WO2004012466A1 - Procede de repartition de la charge dynamique de points et de sous-systemes de signalisation - Google Patents

Procede de repartition de la charge dynamique de points et de sous-systemes de signalisation Download PDF

Info

Publication number
WO2004012466A1
WO2004012466A1 PCT/CN2003/000437 CN0300437W WO2004012466A1 WO 2004012466 A1 WO2004012466 A1 WO 2004012466A1 CN 0300437 W CN0300437 W CN 0300437W WO 2004012466 A1 WO2004012466 A1 WO 2004012466A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
messages
subsystem
value
point
Prior art date
Application number
PCT/CN2003/000437
Other languages
English (en)
Chinese (zh)
Inventor
Zujian Li
Lin Lin
Xiaojin Zhang
Guodao Yang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to AU2003246112A priority Critical patent/AU2003246112A1/en
Publication of WO2004012466A1 publication Critical patent/WO2004012466A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q3/00Selecting arrangements
    • H04Q3/0016Arrangements providing connection between exchanges
    • H04Q3/0025Provisions for signalling

Definitions

  • the present invention relates to a signaling system, and particularly to a signaling connection control part of a signaling system.
  • the number of links from a signaling transfer point (STP) to a destination signaling point (SP) is determined by a link selection code (SLS) of a message sent to the STP.
  • SLS link selection code
  • SLS is represented by 4 bits, so the range of the SLS value is 0 to 15, so the maximum number of STP-to-SP links is 16.
  • the 16 links restrict the bandwidth and cannot meet the performance requirements of STP. The number of links needs to be increased to meet the demand.
  • the existing methods for dynamic load sharing of a dual signaling point and a subsystem based on a dual signaling point are implemented in the SCCP module.
  • STP and SP can be directly connected or non-directly connected.
  • the STP may be connected to a signaling point (defined as DPC + GT or DPC + NEW GT) or a subsystem (defined as DPC + SSN)
  • a signaling point defined as DPC + GT or DPC + NEW GT
  • DPC + SSN subsystem
  • the method of dynamic load sharing of a dual signaling point subsystem based on SCCP is the same as the method of dynamic load sharing of a subsystem based on dual signaling points. Therefore, the following only describes the method of dynamic load sharing of a subsystem based on dual signaling points of SCCP. .
  • the messages processed by SCCP can be classified into out-of-order messages and in-order messages according to the order.
  • Forwarded out-of-order messages can be re-selected and sent by SLS.
  • For forwarded ordered messages messages with the same SLS must be sent to SP, so these messages with the same SLS need to be sent in turn from the same link. At this time, the SLS in the message cannot be changed.
  • SCCP signaling points or sub- When system load sharing is performed, the existing method can only achieve full load sharing of out-of-order messages, increase the number of links to 32, and achieve traffic balance; while for ordered messages, only partial load sharing can be achieved To the purpose of increasing the number of links, traffic balancing cannot be achieved.
  • STP 101 forwards an out-of-order message to a destination subsystem, it is first sent to the master subsystem (DPC1 + SSN) 102, and the SLS value is 0; when the second message is to the destination subsystem When forwarding, select the standby subsystem (DPC2 + SSN) 103, and the value of SLS is 0; when the message from the third subsystem to the destination subsystem is forwarded, select DPC1 + SSN 102, and the value of SLS is 1; When the message of the destination subsystem is forwarded, DPC2 + SSN 103 is selected, and the value of SLS is 1; ...; this way, after the value of SLS reaches 15, then repeat the above method to get to a certain destination. Messages from the signalling points are evenly shared across the 32 links.
  • the above SLS values are derived from the following two formulas.
  • the active or standby subsystem Based on the parity of the SLS values of the ordered messages sent to the STP, the active or standby subsystem is selected for load sharing and the messages are forwarded. Messages with SLS values of 0, 2, 4 and 14 are sent to the active subsystem, and messages with SLS values of 1, 3, and 5 15 are sent to the standby subsystem, and vice versa.
  • the SLS has only 16 values, it can only correspond to 16 links. Therefore, according to the parity allocation of the SLS value, only the primary can be used.
  • the main object of the present invention is to provide a method for dynamic load sharing of signaling points and subsystems in the SCCP module of a signaling system. By applying this method, all chains of ordered messages from STP to a destination signaling point or a destination subsystem can be implemented. Even load sharing of roads.
