WO2004018528A1 - Very low melt viscosity resin - Google Patents

Very low melt viscosity resin Download PDF

Info

Publication number
WO2004018528A1
WO2004018528A1 PCT/US2003/025748 US0325748W WO2004018528A1 WO 2004018528 A1 WO2004018528 A1 WO 2004018528A1 US 0325748 W US0325748 W US 0325748W WO 2004018528 A1 WO2004018528 A1 WO 2004018528A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt flow
flow index
polymer resin
prodegradant
index polymer
Prior art date
Application number
PCT/US2003/025748
Other languages
French (fr)
Inventor
Kimberly M. Mcloughlin
Edwin B. Townsend
John A. Boettger
Gary R. Tarr
Theodore Gabor
Original Assignee
Sunoco, Inc. (R & M)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunoco, Inc. (R & M) filed Critical Sunoco, Inc. (R & M)
Priority to AU2003259885A priority Critical patent/AU2003259885A1/en
Priority to CA002491819A priority patent/CA2491819A1/en
Priority to EP03793090A priority patent/EP1530597A1/en
Publication of WO2004018528A1 publication Critical patent/WO2004018528A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0033Additives activating the degradation of the macromolecular compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/10Chemical modification of a polymer including a reactive processing step which leads, inter alia, to morphological and/or rheological modifications, e.g. visbreaking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to polymer resins for use in meltblown processing. Specifically, the present invention relates to a process for the production of polymer resins with very low melt viscosity by post-reactor molecular weight alteration of high melt viscosity resins using prodegradants, where the final resins are suitable for meltblown processing without further preparation and contain low concentrations of or no residual prodegradants.
  • polymer resins suitable for meltblown processing may be produced by preparing polymer with a relatively high melt viscosity and then subjecting it to a post-reactor molecular weight alteration using a chemical prodegradant, typically a free radical initiator, such as a peroxide.
  • a chemical prodegradant typically a free radical initiator, such as a peroxide.
  • This degradation treatment occurs under such conditions that the melt viscosity of the polymer decreases to a specific value.
  • this process has presented problems.
  • the additional prodegradant acts to further reduce the average molecular weight to the desired value during meltblown processing.
  • U.S. Pat. No. 5,594,074 to Hwo, et al, U.S. Pat. No. 4,451,589 to Morman, et al and U.S. Pat. No. 4,897,452 to Berrier, et al all describe processes for making polymer pellets containing an unreacted free radical initiator. Using the impregnated free radical initiator, the polymers can be further degraded upon thermal treatment to form an ultra low melt viscosity polyolefm.
  • 4,897,452 describes a process for the manufacture of propylene homopolymer or copolymer pellets in the presence of a primary and secondary free radical initiator, wherein the half-life of the second free radical initiator is at least twenty times longer than that of the first free radical mitiator.
  • at least 80% by weight of the second free radical initiator, and not more than 20% by weight of first free radical initiator remain intact in the pellets and available for subsequent decomposition during the conversion of the pellets into finished articles.
  • Another method consists of higher melt viscosity reactor granules that are coated with peroxide so that they crack to lower melt viscosity during meltblown processing. In all cases, the un-reacted peroxide cracks the polymer to low melt viscosity during meltblown processing.
  • materials having prodegradants either impregnated into or coated onto pelletized polymer have some disadvantages. In particular, there is a danger that the residual prodegradant within the polymer will react early, either before it gets to the end-user or before the end-user processes it. As a result, various lots of the polymer material may behave with a degree of inconsistency.
  • a polymer resin produced by such a process would have a low melt viscosity, as measured by melt flow index, in combination with a low residual content of prodegradant.
  • Such material would be provided fully or nearly fully reacted prior to melt blown processing.
  • Such material would also be provided in a pellet form for easy handling and transport.
  • the present invention provides a process for producing a homopolymer or copolymer resin having a melt flow index of greater than 1000 dg/min. and containing less than 300 ppm of residual prodegradant.
  • the polymer resin produced according to the process of the present invention can be used to produce a fiber that can be incorporated into a non- woven fabric and can be processed on a meltblown line to form a fabric ("web") using standard commercial processing conditions and rates.
  • the polymer resin of the current invention provides improved melt viscosity homogeneity during meltblown processing relative to granules or pellets coated or impregnated with prodegradants, such as free radical initiators.
  • the process of the current invention further provides improved lot-to-lot consistency relative to products that contain substantial amounts of un-reacted peroxides or other prodegradants, which can react during shipping and storage, initiating degradation that results in unpredictable melt viscosity.
  • the process according to the current invention is applicable to a variety of polyolefm homopolymers and copolymers.
  • the high melt flow index polymer resin produced is a polypropylene homopolymer, or random or block copolymer.
  • the invention provides a process for producing polymer resins with low melt viscosity, suitable for melt blown processing.
