WO2004012299A2 - Antenne capacitive et procede de realisation - Google Patents

Antenne capacitive et procede de realisation Download PDF

Info

Publication number
WO2004012299A2
WO2004012299A2 PCT/FR2003/050020 FR0350020W WO2004012299A2 WO 2004012299 A2 WO2004012299 A2 WO 2004012299A2 FR 0350020 W FR0350020 W FR 0350020W WO 2004012299 A2 WO2004012299 A2 WO 2004012299A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
capacitor
gravure printing
ink
pad
Prior art date
Application number
PCT/FR2003/050020
Other languages
English (en)
Other versions
WO2004012299A3 (fr
Inventor
Christophe Mathieu
Original Assignee
Fci
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fci filed Critical Fci
Priority to US10/521,822 priority Critical patent/US20060164312A1/en
Priority to AU2003273499A priority patent/AU2003273499A1/en
Priority to JP2004523897A priority patent/JP2005534243A/ja
Priority to EP03755657A priority patent/EP1527499A2/fr
Priority to MXPA05000882A priority patent/MXPA05000882A/es
Publication of WO2004012299A2 publication Critical patent/WO2004012299A2/fr
Publication of WO2004012299A3 publication Critical patent/WO2004012299A3/fr
Priority to US12/569,432 priority patent/US7988323B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/005Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with variable reactance for tuning the antenna