  • a method for dynamic load sharing between a signaling point and a subsystem selecting an active or standby signaling point or an active and standby subordinate for an ordered message sent to the signaling transfer point.
  • the system performs dynamic load sharing, including at least the following steps:
  • step A when there are two signaling points or subsystems used as load sharing, a code value is determined according to the statistics of the OPC code value distribution of the ordered messages to be sent by the STP, so that the OPC is greater than or equal to the code.
  • the number of messages of the value is equal to the number of messages whose OPC is less than the code value, and the signaling packet point code in the data table is set to the code value; in step B, the originating signaling point code is smaller than the signaling packet.
  • the point code messages are divided into a first group, and the messages whose originating signaling point codes are greater than or equal to the signaling group point codes are divided into a second group.
  • the step C is to send all the first group of ordered messages to be forwarded to the main signaling
  • the point or the active subsystem sends all the second group of messages to be forwarded to the standby signaling point or the standby subsystem.
  • step C all the first group of ordered messages to be forwarded are sent to the standby signaling point or the standby subsystem, and all the second group of messages to be forwarded are sent to the primary signaling point or the primary subsystem. .
  • the step C further includes selecting and forwarding the primary and backup signaling points or the primary and backup subsystems according to the parity of the link selection code (SLS) value of the ordered messages, and transferring the first group of ordered messages to be forwarded.
  • SLS link selection code
  • Messages with an odd SLS value are sent to the primary signaling point or the primary subsystem.
  • Messages with an even SLS value are sent to the secondary signaling point or the secondary subsystem.
  • the second group of messages to be forwarded has an odd SLS value. The message is sent to the standby signaling point or the standby subsystem, and the message with an even SLS value is sent to the active signaling point or the active subsystem.
  • the step C further includes selecting and forwarding the primary and backup signaling points or the primary and secondary subsystems according to the parity of the SLS values of the ordered messages, and forwarding the first group of ordered messages whose SLS values are even. Sent to the primary signaling point or the primary subsystem, the message with an odd SLS value is sent to the secondary signaling point or the secondary subsystem; and the second group of messages to be forwarded is sent to the secondary signaling. Point or standby subsystem, messages with odd SLS values are sent to the primary signaling point or primary subsystem.
  • the step C further includes selecting and forwarding the primary and backup signaling points or the primary and backup subsystems according to the SLS value of the ordered messages, and transmitting the messages with a small SLS value in the first group of ordered messages to be forwarded. Sent to the primary signaling point or the primary subsystem, the message with a large SLS value is sent to the secondary signaling point or the secondary subsystem, and the second group of messages to be forwarded is sent to the standby Signaling point or backup subsystem. A message with a large SLS value is sent to the main signaling point or the main subsystem.
  • the step C further includes selecting and forwarding the primary and backup signaling points or the primary and backup subsystems according to the SLS value of the ordered messages, and forwarding the SLS values in the first group of ordered messages to be forwarded.
  • a message with a large value is sent to the primary signaling point or the primary subsystem
  • a message with a small SLS value is sent to the secondary signaling point or the secondary subsystem
  • the SLS value in the second group of messages to be forwarded is a large value
  • the message is sent to the standby signaling point or the standby subsystem
  • the message with a small SLS value is sent to the active signaling point or the active subsystem.
  • the message with a small SLS value means a message with an SLS value of 0 to 7
  • the message with a large SLS value means a message with an SLS value of 8 to 15.