  • the process provides polymer resins having a melt flow index of greater than 1000 dg/min.
  • the melt flow index of the resin is from 1000 dg/min. to 2500 dg/min.
  • the polymer resins produced according to the invention contain less than 300 ppm of residual prodegradant, preferably, less than 50 ppm.
  • polymer resins produced according to the invention have relatively narrow molecular weight distributions (MWDs), as defined by the function:
  • polymer resins produced according to the invention typically have molecular weight distributions of less than 3.0.
  • a high melt flow index polymer resin is produced by extruding a low melt flow index polymer powder with a prodegradant to initiate controlled degradation that results in a reduction of the average molecular weight of the polymer, providing a final product that has a melt flow index of greater than 1000 dg/min. and containing minimal residual prodegradant.
  • polymer reactor granules are combined with additives.
  • the polymer powder/additive blend is then fed into an extruder.
  • the prodegradant is combined with the powder/additive during extrusion by injecting it directly into the extruder, either at the feed throat or through an opening in the barrel, preferably as a solution.
  • a prodegradant may be dry-blended with the polymer powder/additive blend before extrusion. Further, the additives may be added as a solution with the prodegradant, by injection into the molten resin during extrusion. Regardless of how the prodegradant or additional additives are added, at the elevated extrusion temperatures the prodegradant initiates controlled degradation that decreases the average molecular weight of the polymer. Vacuum devolitazation can be applied to the extruder barrel to remove any unreacted prodegradant along with residual solvents. The resin leaves the extruder through a die and is then quenched by a water bath and chopped into pellets.
  • a low melt viscosity polymer resin may be produced through a two stage process, which begins by performing a first stage extrusion process as described above, resulting in polymer pellets with a final melt flow index of approximately 300 to 700 dg/min. The resulting polymer pellets then enter the second stage of the process which is identical to the first stage except that the starting material is the polymer pellet produced from the first stage processing.
  • the first stage polymer pellets of approximately 300 to 700 dg/min melt flow index are fed into the extruder where they are extruded with a prodegradant and vacuum devolatized to remove residual prodegradant.
  • the resin then proceeds to a water bath followed by drying with an air knife and then proceeds to a strand pelletizer.
  • This second stage extrusion process results in polymer pellets with a final melt flow index of approximately 1000 dg/min. or greater and less than 300 ppm of residual prodegradant.
  • the polymer may be dry mixed with the prodegradant prior to extrusion.
  • Polymer resins that can be used as raw materials in the process of the current invention typically have melt flow indices of 60 or greater, but they may be as low as 0.7.
  • the prodegradant is added to the raw polymer resin in concentrations from 0.1 to 2.0 percent by weight, based on the weight of polymer. It will be apparent to those skilled in the art that the process of the present invention is not limited to a particular prodegradant or class of prodegradant. A number of prodegradants, including free radical initiators, such as organic peroxides, are useful with the present invention.
  • the class of organic peroxides includes, but is not limited to: TRIGONOX 101® (2,5-dimethyl-2,5-di-[tert- butylperoxyl]hexane) and TRIGONOX 301® (3,6,9-triethyl-3,6,9-trimethyl-l,4,7- triperoxonane), both available from AKZO and (di-tert-amyl peroxide), available from CK Witco as DTAP® and from AKZO as Trigonox 201®. Additionally, a number of additives may be used with the current invention, including, but not limited to: anti-oxidants, processing stabilizers, and acid scavengers.
  • additives examples include: IRGAFOS 168® (tris-[2,4-di-tert-butylphenyl]phosphite) and IRGANOX 1076® (octadecyl-3,5-di-tert-butyl-4-hydroxyhydrocinnamate), both available from CIBA, and zinc oxide and calcium stearate.
  • IRGAFOS 168® tris-[2,4-di-tert-butylphenyl]phosphite
  • IRGANOX 1076® octadecyl-3,5-di-tert-butyl-4-hydroxyhydrocinnamate
  • High melt flow index polymer resins produced according to the current invention contrast with commercial meltblown resins, which contain an un-reacted peroxide that initiates resin degradation during meltblown processing.
  • the fully reacted resins produced by the process of the current invention are expected to exhibit improved melt viscosity consistency over current commercial products.
  • Extruder barrel temperature settings are critical to forming a product that contains minimal un-reacted prodegradant.
  • the prodegradant decomposition rate i.e. the rate at which the prodegradant initiates controlled degradation of the polymer
  • the process temperature must be high enough to provide a half-life that is substantially shorter than the residence time of the extruder.
  • the residence time of the material in the extruder should be at least five times the half-life of the prodegradant.
  • the residence time is determined by the extruder size, screw design, and throughput.
  • the throughput rate and devolatilization vacuum pressure were varied to measure the effects of those parameters on product molecular weight and residual prodegradant.
  • Table 3 indicate that for the above examples the best residual peroxide levels were obtained using the 43 mm extruder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

A process is provided for the production of a very low melt viscosity (high melt flow index) polymer resin, suitable for use in meltblown processing. According to the process of the current invention, a high melt viscosity (low melt flow index) resin is subjected to post-reactor molecular weight alteration by extrusion with a chemical prodegradant. The process produces a very low melt viscosity resin that can be used in meltblown processing without further treatment to reduce the average molecular weight of the resin. Further, the very low melt viscosity resins produced according to the process of the current invention contain very little or no residual prodegradant.

Description

VERY LOW MELT VISCOSITY RESIN
FIELD OF THE INVENTION [0001] The present invention relates to polymer resins for use in meltblown processing. Specifically, the present invention relates to a process for the production of polymer resins with very low melt viscosity by post-reactor molecular weight alteration of high melt viscosity resins using prodegradants, where the final resins are suitable for meltblown processing without further preparation and contain low concentrations of or no residual prodegradants.
BACKGROUND OF THE INVENTION [0002] It is well known in the art that it is a desirable processing property for polymer resins in meltblown processing to have a low viscosity when molten. For many commercial end-users, the melt-flow characteristics of standard, commercial polymer resins are not suitable because of their relatively high molecular weight, which results in a high melt viscosity. As low melt viscosity is desired, prior art references have sought to achieve low melt viscosity of polymer through controlled scission of the polymer chain. This controlled scission, in effect, reduces the post-reactor average molecular weight of the polymer chains. As the average molecular weight is reduced, the melt viscosity is lowered. Furthermore, the molecular weight distribution (MWD) is significantly altered.
[0003] It is well-known that polymer resins suitable for meltblown processing may be produced by preparing polymer with a relatively high melt viscosity and then subjecting it to a post-reactor molecular weight alteration using a chemical prodegradant, typically a free radical initiator, such as a peroxide. This degradation treatment occurs under such conditions that the melt viscosity of the polymer decreases to a specific value. However, when producing a pelletized polymer for future processing, this process has presented problems. U.S. Patent Nos. 4,451,589; 4,897,452 and 5,594,074 all report that when peroxide treatment is used to produce a low melt viscosity polymer in a extrusion process, the resulting polymer is not easily pelletized. Specifically, the degraded polymer on exiting the extruder becomes so fluid and soft that it is difficult or impossible to cut into pellet form. [0004] To avoid this problem, several processing techniques have used a degradation process involving a primary degradation wherein the average molecular weight of the polymer is reduced to a value above that desired for meltblown processing. The degradation is performed in an extruder wherein an additional amount of prodegradant remains impregnated in the pelletized polymer for further degradation. The additional prodegradant acts to further reduce the average molecular weight to the desired value during meltblown processing. U.S. Pat. No. 5,594,074 to Hwo, et al, U.S. Pat. No. 4,451,589 to Morman, et al and U.S. Pat. No. 4,897,452 to Berrier, et al all describe processes for making polymer pellets containing an unreacted free radical initiator. Using the impregnated free radical initiator, the polymers can be further degraded upon thermal treatment to form an ultra low melt viscosity polyolefm. U.S. Pat. No. 4,897,452 describes a process for the manufacture of propylene homopolymer or copolymer pellets in the presence of a primary and secondary free radical initiator, wherein the half-life of the second free radical initiator is at least twenty times longer than that of the first free radical mitiator. In that invention at least 80% by weight of the second free radical initiator, and not more than 20% by weight of first free radical initiator remain intact in the pellets and available for subsequent decomposition during the conversion of the pellets into finished articles.
[0005] Another method consists of higher melt viscosity reactor granules that are coated with peroxide so that they crack to lower melt viscosity during meltblown processing. In all cases, the un-reacted peroxide cracks the polymer to low melt viscosity during meltblown processing. [0006] However, materials having prodegradants either impregnated into or coated onto pelletized polymer have some disadvantages. In particular, there is a danger that the residual prodegradant within the polymer will react early, either before it gets to the end-user or before the end-user processes it. As a result, various lots of the polymer material may behave with a degree of inconsistency.
[0007] It is also known to produce polymer having a low melt viscosity directly from an in-reactor process. In this case no post-reactor molecular weight alteration is required, as the desired melt viscosity property is produced directly by the in-reactor polymerization of the monomer. A draw back of resins produced by in-reactor processes is that they are supplied in a flake rather than pellet form, resulting in the presence of a significant amount of powdery fines, which create difficulties in handling and transporting the material. Finally, in- reactor processing is not a viable option for a number of meltblown fabric processors that lack the particular conveying systems necessary to transport materials supplied in flake form. [0008] Therefore, it would be desirable to provide a process for producing a polymer resin that has low melt viscosity and good melt flow in meltblown processing. A polymer resin produced by such a process would have a low melt viscosity, as measured by melt flow index, in combination with a low residual content of prodegradant. Such material would be provided fully or nearly fully reacted prior to melt blown processing. Such material would also be provided in a pellet form for easy handling and transport.
SUMMARY OF THE INVENTION [0009] The present invention provides a process for producing a homopolymer or copolymer resin having a melt flow index of greater than 1000 dg/min. and containing less than 300 ppm of residual prodegradant. The polymer resin produced according to the process of the present invention can be used to produce a fiber that can be incorporated into a non- woven fabric and can be processed on a meltblown line to form a fabric ("web") using standard commercial processing conditions and rates. The polymer resin of the current invention provides improved melt viscosity homogeneity during meltblown processing relative to granules or pellets coated or impregnated with prodegradants, such as free radical initiators.
[0010] The process of the current invention further provides improved lot-to-lot consistency relative to products that contain substantial amounts of un-reacted peroxides or other prodegradants, which can react during shipping and storage, initiating degradation that results in unpredictable melt viscosity.
[0011] The process according to the current invention is applicable to a variety of polyolefm homopolymers and copolymers. In a preferred embodiment, the high melt flow index polymer resin produced is a polypropylene homopolymer, or random or block copolymer.
DETAILED DESCRIPTION OF THE INVENTION [0012] The invention provides a process for producing polymer resins with low melt viscosity, suitable for melt blown processing. The process provides polymer resins having a melt flow index of greater than 1000 dg/min. Preferably, the melt flow index of the resin is from 1000 dg/min. to 2500 dg/min. Additionally, the polymer resins produced according to the invention contain less than 300 ppm of residual prodegradant, preferably, less than 50 ppm.
[0013] Further, polymer resins produced according to the invention have relatively narrow molecular weight distributions (MWDs), as defined by the function:
MWD = Mw/Mn where: Mw = weight average molecular weight Mn = simple average molecular weight
-A- [0014] In general, polymer resins produced according to the invention typically have molecular weight distributions of less than 3.0.
[0015] According to the process of the present invention a high melt flow index polymer resin is produced by extruding a low melt flow index polymer powder with a prodegradant to initiate controlled degradation that results in a reduction of the average molecular weight of the polymer, providing a final product that has a melt flow index of greater than 1000 dg/min. and containing minimal residual prodegradant. According to one embodiment of the invention, polymer reactor granules are combined with additives. The polymer powder/additive blend is then fed into an extruder. The prodegradant is combined with the powder/additive during extrusion by injecting it directly into the extruder, either at the feed throat or through an opening in the barrel, preferably as a solution. According to an alternate embodiment, a prodegradant may be dry-blended with the polymer powder/additive blend before extrusion. Further, the additives may be added as a solution with the prodegradant, by injection into the molten resin during extrusion. Regardless of how the prodegradant or additional additives are added, at the elevated extrusion temperatures the prodegradant initiates controlled degradation that decreases the average molecular weight of the polymer. Vacuum devolitazation can be applied to the extruder barrel to remove any unreacted prodegradant along with residual solvents. The resin leaves the extruder through a die and is then quenched by a water bath and chopped into pellets. The molecular weight reduction obtained results in a very low melt viscosity, as measured by melt flow index. [0016] According to an alternative embodiment of the invention, a low melt viscosity polymer resin may be produced through a two stage process, which begins by performing a first stage extrusion process as described above, resulting in polymer pellets with a final melt flow index of approximately 300 to 700 dg/min. The resulting polymer pellets then enter the second stage of the process which is identical to the first stage except that the starting material is the polymer pellet produced from the first stage processing. Specifically, the first stage polymer pellets of approximately 300 to 700 dg/min melt flow index are fed into the extruder where they are extruded with a prodegradant and vacuum devolatized to remove residual prodegradant. The resin then proceeds to a water bath followed by drying with an air knife and then proceeds to a strand pelletizer. This second stage extrusion process results in polymer pellets with a final melt flow index of approximately 1000 dg/min. or greater and less than 300 ppm of residual prodegradant. As with the one stage process, the polymer may be dry mixed with the prodegradant prior to extrusion.
[0017] Polymer resins that can be used as raw materials in the process of the current invention typically have melt flow indices of 60 or greater, but they may be as low as 0.7. Preferably, the prodegradant is added to the raw polymer resin in concentrations from 0.1 to 2.0 percent by weight, based on the weight of polymer. It will be apparent to those skilled in the art that the process of the present invention is not limited to a particular prodegradant or class of prodegradant. A number of prodegradants, including free radical initiators, such as organic peroxides, are useful with the present invention. The class of organic peroxides includes, but is not limited to: TRIGONOX 101® (2,5-dimethyl-2,5-di-[tert- butylperoxyl]hexane) and TRIGONOX 301® (3,6,9-triethyl-3,6,9-trimethyl-l,4,7- triperoxonane), both available from AKZO and (di-tert-amyl peroxide), available from CK Witco as DTAP® and from AKZO as Trigonox 201®. Additionally, a number of additives may be used with the current invention, including, but not limited to: anti-oxidants, processing stabilizers, and acid scavengers. Examples of additives that are useful in the current invention are: IRGAFOS 168® (tris-[2,4-di-tert-butylphenyl]phosphite) and IRGANOX 1076® (octadecyl-3,5-di-tert-butyl-4-hydroxyhydrocinnamate), both available from CIBA, and zinc oxide and calcium stearate. [0018] High melt flow index polymer resins produced according to the current invention contrast with commercial meltblown resins, which contain an un-reacted peroxide that initiates resin degradation during meltblown processing. The fully reacted resins produced by the process of the current invention are expected to exhibit improved melt viscosity consistency over current commercial products.
Examples 1 -5: One Step Process
[0019] Five samples of low melt viscosity polypropylene resin were produced using the single extrusion process. The initial melt flow indices (MFIs) of the resins put into the process were from 0.7 to 60. Table 1 shows the properties of the resins that were input into these five trials.
Table 1 Molecular Weight Distributions of Starting Materials starting Mn Mw material MFI (Kg/mole) (Kg/mole) Mw/Mn granules 0.7 82 473 5.9 granules 18 44 205 4.7 granules 60 37 155 4.15
[0020] Examples were run using 30mm, 43mm and 240mm extruders. The quantity of peroxide fed to the extruder varied from 0.31 to 1.2 weight percent. The polypropylene powder was dry-blended with a peroxide and fed to the hopper of the extruder. For the trials on the 43 mm extruder, the barrel temperature at the hopper was set to 350°F and increased along the barrel to 450°F at the vacuum port, which was located just upstream of the die. The die temperature was set to 375°F. After extrusion, the samples were quenched and pelletized. Table 2 details the properties of the low melt viscosity polymers produced in each trial. Table 2 Processing Conditions and Properties
Example 1 2 3 4 5
Extruder 30 mm 30 mm 240 mm 43 mm 43 mm starting MFI 0.7 60 18 18 18 final MFI 1600 1500 1000 1400 2210 residual peroxide < 50 ppm < 50 ppm <50 ppm 15ppm 25 ppm
Mn 30 24 34 24 22.5
Mw 57 58 91 57 51
[0021] Extruder barrel temperature settings are critical to forming a product that contains minimal un-reacted prodegradant. The prodegradant decomposition rate (i.e. the rate at which the prodegradant initiates controlled degradation of the polymer) is specified by its half-life, which decreases exponentially as temperature increases. The process temperature must be high enough to provide a half-life that is substantially shorter than the residence time of the extruder. In general, the residence time of the material in the extruder should be at least five times the half-life of the prodegradant. The residence time is determined by the extruder size, screw design, and throughput. The throughput rate and devolatilization vacuum pressure were varied to measure the effects of those parameters on product molecular weight and residual prodegradant. The data in Table 3 indicate that for the above examples the best residual peroxide levels were obtained using the 43 mm extruder.
Table 3 Extrusion Conditions for Producing Resins with the Desired Melt Flow Viscosity screw speed throughput vacuum residence Die T half-life (rpm) (kg hr) (in Hg) time (s) (F) (sec)
150 27 5 41 390 6
Examples 6 and 7: Two Step Process
[0022] Two samples of low melt viscosity resin were produced from polypropylene pellets produced by extruding polypropylene homopolymer reactor granules in the presence of a peroxide to induce controlled reduction of the average molecular weight. One had a melt flow of 300 dg/min and the other had a melt flow of 600 dg/min. The molecular weight distributions of low melt viscosity pellets produced from pellet starting materials are provided in Table 4.
Table 4 Molecular Weight Distributions of Starting Materials starting Mn Mw material MFI (Kg/mole) (Kg/mole) Mw/Mn pellets 300 36 111 3.1 pellets 600 34 96 2.9
[0023] The processing conditions and properties for the low melt viscosity polypropylene resins produced in these trials is shown in Table 5.
Table 5 Processing Conditions and Properties
Extruder 43 mm 43 mm starting MFI 340 (pellet) 643 (pellet) final MFI 1503 1470 sidual peroxide 160 ppm 75 ppm
Mn 24.8 23.7
Mw 60 59
Mw/Mn 2.4 2.5
[0024] The foregoing examples using polypropylene homopolymers have been provided for illustrative purposes only and should not be construed as limiting the scope of the invention. Those skilled in the art will recognize that the process of the current invention can be applied to a variety of block and random copolymers of polypropylene and other polymers. The process according to the current invention has been practiced successfully with polymers of both standard and high isotacticity. Additionally, the prodegradants and additive packages used in the examples are only for illustrative purposes. The process of the current invention can be used successfully with various prodegradants and additive packages. The full scope of the invention will be clear to those skilled in the art from the claims appended hereto.

Claims

What is claimed is:
1. A process for producing a high melt flow index polymer resin, said high melt flow index polymer resin having a melt flow index of at least 1000 dg/min and containing less than 300 ppm of a prodegradant, said process comprising the steps of: providing a low melt flow index polymer resin; adding at least one additive to said low melt flow index polymer resin; adding at least one prodegradant to said low melt flow index polymer resin; extruding said low melt flow index polymer resin in an extruder at an elevated temperature to initiate controlled molecular weight reduction of said low melt index polymer resin to form a high melt flow index polymer resin; and quenching and pelletizing said high melt flow index polymer resin.
2. The process of claim 1, wherein said at least one prodegradant is dry mixed with said low melt flow index polymer resin prior to said extruding.
3. The process of claim 1 , wherein said at least one prodegradant is added to said low melt flow index polymer resin as a solution during said extruding.
4. The process of claim 3, wherein said at least one prodegradant is added by injecting at the feed throat of an extruder.
5. The process of claim 3, wherein said at least one prodegradant is added by injecting into the barrel of an extruder.
6. The process of claim 1, wherein said high melt flow index polymer resin contains less than 50 ppm of a prodegradant.
7. The process of claim 1 , wherein said at least one prodegradant comprises an organic peroxide.
8. The process of claim 1, wherein said at least one additive is selected from the group consisting of: anti-oxidants, processing stabilizers, and acid scavengers.
9. The process of claim 1, further comprising the step of removing unreacted prodegradant from said high melt flow index polymer resin.
10. The process of claim 9, wherein said unreacted prodegradant is removed by vacuum devolitazation.
11. The process of claim 10, wherein said vacuum devolitazation is accomplished by applying a vacuum to the barrel of said extruder during extruding.
12. The process of claim 1, wherein said low melt flow index polymer resin has a melt flow index of 100 dg/min or less.
13. The process of claim 1 , wherein said low melt flow index polymer resin has a melt flow index of 700 dg/min or less.
14. The process according to claim 1, wherein the residence time of the polymer resin in said extruder is less than 60 seconds.
15. The process of claim 1 , wherein said extruding is performed at a temperature from about 325 °F to about 475 °F.
16. The process of claim 1 , wherein said prodegradant is added in a quantity of from about 0.2 to about 2.0 percent by weight, based on the weight of low melt index polymer resin.
17. The process of claim 1, wherein said low melt flow index polymer resin is a polypropylene resin.
18. The process of claim 17, wherein said polypropylene resin is a random or block copolymer.
19. The process of claim 17, wherein said polypropylene resin is a high isotacticity resin.
20. The process of claim 1 , wherein said high melt flow index resin has a molecular weight distribution of from about 1.9 to about 2.9.
PCT/US2003/025748 2002-08-22 2003-08-18 Very low melt viscosity resin WO2004018528A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003259885A AU2003259885A1 (en) 2002-08-22 2003-08-18 Very low melt viscosity resin
CA002491819A CA2491819A1 (en) 2002-08-22 2003-08-18 Very low melt viscosity resin
EP03793090A EP1530597A1 (en) 2002-08-22 2003-08-18 Very low melt viscosity resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/224,715 2002-08-22
US10/224,715 US6855777B2 (en) 2002-08-22 2002-08-22 Very low melt viscosity resin

Publications (1)

Publication Number Publication Date
WO2004018528A1 true WO2004018528A1 (en) 2004-03-04

Family

ID=31886856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/025748 WO2004018528A1 (en) 2002-08-22 2003-08-18 Very low melt viscosity resin

Country Status (7)

Country Link
US (1) US6855777B2 (en)
EP (1) EP1530597A1 (en)
CN (1) CN1675260A (en)
AU (1) AU2003259885A1 (en)
CA (1) CA2491819A1 (en)
TW (1) TW200412351A (en)
WO (1) WO2004018528A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1661919A1 (en) * 2004-11-29 2006-05-31 Sunoco, Inc. (R&M) Very low melt viscosity resin
US9353296B2 (en) 2008-04-28 2016-05-31 Borealis Ag Adhesive propylene polymer composition suitable for extrusion coating of paper substrates

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US7531594B2 (en) * 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
CN100345896C (en) 2002-08-12 2007-10-31 埃克森美孚化学专利公司 Plasticized polyolefin compositions
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US7541402B2 (en) * 2002-10-15 2009-06-02 Exxonmobil Chemical Patents Inc. Blend functionalized polyolefin adhesive
EP2261292B1 (en) 2002-10-15 2014-07-23 ExxonMobil Chemical Patents Inc. Polyolefin adhesive compositions
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
EP1904576B1 (en) 2005-07-15 2012-04-25 ExxonMobil Chemical Patents Inc. Elastomeric compositions
JP5280865B2 (en) * 2006-02-02 2013-09-04 バーゼル・ポリオレフィン・ゲーエムベーハー Propylene melt blown resin, propylene melt blown resin fiber, non-woven fabric produced therefrom, and method for producing the same
WO2010088698A2 (en) * 2009-02-02 2010-08-05 Medtronic, Inc. Antimicrobial accessory for an implantable medical device
US8858983B2 (en) * 2009-04-30 2014-10-14 Medtronic, Inc. Antioxidants and antimicrobial accessories including antioxidants
US8911427B2 (en) 2010-12-28 2014-12-16 Medtronic, Inc. Therapeutic agent reservoir delivery system
WO2020172387A1 (en) * 2019-02-20 2020-08-27 Fina Technology, Inc. Enhanced heat stability polypropylene
CN110575806A (en) * 2019-06-28 2019-12-17 范儒毅 Fiber-grade polypropylene production equipment
CN111514656A (en) * 2020-04-17 2020-08-11 天华化工机械及自动化研究设计院有限公司 Production process of one-step melt-blown polypropylene electret filter material
CN114292464B (en) * 2021-11-24 2023-06-02 富海(东营)新材料科技有限公司 Method for producing high-flow polypropylene by using reactive extrusion equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0063654A1 (en) * 1981-04-23 1982-11-03 Himont Incorporated Improved method of visbreaking polypropylene
EP0334829A1 (en) * 1988-02-19 1989-09-27 Fina Research S.A. Process for the treatment of polypropylene
JPH04100807A (en) * 1990-08-20 1992-04-02 Mitsui Petrochem Ind Ltd Production of thermal decomposition wax
JPH04168104A (en) * 1990-10-31 1992-06-16 Mitsui Petrochem Ind Ltd Production of wax by thermal decomposition
DE4321529A1 (en) * 1993-06-29 1995-01-12 Danubia Petrochem Deutschland Novel polypropylenes obtainable by chemical degradation
EP0728796A2 (en) * 1995-02-21 1996-08-28 Shell Oil Company Process for improving processability of ultra low melt viscosity polymer
EP0891989A1 (en) * 1997-07-17 1999-01-20 PCD Polymere AG Modified polymers containing methylene groups

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451589A (en) * 1981-06-15 1984-05-29 Kimberly-Clark Corporation Method of improving processability of polymers and resulting polymer compositions
US4578430A (en) * 1984-12-19 1986-03-25 Shell Oil Company Controlled degradation or cracking of alpha-olefin polymers
FR2613722B1 (en) * 1987-04-07 1990-11-23 Bp Chimie Sa PROCESS FOR THE MANUFACTURE OF PROPYLENE HOMOPOLYMER OR COPOLYMER GRANULES

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0063654A1 (en) * 1981-04-23 1982-11-03 Himont Incorporated Improved method of visbreaking polypropylene
EP0334829A1 (en) * 1988-02-19 1989-09-27 Fina Research S.A. Process for the treatment of polypropylene
JPH04100807A (en) * 1990-08-20 1992-04-02 Mitsui Petrochem Ind Ltd Production of thermal decomposition wax
JPH04168104A (en) * 1990-10-31 1992-06-16 Mitsui Petrochem Ind Ltd Production of wax by thermal decomposition
DE4321529A1 (en) * 1993-06-29 1995-01-12 Danubia Petrochem Deutschland Novel polypropylenes obtainable by chemical degradation
EP0728796A2 (en) * 1995-02-21 1996-08-28 Shell Oil Company Process for improving processability of ultra low melt viscosity polymer
EP0891989A1 (en) * 1997-07-17 1999-01-20 PCD Polymere AG Modified polymers containing methylene groups

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 109, no. 12, September 1988, Columbus, Ohio, US; abstract no. 93877y, page 17; XP000062939 *
DATABASE WPI Section Ch Week 199220, Derwent World Patents Index; Class A17, AN 1992-162667, XP002267489 *
DATABASE WPI Section Ch Week 199230, Derwent World Patents Index; Class A18, AN 1992-247256, XP002267490 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1661919A1 (en) * 2004-11-29 2006-05-31 Sunoco, Inc. (R&M) Very low melt viscosity resin
US9353296B2 (en) 2008-04-28 2016-05-31 Borealis Ag Adhesive propylene polymer composition suitable for extrusion coating of paper substrates
US9574116B2 (en) 2008-04-28 2017-02-21 Borealis, AG Adhesive propylene polymer composition suitable for extrusion coating of paper substrates

Also Published As

Publication number Publication date
CA2491819A1 (en) 2004-03-04
CN1675260A (en) 2005-09-28
AU2003259885A1 (en) 2004-03-11
US6855777B2 (en) 2005-02-15
US20040039130A1 (en) 2004-02-26
TW200412351A (en) 2004-07-16
EP1530597A1 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
US6855777B2 (en) Very low melt viscosity resin
EP1661919A1 (en) Very low melt viscosity resin
JP2744317B2 (en) Method for producing propylene polymer having free-end long-chain branching and use thereof
US5594074A (en) Process for improving processability of ultra low melt viscosity polymer
KR101559638B1 (en) A process for preparing high melt strength propylene polymers
EP0768156A2 (en) Process for polymer degradation
WO1988008865A1 (en) Thermoplastic compositions, process for the preparation thereof and their application to the production of industrial articles
EP1237947B1 (en) Process for reducing the weight average molecular weight and melt index ratio of polyethylenes and polyethylene products
EP0334829B1 (en) Process for the treatment of polypropylene
WO2011005852A1 (en) Silane-coupled propylene-based polymer and method
EP1312617A1 (en) Impact strength polypropylene
JP5838575B2 (en) Process for producing modified propylene polymer
CN108342012B (en) mLLDPE resin composition for plastic greenhouse film and preparation method thereof
KR20190103938A (en) Production Processing Aid
US6359077B1 (en) Process for producing high melt flow polymers
KR20180043288A (en) Pellets of lightly visbroken polypropylene
KR101877744B1 (en) Method for manufacturing controlled rheology polybutene-1 resin
JP2814337B2 (en) Polypropylene having high melt tension, method for producing the same and molded article
US20200062880A1 (en) Process for Preparing High Melt Strength Polypropylene
KR20100113476A (en) Process for the production of polyethylene resin
JPS6258887B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2491819

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003793090

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038196409

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003793090

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP