WO2004019327A1 - Method for deciding recording condition of data onto optical recording medium and data recording device - Google Patents

Method for deciding recording condition of data onto optical recording medium and data recording device Download PDF

Info

Publication number
WO2004019327A1
WO2004019327A1 PCT/JP2003/010693 JP0310693W WO2004019327A1 WO 2004019327 A1 WO2004019327 A1 WO 2004019327A1 JP 0310693 W JP0310693 W JP 0310693W WO 2004019327 A1 WO2004019327 A1 WO 2004019327A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
data
laser beam
virtual
cell
Prior art date
Application number
PCT/JP2003/010693
Other languages
French (fr)
Japanese (ja)
Inventor
Syuji Tsukamoto
Narutoshi Fukuzawa
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to AU2003261711A priority Critical patent/AU2003261711A1/en
Publication of WO2004019327A1 publication Critical patent/WO2004019327A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • G11B7/24088Pits for storing more than two values, i.e. multi-valued recording for data or prepits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00455Recording involving reflectivity, absorption or colour changes

Definitions

  • the present invention relates to a method for determining conditions for recording data on an optical recording medium and a data recording apparatus. More specifically, the present invention relates to a method for recording two or more bits of data on an optical recording medium and recording the data on an optical recording medium.
  • the data recording conditions When reading the read data, it is necessary to determine the data recording conditions so that the difference in the recording level of the data can be reliably determined and a reproduced signal having a wide dynamic range can be obtained.
  • a method for determining data recording conditions that can be performed and the ability to record data of 2 bits or more on an optical recording medium and to reliably determine the difference in the data recording level when reading data recorded on the optical recording medium
  • Data recording conditions are determined so that a reproduced signal having a wide dynamic range can be obtained, and data can be recorded on an optical recording medium.
  • the recording device It relates. Conventional technology
  • optical recording media such as CDs and DVDs have been widely used as recording media for recording digital data
  • the data recording method is to record data to be recorded along a track along a track.
  • a method of modulating the length is widely used.
  • the total energy of the laser beam irradiated to the virtual recording cell that is, (power of the laser beam) X (time of irradiation of the virtual recording cell with the laser beam) is changed in 2N steps.
  • 2N types of recording marks are formed in a virtual recording cell, and N bits of data are recorded.
  • the virtual recording cell in which the total energy of the irradiated laser beam is different and different recording marks are formed will have different light reflectivity with respect to the laser beam.
  • Data can be reproduced by irradiating along the track of the optical recording medium and detecting the amount of laser beam reflected by the virtual recording cell.
  • N-bit data is recorded on the optical recording medium, and the data is recorded on the optical recording medium with high density.
  • an optical recording medium configured to record data by a multi-level recording method is used. For example, a recording layer containing an organic dye material is provided.
  • the light reflectance of the recording layer containing the organic dye material is such that, when no data is recorded, when the laser beam having the maximum power or more is irradiated, the organic dye material is decomposed and deteriorated. It has the property of reducing light reflectance. Therefore, by changing the total energy of the laser beam applied to the virtual recording cell in 2N steps, the light reflectance of the virtual recording cell in which the recording mark is formed can be changed in 2N steps, It becomes possible to record N-bit data with different recording levels on a recording medium.
  • the relationship between the total energy of the laser beam applied to the virtual recording cell and the light reflectance of the virtual recording cell is not linear, and When the total energy of the laser beam applied to the recording cell is less than the first predetermined value, even if the total energy of the laser beam applied to the virtual recording cell changes, the light reflectance of the virtual recording cell changes. When the total energy of the laser beam applied to the virtual recording cell is greater than or equal to the second predetermined value, the light reflectance of the virtual recording cell is saturated, and the laser beam applied to the virtual recording cell is saturated. It has been observed that even if the total energy of the system changes, the light reflectivity of the virtual recording cell hardly changes.
  • the laser beam applied to the virtual recording cell is within a range in which the relationship between the total energy of the laser beam applied to the virtual recording cell and the light reflectance of the virtual recording cell becomes almost linear.
  • the total energy of the beam By changing the total energy of the beam, recording marks with different recording levels were formed in the virtual recording cells.
  • Another object of the present invention is to record data of 2 bits or more on an optical recording medium and, when reading the data recorded on the optical recording medium, to reliably determine the difference in the data recording level.
  • An object of the present invention is to provide a data recording device capable of determining data recording conditions and recording data on an optical recording medium so that a reproduced signal having a wide dynamic range can be obtained.
  • the present inventor has conducted intensive studies to achieve the object of the present invention, and as a result, when the recording power level of the laser beam changes, the irradiation time of the laser beam set to the recording power to the virtual recording cell and The relationship between the virtual recording cell and the light reflectance changes, and the higher the recording power of the laser beam, the higher the level of the laser beam set to the recording power, even if a higher maximum reflectance is assigned to the virtual recording cell.
  • the data at different recording levels can be recorded in the virtual recording cell without greatly changing the irradiation time of the laser beam, while the lower the recording power level of the laser beam, the lower the minimum reflectance in the virtual recording cell Assigns different recording levels to the virtual recording cells without significantly changing the irradiation time of the laser beam set to the recording power. Found that it is possible to record.
  • the object of the present invention is to provide a plurality of virtual recording cells, which are virtually set in a recording layer of an optical recording medium, with two or more bits.
  • the recording power of a laser beam used for recording data is set according to the maximum light reflectance and / or the minimum light reflectance allocated to the virtual recording cell. in a preferred embodiment of the recording condition c present invention is achieved by the determination method, the higher the virtual split the recording cell skilled Teru maximum reflectivity is high, the recording power of the laser beam is set to a high level.
  • the virtual recording cell As the minimum reflectance to be applied is lower, the recording power of the laser beam is set to a lower level.
  • the recording power of the laser beam is set to a higher level, and the maximum relative light reflectance RRaH and the minimum relative light
  • the reflectance RR hH is set to satisfy 100—RR aH and RR hH.
  • the recording power of the laser beam is set to a lower level, and the maximum relative light reflectance RRaH and the minimum The relative light reflectance RRhH is set so as to satisfy 100_RRaL> RRhL.
  • the recording layer of the optical recording medium contains an organic dye material.
  • the object of the present invention is also to provide a maximum light allocated to the virtual recording cell when recording data of 2 bits or more in a plurality of virtual recording cells virtually set on the recording layer of the optical recording medium.
  • a data recording device characterized by storing recording condition setting data in which a recording beam of a laser beam used for recording data is set according to the reflectance and / or the minimum light reflectance. Is done.
  • the recording level of the laser beam is set to a higher level, and the recording condition setting data is generated. I have.
  • the recording power of the laser beam is set to a lower level, and the recording condition setting data is generated. ing.
  • the recording power of the laser beam is set to a higher level, and the maximum relative light reflectance RRaH and the minimum relative light Set so that the reflectance RR hH satisfies 1 0 0— RR a H and RR h H Then, the recording condition setting data is generated.
  • the lower the minimum reflectance assigned to the virtual recording cell the lower the recording power of the laser beam is set to a lower level, and the maximum relative light reflectance RR aH
  • the minimum relative light reflectance RRhH is set so as to satisfy 100—RRaL> RRhL, and the recording condition setting data is generated.
  • FIG. 1 is a schematic perspective view of an optical recording medium according to a preferred embodiment of the present invention.
  • FIG. 2 is an enlarged schematic cross-sectional view of a portion surrounded by a circle of the optical recording medium shown in FIG.
  • FIG. 3 is a diagram showing a state in which recording marks are formed in a plurality of virtual recording cells.
  • FIG. 4 is a graph showing the relationship between the time during which a recording layer of an optical recording medium is irradiated with a laser beam whose power is set to the recording power, and the light reflectance of the recording layer.
  • FIG. 5 shows the change in the power of the laser beam applied to the virtual recording cell S.
  • FIG. 6 shows the recording power set when the recording power of the laser beam applied to the recording layer of the optical recording medium is changed.
  • 4 is a graph showing the relationship between the time of laser beam irradiation and the light reflectance of the recording layer.
  • FIG. 7 is a block diagram of a data recording device according to a preferred embodiment of the present invention.
  • FIG. 8 is a graph showing the result of measuring the relationship between the light reflectance of each virtual recording cell and the irradiation time of the laser beam set to the recording power in Example 1.
  • FIG. 9 shows the recording power P w of the laser beam in the second embodiment
  • 9 is a graph showing the result of measuring the relationship between error rates.
  • FIG. 1 is a partially cut-away schematic perspective view of an optical recording medium
  • FIG. 2 is a substantially enlarged perspective view of a circled portion in FIG.
  • the optical recording medium 1 is configured as a write-once DVD-R type optical recording medium, and includes a light-transmitting substrate 11 and a dummy substrate. 1 2 and a recording layer 21, a reflective layer 22, a protective layer 23 and a bonding layer 24 between the light-transmitting substrate 11 and the dummy substrate 1 2 .
  • the light-transmitting substrate 11 is formed in a disk shape using a light-transmitting resin.
  • the lower surface of the light-transmitting substrate 11 constitutes a light incident surface on which a laser beam is incident.
  • the upper surface of the light-transmitting substrate 11 has a central portion.
  • a group 11a and a land 11b for guiding the laser beam are spirally formed from the vicinity toward the outer edge.
  • the recording layer 21 is formed so as to cover the group 11 a and the land 11 b formed on the upper surface of the light transmitting substrate 11, and comprises a cyanine, merocyanine, and methine-based material. It contains organic dyes such as dyes and derivatives thereof, benzene thiol metal complexes, phthalocyanine dyes, naphtha thiocyanine dyes, and azo dyes.
  • the organic dye contained in the recording layer 21 is decomposed and deteriorates, and the light reflectance of the portion irradiated with the laser beam is changed. Changes.
  • the reflective layer 22 reflects the laser beam applied to the recording layer 21 via the light-transmitting substrate 11 when reproducing data recorded on the recording layer 21 of the optical recording medium 1.
  • This is a thin film layer for It is formed by the sputtering method used as a part.
  • a protective layer 23 is formed so as to cover the surface of the reflective layer 22 in order to protect the reflective layer 22 and the recording layer 21.
  • an adhesive layer 24 is formed on the protective layer 23.
  • the adhesive layer 24 allows the light-transmitting substrate 11, the recording layer 21, the reflective layer 22 and the protective layer 24 to be formed.
  • the laminate composed of the layers 23 and the dummy substrate 12 are adhered.
  • each of the light-transmitting substrate 11 and the dummy substrate 12 has a thickness of about 0.6 mm.
  • 3-bit data is recorded on the recording layer 21 of the optical recording medium 1.
  • the recording layer 21 of the optical recording medium 1 includes a plurality of virtual recording cells S, S having a predetermined length virtually along the group 11a.
  • Each virtual recording cell S constitutes a recording unit for recording data.
  • FIG. 3 is a diagram showing a state in which recording marks are formed in a plurality of virtual recording cells.
  • the virtual recording cells S, S,... Have a length L in the direction along the group 11a of each virtual recording cell S smaller than the spot diameter of the laser beam. As such, it is virtually set.
  • different recording marks M a, M b, M c, M d, M e, M f, M g, M are respectively stored in eight consecutive virtual recording cells S, S,. h is formed, and three bits of data are recorded at different recording levels, and each virtual recording cell S is irradiated with a laser beam whose power is set to a recording level.
  • the degree of degradation of the organic dye material in the virtual recording cell S can be controlled, and different recording marks can be formed in the virtual recording cell S.
  • Fig. 3 shows the degradation of the organic dye material in virtual recording cell S.
  • the degree is indicated by the size of the recording marks Ma, Mb, Mc, Md, Me, Mi, Mg, and Mh.
  • the laser beam is applied to the recording layer while rotating the optical recording medium 1. to be irradiated to 2 1, each virtual recording cell S, oval recording marks Ma, Mb, Mc, Md, M e, M f, g N Mh is formed.
  • the organic dye material has such a property that the light reflectance becomes lower as the degree of decomposition and alteration is larger.Therefore, the virtual recording cell S in which no recording mark is formed and no data is recorded is the largest. The virtual recording cell S having a larger light reflection rate and a larger recording mark has a smaller light reflection rate.
  • FIG. 4 is a graph showing the relationship between the time of irradiating the recording layer 21 of the optical recording medium 1 with a laser beam whose power is set to the recording power and the light reflectance of the recording layer 21.
  • the degree of degradation of the organic dye material increases as the irradiation time of the laser beam set at the recording power increases, and as shown in Fig. 4, the laser beam set at the recording power changes. As the irradiation time increases, the light reflectance of the recording layer 21 decreases.
  • the time for irradiating the laser beam set to the recording power is Ta, and the light reflectance Ra of the recording layer 21 at the shortest time is determined by the virtual recording cell S having the maximum light reflectance.
  • the laser beam set at the recording power is irradiated with the laser beam for the time Th, and the light reflectance R h of the recording layer 21 when the laser light is the longest is assumed to be the virtual light having the minimum light reflectance.
  • the light reflectance between the maximum light reflectance R a and the minimum light reflectance R h is divided into seven, and the six types of mutually different light reflectance Rb, Rc, Rd, Re, Ri, and Rg are determined, assigned as the light reflectance of the virtual recording cells S having different data recording levels, and recorded by irradiating a laser beam.
  • the organic dye material contained in the layer 21 is decomposed and deteriorated, and the light reflectance of the virtual recording cell S is changed to Ra, Rb, Rc,
  • the irradiation time of the laser beam of the recording power required to obtain R d, Re, R f, R g, and R h is determined, respectively, and is temporarily determined according to the data recording level.
  • the maximum irradiation time T max of the laser beam to the virtual recording cell is equal to L / V (where L is the length of the virtual recording cell and V is the recording linear velocity).
  • the irradiation time T h of the laser beam for forming the recording mark M h having the light reflection rate R h of not more than T max it is necessary to set the irradiation time T h of the laser beam for forming the recording mark M h having the light reflection rate R h of not more than T max.
  • the irradiation time T h of the laser beam for forming the recording mark M h is It must be set to 55 nsec or less.
  • FIG. 5 is a diagram showing a modulation pattern of the power of the laser beam applied to the virtual recording cell S.
  • the power of the laser beam applied to the virtual recording cell S is selectively modulated into the recording power w and the base power, and the recording mark M to be formed in the virtual recording cell S is obtained.
  • Td, Te, Tf, Tg, and Th are set.
  • the organic dye material contained in the recording layer 21 decomposes and decomposes little by little, starting from the start of the irradiation of the laser beam set to the recording power.
  • the degree of decomposition and alteration of the organic dye material increases substantially linearly as the irradiation time of the laser beam increases, and after the elapse of the second predetermined time, the irradiation time of the laser beam Even if the recording layer 21 is increased, the degree of decomposition and deterioration of the organic dye material hardly increases. Therefore, as shown in FIG. 4, the light reflectance of the recording layer 21 depends on the recording power.
  • the laser beam irradiation time of the laser beam When the set irradiation time of the laser beam is within the area A shorter than the first predetermined time, the laser beam irradiation time does not change much even if the irradiation time is increased, and the laser beam set at the recording power is not changed.
  • the irradiation time of the beam is within the area B for more than the first predetermined time and less than the second predetermined time, the laser beam As the irradiation time of the laser beam increases, it decreases almost linearly, and the irradiation time of the laser beam set to the recording power is longer than the second predetermined time.
  • the light reflectance in the area A and the area C as well as the light reflectance in the area B are assigned as the light reflectance of the virtual recording cell S, the light reflectance in the area B becomes Using the light reflectance in the area A and the area C, data of different recording levels is stored in the virtual recording cell S, as compared with the case where data of different recording levels are recorded in the virtual recording cell S.
  • the light reflectance in the area B shown in FIG. S is assigned as the light reflectance of the virtual recording cell, and the irradiation time of the laser beam set to the recording power is controlled so that the light reflectance of the virtual recording cell S becomes the assigned value. Recording data with different recording levels It has been configured to.
  • the light reflectance in the area B shown in FIG. 4 is assigned as the light reflectance of the virtual recording cell S, and the light reflectance of the virtual recording cell S becomes the assigned value.
  • the maximum reflectance Ra and the minimum reflectance Rh are calculated. There has been a problem that the difference cannot be made sufficiently large, and as a result, a reproduced signal having a sufficiently wide dynamic range cannot be obtained.
  • the maximum light reflectance R of the virtual recording cell S can be maintained within a range where data of different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam set in the recording power.
  • a is as close as possible to the light reflectance R o of the virtual recording cell S where no recording mark is formed, and the minimum light reflectance R h of the virtual recording cell S is the saturation light reflectance R s
  • the light reflectivity of each virtual recording cell S is assigned so that it is as close as possible, and the time for irradiating the laser beam set to the recording power w Determining the minimum and maximum values of is necessary to reproduce a signal with a wide dynamic range.
  • the inventor of the present invention has conducted diligent research and has found that recording of a laser beam.
  • the relationship between the irradiation time of the laser beam set to the recording power w to the virtual recording cell S shown in FIG. 4 and the light reflectance of the virtual recording cell S changes. and, as the level of the recording Pawa P w of the laser beam is high, the virtual record be assigned a higher maximum reflectance in the cell S, the recording power _P v this set laser beam without significantly changing the irradiation time of the recording Data with different levels can be recorded in the virtual recording cell S.
  • the recording power _P of the laser beam is lower, even if a lower minimum reflectivity is assigned to the virtual recording cell S, the recording power is reduced. It has been found that data with different recording levels can be recorded in the virtual recording cell s without greatly changing the set irradiation time of the laser beam.
  • FIG. 6 shows the time of irradiating the laser beam set to the recording power / 3 w when the recording power w of the laser beam irradiating the recording layer 21 of the optical recording medium was changed
  • the recording layer 2 6 is a graph showing the relationship between the light reflectance of Example 1 and the light reflectance.
  • the light reflectance of the recording layer 21 is changed to the laser beam set to the recording power w.
  • the light reflectance decreases almost linearly as the irradiation time of the laser beam increases, and
  • the recording power of the laser beam is set to a low level, the light reflectance of the recording layer 21 starts to irradiate the laser beam at the set recording power.
  • the recording power w of the laser beam is set to a high level, the irradiation time of the laser beam set to the recording power can be maintained even if the maximum light reflectance assigned to the virtual recording cell S is set to a high value. Since it is possible to record data having different recording levels in the virtual recording cell S without greatly changing it, if the recording power w of the laser beam is w /, it is assigned to the virtual recording cell s. Can be assigned to the virtual recording cell S when the maximum light reflectivity R a H and the maximum relative light reflectivity RR a H (%) and the recording power of the laser beam are ⁇ (PwL ⁇ PwH). The maximum light reflectivity R a L and the maximum relative light reflectivity RR a L (%) satisfy the following equation.
  • the relative light reflectance RR i (%) when the absolute light reflectance is R i is defined by the following equation.
  • RR i (%) ⁇ (R i-R s) / (R o — R s) ⁇ X 100
  • the maximum light reflectance Ra and the maximum relative light reflectance RR a (%) assigned to the virtual recording cell S are set to high values.
  • data with different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam set to the recording power w, and a reproduced signal having a wide dynamic range can be reproduced. It is possible to obtain.
  • the recording power P w of the laser beam is In some cases, when the minimum light reflectance R hL and the minimum relative light reflectance RR h L (%) that can be assigned to the virtual recording cell S and the recording power of the laser beam are (PwL ⁇ PwH), The minimum light reflectance R hL and the minimum relative light reflectance RR h L (%) that can be assigned to the virtual recording cell S satisfy the following equations.
  • the virtual recording cell S Even if the minimum light reflectance R h and the minimum relative light reflectance RR h (%) are set to low values, the recording level can be maintained without significantly changing the irradiation time of the laser beam set to the recording power. Can be recorded in the virtual recording cell S, and a reproduced signal having a wide dynamic range can be obtained.
  • the light reflectance of the recording layer 21 increases at a stage where the level of the light reflectance is relatively high and the irradiation time of the laser beam As the light reflection increases, the light reflection decreases almost linearly, while the light reflectance of the recording layer 21 increases with the irradiation time of the laser beam at a stage where the light reflection level is not so low. Even if the recording power P w of the laser beam is set to a high level P w / f in order to increase the maximum light reflectance assigned to the virtual recording cell S, the virtual recording cell will not change.
  • the maximum relative light reflectance RR a H and the minimum relative light reflectance RR hH assigned to S are determined so as to satisfy the following equation.
  • the virtual recording cell S By determining the maximum relative light reflectance RR a H and the minimum relative light reflectance RR hH assigned to the laser beam in this manner, the recording power is set when the recording power of the laser beam is P wiJ. Even if the irradiation time of the laser beam is not significantly changed, the maximum relative light reflectance RR a H and the maximum relative light reflectivity of the virtual recording cell S can be recorded within the virtual recording cell S within a range where data with different recording levels can be recorded in the virtual recording cell S, respectively. It becomes possible to assign the minimum relative light reflectance RRhH.
  • the level of the recording power _P w of the laser beam is low, as shown in FIG. 6, the light reflectivity of the recording layer 21 is maintained until the level of the light reflectivity becomes relatively low.
  • the irradiation time of the laser beam increases, it does not decrease almost linearly, while the light reflectance of the recording layer 21 increases until the level of the light reflectance becomes significantly lower. Since it is recognized that the irradiation time increases almost linearly, the recording power of the laser beam is set to a low level so as to increase the minimum light reflectance assigned to the virtual recording cell S.
  • the maximum relative light reflectance RR a L and the minimum relative light reflectance RR h L assigned to the virtual recording cell S are determined so as to satisfy the following equation.
  • the maximum relative light reflectance RR a L and the minimum relative light reflectance RR h L assigned to the virtual recording cell S are determined in this manner, and the laser When the recording power of the beam is P, the data with different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam set to the recording power.
  • the maximum relative light reflectance RRaL and the minimum relative light reflectance RRhL of the virtual recording cell S can be assigned.
  • the recording power _P w of the laser beam used for recording data is selected, and other characteristics, For example, the optimum recording power w is determined from the recording power of the selected laser beam in accordance with the error rate when reproducing data.
  • the light reflectance between the maximum light reflectance R a and the minimum light reflectance R h is roughly divided into seven equal parts, and six different light reflectances R b, R c, R d, R e, R f and R g are determined, and assigned as the light reflectance of the virtual recording cell S having different data recording levels, and the organic dye material contained in the recording layer 21 is decomposed and deteriorated by irradiating a laser beam.
  • the optimum level and the irradiation time of the laser beam set to the optimum recording power are determined for each virtual recording cell S having a different data recording level, and the recording condition setting data is generated.
  • the recording condition setting data generated in this way is stored in the memory of the data recording device in association with ID data specifying the type of the optical recording medium 1, and is read out when recording data.
  • the irradiation time of the laser beam set to the optimum recording power P w to be applied to the virtual recording cell S is determined according to the level of the laser beam recording power and the data recording level.
  • the recording layer 21 is irradiated with a laser beam to record data.
  • FIG. 7 is a block diagram of a data recording device according to a preferred embodiment of the present invention.
  • the data recording device 40 is configured as a so-called DVD-R recorder, and includes a spindle servo 41, a spindle motor 42, a pickup 43, a focus tracking servo 44, and a feed servo 4. 5 and a controller 4 6 are provided.
  • the spindle motor 42 is driven and controlled by a spindle servo 41 to rotate the optical recording medium 1 at a constant linear velocity.
  • the pickup 43 is controlled by the control device 46 to record data.
  • the optical recording medium 1 is irradiated with a laser beam having an amplitude from the base power P to the recording power, and at the time of reproducing data recorded on the optical recording medium 1, the reproducing power r is applied to the optical recording medium 1. It is configured to irradiate a laser beam set to.
  • the pickup 43 has an objective lens (not shown) and a half mirror (not shown).
  • the laser beam is optically recorded by the objective lens and the half mirror.
  • the light is focused on the recording layer 21 of the medium 1.
  • the objective lens is subjected to focus tracking control by the focus tracking servo 44, and the laser beam is focused on the recording layer 21 of the optical recording medium 1.
  • the pickup 43 is reciprocated by a servo 45 between the inner circumference and the outer circumference along the diameter direction of the optical recording medium 1, while the optical recording medium 1 is moved by a spindle motor 42. Since the laser beam is rotated at a constant linear velocity, the laser beam is applied to the entire surface of the recording layer 21 along the track.
  • the controller 46 controls the drive of the spindle servo 41, the pickup 43, the focus tracking servo 44 and the feed servo 45, and based on the electric signal output from the pickup 43. Thus, the data recorded on the recording layer 21 is read.
  • the memory of the control device 46 stores recording condition setting data in association with ID data for specifying the type of the optical recording medium 1.
  • the control device 46 When recording data on the recording layer 21 of the optical recording medium 1, first, the control device 46 reads the ID data recorded on the optical recording medium 1, and records the data in the memory according to the ID data. The corresponding recording condition setting data is read.
  • the controller 46 is used to record data on the recording layer 21 of the optical recording medium 1 according to the read recording condition setting data. And it determines the recording power P w of the laser beam, in accordance with the data of the recording level, and determines the irradiation time of the optimum recording power P
  • This set laser beam is irradiated on a virtual recording cells S, the control device 4 By 6, the laser driver of the pickup 43 is controlled, and the irradiation time of the laser beam applied to the virtual recording cell S is controlled according to the recording level of the data to be recorded.
  • the configuration is such that the higher the maximum light reflectance Ra and the maximum relative light reflectance RRa (%) assigned to the virtual recording cell S, the higher the recording power of the laser beam is set to a higher level. Therefore, even if the maximum light reflectance Ra and the maximum relative light reflectance RRa (%) assigned to the virtual recording cell S are set to high values, the recording power PH significantly changes the irradiation time of the set laser beam. Without recording, data having different recording levels can be recorded in the virtual recording cell S, and a reproduced signal having a wide dynamic range can be obtained.
  • the lower the minimum light reflectance R h and the minimum relative light reflectance RR h (%) assigned to the virtual recording cell S the lower the recording power ⁇ P w of the laser beam. Even if the minimum light reflectance R h and the minimum relative light reflectance RR h (%) assigned to the virtual recording cell S are set to low values, the recording power is set to “w”. Thus, data having different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam, and a reproduced signal having a wide dynamic range can be obtained.
  • the recording power w of the laser beam is set to a high level P in order to increase the maximum light reflectance assigned to the virtual recording cell S
  • the maximum relative light reflectivity RR a H and the minimum relative light reflectivity RR h H are determined so as to satisfy the following equation. Therefore, when the recording power of the laser beam is P wiJ, the recording power
  • the maximum relative light reflectance of the virtual recording cell S is set within the range where data with different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam set in the virtual recording cell S. It becomes possible to assign RR a H and minimum relative light reflectance RR h H.
  • the virtual recording cell S is allocated to the virtual recording cell S.
  • the maximum relative light reflectivity RR a L and the minimum relative light reflectivity RR h L are determined so as to satisfy the following equation. If the recording power of the laser beam is, then the recording power The maximum relative light reflectance RR a L of the virtual recording cell S, respectively, within the range where data with different recording levels can be recorded in the virtual recording cell S without greatly changing the laser beam irradiation time set in And the minimum relative light reflectance RR h L can be assigned.
  • the memory (not shown) of the control device 46 of the data recording device 50 stores the recording condition setting data in association with the ID data specifying the type of the optical recording medium 1.
  • the ID data recorded on the optical recording medium 1 is read by the controller 46, and the data is read according to the ID data.
  • corresponding recording condition setting data stored in the memory is read out, according to the recording condition setting data, together with the record power P w of the laser beam is determined to an optimum level, the data of the recording level
  • the configuration is such that the irradiation time of the laser beam set to the optimum recording power for irradiating the virtual recording cells S having different recording levels is determined accordingly.
  • An optical recording medium sample was produced as follows. First, by injection molding, the group and land have a thickness of 0.6 mm and a diameter of 12 O mm, and the surface and the track pitch (group pitch) are 0.74 m. A disk-shaped light-transmitting substrate made of the formed polycarbonate was prepared.
  • the light-transmitting substrate is set in a spin coating apparatus, and while rotating the light-transmitting substrate, the azo-based material represented by the following structural formula is placed on the surface on which the groups and lands of the light-transmitting substrate are formed.
  • An organic solvent containing an organic dye was added dropwise to form a coating film, and the coating film was dried to form a recording layer having a thickness of 100 nm on the group.
  • the light-transmitting substrate on which the recording layer was formed was set in a sputtering apparatus, and a reflective layer made of an alloy of Ag, Pd, and Cu and having a thickness of 150 nm was formed on the recording layer.
  • a reflective layer made of an alloy of Ag, Pd, and Cu and having a thickness of 150 nm was formed on the recording layer.
  • the acrylic UV-curable resin is dissolved in a solvent, and the prepared resin solution is applied to the surface of the reflective layer.
  • the coating film was irradiated with ultraviolet rays to cure the acrylic ultraviolet curable resin, thereby forming a protective layer.
  • an ultraviolet-curable adhesive was dropped on the protective layer 23 to form an adhesive layer.
  • the optical recording medium sample thus prepared was set on an optical recording medium evaluation device “DDU100” (trade name) manufactured by Pulstec Industrial Co., Ltd., and the recording linear velocity was set to 7.0 m / sec.
  • the recording power of the laser beam was set to 9.0 OmW, and the laser beam was irradiated from the light-transmitting substrate side.
  • the maximum irradiation time for irradiating the virtual recording cell with the laser beam set to the recording power was 55 nsec.
  • a different track of the same optical recording medium sample is irradiated with a laser beam whose recording power is set to 12.2 mW, and the laser beam set to the recording power is set for each virtual recording cell.
  • the irradiation time different recording marks were formed in multiple virtual recording cells.
  • a different track of the same optical recording medium sample is irradiated with a laser beam having a recording power set to 16 OmW, and a laser beam set to the recording power is set for each virtual recording cell.
  • a laser beam set to the recording power is set for each virtual recording cell.
  • different recording marks were formed in multiple virtual recording cells.
  • a laser beam with a reproduction power P_r set to 1.3 mW is applied to the optical recording medium sample in which different recording marks are formed in a plurality of virtual recording cells, and the linear velocity is increased from the optically transparent substrate side. Irradiate at 7.0 m / sec, measure the amount of laser beam reflected by each virtual recording cell, measure the light reflectance of each virtual recording cell, the irradiation time of the laser beam set to the recording power, and Was measured.
  • the light reflectance on the vertical axis is represented by a voltage value (V) obtained by photoelectrically converting the laser beam reflected by each virtual recording cell.
  • the light reflectance (V) in FIG. 8 is calibrated so that the light reflectance (V) of the virtual recording cell where no recording mark is formed becomes 1.0.
  • the light reflectance of the virtual recording cell becomes shorter in a short time after the irradiation of the laser beam set to the recording power is started.
  • the irradiation time of the laser beam increased, it decreased almost linearly, and it was found that the length of the region A in FIG. 4 became shorter.
  • the recording power of the laser beam is lower, even if the irradiation time of the laser beam is increased, the light reflectance of the virtual recording cell does not change much. It took a long time, and it was found that the length of the area C in FIG. 4 became short.
  • the recording power of the laser beam is set to 9.0 mW
  • the virtual recording cell is irradiated with the laser beam set to the recording power for 55 nsec, which is the maximum irradiation time.
  • the light reflectance of the recording cell did not reach the saturated light reflectance.
  • the higher the recording power of the laser beam the larger the change in the light reflectance of the virtual recording cell with the increase in the irradiation time of the laser beam in the region B in FIG. was found.
  • An optical recording medium sample was prepared in the same manner as in Example 1, and was set on an optical recording medium evaluation device “DDU 100” (trade name) manufactured by Pulstec Industrial Co., Ltd. At 7.0 m / sec, 3-bit data was recorded in each virtual recording cell according to the first recording condition and the second recording condition.
  • DDU 100 optical recording medium evaluation device
  • the maximum relative light reflectivity RRa assigned to the virtual recording cell was set to 85%, and the minimum relative light reflectivity RRh was set to 5%.
  • the recording layer 21 was irradiated with a laser beam having a different recording power to record data.
  • the maximum relative light reflectance RRa assigned to the virtual recording cell was set to 95%
  • the minimum relative light reflectance RRh was set to 15%
  • the laser beams having different recording powers were set.
  • a laser beam with a power level set to 1.3 mW was applied to the optical recording medium sample on which data was recorded according to the first recording condition and to the optical recording medium sample on which data was recorded according to the second recording condition.
  • the system was irradiated at a linear velocity of 7.0 m // sec, the data was reproduced, the error rate (DSER) was measured, and the relationship between the recording power of the laser beam and the error rate was measured.
  • DSER error rate
  • the recording power at which the error rate (DSER) became the minimum was about 8 mW
  • the recording power w at which the error rate (DSER) was minimum was about 11 mW
  • the low maximum relative light reflection was applied to the virtual recording cell. If a low relative light reflectance is assigned, the recording power w of the laser beam is set to a low level, and a high maximum relative light reflectance and a high minimum relative light reflectance are assigned to the virtual recording cell. In this case, it was confirmed that it is preferable to set the recording power of the laser beam to a high level.
  • the force S described above for recording data is described. Record data on media
  • the present invention is not limited to this case, and can be applied to the case where data is recorded on another optical recording medium.
  • the optical recording medium 1 irradiates the recording layer 21 with a laser beam through the light transmitting substrate 11 to record data, and the data is recorded on the recording layer 21.
  • the optical recording medium 1 irradiates a laser beam to the recording layer 21 through the light-transmitting substrate 11 to record data, and It is not always necessary to be configured to reproduce the data recorded in 21.
  • the present invention provides a reflective layer, a recording layer, and a protective layer on a substrate in this order, and through the protective layer. The present invention can also be applied to a case where a recording layer is irradiated with a laser beam to record data, and data recorded on an optical recording medium configured to reproduce the data recorded on the recording layer.
  • each virtual record Although 3-bit data is recorded in the cell S, the present invention is not limited to the case where 3-bit data is recorded in each virtual recording cell S, but is recorded in each virtual recording cell S. It can be widely applied when recording data of 2 bits or more.
  • the maximum light reflectance Ra, the maximum relative light reflectance RRa, and the minimum light reflection allocated to the virtual recording cell S are determined.
  • the reflectance Rh and the minimum relative light reflectance RRh are set, and the maximum light reflectance Ra and the minimum light reflectance Rh or between the maximum relative light reflectance RRa and the minimum relative light reflectance RRh are set.
  • the laser beam reflected from the virtual recording cell S is detected in the virtual recording cell S having a different recording level based on the minimum light reflectance R h and the minimum relative light reflectance RR h assigned to the virtual recording cell S, and the data is obtained.
  • reproducing the data it is possible to assign a different light reflectance or relative light reflectance according to the light reflectance difference or relative light reflectance difference at which the difference in data recording level can be recognized.
  • the laser beam when the laser beam reaches the starting point of the virtual recording cell S where the recording mark is to be formed, the laser beam is raised from the base power to the recording power _Pw.
  • the timing of raising the power of the laser beam from the base power to the recording power w can be arbitrarily determined.
  • the optical recording medium includes the recording layer containing the organic dye material.
  • the optical recording medium includes the recording layer containing the organic dye material.
  • a recording layer containing an inorganic material may be provided.
  • a difference in data recording level can be reliably determined. It is possible to provide a data recording condition determination method capable of determining data recording conditions so that a reproduction signal having a dynamic range can be obtained. Further, according to the present invention, it is possible to record data of 2 bits or more on an optical recording medium and to reliably determine a difference in data recording level when reading data recorded on the optical recording medium. It is possible to provide a data recording device that can record data on an optical recording medium by determining data recording conditions so that a reproduced signal having a wide dynamic range can be obtained. Become.

Abstract

There is provided a data recording condition decision method capable of surely determining the data recording level difference when 2-bit data or more-bit data is recorded onto an optical recording medium and the data recorded on the recording medium is read and deciding the data recording condition so as to obtain a reproduction signal having a wide dynamic range. As the maximum light reflectance assigned for a virtual recording cell virtually set on the recording layer of the optical recording medium becomes higher, the recording power of the laser beam used for recording data is set at a higher level and as the minimum light reflectance assigned for the virtual recording cell becomes lower, the recording power of the laser beam used for recording data is set at a lower level.

Description

明細書 光記録媒体へのデータの記録条件決定方法およびデータ記録装置 技術分野  Description Method for determining data recording condition on optical recording medium and data recording device
本発明は、 光記録媒体へのデータの記録条件決定方法およびデータ 記録装置に関するものであり、 さらに詳細には、 光記録媒体に、 2 ビ ッ ト以上のデータを記録し、 光記録媒体に記録されたデータを読み出 す際に、 データの記録レベルの相違を確実に判別することができ、 広 いダイナミックレンジを有する再生信号を得ることができるように、 データの記録条件を決定することができるデータ記録条件決定方法お よび光記録媒体に、 2ビッ ト以上のデータを記録し、 光記録媒体に記 録されたデータを読み出す際に、 データの記録レベルの相違を確実に 判別することができ、 広いダイナミ ックレンジを有する再生信号を得 ることができるように、データの記録条件を決定して、光記録媒体に、 データを記録することができるデータ記録装置に.関するものである。 従来の技術  The present invention relates to a method for determining conditions for recording data on an optical recording medium and a data recording apparatus. More specifically, the present invention relates to a method for recording two or more bits of data on an optical recording medium and recording the data on an optical recording medium. When reading the read data, it is necessary to determine the data recording conditions so that the difference in the recording level of the data can be reliably determined and a reproduced signal having a wide dynamic range can be obtained. A method for determining data recording conditions that can be performed and the ability to record data of 2 bits or more on an optical recording medium and to reliably determine the difference in the data recording level when reading data recorded on the optical recording medium Data recording conditions are determined so that a reproduced signal having a wide dynamic range can be obtained, and data can be recorded on an optical recording medium. The recording device. It relates. Conventional technology
従来より、 デジタルデータを記録するための記録媒体として、 C D や D V Dに代表される光記録媒体が広く利用されており、 そのデータ 記録方式としては、 記録すべきデータをトラックに沿ったピッ トの長 さに変調するという方式が広く用いられている。  Conventionally, optical recording media such as CDs and DVDs have been widely used as recording media for recording digital data, and the data recording method is to record data to be recorded along a track along a track. A method of modulating the length is widely used.
このような記録方式を用いる場合、 データの記録に際しては、 その 強度が変調されたレーザビームが、 光記録媒体のトラックに沿って、 照射され、 所定の長さを持ったピッ トが形成され、 一方、 データの再 生に際しては、 再生パワーに設定されたレーザビームが、 光記録媒体 のトラックに沿って、 照射され、 ピッ トの有無および長さが検出され る。  When such a recording method is used, when recording data, a laser beam whose intensity is modulated is irradiated along a track of the optical recording medium, and a pit having a predetermined length is formed. On the other hand, when reproducing data, a laser beam set to the reproducing power is irradiated along the track of the optical recording medium, and the presence or absence and length of the pit are detected.
近年、 データの高密度記録の要請にともない、 光記録媒体のトラッ クを、 仮想的に、 所定の長さを有する仮想記録セルに分割し、 仮想記 録セルに、 2 N種類 (Nは 2以上の整数である。) の異なる記録マーク のいずれかを形成して、 Nビッ トのデータを記録するいわゆる 「マル チレベル記録方式」 が提案されている。 In recent years, in response to the demand for high-density recording of data, tracks on optical recording media are virtually divided into virtual recording cells having a predetermined length, and virtual recording is performed. A so-called “multi-level recording method” has been proposed in which one of 2 N types (N is an integer of 2 or more) of different recording marks is formed in a recording cell to record N-bit data. .
マルチレベル記録方式においては、 仮想記録セルに、 照射されるレ 一ザビームの総エネルギー、すなわち、 (レーザビームのパワー) X (仮 想記録セルへのレーザビームの照射時間) を 2 N段階に変化させるこ とによって、 2 N種類の記録マークを、 仮想記録セルに形成して、 N ビッ トのデータを記録するように構成されている。 その結果、 照射さ れるレーザビームの総エネルギーが異なり、 異なった記録マークが形 成された仮想記録セルは、 レーザビームに対して異なる光反射率を有 することになり、 したがって、 レーザビームを、 光記録媒体のトラッ クに沿って、 照射し、 仮想記録セルによって反射されたレーザビーム の光量を検出することによって、 データを再生することができる。 このよ うに、 仮想記録セルの光反射率を 2 N段階に変化させること によって、 光記録媒体に、 Nビッ トのデータが記録されるから、 デー タを、 光記録媒体に高密度に記録するためには、 光反射率が最も高い 仮想記録セルと、 光反射率が最も低い仮想記録セルとの間の光反射率 の差が大きくなるように、 すなわち、 ダイナミックレンジが広くなる ように、 仮想記録セルに照射されるレーザビームの総エネルギーを制 御することが必要であり、 このような要求を満たすために、 マルチレ ベル記録方式によって、 データを記録するように構成された光記録媒 体は、 たとえば、 有機色素材料を含む記録層を備えている。 In the multilevel recording method, the total energy of the laser beam irradiated to the virtual recording cell, that is, (power of the laser beam) X (time of irradiation of the virtual recording cell with the laser beam) is changed in 2N steps. Thus, 2N types of recording marks are formed in a virtual recording cell, and N bits of data are recorded. As a result, the virtual recording cell in which the total energy of the irradiated laser beam is different and different recording marks are formed will have different light reflectivity with respect to the laser beam. Data can be reproduced by irradiating along the track of the optical recording medium and detecting the amount of laser beam reflected by the virtual recording cell. In this way, by changing the optical reflectance of the virtual recording cell to 2N steps, N-bit data is recorded on the optical recording medium, and the data is recorded on the optical recording medium with high density. In order to increase the difference in light reflectance between the virtual recording cell with the highest light reflectance and the virtual recording cell with the lowest light reflectance, that is, to increase the dynamic range, It is necessary to control the total energy of the laser beam applied to the recording cell, and in order to satisfy such a requirement, an optical recording medium configured to record data by a multi-level recording method is used. For example, a recording layer containing an organic dye material is provided.
有機色素材料を含む記録層の光反射率は、 データが記録されていな いときに、 最大で、 所定値以上のパワーを有するレーザビームが照射 されると、 有機色素材料が分解変質して、 光反射率が低下する性質を 有している。 したがって、 仮想記録セルに照射されるレーザビームの 総エネルギーを 2 N段階に変化させることによって、 記録マークが形 成された仮想記録セルの光反射率を 2 N段階に変化させることができ、 光記録媒体に、 記録レベルが異なる Nビッ トのデータを記録すること が可能になる。 しかしながら、 有機色素材料を含む記録層に、 記録マークを形成す る際、 仮想記録セルに照射されるレーザビームの総エネルギーと、 仮 想記録セルの光反射率との関係は線形ではなく、 仮想記録セルに照射 されるレーザビームの総エネ,ルギ一が第一の所定値以下の範囲では、 仮想記録セルに照射されるレーザビームの総エネルギーが変化しても、 仮想記録セルの光反射率はほとんど変化せず、 一方、 仮想記録セルに 照射されるレーザビームの総エネルギーが第二の所定値以上では、 仮 想記録セルの光反射率が飽和し、 仮想記録セルに照射されるレーザビ 一ムの総エネルギーが変化しても、 仮想記録セルの光反射率はほとん ど変化しないことが認められている。 The light reflectance of the recording layer containing the organic dye material is such that, when no data is recorded, when the laser beam having the maximum power or more is irradiated, the organic dye material is decomposed and deteriorated. It has the property of reducing light reflectance. Therefore, by changing the total energy of the laser beam applied to the virtual recording cell in 2N steps, the light reflectance of the virtual recording cell in which the recording mark is formed can be changed in 2N steps, It becomes possible to record N-bit data with different recording levels on a recording medium. However, when forming a recording mark on a recording layer containing an organic dye material, the relationship between the total energy of the laser beam applied to the virtual recording cell and the light reflectance of the virtual recording cell is not linear, and When the total energy of the laser beam applied to the recording cell is less than the first predetermined value, even if the total energy of the laser beam applied to the virtual recording cell changes, the light reflectance of the virtual recording cell changes. When the total energy of the laser beam applied to the virtual recording cell is greater than or equal to the second predetermined value, the light reflectance of the virtual recording cell is saturated, and the laser beam applied to the virtual recording cell is saturated. It has been observed that even if the total energy of the system changes, the light reflectivity of the virtual recording cell hardly changes.
し こがって、 従来は、 仮想記録セルに照射されるレーザビームの総 エネルギーと、 仮想記録セルの光反射率との関係がほぼ線形になる範 囲内で、 仮想記録セルに照射されるレーザビームの総エネルギーを変 化させて、 仮想記録セルに、 記録レベルの異なる記録マークを形成す るように構成されていた。  Conventionally, however, the laser beam applied to the virtual recording cell is within a range in which the relationship between the total energy of the laser beam applied to the virtual recording cell and the light reflectance of the virtual recording cell becomes almost linear. By changing the total energy of the beam, recording marks with different recording levels were formed in the virtual recording cells.
しかしながら、 広いダイナミックレンジを有する再生信号を得るた めには、 光反射率が最も高い仮想記録セルと、 光反射率が最も低い仮 想記録セルとの間の光反射率の差ができるだけ大きくなるように、 仮 想記録セルに照射されるレーザビームの総エネルギーを制御すること が必要であり、 仮想記録セルの光反射率との関係がほぼ線形になる範 囲内で、 仮想記録セルに照射されるレーザビームの総エネルギーを変 化させて、 仮想記録セルに、 記録レベルの異なる記録マークを形成す る場合には、 十分に広いダイナミックレンジを有する再生信号を得る ことができないどいう問題があった。 発明の開示  However, in order to obtain a reproduced signal with a wide dynamic range, the difference in light reflectance between the virtual recording cell with the highest light reflectance and the virtual recording cell with the lowest light reflectance is as large as possible. As described above, it is necessary to control the total energy of the laser beam applied to the virtual recording cell, and the energy is applied to the virtual recording cell within a range in which the relationship with the light reflectance of the virtual recording cell becomes almost linear. When recording marks with different recording levels are formed in virtual recording cells by changing the total energy of the laser beam to be reproduced, there is a problem that a reproduced signal having a sufficiently wide dynamic range cannot be obtained. Was. Disclosure of the invention
したがって、 本発明は、 光記録媒体に、 2ビッ ト以上のデータを記 録し、 光記録媒体に記録されたデータを読み出す際に、 データの記録 レベルの相違を確実に判別することができ、 広いダイナミックレンジ を有する再生信号を得ることができるように、 データの記録条件を決 定することができるデータ記録条件決定方法を提供することを目的と するものである。 . Therefore, according to the present invention, when data of 2 bits or more is recorded on an optical recording medium, and when the data recorded on the optical recording medium is read, a difference in data recording level can be reliably determined, Determine the data recording conditions so that a playback signal with a wide dynamic range can be obtained. It is intended to provide a method for determining data recording conditions that can be specified. .
本発明の別の目的は、 光記録媒体に、 2ビッ ト以上のデータを記録 し、 光記録媒体に記録されたデータを読み出す際に、 データの記録レ ベルの相違を確実に判別することができ、 広いダイナミ ックレンジを 有する再生信号を得ることができるように、 データの記録条件を決定 して、 光記録媒体に、 データを記録することができるデータ記録装置 を提供することにある。  Another object of the present invention is to record data of 2 bits or more on an optical recording medium and, when reading the data recorded on the optical recording medium, to reliably determine the difference in the data recording level. An object of the present invention is to provide a data recording device capable of determining data recording conditions and recording data on an optical recording medium so that a reproduced signal having a wide dynamic range can be obtained.
本発明者は、 本発明のかかる目的を達成するため、 鋭意研究を重ね た結果、 レーザビームの記録パワーのレベルが変化すると、 仮想記録 セルへの記録パワーに設定されたレーザビームの照射時間と、 仮想記 録セルの光反射率との関係が変化し、 レーザビームの記録パワーのレ ベルが高いほど、 仮想記録セルに高い最大反射率を割り当てても、 記 録パワーに設定されたレーザビームの照射時間を大きく変化させるこ となく、 記録レベルの異なるデータを仮想記録セルに記録することが でき、 その一方で、 レーザビームの記録パワーのレベルが低いほど、 仮想記録セルに低い最小反射率を割り当てても、 記録パワーに設定さ れたレーザビームの照射時間を大きく変化させることなく、 記録レべ ルの異なるデータを仮想記録セルに記録することが可能になることを 見出した。  The present inventor has conducted intensive studies to achieve the object of the present invention, and as a result, when the recording power level of the laser beam changes, the irradiation time of the laser beam set to the recording power to the virtual recording cell and The relationship between the virtual recording cell and the light reflectance changes, and the higher the recording power of the laser beam, the higher the level of the laser beam set to the recording power, even if a higher maximum reflectance is assigned to the virtual recording cell. The data at different recording levels can be recorded in the virtual recording cell without greatly changing the irradiation time of the laser beam, while the lower the recording power level of the laser beam, the lower the minimum reflectance in the virtual recording cell Assigns different recording levels to the virtual recording cells without significantly changing the irradiation time of the laser beam set to the recording power. Found that it is possible to record.
本発明はかかる知見に基づくものであり、 本発明によれば、 本発明 の前記目的は、 光記録媒体の記録層に、 仮想的に設定された複数の仮 想記録セルに、 2ビッ ト以上のデータを記録するに際し、 前記仮想記 録セルに割り当てる最大光反射率および/または最小光反射率に応じ て、 データを記録するために用いるレーザビームの記録パワーを設定 することを特徴とするデータの記録条件決定方法によって達成される c 本発明の好ましい実施態様においては、 前記仮想記録セルに割り当 てる最大反射率が高いほど、 前記レーザビームの記録パワーが高いレ ベルに設定される。 The present invention is based on such findings, and according to the present invention, the object of the present invention is to provide a plurality of virtual recording cells, which are virtually set in a recording layer of an optical recording medium, with two or more bits. When recording the data, the recording power of a laser beam used for recording data is set according to the maximum light reflectance and / or the minimum light reflectance allocated to the virtual recording cell. in a preferred embodiment of the recording condition c present invention is achieved by the determination method, the higher the virtual split the recording cell skilled Teru maximum reflectivity is high, the recording power of the laser beam is set to a high level.
本発明の別の好ましい実施態様においては、 前記仮想記録セルに割 り当てる最小反射率が低いほど、 前記レーザビームの記録パワーが低 いレベルに設定される。 In another preferred embodiment of the present invention, the virtual recording cell As the minimum reflectance to be applied is lower, the recording power of the laser beam is set to a lower level.
本発明のさらに好ましい実施態様においては、 前記仮想記録セルに 割り当てる最大相対反射率が高いほど、 前記レーザビームの記録パヮ 一が高いレベルに設定され、 最大相対光反射率 RR a Hと最小相対光 反射率 R R hHとが、 1 0 0— RR a Hく RR h Hを満たすように設 定される。  In a further preferred aspect of the present invention, as the maximum relative reflectance assigned to the virtual recording cell is higher, the recording power of the laser beam is set to a higher level, and the maximum relative light reflectance RRaH and the minimum relative light The reflectance RR hH is set to satisfy 100—RR aH and RR hH.
本発明の別の好ましい実施態様においては、 前記仮想記録セルに割 り当てる最小反射率が低いほど、 前記レーザビームの記録パワーが低 いレベルに設定され、 最大相対光反射率 R R a Hと最小相対光反射率 RR hHとが、 1 0 0 _RR a L>RR h Lを満たすように設定され る。  In another preferred embodiment of the present invention, as the minimum reflectance assigned to the virtual recording cell is lower, the recording power of the laser beam is set to a lower level, and the maximum relative light reflectance RRaH and the minimum The relative light reflectance RRhH is set so as to satisfy 100_RRaL> RRhL.
本発明の好ましい実施態様においては、 前記光記録媒体の前記記録 層が、 有機色素材料を含んでいる。  In a preferred embodiment of the present invention, the recording layer of the optical recording medium contains an organic dye material.
本発明の前記目的はまた、 光記録媒体の記録層に、 仮想的に設定さ れた複数の仮想記録セルに、 2ビッ ト以上のデータを記録する際に、 前記仮想記録セルに割り当てる最大光反射率および/または最小光反 射率に応じて、 データを記録するために用いるレーザビームの記録パ ヮ一が設定された記録条件設定用データを格納したことを特徴とする データ記録装置によって達成される。  The object of the present invention is also to provide a maximum light allocated to the virtual recording cell when recording data of 2 bits or more in a plurality of virtual recording cells virtually set on the recording layer of the optical recording medium. Achieved by a data recording device characterized by storing recording condition setting data in which a recording beam of a laser beam used for recording data is set according to the reflectance and / or the minimum light reflectance. Is done.