  • step A when there are three signaling points or subsystems for load sharing, including two active signaling points or active subsystems and one common standby signaling point or standby subsystem,
  • the STP determines a code value for the statistics of the OPC code value distribution of the ordered messages that need to be sent, so that the number of messages with OPC greater than or equal to the code value is twice the number of messages with OPC less than the code value.
  • the signaling group point code in the data table is set to the code value; in step B, the messages whose originating signaling point codes are smaller than the signaling grouping point codes are divided into one group, and the originating signaling point codes are greater than The message equal to or equal to the signaling group point code is divided into a second group.
  • step C all the ordered messages to be forwarded in the first group are sent to a common backup signaling point or backup subsystem, and the second group is sent. All the messages to be forwarded are sent to their corresponding active signaling points or active subsystems.
  • the present invention adds a signaling grouping point code to a data table, uses the signaling grouping point code to compare with the originating signaling point code of an ordered message, groups the ordered messages according to the comparison result, and combines the grouped messages with them.
  • a signaling point or a subsystem is selected, thereby achieving dynamic load sharing between the signaling point and the subsystem.
  • this method can also achieve dynamic load sharing of multiple signaling points or subsystems, All the links from the signaling transfer point to the signaling point or subsystem are used, and the message traffic balance of each link is achieved.
  • the number of links for load sharing from the signaling transfer point to the signaling points or subsystems can be increased to 48, and these 48 chains can be realized. Message traffic on the road is balanced.
  • Figure 1 is a schematic diagram of SCCP's out-of-order messages using the round robin method to select the main and backup subsystems to achieve dynamic load sharing;
  • Figure 2 is a schematic diagram of a method for dynamic load sharing of a subsystem based on dual signaling points to select the primary and backup subsystems of the ordered messages of the SCCP according to the OPC grouping and the parity of the SLS value to achieve dynamic load sharing;
  • FIG. 3 is a schematic diagram of selecting a primary and a backup subsystem according to the size of the OPC grouping and the SLS value of the ordered messages of SCCP in the method of dynamic load sharing of a subsystem based on dual signaling points to implement dynamic load sharing;
  • FIG. 4 is a schematic diagram of a method for dynamic load sharing of a subsystem based on dual signaling points, in which the ordered messages of the SCCP are selected according to the OPC group to select the main and backup subsystems to implement dynamic load sharing;
  • Figure 5 is a schematic diagram of a method of dynamic load sharing of a subsystem based on three signaling points, in which the ordered messages of the SCCP are selected according to the OPC group to select the main and backup subsystems to achieve dynamic load sharing.
  • the subsystem for load sharing is based on the Huan signaling point.
  • OPC code value of the STP message There is a distribution of the OPC code value of the STP message. According to the statistics of the OPC code value distribution of the ordered messages that need to be sent by the STP, a code value can be determined from it, so that the number of OPCs larger than the code value and OPC smaller than the code value The number is equal.
  • a configuration field is added to the subsystem data table, that is, the signaling packet point code opc_code, and the code value of opc_code is set to the determined code value so that the ordered messages to be forwarded through STP can be identified. Its OPC is divided into two groups.
  • OPC OPC2 can be obtained from the routing flag (LABEL) of the message.
  • Messages with originating signaling point coded as OPC1 are dynamically allocated to the primary subsystem (DPC1 + SSN) or standby subsystem (DPC2 + SSN); and messages with originating signaling point coded as OPC2 are dynamically allocated to DPC2 + SSN or DPC1 + SSN.
  • FIG. 4 is a method of allocating messages according to OPC grouping
  • FIGS. 2 and 3 are methods of allocating messages after grouping by OPC and combining their SLS values. Because the SLS values of the messages in the entire signalling network are evenly distributed, you can select the active and standby subsystems by grouping the messages by OPC and combining their SLS values to achieve uniform load sharing across 32 links.
