WO2004013466A1 - Rankine cycle apparatus - Google Patents

Rankine cycle apparatus Download PDF

Info

Publication number
WO2004013466A1
WO2004013466A1 PCT/JP2003/009223 JP0309223W WO2004013466A1 WO 2004013466 A1 WO2004013466 A1 WO 2004013466A1 JP 0309223 W JP0309223 W JP 0309223W WO 2004013466 A1 WO2004013466 A1 WO 2004013466A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
temperature
expander
steam
working medium
Prior art date
Application number
PCT/JP2003/009223
Other languages
French (fr)
Japanese (ja)
Inventor
Akihisa Sato
Shigeru Ibaraki
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to US10/521,960 priority Critical patent/US20060086091A1/en
Priority to EP03766629A priority patent/EP1536104A4/en
Priority to AU2003248086A priority patent/AU2003248086A1/en
Publication of WO2004013466A1 publication Critical patent/WO2004013466A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor

Definitions

  • the present invention relates to an evaporator that generates a gas-phase working medium by heating a liquid-phase working medium with exhaust gas of an engine, and a positive displacement type that converts heat energy of the gas-phase working medium generated by the evaporator into mechanical energy.
  • a Rankine cycle device comprising the expander.
  • the steam temperature at the outlet of the evaporator is controlled to be higher than the saturated steam temperature in order for the output of the expander to become positive, that is, to extract mechanical energy from the expander.
  • the efficiency of the evaporator and the efficiency of the expander vary depending on the steam temperature, and to maximize the combined efficiency of the two, it is necessary to control the steam temperature to the optimum temperature. is there.
  • Fig. 4A when the amount of water supplied to the evaporator is changed stepwise, it takes several tens to several hundreds of seconds to reach a steady state due to the low response of the change in steam temperature. Therefore, in a Rankine cycle system for vehicles with a high engine load fluctuation speed, the steam temperature at the outlet of the evaporator is improved with high responsiveness and accuracy by changing the amount of water supplied to the evaporator. It is difficult to control.
  • the present invention has been made in view of the above circumstances, and has as its object to control the temperature of a gas-phase working medium generated in an evaporator to a target temperature with good responsiveness and high accuracy in a Rankine cycle device.
  • an evaporator for heating a liquid-phase working medium with exhaust gas of an engine to generate a gas-phase working medium, and a heat energy of the gas-phase working medium generated in the evaporator
  • a Rankine cycle device equipped with a positive displacement expander that converts gas into mechanical energy
  • the temperature of the gas phase working medium at the outlet of the evaporator matches the target temperature.
  • a Rankine cycle device characterized by comprising a control means for controlling the supply amount of water and controlling the rotation speed of the expander.
  • the supply amount of the liquid-phase working medium to the evaporator for generating the gas-phase working medium by heating the liquid-phase working medium with the exhaust gas of the engine is controlled, and the gas generated in the evaporator is controlled.
  • the temperature of the gas phase working medium generated in the evaporator is responsively and accurately matched to the target temperature.
  • the combined efficiency of the evaporator and the expander can be maximized.
  • controller 20 of the embodiment corresponds to the control means of the present invention.
  • FIG. 1 is an overall configuration diagram of a Rankine cycle device
  • FIGS. 2A to 2D are diagrams showing a temperature distribution of a working medium inside an evaporator.
  • Fig. 3 is a graph showing changes in steam pressure and steam temperature when the expander rotation speed is changed stepwise.
  • Figs. 4A to 4C show the results when the water supply amount and the expander rotation speed are simultaneously changed.
  • Fig. 5 is a flowchart of a main routine for controlling steam temperature
  • Fig. 6 is a flowchart of a routine for calculating a feedwater feedforward value
  • Fig. 5 is a flowchart of a main routine for controlling steam temperature
  • Fig. 6 is a flowchart of a routine for calculating a feedwater feedforward value
  • FIG. 7 is a flowchart of a routine for calculating a target expander speed
  • Figure 8 is the map to find the fuel flow rate G F from the engine operating condition such as Enji down speed N e and the intake negative pressure P b, 9 water supply feedforward from the exhaust gas flow rate G gAS and exhaust gas temperature T g to search for value Q FF Is a map.
  • FIGS. 10 and 11 show the second embodiment of the present invention.
  • FIGS. 10A and 10B show a flow chart of a main routine of a steam temperature control according to a second embodiment
  • FIG. 11 shows a steam flow rate and a deviation T.
  • FIG. FIG. 6 is a map for searching for an increase / decrease in rotation speed ⁇ ⁇ ⁇ from FIG.
  • Fig. 12 is a graph showing the relationship between the steam temperature and the output of the expander
  • Fig. 13 is a graph showing the relationship between the optimum steam temperature and the maximum efficiency of the evaporator and the expander.
  • the Rankine cycle device for recovering the thermal energy of the exhaust gas from the engine 11 of the vehicle uses a high-temperature and high-pressure gas by heating the liquid-phase working medium (water) with the exhaust gas from the engine 11.
  • Evaporator 12 to generate phase working medium (steam)
  • positive displacement expander 13 to convert thermal energy of high-temperature and high-pressure steam generated by evaporator 12 to mechanical energy, and discharge from expander 13
  • a condenser 14 for cooling the condensed steam and condensing it into water; a tank 15 for storing the water discharged from the condenser 14; a water supply pump 16 for sucking the water in the tank 15;
  • An injector 17 for injecting the water sucked by the water supply pump 16 into the evaporator 12 is arranged on a closed circuit.
  • the motor generator 18 connected to the expander 13 is disposed, for example, between the engine 11 and the driving wheels, and assists the output of the engine 11 by causing the motor generator 18 to function as a motor. At the same time, when the vehicle decelerates, the motor / generator 18 can function as a generator to recover the kinetic energy of the vehicle as electric energy.
  • the motor generator 18 may be connected to the expander 13 by itself and have only the function of generating electric energy. In the present invention, the load applied to the expander 13 from the motor / generator 18 is adjusted by adjusting the load (power generation amount) of the motor 18 so that the number of rotations of the expander 13 is reduced. Control.
  • the reason why the steam temperature at the outlet of the evaporator 12 can be controlled by adjusting the rotation speed of the expander 13 will be described.
  • FIG. 2A schematically shows the structure of the evaporator 12.
  • the heat transfer tube 22 arranged inside the casing 21 of the evaporator 12 is provided with a water inlet 2 2 a connected to the injector 17. And a steam outlet 2 2 b connected to the expander 13 .
  • the casing 21 has an exhaust gas inlet 21 a on the steam outlet 22 b side and an exhaust gas outlet 2 lb on the water inlet 22 a side. Is provided. Therefore, the working medium and the exhaust gas flow in opposite directions.
  • the temperature of the water supplied to the water inlet 22a of the heat transfer tube 22 gradually rises in the liquid phase, and when the temperature reaches the saturation temperature at point a, the water and steam coexist. It becomes vapor (two-phase state) and is maintained at the saturation temperature. At point b, all the water becomes superheated steam in a gaseous state, and the temperature of the steam rises from the saturation temperature.
  • the load on the motor * generalizer 18 was reduced and the rotational speed of the expander 13 was increased stepwise. The steam pressure decreases, and the steam temperature temporarily drops due to the latent heat of vaporization and the heat of expansion of the water.
  • the saturation temperature decreases, points a and b shift to the water inlet 22 a side, and the temperature of the steam discharged from the steam outlet 22 b temporarily drops.
  • the rate of decrease in steam temperature is proportional to the rate of decrease in steam pressure, and is on the order of several seconds.
  • the working medium in the heat transfer tube 22 continues to receive the thermal energy of the exhaust gas and rises in temperature, and as shown in FIG. 3, before the rotational speed of the expander 13 is increased.
  • this temperature change is affected by the heat mass of the evaporator 12, it is on the order of tens to hundreds of seconds.
  • the steam temperature at the outlet of the evaporator 12 can be temporally controlled with good responsiveness.
  • a change in the steam temperature due to an increase or decrease in the number of revolutions of the expander 13] is temporary, and the steam temperature returns to its original value over time.
  • the amount of water supplied from the injector 17 to the evaporator 12 is controlled. For example, increasing the steam temperature at the outlet of the evaporator 12, as shown in FIG. steam The temperature slowly rises on the order of several tens to several hundreds of seconds and converges to a predetermined temperature.
  • the control of steam temperature by increasing or decreasing the amount of supplied water has extremely low responsiveness, but at the same time, the rotational speed of the expander 13 is increased stepwise as shown in Fig. 4B.
  • the steam temperature can be controlled to the target steam temperature with good responsiveness and high accuracy, as shown in Fig. 4C. It is possible to maximize the overall efficiency combining the efficiency and the expander efficiency.
  • step S1 the steam temperature T at the outlet of the evaporator 12 is detected by the steam temperature sensor 19, and in step S2, the operating state of the engine 11, that is, the engine speed Ne, the intake negative pressure Pb, and the exhaust detecting the gas temperature Tg and the air-fuel ratio AZF, and out calculation based on the amount of water supplied Fidofowa one de value Q FF in step S 3 Ne, Pb, Tg, the a / F.
  • FIG. 6 shows the subroutine of step S3.
  • step S11 the engine speed Ne and the intake negative pressure Pb are applied to the map shown in FIG. 8 to find the fuel flow rate G F of the engine 11. I do.
  • the fuel flow rate G F is larger engine speed Ne, the larger is higher or intake negative pressure Pb.
  • the fuel flow rate G F sharply increases the intake negative pressure Pb is high region, a because the fuel is made rich at the time of high load of the engine 1 1.
  • the exhaust gas flow rate G GAS is calculated by (A / F + 1) XG F using the air-fuel ratio AZF and the fuel flow rate G F.
  • Step S 1 3 searches the water supply amount Fidofowa one de value Q FF.
  • the feedwater feedforward value Q FF increases as the exhaust gas flow rate GGAS increases and the exhaust gas temperature Tg increases.
  • the feedwater feedforward value Q FF is the target steam temperature T. It is corrected to increase slightly according to the rise of.
  • step S 5 the water supply command value of the injector 1 7 Step S 4 ', i.e. the rotational speed N of the water supply pump 1 6 may be calculated from the amount of water supply Fidofowa one de value Q FF.
  • step S5 the steam temperature T is set to the target steam temperature T. Calculate the target rotation speed ⁇ ⁇ ⁇ of the expander 13 for controlling the rotation speed.
  • FIG. 7 shows the subroutine of step S5.
  • step S21 If the steam temperature ⁇ exceeds the target steam temperature T Q in step S21 , the rotation speed is increased or decreased to the target expander rotation speed N EXP in step S22. the amount ⁇ ⁇ ⁇ to the summing, steam temperature T conversely if the target steam temperature T 0 or less, subtracts the rotational speed decrease amount ⁇ ⁇ ⁇ from targets expander rotational speed N EXP step S 2 3. Then, in step S6 of the flowchart in FIG. 5, the target expander rotation speed ⁇ is output as a command value, and the load generated by the motor generator 18 is changed to control the rotation speed of the expander 13.
  • Step S 3 water supply amount by adding the amount of water supply feedback value Q FB water supply amount Fidofowa one de value Q FF in beta Q. Calculate the water supply amount Q in step S 4 (or step S 4 ′). Calculate the water supply command value based on.
  • step S5 when calculating the target expander rotational speed N EXP in step S5 (see FIG. 7), as shown in FIG. 11, when the steam flow rate is small, the rotational speed increase / decrease ⁇ ⁇ ⁇ of the target expander rotational speed N EXP is reduced. Although the steam temperature can be changed even if it is small, when the steam flow rate is large, the steam temperature cannot be changed without increasing the rotation speed increase / decrease AN EXP of the target expander speed ⁇ ⁇ . Also target steam temperature T. ⁇ ⁇ 0 — When T is large, increase or decrease the rotation speed ⁇ ⁇ ⁇ and increase the deviation ⁇ .
  • the expander speed can be quickly converged to the target expander speed N EXP by reducing the rotational speed increase / decrease amount AN EXP .
  • the feedforward control and the feedback By using this control together with the expansion control, it is possible to converge the expander rotational speed more precisely to the target expander rotational speed N EXP .
  • the feedwater feedforward value QFF is calculated based on Ne, Pb, Tg, and AZF, but the flowrate sensor may directly detect the exhaust gas flow rate.
  • step S 1 1 of the flowchart of FIG. 6 fuel flow G F of the engine 1 1 from the engine speed N e and the intake negative pressure P b, then from the fuel injection amount of E engine 1 1 It may be calculated.
  • the working medium is not limited to water (steam), and any other suitable working medium can be used.

Abstract

In a Rankine cycle apparatus, the amount of water supply to an evaporator (12) is regulated and the number of revolution of an expander (13) is regulated so that a vapor temperature at the outlet of the evaporator (12) corresponds to a target vapor temperature. When the amount of water supply to the evaporator (12) is reduced in a stepped manner, a vapor temperature at the outlet of the evaporator (12) rises slowly and converges to a predetermined temperature. When the number of rotation of the expander (13) is reduced in a stepped manner, the vapor temperature rises quickly, though temporarily. Accordingly, simultaneous regulation of the amount of water supply to the evaporator (12) and the number of rotation of the expander (13) enables a vapor temperature at the outlet of the evaporator (12) to correspond to a target vapor temperature with excellent response and high accuracy, so that combined efficiency, a combination of the efficiency of the evaporator (12) and the efficiency of the expander (13), can be made to maximum. This enables to regulate the temperature of a vapor phase medium produced in the evaporator (12) to a target temperature with excellent response and high accuracy.

Description

明 細 書  Specification
発明の分野 Field of the invention
本発明は、 エンジンの排気ガスで液相作動媒体を加熱して気相作動媒体を発生 させる蒸発器と、 蒸発器で発生した気相作動媒体の熱エネルギーを機械工ネルギ 一に変換する容積型の膨張機とを備えたランキンサイクル装置に関する。  The present invention relates to an evaporator that generates a gas-phase working medium by heating a liquid-phase working medium with exhaust gas of an engine, and a positive displacement type that converts heat energy of the gas-phase working medium generated by the evaporator into mechanical energy. And a Rankine cycle device comprising the expander.
背景技術 Background art
日本実公平 2— 3 8 1 6 1号公報には、 一定速度で回転するエンジンの排気ガ スを熱源とする廃熱貫流ポイラの出口での蒸気温度を目標蒸気温度と比較し、 蒸 気温度が目標蒸気温度に一致するように廃熱貫流ボイラへの給水量をフィードバ ック制御するものにおいて、 廃熱貫流ポイラの出口での蒸気圧力に基づいて算出 したフィードフォワード信号をフィードバック信号に加算することにより、 ェン ジンの負荷変動を補償して蒸気温度の制御精度の向上を図るものが記載されてい る。  In Japanese Unexamined Patent Publication No. 2-38181, the steam temperature at the outlet of a waste heat flow-through poiler, which uses the exhaust gas of an engine rotating at a constant speed as a heat source, is compared with the target steam temperature. Feed-back control the amount of water supplied to the waste heat once-through boiler so that it matches the target steam temperature. This document describes that the control of steam temperature is improved by compensating engine load fluctuations.
図 1 2に示すように、 ランキンサイクル装置において、 膨張機の出力がプラス になるには、 つまり膨張機から機械エネルギーを取り出すためには、 蒸発器の出 口での蒸気温度を飽和蒸気温度以上に制御する必要がある。 また図 1 3に示すよ うに、 蒸発器の効率および膨張機の効率は蒸気温度によって変化し、 両者の効率 を合わせた総合効率を最大にするには、 蒸気温度を最適温度に制御する必要があ る。 しかしながら、 図 4 Aに示すように、 蒸発器への給水量をステップ状に変化 させた場合に、 蒸気温度の変化の応答性が低いために定常状態に達するのに数十 秒から数百秒が必要であり、 従つてェンジン負荷の変動速度が速い車両用のラン キンサイクル装置では、 蒸発器への給水量を変化させることで蒸発器の出口での 蒸気温度を応答性良く、 かつ精度良く制御することは困難である。  As shown in Fig. 12, in the Rankine cycle device, the steam temperature at the outlet of the evaporator is controlled to be higher than the saturated steam temperature in order for the output of the expander to become positive, that is, to extract mechanical energy from the expander. There is a need to. Also, as shown in Fig. 13, the efficiency of the evaporator and the efficiency of the expander vary depending on the steam temperature, and to maximize the combined efficiency of the two, it is necessary to control the steam temperature to the optimum temperature. is there. However, as shown in Fig. 4A, when the amount of water supplied to the evaporator is changed stepwise, it takes several tens to several hundreds of seconds to reach a steady state due to the low response of the change in steam temperature. Therefore, in a Rankine cycle system for vehicles with a high engine load fluctuation speed, the steam temperature at the outlet of the evaporator is improved with high responsiveness and accuracy by changing the amount of water supplied to the evaporator. It is difficult to control.
給水量の増減で蒸気温度を応答性良く制御するには蒸発器のヒートマスを小さ くすることが必要であり、 そのためには蒸発器のケーシングを小型化し、 伝熱管 の長さを短くする必要があるが、 このようにすると蒸発器が発生する蒸気量が不 足したり、 蒸発器の効率が低下したりする問題がある。 発明の開示 In order to control the steam temperature with high responsiveness by increasing or decreasing the amount of water supply, it is necessary to reduce the heat mass of the evaporator. However, in this case, there is a problem that the amount of steam generated by the evaporator is insufficient or the efficiency of the evaporator is reduced. Disclosure of the invention
本発明は前述の事情に鑑みてなされたもので、 ランキンサイクル装置において、 蒸発器において発生する気相作動媒体の温度を応答性良く、 かつ精度良く目標温 度に制御することを目的とする。  The present invention has been made in view of the above circumstances, and has as its object to control the temperature of a gas-phase working medium generated in an evaporator to a target temperature with good responsiveness and high accuracy in a Rankine cycle device.
上記目的を達成するために、 本発明によれば、 エンジンの排気ガスで液相作動 媒体を加熱して気相作動媒体を発生させる蒸発器と、 蒸発器で発生した気相作動 媒体の熱エネルギーを機械エネルギーに変換する容積型の膨張機とを備えたラン キンサイクル装置において、 蒸発器の出口での気相作動媒体の温度を目標温度に 一致させるベく、 蒸発器への液相作動媒体の供給量を制御し、 かつ膨張機の回転 数を制御する制御手段を備えたことを特徴とするランキンサイクル装置が提案さ れる。  To achieve the above object, according to the present invention, an evaporator for heating a liquid-phase working medium with exhaust gas of an engine to generate a gas-phase working medium, and a heat energy of the gas-phase working medium generated in the evaporator, In a Rankine cycle device equipped with a positive displacement expander that converts gas into mechanical energy, the temperature of the gas phase working medium at the outlet of the evaporator matches the target temperature. There is proposed a Rankine cycle device characterized by comprising a control means for controlling the supply amount of water and controlling the rotation speed of the expander.
上記構成によれば、 エンジンの排気ガスで液相作動媒体を加熱して気相作動媒 体を発生させる蒸発器への液相作動媒体の供給量を制御し、 かつ蒸発器で発生し た気相作動媒体の熱エネルギーを機械エネルギーに変換する容積型の膨張機の回 転数を制御することにより、 蒸発器で発生する気相作動媒体の温度を目標温度に 応答性良く、 かつ精度良く一致させ、 蒸発器の効率および膨張機の効率を合わせ た総合効率を最大にすることができる。  According to the above configuration, the supply amount of the liquid-phase working medium to the evaporator for generating the gas-phase working medium by heating the liquid-phase working medium with the exhaust gas of the engine is controlled, and the gas generated in the evaporator is controlled. By controlling the number of revolutions of a positive displacement expander that converts the thermal energy of the phase working medium into mechanical energy, the temperature of the gas phase working medium generated in the evaporator is responsively and accurately matched to the target temperature. Thus, the combined efficiency of the evaporator and the expander can be maximized.
尚、 実施例のコントローラ 2 0は本発明の制御手段に対応する。  Incidentally, the controller 20 of the embodiment corresponds to the control means of the present invention.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1〜図 9は本発明の第 1実施例を示すもので、 図 1はランキンサイクル装置 の全体構成図、 図 2 A〜図 2 Dは蒸発器の内部の作動媒体の温度分布を示す図、 図 3は膨張機回転数をステップ状に変化させたときの蒸気圧力および蒸気温度の 変化を示すグラフ、 図 4 A〜図 4 Cは給水量および膨張機回転数を同時に変化さ せたときの蒸気温度の変化を示すグラフ、 図 5は蒸気温度制御のメィンルーチン のフローチャート、 図 6は給水量フィードフォワード値算出ル一チンのフローチ ヤート、 図 7は目標膨張機回転数算出ルーチンのフローチャート、 図 8はェンジ ン回転数 N eおよび吸気負圧 P b等のエンジン運転状態から燃料流量 GFを検索 するマップ、 図 9は排気ガス流量 GGAS および排気ガス温度 T gから給水量フ イードフォワード値 QFFを検索するマップである。 図 1 0、 図 1 1は本発明の第 2実施例を示すもので、 図 1 0は第 2実施例に係る蒸気温度制御のメインルーチ ンのフ口一チャート、 図 1 1は蒸気流量および偏差 T。 一 Τから回転数増減量 Δ ΝΕΧΡ を検索するマップである。 図 1 2は蒸気温度と膨張機出力との関係を 示すグラフ、 図 1 3は最適蒸気温度と蒸発器および膨張機の最高効率との関係を 示すグラフである。 1 to 9 show a first embodiment of the present invention, FIG. 1 is an overall configuration diagram of a Rankine cycle device, and FIGS. 2A to 2D are diagrams showing a temperature distribution of a working medium inside an evaporator. Fig. 3 is a graph showing changes in steam pressure and steam temperature when the expander rotation speed is changed stepwise.Figs. 4A to 4C show the results when the water supply amount and the expander rotation speed are simultaneously changed. Fig. 5 is a flowchart of a main routine for controlling steam temperature, Fig. 6 is a flowchart of a routine for calculating a feedwater feedforward value, Fig. 7 is a flowchart of a routine for calculating a target expander speed, Figure 8 is the map to find the fuel flow rate G F from the engine operating condition such as Enji down speed N e and the intake negative pressure P b, 9 water supply feedforward from the exhaust gas flow rate G gAS and exhaust gas temperature T g to search for value Q FF Is a map. FIGS. 10 and 11 show the second embodiment of the present invention. FIGS. 10A and 10B show a flow chart of a main routine of a steam temperature control according to a second embodiment, and FIG. 11 shows a steam flow rate and a deviation T. FIG. FIG. 6 is a map for searching for an increase / decrease in rotation speed Δ 一 一 from FIG. Fig. 12 is a graph showing the relationship between the steam temperature and the output of the expander, and Fig. 13 is a graph showing the relationship between the optimum steam temperature and the maximum efficiency of the evaporator and the expander.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を、 添付図面に示した本発明の実施例に基づいて説 明する。  Hereinafter, embodiments of the present invention will be described based on embodiments of the present invention shown in the accompanying drawings.
図 1に示すように、 車両のエンジン 1 1の排気ガスの熱エネルギーを回収する ためのランキンサイクル装置は、 エンジン 1 1の排気ガスで液相作動媒体 (水) を加熱して高温高圧の気相作動媒体 (蒸気) を発生させる蒸発器 1 2と、 蒸発器 1 2で発生した高温高圧の蒸気の熱エネルギーを機械エネルギーに変換する容積 型の膨張機 1 3と、 膨張機 1 3から排出された蒸気を冷却して水に凝縮させる凝 縮器 1 4と、 凝縮器 1 4から排出された水を貯留するタンク 1 5と、 タンク 1 5 内の水を吸引する給水ポンプ 1 6と、 給水ポンプ 1 6で吸引した水を蒸発器 1 2 に噴射するインジェクタ 1 7とを閉回路上に配置してなる。  As shown in Fig. 1, the Rankine cycle device for recovering the thermal energy of the exhaust gas from the engine 11 of the vehicle uses a high-temperature and high-pressure gas by heating the liquid-phase working medium (water) with the exhaust gas from the engine 11. Evaporator 12 to generate phase working medium (steam), positive displacement expander 13 to convert thermal energy of high-temperature and high-pressure steam generated by evaporator 12 to mechanical energy, and discharge from expander 13 A condenser 14 for cooling the condensed steam and condensing it into water; a tank 15 for storing the water discharged from the condenser 14; a water supply pump 16 for sucking the water in the tank 15; An injector 17 for injecting the water sucked by the water supply pump 16 into the evaporator 12 is arranged on a closed circuit.
膨張機 1 3に接続されたモータ ·ジェネレータ 1 8は例えばエンジン 1 1と駆 動輪との間に配置されており、 モータ ·ジェネレータ 1 8をモータとして機能さ せてエンジン 1 1の出力をアシストするとともに、 車両の減速時にモー夕 ·ジェ ネレー夕 1 8をジェネレータとして機能させて車両の運動エネルギーを電気エネ ルギ一として回収することができる。 尚、 モータ ·ジェネレータ 1 8は膨張機 1 3に単体で接続されて電気エネルギーの発生機能のみを有するものでも良い。 そ して本発明では、 モータ 'ジェネレータ 1 8の負荷 (発電量) を調整することで、 モータ ·ジェネレータ 1 8から膨張機 1 3に加わる負荷を調整して該膨張機 1 3 の回転数を制御する。 エンジン 1 1の運転状態、 つまりエンジン回転数 N e、 吸 気負圧 P b、 排気ガス温度 T gおよび空燃比 A/ Fと、 蒸気温度センサ 1 9で検 出した蒸発器 1 2の出口での蒸気温度 Tが入力されるコントローラ 2 0は、 イン ジェクタ 1 7の水供給量 (あるいは給水ポンプ 1 6の回転数) と、 モータ ·ジェ ネレー夕 1 8が発生する負荷、 つまり膨張機 1 3の回転数とを制御する。 次に、 膨張機 1 3の回転数を調整することで蒸発器 1 2の出口での蒸気温度を 制御できる理由について説明する。 The motor generator 18 connected to the expander 13 is disposed, for example, between the engine 11 and the driving wheels, and assists the output of the engine 11 by causing the motor generator 18 to function as a motor. At the same time, when the vehicle decelerates, the motor / generator 18 can function as a generator to recover the kinetic energy of the vehicle as electric energy. The motor generator 18 may be connected to the expander 13 by itself and have only the function of generating electric energy. In the present invention, the load applied to the expander 13 from the motor / generator 18 is adjusted by adjusting the load (power generation amount) of the motor 18 so that the number of rotations of the expander 13 is reduced. Control. The operating state of the engine 11, that is, the engine speed Ne, the intake negative pressure Pb, the exhaust gas temperature Tg, the air-fuel ratio A / F, and the output of the evaporator 12 detected by the steam temperature sensor 19 The controller 20 to which the steam temperature T of the motor 17 is input, determines the amount of water supplied to the injector 17 (or the rotation speed of the water supply pump 16) and the load generated by the motor generator 18, ie, the expander 13 To control the number of rotations. Next, the reason why the steam temperature at the outlet of the evaporator 12 can be controlled by adjusting the rotation speed of the expander 13 will be described.
図 2 Aは蒸発器 1 2の構造を模式的に示すもので、 蒸発器 1 2のケ一シング 2 1の内部に配置された伝熱管 2 2は、 インジェクタ 1 7に連なる水入口 2 2 aと 膨張機 1 3に連なる蒸気出口 2 2 bとを備えており、 ケーシング 2 1は蒸気出口 2 2 b側に排気ガス入口 2 1 aを備えるとともに水入口 2 2 a側に排気ガス出口 2 l bを備える。 従って、 作動媒体および排気ガスは相互に逆方向に流れること になる。  FIG. 2A schematically shows the structure of the evaporator 12. The heat transfer tube 22 arranged inside the casing 21 of the evaporator 12 is provided with a water inlet 2 2 a connected to the injector 17. And a steam outlet 2 2 b connected to the expander 13 .The casing 21 has an exhaust gas inlet 21 a on the steam outlet 22 b side and an exhaust gas outlet 2 lb on the water inlet 22 a side. Is provided. Therefore, the working medium and the exhaust gas flow in opposite directions.
図 2 Bに示すように、 伝熱管 2 2の水入口 2 2 aに供給された水は液相状態で 次第に温度上昇し、 a点において飽和温度に達すると水および蒸気が共存する湿 り飽和蒸気 (二相状態) になって飽和温度に維持され。 b点において水が全て気 相状態の過熱蒸気になって該蒸気の温度は飽和温度から上昇する。 膨張機 1 3へ の蒸気の供給量を一定に保持したまま、 図 3に示すように、 モータ *ジエネレー 夕 1 8の負荷を低減して膨張機 1 3の回転数をステップ状に増加させると蒸気圧 力が減少し、 水の気化潜熱および膨張熱によって一時的に蒸気温度が低下する。 つまり、 図 2 Cに示すように、 飽和温度が低下して a点および b点が水入口 2 2 a側にシフトし、 蒸気出口 2 2 bから排出される蒸気温度が一時的に低下する。 この蒸気温度の低下速度は蒸気圧力の低下速度に比例するもので数秒のオーダー である。 その後、 図 2 Dに示すように、 伝熱管 2 2内の作動媒体は排気ガスの熱 エネルギーを受け続けて温度上昇し、 図 3に示すように、 膨張機 1 3の回転数を 増加させる前の温度に復帰する。 この温度変化は蒸発器 1 2のヒートマスの影響 を受けるため、 数十秒〜数百秒のオーダーとなる。 このように、 膨張機 1 3の回 転数を増減させることで、 蒸発器 1 2の出口での蒸気温度を、 一時的にではある が応答性良く制御することができる。  As shown in Fig. 2B, the temperature of the water supplied to the water inlet 22a of the heat transfer tube 22 gradually rises in the liquid phase, and when the temperature reaches the saturation temperature at point a, the water and steam coexist. It becomes vapor (two-phase state) and is maintained at the saturation temperature. At point b, all the water becomes superheated steam in a gaseous state, and the temperature of the steam rises from the saturation temperature. As shown in Fig. 3, while keeping the steam supply to the expander 13 constant, the load on the motor * generalizer 18 was reduced and the rotational speed of the expander 13 was increased stepwise. The steam pressure decreases, and the steam temperature temporarily drops due to the latent heat of vaporization and the heat of expansion of the water. That is, as shown in FIG. 2C, the saturation temperature decreases, points a and b shift to the water inlet 22 a side, and the temperature of the steam discharged from the steam outlet 22 b temporarily drops. The rate of decrease in steam temperature is proportional to the rate of decrease in steam pressure, and is on the order of several seconds. Thereafter, as shown in FIG. 2D, the working medium in the heat transfer tube 22 continues to receive the thermal energy of the exhaust gas and rises in temperature, and as shown in FIG. 3, before the rotational speed of the expander 13 is increased. Return to the temperature of Since this temperature change is affected by the heat mass of the evaporator 12, it is on the order of tens to hundreds of seconds. As described above, by increasing or decreasing the number of revolutions of the expander 13, the steam temperature at the outlet of the evaporator 12 can be temporally controlled with good responsiveness.
上述したように、 膨張機 1 3の回転数の増減による蒸気温度の変化]^一時的な ものであり、 時間の経過と共に蒸気温度は元に戻ってしまうため、 膨張機 1 3の 回転数の増減と同時にインジェクタ 1 7から蒸発器 1 2への給水量を制御する。 例えば、 蒸発器 1 2の出口での蒸気温度を上昇させるベく、 図 4 Aに示すように、 蒸発器 1 2への給水量をステップ状に減少させると、 蒸発器 1 2の出口での蒸気 温度は数十秒〜数百秒のオーダーでゆつくりと上昇して所定温度に収束する。 こ のように、 給水量の増減による蒸気温度の制御は応答性が極めて低いものである が、 これと同時並行して、 図 4Bに示すように、 膨張機 1 3の回転数をステップ 状に減少させて蒸気温度を一時的に上昇させることで、 図 4 Cに示すように、 蒸 気温度を応答性良く、 かつ精度良く目標蒸気温度に制御することができ、 その結 果、 蒸発器の効率および膨張機の効率を合わせた総合効率を最大にすることがで さる。 As described above, a change in the steam temperature due to an increase or decrease in the number of revolutions of the expander 13] is temporary, and the steam temperature returns to its original value over time. At the same time, the amount of water supplied from the injector 17 to the evaporator 12 is controlled. For example, increasing the steam temperature at the outlet of the evaporator 12, as shown in FIG. steam The temperature slowly rises on the order of several tens to several hundreds of seconds and converges to a predetermined temperature. As described above, the control of steam temperature by increasing or decreasing the amount of supplied water has extremely low responsiveness, but at the same time, the rotational speed of the expander 13 is increased stepwise as shown in Fig. 4B. By reducing the temperature and temporarily increasing the steam temperature, the steam temperature can be controlled to the target steam temperature with good responsiveness and high accuracy, as shown in Fig. 4C. It is possible to maximize the overall efficiency combining the efficiency and the expander efficiency.
次に、 上記作用を図 5〜図 7のフ口一チャートに基づいて更に説明する。  Next, the above operation will be further described with reference to the flowcharts of FIGS.
先ずステップ S 1で蒸気温度センサ 1 9により蒸発器 1 2の出口での蒸気温度 Tを検出し、 ステップ S 2でエンジン 1 1の運転状態、 つまりエンジン回転数 N e、 吸気負圧 Pb、 排気ガス温度 Tgおよび空燃比 AZFを検出し、 ステップ S 3で給水量フィードフォヮ一ド値 QFFを Ne, Pb, Tg, A/ Fに基づいて算 出する。 First, in step S1, the steam temperature T at the outlet of the evaporator 12 is detected by the steam temperature sensor 19, and in step S2, the operating state of the engine 11, that is, the engine speed Ne, the intake negative pressure Pb, and the exhaust detecting the gas temperature Tg and the air-fuel ratio AZF, and out calculation based on the amount of water supplied Fidofowa one de value Q FF in step S 3 Ne, Pb, Tg, the a / F.
図 6は前記ステップ S 3のサブルーチンを示すもので、 ステップ S 1 1でェン ジン回転数 Neおよび吸気負圧 Pbを図 8のマップに適用してエンジン 1 1の燃 料流量 GF を検索する。 燃料流量 GF はエンジン回転数 Neが大きいほど、 ま た吸気負圧 Pbが高いほど大きくなる。 尚、 吸気負圧 Pbが高い領域で燃料流量 GF が急激に増加するのは、 エンジン 1 1の高負荷時に燃料がリッチになるた めである。 続くステップ S 12で排気ガス流量 GGAS を空燃比 AZFおよび燃 料流量 GF を用いて、 (A/F+ 1) XGF により算出する。 そしてステップ S 1 3で排気ガス流量 GGAS および排気ガス温度 Tgを図 9のマップに適用し て給水量フィードフォヮ一ド値 QFFを検索する。 給水量フイードフォワード値 Q FFは、 排気ガス流量 GGAS が大きいほど、 また排気ガス温度 Tgが高いほど大 きくなる。 尚、 給水量フィードフォワード値 QFFは、 目標蒸気温度 T。 の上昇 に応じて僅かに増加するように補正される。 FIG. 6 shows the subroutine of step S3. In step S11, the engine speed Ne and the intake negative pressure Pb are applied to the map shown in FIG. 8 to find the fuel flow rate G F of the engine 11. I do. As the fuel flow rate G F is larger engine speed Ne, the larger is higher or intake negative pressure Pb. Incidentally, the fuel flow rate G F sharply increases the intake negative pressure Pb is high region, a because the fuel is made rich at the time of high load of the engine 1 1. In the following step S12 , the exhaust gas flow rate G GAS is calculated by (A / F + 1) XG F using the air-fuel ratio AZF and the fuel flow rate G F. Then the exhaust gas flow rate G GAS and exhaust gas temperature Tg in Step S 1 3 is applied to the map of FIG. 9 searches the water supply amount Fidofowa one de value Q FF. The feedwater feedforward value Q FF increases as the exhaust gas flow rate GGAS increases and the exhaust gas temperature Tg increases. The feedwater feedforward value Q FF is the target steam temperature T. It is corrected to increase slightly according to the rise of.
このようにして給水量フィードフォワード値 QFFが算出されると、 図 5のフロ 一チャートに戻り、 ステップ S 4でインジェクタ 17の給水指令値、 つまりイン ジェクタ 1 7の開度指令値 T iを給水量フィードフォワード値 QFFから算出する。 尚、 給水量は給水ポンプ 1 6の回転数に応じて変化することから、 前記ステップ S 4に代えて、 ステップ S 4 ' でインジェクタ 1 7の給水指令値、 つまり給水ポ ンプ 1 6の回転数 N を給水量フィードフォヮ一ド値 QFFから算出しても良い。 続くステップ S 5で蒸気温度 Tを目標蒸気温度 T。 に制御するための膨張機 1 3の目標回転数 ΝΕΧΡ を算出する。 図 7は前記ステップ S 5のサブルーチン を示すもので、 ステップ S 2 1で蒸気温度 Τが目標蒸気温度 T Q を越えていれ ば、 ステップ S 2 2で目標膨張機回転数 NEXP に回転数増減量 Δ ΝΕΧΡ を加 算し、 逆に蒸気温度 Τが目標蒸気温度 Τ 0 以下であれば、 ステップ S 2 3で目 標膨張機回転数 NEXP から回転数増減量 Δ ΝΕΧΡ を減算する。 そして図 5の フローチャートのステップ S 6で目標膨張機回転数 ΝΕΧΡ を指令値として出力 し、 モータ ·ジェネレータ 1 8が発生する負荷を変化させて膨張機 1 3の回転数 を制御する。 When the feedwater feedforward value Q FF is calculated in this manner, the flow returns to the flowchart of FIG. Calculated from feedwater feedforward value QFF . Since the amount of water supply changes according to the rotation speed of the water supply pump 16, Instead of S 4, the water supply command value of the injector 1 7 Step S 4 ', i.e. the rotational speed N of the water supply pump 1 6 may be calculated from the amount of water supply Fidofowa one de value Q FF. In the following step S5, the steam temperature T is set to the target steam temperature T. Calculate the target rotation speed Ν 膨 張 of the expander 13 for controlling the rotation speed. FIG. 7 shows the subroutine of step S5. If the steam temperature を exceeds the target steam temperature T Q in step S21 , the rotation speed is increased or decreased to the target expander rotation speed N EXP in step S22. the amount Δ Ν ΕΧΡ to the summing, steam temperature T conversely if the target steam temperature T 0 or less, subtracts the rotational speed decrease amount Δ Ν ΕΧΡ from targets expander rotational speed N EXP step S 2 3. Then, in step S6 of the flowchart in FIG. 5, the target expander rotation speed Ν is output as a command value, and the load generated by the motor generator 18 is changed to control the rotation speed of the expander 13.
次に、 図 1 0および図 1 1に基づいて本発明の第 2実施例を説明する。 図 1 0 のフローチャートは図 5のフローチャート (第 1実施例) のステップ S 3 (給水 量フィードフォワード値算出) の後に、 ステップ S 3 A, S 3 Bを付加したもの であり、 その他のステップは実質的に同じである。 即ち、 ステップ S 3 Aで給水 量フィードバック値 QFBを目標蒸気温度 T 0 と蒸気温度 Tとの偏差 T。 一丁の P I D演算値として算出する。 そしてステップ S 3 Βで給水量フィードフォヮ一 ド値 QFFに給水量フィードバック値 QFBを加算して給水量 Q。 を算出し、 ステ ップ S 4 (あるいはステップ S 4 ' ) で給水量 Q。 に基づいて給水量指令値を 算出する。 Next, a second embodiment of the present invention will be described based on FIG. 10 and FIG. The flow chart of FIG. 10 is obtained by adding steps S 3 A and S 3 B after step S 3 (calculating the water supply amount feedforward value) of the flow chart of FIG. 5 (first embodiment). Substantially the same. That is, the deviation T. of the water supply feedback value Q FB target steam temperature T 0 and the steam temperature T in step S 3 A Calculated as a single PID calculation value. Then Step S 3 water supply amount by adding the amount of water supply feedback value Q FB water supply amount Fidofowa one de value Q FF in beta Q. Calculate the water supply amount Q in step S 4 (or step S 4 ′). Calculate the water supply command value based on.
ステップ S 5で目標膨張機回転数 NEXP を算出するとき (図 7参照) 、 図 1 1に示すように、 蒸気流量が小さいときには目標膨張機回転数 NEXP の回転数 増減量 Δ ΝΕΧΡ が小さくても蒸気温度を変化させることができるが、 蒸気流量 が大きいときには目標膨張機回転数 ΝΕΧΡ の回転数増減量 A NEXP を大きく しないと蒸気温度を変化させることができない。 また目標蒸気温度 T。 と蒸気 温度 Τとの偏差 Τ 0 — Tが大きいときには回転数増減量 Δ ΝΕΧΡ を大きくし、 偏差 Τ。 一 Τが小さいときには回転数増減量 A NEXP を小さくすることで、 膨 張機回転数を目標膨張機回転数 NEXP に速やかに収束させることができる。 以上のように、 第 2実施例によれば、 フィードフォワード制御とフィードバッ ク制御とを併用したことで、 膨張機回転数を目標膨張機回転数 NEXP に一層精 密に収束させることができる。 When calculating the target expander rotational speed N EXP in step S5 (see FIG. 7), as shown in FIG. 11, when the steam flow rate is small, the rotational speed increase / decrease Δ Ν 目標 of the target expander rotational speed N EXP is reduced. Although the steam temperature can be changed even if it is small, when the steam flow rate is large, the steam temperature cannot be changed without increasing the rotation speed increase / decrease AN EXP of the target expander speed Ν ΕΧΡ . Also target steam temperature T. 蒸 気 0 — When T is large, increase or decrease the rotation speed Δ Ν 、 and increase the deviation Τ. When Τ is small, the expander speed can be quickly converged to the target expander speed N EXP by reducing the rotational speed increase / decrease amount AN EXP . As described above, according to the second embodiment, the feedforward control and the feedback By using this control together with the expansion control, it is possible to converge the expander rotational speed more precisely to the target expander rotational speed N EXP .
以上、 本発明の実施例を詳述したが、 本発明はその要旨を逸脱しない範囲で 種々の設計変更を行うことが可能である。  Although the embodiments of the present invention have been described in detail, various design changes can be made in the present invention without departing from the gist thereof.
例えば、 図 6のフローチャートで給水量フィードフォワード値 QFFを N e, P b , T g , AZ Fに基づいて算出しているが、 それを流量センサで排ガス流量を 直接検出しても良い。 For example, in the flowchart of FIG. 6, the feedwater feedforward value QFF is calculated based on Ne, Pb, Tg, and AZF, but the flowrate sensor may directly detect the exhaust gas flow rate.
また図 6のフローチャートのステップ S 1 1でエンジン 1 1の燃料流量 GF をエンジン回転数 N eおよび吸気負圧 P bからマツプ検索しているが、 それをェ ンジン 1 1の燃料噴射量から算出しても良い。 Although Matsupu are retrieved in step S 1 1 of the flowchart of FIG. 6 fuel flow G F of the engine 1 1 from the engine speed N e and the intake negative pressure P b, then from the fuel injection amount of E engine 1 1 It may be calculated.
また作動媒体は水 (蒸気) に限定されず、 他の適宜の作動媒体を採用すること ができる。  The working medium is not limited to water (steam), and any other suitable working medium can be used.

Claims

請求の範囲 The scope of the claims
(11) の排気ガスで液相作動媒体を加熱して気相作動媒体を発生 させる蒸発器 (12) と、 蒸発器 (12) で発生した気相作動媒体の熱エネルギ 一を機械エネルギーに変換する容積型の膨張機 (13) とを備えたランキンサイ クル装置において、 The evaporator (12), which heats the liquid-phase working medium with the exhaust gas of (11) to generate a gas-phase working medium, and converts the heat energy of the gas-phase working medium generated by the evaporator (12) into mechanical energy Rankine cycle device equipped with a positive displacement expander (13)
蒸発器 (12) の出口での気相作動媒体の温度を目標温度に一致させるベく、 蒸発器 (12) への液相作動媒体の供給量を制御し、 かつ膨張機 (13) の回転 数を制御する制御手段 (20) を備えたことを特徴とするランキンサイクル装置  In order to match the temperature of the gas-phase working medium at the outlet of the evaporator (12) with the target temperature, control the supply amount of the liquid-phase working medium to the evaporator (12), and rotate the expander (13). Rankine cycle device comprising control means (20) for controlling the number
PCT/JP2003/009223 2002-07-24 2003-07-22 Rankine cycle apparatus WO2004013466A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/521,960 US20060086091A1 (en) 2002-07-24 2003-07-22 Rankine cycle apparatus
EP03766629A EP1536104A4 (en) 2002-07-24 2003-07-22 Rankine cycle apparatus
AU2003248086A AU2003248086A1 (en) 2002-07-24 2003-07-22 Rankine cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-215257 2002-07-24
JP2002215257A JP3901608B2 (en) 2002-07-24 2002-07-24 Rankine cycle equipment

Publications (1)

Publication Number Publication Date
WO2004013466A1 true WO2004013466A1 (en) 2004-02-12

Family

ID=31492072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009223 WO2004013466A1 (en) 2002-07-24 2003-07-22 Rankine cycle apparatus

Country Status (5)

Country Link
US (1) US20060086091A1 (en)
EP (1) EP1536104A4 (en)
JP (1) JP3901608B2 (en)
AU (1) AU2003248086A1 (en)
WO (1) WO2004013466A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051428B4 (en) * 2004-10-29 2015-05-28 Denso Corporation Waste heat recovery device
JP4675717B2 (en) * 2004-11-19 2011-04-27 株式会社デンソー Waste heat utilization device for internal combustion engine and control method thereof
JP4684762B2 (en) * 2005-06-27 2011-05-18 株式会社荏原製作所 Power generator
US7950230B2 (en) * 2007-09-14 2011-05-31 Denso Corporation Waste heat recovery apparatus
DE102008012907A1 (en) * 2008-03-06 2009-09-10 Daimler Ag Method for obtaining energy from an exhaust gas stream and motor vehicle
JP2011196209A (en) * 2010-03-18 2011-10-06 Mitsubishi Electric Corp Waste heat regeneration system
US20120047889A1 (en) * 2010-08-27 2012-03-01 Uop Llc Energy Conversion Using Rankine Cycle System
AT511189B1 (en) * 2011-07-14 2012-10-15 Avl List Gmbh METHOD FOR CONTROLLING A HEAT UTILIZATION DEVICE IN AN INTERNAL COMBUSTION ENGINE
JP6021637B2 (en) * 2012-12-28 2016-11-09 三菱重工業株式会社 Power generation system and power generation method
DE102016005717A1 (en) 2015-12-24 2017-01-26 Daimler Ag Device and method for using waste heat of an internal combustion engine in a motor vehicle
US11204190B2 (en) 2017-10-03 2021-12-21 Enviro Power, Inc. Evaporator with integrated heat recovery
CN111226074B (en) 2017-10-03 2022-04-01 环境能源公司 Evaporator with integrated heat recovery
JP7372132B2 (en) 2019-12-16 2023-10-31 パナソニックホールディングス株式会社 Rankine cycle device and its operating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345835A (en) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd Internal combustion engine
JP2001271609A (en) * 2000-01-18 2001-10-05 Honda Motor Co Ltd Waste heat recovery device of internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358929A (en) * 1974-04-02 1982-11-16 Stephen Molivadas Solar power system
US4117344A (en) * 1976-01-02 1978-09-26 General Electric Company Control system for a rankine cycle power unit
JPH0633766B2 (en) * 1984-01-13 1994-05-02 株式会社東芝 Power plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345835A (en) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd Internal combustion engine
JP2001271609A (en) * 2000-01-18 2001-10-05 Honda Motor Co Ltd Waste heat recovery device of internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1536104A4 *

Also Published As

Publication number Publication date
AU2003248086A1 (en) 2004-02-23
EP1536104A4 (en) 2005-11-23
JP3901608B2 (en) 2007-04-04
EP1536104A1 (en) 2005-06-01
US20060086091A1 (en) 2006-04-27
JP2004052738A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US8783032B2 (en) Method for recovering heat losses of an internal combustion engine
RU2502880C2 (en) Organic rankine cycle of direct heating
US8572964B2 (en) Method for recuperating energy from an exhaust gas flow and motor vehicle
US8590307B2 (en) Auto optimizing control system for organic rankine cycle plants
WO2004013466A1 (en) Rankine cycle apparatus
JP2006250075A (en) Rankine cycle device
WO2003029619A1 (en) Temperature control device of evaporator
JP2002115801A (en) Steam temperature control device for vaporizer
EP2397659A2 (en) Dual cycle rankine waste heat recovery cycle
US10550730B2 (en) Waste heat recovery system
WO2009079203A2 (en) System and method for controlling an expansion system
JP2013527372A (en) Control of thermal cycle process
JP3901609B2 (en) Rankine cycle equipment
JP2006250074A (en) Rankine cycle device
US20060242961A1 (en) Rankine cycle system
JP2017145799A (en) Rankine cycle system
JP2006200493A (en) Rankine cycle device
WO2002059465A1 (en) Working medium feed and control device for heat exchanger
JP2006207396A (en) Rankine cycle device
US9828883B2 (en) Live steam determination of an expansion engine
JP5609707B2 (en) Rankine cycle system controller
JP2016156327A (en) Rankine cycle system
US8171730B2 (en) External combustion engine
US8112981B2 (en) External combustion engine
JP2022152029A (en) Power regeneration type rankine cycle system and control method of power regeneration type rankine cycle system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003766629

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003766629

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006086091

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521960

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10521960

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003766629

Country of ref document: EP