JPS6258887B2 - - Google Patents

Info

Publication number
JPS6258887B2
JPS6258887B2 JP11513579A JP11513579A JPS6258887B2 JP S6258887 B2 JPS6258887 B2 JP S6258887B2 JP 11513579 A JP11513579 A JP 11513579A JP 11513579 A JP11513579 A JP 11513579A JP S6258887 B2 JPS6258887 B2 JP S6258887B2
Authority
JP
Japan
Prior art keywords
block copolymer
meshes
propylene
mesh
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11513579A
Other languages
Japanese (ja)
Other versions
JPS5640512A (en
Inventor
Hisashi Yoshimatsu
Eitaro Asaeda
Hidemi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP11513579A priority Critical patent/JPS5640512A/en
Publication of JPS5640512A publication Critical patent/JPS5640512A/en
Publication of JPS6258887B2 publication Critical patent/JPS6258887B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はプロピレン−エチレンブロツク共重合
体粒状物の製造方法に関する。詳しくは連続重合
方式で製造されたプロピレン−エチレンブロツク
共重合体粉体を粒状物に成形するに際し、溶融状
態のプロピレン−エチレンブロツク共重合体を、
少くとも2つの網状体が120メツシユ以上の目開
きを有しかつそのうちの少くとも1枚の網状体は
170メツシユ以上の目開きを有する複数枚の網状
体が組合わさつて構成された分散機に通過させる
プロピレン−エチレンブロツク共重合体粒状物の
製造方法である。 ポリプロピレンは種々の方法で製造されてい
る。しかしながら、ポリプロピレンは耐衝撃特性
に於ける耐衝撃性が十分に満足出来ない。そのた
めに耐衝撃性を改良する技術にプロピレン−エチ
レンブロツク共重合体の製造技術が採用され実施
されている。該プロピレン−エチレン共重合体は
通常触媒の存在下に先ずプロピレン又はプロピレ
ンと他のオレフイン例えばエチレン、ブテン等と
を重合する第1工程と、該第1工程で得られる触
媒を含む重合体の存在下又は更に触媒を添加した
重合体の存在下にエチレンとプロピレンとを共重
合させる第2工程とよりなる重合方式で製造され
る。 上記重合方式は、第1工程の重合を終了させた
後続いて第2工程の共重合を実施する回分式と、
第1工程の重合物を第2工程へ供給して連続的に
実施する連続方式との2つの方法に大別出来る。
回分式でブロツク共重合を得る場合は耐衝撃性、
剛性等の物理的にすぐれた製品を得ることが出来
るが操作上の不備、設備費の増大等のため製品コ
ストが高くなるだけでなく大量生産に不向きであ
るため工業的に採用されるのは稀である。他方、
連続方式は回分式とは全く逆に工業的にすぐれた
技術で広く採用されるが、回分式で得られる製品
に比べると耐衝撃性に劣り、フイルムに加工した
場合にフイツシユ・アイが発生する等の欠陥があ
り、用途が限定されたり物理的特性に不満が生ず
る。 従つて連続方式で回分式の製品と同等のものを
製造する技術の確立は本願分野に於ける大きな課
題である。このために例えば特開昭49−61278
号、特開昭49−53990号等多くの方法が提案され
ているが、工業的に満足のいくものではない。即
ち前者(特開昭49−61278号)の方法で得たもの
はフイルムに成形した場合のフイツシユ・アイは
多少減少するが耐衝撃性も同時に低下するし、後
者(特開昭49−53990号)の方法を採用しようと
すれば物理的特性が前者に比べれば改良される代
りに設備費が多額を要するだけでなく極めて煩雑
な運転操作をかくごしなければならない。 本発明者等は長年連続重合方式によつて得られ
るブロツク共重合体に対して回分式のそれとほゞ
同様な物理的特性を付与するだけでなく、工業的
にも満足出来る技術開発に努力してきた。 その結果、本来フイツシユ・アイが多発ししか
も衝撃強度等の物理的特性の低いプロピレン−エ
チレンブロツク共重合体粉末を、粒状物に成形す
る段階でフイツシユ・アイを消滅させ、しかも衝
撃強度等を向上せしめる方法を確立し提案するに
至つた。 即ち本発明は連続重合方式で製造されたプロピ
レン−エチレンブロツク共重合体(以下単にPE
ブロツク共重合体と略記する)粉末を粒状物に成
形するに際し、溶融状態のPEブロツク共重合体
を、少くとも2つの網状体が120メツシユ以上の
目開きを有しかつそのうちの少くとも1枚の網状
体は170メツシユ以上の目開きを有する複数枚の
網状体が組合わさつて構成された分散機に通過さ
せるPEブロツク共重合体粒状物の製造方法であ
る。 本発明で用いるPEブロツク共重合体は連続重
合方式で製造されたものであればその製法の如何
にかゝわらず用いうる。即ち連続重合方式で製造
されたPEブロツク共重合体は超高分子量の分子
鎖を主体に集合した重合体が含まれる。この超高
分子量の重合体がPEブロツク共重合体を用いた
フイルムにあつてはフイツシユ・アイとなり、通
常分散性が悪く成形体の衝撃強度の向上を阻害す
るのである。これに対して回分重合方式で得られ
るPEブロツク共重合体は超高分子量の分子鎖が
生成しても集合しにくく重合体中に均一に分散し
やすくフイツシユ・アイ状に発現することがな
い。また回分重合方式によるPEブロツク共重合
体の製造に於いてその衝撃強度を向上せしめる重
合条件を連続重合方式によるブロツク共重合体の
製造法に適応すると、衝撃強度は向上するどころ
か低下することがしばしば認められる。即ち、連
続重合方式でPEブロツク共重合体を得る場合、
回分重合方式の好適な重合条件を応用することは
いたずらにフイツシユ・アイとして発現する超高
分子量の重合体が生成する結果を招き、衝撃強度
の向上を阻害する。従つて本発明を回分重合方式
で得られるPEブロツク共重合体に応用してもそ
の効果はほとんど期待出来ない。即ち本発明の対
象となるPEブロツク共重合体は連続重合方式で
得られるものである必要がある。また連続重合方
式でPEブロツク共重合体を得る技術は前記した
如く第1工程及び第2工程或いは更に多くの工程
を組合せて連続的に実施される公知のものをその
まゝ採用すればよい。代表的なものを例示すれば
特公昭42−25294、同43−13049、同46−11670、
同49−12589、特開昭49−53990、同49−61278等
の特許公報に記載されている技術がある。工業的
に連続重合方式で得られるPEブロツク共重合体
は一般に粉状体である。該粉状体はそのまゝ運送
又は使用すると粉塵爆発のおそれがあるだけでな
く、成形に際して作業性が悪いのでPEブロツク
共重合体粉体は熔融して粒状物(ペレツト)に成
形される。該粉体から粒状物(ペレツト)に成形
される工程を一般にペレツト化工程と称され、溶
融状態のPEブロツク共重合体を棒状に押出し2
〜5mmφの大きさに切断するのが一般的である。
該ペレツトを原料に成形品を製造する場合、例え
ばフイルムに成形すると前記した理由により多数
のフイツシユ・アイが発生するし耐衝撃性などの
物性を向上さすことは出来ない。この点について
は本発明者等が押出機の混練不足が原因との推定
から単軸押出機、予備混練装置付き押出機等種々
のタイプの押出機を用いてテストしたが、前記フ
イツシユ・アイの消滅効果はなく、勿論物性向上
もほとんど認められなかつた。ところが前記した
如く、前記溶融状態のPEブロツク共重合体を特
定の網状体で構成された分散機を通過させること
によつて、前記フイツシユ・アイの消滅は勿論、
物性面で大きな向上が達成出来るのである。この
現象は全く驚異的なもので、単なる機械的な操作
だけでPEブロツク共重合体の物性をも向上させ
ることは想像出来ないものである。しかし本発明
の効果がどのような作用機構で達成されるのか現
在尚明確ではない。本発明者等の溶融状態にある
PEブロツク共重合体中の超高分子量の重合体が
後述する網状体を通過する際に小さく分散される
と共に練りの効果が相乗的に作用し、PEブロツ
ク共重合体が本来有する優れた性状を阻害されず
発揮させるものと推定している。 前記説明から明らかな如く本発明の最大の特徴
は溶融状態にあるPEブロツク共重合体を、少く
とも2つの網状体が120メツシユ以上の目開きを
有しかつそのうちの少くとも1枚の網状体は170
メツシユ以上の目開きを有する複数枚の網状体が
組合わさつて構成された分散機に通過させる点で
ある。 本発明に於いては上記したように溶融状態の
PEブロツク共重合体を特定の網状物に通過させ
るので、一般に分散機はペレツト化工程で使用さ
れる押出機に網状物を装着するのが好ましい。更
に具体的には該押出機に内蔵されるスクリユーの
先端とダイスと間、通常はブレーカープレートに
装着すると好適である。また本発明で用いる分散
機は少くとも2つの網状体が120メツシユ以上で
そのうちの1つの網状体は170メツシユ以上の目
開きを有する複数枚の網状物をかさねあわせて構
成したものである。該網状物は一般に120メツシ
ユ以上の目開きを有する金網を用いるとよい。該
分散機を構成する網状物の枚数は強度的に耐える
ものであれば少ない程好ましいが、一般には2〜
10枚好ましくは3〜7枚で構成するのが好適であ
る。 また本発明の効果をより発揮させるためには網
状物の目開きは小さい程良好であり、120メツシ
ユ以上の目開きを有する2枚の網状物を組合わせ
てなり、170メツシユ以上のものが分散機に少く
とも1枚含まれるのが好ましい。また該目開きの
最も小さいものは網状物の製造技術に基因するだ
けで溶融状態のPEブロツク共重合体を通過させ
うる限り使用出来る。一般には200〜500メツシユ
程度の目開きの網状体が工業的に最も多く利用さ
れる。しかしながら前記少くとも2枚の網状物の
目開きが120メツシユより広くなると即ち120メツ
シユ未満になると、本発明の効果の発揮は極端に
悪化し実質質に衝撃強度の改質も、前記フイツシ
ユ・アイの消滅も期待出来ない。 本発明に於ける前記分散機の網状物の構成は特
に限定されず、前記特定の目開きを有する網状物
を複数枚かさねあわせればよい。一般には目開き
の小さいもの程強度が劣る傾向にあるので強度面
を勘案してサンドイツチ方式で目開きの小さいも
のを中央にかさねあわせるか、前記ダイス側に目
開きの大きいものがセツトされるようにするのが
好適である。また目開きの小さいものを何枚か使
用する場合は目開きの小さいものと大きいものを
相互にかさねあわせることも出来るが、目開きの
小さいものを相互にかさねあわせると好適であ
る。 本発明は以上の説明から明らかな如くPEブロ
ツク共重合体粉体からPEブロツク共重合体粒状
物を製造する際に特定の目開きを有する網状体で
構成された分散機に溶融状態のPEブロツク共重
合体を通過させるだけの簡単な操作でフイツシ
ユ・アイの原因となる超高分子量の重合体を十分
に分散するだけでなく、得られるPEブロツク共
重合体粒状物の物性例えば耐衝撃強度を著しく向
上させるすぐれた効果を発揮する。即ち本発明の
完成によつて従来連続重合方式で得られるPEブ
ロツク共重合体がフイツシユ・アイのために使用
困難であつたフイルム成形品についても十分に使
用出来る。しかも耐衝撃性の化学的操作による改
質を必要とせず驚異的な耐衝撃性の改良を行うこ
とが出来るのである。従つて本発明が工業的に寄
与する効果は計り知れないものと言える。 尚本発明に於けるPEブロツク共重合体粉体を
粒状物に成形するための成形機は従来使用されて
いる押出機及びダイス等がそのまゝ使用出来る。 本発明を更に具体的に説明するため以下実施例
及び比較例を挙げて説明するが、本発明はこれら
の実施例に限定されるものではない。 尚、実施例で用いた物理的特性の測定方法は次
の通りである。 1 メルトフローインデツクスはASTM D−
1238によつて測定した。 2 重合体中のエチレン含有量は赤外吸収スペク
トル分析によつた。 3 降伏力及び伸度はASTM D−638によつて
測定した。 4 引張衝撃値はASTM D−1822によつて測定
した。 5 アイゾツト及びシヤルピー衝撃値は各々
ASTM D−256によつて測定した。 6 硬度はASTM D−785によつて測定した。 7 曲げ弾性率はASTM D−790によつて測定
した。 なお、引張試験及び硬度の試験片は圧縮成形、
アイゾツト、シヤルピー及び曲げ弾性率の試験片
は射出成形によつた。 実施例1〜4及び比較例1 各々300のオートクレーブ(A)、フラツシユタ
ンク、スラリータンク、オートクレーブ(B)、洗滌
タンクを直列に配した重合装置を用い、第1工程
(オートクレーブ(A))はプロピレン自身を溶媒と
する所謂無溶媒法、第2工程(オートクレーブ
(B))はヘプタンを溶媒とする所謂溶媒法で連続的
にプロピレン−エチレン共重合を実施した。 先ず、55℃の温度に設定された重合槽に三塩化
チタン(AAグレード)、ジエチルアルミニウム
モノクロライド、液体プロピレン、及び水素ガス
を連続的に供給した。三塩化チタンは1時間当り
7.5gの割合で供給し、ジエチルアルミニウムモ
ノクロライドは1時間当り20gに割合で供給し
た。液体プロピレンの供給量及び生成したプロピ
レンホモ重合体の抜出量は触媒の平均滞在時間が
4時間になるよう設定した。 更に水素ガスを供給して所定のM.I.値が得られ
るように制御した。このようにして、生成したプ
ロピレンホモ重合体のスラリーをできるだけ液面
を変動させないようフラツシユタンクに連続的に
移送し、そこで未反応ホノマーをパージした後、
該重合体をロータリー・フイーダーでスラリータ
ンクに連続的に移送した。このタンクには該重合
体の供給とともにヘプタンを40/時間の割で供
給し、撹拌しながら、均一なスラリー状にした。
続いて該重合体スラリーを50℃に設定したオート
クレーブ(B)に連続的に移送するとともにエチレン
The present invention relates to a method for producing propylene-ethylene block copolymer granules. Specifically, when molding propylene-ethylene block copolymer powder produced by a continuous polymerization method into granules, the molten propylene-ethylene block copolymer is
At least two net-like bodies have a mesh size of 120 meshes or more, and at least one of them has a mesh size of 120 meshes or more.
This is a method for producing propylene-ethylene block copolymer granules that are passed through a dispersing machine composed of a combination of a plurality of net-like bodies having an opening of 170 meshes or more. Polypropylene is manufactured by various methods. However, polypropylene does not have sufficient impact resistance. For this reason, a technique for producing propylene-ethylene block copolymers has been adopted and implemented as a technique for improving impact resistance. The propylene-ethylene copolymer usually comprises a first step of polymerizing propylene or propylene with another olefin such as ethylene, butene, etc. in the presence of a catalyst, and the presence of a polymer containing the catalyst obtained in the first step. It is produced by a polymerization method comprising a second step of copolymerizing ethylene and propylene in the presence of a polymer to which a catalyst has been added. The above polymerization method includes a batch method in which copolymerization in the second step is carried out after completing the polymerization in the first step;
It can be roughly divided into two methods: a continuous method in which the polymer of the first step is supplied to the second step and the process is carried out continuously.
When obtaining block copolymerization by batch method, impact resistance,
Although it is possible to obtain products with excellent physical properties such as rigidity, it not only increases the product cost due to operational defects and increased equipment costs, but also is not suitable for mass production, so it is not adopted industrially. Rare. On the other hand,
The continuous method is the complete opposite of the batch method, and is widely adopted as an industrially superior technology, but compared to products obtained using the batch method, it has inferior impact resistance, and when processed into film, it causes cracks and eyes. There are defects such as these, which limit its uses and cause dissatisfaction with its physical properties. Therefore, establishing a technology for manufacturing products equivalent to batch-type products using a continuous process is a major challenge in the field of this application. For this purpose, for example, JP-A-49-61278
Although many methods have been proposed, such as in Japanese Patent Application Laid-Open No. 49-53990, none of them are industrially satisfactory. That is, the film obtained by the former method (Japanese Unexamined Patent Publication No. 49-61278) has a somewhat reduced film eye when formed into a film, but the impact resistance also decreases at the same time; ) If one were to adopt the method, the physical properties would be improved compared to the former, but not only would the equipment cost be large, but the operation would have to be extremely complicated. For many years, the inventors of the present invention have endeavored not only to provide block copolymers obtained by continuous polymerization with physical properties similar to those produced by batch polymerization, but also to develop a technology that is industrially satisfactory. Ta. As a result, the propylene-ethylene block copolymer powder, which normally suffers from frequent fish eyes and has low physical properties such as impact strength, eliminates fish eyes at the stage of forming into granules and improves impact strength. We have established and proposed a method to do so. That is, the present invention is a propylene-ethylene block copolymer (hereinafter simply PE) produced by a continuous polymerization method.
When molding powder into granules (abbreviated as "block copolymer"), the PE block copolymer in a molten state is processed into at least two meshes having a mesh size of 120 meshes or more, and at least one of the meshes. The method for producing PE block copolymer particles is made by passing the PE block copolymer granules through a dispersing machine made up of a combination of a plurality of meshes each having an opening of 170 meshes or more. The PE block copolymer used in the present invention can be used regardless of the manufacturing method as long as it is manufactured by a continuous polymerization method. That is, the PE block copolymer produced by the continuous polymerization method contains a polymer mainly composed of ultra-high molecular weight molecular chains. This ultra-high molecular weight polymer becomes a fish eye in a film using a PE block copolymer, and usually has poor dispersibility and inhibits improvement in the impact strength of the molded product. On the other hand, PE block copolymers obtained by batch polymerization are difficult to aggregate even when ultra-high molecular weight molecular chains are produced, and are easily dispersed uniformly in the polymer without forming fish eyes. Furthermore, when the polymerization conditions for improving the impact strength of PE block copolymers produced by batch polymerization are applied to the production of block copolymers produced by continuous polymerization, the impact strength often decreases rather than improving. Is recognized. That is, when obtaining a PE block copolymer using a continuous polymerization method,
Applying the suitable polymerization conditions of the batch polymerization method unnecessarily results in the formation of ultra-high molecular weight polymers that appear as fish eyes, which inhibits improvement in impact strength. Therefore, even if the present invention is applied to PE block copolymers obtained by batch polymerization, little effect can be expected. That is, the PE block copolymer that is the object of the present invention must be obtained by a continuous polymerization method. Further, as a technique for obtaining a PE block copolymer by a continuous polymerization method, a known technique that is carried out continuously by combining the first and second steps or more steps as described above may be employed as is. Typical examples are Special Publications No. 42-25294, No. 43-13049, No. 46-11670,
There are techniques described in patent publications such as JP-A No. 49-12589, JP-A No. 49-53990, and JP-A No. 49-61278. PE block copolymers obtained industrially by continuous polymerization are generally in the form of powder. If the powder is transported or used as it is, there is a risk of dust explosion, and the workability during molding is poor, so the PE block copolymer powder is melted and molded into granules (pellets). The process of forming the powder into granules (pellets) is generally called the pelletizing process, in which the molten PE block copolymer is extruded into rod shapes.
It is common to cut it to a size of ~5 mmφ.
When a molded article is manufactured using the pellet as a raw material, for example, when molded into a film, a large number of fish eyes are generated due to the above-mentioned reasons, and physical properties such as impact resistance cannot be improved. Regarding this point, the present inventors conducted tests using various types of extruders such as a single-screw extruder and an extruder with a pre-kneading device, based on the assumption that the cause was insufficient kneading in the extruder. There was no extinction effect and, of course, almost no improvement in physical properties was observed. However, as mentioned above, by passing the molten PE block copolymer through a disperser made of a specific network, the fish eyes can of course be eliminated.
Significant improvements in physical properties can be achieved. This phenomenon is completely surprising, and it is inconceivable that the physical properties of PE block copolymers can be improved by mere mechanical manipulation. However, it is currently not clear what mechanism of action achieves the effects of the present invention. In the molten state of the inventors et al.
When the ultra-high molecular weight polymer in the PE block copolymer passes through the network described below, it is dispersed into small particles, and the kneading effect acts synergistically to maintain the excellent properties inherent in the PE block copolymer. It is assumed that the ability will be fully utilized without being inhibited. As is clear from the above description, the greatest feature of the present invention is that the PE block copolymer in a molten state is prepared by at least two networks having a mesh size of 120 meshes or more, and at least one of the networks having a mesh size of 120 meshes or more. is 170
The point is that the material is passed through a dispersing machine which is constructed by combining a plurality of net-like bodies having mesh-like or larger openings. In the present invention, as described above, the molten state
Since the PE block copolymer is passed through a special mesh, it is generally preferred that the disperser be fitted with a mesh on the extruder used in the pelletizing process. More specifically, it is preferable to install it between the tip of the screw built in the extruder and the die, usually on a breaker plate. Further, the dispersing machine used in the present invention has at least two meshes each having a mesh size of 120 meshes or more, and one of the meshes has a mesh size of 170 meshes or more. As the mesh material, it is generally preferable to use a wire mesh having an opening of 120 meshes or more. The number of meshes constituting the dispersion machine is preferably as small as possible as long as it has sufficient strength, but generally it is 2 to 2.
It is suitable to consist of 10 sheets, preferably 3 to 7 sheets. In addition, in order to make the effect of the present invention more effective, the smaller the opening of the mesh is, the better it is, and the mesh is made by combining two sheets of mesh with an opening of 120 meshes or more, and the one with 170 meshes or more is dispersed. Preferably, at least one sheet is included in the machine. Furthermore, the smallest opening can be used as long as it allows the molten PE block copolymer to pass through, depending on the manufacturing technology of the mesh. In general, net-like bodies with a mesh size of about 200 to 500 meshes are most often used industrially. However, when the mesh size of the at least two meshes becomes wider than 120 meshes, that is, less than 120 meshes, the effect of the present invention becomes extremely poor and the impact strength cannot be substantially improved. We cannot expect it to disappear. The structure of the net-like material of the disperser in the present invention is not particularly limited, and it is sufficient to stack a plurality of net-like materials having the specific mesh size. In general, the smaller the opening, the weaker the strength, so in consideration of strength, either use the sandwich method and stack the smaller openings in the center, or set the dice with the larger opening on the side of the die. It is preferable to Furthermore, when using several sheets with small openings, the ones with small openings and the ones with large openings can be stacked on top of each other, but it is preferable to stack the ones with small openings on top of each other. As is clear from the above description, the present invention is applicable to the production of PE block copolymer granules from PE block copolymer powder by dispersing molten PE blocks in a dispersing machine composed of a mesh having a specific mesh size. The simple operation of passing the copolymer not only sufficiently disperses the ultra-high molecular weight polymer that causes fish eyes, but also improves the physical properties of the resulting PE block copolymer granules, such as impact strength. Demonstrates an excellent effect of significantly improving That is, with the completion of the present invention, PE block copolymers conventionally obtained by continuous polymerization can be used satisfactorily for film molded products, which have been difficult to use due to the fish eye. Moreover, an amazing improvement in impact resistance can be achieved without the need for chemical modification of impact resistance. Therefore, it can be said that the industrial effects of the present invention are immeasurable. As a molding machine for molding the PE block copolymer powder into granules in the present invention, conventionally used extruders, dies, etc. can be used as they are. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples. Incidentally, the method of measuring the physical properties used in the examples is as follows. 1 Melt flow index is ASTM D-
Measured by 1238. 2 Ethylene content in the polymer was determined by infrared absorption spectrum analysis. 3 Yield strength and elongation were measured according to ASTM D-638. 4 Tensile impact value was measured according to ASTM D-1822. 5 The Izod and Shalpy impact values are each
Measured according to ASTM D-256. 6 Hardness was measured according to ASTM D-785. 7 Flexural modulus was measured according to ASTM D-790. In addition, the tensile test and hardness test pieces are compression molded,
Izot, sharp py and flexural modulus test specimens were injection molded. Examples 1 to 4 and Comparative Example 1 The first step (autoclave (A)) was performed using a polymerization apparatus in which 300 autoclaves (A), flush tanks, slurry tanks, autoclaves (B), and washing tanks were arranged in series. is the so-called solvent-free method using propylene itself as a solvent, the second step (autoclave)
In (B)), propylene-ethylene copolymerization was carried out continuously by a so-called solvent method using heptane as a solvent. First, titanium trichloride (AA grade), diethylaluminum monochloride, liquid propylene, and hydrogen gas were continuously supplied to a polymerization tank set at a temperature of 55°C. Titanium trichloride per hour
Diethylaluminium monochloride was fed at a rate of 20 g per hour. The amount of liquid propylene supplied and the amount of produced propylene homopolymer withdrawn were set so that the average residence time of the catalyst was 4 hours. Furthermore, hydrogen gas was supplied and controlled so that a predetermined MI value was obtained. In this way, the propylene homopolymer slurry produced is continuously transferred to a flash tank with as little fluctuation of the liquid level as possible, and after purging unreacted homomer there,
The polymer was continuously transferred to a slurry tank with a rotary feeder. Along with the supply of the polymer, heptane was supplied to this tank at a rate of 40/hour, and the mixture was stirred to form a uniform slurry.
Next, the polymer slurry was continuously transferred to an autoclave (B) set at 50°C, and ethylene was added.

【表】【table】

【表】 比較例 2〜4 実施例1と同じ重合装置を用い、第1工程はプ
ロピレン自身を溶媒とする無溶媒法、第2工程は
ヘプタンを溶媒とする溶媒法で回分式にプロピレ
ン−エチレンブロツク共重合を実施した。 先ず、オートクレーブ(A)に液体プロピレンを
200及び分子量調節剤としての水素ガスを張込
むと共に55℃に昇温し、続いて三塩化チタン
(AAグレード)26.5g、ジエチルアルミニウムモ
ノクロライドを70gを添加することにより重合を
開始した。重合中は水素ガスを供給し、その気相
濃度が一定になるようガスクロマトグラフイーで
制御した。重合反応を4時間行つた後、フラツシ
ユタンクに移送し、未反応プロピレンをバージし
た。次いで150のヘプタンを注入してスラリー
状にし、オートクレーブ(B)に移送した。移送後、
50℃に昇温すると共にエチレンガス、プロピレン
ガス及び水素ガスを供給した。エチレンガスとプ
ロピレンガスの濃度比、また水素ガスの濃度は実
施例1と同じになるよう設定し、ガスクロマトグ
ラフイーで制御しながら2時間重合反応を行つ
た。重合終了後はフラツシユタンクで未反応ガス
をバージし、以後実施例1と同様な処理を実施し
て白色粉末の重合体を得た。続いて造粒(ペレツ
ト化)を実施例1と同様に行つた。表3に使用し
た網状体の目開き及び構成を示し、表4に前記で
得られたペレツトの物理的特性を示す。なお、ペ
レツトのM.I.値は7.1でエチレン含有量は3.6重量
%であつた。 表4の結果によれば回分式でPEブロツク共重
合体を得た場合は該ブロツク共重合体の物理的特
性がペレツト化で全く影響をうけないことが明白
である。
[Table] Comparative Examples 2 to 4 Using the same polymerization apparatus as in Example 1, the first step was a solvent-free method using propylene itself as a solvent, and the second step was a solvent method using heptane as a solvent. Block copolymerization was carried out. First, add liquid propylene to the autoclave (A).
200 and hydrogen gas as a molecular weight regulator were charged and the temperature was raised to 55°C, followed by the addition of 26.5 g of titanium trichloride (AA grade) and 70 g of diethylaluminum monochloride to initiate polymerization. During polymerization, hydrogen gas was supplied and the gas phase concentration was controlled using gas chromatography to keep it constant. After the polymerization reaction was carried out for 4 hours, it was transferred to a flash tank and unreacted propylene was purged. Then, 150 g of heptane was injected to form a slurry, and the slurry was transferred to an autoclave (B). After the transfer,
While raising the temperature to 50°C, ethylene gas, propylene gas, and hydrogen gas were supplied. The concentration ratio of ethylene gas and propylene gas and the concentration of hydrogen gas were set to be the same as in Example 1, and the polymerization reaction was carried out for 2 hours while being controlled by gas chromatography. After the polymerization was completed, unreacted gas was purged in a flash tank, and the same treatment as in Example 1 was carried out to obtain a white powder polymer. Subsequently, granulation (pelletization) was performed in the same manner as in Example 1. Table 3 shows the mesh size and structure of the mesh used, and Table 4 shows the physical properties of the pellets obtained above. The pellets had an MI value of 7.1 and an ethylene content of 3.6% by weight. According to the results in Table 4, it is clear that when the PE block copolymer is obtained in a batch process, the physical properties of the block copolymer are not affected at all by pelletization.

【表】【table】

【表】 実施例5〜6及び比較例5 実施例1で重合した粉末状の重合体を実施例1
と同様に安定化処理を行い、予備混練装置付き押
出機(ナカタニ機械〓製、型式CCM−50)に通
して造粒(ペレツト化)した。使用した網状体は
実施例1と同様にブレーカ・プレートに装着し
た。使用した網状体の目開き及び構成は表5に示
した。前記で得られたペレツトを用いて物理的特
性を測定した。その結果は表6に示す通りであつ
た。
[Table] Examples 5 to 6 and Comparative Example 5 The powdered polymer polymerized in Example 1 was prepared in Example 1.
The mixture was stabilized in the same manner as above and granulated (pelletized) through an extruder equipped with a preliminary kneading device (manufactured by Nakatani Kikai Co., Ltd., Model CCM-50). The mesh used was attached to a breaker plate in the same manner as in Example 1. Table 5 shows the mesh size and configuration of the mesh used. Physical properties were measured using the pellets obtained above. The results were as shown in Table 6.

【表】【table】

【表】 実施例7及び比較例6 実施例1に於ける網状体を表7に示すように変
えた以外は実施例1と同様に実施した。その結果
は表8に示す通りであつた。
[Table] Example 7 and Comparative Example 6 The same procedure as in Example 1 was carried out except that the mesh body in Example 1 was changed as shown in Table 7. The results were as shown in Table 8.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 連続重合方式で製造されたプロピレン−エチ
レンブロツク共重合体粉体を粒状物に成形するに
際し、溶融状態のプロピレン−エチレンブロツク
共重合体を、少くとも2つの網状体が120メツシ
ユ以上の目開きを有しかつそのうちの少くとも1
枚の網状体は170メツシユ以上の目開きを有する
複数枚の網状体が組合わさつて構成された分散機
に通過させることを特徴とするプロピレン−エチ
レンブロツク共重合体粒状物の製造方法。
1. When molding the propylene-ethylene block copolymer powder produced by the continuous polymerization method into granules, the molten propylene-ethylene block copolymer is formed into at least two meshes with a mesh size of 120 mesh or more. and at least one of them
A method for producing propylene-ethylene block copolymer granules, characterized in that the net-like sheets are passed through a dispersing machine made up of a combination of a plurality of net-like sheets having openings of 170 meshes or more.
JP11513579A 1979-09-10 1979-09-10 Manufacture of block copolymer granulated material Granted JPS5640512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11513579A JPS5640512A (en) 1979-09-10 1979-09-10 Manufacture of block copolymer granulated material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11513579A JPS5640512A (en) 1979-09-10 1979-09-10 Manufacture of block copolymer granulated material

Publications (2)

Publication Number Publication Date
JPS5640512A JPS5640512A (en) 1981-04-16
JPS6258887B2 true JPS6258887B2 (en) 1987-12-08

Family

ID=14655139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11513579A Granted JPS5640512A (en) 1979-09-10 1979-09-10 Manufacture of block copolymer granulated material

Country Status (1)

Country Link
JP (1) JPS5640512A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638797A1 (en) * 1996-09-20 1998-03-26 Basf Ag Process for the production of pigment particles of defined shape and size

Also Published As

Publication number Publication date
JPS5640512A (en) 1981-04-16

Similar Documents

Publication Publication Date Title
US5416169A (en) Polypropylene having a high melt-tensile strength, a process for producing the same and a molded product from the same
DE2939055C2 (en) POLYAETHYLENE MIXTURE
DE60213631T3 (en) PROPYLENE COPOLYMER WITH RANDOM COMONOMER DISTRIBUTION
EP0611801B1 (en) Olefin polymer films
US3888949A (en) Blends of propylene-alpha-olefin copolymers and polypropylene
KR0160511B1 (en) Plasto-elastic polypropylene compositions
EP1354901B1 (en) Propylene polymer composition with improved mechanical properties
KR100779884B1 (en) Polypropylene resin composition
EP1661919A1 (en) Very low melt viscosity resin
CN1675260A (en) Very low melt viscosity resin
DE60118218T2 (en) HETEROPHASIC PROPYLENE POLYMERS WITH CONTROLLED RHEOLOGICAL VALUES
EP3234005B1 (en) Low haze polyethylene polymer compositions
DE102012005869A1 (en) Modified propylene polymer
KR100682700B1 (en) Propylene polymers with an ultra high melt flow rate
DE3230516C2 (en) Process for the preparation of a crosslinked product
EP0103987B1 (en) Ethylene-propylene block-copolymers and process for producing the same
EP1544219B1 (en) Impact strength polypropylene
DE102012005990A1 (en) Process for the preparation of a modified propylene polymer
DE60023546T2 (en) METHOD FOR REDUCING WEIGHT MOLECULAR WEIGHT AND MELT INDEX RATIO OF POLYETHYLENE AND POLYETHYLENE PRODUCTS
DE112013001563T5 (en) Polypropylene resin composition and molding
JPS62149711A (en) Continuous production of high-melt viscoelasticity ethylene/propylene copolymer
US20120245296A1 (en) Method for producing modified propylene polymer
JPS587665B2 (en) Method for modifying propylene ethylene block copolymer
DE10209999A1 (en) Polypropylene-based resin composition for injection moulding applications, e.g. car door strips or bumpers, contains two propylene based homo- or co-polymer components with different intrinsic viscosities
JPS6258887B2 (en)