  • the ordered messages sent to the STP 203 are grouped according to OPC and combined with the parity of their SLS values, the primary and backup subsystems are selected for load sharing.
  • OPC1 201 the origin of the message is encoded as OPC1 201
  • the message with an odd SLS value is sent to DPC1 + SSN 204
  • the message with an even SLS value is sent to DPC2 + SSN 205, that is, the message is passed along the solid line in the figure ;
  • the originating signaling point of the message is coded as OPC2 202
  • a message with an odd SLS value is sent to DPC2 + SSN 205
  • a message with an even SLS value is sent to DPC1 + SSN 204.
  • the message is transmitted along the dotted line in the figure, and the two form a complementary relationship.
  • the ordered messages sent to the STP 203 are grouped according to OPC, and the main and backup subsystems are selected for load sharing based on the size of their SLS values.
  • the SLS value is a small value, that is, a message with an SLS value of 0 to 7 is sent to DPC1 + SSN 204, and the SLS value is a large value, that is, an SLS value of 8 to 15
  • the message is sent to DPC2 + SSN 205; when the originating signaling point code of the message is OPC2 202, a message with a small SLS value is sent to DPC2 + SSN 205, and a message with a large SLS value is sent to DPC1 + SSN 204.
  • DPC1 + SSN 204 and all the messages whose originating signaling points are encoded as OPC1 201 are sent to DPC2 + SSN 205.
  • the messages of OPC1 and OPC2 can complement each other when they are sent to the main and standby subsystems, and just 32 links are used up, and the load of each link is balanced.
  • the present invention can increase the 16 links from STP to SP to 32.
  • the method of dynamic load sharing of the above subsystems is based on dynamic load sharing of dual signaling points.
  • Dynamic load sharing of the system Taking the dynamic load sharing of the subsystem based on three signaling points as an example, the specific configuration is as follows:
  • the messages sent to DPC2 + SSN 505 include OPC1 501 and OPC2 502 messages, so OPC1 501 and OPC2 502 are unequal grouped so that messages sent to DPC2 + SSN 505 are equal to messages sent to DPC1 + SSN 504 and DPC3 + SSN 506.
  • a code value may be determined according to the statistics of the OPC code value distribution of the ordered messages to be sent by the STP, so that the number of OPCs larger than the code value is 1 times the number of OPCs smaller than the code value.
  • the messages are grouped according to OPC, and the grouped message is combined with the grouping according to the SLS value to select the main and backup signaling points or the main and backup subsystems.
  • Multiple signaling points and subsystems can be implemented Dynamic load sharing, so as to make full use of all links from STP to signaling points or subsystems, and achieve message traffic balance of each link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne un procédé permettant de répartir la charge dynamique de points et de sous-systèmes de signalisation. Ledit procédé permet de résoudre le problème, lors de la répartition de la charge dynamique de points et de sous-systèmes de signalisation, qu'il n'y a que 16 liens vers un point ou un sous-système de signalisation destinataire, pour transmettre les messages ordonnés et qu'il n'est pas possible d'égaliser la charge de liens individuels. L'application de l'invention permet d'utiliser dans une mesure satisfaisante tous les liens du STP (point de transfert de signalisation) en direction du point ou du sous-système de signalisation destinataire et d'égaliser le débit des liens individuels. Le groupage sur des codes de points de signalisation d'origine (OPC) des messages ordonnés, en fonction des codes du point de signalisation d'origine établis dans une table de données, et l'envoi respectivement des messages après groupage, à deux points ou sous-systèmes de signalisation de répartition de charge, permettent de transmettre les messages par sélection du point ou du sous-système de signalisation destinataire, en combinaison avec la grandeur de la valeur SLS des messages. Par ailleurs, les SLS ne peuvent être examinés, les messages sont donc transmis directement par sélection du point ou du sous-système de signalisation destinataire en fonction du groupe d'OPC.
PCT/CN2003/000437 2002-07-29 2003-06-04 Procede de repartition de la charge dynamique de points et de sous-systemes de signalisation WO2004012466A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003246112A AU2003246112A1 (en) 2002-07-29 2003-06-04 Method of share in dynamic load of signaling points and subsystems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02125695.0 2002-07-29
CN 02125695 CN1254117C (zh) 2002-07-29 2002-07-29 信令点和子系统动态负荷分担的方法

Publications (1)

Publication Number Publication Date
WO2004012466A1 true WO2004012466A1 (fr) 2004-02-05

Family

ID=30121315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000437 WO2004012466A1 (fr) 2002-07-29 2003-06-04 Procede de repartition de la charge dynamique de points et de sous-systemes de signalisation

Country Status (4)

Country Link
CN (1) CN1254117C (fr)
AU (1) AU2003246112A1 (fr)
RU (1) RU2290760C9 (fr)
WO (1) WO2004012466A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052019B (zh) * 2007-04-05 2010-10-06 华为技术有限公司 选择消息承载链路的方法及信令转接点
CN101184049B (zh) * 2007-12-12 2010-06-16 中兴通讯股份有限公司 一种动态负荷分担方法及系统
CN101448181B (zh) * 2008-05-29 2011-12-28 中兴通讯股份有限公司 信令链路选择方法及系统
CN101420377B (zh) * 2008-11-27 2011-05-04 华为技术有限公司 一种分担负载的方法及系统
CN106549877A (zh) * 2015-09-16 2017-03-29 中兴通讯股份有限公司 转发消息负荷分担方法及装置
CN113328955B (zh) * 2021-04-20 2022-02-22 北京连山科技股份有限公司 一种结合多参数自适应的多链路负载均衡方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838782A (en) * 1996-05-24 1998-11-17 Ericsson, Inc. System for converting a routing address within a telecommunications network
WO2000064195A1 (fr) * 1999-04-20 2000-10-26 Siemens Aktiengesellschaft Dispositif et procede pour l'amelioration de la repartition de charge dans un reseau de signalisation
CN1278983A (zh) * 1997-11-10 2001-01-03 西门子公司 信令网的信令点

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838782A (en) * 1996-05-24 1998-11-17 Ericsson, Inc. System for converting a routing address within a telecommunications network
CN1278983A (zh) * 1997-11-10 2001-01-03 西门子公司 信令网的信令点
WO2000064195A1 (fr) * 1999-04-20 2000-10-26 Siemens Aktiengesellschaft Dispositif et procede pour l'amelioration de la repartition de charge dans un reseau de signalisation

Also Published As

Publication number Publication date
RU2005106196A (ru) 2005-09-10
CN1254117C (zh) 2006-04-26
AU2003246112A1 (en) 2004-02-16
RU2290760C9 (ru) 2007-04-10
CN1472966A (zh) 2004-02-04
RU2290760C2 (ru) 2006-12-27

Similar Documents

Publication Publication Date Title
CN102238072B (zh) 一种动态选择路由的方法及clos交换网系统
CN101485161B (zh) 在多重主干网络结构中进行网络路由选择的方法
EP3208977B1 (fr) Procédé, dispositif et système de transfert de données dans un réseautage défini par logiciel
US5737526A (en) Network having at least two routers, each having conditional filter so one of two transmits given frame and each transmits different frames, providing connection to a subnetwork
CN101843045B (zh) 链路聚合组上的固定和保护
CN102882782B (zh) 装置及第一通信设备的运行方法
JP4143544B2 (ja) イングレスカード及びイングレスカードによるパケットの伝達方法
CN1327673C (zh) 一种多协议标签交换网络的数据传输方法及系统
US8644328B2 (en) Methods for intelligent NIC bonding and load-balancing
CN106533960A (zh) 一种基于Fat‑Tree结构的数据中心网络路由方法
US20090185481A1 (en) Method and network node for self-regulating, autonomous and decentralized traffic distribution in a multipath network
WO2012142910A1 (fr) Procédé et système pour mettre en œuvre une interface de réseau élastique et une interconnexion
CN102263697A (zh) 一种聚合链路流量分担方法和装置
EP2008387A2 (fr) Agrégation de liaison bidirectionnelle
CA2693674C (fr) Transmission de donnees sur des liaisons paralleles
CN104221323A (zh) 组播流路由选择的方法
CN101350773A (zh) 一种移动分组网络架构及其多个防火墙负载均衡接入方法
CN114024969B (zh) 一种负载均衡方法、装置和系统
CN105490937B (zh) 以太虚拟网络网关切换方法和服务商边缘节点设备
WO2010082281A1 (fr) Dispositifs terminaux et procédé de transmission de paquets
JPH0787488B2 (ja) 共通線信号方式信号中継局の信号リンク連結割当およびルーティング方法
US9306856B2 (en) Optimal tree root selection for trees spanning multiple sites
WO2004012466A1 (fr) Procede de repartition de la charge dynamique de points et de sous-systemes de signalisation
CN101425879B (zh) 一种基于t-mpls分组传送网的tdm/pw空时分集方法
CN100337453C (zh) 在弹性分组环之间实现报文转发的方法及弹性分组环网络

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2005106196

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP