und nicht-ionischer Stabilisatoren in einem Puffer mit einer Ionenstärke unter 250 mM assembliert werden. Als Makromoleküle kommen insbesondere, aber nicht ausschließlich, Nukleinsäuren wie doppelsträngige DNA, doppelsträngige RNA, einzelsträngige DNA und einzelsträngige RNA, PNA's, Proteine oder Peptide in Frage. Die Größe der zu verpackenden Nukleinsäure ist bevorzugt, aber nicht ausschließlich 10 - 5400 Basen, vorzugsweise 20 - 1000 Basen.The problem is solved in that capsomers or capsomers, to which biologically active macromolecules are bound by means of ionic interactions, are assembled in the presence of an oxidizing redox system and non-ionic stabilizers in a buffer with an ionic strength below 250 mM. Suitable macromolecules are, in particular, but not exclusively, nucleic acids such as double-stranded DNA, double-stranded RNA, single-stranded DNA and single-stranded RNA, PNA's, proteins or peptides. The size of the nucleic acid to be packaged is preferred, but not exclusively 10 to 5400 bases, preferably 20 to 1000 bases.
Als Kapsomere kommen Virushüllproteine in Betracht, die in vitro zu VLP's assembliert werden können. Dies ist beschrieben für Virushüllproteine bzw Kapsidproteine von z.B. Polyoma- und verwandten Viren, Papillomavirus, Poliovirus, Hepatitisvirus, Lentiviren, Rous Sarcoma Virus oder Adeno assoziierter Virus. Das Verfahren beruht auf dem überraschenden Effekt, dass nicht-ionische Stabilisatoren dieViral envelope proteins that can be assembled in vitro to VLP's come into consideration as capsomers. This is described for virus envelope proteins or capsid proteins from, for example, polyoma and related viruses, papilloma virus, poliovirus, hepatitis virus, lentiviruses, Rous Sarcoma virus or adeno-associated virus. The process is based on the surprising effect that the non-ionic stabilizers
Assemblierung von Kapsomeren zu VLP's begünstigen. Als nicht-ionische stabilisierendeFavor assembly of capsomeres to VLP's. As a non-ionic stabilizing
Substanzen können Zucker mit C3, C4, C5 und C6-Einheiten dienen wie etwa Glycerin,Substances can serve sugar with C3, C4, C5 and C6 units such as glycerin,
Trehalose, Fructose oder Sorbitol, aber auch Disaccharide wie Saccharose oder Galaktose undTrehalose, fructose or sorbitol, but also disaccharides such as sucrose or galactose and
Oligosaccharide wie Amylose oder Amylopektin.Oligosaccharides such as amylose or amylopectin.
Alternativ zu Zuckern können als Stabilisator auch Polyole wie Ethylenglykol oderAs an alternative to sugars, polyols such as ethylene glycol or
Polyethylenglycol verschiedener Kettenlängen eingesetzt werden.Polyethylene glycol of various chain lengths can be used.
Die nicht-ionische Substanz wird dem Puffer in Konzentrationen von 5-50 % (w/v) zugesetzt, vorzugsweise im Konzentrationsbereich von 15- 30 % (w/v).The non-ionic substance is added to the buffer in concentrations of 5-50% (w / v), preferably in the concentration range of 15-30% (w / v).
Kapsomere oder Kapsomere mit gebundenen Makromolekülen werden in einem Konzentrationsbereich von 50 μg/ml - 5 mg/ml zu VLP's assembliert, vorzugsweise von 0.25 - 2 mg/ml, bei einem pH von pH 7 - 8.5 und Temperaturen zwischen 15 und 30°C vorzugsweise pH 7.2 - 7.5 und einer Temperatur von 20 - 25°C. Als Puffersubstanzen können beispielsweise Tris, Hepes und Phosphat dienen, bevorzugt in Konzentrationen von 10 - lOO mM.Capsomeres or capsomeres with bound macromolecules are assembled in a concentration range from 50 μg / ml - 5 mg / ml to VLPs, preferably from 0.25 - 2 mg / ml, at a pH of pH 7-8.5 and temperatures between 15 and 30 ° C. preferably pH 7.2 - 7.5 and a temperature of 20 - 25 ° C. Tris, Hepes and phosphate, for example, can be used as buffer substances, preferably in concentrations of 10-100 mM.
Die Assemblierung wird unter oxidierenden Bedingungen durchgeführt. Dies kann die Oxidation durch molekularen Sauerstoff beinhalten oder bevorzugt die Oxidation mit Hilfe eines Redoxsystems aus oxidierten und reduzierten thiolhaltigen Substanzen wie reduziertes und oxidiertes Glutathion, Cystein/Cystin, Cysteamin/Cystamin, reduziertes/oxidiertes ß- Mercaptoethanol oder aromatische thiolhaltige Substanzen. Diese werden bevorzugt als Gemisch von oxidierter zu reduzierter Substanz in einem Verhältnis von 1:10 bis 10:1 oder durch ausschließliche Zugabe der oxidierenden Substanz eingesetzt.The assembly is carried out under oxidizing conditions. This can include the oxidation by molecular oxygen or, preferably, the oxidation using a redox system composed of oxidized and reduced thiol-containing substances such as reduced and oxidized glutathione, cysteine / cystine, cysteamine / cystamine, reduced / oxidized β-mercaptoethanol or aromatic thiol-containing substances. These are preferably used as a mixture of oxidized to reduced substance in a ratio of 1:10 to 10: 1 or by exclusive addition of the oxidizing substance.
Bei dem erfindungsgemäßen Verfahren zur Assemblierung von Kapsomeren erfolgt das Enkontaktbringen der zu assemblierenden Kapsomeren oder der Kapsomeren, an die biologisch aktive Makromoleküle gebunden sind, mit dem Assemblierungspuffer, indem die Kapsomere mit dem Assemblierungspuffer verdünnt und/oder dialysiert werden. Grundsätzlich muß eine Umpufferung der Kapsomeren in den Assemblierungspuffer gewährleistet sein.In the method according to the invention for assembling capsomeres, the capsomeres to be assembled or the capsomeres to which contact is to be brought into contact biologically active macromolecules are bound to the assembly buffer by diluting the capsomers with the assembly buffer and / or dialyzing. Basically, a rebuffering of the capsomeres into the assembly buffer must be guaranteed.
Die Verpackung biologisch aktiver Makromoleküle während der Assemblierung erfolgt vorzugsweise durch Inkubation der Makromoleküle mit den Kapsomeren. Die Proteinkonzentration liegt dabei im Bereich von 0.05 - 5 mg/ml, vorzugsweise bei 0.25 - 2 mg/ml.The packaging of biologically active macromolecules during assembly is preferably carried out by incubating the macromolecules with the capsomeres. The protein concentration is in the range of 0.05 - 5 mg / ml, preferably 0.25 - 2 mg / ml.
Die an die Kapsomere gebundenen Makromoleküle werden bei der Assemblierung in die resultierenden VLP's mit hoher Effizienz verpackt. Dies betrifft sowohl die Menge an verpackten Makromolekülen pro VLP als auch den relativen Anteil an VLP's, in die Makromoleküle verpackt wurden. Zur Überprüfung der Verpackung biologisch aktiver Makromoleküle in VLP's werden die nicht- verpackten Makromoleküle mit Hilfe von DNasen, RNasen oder Proteasen verdaut und der verpackte und somit vor Abbau geschützte Anteil mittels Agarose-Gelelektrophorese oder Chromatographie quantifiziert werden. Es ist dabei besonders darauf zu achten, dass auch Makromoleküle, die unspezifisch mit den VLP's assoziiert vorliegen, abgebaut werden. Dies ist dadurch zu analysieren, daß die Effizienz der Verpackung in Abhängigkeit der eingesetzten DNase-, RNase- bzw Protease-Konzentration bestimmt wird. Die vorliegende Erfindung wird im folgenden anhand von Ausfülirungsbeispielen beschrieben. Dabei wird auf folgende Abbildungen Bezug genommen:The macromolecules bound to the capsomeres are packaged with high efficiency during assembly into the resulting VLPs. This concerns both the amount of packaged macromolecules per VLP and the relative proportion of VLP's in which macromolecules were packed. To check the packaging of biologically active macromolecules in VLP's, the unpackaged macromolecules are digested with the help of DNases, RNases or proteases and the packaged and thus protected from degradation is quantified using agarose gel electrophoresis or chromatography. It is particularly important to ensure that macromolecules that are non-specifically associated with the VLP's are also broken down. This can be analyzed by determining the efficiency of the packaging as a function of the DNase, RNase or protease concentration used. The present invention is described in the following with reference to examples. The following figures are referred to:
Abbildung 1 :Illustration 1 :
Assemblierung von Polyoma VPl zu virusanalogen Partikeln in vitroAssembly of Polyoma VPl to virus-analogous particles in vitro
Abbildung 2:Figure 2:
Verpackung von DNA durch in vitro-Assemblierung von VPlPackaging of DNA by in vitro assembly of VPl
Abbildung 3:Figure 3:
Bindung von doppelsträngiger DNA an VPlBinding of double-stranded DNA to VPl
Abbildung 4:Figure 4:
Quantifizierung der dsDNA Bindung an VPlQuantification of dsDNA binding to VPl
Abbildung 5:Figure 5:
Einfluß der Ionenstärke auf die Bindung von dsDNAInfluence of ionic strength on the binding of dsDNA
Abbildung 6:Figure 6:
Bindung von einzelsträngiger DNA an VPlBinding of single-stranded DNA to VPl
Abbildung 7:Figure 7:
Bindung von einzelsträngiger RNA an VPl Beispiel 1 : Assemblierung von Polyoma VP 1 zu VLP ' s in vitroBinding of single-stranded RNA to VPl Example 1: Assembly of Polyoma VP 1 to VLP 's in vitro
Polyoma VPl wurde bei 20°C für 2 Tage dialysiert gegen 20 mM Tris, pH 7.4, 1 mM CaCl2,Polyoma VPl was dialyzed at 20 ° C for 2 days against 20 mM Tris, pH 7.4, 1 mM CaCl 2 ,
25 % Sorbitol (w/v), 0.5 mM GSH, 5 mM GSSG. Die Proteinkonzentration betrug 0.5 mg/ml.25% sorbitol (w / v), 0.5mM GSH, 5mM GSSG. The protein concentration was 0.5 mg / ml.
Die Bildung der VLP's wurde anschließend überprüft mit Hilfe analytischerThe formation of the VLPs was then checked with the help of analytical
Ultrazentrifugation und Elektronenmikroskopie. Zur analytischen Ultazentrifugation wurde die Probe bei 20°C und 20 000 rpm in einem AnTi50-Rotor zentrifugiert. Alle 10 Minuten wurde die Verteilung der VLP's in der Meßzelle durch Scannen der Probe bei 280 nm gemessen. Die hieraus ermittelte Sedimentation des Proteins weist nach, dass VPl quantitativ zu VLP's assembliert ist.Ultracentrifugation and electron microscopy. For analytical ultracentrifugation, the sample was centrifuged at 20 ° C. and 20,000 rpm in an AnTi50 rotor. The distribution of the VLPs in the measuring cell was measured every 10 minutes by scanning the sample at 280 nm. The sedimentation of the protein determined from this shows that VPl is assembled quantitatively to VLP's.
Für die elektronenmikrokopische Analyse wurden 10 μl der Proteinlösung auf einemFor the electron microscopic analysis, 10 ul of the protein solution on a
Formwar und Kohle-beschichteten Kupfergrid adsorbiert, mehrfach mit Wasser gewaschen und anschließend mit 2 % Uranylacetat gefärbt.Formwar and coal-coated copper grid adsorbed, washed several times with water and then colored with 2% uranyl acetate.
Abbildung 1A zeigt die Messung der Sedimentationsgeschwindigkeit mittels analytischerFigure 1A shows the measurement of the sedimentation rate by means of analytical
Ultrazentrifugation. Die Abbildung 1B zeigt eine elektronenmikroskopische Aufiiahme derUltracentrifugation. Figure 1B shows an electron micrograph of the
VLP's.VLP's.
Beispiel 2: Verpackung von DNA durch in vitro-Assemblierung von VPl Zur Assemblierung zu VLP's unter gleichzeitiger Verpackung von dsDNA, wurden 1.98 μM pentameres VPl (0.42 mg/ml) mit 8.42 nM dsDNA der Länge von 100 bp, 184 bp bzw. 300 bp für 30 Minuten bei 25°C inkubiert. Zur Ausbildung der VLP's wurden diese Ansätze gegen Assemblierungspuffer (50 mM Tris, 50 mM NaCl, 5% Glycerol (v/v), 25% D-Sorbitol (w/v), 2 mM CaCl2, 4,5 mM GSSG, 0,5 mM GSH, pH 7,4) für 48 h bei 24 °C dialysiert. Um die Verpackung von DNA in die erhaltenen VLP's nachzuweisen wurden die Proben zunächst 24 h bei 8°C gegen einen Sorbitol-freien Puffer dialysiert (50 mM Tris, 50 mM NaCl, 5% Glycerol (v/v), 1 mM CaCl2, pH 7,4 ). 200 μl dieser Probe wurden dann einem DNase-Verdau unterzogen (400 Units Benzonase der Firma Merck), um nicht verpackte DNA-Fragmente abzubauen. Dazu wurden 5 mM Mg Cl2 und 400 U Bezonase (Merck) zugesetzt und für lh bei 37°C inkubiert. In Kontrollexperimenten konnte gezeigt werden, dass dadurch freie DNA, sowie an Pentamer oder unspezifisch an VLP's gebundene DNA- Fragmente vollständig abbaut werden. Um die Benzonase zu inaktivieren und die DNA- Fragmente in den Capsiden frei zu legen, wurden 50 μl eines stop-mixes (0,5 M NaH PO , 0,5 M EDTA, 1 M DTT, pH 6,0) zugegeben und für 30 min bei 25°C inkubiert. Zur Denaturierung wurde die Proben anschließend bei 95 °C für 15 min aufgekocht. Zur Isolierung der DNA Fragmente wurde eine Phenol-Chloroform-Extraktion und anschließend eine Aufkonzentrierung mittels GFX™PCR Kit durchgeführt. Durch Agarosegel-Elektrophorese {2% Agarose) und anschließende Ethidiumbromid-Färbung konnten die verpackten Fragmente dargestellt werden.Example 2: Packing of DNA by in vitro assembly of VPl To assemble into VLPs while simultaneously packing dsDNA, 1.98 μM pentameric VPl (0.42 mg / ml) with 8.42 nM dsDNA with a length of 100 bp, 184 bp or 300 bp were used incubated for 30 minutes at 25 ° C. To form the VLPs, these approaches were used against assembly buffer (50 mM Tris, 50 mM NaCl, 5% glycerol (v / v), 25% D-sorbitol (w / v), 2 mM CaCl 2 , 4.5 mM GSSG, 0 , 5 mM GSH, pH 7.4) dialyzed for 48 h at 24 ° C. In order to demonstrate the packaging of DNA in the VLPs obtained, the samples were first dialyzed for 24 h at 8 ° C. against a sorbitol-free buffer (50 mM Tris, 50 mM NaCl, 5% glycerol (v / v), 1 mM CaCl 2 , pH 7.4). 200 μl of this sample were then subjected to a DNase digestion (400 units of Merck's benzonase) in order to avoid packaging To break down DNA fragments. 5 mM Mg Cl 2 and 400 U bezonase (Merck) were added and incubated for 1 h at 37 ° C. In control experiments it could be shown that free DNA, as well as DNA fragments bound to pentamer or non-specifically to VLP's, are completely degraded. In order to inactivate the benzonase and to expose the DNA fragments in the capsids, 50 μl of a stop mix (0.5 M NaH PO, 0.5 M EDTA, 1 M DTT, pH 6.0) were added and for Incubated for 30 min at 25 ° C. For denaturation, the samples were then boiled at 95 ° C. for 15 minutes. To isolate the DNA fragments, a phenol-chloroform extraction and then a concentration using the GFX ™ PCR Kit was carried out. The packaged fragments could be displayed by agarose gel electrophoresis (2% agarose) and subsequent ethidium bromide staining.
Abbildung 2 zeigt die Ergebnisse der hier beschriebenen DNA-Verpackung. Es wurden 100 bp, 180 bp und 300 bp dsDNA Fragment verpackt. Als Kontrolle diente eine nicht - assemblierte Pentamer/DNA Probe. In den Spuren 4, 7 und 10 sind die Ansätze unter nativen Bedingungen dargestellt. Die Spuren 5, 8 und 11 unter denaturieten Bedingungen. Die Spuren 6, 9 und 12 zeigen Proben der aufkonzentrierten DNA nach Benzonase-Verdau Prozedur, d.h. in wtVPl Capside verpackte DNA.Figure 2 shows the results of the DNA packaging described here. 100 bp, 180 bp and 300 bp dsDNA fragments were packaged. An unassembled pentamer / DNA sample served as a control. Lanes 4, 7 and 10 show the approaches under native conditions. Lanes 5, 8 and 11 under denatured conditions. Lanes 6, 9 and 12 show samples of the concentrated DNA after the benzonase digestion procedure, i.e. DNA packaged in wtVPl capsid.
Beispiel 3 : Nachweis der Bindung doppelsträngiger DNA (dsDNA) an VP 1Example 3: Detection of the binding of double-stranded DNA (dsDNA) to VP 1
Zum Nachweis an pentameres Polyoma VPl gebundener dsDNA wurde ein Gel shift Assay verwendet. 10 μg VPl wurden mit 0.5 μg DNA einer lkb oder 100 bp Leiter der Firma NEB bei 25°C für 30 Minuten inkubiert. Anschließend wurden die Proben mit Glycerin versetzt und mittels Agarose-Gelelektrophorese (1.8% Agarose) und Ethidiumbromid-Färbung analysiert. Abbildung 3 zeigt das Laufverhalten der lkb-Leiter dsDNA in Anwesenheit (Spur 1) und Abwesenheit von VPl (Spur 2). Ebenso ist das Laufverhalten der lOObp-Leiter dsDNA in Anwesenheit (Spur 3) und Abwesenheit von VPl (Spur 4) dargestellt. In beiden Fällen wird deutlich, dass die Bindung der DNA an Polyoma VPl ihr Laufverhalten verändert.A gel shift assay was used to detect dsDNA bound to pentameric Polyoma VPl. 10 μg VPl were incubated with 0.5 μg DNA of an 1kb or 100 bp conductor from NEB at 25 ° C. for 30 minutes. The samples were then mixed with glycerol and analyzed by agarose gel electrophoresis (1.8% agarose) and ethidium bromide staining. Figure 3 shows the running behavior of the lkb ladder dsDNA in the presence (lane 1) and absence of VPl (lane 2). The running behavior of the lOObp ladder dsDNA is also shown in the presence (lane 3) and absence of VPl (lane 4). In both cases it becomes clear that the binding of the DNA to Polyoma VPl changes its running behavior.
Beispiel 4: Quantifizierung der Bindung von dsDNA an Polyoma VPlExample 4: Quantification of the binding of dsDNA to Polyoma VPl
Zur Quantifizierung der DNA-Bindung wurde die Methode der Fluoreszenzpolarisation eingesetzt. 23 nM eines Rhodamine-gelabelten DNA-Fragmentes von 184 bp Länge wurde mitThe fluorescence polarization method was used to quantify DNA binding. 23 nM of a Rhodamine-labeled DNA fragment of 184 bp in length was also analyzed
VPl titriert. Nach jeder Zugabe des Proteins zu der DNA wurde die Probe für 10 Minuten beiVPl titrated. After each addition of the protein to the DNA, the sample was kept for 10 minutes
20°C inkubiert und anschließend das Polarisationssignal gemessen. Hierzu wurde dieIncubated 20 ° C and then measured the polarization signal. For this, the
Fluoreszenz bei 587 nm angeregt und die Emission bei 604 nm detektiert.Fluorescence excited at 587 nm and the emission detected at 604 nm.
Abbildung 4 zeigt die Änderung des Polarisationssignals der gelabelten DNA mit steigenderFigure 4 shows the change in the polarization signal of the labeled DNA with increasing
VPl -Konzentration (•). Diese Abhängigkeit lässt sich mathematisch beschreiben als BildungVPl concentration (•). This dependency can be described mathematically as education
eines VPl -DNA-Komplexes mit einer 1:1 Stöchiometrie und einer Dissoziationskonstante von Kd = 103 nM (-). (A) Lineare Auftragung. (B) Doppelt-reziproke Auftragung.of a VPl-DNA complex with a 1: 1 stoichiometry and a dissociation constant of Kd = 103 nM (-). (A) Linear plotting. (B) Double-reciprocal application.
Beispiel 5 : Einfluß der Ionenstärke auf die Bindung von dsDNAExample 5: Influence of ionic strength on the binding of dsDNA
175 nM pentameres Polyoma VPl, gelöst in 50 mM Tris, pH 7.4, 1 mM EDTA, 5 % Glycerin, wurde für 30 Minuten bei 20°C mit 250 nM Plasmid-DNA bei unterschiedlichen Konzentrationen an NaCl inkubiert. Anschließend wurde mittels analytischer Ultrazentrifugation die Menge an DNA-gebundenem VPl bestimmt. Hierzu wurden die Proben bei 40 000 rpm, 20°C zentrifugiert und in 10-minütigem Abstand durch Messung der Absorption der Proben bei 230 nm das Sedimentationsverhalten des freien und gebundenen Proteins bestimmt. Abbildung 5 zeigt den Anteil an DNA-gebundenem VPl in Abhängigkeit der NaCl- Konzentration des Puffers. Es wird deutlich, das bei NaCl-Konzentrationen oberhalb von 80 mM die Bindung von VPl an DNA kooperativ unterdrückt wird.175 nM pentameres Polyoma VPl, dissolved in 50 mM Tris, pH 7.4, 1 mM EDTA, 5% glycerol, was incubated for 30 minutes at 20 ° C. with 250 nM plasmid DNA at different concentrations of NaCl. The amount of DNA-bound VPl was then determined by means of analytical ultracentrifugation. For this purpose, the samples were centrifuged at 40,000 rpm, 20 ° C. and the sedimentation behavior of the free and bound protein was determined at 10-minute intervals by measuring the absorption of the samples at 230 nm. Figure 5 shows the proportion of DNA-bound VPl as a function of the NaCl concentration of the buffer. It becomes clear that the binding of VP1 to DNA is cooperatively suppressed at NaCl concentrations above 80 mM.
Beispiel 6: Nachweis der Bindung einzelsträngiger DNA (ssDNA) an VPl Zum Nachweis an pentameres Polyoma VPl gebundener ssDNA wurde ein Gel shift AssayExample 6: Detection of the binding of single-stranded DNA (ssDNA) to VPl. A gel shift assay was used to detect ssDNA bound to pentameric Polyoma VPl
verwendet. 10 μg VPl wurden mit 2 μg φX174 virion DNA der Firma NEB bei 25°C für 30used. 10 μg VPl were mixed with 2 μg φX174 virion DNA from NEB at 25 ° C. for 30
Minuten inkubiert. Anschließend wurden die Proben mit Glycerin versetzt und mittels Agarose-Gelelektrophorese (0.7 % Agarose) und Ethidiumbromid-Färbung analysiert.Minutes incubated. The samples were then mixed with glycerol and analyzed by agarose gel electrophoresis (0.7% agarose) and ethidium bromide staining.
Abbildung 6 zeigt das Laufverhalten der φX174 Virion DNA in Anwesenheit (Spur 1) undFigure 6 shows the running behavior of the φX174 Virion DNA in the presence (lane 1) and
Abwesenheit von VPl (Spur 2,3). Spur 4 stellt einen Molekulargewichtsstandard dar. Es wird deutlich, dass die Bindung der DNA an Polyoma VPl ihr Laufverhalten verändert.Absence of VPl (lane 2,3). Lane 4 represents a molecular weight standard. It becomes clear that the binding of the DNA to Polyoma VP1 changes its running behavior.
Beispiel 7: Nachweis der Bindung von einzelsträngiger RNA (ssRNA) an VPl Zum Nachweis an pentameres Polyoma VPl gebundner ssRNA wurde ein Gel shift Assay verwendet. 10 μg VPl, welches zuvor für 10 Minuten mit SUPERaseln Rnase inhibitor der Firma Ambion versetzt wurde, wurden mit 1.5 μg der RNA-Leiter der Firma NEB bei 25°C für 30 Minuten inkubiert. Anschließend wurden die Proben mit Glycerin versetzt und mittels Agarose-Gelelektrophorese (1 % Agarose) und Ethidiumbromid-Färbung analysiert. Abbildung 7 zeigt das Laufverhalten der RNA-Molekulargewichtsleiter in Anwesenheit (Spur 1) und Abwesenheit von VPl (Spur 2,3). Es wird deutlich, dass die Bindung der RNA an Polyoma VPl ihr LaufVerhalten verändert. Example 7: Detection of the binding of single-stranded RNA (ssRNA) to VPl. A gel shift assay was used to detect ssRNA bound to Pentameres Polyoma VPl. 10 μg VPl, which had previously been mixed with SUPERaseln RNase inhibitor from Ambion for 10 minutes, were incubated with 1.5 μg of the RNA ladder from NEB at 25 ° C. for 30 minutes. The samples were then mixed with glycerol and analyzed by agarose gel electrophoresis (1% agarose) and ethidium bromide staining. Figure 7 shows the running behavior of the RNA molecular weight ladder in the presence (lane 1) and absence of VPl (lane 2.3). It becomes clear that the binding of the RNA to Polyoma VPl changes its running behavior.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von virusanalogen Partikeln durch in vitro-Assemblierung von Kapsomeren oder Assemblierung von Kapsomeren, an deren geladene Aminosäuren biologisch aktive Makromoleküle gebunden sind, bei gleichzeitiger Verpackung der Makromoleküle in Gegenwart nicht-ionischer Stabilisatoren.1. Process for the production of virus-analogous particles by in vitro assembly of capsomers or assembly of capsomers, to whose charged amino acids biologically active macromolecules are bound, with simultaneous packaging of the macromolecules in the presence of non-ionic stabilizers.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Kapsomere oder Kapsomere, an die biologisch aktive Makromoleküle gebunden sind, in einem Puffer einer Ionenstärke <250 mM in Gegenwart eines oxidierenden Redoxsystems assembliert werden.2. The method according to claim 1, characterized in that the capsomers or capsomers, to which biologically active macromolecules are bound, are assembled in a buffer with an ionic strength of <250 mM in the presence of an oxidizing redox system.
3. Verfahren nach Ansprach 1 und 2, dadurch gekennzeiclmet, dass als biologisch aktive Makromoleküle dsDNA, ssDNA, dsRNA, ssRNA, PNA, Ribozyme, DNAzyme, RNAi, Peptide- oder Proteine-codierende DNA, Peptide oder Proteine verwendet werden.3. The method according spoke 1 and 2, characterized gekennzeiclmet that dsDNA, ssDNA, dsRNA, ssRNA, PNA, ribozymes, DNAzymes, RNAi, peptide- or protein-coding DNA, peptides or proteins are used as biologically active macromolecules.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass als Stabilisatoren Zuckerverbindungen der Klassen der C3- C4-, C5-, C6- Verbindungen als Monosaccharide oder Oligo- bzw Polysaccharide oder andere Polyole wie Ethylenglykol oder Polyethylenglykol eingesetzt werden. Verfahren nach Ansprach 1 bis 3, dadurch gekennzeichnet, dass als oxidierendes Redoxsystem thiolhaltige Substanzen in ihrer reduzierten und oxidierten Form verwendet werden. 4. The method according to claim 1 to 3, characterized in that sugar compounds of the classes of C3- C4-, C5-, C6- compounds are used as stabilizers as monosaccharides or oligo- or polysaccharides or other polyols such as ethylene glycol or polyethylene glycol. Method according spoke 1 to 3, characterized in that thiol-containing substances are used in their reduced and oxidized form as the oxidizing redox system.
PCT/DE2003/002688 2002-08-13 2003-08-09 Method for the production of virus-analog particles for packing biologically active macromolecule by in vitro assembly of capsomers to which the macromolecules are bound WO2004020615A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10393561T DE10393561D2 (en) 2002-08-13 2003-08-09 Process for the preparation of virus-analogous particles for the packaging of biologically active macromolecules by in vitro assembly of capsomeres to which the macromolecules are bound
EP03790708A EP1539939A1 (en) 2002-08-13 2003-08-09 Method for the production of virus-analog particles for packing biologically active macromolecule by in vitro assembly of capsomers to which the macromolecules are bound
AU2003263132A AU2003263132A1 (en) 2002-08-13 2003-08-09 Method for the production of virus-analog particles for packing biologically active macromolecule by in vitro assembly of capsomers to which the macromolecules are bound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10237639.5 2002-08-13
DE2002137639 DE10237639A1 (en) 2002-08-13 2002-08-13 Preparing virus-like particles, useful as gene therapy vectors, comprises assembling capsomers, optionally with active molecules attached, in presence of nonionic stabilizers

Publications (1)

Publication Number Publication Date
WO2004020615A1 true WO2004020615A1 (en) 2004-03-11

Family

ID=30775355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002688 WO2004020615A1 (en) 2002-08-13 2003-08-09 Method for the production of virus-analog particles for packing biologically active macromolecule by in vitro assembly of capsomers to which the macromolecules are bound

Country Status (4)

Country Link
EP (1) EP1539939A1 (en)
AU (1) AU2003263132A1 (en)
DE (2) DE10237639A1 (en)
WO (1) WO2004020615A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112513071A (en) * 2018-04-30 2021-03-16 阿米库斯治疗学公司 Gene therapy constructs and methods of use

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057906A1 (en) * 1999-03-26 2000-10-05 Merck & Co., Inc. Human papillomavirus vaccine with disassembled and reassembled virus-like particles
DE19952957A1 (en) * 1999-11-03 2001-05-17 Acgt Progenomics Ag Modular transport systems for molecular substances and their production and use
WO2001042780A1 (en) * 1999-12-09 2001-06-14 Medimmune, Inc. IN VITRO METHOD FOR DISASSEMBLY/REASSEMBLY OF PAPILLOMAVIRUS VIRUS-LIKE PARTICLES (VLPs)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952982B4 (en) * 1999-11-03 2004-01-29 Acgt Progenomics Ag Process for the targeted packaging of molecular substances in protein shells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057906A1 (en) * 1999-03-26 2000-10-05 Merck & Co., Inc. Human papillomavirus vaccine with disassembled and reassembled virus-like particles
DE19952957A1 (en) * 1999-11-03 2001-05-17 Acgt Progenomics Ag Modular transport systems for molecular substances and their production and use
WO2001042780A1 (en) * 1999-12-09 2001-06-14 Medimmune, Inc. IN VITRO METHOD FOR DISASSEMBLY/REASSEMBLY OF PAPILLOMAVIRUS VIRUS-LIKE PARTICLES (VLPs)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
COLOMAR M C ET AL: "OPENING AND REFOLDING OF SIMIAN VIRUS 40 AND IN VITRO PACKAGING OF FOREIGN DNA", JOURNAL OF VIROLOGY, NEW YORK, US, US, vol. 67, no. 5, 1 May 1993 (1993-05-01), pages 2779 - 2786, XP000645492, ISSN: 0022-538X *
MICHAEL P MCCARTHY ET AL: "QUANTITATIVE DISASSEMBLY AND REASSEMBLY OF HUMAN PAPILLOMAVIRUS TYPE 11 VIRUSLIKE PARTICLES IN VITRO", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 72, no. 1, 1998, pages 32 - 41, XP002086843, ISSN: 0022-538X *
SALUNKE D M ET AL: "Polymorphism in the assembly of polyomavirus capsid protein VP1", BIOPHYSICAL JOURNAL, NEW YORK, US, US, vol. 56, November 1989 (1989-11-01), pages 887 - 900, XP002100674, ISSN: 0006-3495 *

Also Published As

Publication number Publication date
DE10237639A1 (en) 2004-02-26
DE10393561D2 (en) 2005-06-30
AU2003263132A1 (en) 2004-03-19
EP1539939A1 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
DE2950995C2 (en)
KR102391725B1 (en) Adeno-associated virus virions with variant capsid and methods of use thereof
DE3887223T2 (en) Luciferase gene and new recombinant DNA and a process for the production of luciferase.
Weil et al. The cyclic helix and cyclic coil forms of polyoma viral DNA
DE69634300T2 (en) GENE THERAPY WITH THE HELP OF SHEEP ADENOVIRAL VECTORS
EP0790312A2 (en) Target cell specific vectors for the insertion of genes into cells, medicament containing such vectors and their use
Lutter et al. Effects of histone acetylation on chromatin topology in vivo
DE10160151A1 (en) Inhibiting expression of target gene, useful e.g. for inhibiting oncogenes, by administering double-stranded RNA complementary to the target and having an overhang
EP2862935B1 (en) Minicircles with viral expression cassettes and their use in the transformation of cells to generate recombinant viruses or viral gene vectors
DE10066104A1 (en) Host cells for packaging recombinant adeno-associated virus (rAAV), process for their preparation and their use
EP2493915B1 (en) Stabilisation of biosensors for in vivo applications
DE69126053T2 (en) Modified transcription control unit and its use
EP0914460A1 (en) Vehicle for the transport of molecular substances
EP2554664A1 (en) Method for purifying virus-like particles
Walther et al. A seven-year storage report of good manufacturing practice–grade naked plasmid DNA: stability, topology, and in vitro/in vivo functional analysis
WO2004020615A1 (en) Method for the production of virus-analog particles for packing biologically active macromolecule by in vitro assembly of capsomers to which the macromolecules are bound
Zijderveld et al. The adenovirus DNA binding protein enhances intermolecular DNA renaturation but inhibits intramolecular DNA renaturation
AU2021372533A1 (en) Chicken anemia virus (cav)-based vectors
DE68910036T2 (en) Luciferase gene and new recombinant DNA as well as processes for the production of luciferase.
DE60130465T2 (en) MUTED MUSCLE SPECIFIC ENHANCER
Favre et al. A fluorescence study of “in vitro” TMV reconstitution
KR20240158989A (en) Engineered chimeric nuclease
WO2023178115A2 (en) Engineered and chimeric nucleases
EP1228199B1 (en) Method for directed packaging of molecular substances in protein shells
WO1999025837A2 (en) Method for producing virus-like particles on the basis of polyoma viruses

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003790708

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003790708

Country of ref document: EP

REF Corresponds to

Ref document number: 10393561

Country of ref document: DE

Date of ref document: 20050630

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393561

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2003790708

Country of ref document: EP