Definitions

  • the subject of the present invention is a capacitive antenna and a method for producing such an antenna. It finds more particularly its use in the field of applications related to wireless communication technologies, in particular to radio frequency identification (RFID) applications.
  • RFID radio frequency identification
  • These applications are, for example, implemented for automatic identification and transmission of data in the fields of access control as well as electronic data management.
  • the applications are for example in the context of public transport tickets, highway tolls, parking tickets, plane tickets. Many companies have also developed means of identifying their staff, or their customers, by contactless smart card.
  • the mobile device generally comprises a support on which are presented an electronic device for processing, storing and processing information, for example a chip, and the first antenna with which the device is connected. It is generally in the form of a credit card in ISO format or a flexible tag ("Tag").
  • the price of a chip is proportional to the surface area of silicon used to house the microprocessor, memory areas and capacitors.
  • the size of the chip By significantly reduce the cost of the antenna and the micropackaging of the chip, it is known in the state of the art to seek to reduce the size of the chip by reducing the size generated by the capacitors. Chips are therefore used comprising capacitors of small bulk and having lower capacities.
  • L a corresponds to the inductance of the antenna
  • C p corresponds to the capacity of the device
  • the antenna is screen printed on a support. Generally, the antenna has several turns so that the first pad of the antenna is inside the turns, while the second pad of the antenna is outside the turns. To connect the chip and the second capacitor in parallel with the antenna, it is necessary to connect the capacitor to each of the two pads of the antenna.
  • the problem is essentially posed in the state of the art by the fact that the antenna necessarily comprises several turns, given the capacities of the capacitors and the law of resonance to be respected.
  • the second capacitor is screen printed outside the center of the turns to avoid damaging the flux passing through and therefore the inductance of the antenna.
  • this second capacitor is easily connected to the external stud of the antenna.
  • To connect it to the interior stud of the antenna it is necessary to make an insulating bridge above the turns at the level of which a conductive connection can then be screen printed.
  • the realization of this bridge is restrictive and adds additional steps to the manufacturing process of the antenna.
  • the capacitors that can be obtained have an intermediate capacity. This capacity does not fully complement the decrease in the internal capacity of the chip. Consequently so that the law of resonance is respected, it is necessary to increase the inductance of the antenna, which is obtained by increasing the number of turns, and by imposing the realization of a bridge to connect this antenna multispires with the second screen-printed capacitor.
  • capacitors which have a higher capacity and which could cooperate with a single coil antenna. But in this case such capacitors are expensive, bulky and reduce efforts to reduce costs.
  • the object of the invention is to solve the problems mentioned and makes it possible to manufacture planar antennas at low cost and in large volume taking into account the future technical constraints imposed by the chip manufacturers. According to the invention it is possible to propose on the same support an antenna preferably comprising a single turn, this antenna being connected to a high capacity capacitor.
  • C is the value of the capacitance
  • ⁇ 0 corresponds to the dielectric permittivity of the vacuum (8.854. 10 12 F / m)
  • 8 r corresponds to the relative permittivity of the dielectric
  • S corresponds to the surface of the electrodes opposite from each other
  • e corresponds to the thickness of the dielectric.
  • a high-capacity capacitor is obtained by playing mainly on the value of the thickness of dielectric which is arranged between the two conductive plates.
  • the capacitor is printed by gravure printing on the support also having the antenna. Indeed, by the gravure technique, we obtain the deposition of very thin layer.
  • the capacitor is obtained by depositing at least three superimposed and successive layers, such as a first conductive layer, covered with a second insulating layer, and finally itself covered with a third conductive layer.
  • the antenna can itself be printed by gravure printing on this occasion, the design of the antenna being finalized with the two conductive layers.
  • Rotogravure is a technique derived from intaglio printing.
  • the printing elements are recessed.
  • the printing areas are engraved on a steel cylinder covered with copper and chrome. Chemical solutions can be used to etch copper.
  • Another method of preparing the printing cylinders uses a laser for engraving. When printing, the ink fills the cells of the cylinder; a doctor blade removes the excess ink and the support is then pressed against the printer form to make the print. The resulting print is of high quality and is perfectly reproducible.
  • Gravure printing uses fluid inks containing volatile solvents. Even for thin deposits, a deposit is obtained which covers the entire surface to be printed uniformly.
  • the advantages linked to this process make it possible to guarantee a constant geometry of the planar capacitor. Due to the fact that this capacitor has a high capacity, even a single coil antenna is tuned to the resonance. Therefore the capacitor and the chip can be very easily connected to the single coil antenna.
  • the overall electrical resistance of the monospire antenna is lower than the resistance of a conventional spiral. This makes it possible to envisage, in a variant, a deposition of high-speed electrolytic copper with a constant and controlled thickness, above each of the zones having a portion of conductive layer.
  • the inventive method makes it possible to very significantly reduce the price of the transponder by playing both on the direct cost of manufacturing the antenna and on the simplification of the micropackaging of the chip.
  • the subject of the invention is a coupling antenna comprising at least one turn presented on a support, and connected to a capacitor presented on this same support, the capacitor being mounted in parallel on two pads of the antenna, characterized in that the the antenna and the capacitor are printed by gravure printing on the same support.
  • the invention also relates to a method for producing an antenna comprising at least one turn connected to a capacitor, the antenna and the capacitor being presented on the same insulating support, characterized in that it comprises the following steps:
  • FIG. 1 a a top view of a support after a first step of the method according to the invention
  • FIG. 1 b a top view of a support after a second step of the method according to the invention
  • FIG. 1 c a top view of a support after a third step of the method according to the invention
  • FIG. 1d a top view of a support after an optional last step of the method according to the invention
  • FIG. 2 shows a nomadic device 1 provided for exchanging radioelectric signals with a reading device 2.
  • the nomadic device 1 is a transponder comprising an electronic microcircuit 3, or chip 3, and an antenna 4.
  • the chip 3 and the antenna 4 are presented on an insulating substrate 5.
  • This substrate 5 can for example have the shapes of a smart card standardized in ISO format.
  • the chip 3 is connected to the antenna 4, and is supplied by the induced current produced by the electromagnetic field emitted and received in the antenna 4.
  • the reading device 2 comprises a second antenna 6 for transmitting and receiving signals towards the nomadic device 1. Furthermore, the device 2 comprises a coupler 7 connected to the second antenna 6, this coupler 7 being moreover connected to a unit 8 for processing and managing the data exchanged.
  • the unit 8 is for example a computer.
  • the antenna 4 comprises, as shown in FIGS. 1a, 1b, 1c and 1d, at least one turn 9 and a capacitor 10 mounted in parallel with the turn 9.
  • the turn 9 and the capacitor 0 are shown on a support 11.
  • the support 11 is insulating and may for example be in the form of a flexible thin film.
  • the substrate 11 is of polyethylene (PE), polyester (PET), polyvinyl chloride (PVC), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS), glass-epoxy, polyimide, paper, etc. type.
  • the coil 9 comprises a first pad 12 and a second pad 13 to which the capacitor 10 and the chip 3 will be connected.
  • the support 11 is placed under a first gravure cylinder supplied with electroconductive ink.
  • a first pattern is thus produced drawing the turn 9, a lower electrode 14 of the capacitor 10, and a connection 15 between the first pad 12 and the lower electrode 14.
  • the second pad 13 is already apparent from the deposition of the first layer d conductive ink.
  • the thickness of the ink deposit, once dried, is of the order of 2 to 4 micrometers.
  • a second layer 16 is deposited with a dielectric material above the lower electrode 14.
  • this second layer 16 is deposited by gravure printing by means of a second cylinder supplied with an ink to the properties insulating.
  • this second layer is obtained following a double passage under two cylinders such as the second cylinder.
  • the dielectric layer 16 is obtained by two superposed layers of insulating ink. With such a double thickness of the insulating layers, the problems of porosity in the dielectric separating the lower electrode 14 from the upper electrode 17 are avoided.
  • the thickness of the insulating layer 16 is less than 10 micrometers, and preferably varies between 5 and 10 micrometers, this layer 16 is preferably obtained in two successive layers in order to limit the porosities generating current leaks.
  • the dielectric layer is homogeneous, and does not have pores in which impurities could lodge.
  • layer 16 can alternatively be obtained in a single pass under the second cylinder.
  • a third layer is deposited, to form the upper electrode 17, and also a connection 18 between this upper electrode 17 and the second pad 13.
  • This third layer is printed by gravure printing. using conductive ink. In this case, it is preferable to use a four-color machine having the four cylinders within the same line.
  • the same conductive ink is used to make the first layer and the third layer
  • the ink used in the invention has very low electrical resistance, it includes copper, silver, gold, palladium. , tin or alloys thereof and conductive polymers.
  • the electrically conductive ink must be prepared, from the point of view of its viscosity and from the point of view of other physicochemical properties, so that it is suitable for gravure printing.
  • the ink chosen is for example an electroconductive ink charged with metal.
  • the metal is mainly silver, and it is presented in the form of flakes forming micro plates. These micro plates are preferably very thin (1 to 2 ⁇ m) and with a length of between 2 and 5 ⁇ m.
  • the proportion of these metallic charges is between 50% and 80% of the solid mass of the ink.
  • the proportion of metallic charges is 70%, to guarantee a high conductivity of the ink thus formed.
  • the high conductivity ink is in return for low resistivity, which facilitates the next metallization step.
  • the ink may include conductive organic polymers.
  • the advantage of these polymers is that they are formulated in a solvent or aqueous phase which thus makes it possible to adjust the rheological properties of the ink obtained, to make it in particular compatible with the gravure process.
  • Another advantage comes from the fact that in this variant, the ink does not contain metallic fillers, which contributes to a large-scale cost reduction, and which facilitates obtaining a homogeneous ink making the process more reliable. Manufacturing.
  • a metal layer 19 to cover all the portions having conductive ink, whether it is from the first pass or the third pass.
  • This metal layer can be deposited by electrolytic copper plating.
  • the thickness of copper deposited is of the order of 5 micrometers and covers the turn 9, the studs 12 and 13 the connections 15 and 18, and also the upper face 17 of the upper electrode of the capacitor 10.
  • a coil 9 with a width of 500 ⁇ m is chosen such that it has an inductance of 270 nH.
  • the capacity of the external planar capacitor 10 is determined which must be provided on the support 11.
  • a diameter of the electrodes equal to 11.8 millimeters is chosen.
  • the capacity of the chip 3 is 25 pF, then it is necessary for the planar capacitor 10 to have a capacity of 485 pF, and for this purpose, when a dielectric thickness of 8 millimeters is obtained, we provides a capacitor area such that the diameter is 12.8 millimeters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Aerials (AREA)
  • Printing Methods (AREA)

Abstract

Procédé de réalisation d'une antenne (4) capacitive par héliogravure l'antenne comportant une spire unique (9) reliée à un condensateur (10), la spire et le condensateur étant imprimés par héliogravure avec une encre conductrice. Une épaisseur (16) de diélectrique entre deux électrodes (14, 17) conductrices du condensateur imprimées par héliogravure est également obtenue par héliogravure en utilisant une encre diélectrique. La capacité du condensateur est déterminée en fonction de l'inductance de l'antenne, de la fréquence de communication et de la loi de résonance à laquelle est soumis une puce (3) reliée à cette antenne (4).

Description

Antenne capacitive et procédé de réalisation
La présente invention a pour objet une antenne capacitive et un procédé de réalisation d'une telle antenne. Elle trouve plus particulièrement son utilisation dans le domaine des applications liées aux technologies de communication sans fil, notamment aux applications d'identification radiofréquence (RFID). Ces applications sont par exemple mises en œuvre pour l'identification automatique et la transmission de données dans les domaines du contrôle d'accès ainsi que de la gestion électronique de données. En matière de contrôle d'accès et ou de porte monnaie électronique, les applications sont par exemple dans le cadre des billets de transports en commun, des péages d'autoroutes, des tickets de parkings, des billets d'avion. De nombreuses sociétés ont également développé des moyens d'identification de leur personnel, ou de leur clientèle, par carte à puce sans contact.
On compte à ce jour deux bandes principales de fréquences mises à profit pour les applications d'identification par radio fréquence : les basses fréquences aux alentours de 125 kHz et les moyennes fréquences aux alentours de 13,56 MHz. Les valeurs de ces fréquences sont généralement fixées et correspondent à des normes internationales. Pour mettre en œuvre cette technologie, on utilise principalement un dispositif de lecture capable de communiquer avec un dispositif nomade porté par un utilisateur. La communication s'effectue par couplage électromagnétique à distance entre une antenne logée dans le dispositif nomade et une deuxième antenne disposée dans le dispositif de lecture.
Le dispositif nomade, ou transpondeur, comporte généralement un support sur lequel sont présentés un dispositif électronique pour élaborer, stocker et traiter des informations, par exemple une puce, et la première antenne avec laquelle le dispositif est relié. Il se présente généralement sous la forme d'une carte de crédit au format ISO ou d'une étiquette souple ("Tag").
Globalement , le prix d'une puce est proportionnel à la surface de silicium utilisée pour loger le microprocesseur, les zones mémoires et les condensateurs. Pour faire baisser de façon significative le coût de l'antenne et du micropackaging de la puce, il est connu dans l'état de la technique de chercher à diminuer la taille de la puce en diminuant l'encombrement généré par les condensateurs. On utilise donc des puces comportant des condensateurs de faible encombrement et ayant des capacités moindres.
Par conséquent, en parallèle de la diminution de la taille de la puce, à inductance de l'antenne constante, il devient nécessaire que le support présente par ailleurs un autre condensateur pour que la loi de résonance du dispositif soit respectée. Le fonctionnement optimal du dispositif est obtenu à la résonance, lorsque les caractéristiques des différents composants de ce dispositif respectent la loi de résonance suivante: l_aCpω2 = 1 où
La correspond à l'inductance de l'antenne, Cp correspond à la capacité du dispositif, et
03 = 2πf correspond à la pulsation et se calcule en fonction de la fréquence (f) choisie pour l'échange de signaux. Comme il est décrit dans le document WO-A-01/50547, il est connu de prévoir une deuxième capacité en parallèle de la puce et de l'antenne. Cette deuxième capacité permet de compenser le fait que la capacité de la puce soit moindre. Notamment ce document enseigne de sérigraphier le condensateur de la même manière que l'antenne est sérigraphiée. La sérigraphie est dérivée de la technique d'impression au pochoir. Il s'agit d'un procédé d'impression à l'aide d'un écran constitué par un cadre sur lequel est tendu un tissu à maille. Le tissu est généralement constitué de fibre synthétique comme le nylon ou le polyester. Cet écran, appliqué sur le support, reçoit l'encre qui, poussée par une raclette, passe à travers les mailles libres pour réaliser l'impression. L'épaisseur du dépôt imprimé est irrégulière.
Les dispositifs de l'état de la technique posent un problème. En effet, ils permettent d'utiliser des puces plus petites et donc moins chères, mais par contre, ces dispositifs imposent certaines contraintes sur la réalisation de l'antenne. L'antenne est sérigraphiée sur un support. Généralement l'antenne comporte plusieurs spires de telle sorte que le premier plot de l'antenne se trouve à l'intérieur des spires, alors que le deuxième plot de l'antenne se trouve à l'extérieur des spires. Pour connecter la puce et le deuxième condensateur en parallèle de l'antenne, il est nécessaire de relier le condensateur à chacun des deux plots de l'antenne. Le problème est essentiellement posé dans l'état de la technique par le fait que l'antenne comporte obligatoirement plusieurs spires, étant données les capacités des condensateurs et la loi de résonance à respecter. Le deuxième condensateur est sérigraphié à l'extérieur du centre des spires pour éviter de nuire aux flux traversant et donc à l'inductance de l'antenne. Par conséquent ce deuxième condensateur est facilement connecté au plot extérieur de l'antenne. Pour le connecter au plot intérieur de l'antenne, il est nécessaire de réaliser un pont isolant au dessus des spires au niveau desquelles une liaison conductrice peut ensuite être sérigraphiée. La réalisation de ce pont est contraignante et rajoute des étapes supplémentaires au procédé de fabrication de l'antenne. Avec la technique de sérigraphie, les condensateurs qui peuvent être obtenus ont une capacité intermédiaire. Cette capacité ne vient pas totalement compléter la diminution de la capacité interne de la puce. Par conséquent pour que le la loi de résonance soit respectée, il est nécessaire d'augmenter l'inductance de l'antenne, ce qui est obtenu en augmentant le nombre de spires, et en imposant la réalisation d'un pont pour connecter cette antenne multispires au deuxième condensateur sérigraphié.
Dans l'état de la technique on connaît des condensateurs ayant une capacité plus élevée, et qui pourrait coopérer avec une antenne monospire. Mais dans ce cas de tels condensateurs sont chers, encombrant et réduisent à néant les efforts de réduction des coûts.
L'invention a pour objet de résoudre les problèmes cités et permet de fabriquer des antennes planaires à bas coût et en grand volume en tenant compte des contraintes techniques futures imposées par les fabricants de puce. Selon l'invention il est possible de proposer sur un même support une antenne comportant de préférence une spire unique, cette antenne étant connectée à un condensateur de forte capacité. La capacité d'un condensateur plan se déduit de l'équation suivante: C = ε0 * Br * S / e où
C est la valeur de la capacité, ε0 correspond à la permittivité diélectrique du vide (8,854. 1012 F/m), 8r correspond à la permittivité relative du diélectrique, S correspond à la surface des électrodes en vis-à-vis l'une de l'autre, et e correspond à l'épaisseur du diélectrique. Dans l'invention, on obtient un condensateur à capacité élevée en jouant principalement sur la valeur de l'épaisseur de diélectrique qui est disposée entre les deux plaques conductrices. Pour obtenir le résultat de l'invention, le condensateur est imprimé par héliogravure sur le support présentant également l'antenne. En effet, par la technique de l'héliogravure, on obtient le dépôt de couche de très faible épaisseur. Le condensateur est obtenu par dépôt d'au moins trois couches superposées et successives, telles qu'une première couche conductrice, recouverte d'une deuxième couche isolante, et enfin elle même recouverte d'une troisième couche conductrice. Par exemple, l'antenne peut -elle-même être imprimée par héliogravure à cette occasion, le design de l'antenne étant finalisé avec les deux couches conductrices.
L'héliogravure est une technique dérivée de la taille-douce. Les éléments imprimants sont en creux. Les zones imprimantes sont gravées sur un cylindre d'acier recouvert de cuivre et chromé. On peut utiliser des solutions chimiques pour graver le cuivre. Il existe aussi des machines qui gravent mécaniquement les cylindres à l'aide d'une pointe en diamant à partir d'un balayage électronique d'une photographie à reproduire. Enfin une autre méthode de préparation des cylindres d'impression utilise un laser pour la gravure. Lors de l'impression, l'encre remplit les alvéoles du cylindre; une racle enlève l'excès d'encre et le support est ensuite pressé contre la forme imprimante pour réaliser le tirage. L'impression qui en résulte est d'une grande qualité et est parfaitement reproductible. L'héliogravure utilise des encres fluides contenant des solvants volatils. Même pour des dépôts de faible épaisseur, on obtient un dépôt couvrant de manière homogène toute la surface à imprimer.
Les avantages liés à ce procédé permettent de garantir une géométrie constante du condensateur plan. Du fait que ce condensateur a une capacité élevée, une antenne même monospire est accordée à la résonance. Par conséquent le condensateur et la puce peuvent être très facilement reliés à l'antenne monospire. La résistance électrique globale de l'antenne monospire est inférieure à la résistance d'une spirale classique. Cela permet d'envisager dans une variante, un dépôt de cuivre électrolytique à grande vitesse avec une épaisseur constante et maîtrisée, au dessus de chacune des zones présentant une portion de couche conductrice. Ainsi, le procédé inventif permet de réduire très sensiblement le prix du transpondeur en jouant à la fois sur le coût direct de fabrication de l'antenne et sur la simplification du micropackaging de la puce.
L'invention a pour objet une antenne de couplage comportant au moins une spire présentée sur un support, et reliée à un condensateur présenté sur ce même support, le condensateur étant monté en parallèle sur deux plots de l'antenne, caractérisée en ce que l'antenne et le condensateur sont imprimés par héliogravure sur le même support.
L'invention a également pour objet un procédé de réalisation d'une antenne comportant au moins une spire reliée à un condensateur, l'antenne et le condensateur étant présentés sur un même support isolant caractérisé en ce qu'il comporte les étapes suivantes:
- réaliser une première impression par héliogravure avec une encre conductrice pour obtenir une spire ouverte de l'antenne, une électrode inférieure du condensateur, et une liaison entre un premier plot de l'antenne et l'électrode inférieure,
- réaliser une deuxième impression par héliogravure avec une encre diélectrique pour recouvrir l'électrode inférieure d'une couche isolante,
- réaliser une troisième impression par héliogravure avec une encre conductrice pour obtenir une électrode supérieure du condensateur recouvrant la couche isolante, et pour obtenir une liaison entre un deuxième plot de l'antenne et l'électrode supérieure.
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Celles ci ne sont présentées qu'à titre indicatif et nullement limitatif de l'invention. Les figures montrent :
Figure 1 a : une vue de dessus d'un support après une première étape du procédé selon l'invention,
Figure 1 b : une vue de dessus d'un support après une deuxième étape du procédé selon l'invention, Figure 1 c : une vue de dessus d'un support après une troisième étape du procédé selon l'invention,
Figure 1d : une vue de dessus d'un support après une dernière étape facultative du procédé selon l'invention,
Figure 2 : une vue d'ensemble d'une antenne selon l'invention coopérant avec un dispositif de lecture. La Figure 2 montre un dispositif nomade 1 prévu pour échanger des signaux radioélectriques avec un dispositif de lecture 2. Le dispositif nomade 1 est un transpondeur comportant un microcircuit électronique 3, ou puce 3, et une antenne 4. Par exemple, la puce 3 et l'antenne 4 sont présentées sur un substrat isolant 5. Ce substrat 5 peut par exemple présenter les formes d'une carte à puce standardisée au format ISO. La puce 3 est connectée à l'antenne 4, et est alimentée par le courant induit produit par le champ électro-magnétique émis et reçu dans l'antenne 4.
Le dispositif de lecture 2 comporte une deuxième antenne 6 pour émettre et recevoir des signaux en direction du dispositif nomade 1. Par ailleurs le dispositif 2 comporte un coupleur 7 relié à la deuxième antenne 6, ce coupleur 7 étant par ailleurs relié à une unité 8 de traitement et de gestion des données échangées. L'unité 8 est par exemple un ordinateur.
L'antenne 4 comporte selon l'invention, comme représenté sur les figures 1a, 1b, 1c et 1d, au moins une spire 9 et un condensateur 10 monté en parallèle de la spire 9. La spire 9 et le condensateur 0 sont présentés sur un support 11. Le support 11 est isolant et peut par exemple se présenter sous la forme d'un film mince flexible. Par exemple, le substrat 11 est de type polyéthylène (PE), polyester (PET), polychlorure de vinyle (PVC), polycarbonate (PC), acrylonitrile-butadiène-styrène (ABS), verre-époxy, polyimide, papier, etc.
La spire 9 comporte un premier plot 12 et un deuxième plot 13 auxquels le condensateur 10 et la puce 3 seront connectés.
Au cours d'une première étape du procédé de réalisation selon l'invention de l'antenne 4, on dispose le support 11 sous un premier cylindre d'héliogravure alimenté en encre électroconductrice. On réalise ainsi un premier motif dessinant la spire 9, une électrode inférieure 14 du condensateur 10, et une liaison 15 entre le premier plot 12 et l'électrode inférieure 14. Le deuxième plot 13 est déjà apparent dès le dépôt de la première couche d'encre conductrice. Par exemple, l'épaisseur du dépôt d'encre, une fois séchée, est de l'ordre de 2 à 4 micromètres.
Pour former le condensateur 10, on dépose une deuxième couche 16 avec un matériau diélectrique au dessus de l'électrode inférieure 14. Selon l'invention, cette deuxième couche 16 est déposée par héliogravure au moyen d'un deuxième cylindre alimenté avec une encre aux propriétés isolantes. De préférence cette deuxième couche est obtenu suite à un double passage sous deux cylindres tels que le deuxième cylindre. Ainsi la couche de diélectrique 16 est obtenu par deux couches superposées d'encre isolante. Avec une telle double épaisseur des couches isolantes, on évite les problèmes de porosité dans le diélectrique séparant l'électrode inférieure 14 de l'électrode supérieure 17.
Typiquement, l'épaisseur de la couche isolante 16 est inférieure à 10 micromètres, et varie de préférence entre 5 et 10 micromètres, cette couche 16 étant obtenue de préférence en deux couches successives afin de limiter les porosités génératrices de fuites de courant. La couche de diélectrique est homogène, et ne comporte pas de pores dans lesquels des impuretés pourraient se loger.
Avec la technologie de l'héliogravure, et l'encre spécifique utilisée, la couche 16 peut dans une variante être obtenue en un seul passage sous le deuxième cylindre.
Ensuite, pour finir le condensateur 10, comme présenté Figure 1c, on dépose une troisième couche, pour former l'électrode supérieure 17, et également une liaison 18 entre cette électrode supérieure 17 et le deuxième plot 13. Cette troisième couche est imprimée par héliogravure en utilisant une encre conductrice. Dans ce cas, on utilise de préférence une machine quatre couleurs présentant les quatre cylindres au sein d'une même ligne.
De préférence on utilise la même encre conductrice pour réaliser la première couche et la troisième couche, l'encre utilisée dans l'invention présente une très faible résistance électrique, elle comporte du cuivre, de l'argent, de l'or, du palladium, de l'étain ou des alliages de ceux-ci ainsi que des polymères conducteurs. L'encre conductrice de l'électricité doit être préparée, du point de vue de sa viscosité et du point de vue d'autres propriétés physico-chimiques, de manière qu'elle convienne pour l'héliogravure. L'encre choisie est par exemple une encre électroconductrice chargée de métal. Dans ce cas le métal est principalement de l'argent, et il est présenté sous la forme de paillettes formant des micro plaques. Ces micro plaques sont de préférence de très faible épaisseur (1 à 2 μm) et d'une longueur comprise entre 2 et 5 μm. La proportion de ces charges métalliques est compris entre 50% et 80% de la masse solide de l'encre. De préférence, la proportion des charges métalliques est de 70%, pour garantir une forte conductivité de l'encre ainsi formée. L'encre à forte conductivité est en contrepartie de faible résistivité, ce qui facilite l'étape suivante de métallisation. Dans une variante, l'encre peut comporter des polymères organiques conducteurs. L'avantage de ces polymères est qu'ils sont formulés dans une phase solvant ou aqueuse qui permet ainsi d'ajuster les propriétés rhéologiques de l'encre obtenue, pour la rendre notamment compatible avec le procédé d'héliogravure. Un autre avantage vient du fait que dans cette variante, l'encre ne comporte pas de charges métalliques, ce qui contribue à une baisse de coût à grande échelle, et ce qui facilite l'obtention d'une encre homogène permettant de fiabiliser le procédé de fabrication.
Au cours d'une dernière étape, on peut par exemple déposer une couche métallique 19 pour recouvrir toutes les portions présentant de l'encre conductrice que ce soit du premier passage ou du troisième passage. Cette couche métallique peut être déposée par cuivrage électrolytique. L'épaisseur de cuivre déposée est de l'ordre de 5 micromètres et recouvre la spire 9, les plots 12 et 13 les liaisons 15 et 18, et également la face supérieure 17 de l'électrode supérieure du condensateur 10. De préférence, pour accorder l'antenne 4 avec la puce 3, à la fréquence de 13,56 MHz, on choisit une spire 9 de largeur 500 μm telle qu'elle présente une inductance de 270 nH. Ensuite en fonction de la capacité interne de la puce 3, on détermine la capacité du condensateur plan externe 10 qu'il faut prévoir sur le support 11. Par exemple, dans le cas où la capacité de la puce 3 est de 97 pF, sachant qu'on peut obtenir de manière fiable une épaisseur de 8 micromètres pour le diélectrique, on choisit un diamètre des électrodes égal à 11 ,8 millimètres. Dans une variante, si la capacité de la puce 3 est de 25 pF, alors il est nécessaire que le condensateur plan 10 présente une capacité de 485 pF, et à cet effet, lorsqu'on a une épaisseur de diélectrique de 8 millimètres, on prévoit une surface de condensateur telle que le diamètre vaut 12,8 millimètres.
Dans une variante, dans l'invention, notamment si une seule couche de diélectrique 16 suffit, alors l'épaisseur étant moindre on peut prévoir des modèles d'antennes pour étiquettes électroniques avec des condensateurs 10 de très faible encombrement.

Claims

REVENDICATIONS
1 - Antenne (4) de couplage comportant au moins une spire (9) présentée sur un support (11), et reliée à un condensateur (10) présenté sur ce même support, le condensateur étant monté en parallèle sur deux plots (12, 13) de l'antenne, caractérisée en ce que l'antenne et le condensateur sont imprimés par héliogravure sur le même support.
2 - Antenne selon la revendication 1 caractérisée en ce que l'antenne comporte une unique spire et est accordée pour l'émission et la réception d'une onde porteuse à moyenne fréquence.
3 - Antenne selon l'une des revendications 1 à 2 caractérisée en ce que l'antenne est accordée pour une fréquence aux alentours de 13,56 MHz.
4 - Antenne selon l'une des revendications 1 à 3 caractérisée en ce qu'une épaisseur d'isolant entre deux électrodes du condensateur plan est inférieure à 10 micromètres.
5 - Antenne selon l'une des revendications 1 à 4 caractérisée en ce qu'elle est connectée à une puce électronique (3).
6 -Procédé de réalisation d'une antenne comportant au moins une spire (9) reliée à un condensateur (10) , l'antenne et le condensateur étant présentés sur un même support isolant (11) caractérisé en ce qu'il comporte les étapes suivantes:
- réaliser une première impression par héliogravure d'une encre conductrice pour obtenir une spire ouverte de l'antenne, une électrode inférieure (14) du condensateur, et une liaison (15) entre un premier plot (12) de l'antenne et l'électrode inférieure,
- réaliser une deuxième impression par héliogravure d'une encre diélectrique pour recouvrir l'électrode inférieure d'une couche isolante (16),
- réaliser une troisième impression par héliogravure d'une encre conductrice pour obtenir une électrode supérieure (17) du condensateur recouvrant la couche isolante, et pour obtenir une liaison (18) entre un deuxième plot (13) de l'antenne et l'électrode supérieure.
7 - Procédé selon la revendication 6 caractérisé en ce que la couche isolante est obtenue par le dépôt successif de deux couches d'encre diélectrique imprimées par héliogravure. 8 - Procédé selon l'une des revendications 6 à 7 caractérisé en ce qu'il comporte une étape finale consistant à
- déposer une couche métallisée (19) par électrolyse sur les couches apparentes d'encre conductrice, à savoir la spire ouverte de l'antenne, la liaison entre le premier plot de l'antenne et l'électrode inférieure, l'électrode supérieure, et la liaison entre le deuxième plot de l'antenne et cette électrode supérieure.
9 - Procédé selon l'une des revendications 6 à 8 caractérisé en ce qu'on détermine la surface du condensateur à imprimer par héliogravure en fonction de l'épaisseur de la couche de diélectrique qui peut être déposée lors de la deuxième impression.
10 - Procédé selon l'une des revendications 6 à 9 caractérisé en ce qu'on connecte directement les deux plots de l'antenne à une puce (3) électronique avec laquelle l'antenne coopère.
PCT/FR2003/050020 2002-07-25 2003-07-24 Antenne capacitive et procede de realisation WO2004012299A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/521,822 US20060164312A1 (en) 2002-07-25 2003-07-24 Capacitive antenna and method for making same
AU2003273499A AU2003273499A1 (en) 2002-07-25 2003-07-24 Capacitive antenna and method for making same
JP2004523897A JP2005534243A (ja) 2002-07-25 2003-07-24 容量性アンテナ及びその製造方法
EP03755657A EP1527499A2 (fr) 2002-07-25 2003-07-24 Antenne capacitive et procede de realisation
MXPA05000882A MXPA05000882A (es) 2002-07-25 2003-07-24 Antena capacitiva y metodo para fabricar la misma.
US12/569,432 US7988323B2 (en) 2003-07-02 2009-09-29 Lighting devices for illumination and ambiance lighting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0209462A FR2842950B1 (fr) 2002-07-25 2002-07-25 Antenne capacitive et procede de realisation
FR02/09462 2002-07-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/764,256 Continuation US7762764B2 (en) 2003-07-02 2007-06-18 Turbomachine

Publications (2)

Publication Number Publication Date
WO2004012299A2 true WO2004012299A2 (fr) 2004-02-05
WO2004012299A3 WO2004012299A3 (fr) 2004-04-08

Family

ID=30011489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/050020 WO2004012299A2 (fr) 2002-07-25 2003-07-24 Antenne capacitive et procede de realisation

Country Status (8)

Country Link
US (1) US20060164312A1 (fr)
EP (1) EP1527499A2 (fr)
JP (1) JP2005534243A (fr)
CN (1) CN1679208A (fr)
AU (1) AU2003273499A1 (fr)
FR (1) FR2842950B1 (fr)
MX (1) MXPA05000882A (fr)
WO (1) WO2004012299A2 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355516B2 (en) * 2004-12-23 2008-04-08 Checkpoint Systems, Inc. Method and apparatus for protecting culinary products
US7688272B2 (en) * 2005-05-30 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US20080124528A1 (en) * 2006-11-29 2008-05-29 Motorola, Inc. Printed electronic device and methods of determining the electrical value thereof
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
CN101842962B (zh) 2007-08-09 2014-10-08 高通股份有限公司 增加谐振器的q因数
EP2188863A1 (fr) 2007-09-13 2010-05-26 QUALCOMM Incorporated Maximisation du rendement énergétique de résonateurs magnétiques de puissance sans fil
WO2009039113A1 (fr) * 2007-09-17 2009-03-26 Nigel Power, Llc Emetteurs et récepteurs pour un transfert d'énergie sans fil
KR101312215B1 (ko) 2007-10-11 2013-09-27 퀄컴 인코포레이티드 자기 기계 시스템을 이용하는 무선 전력 전송
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
KR101620985B1 (ko) 2015-01-23 2016-05-13 주식회사 이그잭스 근거리 통신용 안테나 구조물
CN113298216A (zh) * 2021-05-19 2021-08-24 华大恒芯科技有限公司 具有随机电容的rfid芯片、标签
CN113298215A (zh) * 2021-05-19 2021-08-24 华大恒芯科技有限公司 一种使用随机电容的rfid标签防转移方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014302A1 (fr) * 1998-07-08 2000-06-28 Dai Nippon Printing Co., Ltd. Carte a circuit integre sans contact et son procede de fabrication
FR2803439A1 (fr) * 2000-01-03 2001-07-06 A S K Antenne de couplage a capacite variable

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430441A (en) * 1993-10-12 1995-07-04 Motorola, Inc. Transponding tag and method
JPH1131281A (ja) * 1997-07-10 1999-02-02 Andeikusu:Kk 共振ラベルおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014302A1 (fr) * 1998-07-08 2000-06-28 Dai Nippon Printing Co., Ltd. Carte a circuit integre sans contact et son procede de fabrication
FR2803439A1 (fr) * 2000-01-03 2001-07-06 A S K Antenne de couplage a capacite variable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 05, 31 mai 1999 (1999-05-31) & JP 11 031281 A (ANDEIKUSU:KK), 2 février 1999 (1999-02-02) *

Also Published As

Publication number Publication date
EP1527499A2 (fr) 2005-05-04
FR2842950B1 (fr) 2004-10-22
US20060164312A1 (en) 2006-07-27
JP2005534243A (ja) 2005-11-10
AU2003273499A1 (en) 2004-02-16
AU2003273499A8 (en) 2004-02-16
MXPA05000882A (es) 2005-03-23
WO2004012299A3 (fr) 2004-04-08
CN1679208A (zh) 2005-10-05
FR2842950A1 (fr) 2004-01-30

Similar Documents

Publication Publication Date Title
WO2004012299A2 (fr) Antenne capacitive et procede de realisation
CA2362415C (fr) Antenne de couplage a capacite variable
CA2752716C (fr) Carte nfc sensible aux courants de foucault
FR2825228A1 (fr) Procede de fabrication d'un circuit imprime et antenne planaire fabriquee avec celui-ci
WO2008031455A1 (fr) Procede et systeme de lecture optimisee de transpondeur de communication radio frequence a l'aide d'un circuit resonant passif
EP1097479A1 (fr) Micromodule electronique integre et procede de fabrication d'un tel micromodule
FR2800518A1 (fr) Antenne de couplage a inductance elevee
FR2904453A1 (fr) Antenne electronique a microcircuit.
FR2963696A1 (fr) Dispositif a microcircuit comprenant un circuit d'antenne de communication en champ proche
EP3391291A1 (fr) Dispositif radiofrequence a circuit lc ajustable comprenant un module electrique et/ou electronique
EP0750276A2 (fr) Carte sans contact passive
WO2016091717A1 (fr) Procede de fabrication d'un dispositif radiofrequence comprenant une antenne connectee a une plaque de condensateur filaire
FR3081243A1 (fr) Passeport electronique securise contre les lectures non autorisees
WO2000011749A1 (fr) Procede de fabrication d'une antenne pour un support d'informations comportant un circuit electronique
FR2936096A1 (fr) Procede de fabrication d'objets portatifs sans contact
KR20050019926A (ko) 용량성 안테나 및 그의 제조 방법
EP3711073A1 (fr) Inducteur multicouches
EP3391293A1 (fr) Procede de fabrication d'un dispositif comprenant un module electronique radiofrequence et un indicateur
FR3027704A1 (fr) Procede de fabrication d'un dispositif a microcircuit incluant un dispositif de securite
WO2013072627A1 (fr) Dispositif d'antenne pour carte a puce

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003755657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/000882

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004523897

Country of ref document: JP

Ref document number: 1020057001335

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038202484

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057001335

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003755657

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006164312

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521822

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10521822

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003755657

Country of ref document: EP

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0313085

Country of ref document: BR

Free format text: PEDIDO RETIRADO FACE A IMPOSSIBILIDADE DE ACEITACAO DA ENTRADA NA FASE NACIONAL POR TER SIDO INTEMPESTIVA. O PRAZO PARA ENTRADA NA FASE NACIONAL EXPIRAVA EM 25.03.2004 ( 20 MESES - BR DESIGNADO APENAS), ELEICAO NAO COMPROVADA, E A PRETENSA ENTRADA NA FASE NACIONAL SO OCORREU EM 24.01.2005.