本発明の好ましい実施態様においては、 前記仮想記録セルに割り当 てる最大反射率が高いほど、 前記レーザビームの記録パヮ一が高いレ ベルに設定されて、 前記記録条件設定用データが生成されている。 本発明の別の好ましい実施態様においては、 前記仮想記録セルに割 り当てる最大反射率が低いほど、 前記レーザビームの記録パワーが低 いレベルに設定されて、前記記録条件設定用データが生成されている。 本発明のさらに好ましい実施態様においては、 前記仮想記録セルに 割り当てる最大相対反射率が高いほど、 前記レーザビームの記録パヮ 一が高いレベルに設定され、 最大相対光反射率 RR a Hと最小相対光 反射率 RR hHが、 1 0 0— R R a Hく R R h Hを満たすように設定 されて、 前記記録条件設定用データが生成されている。 In a preferred embodiment of the present invention, as the maximum reflectance assigned to the virtual recording cell is higher, the recording level of the laser beam is set to a higher level, and the recording condition setting data is generated. I have. In another preferred embodiment of the present invention, as the maximum reflectance assigned to the virtual recording cell is lower, the recording power of the laser beam is set to a lower level, and the recording condition setting data is generated. ing. In a further preferred aspect of the present invention, as the maximum relative reflectance assigned to the virtual recording cell is higher, the recording power of the laser beam is set to a higher level, and the maximum relative light reflectance RRaH and the minimum relative light Set so that the reflectance RR hH satisfies 1 0 0— RR a H and RR h H Then, the recording condition setting data is generated.
本発明の別の好ましい実施態様においては、 前記仮想記録セルに割 り当てる最小反射率が低いほど、 前記レーザビームの記録パヮ一が低 いレベルに設定され、 最大相対光反射率 R R a Hと最小相対光反射率 R R h Hが、 1 0 0— R R a L > R R h Lを満たすように設定されて、 前記記録条件設定用データが生成されている。  In another preferred embodiment of the present invention, the lower the minimum reflectance assigned to the virtual recording cell, the lower the recording power of the laser beam is set to a lower level, and the maximum relative light reflectance RR aH The minimum relative light reflectance RRhH is set so as to satisfy 100—RRaL> RRhL, and the recording condition setting data is generated.
本発明の上記およびその他の目的や特徴は、 以下の記述及び対応す る図面から明らかになるであろう。 図面の簡単な説明  The above and other objects and features of the present invention will be apparent from the following description and corresponding drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の好ましい実施態様にかかる光記録媒体の略斜視 図である。  FIG. 1 is a schematic perspective view of an optical recording medium according to a preferred embodiment of the present invention.
第 2図は、 第 1図に示された光記録媒体の丸で囲んだ部分の拡大略 断面図である。  FIG. 2 is an enlarged schematic cross-sectional view of a portion surrounded by a circle of the optical recording medium shown in FIG.
第 3図は、 複数の仮想記録セルに、 記録マークが形成された状態を 示すダイアグラムである。  FIG. 3 is a diagram showing a state in which recording marks are formed in a plurality of virtual recording cells.
第 4図は、 光記録媒体の記録層に、 パワーが記録パワーに設定され たレーザビームを照射した時間と、 記録層の光反射率との関係を示す グラフである。  FIG. 4 is a graph showing the relationship between the time during which a recording layer of an optical recording medium is irradiated with a laser beam whose power is set to the recording power, and the light reflectance of the recording layer.
第 5図は、 仮想記録セル Sに照射されるレーザビームのパワーの変 第 6図は、 光記録媒体の記録層に照射するレーザビームの記録パヮ 一を変化させたときの記録パワーに設定されたレーザビームを照射し た時間と、 記録層の光反射率との関係を示すグラフである。  FIG. 5 shows the change in the power of the laser beam applied to the virtual recording cell S. FIG. 6 shows the recording power set when the recording power of the laser beam applied to the recording layer of the optical recording medium is changed. 4 is a graph showing the relationship between the time of laser beam irradiation and the light reflectance of the recording layer.
第 7図は、 本発明の好ましい実施態様にかかるデータ記録装置のブ ロックダイアグラムである。  FIG. 7 is a block diagram of a data recording device according to a preferred embodiment of the present invention.
第 8図は、 実施例 1において、 各仮想記録セルの光反射率と、 記録 パワーに設定されたレーザビームの照射時間との関係を測定した結果 を示すグラフである。  FIG. 8 is a graph showing the result of measuring the relationship between the light reflectance of each virtual recording cell and the irradiation time of the laser beam set to the recording power in Example 1.
第 9図は、 実施例 2において、 レーザビームの記録パワー P wと、 エラーレー トの関係を測定した結果を示すグラフである。 発明の好ましい実施態様の説明 FIG. 9 shows the recording power P w of the laser beam in the second embodiment, 9 is a graph showing the result of measuring the relationship between error rates. DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
以下、 添付図面に基づき、 本発明の好ましい実施態様につき、 詳細 に説明を加える。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第 1図は、 光記録媒体の一部切り欠き略斜視図であり、 第 2図は、 第 1図の丸で囲んだ部分の略拡大斜視図である。  FIG. 1 is a partially cut-away schematic perspective view of an optical recording medium, and FIG. 2 is a substantially enlarged perspective view of a circled portion in FIG.
第 1図および第 2図に示されるように、 本実施態様にかかる光記録 媒体 1は、 追記型の D V D— R型光記録媒体と して構成され、 光透過 性基板 1 1およびダミ一基板 1 2を備え、 光透過性基板 1 1およぴダ ミ一基板 1 2の間に、 記録層 2 1、 反射層 2 2、 保護層 2 3およぴ接 着層 2 4を備えている。  As shown in FIGS. 1 and 2, the optical recording medium 1 according to the present embodiment is configured as a write-once DVD-R type optical recording medium, and includes a light-transmitting substrate 11 and a dummy substrate. 1 2 and a recording layer 21, a reflective layer 22, a protective layer 23 and a bonding layer 24 between the light-transmitting substrate 11 and the dummy substrate 1 2 .
第 1図に示されるように、 光透過性基板 1 1は、 光透過性樹脂によ つて、 円盤状に形成されている。  As shown in FIG. 1, the light-transmitting substrate 11 is formed in a disk shape using a light-transmitting resin.
第 2図において、 光透過性基板 1 1の下面は、 レーザビームが入射 する光入射面を構成し、 第 2図に示されるように、 光透過性基板 1 1 の上面には、 その中心部近傍から、 外縁部に向けて、 レーザビームを ガイ ドするためのグループ 1 1 aおよびランド 1 1 bが螺旋状に形成 されている。  In FIG. 2, the lower surface of the light-transmitting substrate 11 constitutes a light incident surface on which a laser beam is incident. As shown in FIG. 2, the upper surface of the light-transmitting substrate 11 has a central portion. A group 11a and a land 11b for guiding the laser beam are spirally formed from the vicinity toward the outer edge.
第 2図に示されるように、 記録層 2 1は、 光透過性基板 1 1の上面 に形成されたグループ 1 1 aおよびランド 1 1 bを覆うように形成さ れ、 シァニン、 メロシアニン、 メチン系色素およびその誘導体、 ベン ゼンチオール金属錯体、 フタ口シァニン色素、ナフタ口シァニン色素、. ァゾ色素などの有機色素を含んでいる。  As shown in FIG. 2, the recording layer 21 is formed so as to cover the group 11 a and the land 11 b formed on the upper surface of the light transmitting substrate 11, and comprises a cyanine, merocyanine, and methine-based material. It contains organic dyes such as dyes and derivatives thereof, benzene thiol metal complexes, phthalocyanine dyes, naphtha thiocyanine dyes, and azo dyes.
所定値以上のパワーを有するレーザビームが記録層 2 1に照射され ると、 記録層 2 1に含まれた有機色素が分解して、 変質し、 レーザビ ームが照射された部分の光反射率が変化する。  When the recording layer 21 is irradiated with a laser beam having a power equal to or higher than a predetermined value, the organic dye contained in the recording layer 21 is decomposed and deteriorates, and the light reflectance of the portion irradiated with the laser beam is changed. Changes.
反射層 2 2は、 光記録媒体 1の記録層 2 1に記録されたデータの再 生する際に、 光透過性基板 1 1を介して、 記録層 2 1に照射されるレ 一ザビームを反射するための薄膜層であり、 金や銀などの金属を主成 分として用いたスパッタリング法よつて形成されている。 The reflective layer 22 reflects the laser beam applied to the recording layer 21 via the light-transmitting substrate 11 when reproducing data recorded on the recording layer 21 of the optical recording medium 1. This is a thin film layer for It is formed by the sputtering method used as a part.
第 2図に示されるように、 反射層 2 2および記録層 2 1を保護する ために、 反射層 2 2の表面を覆うように、 保護層 2 3が形成されてい る。  As shown in FIG. 2, a protective layer 23 is formed so as to cover the surface of the reflective layer 22 in order to protect the reflective layer 22 and the recording layer 21.
第 2図に示されるように、 保護層 2 3上には、 接着層 2 4が形成さ れ、 接着層 2 4によって、 光透過性基板 1 1、 記録層 2 1、 反射層 2 2および保護層 2 3からなる積層体と、 ダミー基板 1 2とが接着され ている。  As shown in FIG. 2, an adhesive layer 24 is formed on the protective layer 23. The adhesive layer 24 allows the light-transmitting substrate 11, the recording layer 21, the reflective layer 22 and the protective layer 24 to be formed. The laminate composed of the layers 23 and the dummy substrate 12 are adhered.
本実施態様においては、光透過性基板 1 1およびダミー基板 1 2は、 それぞれ、 約 0 . 6 m mの厚みを有している。  In this embodiment, each of the light-transmitting substrate 11 and the dummy substrate 12 has a thickness of about 0.6 mm.
本実施態様においては、 光記録媒体 1の記録層 2 1には、 3ビッ ト のデータが記録されている。  In the present embodiment, 3-bit data is recorded on the recording layer 21 of the optical recording medium 1.
第 1図および第 2図に示されるように、 光記録媒体 1の記録層 2 1 は、 グループ 1 1 aに沿って、 仮想的に、 所定の長さを有する複数の 仮想記録セル S、 S、 …に分割され、 各仮想記録セル Sが、 データを 記録する記録単位を構成している。  As shown in FIGS. 1 and 2, the recording layer 21 of the optical recording medium 1 includes a plurality of virtual recording cells S, S having a predetermined length virtually along the group 11a. Each virtual recording cell S constitutes a recording unit for recording data.
第 3図は、 複数の仮想記録セルに、 記録マークが形成された状態を 示すダイアグラムである。  FIG. 3 is a diagram showing a state in which recording marks are formed in a plurality of virtual recording cells.
第 3図に示されるように、 仮想記録セル S、 S、 …は、 各仮想記録 セル Sのグループ 1 1 aに沿った方向の長さ Lは、 レーザビームのス ポッ ト径よりも小さくなるように、 仮想的に設定されている。  As shown in FIG. 3, the virtual recording cells S, S,... Have a length L in the direction along the group 11a of each virtual recording cell S smaller than the spot diameter of the laser beam. As such, it is virtually set.
第 3図においては、 8つの連続する仮想記録セル S、 S、 …に、 そ れぞれ、 異なる記録マーク M a、 M b、 M c、 M d、 M e、 M f 、 M g、 M hが形成され、 異なる記録レベルで、 それぞれに、 3 ビッ トの データが記録された場合が図示されており、 それぞれの仮想記録セル Sに、 パワーが記録パヮ一に設定されたレーザビームを照射する時間 を制御することによって、 仮想記録セル S内の有機色素材料の分解変 質の程度を制御して、 仮想記録セル Sに、 異なる記録マークを形成す ることができる。  In FIG. 3, different recording marks M a, M b, M c, M d, M e, M f, M g, M are respectively stored in eight consecutive virtual recording cells S, S,. h is formed, and three bits of data are recorded at different recording levels, and each virtual recording cell S is irradiated with a laser beam whose power is set to a recording level. By controlling the length of time, the degree of degradation of the organic dye material in the virtual recording cell S can be controlled, and different recording marks can be formed in the virtual recording cell S.
第 3図においては、 仮想記録セル S内の有機色素材料の分解変質の 程度が、 記録マーク Ma、 Mb、 Mc、 Md、 Me、 M i、 Mg、 M hの大きさで示されており、 データの記録にあたって、 光記録媒体 1 を回転させつつ、 レーザビームが記録層 2 1に照射されるため、 各仮 想記録セル Sには、 長円形の記録マーク Ma、 Mb、 Mc、 Md、 M e、 M f 、 g N Mhが形成されている。 Fig. 3 shows the degradation of the organic dye material in virtual recording cell S. The degree is indicated by the size of the recording marks Ma, Mb, Mc, Md, Me, Mi, Mg, and Mh.In recording data, the laser beam is applied to the recording layer while rotating the optical recording medium 1. to be irradiated to 2 1, each virtual recording cell S, oval recording marks Ma, Mb, Mc, Md, M e, M f, g N Mh is formed.
有機色素材料は、 分解変質の程度が大きいほど、 光反射率が低くな る性質を有しており、 したがって、 記録マークが形成されておらず、 データが記録されていない仮想記録セル Sが最大の光反射率を有し、 大きい記録マークが形成されている仮想記録セル Sほど、 小さな光反 射率を有している。  The organic dye material has such a property that the light reflectance becomes lower as the degree of decomposition and alteration is larger.Therefore, the virtual recording cell S in which no recording mark is formed and no data is recorded is the largest. The virtual recording cell S having a larger light reflection rate and a larger recording mark has a smaller light reflection rate.
第 4図は、 光記録媒体 1の記録層 2 1に、 パワーが記録パワーに設 定されたレーザビームを照射した時間と、 記録層 2 1の光反射率との 関係を示すグラフである。  FIG. 4 is a graph showing the relationship between the time of irradiating the recording layer 21 of the optical recording medium 1 with a laser beam whose power is set to the recording power and the light reflectance of the recording layer 21.
有機色素材料の分解変質の程度は、 記録パワーに設定されたレーザ ビームの照射時間が長くなるのにしたがって、 大きくなるから、 第 4 図に示されるように、 記録パワーに設定されたレーザビームの照射時 間が長くなるにしたがって、 記録層 2 1の光反射率は低下する。  The degree of degradation of the organic dye material increases as the irradiation time of the laser beam set at the recording power increases, and as shown in Fig. 4, the laser beam set at the recording power changes. As the irradiation time increases, the light reflectance of the recording layer 21 decreases.
したがって、.記録パワーに設定されたレーザビームが照射される時 間が T aで、 最も短いときの記録層 2 1の光反射率 R aを、 最大の光 反射率を有する仮想記録セル Sの光反射率として割り当てるとともに、 記録パワーに設定されたレーザビームが照射される時間が T hで、 最 も長いときの記録層 2 1の光反射率 R hを、 最小の光反射率を有する 仮想記録セル Sの光反射率として割り当て、 最大の光反射率 R a と最 小の光反射率 R hとの間の光反射率を 7つに分割して、 6種類の互い に異なる光反射率 R b、 R c、 R d、 R e、 R i、 R gを決定し、 デ ータの記録レベルが異なる仮想記録セル Sの光反射率と して割り当て、 レーザビームを照射して、 記録層 2 1に含まれた有機色素材料を分解 変質させて、 仮想記録セル Sの光反射率を、 R a、 R b、 R c、 R d、 R e、 R f 、 R g、 R hとするのに必要な記録パワーのレーザビーム の照射時間を、 それぞれ、 決定し、 データの記録レベルに応じて、 仮 想記録セル sに、 記録パワーに設定されたレーザビームを照射して、 記録マークを形成することによって、 各仮想記録セル Sに 3 ビッ トの データを記録することが可能になる。 ただし、 仮想記録セルへのレー ザビームの最大照射時間 T m a Xは L / V (ここに、 Lは仮想記録セ ルの長さであり、 Vは記録線速度である。) に等しいから、最小の光反 射率 R hを有する記録マーク M hを形成するためのレーザビームの照 射時間 T hは、 T m a x以下に設定することが必要である。 たとえば、 仮想記録セル Sの長さ Lが 3 8 5 n mで、 記録線速度 Vが 7 m/ s e cである場合には、 記録マーク M hを形成するためのレーザビームの 照射時間 T hは、 5 5 n s e c以下に設定する必要がある。 Therefore, the time for irradiating the laser beam set to the recording power is Ta, and the light reflectance Ra of the recording layer 21 at the shortest time is determined by the virtual recording cell S having the maximum light reflectance. In addition to allocating the light reflectance, the laser beam set at the recording power is irradiated with the laser beam for the time Th, and the light reflectance R h of the recording layer 21 when the laser light is the longest is assumed to be the virtual light having the minimum light reflectance. Assigned as the light reflectance of the recording cell S, the light reflectance between the maximum light reflectance R a and the minimum light reflectance R h is divided into seven, and the six types of mutually different light reflectance Rb, Rc, Rd, Re, Ri, and Rg are determined, assigned as the light reflectance of the virtual recording cells S having different data recording levels, and recorded by irradiating a laser beam. The organic dye material contained in the layer 21 is decomposed and deteriorated, and the light reflectance of the virtual recording cell S is changed to Ra, Rb, Rc, The irradiation time of the laser beam of the recording power required to obtain R d, Re, R f, R g, and R h is determined, respectively, and is temporarily determined according to the data recording level. By irradiating the virtual recording cell s with a laser beam set to the recording power to form a recording mark, it becomes possible to record 3-bit data in each virtual recording cell S. However, the maximum irradiation time T max of the laser beam to the virtual recording cell is equal to L / V (where L is the length of the virtual recording cell and V is the recording linear velocity). It is necessary to set the irradiation time T h of the laser beam for forming the recording mark M h having the light reflection rate R h of not more than T max. For example, when the length L of the virtual recording cell S is 385 nm and the recording linear velocity V is 7 m / sec, the irradiation time T h of the laser beam for forming the recording mark M h is It must be set to 55 nsec or less.
第 5図は、 仮想記録セル Sに照射されるレーザビームのパワーの変 調パタ一ンを示すダイアグラムである。  FIG. 5 is a diagram showing a modulation pattern of the power of the laser beam applied to the virtual recording cell S.
第 5図に示されるように、 仮想記録セル Sに照射されるレーザビー ムのパワーは、 記録パワー尸 wと基底パワー とに選択的に変調さ れ、 仮想記録セル Sに形成すべき記録マーク M a、 M b、 M c、 M d、 M e、 M f 、 M g、 M hに対応して、 レーザビームのパワーが記録パ ヮー wに設定される時間 T a、 T b、 T c、 T d、 T e、 T f 、 T g、 T hが設定される。  As shown in FIG. 5, the power of the laser beam applied to the virtual recording cell S is selectively modulated into the recording power w and the base power, and the recording mark M to be formed in the virtual recording cell S is obtained. a, M b, M c, M d, M e, M f, M g, and M h corresponding to the time T a, T b, T c, at which the power of the laser beam is set to the recording power w. Td, Te, Tf, Tg, and Th are set.
記録層 2 1に含まれる有機色素材料は、 記録パワーに設定されたレ —ザビームが照射された直後は、 わずかづつ、 分解変質し、 記録パヮ 一に設定されたレーザビームの照射開始から、 第一の所定時間が経過 すると、 有機色素材料の分解変質の程度は、 レーザビームの照射時間 の増大にしたがって、 ほぼ線形に増大し、 第二の所定時間が経過した 後は、 レーザビームの照射時間を増大させても、 有機色素材料の分解 変質の程度は、 ほとんど増大しないという性質を有しているから、 第 4図に示されるように、 記録層 2 1の光反射率は、 記録パワーに設定 されたレーザビームの照射時間が、 第一の所定時間未満の領域 A内に あるときは、 レーザビームの照射時間を増大させても、 あまり変化せ ず、 記録パワーに設定されたレーザビームの照射時間が、 第一の所定 時間以上で、 第二の所定時間未満の領域 B内にあるときは、 レーザビ ームの照射時間の増大にしたがって、 ほぼ線形に低下し、 記録パワー に設定されたレーザビームの照射時間が、 第二の所定時間以上の領域Immediately after the irradiation of the laser beam set to the recording power, the organic dye material contained in the recording layer 21 decomposes and decomposes little by little, starting from the start of the irradiation of the laser beam set to the recording power. After the elapse of the first predetermined time, the degree of decomposition and alteration of the organic dye material increases substantially linearly as the irradiation time of the laser beam increases, and after the elapse of the second predetermined time, the irradiation time of the laser beam Even if the recording layer 21 is increased, the degree of decomposition and deterioration of the organic dye material hardly increases. Therefore, as shown in FIG. 4, the light reflectance of the recording layer 21 depends on the recording power. When the set irradiation time of the laser beam is within the area A shorter than the first predetermined time, the laser beam irradiation time does not change much even if the irradiation time is increased, and the laser beam set at the recording power is not changed. When the irradiation time of the beam is within the area B for more than the first predetermined time and less than the second predetermined time, the laser beam As the irradiation time of the laser beam increases, it decreases almost linearly, and the irradiation time of the laser beam set to the recording power is longer than the second predetermined time.
C内にあるとき'は、 レーザビームの照射時間が増大しても、 あまり変 化せず、 光反射率が R sに達することになる。 When it is in C, even if the irradiation time of the laser beam increases, it does not change much and the light reflectance reaches Rs.
したがって、 領域 B内の光反射率だけでなく、 領域 Aおよび領域 C 内の光反射率をも、 仮想記録セル Sの光反射率として、 割り当てたと きには、 領域 B内の光反射率を用いて、 仮想記録セル Sに、 異なる記 録レベルのデータを記録する場合に比して、 領域 Aおよび領域 C内の 光反射率を用いて、 仮想記録セル Sに、 異なる記録レベルのデータを 記録する場合には、 記録パワーに設定されたレーザビームの照射時間 を大きく変化させることが必要になるから、 従来は、 第 4図に示され た領域 B内の光反射率を、仮想記録セル Sの光反射率として割り当て、 仮想記録セル Sの光反射率が、 割り当てられた値となるように、 記録 パワーに^定されたレーザビームの照射時間を制御して、 仮想記録セ ルに、 記録レベルの異なるデータを記録するように構成されていた。  Therefore, when the light reflectance in the area A and the area C as well as the light reflectance in the area B are assigned as the light reflectance of the virtual recording cell S, the light reflectance in the area B becomes Using the light reflectance in the area A and the area C, data of different recording levels is stored in the virtual recording cell S, as compared with the case where data of different recording levels are recorded in the virtual recording cell S. When recording, it is necessary to greatly change the irradiation time of the laser beam set to the recording power. Conventionally, the light reflectance in the area B shown in FIG. S is assigned as the light reflectance of the virtual recording cell, and the irradiation time of the laser beam set to the recording power is controlled so that the light reflectance of the virtual recording cell S becomes the assigned value. Recording data with different recording levels It has been configured to.
しかしながら、 このように、 第 4図に示された領域 B内の光反射率 を、 仮想記録セル Sの光反射率として割り当てて、 仮想記録セル Sの 光反射率が、 割り当てられた値となるように、 記録パワーに設定され たレーザビームの照射時間を制御して、 仮想記録セルに、 記録レベル の異なるデータを記録する場合には、 最大反射率 R a と、 最小反射率 R hとの差を十分に大きくすることができず、 その結果、 十分に広い ダイナミックレンジを有する再生信号を得ることができないという問 題があった。  However, as described above, the light reflectance in the area B shown in FIG. 4 is assigned as the light reflectance of the virtual recording cell S, and the light reflectance of the virtual recording cell S becomes the assigned value. As described above, when recording data of different recording levels in the virtual recording cell by controlling the irradiation time of the laser beam set to the recording power, the maximum reflectance Ra and the minimum reflectance Rh are calculated. There has been a problem that the difference cannot be made sufficiently large, and as a result, a reproduced signal having a sufficiently wide dynamic range cannot be obtained.
したがって、 記録パヮ一に設定されたレーザビームの照射時間を大 きく変化させなくても、 記録レベルの異なるデータを仮想記録セル S に記録可能な範囲で、 仮想記録セル Sの最大光反射率 R aが、 記録マ ークが形成されていない仮想記録セル Sの光反射率 R oに、 できるだ け近く、 かつ、 仮想記録セル Sの最小光反射率 R hが、 飽和光反射率 R sに、 できるだけ近くなるように、 各仮想記録セル Sの光反射率を 割り当て、 記録パワー wに設定されたレーザビームを照射する時間 の最小値および最大値を決定することが、 広いダイナミックレンジを 有する信号を再生するために必要である。 Therefore, the maximum light reflectance R of the virtual recording cell S can be maintained within a range where data of different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam set in the recording power. a is as close as possible to the light reflectance R o of the virtual recording cell S where no recording mark is formed, and the minimum light reflectance R h of the virtual recording cell S is the saturation light reflectance R s The light reflectivity of each virtual recording cell S is assigned so that it is as close as possible, and the time for irradiating the laser beam set to the recording power w Determining the minimum and maximum values of is necessary to reproduce a signal with a wide dynamic range.
そこで、 本発明者が鋭意研究を重ねたところ、 レーザビームの記録 ノ、。ヮ一 のレベルが変化すると、 第 4図に示された仮想記録セル S への記録パワー尸 wに設定されたレーザビームの照射時間と、 仮想記 録セル Sの光反射率との関係が変化し、 レーザビームの記録パヮー P wのレベルが高いほど、 仮想記録セル Sに高い最大反射率を割り当て ても、 記録パワー _P v こ設定されたレーザビームの照射時間を大きく 変化させることなく、 記録レベルの異なるデータを仮想記録セル Sに 記録することができ、 その一方で、 レーザビームの記録パワー _P の レベルが低いほど、仮想記録セル Sに低い最小反射率を割り当てても、 記録パワー尸 に設定されたレーザビームの照射時間を大きく変化さ せることなく、 記録レベルの異なるデータを仮想記録セル sに記録す ることが可能になることが見出された。 Therefore, the inventor of the present invention has conducted diligent research and has found that recording of a laser beam. When the first level changes, the relationship between the irradiation time of the laser beam set to the recording power w to the virtual recording cell S shown in FIG. 4 and the light reflectance of the virtual recording cell S changes. and, as the level of the recording Pawa P w of the laser beam is high, the virtual record be assigned a higher maximum reflectance in the cell S, the recording power _P v this set laser beam without significantly changing the irradiation time of the recording Data with different levels can be recorded in the virtual recording cell S. On the other hand, as the level of the recording power _P of the laser beam is lower, even if a lower minimum reflectivity is assigned to the virtual recording cell S, the recording power is reduced. It has been found that data with different recording levels can be recorded in the virtual recording cell s without greatly changing the set irradiation time of the laser beam.
第 6図は、 光記録媒体の記録層 2 1に照射するレーザビームの記録 パワー wを変化させたときの記録パヮ一/3 wに設定されたレーザビ ームを照射した時間と、 記録層 2 1の光反射率との関係を示すグラフ である。 FIG. 6 shows the time of irradiating the laser beam set to the recording power / 3 w when the recording power w of the laser beam irradiating the recording layer 21 of the optical recording medium was changed, and the recording layer 2 6 is a graph showing the relationship between the light reflectance of Example 1 and the light reflectance.
第 6図に示されるように、 本発明者の研究によれば、 レーザビーム の記録パワー を高いレベルに設定すると、 記録層 2 1の光反射率 は、記録パヮー尸 wに設定されたレーザビームの照射を開始してから、 短時間で、 換言すれば、 光反射率が高い段階で、 レーザビームの照射 時間の増大にしたがって、 光反射率が、 ほぼ線形に低下するようにな り、 また、 早い段階で、 換言すれば、 光反射率があまり低くならない 段階で、 レーザビームの照射時間を増大させても、 光反射率が、 あま り変化しなくなって、 やがて、 飽和光反射率 R sに達することが認め られ、 一方、 レーザビームの記録パワー尸 wを低いレベルに設定する と、 記録層 2 1の光反射率は、 記録パワー尸 こ設定されたレーザビ ームの照射を開始してから、 比較的長時間にわたって、 レーザビーム の照射時間が増大しても、 あまり変化せず、 光反射率が比較的低くな つた段階で、 レーザビームの照射時間の増大にしたがって、 光反射率 力 ほぼ線形に低下するようになり、 レーザビームの照射時間が増大 しても、 光反射率が、 あまり変化しなくなるまでに、長い時間を要し、 光反射率がかなり低くなつて、 初めて、 レーザビームの照射時間が増 大しても、光反射率が、 あまり変化しなくなることが認められている。 As shown in FIG. 6, according to the study of the present inventors, when the recording power of the laser beam is set to a high level, the light reflectance of the recording layer 21 is changed to the laser beam set to the recording power w. In a short time after the start of irradiation of the laser beam, in other words, at a stage where the light reflectance is high, the light reflectance decreases almost linearly as the irradiation time of the laser beam increases, and At an early stage, in other words, at a stage where the light reflectance does not decrease so much, even if the irradiation time of the laser beam is increased, the light reflectance does not change much, and eventually the saturated light reflectance R s On the other hand, when the recording power of the laser beam is set to a low level, the light reflectance of the recording layer 21 starts to irradiate the laser beam at the set recording power. From a relatively long time Even if the laser beam irradiation time increases over time, it does not change much and the light reflectance is relatively low. At this stage, as the laser beam irradiation time increases, the light reflectivity power decreases almost linearly, and even if the laser beam irradiation time increases, the light reflectivity does not change much. It has been observed that the light reflectance does not change much even if the laser beam irradiation time increases, only after a long time is required and the light reflectance is considerably low.
したがって、 レーザビームの記録パワー wを高いレベルに設定す れば、 仮想記録セル Sに割り当てる最大光反射率を高い値に設定して も、 記録パワーに設定されたレーザビ^"ムの照射時間を大きく変化さ せることなく、 記録レベルの異なるデータを仮想記録セル Sに記録す ることが可能になるから、 レーザビームの記録パワー尸 wが w/ で ある場合に、 仮想記録セル sに割り当てることができる最大光反射率 R a Hおよび最大相対光反射率 R R a H (%) ならびにレーザビーム の記録パワー尸 が ^ {PwL< PwH) である場合に、 仮想記 録セル Sに割り当てることができる最大光反射率 R a Lおよび最大相 対光反射率 RR a L (%) は、 次式を満足することになる。  Therefore, if the recording power w of the laser beam is set to a high level, the irradiation time of the laser beam set to the recording power can be maintained even if the maximum light reflectance assigned to the virtual recording cell S is set to a high value. Since it is possible to record data having different recording levels in the virtual recording cell S without greatly changing it, if the recording power w of the laser beam is w /, it is assigned to the virtual recording cell s. Can be assigned to the virtual recording cell S when the maximum light reflectivity R a H and the maximum relative light reflectivity RR a H (%) and the recording power of the laser beam are ^ (PwL <PwH). The maximum light reflectivity R a L and the maximum relative light reflectivity RR a L (%) satisfy the following equation.
R a L. < R a H  R a L. <R a H
RR a L<RR a H  RR a L <RR a H
ここに、絶対光反射率が R i である場合の相対光反射率 RR i (%) は、 次式によって、 定義される。  Here, the relative light reflectance RR i (%) when the absolute light reflectance is R i is defined by the following equation.
R R i (%) = { (R i - R s ) / (R o— R s )} X 1 00 このように、 仮想記録セル Sに割り当てる最大光反射率 R aおよび 最大相対光反射率 RR a (%) に応じて、 レーザビームの記録パワー のレベルを設定することによって、 仮想記録セル Sに割り当てる 最大光反射率 R aおよび最大相対光反射率 RR a (%) を高い値に設' 定しても、 記録パワー尸 wに設定されたレーザビームの照射時間を大 きく変化させることなく、 記録レベルの異なるデータを仮想記録セル Sに記録することができ、 広いダイナミックレンジを有する再生信号 を得ることが可能になる。  RR i (%) = {(R i-R s) / (R o — R s)} X 100 Thus, the maximum light reflectance Ra and the maximum relative light reflectance RR a allocated to the virtual recording cell S By setting the recording power level of the laser beam according to (%), the maximum light reflectance Ra and the maximum relative light reflectance RRa (%) assigned to the virtual recording cell S are set to high values. However, data with different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam set to the recording power w, and a reproduced signal having a wide dynamic range can be reproduced. It is possible to obtain.
一方、 レーザビームの記録パワー尸 wを低いレベルに設定すれば、 仮想記録セル Sに割り当てる最小光反射率を低い値に設定しても、 記 録パワー に設定されたレーザビームの照射時間を大きく変化させ ることなく、 記録レベルの異なるデータを仮想記録セル Sに記録する ことが可能になるから、 レーザビームの記録パワー P wが w Jであ る場合に、 仮想記録セル Sに割り当てることができる最小光反射率 R h Lおよび最小相対光反射率 R R h L (%) ならびにレーザビームの 記録パワー が尸 (PwL< PwH) である場合に、 仮想記録 セル Sに割り当てることができる最小光反射率 R h Lおよび最小相対 光反射率 RR h L (%) は、 次式を満足することになる。 On the other hand, if the recording power w of the laser beam is set to a low level, even if the minimum light reflectance assigned to the virtual recording cell S is set to a low value, Since it is possible to record data of different recording levels in the virtual recording cell S without greatly changing the irradiation time of the laser beam set to the recording power, the recording power P w of the laser beam is In some cases, when the minimum light reflectance R hL and the minimum relative light reflectance RR h L (%) that can be assigned to the virtual recording cell S and the recording power of the laser beam are (PwL <PwH), The minimum light reflectance R hL and the minimum relative light reflectance RR h L (%) that can be assigned to the virtual recording cell S satisfy the following equations.
R h L < R h H  R h L <R h H
RRh L< RR hH  RRh L <RR hH
このように、 仮想記録セル Sに割り当てる最小光反射率 R hおよび 最小相対光反射率 RR h (%) に応じて、 レーザビームの記録パワー 尸 wのレベルを設定することによって、 仮想記録セル Sに割り当てる 最小光反射率 R hおよび最小相対光反射率 R R h (%) を低い値に設 定しても、 記録パワー に設定されたレーザビームの照射時間を大 きく変化させることなく、 記録レベルの異なるデータを仮想記録セル Sに記録することができ、 広いダイナミックレンジを有する再生信号 を得ることが可能になる。  Thus, by setting the level of the recording power w of the laser beam according to the minimum light reflectance R h and the minimum relative light reflectance RR h (%) assigned to the virtual recording cell S, the virtual recording cell S Even if the minimum light reflectance R h and the minimum relative light reflectance RR h (%) are set to low values, the recording level can be maintained without significantly changing the irradiation time of the laser beam set to the recording power. Can be recorded in the virtual recording cell S, and a reproduced signal having a wide dynamic range can be obtained.
さらに、 第 6図に示されるように、 レーザビームの記録パワー のレベルが高いときは、 記録層 2 1の光反射率は、 光反射率のレベル が比較的高い段階で、 レーザビームの照射時間の増大にしたがって、 ほぼ線形に低下するようになり、 その一方で、 記録層 2 1の光反射率 は、 光反射率のレベルがあまり低くなつていない段階で、 レーザビー ムの照射時間を増大させても、 ほとんど変化しなくなるから、 仮想記 録セル Sに割り当てる最大光反射率を高くするために、 レーザビーム の記録パワー P wを高いレベル P w/fに設定するときは、 仮想記録セ ノレ Sに割り当てられる最大の相対光反射率 R R a Hおよび最小の相対 光反射率 RR hHは、 次式を満たすように、 決定される。  Further, as shown in FIG. 6, when the level of the recording power of the laser beam is high, the light reflectance of the recording layer 21 increases at a stage where the level of the light reflectance is relatively high and the irradiation time of the laser beam As the light reflection increases, the light reflection decreases almost linearly, while the light reflectance of the recording layer 21 increases with the irradiation time of the laser beam at a stage where the light reflection level is not so low. Even if the recording power P w of the laser beam is set to a high level P w / f in order to increase the maximum light reflectance assigned to the virtual recording cell S, the virtual recording cell will not change. The maximum relative light reflectance RR a H and the minimum relative light reflectance RR hH assigned to S are determined so as to satisfy the following equation.
1 00 -R R a H< R R h H  1 00 -R R a H <R R h H
レーザビームの記録パワーが w/である場合に、 仮想記録セル S に割り当てられる最大の相対光反射率 RR a Hおよび最小の相対光反 射率 RR hHを、 このように決定することによって、 レーザビームの 記録パヮ一が P wiJである場合に、 記録パワーに設定されたレーザビ ームの照射時間を大きく変化させなくても、 記録レベルの異なるデー タを仮想記録セル Sに記録可能な範囲で、 それぞれ、 仮想記録セル S の最大相対光反射率 RR a Hおよび最小相対光反射率 R R h Hを割り 当てることが可能になる。 If the recording power of the laser beam is w /, the virtual recording cell S By determining the maximum relative light reflectance RR a H and the minimum relative light reflectance RR hH assigned to the laser beam in this manner, the recording power is set when the recording power of the laser beam is P wiJ. Even if the irradiation time of the laser beam is not significantly changed, the maximum relative light reflectance RR a H and the maximum relative light reflectivity of the virtual recording cell S can be recorded within the virtual recording cell S within a range where data with different recording levels can be recorded in the virtual recording cell S, respectively. It becomes possible to assign the minimum relative light reflectance RRhH.
これに対して、 レーザビームの記録パワー _P wのレベルが低いとき は、 第 6図に示されるように、 記録層 2 1の光反射率は、 光反射率の レベルが比較的低くなるまで、 レーザビームの照射時間の増大にした がって、 ほぼ線形に低下することがなく、 その一方で、 記録層 2 1の 光反射率は、 光反射率のレベルがかなり低くなるまで、 レーザビーム の照射時間の増大にしたがって、 ほぼ線形に低下することが認められ るから、仮想記録セル Sに割り当てる最小光反射率を高くするために、 レーザビームの記録パワー を低いレベル尸 に設定するときは、 仮想記録セル Sに割り当てられる最大の相対光反射率 R R a Lおよび 最小の相対光反射率 R R h Lは、 次式を満たすように、 決定される。  On the other hand, when the level of the recording power _P w of the laser beam is low, as shown in FIG. 6, the light reflectivity of the recording layer 21 is maintained until the level of the light reflectivity becomes relatively low. As the irradiation time of the laser beam increases, it does not decrease almost linearly, while the light reflectance of the recording layer 21 increases until the level of the light reflectance becomes significantly lower. Since it is recognized that the irradiation time increases almost linearly, the recording power of the laser beam is set to a low level so as to increase the minimum light reflectance assigned to the virtual recording cell S. The maximum relative light reflectance RR a L and the minimum relative light reflectance RR h L assigned to the virtual recording cell S are determined so as to satisfy the following equation.
1 00 -RR a L>RR h L  1 00 -RR a L> RR h L
レーザビームの記録パワーが尸 である場合に、 仮想記録セル S に割り当てられる最大の相対光反射率 RR a Lおよび最小の相対光反 射率 RR h Lを、 このように決定すること よって、 レーザビームの 記録パワーが P である場合に、 記録パワーに設定されたレーザビ ームの照射時間を大きく変化させなくても、 記録レベルの異なるデー タを仮想記録セル Sに記録可能な範囲で、 それぞれ、 仮想記録セル S の最大相対光反射率 RR a Lおよび最小相対光反射率 R R h Lを割り 当てることが可能になる。  When the recording power of the laser beam is, the maximum relative light reflectance RR a L and the minimum relative light reflectance RR h L assigned to the virtual recording cell S are determined in this manner, and the laser When the recording power of the beam is P, the data with different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam set to the recording power. Thus, the maximum relative light reflectance RRaL and the minimum relative light reflectance RRhL of the virtual recording cell S can be assigned.
以上のような基本的な考えにしたがって、 仮想記録セル Sに割り当 てる最大光反射率 R aおよび最大相対光反射率 RR aならびに最小光 反射率 R hおよび最小相対光反射率 RR hに応じて、 データを記録す るために用いるレーザビームの記録パワー _P wが選択され、他の特性、 たとえば、 データを再生したときのエラーレートにしたがって、 選択 されたのレーザビームの記録パワー の中から、 最適な記録パワー 尸 wが決定される。 According to the above basic idea, according to the maximum light reflectance R a and the maximum relative light reflectance RR a and the minimum light reflectance R h and the minimum relative light reflectance RR h assigned to the virtual recording cell S. Thus, the recording power _P w of the laser beam used for recording data is selected, and other characteristics, For example, the optimum recording power w is determined from the recording power of the selected laser beam in accordance with the error rate when reproducing data.
さらに、 最大光反射率 R a と最小光反射率 R hとの間の光反射率が 略 7等分されて、 6種類の互いに異なる光反射率 R b、 R c、 R d、 R e、 R f 、 R gが決定され、 データの記録レベルが異なる仮想記録 セル Sの光反射率として割り当てられ、 レーザビームを照射して、 記 録層 2 1に含まれた有機色素材料を分解変質させて、 仮想記録セル S の光反射率を、 R a、 R b、 R c、 R d、 R e、 R f 、 R g、 R hと するのに必要なレーザビームの記録パワー _P w "の最適レベルと、 最適 な記録パワー尸 wに設定されたレーザビームの照射時間が、 データの 記録レベルが異なる仮想記録セル Sごとに、 決定されて、 記録条件設 定用データが生成される。  Further, the light reflectance between the maximum light reflectance R a and the minimum light reflectance R h is roughly divided into seven equal parts, and six different light reflectances R b, R c, R d, R e, R f and R g are determined, and assigned as the light reflectance of the virtual recording cell S having different data recording levels, and the organic dye material contained in the recording layer 21 is decomposed and deteriorated by irradiating a laser beam. And the recording power _P w "of the laser beam required to set the light reflectance of the virtual recording cell S to be Ra, Rb, Rc, Rd, Re, Rf, Rg, and Rh. The optimum level and the irradiation time of the laser beam set to the optimum recording power are determined for each virtual recording cell S having a different data recording level, and the recording condition setting data is generated.
こ う して生成された記録条件設定用データは、 光記録媒体 1の種類 を特定する I Dデータを関連付けて、 データ記録装置のメモリ に記憶 され、 データを記録する際に、 読み出されて、 レーザビームの記録パ ヮー尸 wのレベルおよびデータの記録レベルに応じて、 仮想記録セル Sに照射される最適記録パワー P wに設定されたレーザビームの照射 時間が決定され、 光記録媒体 1 の記録層 2 1にレーザビームが照射さ れて、 データが記録される。  The recording condition setting data generated in this way is stored in the memory of the data recording device in association with ID data specifying the type of the optical recording medium 1, and is read out when recording data. The irradiation time of the laser beam set to the optimum recording power P w to be applied to the virtual recording cell S is determined according to the level of the laser beam recording power and the data recording level. The recording layer 21 is irradiated with a laser beam to record data.
第 7図は、 本発明の好ましい実施態様にかかるデータ記録装置のブ ロックダイアグラムである。  FIG. 7 is a block diagram of a data recording device according to a preferred embodiment of the present invention.
第 7図に示されるように、 データ記録装置 4 0は、 いわゆる D V D 一 Rレコーダとして構成され、 スピンドルサーボ 4 1、 スピンドルモ ータ 4 2、 ピックアップ 4 3、 フォーカス トラッキングサーボ 4 4、 送りサーボ 4 5および制御装置 4 6を備えている。  As shown in FIG. 7, the data recording device 40 is configured as a so-called DVD-R recorder, and includes a spindle servo 41, a spindle motor 42, a pickup 43, a focus tracking servo 44, and a feed servo 4. 5 and a controller 4 6 are provided.
スピンドルモータ 4 2は、 スピンドルサーボ 4 1によって駆動制御 され、 光記録媒体 1を、 一定の線速度で、 回転させるように構成され ている。  The spindle motor 42 is driven and controlled by a spindle servo 41 to rotate the optical recording medium 1 at a constant linear velocity.
ピックアップ 4 3は、 制御装置 4 6によつて制御され、 データの記 録時には、 光記録媒体 1に、 基底パワー P から記録パワー まで の振幅を有するレーザビームを照射し、 光記録媒体 1に記録されたデ ータの再生時には、 光記録媒体 1に、 再生パワー rに設定されたレ 一ザビームを照射するように構成されている。 The pickup 43 is controlled by the control device 46 to record data. At the time of recording, the optical recording medium 1 is irradiated with a laser beam having an amplitude from the base power P to the recording power, and at the time of reproducing data recorded on the optical recording medium 1, the reproducing power r is applied to the optical recording medium 1. It is configured to irradiate a laser beam set to.
また、 ピックアップ 4 3は、 対物レンズ (図示せず) およびハーフ ミラー (図示せず) を備え、 データの記録時またはデータの再生時に おいて、 レーザビームは、 対物レンズおよびハーフミラーによって、 光記録媒体 1の記録層 2 1に集光される。 具体的には、 フォーカス ト ラッキングサーボ 4 4によって、 対物レンズがフォーカス トラツキン グ制御されて、 レーザビームが光記録媒体 1の記録層 2 1に集光され る。  Further, the pickup 43 has an objective lens (not shown) and a half mirror (not shown). When recording data or reproducing data, the laser beam is optically recorded by the objective lens and the half mirror. The light is focused on the recording layer 21 of the medium 1. Specifically, the objective lens is subjected to focus tracking control by the focus tracking servo 44, and the laser beam is focused on the recording layer 21 of the optical recording medium 1.
ピックアップ 4 3は、 光記録媒体 1の直径方向に沿って、 その内周 側と外周側との間を送りサーボ 4 5によって往復動され、 一方、 光記 録媒体 1は、 スピンドルモータ 4 2によって、 一定の線速度で、 回転 されるから、 トラックに沿って、 レーザビームが記録層 2 1の全面に 照射される。  The pickup 43 is reciprocated by a servo 45 between the inner circumference and the outer circumference along the diameter direction of the optical recording medium 1, while the optical recording medium 1 is moved by a spindle motor 42. Since the laser beam is rotated at a constant linear velocity, the laser beam is applied to the entire surface of the recording layer 21 along the track.
制御装置 4 6は、 スピンドルサーボ 4 1、 .ピックアップ 4 3、 フォ 一カス トラッキングサーポ 4 4および送りサーボ 4 5の駆動を制御す るととともに、 ピックアップ 4 3から出力された電気的信号に基づい て、 記録層 2 1に記録されているデータを読み取るように構成されて いる。  The controller 46 controls the drive of the spindle servo 41, the pickup 43, the focus tracking servo 44 and the feed servo 45, and based on the electric signal output from the pickup 43. Thus, the data recorded on the recording layer 21 is read.
また、 図示されていないが、 制御装置 4 6のメモリには、 記録条件 設定用データが、 光記録媒体 1の種類を特定する I Dデータを関連付 けて、 記憶されている。  Although not shown, the memory of the control device 46 stores recording condition setting data in association with ID data for specifying the type of the optical recording medium 1.
データを、 光記録媒体 1の記録層 2 1に記録するにあたっては、 ま ず、 制御装置 4 6によって、 光記録媒体 1に記録された I Dデータが 読み取られ、 I Dデータにしたがって、 メモリに記録された対応する 記録条件設定用データが読み出される。  When recording data on the recording layer 21 of the optical recording medium 1, first, the control device 46 reads the ID data recorded on the optical recording medium 1, and records the data in the memory according to the ID data. The corresponding recording condition setting data is read.
次いで、 制御装置 4 6は、 読み出した記録条件設定用データにした がって、 光記録媒体 1の記録層 2 1にデータを記録するために用いる レーザビームの記録パワー P wを決定するとともに、 データの記録レ ベルに応じて、 仮想記録セル Sに照射される最適記録パワー P こ設 定されたレーザビームの照射時間を決定し、 制御装置 4 6によって、 ピックアップ 4 3のレーザードライバが制御され、 記録すべきデータ の記録レベルに応じて、 仮想記録セル Sに照射されるレーザビームの 照射時間が制御される。 Next, the controller 46 is used to record data on the recording layer 21 of the optical recording medium 1 according to the read recording condition setting data. And it determines the recording power P w of the laser beam, in accordance with the data of the recording level, and determines the irradiation time of the optimum recording power P This set laser beam is irradiated on a virtual recording cells S, the control device 4 By 6, the laser driver of the pickup 43 is controlled, and the irradiation time of the laser beam applied to the virtual recording cell S is controlled according to the recording level of the data to be recorded.
本実施態様によれば、 仮想記録セル Sに割り当てる最大光反射率 R aおよび最大相対光反射率 R R a ( % ) が高いほど、 レーザビームの 記録パワー を高いレベルに設定するように構成されているから、 仮想記録セル Sに割り当てる最大光反射率 R aおよび最大相対光反射 率 R R a ( % ) を高い値に設定しても、 記録パワー P Hこ設定された レーザビームの照射時間を大きく変化させることなく、 記録レベルの 異なるデータを仮想記録セル Sに記録することができ、 広いダイナミ ックレンジを有する再生信号を得ることが可能になる。  According to the present embodiment, the configuration is such that the higher the maximum light reflectance Ra and the maximum relative light reflectance RRa (%) assigned to the virtual recording cell S, the higher the recording power of the laser beam is set to a higher level. Therefore, even if the maximum light reflectance Ra and the maximum relative light reflectance RRa (%) assigned to the virtual recording cell S are set to high values, the recording power PH significantly changes the irradiation time of the set laser beam. Without recording, data having different recording levels can be recorded in the virtual recording cell S, and a reproduced signal having a wide dynamic range can be obtained.
また、 本実施態様によれば、 仮想記録セル Sに割り当てる最小光反 射率 R hおよび最小相対光反射率 R R h ( % ) が低いほど、 レーザビ ームの記録パワー ^P wを低いレベルに設定するように構成されている から、 仮想記録セル Sに割り当てる最小光反射率 R hおよび最小相対 光反射率 R R h ( % ) を低い値に設定しても、 記録パワー尸 w "に設定 されたレーザビームの照射時間を大きく変化させることなく、 記録レ ベルの異なるデータを仮想記録セル Sに記録することができ、 広いダ イナミックレンジを有する再生信号を得ることが可能になる。  Further, according to the present embodiment, the lower the minimum light reflectance R h and the minimum relative light reflectance RR h (%) assigned to the virtual recording cell S, the lower the recording power ^ P w of the laser beam. Even if the minimum light reflectance R h and the minimum relative light reflectance RR h (%) assigned to the virtual recording cell S are set to low values, the recording power is set to “w”. Thus, data having different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam, and a reproduced signal having a wide dynamic range can be obtained.
さらに、 本実施態様によれば、 仮想記録セル Sに割り当てる最大光 反射率を高くするために、 レーザビームの記録パワー尸 wを高いレべ ル P に設定するときに、 仮想記録セル Sに割り当てられる最大の 相対光反射率 R R a Hおよび最小の相対光反射率 R R h Hが、 次式を 満たすように、 決定されるから、 レーザビームの記録パワーが P wiJ である場合に、 記録パヮ一に設定されたレーザビ ムの照射時間を大 きく変化させなくても、 記録レベルの異なるデータを仮想記録セル S に記録可能な範囲で、 それぞれ、 仮想記録セル Sの最大相対光反射率 R R a Hおよび最小相対光反射率 R R h Hを割り当てることが可能に なる。 Furthermore, according to the present embodiment, when the recording power w of the laser beam is set to a high level P in order to increase the maximum light reflectance assigned to the virtual recording cell S, The maximum relative light reflectivity RR a H and the minimum relative light reflectivity RR h H are determined so as to satisfy the following equation. Therefore, when the recording power of the laser beam is P wiJ, the recording power The maximum relative light reflectance of the virtual recording cell S is set within the range where data with different recording levels can be recorded in the virtual recording cell S without greatly changing the irradiation time of the laser beam set in the virtual recording cell S. It becomes possible to assign RR a H and minimum relative light reflectance RR h H.
1 0 0 - R R a H < R R h H  1 0 0-R R a H <R R h H
また、 本実施態様によれば、 仮想記録セル Sに割り当てる最小光反 射率を低くするために、 レーザビームの記録パワー尸 wを低いレベル P w に設定するときに、 仮想記録セル Sに割り当てられる最大の相 対光反射率 R R a Lおよび最小の相対光反射率 R R h Lが、 次式を満 たすように、 決定されるから、 レーザビームの記録パワーが で ある場合に、 記録パワーに設定されたレーザビームの照射時間を大き く変化させなくても、 記録レベルの異なるデータを仮想記録セル Sに 記録可能な範囲で、 それぞれ、 仮想記録セル Sの最大相対光反射率 R R a Lおよび最小相対光反射率 R R h Lを割り当てることが可能にな る。  According to the present embodiment, when the recording power of the laser beam is set to a low level P w in order to lower the minimum light reflection rate to be allocated to the virtual recording cell S, the virtual recording cell S is allocated to the virtual recording cell S. The maximum relative light reflectivity RR a L and the minimum relative light reflectivity RR h L are determined so as to satisfy the following equation.If the recording power of the laser beam is, then the recording power The maximum relative light reflectance RR a L of the virtual recording cell S, respectively, within the range where data with different recording levels can be recorded in the virtual recording cell S without greatly changing the laser beam irradiation time set in And the minimum relative light reflectance RR h L can be assigned.
また、 本実施態様によれば、 データ記録装置 5 0の制御装置 4 6の メモリ (図示せず) には、 記録条件設定用データが、 光記録媒体 1の 種類を特定する I Dデータを関連付けて、記憶されており、データを、 光記録媒体 1の記録層 2 1に記録するにあたり、 制御装置 4 6によつ て、 光記録媒体 1に記録された I Dデータが読み取られ、 I Dデータ にしたがって、 メモリに記録された対応する記録条件設定用データが 読み出され、 記録条件設定用データにしたがって、 レーザビームの記 録パワー P wが最適レベルに決定されるとともに、 データの記録レべ ルに応じて、 記録レベルが異なる仮想記録セル Sに照射される最適記 録パワー に設定されたレーザビームの照射時間が決定されるよう に構成されているから、 所望のように、 仮想記録セル Sに記録レベル の異なるデータを記録し、 広いダイナミックレンジを有する再生信号 を得ることが可能になる。 Further, according to the present embodiment, the memory (not shown) of the control device 46 of the data recording device 50 stores the recording condition setting data in association with the ID data specifying the type of the optical recording medium 1. In recording the data on the recording layer 21 of the optical recording medium 1, the ID data recorded on the optical recording medium 1 is read by the controller 46, and the data is read according to the ID data. , corresponding recording condition setting data stored in the memory is read out, according to the recording condition setting data, together with the record power P w of the laser beam is determined to an optimum level, the data of the recording level Accordingly, the configuration is such that the irradiation time of the laser beam set to the optimum recording power for irradiating the virtual recording cells S having different recording levels is determined accordingly. Thus, it is possible to record data having different recording levels in the recording area and obtain a reproduced signal having a wide dynamic range.
以下、 本発明の効果をより明瞭なものとするため、 実施例おょぴ比 較例を掲げる。  Hereinafter, in order to further clarify the effects of the present invention, examples and comparative examples will be described.
実施例 1  Example 1
以下のようにして、 光記録媒体サンプルを作製した。 まず、 射出成型法により、 0 . 6 m mの厚さと、 1 2 O m mの直径 を有し、 その表面に、 トラックピッチ (グループピッチ) が 0 . 7 4 mとなるように、 グループとランドが形成されたポリカーボネート からなるデイスク状の光透過性基板を作製した。 An optical recording medium sample was produced as follows. First, by injection molding, the group and land have a thickness of 0.6 mm and a diameter of 12 O mm, and the surface and the track pitch (group pitch) are 0.74 m. A disk-shaped light-transmitting substrate made of the formed polycarbonate was prepared.
次いで、 光透過性基板をスピンコーティング装置にセッ トし、 光透 過性基板を回転させながら、 光透過性基板のグループおよびランドが 形成された表面上に、 下記構造式で示されるァゾ系有機色素を含む有 機溶媒を滴下して、 塗膜を形成し、 塗膜を乾燥させて、 グループ上に おいて、 1 0 0 n mの厚さを有する記録層を形成した。  Next, the light-transmitting substrate is set in a spin coating apparatus, and while rotating the light-transmitting substrate, the azo-based material represented by the following structural formula is placed on the surface on which the groups and lands of the light-transmitting substrate are formed. An organic solvent containing an organic dye was added dropwise to form a coating film, and the coating film was dried to form a recording layer having a thickness of 100 nm on the group.
Figure imgf000022_0001
Figure imgf000022_0001
さらに、 記録層が形成された光透過性基板を、 スパッタリング装置 にセッ トし、 記録層上に、 A g、 P dおよび C uの合金よりなり、 1 5 0 n mの厚さを有する反射層を形成した。 Further, the light-transmitting substrate on which the recording layer was formed was set in a sputtering apparatus, and a reflective layer made of an alloy of Ag, Pd, and Cu and having a thickness of 150 nm was formed on the recording layer. Was formed.
次いで、 光透過性基板スピンコーティング装置にセッ トし、 光透過 性基板を回転させながら、 アク リル系紫外線硬化性樹脂を、 溶剤に溶 解して、 調製した樹脂溶液.を、 反射層の表面に塗布して、 塗膜を形成 し、 塗膜に、 紫外線を照射して、 アク リル系紫外線硬化性樹脂を硬化 させ、 保護層を形成した。  Next, it is set in a light-transmitting substrate spin coating apparatus, and while rotating the light-transmitting substrate, the acrylic UV-curable resin is dissolved in a solvent, and the prepared resin solution is applied to the surface of the reflective layer. To form a coating film, and the coating film was irradiated with ultraviolet rays to cure the acrylic ultraviolet curable resin, thereby forming a protective layer.
さらに、 光透過性基板を回転させながら、 保護層 2 3上に、 紫外線 硬化型接着剤を滴下して、 接着層を形成した。 次いで、 射出成型法により作製された 0 . 6 m mの厚さと、 1 2 0 m mの直径を有するポリカーボネートからなるダミー基板を、 接着層 の表面に貼り合わせ、 紫外線を照射して、 紫外線硬化型接着剤を硬化 させて、 光記録媒体サンプルを作製した。 Further, while rotating the light-transmitting substrate, an ultraviolet-curable adhesive was dropped on the protective layer 23 to form an adhesive layer. Next, a dummy substrate made of polycarbonate and having a thickness of 0.6 mm and a diameter of 120 mm, which is made by injection molding, is adhered to the surface of the adhesive layer, and is irradiated with ultraviolet light to be cured by ultraviolet curing. The agent was cured to produce an optical recording medium sample.
こう して作製した光記録媒体サンプルを、 パルステック工業株式会 社製の光記録媒体評価装置「D D U 1 0 0 0」 (商品名) にセッ トし、 記録線速度を 7 . 0 m/ s e cに設定するとともに、 レーザビームの 記録パワーを 9 . O mWに設定して、 光透過性基板側から、 レーザビ ームを照射した。  The optical recording medium sample thus prepared was set on an optical recording medium evaluation device “DDU100” (trade name) manufactured by Pulstec Industrial Co., Ltd., and the recording linear velocity was set to 7.0 m / sec. The recording power of the laser beam was set to 9.0 OmW, and the laser beam was irradiated from the light-transmitting substrate side.
ここに、 グループに沿って、 記録層に、 3 8 5 n mの長さを有する 仮想記録セルを、 仮想的に設定し、 仮想記録セルごとに、 記録パワー に設定されたレーザビームの照射時間を変え、複数の仮想記録セルに、 異なる記録マークを形成した。  Here, along the group, virtual recording cells having a length of 385 nm are virtually set on the recording layer, and the irradiation time of the laser beam set to the recording power is set for each virtual recording cell. In other words, different recording marks were formed on multiple virtual recording cells.
ここに、 記録パワーに設定されたレーザビームを、 仮想記録セルに 照射する最大照射時間は 5 5 n s e cであった。  Here, the maximum irradiation time for irradiating the virtual recording cell with the laser beam set to the recording power was 55 nsec.
同様にして、 同じ光記録媒体サンプルの異なる トラックに、 記録パ ヮ一が 1 2 . O mWに設定されたレーザビームを照射し、 仮想記録セ ルごとに、記録パワーに設定されたレーザビームの照射時間を変えて、 複数の仮想記録セルに、 異なる記録マークを形成した。  Similarly, a different track of the same optical recording medium sample is irradiated with a laser beam whose recording power is set to 12.2 mW, and the laser beam set to the recording power is set for each virtual recording cell. By changing the irradiation time, different recording marks were formed in multiple virtual recording cells.
さらに、 同様にして、 同じ光記録媒体サンプルの異なる トラックに、 記録パワーが 1 6 . O mWに設定されたレーザビームを照射し、 仮想 記録セルごとに、 記録パワーに設定されたレーザビームの照射時間を 変えて、 複数の仮想記録セルに、 異なる記録マークを形成した。  Further, similarly, a different track of the same optical recording medium sample is irradiated with a laser beam having a recording power set to 16 OmW, and a laser beam set to the recording power is set for each virtual recording cell. At different times, different recording marks were formed in multiple virtual recording cells.
こう して、 複数の仮想記録セルに異なる記録マークが形成された光 記録媒体サンプルに、 再生パワー P _rが 1 . 3 mWに設定されたレー ザビームを、 光透過性基板側から、 線速度を 7 . 0 m/ s e cで照射 して、 各仮想記録セルによって反射されたレーザビームの光量を測定 し、 各仮想記録セルの光反射率と、 記録パワーに設定されたレーザビ ームの照射時間との関係を測定した。  In this way, a laser beam with a reproduction power P_r set to 1.3 mW is applied to the optical recording medium sample in which different recording marks are formed in a plurality of virtual recording cells, and the linear velocity is increased from the optically transparent substrate side. Irradiate at 7.0 m / sec, measure the amount of laser beam reflected by each virtual recording cell, measure the light reflectance of each virtual recording cell, the irradiation time of the laser beam set to the recording power, and Was measured.
測定結果は、 第 8図に示されている。 第 8図において、 各仮想記録セルによって反射されたレーザビーム を光電変換して得られた電圧値 (V ) によって、 縦軸の光反射率が表 わされている。 第 8図の光反射率 (V ) は、 記録マークが形成されて いない仮想記録セルの光反射率 (V ) が 1 . 0になるように、 校正さ れている。 The measurement results are shown in FIG. In FIG. 8, the light reflectance on the vertical axis is represented by a voltage value (V) obtained by photoelectrically converting the laser beam reflected by each virtual recording cell. The light reflectance (V) in FIG. 8 is calibrated so that the light reflectance (V) of the virtual recording cell where no recording mark is formed becomes 1.0.
第 8図に示されるように、 レーザビームの記録パワーのレベルが高 いほど、 仮想記録セルの光反射率は、 記録パワーに設定されたレーザ ビームの照射を開始してから、 短時間で、 レーザビームの照射時間の 增大にしたがって、 ほぼ線形に低下するようになり、 第 4図の領域 A の長さが短くなることが判明した。  As shown in FIG. 8, as the recording power level of the laser beam is higher, the light reflectance of the virtual recording cell becomes shorter in a short time after the irradiation of the laser beam set to the recording power is started. As the irradiation time of the laser beam increased, it decreased almost linearly, and it was found that the length of the region A in FIG. 4 became shorter.
また、 第 8図に示されるように、 レーザビームの記録パワーのレべ ルが低いほど、 レーザビームの照射時間を増大させても、 仮想記録セ ルの光反射率があまり変化しなくなるまでに、 長い時間を要し、 第 4 図の領域 Cの長さが短くなることが判明した。 なお、 レーザビームの 記録パワーを 9 . 0 mWに設定した場合には、 記録パワーに設定され たレーザビームを最大照射時間である 5 5 n s e cにわたつて、 仮想 記録セルに照射しても、 仮想記録セルの光反射率は飽和光反射率に達 しなかった。  Also, as shown in Fig. 8, as the recording power of the laser beam is lower, even if the irradiation time of the laser beam is increased, the light reflectance of the virtual recording cell does not change much. It took a long time, and it was found that the length of the area C in FIG. 4 became short. When the recording power of the laser beam is set to 9.0 mW, the virtual recording cell is irradiated with the laser beam set to the recording power for 55 nsec, which is the maximum irradiation time. The light reflectance of the recording cell did not reach the saturated light reflectance.
さらに、 第 8図に示されるように、 レーザビームの記録パワーのレ ベルが高いほど、 第 4図の領域 Bにおけるレーザビームの照射時間の 増大に対する仮想記録セルの光反射率の変化が大きくなることが見出 された。  Further, as shown in FIG. 8, the higher the recording power of the laser beam, the larger the change in the light reflectance of the virtual recording cell with the increase in the irradiation time of the laser beam in the region B in FIG. Was found.
実施例 2  Example 2
実施例 1 と同様にして、 光記録媒体サンプルを作製して、 パルステ ック工業株式会社製の光記録媒体評価装置 「D D U 1 0 0 0」 (商品 名) にセッ トし、 記録線速度を 7 . 0 m / s e cに設定し、 第 1の記 録条件および第 2の記録条件にしたがって、 各仮想記録セルに、 3ビ ッ トのデータを記録した。  An optical recording medium sample was prepared in the same manner as in Example 1, and was set on an optical recording medium evaluation device “DDU 100” (trade name) manufactured by Pulstec Industrial Co., Ltd. At 7.0 m / sec, 3-bit data was recorded in each virtual recording cell according to the first recording condition and the second recording condition.
第 1の記録条件においては、 仮想記録セルに割り当てる最大相対光 反射率 R R aを 8 5 %、 最小相対光反射率 R R hを 5 %に設定し、 異 なる記録パワー を有するレーザビームを記録層 2 1に照射して、 データを記録した。 In the first recording condition, the maximum relative light reflectivity RRa assigned to the virtual recording cell was set to 85%, and the minimum relative light reflectivity RRh was set to 5%. The recording layer 21 was irradiated with a laser beam having a different recording power to record data.
一方、 第 2の記録条件においては、 仮想記録セルに割り当てる最大 相対光反射率 R R aを 9 5 %、 最小相対光反射率 R R hを 1 5 %に設 定し、 異なる記録パワー を有するレーザビームを記録層 2 1に照 射して、 データを記録した。  On the other hand, in the second recording condition, the maximum relative light reflectance RRa assigned to the virtual recording cell was set to 95%, the minimum relative light reflectance RRh was set to 15%, and the laser beams having different recording powers were set. Was applied to the recording layer 21 to record data.
第 1の記録条件にしたがって、 データが記録された光記録媒体サン プルおよび第 2の記録条件にしたがって、 データが記録された光記録 媒体サンプルに、 パワーレベルが 1 . 3 mWに設定されたレーザビー ムを、 7 . 0 m // s e cの線速度で照射し、 データを再生して、 エラ 一レート (D S E R ) を測定し、 レーザビームの記録パワー尸 wと、 エラーレー トの関係を測定した。  A laser beam with a power level set to 1.3 mW was applied to the optical recording medium sample on which data was recorded according to the first recording condition and to the optical recording medium sample on which data was recorded according to the second recording condition. The system was irradiated at a linear velocity of 7.0 m // sec, the data was reproduced, the error rate (DSER) was measured, and the relationship between the recording power of the laser beam and the error rate was measured.
測定結果は、 第 9図に示されている。  The measurement results are shown in FIG.
第 9図に示されるように、 第 1の記録条件にしたがって、 データを 記録じた光記録媒体サンプルにおいては、 エラーレート (D S E R ) が最小となる記録パワー は約 8 mWであるのに対し、 第 2の記録 条件にしたがって、データを記録した光記録媒体サンプルにおいては、 エラーレート (D S E R ) が最小となる記録パワー尸 wは約 1 1 mW であり、 仮想記録セルに、 低い最大相対光反射率および低い最小相対 光反射率を割り当てた場合には、 レーザビームの記録パワー wを低 いレベルに設定し、 仮想記録セルに、 高い最大相対光反射率および高 い最小相対光反射率を割り当てた場合には、 レーザビームの記録パヮ 一 を高いレベルに設定することが好ましいことが確認された。 本発明は、 以上の実施態様および実施例に限定されることなく、 特 許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、 それらも本発明の範囲内に包含されるものであることはいうまでもな い。  As shown in FIG. 9, according to the first recording condition, in the optical recording medium sample on which the data was recorded, the recording power at which the error rate (DSER) became the minimum was about 8 mW, According to the second recording condition, in the optical recording medium sample on which the data was recorded, the recording power w at which the error rate (DSER) was minimum was about 11 mW, and the low maximum relative light reflection was applied to the virtual recording cell. If a low relative light reflectance is assigned, the recording power w of the laser beam is set to a low level, and a high maximum relative light reflectance and a high minimum relative light reflectance are assigned to the virtual recording cell. In this case, it was confirmed that it is preferable to set the recording power of the laser beam to a high level. The present invention is not limited to the embodiments and examples described above, and various modifications can be made within the scope of the invention described in the appended claims, which are also included in the scope of the present invention. Needless to say, it is.
たとえば、 前記実施態様および前記実施例においては、 追記型の D V D - R型光記録媒体に、 データを記録する場合につき説明を加えた 力 S、 本発明は、 追記型の D V D— R型光記録媒体に、 データを記録す る場合に限定されるものではなく、 他の光記録媒体に、 データを記録 する場合にも適用することができる。 For example, in the above-described embodiment and the above-described embodiment, in the write-once DVD-R type optical recording medium, the force S described above for recording data is described. Record data on media However, the present invention is not limited to this case, and can be applied to the case where data is recorded on another optical recording medium.
さらに、 前記実施態様および前記実施例においては、 光記録媒体 1 は、 光透過性基板 1 1を介して、 記録層 2 1にレーザビームを照射し て、 データを記録し、 記録層 2 1に記録されたデータを再生するよう に構成されているが、 光記録媒体 1が、 光透過性基板 1 1を介して、 記録層 2 1にレーザビームを照射して、 データを記録し、 記録層 2 1 に記録されたデータを再生するように構成されていることは必ずしも 必要でなく、 本発明は、 基板上に、 反射層、 記録層および保護層を、 この順に備え、 保護層を介して、 記録層にレーザビームを照射して、 データを記録し、 記録層に記録されたデータを再生するように構成さ れた光記録媒体にデータを記録する場合にもも適用することができる また、 前記実施態様においては、 各仮想記録セル Sに、 3 ビッ トの データを記録しているが、 本発明は、 各仮想記録セル Sに、 3ビッ ト のデータを記録する場合に限定されるものではなく、 各仮想記録セル Sに、 2ビッ ト以上のデータを記録する場合に、 広く適用することが できる。  Further, in the embodiment and the example, the optical recording medium 1 irradiates the recording layer 21 with a laser beam through the light transmitting substrate 11 to record data, and the data is recorded on the recording layer 21. Although it is configured to reproduce recorded data, the optical recording medium 1 irradiates a laser beam to the recording layer 21 through the light-transmitting substrate 11 to record data, and It is not always necessary to be configured to reproduce the data recorded in 21. The present invention provides a reflective layer, a recording layer, and a protective layer on a substrate in this order, and through the protective layer. The present invention can also be applied to a case where a recording layer is irradiated with a laser beam to record data, and data recorded on an optical recording medium configured to reproduce the data recorded on the recording layer. In the embodiment, each virtual record Although 3-bit data is recorded in the cell S, the present invention is not limited to the case where 3-bit data is recorded in each virtual recording cell S, but is recorded in each virtual recording cell S. It can be widely applied when recording data of 2 bits or more.
さらに、 前記実施態様においては、 各仮想記録セル Sに、 3ビッ ト のデータを記録する場合に、 仮想記録セル Sに割り当てる最大光反射 率 R aおよび最大相対光反射率 R R aならびに最小光反射率 R hおよ び最小相対光反射率 R R hを設定し、 最大光反射率 R a と最小光反射 率 R hあるいは、 最大相対光反射率 R R a と最小相対光反射率 R R h との間を、 略 7等分して、 6種類の互いに異なる光反射率 R b、 R c、 R d、 R e、 R f 、 R gを決定しているが、 仮想記録セル Sに割り当 てる最大光反射率 R aおよび最大相対光反射率 R R aならびに最小光 反射率 R hおよび梟小相対光反射率 R R hを設定することは必ずしも 必要でなく、 仮想記録セル Sに割り当てる最大光反射率 R aおよび最 大相対光反射率 R R aあるいは仮想記録セル Sに割り当てる最小光反 射率 R hおよび最小相対光反射率 R R hを設定し、 仮想記録セル Sに 割り当てる最大光反射率 R aおよび最大相対光反射率 R R. aあるいは 仮想記録セル Sに割り当てる最小光反射率 R hおよび最小相対光反射 率 R R hを基準として、 記録レベルの異なる仮想記録セル Sに、 仮想 記録セル Sから反射されたレーザビームを検出して、 データを再生す る際に、 データの記録レベルの違いを認識可能な光反射率差あるいは 相対光反射率差づつ、 異なる光反射率あるいは相対光反射率を割り当 てるようにすることもできる。 Further, in the above embodiment, when 3-bit data is recorded in each virtual recording cell S, the maximum light reflectance Ra, the maximum relative light reflectance RRa, and the minimum light reflection allocated to the virtual recording cell S are determined. The reflectance Rh and the minimum relative light reflectance RRh are set, and the maximum light reflectance Ra and the minimum light reflectance Rh or between the maximum relative light reflectance RRa and the minimum relative light reflectance RRh are set. Into approximately seven equal parts and determine six different types of light reflectance R b, R c, R d, Re, R f, and R g, but the maximum to be assigned to the virtual recording cell S It is not always necessary to set the light reflectivity R a and the maximum relative light reflectivity RR a and the minimum light reflectivity R h and the owl small relative light reflectivity RR h, and it is not necessary to set the maximum light reflectivity R assigned to the virtual recording cell S. a and the maximum relative light reflectance RR a or the minimum light reflectance R h and Set the minimum relative reflectance RR h, the maximum light reflectance R a and the maximum relative light reflectance allocated to the virtual recording cells S R R. a, or The laser beam reflected from the virtual recording cell S is detected in the virtual recording cell S having a different recording level based on the minimum light reflectance R h and the minimum relative light reflectance RR h assigned to the virtual recording cell S, and the data is obtained. When reproducing the data, it is possible to assign a different light reflectance or relative light reflectance according to the light reflectance difference or relative light reflectance difference at which the difference in data recording level can be recognized.
また、 前記実施態様においては、 記録マークを形成すべき仮想記録 セル Sの始点に、 レーザビームが到達した時点で、 レーザビームのパ ヮ一が、 基底パワー から、 記録パワー _P wに立ち上げられている 、 仮想記録セル sに照射されるレーザビームの総エネルギーが同一 であれば、 レーザビームのパワーを、 基底パワー から、 記録パヮ 一尸 wに立ち上げるタイミングは任意に決定することができる。  Further, in the above embodiment, when the laser beam reaches the starting point of the virtual recording cell S where the recording mark is to be formed, the laser beam is raised from the base power to the recording power _Pw. However, if the total energy of the laser beam applied to the virtual recording cell s is the same, the timing of raising the power of the laser beam from the base power to the recording power w can be arbitrarily determined.
さらに、前記実施態様および前記実施例においては、光記録媒体は、 有機色素材料を含む記録層を備えているが、 光記録媒体が、 有機色素 材料を含む記録層を備えていることは必ずしも必要でなく、 無機材料 を含む記録層を備えていてもよい。  Further, in the embodiments and the examples, the optical recording medium includes the recording layer containing the organic dye material. However, it is not always necessary that the optical recording medium includes the recording layer containing the organic dye material. Alternatively, a recording layer containing an inorganic material may be provided.
本発明によれば、 光記録媒体に、 2ビッ ト以上のデータを記録し、 光記録媒体に記録されたデータを読み出す際に、 データの記録レベル の相違を確実に判別することができ、 広いダイナミックレンジを有す る再生信号を得ることができるように、 データの記録条件を決定する ことができるデータ記録条件決定方法を提供することが可能になる。 また、 本発明によれば、 光記録媒体に、 2ビッ ト以上のデータを記 録し、 光記録媒体に記録されたデータを読み出す際に、 データの記録 レベルの相違を確実に判別することができ、 広いダイナミックレンジ を有する再生信号を得ることができるように、 データの記録条件を決 定して、 光記録媒体に、 データを記録することができるデータ記録装 置を提供することが可能になる。  According to the present invention, when data of 2 bits or more is recorded on an optical recording medium, and when data recorded on the optical recording medium is read, a difference in data recording level can be reliably determined. It is possible to provide a data recording condition determination method capable of determining data recording conditions so that a reproduction signal having a dynamic range can be obtained. Further, according to the present invention, it is possible to record data of 2 bits or more on an optical recording medium and to reliably determine a difference in data recording level when reading data recorded on the optical recording medium. It is possible to provide a data recording device that can record data on an optical recording medium by determining data recording conditions so that a reproduced signal having a wide dynamic range can be obtained. Become.

Claims

請求の範囲 The scope of the claims
1. 光記録媒体の記録層に、 仮想的に設定された複数の仮想記録セル に、 2ビッ ト以上のデ一夕を記録するに際し、 前記仮想記録セルに 割り当てる最大光反射率および/または最小光反射率に応じて、 デ —夕を記録するために用いるレーザビームの記録パワーを設定する ことを特徴とするデータの記録条件決定方法。 1. When recording data of 2 bits or more in a plurality of virtual recording cells virtually set in a recording layer of an optical recording medium, the maximum light reflectance and / or the minimum light reflectance allocated to the virtual recording cells A method for determining data recording conditions, comprising setting recording power of a laser beam used for recording data in accordance with light reflectance.
2. 前記仮想記録セルに割り当てる最大反射率が高いほど、前記レー ザビームの記録パワーを高いレベルに設定することを特徴とする請 求の範囲第 1項に記載のデータの記録条件決定方法。 2. The data recording condition determining method according to claim 1, wherein the recording power of the laser beam is set to a higher level as the maximum reflectance assigned to the virtual recording cell is higher.
3. 前記仮想記録セルに割り当てる最小反射率が低いほど、前記レ一 ザビームの記録パワーを低いレベルに設定することを特徴とする請 求の範囲第 1項に記載のデータの記録条件決定方法。 3. The data recording condition determination method according to claim 1, wherein the recording power of the laser beam is set to a lower level as the minimum reflectance assigned to the virtual recording cell is lower.
4. 前記仮想記録セルに割り当てる最大相対反射率が高いほど、前記 レーザビームの記録パワーを高いレベルに設定し、 最大相対光反射 率 RR aHと最小相対光反射率 RR hHを、 100— RRaH<R RhHを満たすように設定することを特徴とする請求の範囲第 2項 に記載のデータの記録条件決定方法。 4. The higher the maximum relative reflectivity assigned to the virtual recording cell, the higher the recording power of the laser beam is set, and the maximum relative light reflectivity RR aH and the minimum relative light reflectivity RR hH are set to 100—RRaH < 3. The data recording condition determination method according to claim 2, wherein the setting is made so as to satisfy R RhH.
5. 前記仮想記録セルに割り当てる最小反射率が低いほど、前記レ一 ザビームの記録パワーを低いレベルに設定し、 最大相対光反射率 R RaHと最小相対光反射率 RRhHを、 100— RRaL>RRh Lを満たすように設定することを特徴とする請求の範囲第 3項に記 載のデータの記録条件決定方法。 5. The lower the minimum reflectivity assigned to the virtual recording cell, the lower the recording power of the laser beam is set to a lower level, and the maximum relative light reflectivity R RaH and the minimum relative light reflectivity RRhH are set as 100—RRa> RRh. 4. The method for determining data recording conditions according to claim 3, wherein L is set so as to satisfy L.
6. 前記光記録媒体の前記記録層が、有機色素材料を含んでいること を特徴とする請求の範囲第 1項ないし第 5項のいずれか 1項に記載 のデータの記録条件決定方法。 6. The optical recording medium according to any one of claims 1 to 5, wherein the recording layer of the optical recording medium contains an organic dye material. Method for determining recording conditions for data.
7 . 光記録媒体の記録層に、仮想的に設定された複数の仮想記録セル に、 2ビッ ト以上のデータを記録する際に、 前記仮想記録セルに割 り当てる最大光反射率および/または最小光反射率に応じて、 デー タを記録するために用いるレーザビームの記録パヮ一が設定された 記録条件設定用データを格納したことを特徴とするデータ記録装置 t 7. When recording data of 2 bits or more in a plurality of virtual recording cells virtually set in the recording layer of the optical recording medium, the maximum light reflectance and / or maximum optical reflectance to be allocated to the virtual recording cells. depending on the minimum reflectance, the data recording apparatus, characterized in that the recording Pawa one laser beam storing recording condition setting data set used to record the data t
8 . 前記仮想記録セルに割り当てる最大反射率が高いほど、前記レー ザビームの記録パワーが高いレベルに設定されて、 前記記録条件設 定用データが生成されていることを特徴とする請求の範囲第 7項に 記載のデータ記録装置。 8. The recording power of the laser beam is set to a higher level as the maximum reflectance assigned to the virtual recording cell is higher, and the recording condition setting data is generated. The data recording device according to item 7.
9 . 前記仮想記録セルに割り当てる最大反射率が低いほど、前記レー ザビームの記録パヮ一が低いレベルに設定されて、 前記記録条件設 定用データが生成されていることを特徴とする請求の範囲第 7項に 記載のデータ記録装置。 9. The recording power of the laser beam is set to a lower level as the maximum reflectance assigned to the virtual recording cell is lower, and the recording condition setting data is generated. Item 8. The data recording device according to Item 7.
10. 前記仮想記録セルに割り当てる最大相対反射率が高いほど、前記 レーザビームの記録パワーが高いレベルに設定され、 最大相対光反 射率 R R a Hと最小相対光反射率 R R h Hが、 1 0 0— R R a H < R R h Hを満たすように設定されて、 前記記録条件設定用データが 生成されていることを特徴とする請求の範囲第 8項に記載のデータ 10. The recording power of the laser beam is set to a higher level as the maximum relative reflectance assigned to the virtual recording cell is higher, and the maximum relative light reflectance RRaH and the minimum relative light reflectance RRhH are 1 9. The data according to claim 8, wherein the recording condition setting data is generated so as to satisfy 0 0—RR a H <RR h H.
11. 前記仮想記録セルに割り当てる最小反射率が低いほど、前記レー ザビームの記録パヮ一が低いレベルに設定され、 最大相対光反射率11. The lower the minimum reflectance assigned to the virtual recording cell, the lower the recording power of the laser beam is set to a lower level, and the maximum relative light reflectance
R R a Hと最小相対光反射率 R R h Hが、 1 0 0— R R a L〉R R h Lを満たすように設定されて、 前記記録条件設定用データが生成 されていることを特徴とする請求の範囲第 9項に記載のデータ記録 RR a H and a minimum relative light reflectance RR h H are set so as to satisfy 100—RR a L> RR h L, and the recording condition setting data is generated. Data record described in paragraph 9 of the scope
Z Z
C690T0/C00Zdf/X3d ■ 6請 OOZ OAV C690T0 / C00Zdf / X3d ■ 6 contracts OOZ OAV
PCT/JP2003/010693 2002-08-23 2003-08-25 Method for deciding recording condition of data onto optical recording medium and data recording device WO2004019327A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003261711A AU2003261711A1 (en) 2002-08-23 2003-08-25 Method for deciding recording condition of data onto optical recording medium and data recording device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-243678 2002-08-23
JP2002243678A JP2004086949A (en) 2002-08-23 2002-08-23 Method for recording data to optical recording medium

Publications (1)

Publication Number Publication Date
WO2004019327A1 true WO2004019327A1 (en) 2004-03-04

Family

ID=31944103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010693 WO2004019327A1 (en) 2002-08-23 2003-08-25 Method for deciding recording condition of data onto optical recording medium and data recording device

Country Status (4)

Country Link
JP (1) JP2004086949A (en)
AU (1) AU2003261711A1 (en)
TW (1) TW200405301A (en)
WO (1) WO2004019327A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339765A (en) * 2004-04-28 2005-12-08 Ricoh Co Ltd Multi-valued data recording and reproducing method, and multi-valued data recording and reproducing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025308A1 (en) * 1998-10-26 2000-05-04 Mitsubishi Chemical Corporation Multivalue recording / reproducing method and phase-change multivalue recording medium
WO2001027917A1 (en) * 1999-10-14 2001-04-19 Tdk Corporation Optical recording medium, optical recording method, optical recorded medium reproducing method
EP1174863A2 (en) * 2000-06-22 2002-01-23 TDK Corporation Optical recording medium and optical recording method
JP2002117545A (en) * 2000-10-10 2002-04-19 Tdk Corp Optical recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000025308A1 (en) * 1998-10-26 2000-05-04 Mitsubishi Chemical Corporation Multivalue recording / reproducing method and phase-change multivalue recording medium
WO2001027917A1 (en) * 1999-10-14 2001-04-19 Tdk Corporation Optical recording medium, optical recording method, optical recorded medium reproducing method
EP1174863A2 (en) * 2000-06-22 2002-01-23 TDK Corporation Optical recording medium and optical recording method
JP2002117545A (en) * 2000-10-10 2002-04-19 Tdk Corp Optical recording medium

Also Published As

Publication number Publication date
JP2004086949A (en) 2004-03-18
AU2003261711A1 (en) 2004-03-11
TW200405301A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
US8279723B2 (en) Recording medium, optical device, and recording and reproducing apparatus
US8238215B2 (en) Recording medium, and recording and reproducing apparatus
JP2000030257A (en) Optical information medium and its recording medium
WO2003102932A1 (en) Laser beam power modulation pattern decision method, device for recording data onto optical recording medium, and optical recording medium
KR20020041455A (en) Optical recording medium, optical recording method, optical recorded medium reproducing method
JP2004199757A (en) Optical recording medium, and recording/reproducing method and device for the same
US6754166B2 (en) Optical recording medium and optical recording method
US7102969B2 (en) Multi-level optical recording medium reproducing method and reproducing device
US7221637B2 (en) Multi-level optical recording medium, multi-level recording method, and multi-level reproduction method
JP2001184649A (en) Optical recording system and optical recording medium
WO2004019327A1 (en) Method for deciding recording condition of data onto optical recording medium and data recording device
JPH10151854A (en) Optical recording medium
US7167439B2 (en) Multilevel optical recording medium with calibration signals
JP2001184647A (en) Optical recording medium and optical recording method
WO2004019328A1 (en) Data recording method
WO2003102931A1 (en) Method for recording data to optical recording medium, device for recording data to optical recording medium, and optical recording medium
JP2001184648A (en) Optical recording method and optical recording medium
JP2002083426A (en) Optical recording medium
JP2000268409A (en) Optical recording medium
JP2002083425A (en) Optical recording method
JP3964357B2 (en) Recording / reproducing method of phase change type optical information recording medium
JP2003067933A (en) Multilevel optical data-storage medium
JP2003162820A (en) Method for reproducing multilevel optical recording medium and reproducing apparatus
JP2003067938A (en) Measuring method of characteristics data to multilevel optical storage-medium and multilevel optical storage- medium to which pattern for measuring the characteristics data is recorded
JP2003151172A (en) Multilevel optical recording medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase