WO2004012224A1 - Bulb type electrodeless fluorescent lamp and method of manufacturing the fluorescent lamp - Google Patents

Bulb type electrodeless fluorescent lamp and method of manufacturing the fluorescent lamp Download PDF

Info

Publication number
WO2004012224A1
WO2004012224A1 PCT/JP2003/009519 JP0309519W WO2004012224A1 WO 2004012224 A1 WO2004012224 A1 WO 2004012224A1 JP 0309519 W JP0309519 W JP 0309519W WO 2004012224 A1 WO2004012224 A1 WO 2004012224A1
Authority
WO
WIPO (PCT)
Prior art keywords
neck
fluorescent lamp
tube
bulb
electrodeless fluorescent
Prior art date
Application number
PCT/JP2003/009519
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Hochi
Koichi Katase
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to AU2003252707A priority Critical patent/AU2003252707A1/en
Publication of WO2004012224A1 publication Critical patent/WO2004012224A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/245Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps
    • H01J9/247Manufacture or joining of vessels, leading-in conductors or bases specially adapted for gas discharge tubes or lamps specially adapted for gas-discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/048Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using an excitation coil

Definitions

  • the present invention relates to a bulb-type electrodeless fluorescent lamp and a method for producing the same.
  • bulb-type fluorescent lamps with electrodes which are approximately five times more efficient than incandescent lamps, have been widely used as substitutes for light bulbs in houses and hotels.
  • Such a bulb-shaped fluorescent lamp having electrodes is disclosed, for example, in Japanese Patent Application Laid-Open No. 2001-196194.
  • the bulb-type fluorescent lamp has a built-in lighting circuit and a base, so it has a structure that can be directly substituted for an incandescent lamp.
  • electrodeless bulb-type fluorescent lamps have begun to spread in addition to the existing electrode-type bulb-type fluorescent lamps.
  • the feature of electrodeless fluorescent lamps is that they have a longer service life than electrodeed fluorescent lamps because they have no electrodes, and are expected to become more widespread in the future.
  • Such a bulb-type electrodeless fluorescent lamp is disclosed, for example, in US Pat. No. 5,959,405.
  • Figure 7 shows the bulb-type electrodeless fluorescent lamp.
  • the bulb-shaped electrodeless fluorescent lamp 100 shown in FIG. 7 is a bulb-shaped electrodeless fluorescent lamp that is an alternative to a reflective bulb (reflamp).
  • This lamp 1000 is composed of an arc tube (valve) 110, a case 150 with a reflecting surface 152, and a base 160.
  • An induction coil 130 is inserted into the recess of the arc tube 110.
  • most of the external appearance (especially the side) of the arc tube 110 can be covered by the reflective surface 152 attached to the case 150. It is not necessary to pay special attention to the external shape of the arc tube.
  • a gap is often formed between the arc tube and the case, which causes an aesthetic problem.
  • the arc tube portion that must be housed in the case becomes too large, and the space for arranging the lighting circuit in the case Is lost. If a lighting circuit is to be arranged, the case must be made even larger.
  • the shape of the bulb-shaped electrodeless fluorescent lamp differs from the shape of an incandescent lamp, which also causes an aesthetic problem.
  • the present invention has been made in view of the above points, and a main object thereof is to provide a bulb-type electrodeless fluorescent lamp having the same appearance as an incandescent bulb. Disclosure of the invention
  • a bulb-type electrodeless fluorescent lamp includes a light emitting tube filled with a luminescent gas and having a recess, an induction coil inserted into the recess, and a lighting circuit electrically connected to the induction coil.
  • a case accommodating the lighting circuit; a base electrically connected to the lighting circuit; and a base attached to the case, wherein the arc tube has a substantially spherical outer tube and an inner portion defining the recess.
  • a neck portion located around a sealing portion formed by joining the outer tube and the inner tube, of the outer tube, in order from the sealing portion, A concave portion and a neck convex portion are formed.
  • the appearance of the arc tube is substantially a glass sphere type A shape o
  • neck protrusion and the upper end of the case are close to or in contact with each other. Good.
  • the residual stress of the neck projection is 14 MPa or less.
  • the residual stress in the neck recess is not more than 14 MPa.
  • a residual stress of the neck portion including the neck convex portion and the neck concave portion is 7 MPa or less.
  • the residual stress of the entire outer tube in the arc tube is 7 MPa or less.
  • the method for producing a bulb-type electrodeless fluorescent lamp of the present invention comprises the steps of: (a) preparing an outer tube having a substantially spherical portion at one end and an opening at the other end; and a cylindrical inner tube. (B) setting the inner pipe in the outer pipe, sealing a part of the outer pipe and a part of the inner pipe, and joining the outer pipe and the inner pipe; In the step (b), a step of forming a network concave portion and a neck convex portion in a neck portion located around a sealing portion where the outer tube and the inner tube are joined is performed. After the step (b), a step of reducing the residual stress of the neck projection to 14 MPa or less by heating the neck projection at least.
  • the step of reducing the residual stress to 14 MPa or less includes a step of annealing the glass material forming the outer tube at a temperature of an annealing point.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of an arc tube 100 of a bulb-type electrodeless fluorescent lamp according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the appearance of the arc tube 100.
  • FIG. 2 is a diagram showing the appearance of the arc tube 100.
  • FIG. 3 is a cross-sectional view schematically showing the configuration of the bulb-type electrodeless fluorescent lamp 220 according to the first embodiment.
  • FIG. 4 is a diagram of the arc tube 100 for explaining the distortion of the neck convex portion 16 and the neck concave portion 14.
  • FIGS. 5 (a) and 5 (b) are tracings of photographs of strain measurement of the arc tube 100 before and after annealing, respectively.
  • FIGS. 6A to 6C are views for explaining a manufacturing method according to the second embodiment of the present invention.
  • FIG. 6A to 6C are views for explaining a manufacturing method according to the second embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a configuration of a conventional bulb-type electrodeless fluorescent lamp.
  • FIG. 8 is a chart showing the results of the heat cycle test.
  • Fig. 9 is a chart showing the difference in strain between cracked and uncracked ones in the heat cycle test.
  • FIG. 10 is a chart showing the correlation between the strain and the stress in soda glass.
  • Fig. 11 is a chart showing the fatigue parameters of soda glass.
  • FIG. 12 is a chart showing a change in rupture time due to a decrease in stress.
  • a bulb-type electrodeless fluorescent lamp according to a first embodiment of the present invention will be described with reference to FIGS.
  • FIG. 1 schematically shows a cross-sectional configuration of an arc tube 100 of the bulb-type electrodeless fluorescent lamp of the present embodiment
  • FIG. 2 shows an appearance of the arc tube 100.
  • the arc tube 100 is composed of a substantially spherical outer tube 100 and an inner tube 20 defining a concave portion (cavity) 24.
  • the outer tube 10 and the inner tube 20 are joined by sealing at the sealing portion 12, and the neck portion 13 is located around the sealing portion 12 c.
  • An induction coil is inserted into 4, and a thin exhaust pipe 22 used in the manufacturing process is attached to the upper part of the inner pipe 20.
  • one end of the thin tube 22 is connected to the inside of the arc tube, but the other end is sealed, so that the inside of the arc tube has a sealed structure.
  • a phosphor layer is formed on at least a part of the inner wall of the arc tube 100.
  • the neck portion 13 is formed with a neck concave portion 14 and a neck convex portion 16 in this order from the sealing portion 12.
  • a smooth substantially elliptical shape is formed in the case of the arc tube 100 in which the neck concave portion 14 and the neck convex portion 16 are formed.
  • the lower part of the arc tube 100 (particularly, the part below the neck convex part 16) can be shortened, so that the shape is substantially the same as the glass ball type A shape.
  • the glass sphere type A is the shape of a glass sphere specified in JISC770, which is a so-called eggplant shape.
  • the neck portion is a portion that narrows from the maximum diameter portion of the arc tube toward the base.
  • FIG. 3 schematically shows a cross-sectional configuration of a bulb-shaped electrodeless fluorescent lamp 220 provided with an arc tube 100.
  • the cross section of the recessed portion is shown in two stages on the left and right for easy understanding of the structure.
  • the bulb-type electrodeless fluorescent lamp shown in FIG. 3 has an arc tube 100, an induction coil 30, a lighting circuit 40, a case 50, and a base 60.
  • the arc tube 100 is filled with a light-emitting gas, for example, mercury and a rare gas.
  • An induction coil is inserted into the recess 24 formed in the arc tube 100.
  • the induction coil 30 includes a ferrite core 32 and a winding 34.
  • the induction coil 30 is electrically connected to the lighting circuit 40, and the lighting circuit 40 is housed in the case 50.
  • a base 60 is attached to a lower portion of the case 50, and the base 60 is electrically connected to the lighting circuit 40.
  • the neck concave portion 14 and the neck convex portion 16 are formed in the arc tube 100, so that the neck convex portion 16 and the upper end 50a of the case 50 are close to each other. Or can be contacted. Therefore, the connection point 80 between the arc tube 100 and the case 50 is aesthetically smooth, and there are no large gaps or large steps that impair the aesthetic appearance. In addition, since the connection portion 80 is smooth and the position of the sealing portion 12 of the arc tube 100 is above the case 50, a space for disposing the lighting circuit 40 in the case 50 is provided. It is possible to secure enough. Therefore, it is possible to avoid the problem that the case 50 must be made large so as to impair the aesthetic appearance.
  • the shape of the arc tube 100 is substantially a glass sphere type A, and the diameter of the glass sphere (the maximum diameter of the arc tube 100) is, for example, 55 to 75 mm. It is.
  • the length (total length) from the top of the arc tube 100 to the end of the base 60 is, for example, 120 to 65 mm.
  • the base 60 uses E26 / 25.
  • the rated voltage [V] and the rated power consumption [W] are 100 to 240 V and 7 to 22 W, respectively.
  • the arc tube 100 shown in FIGS. 1 to 3 it is possible to provide a bulb-type electrodeless fluorescent lamp having the same appearance as an incandescent lamp without impairing the appearance. It was found that as a result of forming the neck concave portion 14 and the neck convex portion 16, the strength and reliability of the neck portion 13 were reduced. The inventor of the present application has considered the problem and started to solve it.
  • the area with the oblique line from the upper right to the lower left is shown as the area where the compressive strain is present, and the area with the oblique line from the upper left to the lower right is where the tensile strain is present. This is shown as a region to be used.
  • the compressive residual stress at the neck convex portion 16 must be 14 MPa or less (preferably 7 MPa or less, more preferably substantially OMPa (1.4 MPa or less). )) Is desirable. Further, it is desirable that the residual tensile stress in the neck recess 14 is 14 MPa or less (preferably 7 MPa or less, more preferably substantially OMPa (1.4 MPa or less)).
  • the residual stress of the entire outer tube 10 in the light emitting tube 100 is 7 MPa or less (preferably, substantially OMPa (1.4 MPa or less)).
  • Remove residual stress To remove the arc, a process (annealing) of heating the arc tube to the annealing point of the glass (eg, soda glass) constituting the arc tube 100 is performed.
  • the annealing point of soda glass is 520 ° C.
  • FIG. 5 (a) is a traced photograph of the arc tube 100 before the anneal treatment when the strain was measured
  • FIG. 5 (b) is a diagram where the distortion of the arc tube 100 after the anneal treatment was measured. It is the figure which traced the photograph.
  • a distortion tester manufactured by Toshiba
  • SVP-10-II sensitive color method
  • a strain tester manufactured by Luceo
  • L SM was used for measuring the skewness. —701 (reflective Senarmont method) was used.
  • the residual stress of the neck convex portion 16 was 34 MPa (strain degree 25 °).
  • the residual stress of the neck convex portion 16 was 1.4 MPa (a skewness of 1 ° or less).
  • the residual stress in the entire arc tube was 1.4 MPa (strain less than 1 °).
  • the samples prepared for the experiment are the following four types of arc tubes 100.
  • Figure 8 shows the results of the heat cycle (hot / cold water) test.
  • Y Dimensionless coefficient determined by the shape of cracks and test pieces, load type, etc.
  • A, n Overnight fatigue parameters
  • the fatigue parameter, n is called the crack growth susceptibility coefficient and is a measure of the difficulty of crack growth, and varies depending on the material and environment.
  • Figure 11 shows the fatigue parameters of soda glass (Source: Glass Engineering Handbook (Asakura Shoten)).
  • Fig. 12 shows the change in rupture time due to a decrease in stress when the glass thickness is 1 mm.
  • n 13-16
  • the life is 8000-650,000 times at 1/2 stress and 60-40 million times at 1Z4 stress. If the stress is set to about 14Mpa or less, it will be able to withstand a thermal cycle more than 8000 times the heat shock test. This means that it can withstand more than 40,000 heat cycles. If the residual stress can be further reduced to half, it can withstand a heat cycle of 300 million times or more, which means that the probability of crack generation is almost zero. Means something new. As described above, the arc tube of the present embodiment is also theoretically considered.
  • the neck portion 13 is formed with the neck concave portion 14 and the neck convex portion 16
  • the light bulb-shaped non-fluorescent lamp having the same appearance as the incandescent lamp is provided.
  • An electrode fluorescent lamp can be realized.
  • the residual stress of the net convex portion 16 is 14 MPa or less (preferably 7 MPa or less)
  • cracking of the arc tube 100 of the bulb-type electrodeless fluorescent lamp 220 can be suppressed. I can go.
  • FIGS. 6 (a) to 6 (c) are process diagrams for explaining the manufacturing method of the present embodiment.
  • an outer tube 10 made of soda glass and a cylindrical inner tube 20 are prepared.
  • the outer tube 10 prepared here has a substantially spherical portion at one end and an opening at the other end, and the size (typically, diameter) of the opening is the inner tube 2. It is made larger than the diameter of the cylinder of 0.
  • a thin tube 22 for exhaust is attached to the inner tube 20.
  • the heating part (sealing part) melts, and the lower side (cullet part) 10a of the outer tube 10 extends by its own weight.
  • the cullet portion 10a melts down, and the outer tube 10 and the inner tube 20 are joined to form a sealing portion, thereby forming the sealed arc tube. 1 0 0 'is obtained.
  • the neck recess 13 and the neck projection 16 can be formed in the neck 13 by adjusting the wrench 70 between FIGS. 6 (a) to 6 (c). Thereafter, at least the neck portion 13 is gradually cooled by the burner 70.
  • the arc tube 100 is placed in a furnace and subjected to an annealing process.
  • Annealing treatment The temperature of the furnace for the heating may be around the annealing point (eg, about 520 ° C).
  • the inside of the tube is evacuated and filled with a sealed gas, and the sealing of the thin tube 22 is also completed, so that a completed arc tube 100 is obtained.
  • a bulb-type electrodeless fluorescent lamp 220 is obtained.
  • the lighting circuit 40 preferably generates a relatively low frequency of 1 MHz or less (for example, 40 to 500 kHz).
  • the frequency of the high-frequency voltage applied to the light emitting tube 100 by the lighting circuit 40 be in a relatively low frequency range of 1 MHz or less (for example, 40 to 500 kHz).
  • the configuration of the present embodiment is not limited to operation at 1 MHz or less, and can operate in a frequency region such as 13.56 MHz or several MHz.
  • the neck concave portion and the neck convex portion are formed in order from the sealing portion.
  • a bulb-type electrodeless fluorescent lamp having an excellent appearance can be provided.
  • the residual stress of the neck projection 16 is 14 MPa or less, cracking of the arc tube of the bulb-type electrodeless fluorescent lamp can be suppressed.
  • the bulb-type electrodeless fluorescent lamp of the present invention and its manufacturing method are useful when used as a substitute for incandescent lamps, and have high industrial applicability in that they have good appearance and can suppress cracking of the arc tube.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Abstract

A bulb type electrodeless fluorescent lamp (220), comprising a luminescent tube (100) having luminescent gas sealed therein, an induction coil (30) inserted into the recessed part (24) of the luminescent tube (100), a lighting circuit (40), a case (50) storing the lighting circuit (40), and a ferrule (60), the luminescent tube (100) further comprising a generally spherical outer tube (10) and an inner tube (20), wherein a neck recessed part (14) and a neck projected part (16) are formed at the neck part (13) of the outer tube (10) positioned around a sealed part (12) formed by connecting the outer tube (10) to the inner tube (20) in that order from the sealed part (12) side.

Description

曰月 糸田 電球形無電極蛍光ランプぉよびその製造方法 技術分野  Satsuki Itoda Bulb-shaped electrodeless fluorescent lamps and their manufacturing methods
本発明は、 電球形無電極蛍光ランプぉよびその製造方法に関する。 背景技術  The present invention relates to a bulb-type electrodeless fluorescent lamp and a method for producing the same. Background art
近年、 地球環境保護と経済性の視点から、 白熱電球に比べて効率が約 5倍高い 有電極の電球形蛍光ランプが、 住宅やホテルなどにおいて電球代替用として広く 利用されてきている。 このような有電極の電球形蛍光ランプは、 例えば、 特開 2 0 0 1 - 1 9 6 1 9 4号公報に開示されている。 電球形蛍光ランプは、 点灯回路 を内蔵しており、 そして口金も有しているので、 白熱電球と直接代替可能な構造 をしている。  In recent years, from the perspectives of global environmental protection and economics, bulb-type fluorescent lamps with electrodes, which are approximately five times more efficient than incandescent lamps, have been widely used as substitutes for light bulbs in houses and hotels. Such a bulb-shaped fluorescent lamp having electrodes is disclosed, for example, in Japanese Patent Application Laid-Open No. 2001-196194. The bulb-type fluorescent lamp has a built-in lighting circuit and a base, so it has a structure that can be directly substituted for an incandescent lamp.
さらに、 最近、 従来から存在する有電極の電球形蛍光ランプの他に、 無電極の 電球形蛍光ランプが普及し始めている。 無電極蛍光ランプは、 電極が無いことか ら寿命が有電極蛍光ランプに比べて更に長いことが特徴であり、 今後ますます普 及していくことが期待される。 そのような電球形無電極蛍光ランプは、 例えば、 米国特許 5 , 9 5 9 , 4 0 5号に開示されている。 その電球形無電極蛍光ランプ を図 7に示す。  Furthermore, recently, electrodeless bulb-type fluorescent lamps have begun to spread in addition to the existing electrode-type bulb-type fluorescent lamps. The feature of electrodeless fluorescent lamps is that they have a longer service life than electrodeed fluorescent lamps because they have no electrodes, and are expected to become more widespread in the future. Such a bulb-type electrodeless fluorescent lamp is disclosed, for example, in US Pat. No. 5,959,405. Figure 7 shows the bulb-type electrodeless fluorescent lamp.
図 7に示した電球形無電極蛍光ランプ 1 0 0 0は、 反射形電球 (レフランプ) 代替用の電球形無電極蛍光ランプである。 このランプ 1 0 0 0は、 発光管 (バル プ) 1 1 0 0と、 反射面 1 5 2付きのケース 1 5 0と、 口金 1 6 0とから構成さ れている。 発光管 1 1 0 0の凹入部には、 誘導コイル 1 3 0が挿入されている。 レフランプ代替用のランプ 1 0 0 0の場合、 ケース 1 5 0に取り付けられた反 射面 1 5 2の部分によって、 発光管 1 1 0 0の外観 (特に、 側面) の大半を覆え るので、 発光管全体の外観形状に特に注意を払ってわなくてもよい。 つまり、 発 光管 1 1 0 0の大半をケースによって覆えることから、 ガラス球形式 R形 ( J I S C 7 7 1 0 ) の形状を有する電球形無電極蛍光ランプの設計は比較的容易で ある。 The bulb-shaped electrodeless fluorescent lamp 100 shown in FIG. 7 is a bulb-shaped electrodeless fluorescent lamp that is an alternative to a reflective bulb (reflamp). This lamp 1000 is composed of an arc tube (valve) 110, a case 150 with a reflecting surface 152, and a base 160. An induction coil 130 is inserted into the recess of the arc tube 110. In the case of the lamp for replacement of the reflex lamp 100, most of the external appearance (especially the side) of the arc tube 110 can be covered by the reflective surface 152 attached to the case 150. It is not necessary to pay special attention to the external shape of the arc tube. In other words, since most of the light emitting tube 110 can be covered by the case, it is relatively easy to design a bulb-shaped electrodeless fluorescent lamp having the shape of a glass bulb type R (JISC 7110). is there.
しかしながら、 通常の白熱電球と直接代替可能な電球形無電極蛍光ランプの場 合、 反射面の部分がないので、 発光管の大半の部分を、 白熱電球と同じような外 観および寸法にする必要がある。 言い換えると、 白熱電球形状 (いわゆるナス 型) として普及しているガラス球形式 A形 (J I S C 7 7 1 0 ) と同じように なるように、 電球形無電極蛍光ランプの発光管を作製することが要求される。 無電極蛍光ランプの発光管は、 製法上、 滑らかな略楕円形状として作製される ことが多いが、 そのような形状では、 A形の白熱電球と似せることは難しい。 つ まり、 滑らかな略楕円形状を有する発光管の場合、 ケースとの間に隙間が生じて しまうことが多く、 美観上問題が生じる。 また、 ケースとの間に隙間が生じない ような形状の発光管を作製すると、 ケースの中に収納しなくていけない発光管の 部分が多くなりすぎてしまい、 ケース内に点灯回路を配置するスペースがなくな つてしまう。 点灯回路を配置したければケースをさらに大きく しなければならず、 結果として、 電球形無電極蛍光ランプの形状は、 白熱電球の形状と異なるものと なってしまい、 これまた美観上問題が生じる。  However, in the case of electrodeless fluorescent lamps that can be directly substituted for ordinary incandescent lamps, there is no reflective surface, so most parts of the arc tube need to have the same appearance and dimensions as incandescent lamps. There is. In other words, it is necessary to manufacture the bulb-shaped electrodeless fluorescent lamp in the same manner as the glass bulb type A (JISC 7110), which is widely used as an incandescent bulb shape (so-called eggplant type). Required. The arc tube of an electrodeless fluorescent lamp is often manufactured as a smooth, almost elliptical shape due to the manufacturing method, but it is difficult to resemble an A-shaped incandescent lamp with such a shape. In other words, in the case of a smooth arc tube having a substantially elliptical shape, a gap is often formed between the arc tube and the case, which causes an aesthetic problem. Also, if an arc tube with a shape that does not create a gap with the case is made, the arc tube portion that must be housed in the case becomes too large, and the space for arranging the lighting circuit in the case Is lost. If a lighting circuit is to be arranged, the case must be made even larger. As a result, the shape of the bulb-shaped electrodeless fluorescent lamp differs from the shape of an incandescent lamp, which also causes an aesthetic problem.
本発明はかかる諸点に鑑みてなされたものであり、 その主な目的は、 白熱電球 と同じような外観を有する電球形無電極蛍光ランプを提供することにある。 発明の開示  The present invention has been made in view of the above points, and a main object thereof is to provide a bulb-type electrodeless fluorescent lamp having the same appearance as an incandescent bulb. Disclosure of the invention
本発明の電球形無電極蛍光ランプは、 発光ガスが封入され、 凹入部を有する発 光管と、 前記凹入部に挿入された誘導コイルと、 前記誘導コイルに電気的に接続 された点灯回路と、 前記点灯回路を収納するケースと、 前記点灯回路に電気的に 接続され、 前記ケースに取り付けられた口金とを備え、 前記発光管は、 略球形の 外管と、 前記凹入部を規定する内管とから構成されており、 前記外管のうちの、 前記外管と前記内管とが接合してなる封止部の周囲に位置するネック部において、 前記封止部の方から順に、 ネック凹部とネック凸部とが形成されている。  A bulb-type electrodeless fluorescent lamp according to the present invention includes a light emitting tube filled with a luminescent gas and having a recess, an induction coil inserted into the recess, and a lighting circuit electrically connected to the induction coil. A case accommodating the lighting circuit; a base electrically connected to the lighting circuit; and a base attached to the case, wherein the arc tube has a substantially spherical outer tube and an inner portion defining the recess. A neck portion located around a sealing portion formed by joining the outer tube and the inner tube, of the outer tube, in order from the sealing portion, A concave portion and a neck convex portion are formed.
前記発光管の外観は、 実質的に、 ガラス球形式 A形の形状であることが好まし い o  It is preferable that the appearance of the arc tube is substantially a glass sphere type A shape o
前記ネック凸部と、 前記ケースの上端とは、 近接または接触していることが好 ましい。 It is preferable that the neck protrusion and the upper end of the case are close to or in contact with each other. Good.
前記ネック凸部の残留応力が 1 4 M P a以下であることが好ましい。  It is preferable that the residual stress of the neck projection is 14 MPa or less.
前記ネック凹部の残留応力が 1 4 M P a以下であることが好ましい。  It is preferable that the residual stress in the neck recess is not more than 14 MPa.
前記ネック凸部および前記ネヅク凹部を含む前記ネック部の残留応力が 7 M P a以下であることが好ましい。  It is preferable that a residual stress of the neck portion including the neck convex portion and the neck concave portion is 7 MPa or less.
前記発光管における前記外管全体の残留応力が 7 M P a以下であることが好ま しい。  It is preferable that the residual stress of the entire outer tube in the arc tube is 7 MPa or less.
本発明の電球形無電極蛍光ランプの製造方法は、 一端に略球形の部位を有し且 つ他端に開口部を有する外管と、 筒状の内管とを用意する工程 (a ) と、 前記外 管内に前記内管をセッ トした後、 前記外管の一部と前記内管の一部とを封着して、 前記外管と前記内管とを接合する工程 (b ) とを包含し、 前記工程 (b ) におい て、 前記外管と前記内管とが接合する封止部の周囲に位置するネック部に、 ネッ ク凹部とネック凸部とを形成する工程を実行し、 前記工程 (b ) の後、 少なくと も前記ネック凸部を加熱することによって、 前記ネック凸部の残留応力を 1 4 M P a以下にする工程を実行する。  The method for producing a bulb-type electrodeless fluorescent lamp of the present invention comprises the steps of: (a) preparing an outer tube having a substantially spherical portion at one end and an opening at the other end; and a cylindrical inner tube. (B) setting the inner pipe in the outer pipe, sealing a part of the outer pipe and a part of the inner pipe, and joining the outer pipe and the inner pipe; In the step (b), a step of forming a network concave portion and a neck convex portion in a neck portion located around a sealing portion where the outer tube and the inner tube are joined is performed. After the step (b), a step of reducing the residual stress of the neck projection to 14 MPa or less by heating the neck projection at least.
ある実施形態において、 前記残留応力を 1 4 M P a以下にする工程は、 前記外 管を構成するガラス材料についての徐冷点の温度でァニール処理する工程を含む c 図面の簡単な説明  In one embodiment, the step of reducing the residual stress to 14 MPa or less includes a step of annealing the glass material forming the outer tube at a temperature of an annealing point.
図 1は、 本発明の実施形態 1にかかる電球形無電極蛍光ランプの発光管 1 0 0 の構成を模式的に示す断面図である。  FIG. 1 is a cross-sectional view schematically showing a configuration of an arc tube 100 of a bulb-type electrodeless fluorescent lamp according to Embodiment 1 of the present invention.
図 2は、 発光管 1 0 0の外観を示す図である。  FIG. 2 is a diagram showing the appearance of the arc tube 100. FIG.
図 3は、 実施形態 1にかかる電球形無電極蛍光ランプ 2 2 0の構成を模式的に 示す断面図である。  FIG. 3 is a cross-sectional view schematically showing the configuration of the bulb-type electrodeless fluorescent lamp 220 according to the first embodiment.
図 4は、 ネック凸部 1 6およびネック凹部 1 4の歪みを説明するための発光管 1 0 0の図である。  FIG. 4 is a diagram of the arc tube 100 for explaining the distortion of the neck convex portion 16 and the neck concave portion 14.
図 5 ( a ) および (b ) は、 それそれ、 ァニール処理前および後における発光 管 1 0 0を歪測定した時の写真のトレース図である。  FIGS. 5 (a) and 5 (b) are tracings of photographs of strain measurement of the arc tube 100 before and after annealing, respectively.
図 6 ( a ) 〜 (c ) は、 本発明の実施形態 2にかかる製造方法を説明するため の工程図である。 FIGS. 6A to 6C are views for explaining a manufacturing method according to the second embodiment of the present invention. FIG.
図 7は、 従来の電球形無電極蛍光ランプの構成を示す断面図である。  FIG. 7 is a cross-sectional view showing a configuration of a conventional bulb-type electrodeless fluorescent lamp.
図 8は、 ヒートサイクル試験の結果を示した図表である。  FIG. 8 is a chart showing the results of the heat cycle test.
図 9は、 ヒートサイクル試験によって割れたものと割れなかったものとの歪度 の違いを示した図表である。  Fig. 9 is a chart showing the difference in strain between cracked and uncracked ones in the heat cycle test.
図 1 0は、 ソーダガラスにおける歪度と応力との相関を示した図表である。 図 1 1は、 ソーダガラスの疲労パラメ一夕を示した図表である。  FIG. 10 is a chart showing the correlation between the strain and the stress in soda glass. Fig. 11 is a chart showing the fatigue parameters of soda glass.
図 1 2は、 応力の低下による破断時間の変化を示した図表である。 発明を実施するための最良の形態  FIG. 12 is a chart showing a change in rupture time due to a decrease in stress. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら、 本発明による実施の形態を説明する。 以下の図面 においては、 説明の簡潔化のため、 実質的に同一の機能を有する構成要素を同一 の参照符号で示す。 なお、 本発明は以下の実施形態に限定されない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, components having substantially the same function are denoted by the same reference numeral for simplification of description. Note that the present invention is not limited to the following embodiments.
(実施形態 1 )  (Embodiment 1)
図 1から図 3を参照しながら、 本発明の実施形態 1にかかる電球形無電極蛍光 ランプを説明する。  A bulb-type electrodeless fluorescent lamp according to a first embodiment of the present invention will be described with reference to FIGS.
図 1は、 本実施形態の電球形無電極蛍光ランプの発光管 1 0 0の断面構成を模 式的に示しており、 図 2は、 発光管 1 0 0の外観を示している。  FIG. 1 schematically shows a cross-sectional configuration of an arc tube 100 of the bulb-type electrodeless fluorescent lamp of the present embodiment, and FIG. 2 shows an appearance of the arc tube 100.
発光管 1 0 0は、 略球形の外管 1 0と、 凹入部 (キヤビティ) 2 4を規定する 内管 2 0とから構成されている。 外管 1 0と内管 2 0とは、 封止部 1 2において 封着により接合されており、 封止部 1 2の周囲にはネック部 1 3が位置している c なお、 凹入部 2 4には、 誘導コイルが挿入されることになり、 内管 2 0の上部 には、 製造工程時に使用する排気用の細管 2 2が取り付けられている。 完成した 発光管 1 0 0では、 細管 2 2の一端は発光管内と繋がっているが、 他端は封止さ れており、 それにより発光管内は密閉構造となっている。 また、 発光管 1 0 0の 内壁の少なくとも一部には、 蛍光体層が形成されている。  The arc tube 100 is composed of a substantially spherical outer tube 100 and an inner tube 20 defining a concave portion (cavity) 24. The outer tube 10 and the inner tube 20 are joined by sealing at the sealing portion 12, and the neck portion 13 is located around the sealing portion 12 c. An induction coil is inserted into 4, and a thin exhaust pipe 22 used in the manufacturing process is attached to the upper part of the inner pipe 20. In the completed arc tube 100, one end of the thin tube 22 is connected to the inside of the arc tube, but the other end is sealed, so that the inside of the arc tube has a sealed structure. Further, a phosphor layer is formed on at least a part of the inner wall of the arc tube 100.
図 1および図 2に示すように、 ネヅク部 1 3には、 封止部 1 2の方から順に、 ネック凹部 1 4とネック凸部 1 6とが形成されている。 このようにネック凹部 1 4およびネック凸部 1 6を形成した発光管 1 0 0の場合、 滑らかな略楕円形状の 発光管と比較して、 発光管 1 0 0の下部の部位 (特に、 ネック凸部 1 6より下の 部位) の短くすることができ、 それにより、 ガラス球形式 A形と実質的な同じ形 状で、 白熱電球の外観と比較して美観を損ねず、 かつ、 ケース内の点灯回路の配 置スペースを確保した電球形無電極蛍光ランプを実現することができる。 ここで、 ガラス球形式 A形は、 J I S C 7 7 1 0に規定されているガラス球の形状であ り、 いわゆるナス形の形状である。 また、 ネック部とは、 発光管の最大径部から 口金へ向けてすぼまっていく部位のことである。 As shown in FIGS. 1 and 2, the neck portion 13 is formed with a neck concave portion 14 and a neck convex portion 16 in this order from the sealing portion 12. In the case of the arc tube 100 in which the neck concave portion 14 and the neck convex portion 16 are formed, a smooth substantially elliptical shape is formed. Compared to the arc tube, the lower part of the arc tube 100 (particularly, the part below the neck convex part 16) can be shortened, so that the shape is substantially the same as the glass ball type A shape. As a result, it is possible to realize a bulb-type electrodeless fluorescent lamp that does not impair the aesthetic appearance as compared with the appearance of the incandescent lamp and that secures a space for disposing the lighting circuit in the case. Here, the glass sphere type A is the shape of a glass sphere specified in JISC770, which is a so-called eggplant shape. The neck portion is a portion that narrows from the maximum diameter portion of the arc tube toward the base.
次に、 図 3を参照する。 図 3は、 発光管 1 0 0を備えた電球形無電極蛍光ラン プ 2 2 0の断面構成を模式的に示している。 なお、 図 3では、 構造の理解を容易 にするため、 凹入部における断面を左右で二段階にわけて示している。  Next, refer to FIG. FIG. 3 schematically shows a cross-sectional configuration of a bulb-shaped electrodeless fluorescent lamp 220 provided with an arc tube 100. In FIG. 3, the cross section of the recessed portion is shown in two stages on the left and right for easy understanding of the structure.
図 3に示した電球形無電極蛍光ランプは、 発光管 1 0 0と誘導コイル 3 0と点 灯回路 4 0とケース 5 0と口金 6 0とを有している。 発光管 1 0 0には、 発光ガ スが封入されており、 例えば水銀と希ガスが封入されている。 発光管 1 0 0に形 成されている凹入部 2 4には、 誘導コイルが挿入されている。  The bulb-type electrodeless fluorescent lamp shown in FIG. 3 has an arc tube 100, an induction coil 30, a lighting circuit 40, a case 50, and a base 60. The arc tube 100 is filled with a light-emitting gas, for example, mercury and a rare gas. An induction coil is inserted into the recess 24 formed in the arc tube 100.
本実施形態では、 誘導コイル 3 0は、 フェライ トコア 3 2と卷線 3 4とから構 成されている。 誘導コイル 3 0は、 点灯回路 4 0に電気的に接続されており、 点 灯回路 4 0はケース 5 0内に収納されている。 ケース 5 0の下部には口金 6 0が 取り付けられており、 口金 6 0は点灯回路 4 0と電気的に接続されている。  In the present embodiment, the induction coil 30 includes a ferrite core 32 and a winding 34. The induction coil 30 is electrically connected to the lighting circuit 40, and the lighting circuit 40 is housed in the case 50. A base 60 is attached to a lower portion of the case 50, and the base 60 is electrically connected to the lighting circuit 40.
図 3に示すように、 発光管 1 0 0にネック凹部 1 4およびネック凸部 1 6が形 成されていることにより、 ネック凸部 1 6とケース 5 0の上端 5 0 aとを互いに 近接または接触させることができる。 したがって、 発光管 1 0 0とケース 5 0と の接続箇所 8 0は、 美観上滑らかな接続となっており、 美観を損ねるような大き な隙間や大きな段差は存在しない。 また、 接続箇所 8 0が滑らかであるとともに、 発光管 1 0 0の封止部 1 2の位置がケース 5 0の上方にあるため、 ケース 5 0内 に点灯回路 4 0を配置するためのスペースを十分に確保することが可能となって いる。 したがって、 美観を損ねるほどケース 5 0を大きくしなければならないと いう問題を回避することができる。  As shown in FIG. 3, the neck concave portion 14 and the neck convex portion 16 are formed in the arc tube 100, so that the neck convex portion 16 and the upper end 50a of the case 50 are close to each other. Or can be contacted. Therefore, the connection point 80 between the arc tube 100 and the case 50 is aesthetically smooth, and there are no large gaps or large steps that impair the aesthetic appearance. In addition, since the connection portion 80 is smooth and the position of the sealing portion 12 of the arc tube 100 is above the case 50, a space for disposing the lighting circuit 40 in the case 50 is provided. It is possible to secure enough. Therefore, it is possible to avoid the problem that the case 50 must be made large so as to impair the aesthetic appearance.
本実施形態では、 発光管 1 0 0の形状は、 実質的にガラス球形式 A形であり、 そして、 そのガラス球径 (発光管 1 0 0の最大直径) は、 例えば 5 5〜7 5 mm である。 発光管 100の頂点から口金 60の端部までの長さ (全長) は、 例えば、 120〜: L 65 mmである。 なお、 口金 60は、 E 26/25を使用している。 定格電圧 [V] および定格消費電力 [W] は、 それぞれ、 100〜 240 V、 7 ~22 Wである。 In this embodiment, the shape of the arc tube 100 is substantially a glass sphere type A, and the diameter of the glass sphere (the maximum diameter of the arc tube 100) is, for example, 55 to 75 mm. It is. The length (total length) from the top of the arc tube 100 to the end of the base 60 is, for example, 120 to 65 mm. The base 60 uses E26 / 25. The rated voltage [V] and the rated power consumption [W] are 100 to 240 V and 7 to 22 W, respectively.
図 1から図 3に示した発光管 100を用いれば、 美観を損ねずに、 白熱電球と 同じような外観を有する電球形無電極蛍光ランプを提供することが可能であるが、 発光管 100にネック凹部 14およびネック凸部 16を形成した結果として、 ネ ック部 13の強度および信頼性が低下することがわかった。 本願発朋者は、 その 問題の検討およびその解決策にも着手した。  If the arc tube 100 shown in FIGS. 1 to 3 is used, it is possible to provide a bulb-type electrodeless fluorescent lamp having the same appearance as an incandescent lamp without impairing the appearance. It was found that as a result of forming the neck concave portion 14 and the neck convex portion 16, the strength and reliability of the neck portion 13 were reduced. The inventor of the present application has considered the problem and started to solve it.
発光管 100の歪み (残留応力) を観察すると、 図 4に示すように、 ネック凸 部 16の領域には圧縮歪みが存在し、 一方で、 ネック凹部 14から封止部 12の 領域には引っ張り歪みが存在することがわかった。 これは製造工程の過程から生 じるものであり、 加工時に先に冷えた部分に圧縮歪みが残るということに起因し ている。 つまり、 外管 10と内管 20とが加熱により封着されてなる封止部 12 よりも離れた領域のネック凸部 16が先に冷えるので、 そこに圧縮歪みが残り、 そして、 その圧縮歪みに対応する引っ張り歪みがネック凹部 14から封止部 12 の領域に残るのである。 なお、 図 4おいて、 右上から左下への斜線が示された領 域を、 圧縮歪みが存在する領域として示し、 そして、 左上から右下への斜線が示 された領域を、 引っ張り歪みが存在する領域として示している。  When observing the strain (residual stress) of the arc tube 100, as shown in FIG. 4, compressive strain exists in the region of the neck convex portion 16, while pulling occurs from the neck concave portion 14 to the region of the sealing portion 12. It was found that there was distortion. This is a result of the manufacturing process, and is due to the fact that compressive strain remains in the part that was previously cooled during processing. In other words, since the neck convex portion 16 in a region apart from the sealing portion 12 in which the outer tube 10 and the inner tube 20 are sealed by heating cools first, compressive strain remains there, and the compressive strain is The tensile strain corresponding to the above remains in the region from the neck concave portion 14 to the sealing portion 12. In Fig. 4, the area with the oblique line from the upper right to the lower left is shown as the area where the compressive strain is present, and the area with the oblique line from the upper left to the lower right is where the tensile strain is present. This is shown as a region to be used.
このように圧縮歪みと引っ張り歪みが存在する場合、 通常、 引っ張り歪みから 割れが入り、 圧縮歪みとの界面に沿って割れが進む。 その結果、 歪みがないとき よりも早くに、 発光管 100の寿命がきてしまう。 発光管 100の強度および信 頼性を向上させるためには、 ネック凸部 16における圧縮の残留応力が 14MP a以下 (好ましくは 7MPa以下、 さらに好ましくは、 実質的に OMPa (1. 4 MP a以下) ) であることが望ましい。 また、 ネック凹部 14における引っ張 りの残留応力が 14 MP a以下 (好ましくは 7 MP a以下、 さらに好ましくは、 実質的に OMPa ( 1. 4MPa以下) ) であることが望ましい。 さらには、 発 光管 100における外管 10全体の残留応力が 7 MP a以下 (好ましくは、 実質 的に OMPa (1. 4MPa以下) ) であることがより望ましい。 残留応力を取 り除くには、 発光管 100を構成するガラス (例えば、 ソーダガラス) の徐冷点 にまで発光管を加熱する処理 (ァニール処理) を行う。 なお、 ソーダガラスの徐 冷点は 520°Cである。 When compression strain and tensile strain are present, cracks usually enter from the tensile strain, and cracks progress along the interface with the compressive strain. As a result, the life of the arc tube 100 is earlier than when there is no distortion. In order to improve the strength and reliability of the arc tube 100, the compressive residual stress at the neck convex portion 16 must be 14 MPa or less (preferably 7 MPa or less, more preferably substantially OMPa (1.4 MPa or less). )) Is desirable. Further, it is desirable that the residual tensile stress in the neck recess 14 is 14 MPa or less (preferably 7 MPa or less, more preferably substantially OMPa (1.4 MPa or less)). Further, it is more desirable that the residual stress of the entire outer tube 10 in the light emitting tube 100 is 7 MPa or less (preferably, substantially OMPa (1.4 MPa or less)). Remove residual stress To remove the arc, a process (annealing) of heating the arc tube to the annealing point of the glass (eg, soda glass) constituting the arc tube 100 is performed. The annealing point of soda glass is 520 ° C.
本願発明者は、 ァニール処理を行う前および行った後の発光管 100の残留応 力 (歪度) を観察 '測定した。 図 5 (a) および (b) にその結果を示す。 なお、 図 5 (a) は、 ァニール処理前の発光管 100を歪測定した時の写真をトレース した図であり、 図 5 (b) は、 ァニール処理後の発光管 100を歪測定した時の 写真をトレースした図である。 ここで使用した計測器を説明すると、 写真撮影に は、 歪検査器 (東芝製) SVP— 10 - I I (鋭敏色法) を用い、 歪度測定には、 歪検査器 (ルケォ製) L SM—701 (反射型セナルモン法) を用いた。  The inventor of the present application observed and measured the residual stress (skewness) of the arc tube 100 before and after performing the annealing treatment. Figures 5 (a) and (b) show the results. FIG. 5 (a) is a traced photograph of the arc tube 100 before the anneal treatment when the strain was measured, and FIG. 5 (b) is a diagram where the distortion of the arc tube 100 after the anneal treatment was measured. It is the figure which traced the photograph. To explain the measuring instruments used here, a distortion tester (manufactured by Toshiba) SVP-10-II (sensitive color method) was used for photography, and a strain tester (manufactured by Luceo) L SM was used for measuring the skewness. —701 (reflective Senarmont method) was used.
図 5 (a) に示したァニール処理前の発光管 100では、 ネック凸部 16の残 留応力は 34MP a (歪度 25 ° ) であった。 一方、 図 5 (b) に示したァニ一 ル処理後の発光管 100では、 ネック凸部 16の残留応力は 1. 4 MP a (歪度 1° 以下) であった。 また、 発光管全体における残留応力も 1. 4MPa (歪度 1 ° 以下) であった。  In the arc tube 100 before the annealing treatment shown in FIG. 5 (a), the residual stress of the neck convex portion 16 was 34 MPa (strain degree 25 °). On the other hand, in the arc tube 100 after the annealing treatment shown in FIG. 5 (b), the residual stress of the neck convex portion 16 was 1.4 MPa (a skewness of 1 ° or less). The residual stress in the entire arc tube was 1.4 MPa (strain less than 1 °).
残留応力の有無 (または程度) による差を調べるために、 発光管 100につい てヒートサイクル (熱湯冷水) 試験を本願発明者は行った。 この試験は、 熱湯 In order to examine the difference depending on the presence (or degree) of residual stress, the present inventors conducted a heat cycle (hot / cold water) test on the arc tube 100. This test is
(約 90°C) と冷水 (約 0°C) に 30秒ずつ交互につけることを 5サイクル繰り返して 行う。 実験のために用意したサンプルは下記の 4種の発光管 100である。 (Approximately 90 ° C) and cold water (approximately 0 ° C) for 30 seconds alternately for 5 cycles. The samples prepared for the experiment are the following four types of arc tubes 100.
(a) 520°C (ソーダガラスの徐冷点) で 10分熱処理した発光管 100  (a) Arc tube 100 heat-treated at 520 ° C (slow cooling point of soda glass) for 10 minutes
(b) 520°C (ソーダガラスの徐冷点) で 5分熱処理した発光管 100  (b) Arc tube 100 heat-treated at 520 ° C (slow cooling point of soda glass) for 5 minutes
( c ) 上記ァニール工程を施していない発光管 100  (c) Arc tube 100 without the above annealing process
(d) ァニール工程だけでなく、 ガラス加工時に徐冷パーナ一も施していない発 光管 100  (d) Not only the annealing process, but also a luminous tube without a slow cooling wrench during glass processing.
ヒートサイクル (熱湯冷水) 試験の結果を図 8に示す。  Figure 8 shows the results of the heat cycle (hot / cold water) test.
バーナーでの徐冷をしなかった発光管 100は全て割れ (割れ発生率 100 %) 、 一方、 520°Cでのァニールをおこなった発光管 100は全て割れなかつ た (割れ発生率 0%) 。 バーナー徐冷を行ったが、 ァニール処理を行わなかった 発光管 100は、 割れたり割れなかったりした (割れ発生率 37. 5%) 。 以上の結果から、 520°Cのァニール処理は、 保持時間 5分でも割れ防止には 十分な効果を示すことがわかった。 All the arc tubes 100 that were not gradually cooled by the burner were cracked (crack occurrence rate 100%), while all the arc tubes 100 that were annealed at 520 ° C were not cracked (crack incidence rate 0%). The arc tube 100, which was gradually cooled by the burner but not subjected to the annealing treatment, cracked or did not crack (crack occurrence rate: 37.5%). From the above results, it was found that anneal treatment at 520 ° C showed a sufficient effect for preventing cracking even with a holding time of 5 minutes.
上記ヒートサイクル試験で割れたものと割れなかったもので分類し、 それにつ いて割れと歪み (ネック凸部 4ケ所測定) との相関を検討し、 それを図 9に示す c ァニール工程を施さず割れが生じなかった水準での、 最大の歪度は約 20° 以 下であった。 これは応力に換算すると約 27MPa以下である。 なお、 ソ一ダガ ラス (厚さ lmm) の場合の歪計角度 (歪度) と応力 (残留応力) との相関を参 考のため図 10に示す。  In the heat cycle test, the cracks were classified into those that did not crack and those that did not, and the correlation between the cracks and the strain (measured at four locations of the neck convex portion) was examined. At the level where no cracking occurred, the maximum skewness was about 20 ° or less. This is about 27 MPa or less when converted to stress. Figure 10 shows the correlation between the strain gauge angle (skewness) and the stress (residual stress) for soda glass (thickness lmm) for reference.
ここで、 発光管の割れについての理論考察をする。 試験片が破断にいたるまで の時間 tは下記の式で与えられる。 び Here, theoretical considerations on cracking of the arc tube are given. The time t until the specimen breaks is given by the following equation. And
Figure imgf000010_0001
Figure imgf000010_0001
σ a:試験片に与えられる一定の応力  σa: constant stress applied to the test piece
σιο:不活性環境下での臨界応力  σιο: Critical stress in an inert environment
K ic:開口モード Iに対する応力拡大係数の臨界値  K ic: Critical value of stress intensity factor for aperture mode I
Y: クラックや試験片の形状、 負荷の様式などによって決まる無次元の係数 A, n: 疲労パラメ一夕  Y: Dimensionless coefficient determined by the shape of cracks and test pieces, load type, etc. A, n: Overnight fatigue parameters
なお、 疲労パラメ一夕 nは、 クラック成長感受係数と呼ばれ、 クラック成長の 起こりにくさの尺度となっており、 素材や環境によって異なる数値となる。 ソ一 ダガラスの疲労パラメ一夕 nを図 1 1に示す (出典; ガラス工学ハンドブヅク (朝倉書店) ) 。  The fatigue parameter, n, is called the crack growth susceptibility coefficient and is a measure of the difficulty of crack growth, and varies depending on the material and environment. Figure 11 shows the fatigue parameters of soda glass (Source: Glass Engineering Handbook (Asakura Shoten)).
次に、 図 12に、 ガラス厚みが 1 mmであるときの応力の低下による破断時間 の変化を示す。  Next, Fig. 12 shows the change in rupture time due to a decrease in stress when the glass thickness is 1 mm.
n= 13〜16の疲労パラメ一夕の場合、 1/2の応力では 8000〜650 00倍、 そして、 1Z4の応力では 6千万〜 40億倍の寿命となる。 約 14Mp a以下の応力に設定した場合、 ヒ一トショック試験の 8000倍以上の熱サイク ルに耐えられることとなる。 これは 4万回以上のヒートサイクルに耐えられるこ とを意味する。 さらに半分の残留応力にすることができれば 3億回以上というヒ ートサイクルに耐えられることとなり、 これは割れが発生する確立がほぼ零に等 しいことを意味する。 このように、 理論的考察によっても、 本実施形態の発光管In the case of fatigue parameters of n = 13-16, the life is 8000-650,000 times at 1/2 stress and 60-40 million times at 1Z4 stress. If the stress is set to about 14Mpa or less, it will be able to withstand a thermal cycle more than 8000 times the heat shock test. This means that it can withstand more than 40,000 heat cycles. If the residual stress can be further reduced to half, it can withstand a heat cycle of 300 million times or more, which means that the probability of crack generation is almost zero. Means something new. As described above, the arc tube of the present embodiment is also theoretically considered.
1 0 0についての残留応力を 14MP a以下 (好ましくは 7MP a以下) にする 技術的意義は明らかとなる。 The technical significance of reducing the residual stress for 100 to 14 MPa or less (preferably 7 MPa or less) becomes clear.
本実施形態の電球形無電極蛍光ランプ 2 20によれば、 ネック部 13において、 ネック凹部 14とネック凸部 1 6とが形成されているので、 白熱電球と同じよう な外観を有する電球形無電極蛍光ランプを実現することができる。 そして、 ネッ ク凸部 1 6の残留応力が 14 MP a以下 (好ましくは 7 M P a以下) である場合 には、 電球形無電極蛍光ランプ 2 20の発光管 1 00の割れを抑制することがで ぎる。  According to the bulb-shaped electrodeless fluorescent lamp 220 of the present embodiment, since the neck portion 13 is formed with the neck concave portion 14 and the neck convex portion 16, the light bulb-shaped non-fluorescent lamp having the same appearance as the incandescent lamp is provided. An electrode fluorescent lamp can be realized. When the residual stress of the net convex portion 16 is 14 MPa or less (preferably 7 MPa or less), cracking of the arc tube 100 of the bulb-type electrodeless fluorescent lamp 220 can be suppressed. I can go.
(実施形態 2 )  (Embodiment 2)
次に、 図 6 (a) 〜 (c) を参照しながら、 本発明の実施形態にかかる電球形 無電極蛍光ランプ (特に、 発光管 1 00) の製造方法について説明する。 図 6 (a) 〜 (c) は、 本実施形態の製造方法を説明するための工程図である。  Next, a method for manufacturing a bulb-type electrodeless fluorescent lamp (particularly, arc tube 100) according to the embodiment of the present invention will be described with reference to FIGS. 6 (a) to 6 (c). 6 (a) to 6 (c) are process diagrams for explaining the manufacturing method of the present embodiment.
まず、 ソーダガラスからなる外管 1 0と、 円筒状の内管 20とを用意する。 こ こで用意する外管 1 0は、 一端に略球形の部位を有し且つ他端に開口部を有して おり、 当該開口部の寸法 (典型的には、 直径) は、 内管 2 0の円筒の直径よりも 大きくされたものである。 なお、 内管 20には、 排気用の細管 22が取り付けら れている。  First, an outer tube 10 made of soda glass and a cylindrical inner tube 20 are prepared. The outer tube 10 prepared here has a substantially spherical portion at one end and an opening at the other end, and the size (typically, diameter) of the opening is the inner tube 2. It is made larger than the diameter of the cylinder of 0. In addition, a thin tube 22 for exhaust is attached to the inner tube 20.
次に、 図 6 (a) に示すように、 外管 1 0内に内管 20をセットした後、 両者 を回転させながら、 内管 20の端部と、 それに対応する位置にある外管 10の一 部とをバーナー 70で加熱する。  Next, as shown in FIG. 6 (a), after setting the inner pipe 20 in the outer pipe 10, the two ends are rotated, and the end of the inner pipe 20 and the outer pipe 10 at the corresponding position are rotated. And a part of the mixture is heated by a burner 70.
すると、 図 6 (b) に示すように、 加熱部 (封止部) が溶けて、 外管 1 0の下 側 (カレット部) 1 0 aが自らの重さで延びてくる。  Then, as shown in FIG. 6 (b), the heating part (sealing part) melts, and the lower side (cullet part) 10a of the outer tube 10 extends by its own weight.
その後、 図 6 (c) に示すように、 カレット部 10 aが溶け落ちて、 外管 1 0 と内管 20とが接合して封止部が形成され、 それにより、 封止済みの発光管 1 0 0 ' が得られる。 また、 図 6 (a) 〜 (c) の間のパーナ一 70の調節により、 ネック部 13に、 ネック凹部 14とネック凸部 1 6とを形成することができる。 その後、 少なくともネック部 13を、 バーナー 70で徐冷する。  Thereafter, as shown in FIG. 6 (c), the cullet portion 10a melts down, and the outer tube 10 and the inner tube 20 are joined to form a sealing portion, thereby forming the sealed arc tube. 1 0 0 'is obtained. Further, the neck recess 13 and the neck projection 16 can be formed in the neck 13 by adjusting the wrench 70 between FIGS. 6 (a) to 6 (c). Thereafter, at least the neck portion 13 is gradually cooled by the burner 70.
その後、 その発光管 1 00を炉に入れて、 ァニール処理を施す。 ァニール処理 のための炉の温度は、 徐冷点の周辺 (例えば、 約 520°C) にしておけばよい。 次いで、 管内の排気および封入ガスの充填を行い、 細管 22封止も完了して、 完 成した発光管 100を得る。 Thereafter, the arc tube 100 is placed in a furnace and subjected to an annealing process. Annealing treatment The temperature of the furnace for the heating may be around the annealing point (eg, about 520 ° C). Next, the inside of the tube is evacuated and filled with a sealed gas, and the sealing of the thin tube 22 is also completed, so that a completed arc tube 100 is obtained.
このようにして残留応力を低減した発光管 100と、 誘導コイル 30、 点灯回 路 40、 ケース 50、 口金 60とを用いて、 組み立てを行えば、 電球形無電極蛍 光ランプ 220が得られる。  By assembling the arc tube 100 with the residual stress reduced in this way, the induction coil 30, the lighting circuit 40, the case 50, and the base 60, a bulb-type electrodeless fluorescent lamp 220 is obtained.
なお、 点灯回路 40としては、 1 MH z以下 (例えば、 40〜 500 kH z ) の比較的低い周波数を発生するものを用いることが好ましい。 言い換えると、 発 光管 100に点灯回路 40が印加する高周波電圧の周波数は、 1 MHz以下 (例 えば、 40〜 500 kHz) の比較的低い周波数の領域にすることが好ましい。 これは、 13. 56 MH zまたは数 MH zのような比較的高い周波数領域で動作 させる場合と比較して、 40 kH z〜 1 MH z程度の周波数領域で動作させる場 合には、 高周波電源回路を構成する部材として、 一般電子機器用の電子部品とし て使用されている安価な汎用品を使用することができるとともに、 寸法の小さい 部材を使用することが可能となるため、 コストダウンおよび小型化を図ることが でき、 利点が大きいからである。 ただし、 本実施形態の構成は、 1 MHz以下の 動作に限らず、 13. 56MHzまたは数 MHz等の周波数の領域においても動 作させ得るものである。  The lighting circuit 40 preferably generates a relatively low frequency of 1 MHz or less (for example, 40 to 500 kHz). In other words, it is preferable that the frequency of the high-frequency voltage applied to the light emitting tube 100 by the lighting circuit 40 be in a relatively low frequency range of 1 MHz or less (for example, 40 to 500 kHz). This means that when operating in the frequency range from 40 kHz to 1 MHz, compared to operating in a relatively high frequency range such as 13.56 MHz or several MHz, Inexpensive general-purpose products used as electronic components for general electronic devices can be used as members that constitute the circuit, and members with small dimensions can be used, resulting in cost reduction and miniaturization. This is because the advantages are great. However, the configuration of the present embodiment is not limited to operation at 1 MHz or less, and can operate in a frequency region such as 13.56 MHz or several MHz.
本発明によれば、 外管のうちの封止部の周囲に位置するネック部において、 封 止部の方から順に、 ネック凹部とネック凸部とが形成されているので、 白熱電球 と同じような外観を有する電球形無電極蛍光ランプを提供することができる。 ネ ック凸部 16の残留応力が 14 MP a以下である場合、 電球形無電極蛍光ランプ の発光管の割れを抑制することができる。 産業上の利用可能性  According to the present invention, at the neck portion of the outer tube located around the sealing portion, the neck concave portion and the neck convex portion are formed in order from the sealing portion. A bulb-type electrodeless fluorescent lamp having an excellent appearance can be provided. When the residual stress of the neck projection 16 is 14 MPa or less, cracking of the arc tube of the bulb-type electrodeless fluorescent lamp can be suppressed. Industrial applicability
本発明の電球形無電極蛍光ランプ及びその製造方法は、 白熱電球代替として使 用する場合に有用であり、 外観が良好で発光管の割れを抑制できる点で産業上の 利用可能性は高い。  INDUSTRIAL APPLICABILITY The bulb-type electrodeless fluorescent lamp of the present invention and its manufacturing method are useful when used as a substitute for incandescent lamps, and have high industrial applicability in that they have good appearance and can suppress cracking of the arc tube.

Claims

言青求の範囲 Scope of Word
1 . 発光ガスが封入され、 凹入部を有する発光管と、 1. A luminous tube filled with luminous gas and having a concave portion;
前記凹入部に挿入された誘導コイルと、  An induction coil inserted into the recess,
前記誘導コイルに電気的に接続された点灯回路と、  A lighting circuit electrically connected to the induction coil;
前記点灯回路を収納するケースと、  A case for housing the lighting circuit,
前記点灯回路に電気的に接続され、 前記ケースに取り付けられた口金と を備え、  A base electrically connected to the lighting circuit, and a base attached to the case;
前記発光管は、 略球形の外管と、 前記凹入部を規定する内管とから構成されて おり、  The arc tube comprises a substantially spherical outer tube and an inner tube defining the recess.
前記外管のうちの、 前記外管と前記内管とが接合してなる封止部の周囲に位置 するネック部において、 前記封止部の方から順に、 ネック凹部とネック凸部とが 形成されている、 電球形無電極蛍光ランプ。  In the neck portion of the outer tube, which is located around a sealing portion formed by joining the outer tube and the inner tube, a neck concave portion and a neck convex portion are formed in order from the sealing portion. Is a bulb-shaped electrodeless fluorescent lamp.
2 . 前記発光管の外観は、 実質的に、 ガラス球形式 A形の形状である、 請求項 1に記載の鼋球形無電極蛍光ランプ。  2. The spherical spherical electrodeless fluorescent lamp according to claim 1, wherein an appearance of the arc tube is substantially a glass sphere type A shape.
3 . 前記ネック凸部と、 前記ケースの上端とは、 近接または接触している、 請 求項 1または 2に記載の電球形無電極蛍光ランプ。  3. The bulb-type electrodeless fluorescent lamp according to claim 1, wherein the neck convex portion and the upper end of the case are close to or in contact with each other.
4 . 前記ネック凸部の残留応力が 1 4 M P a以下である、 請求項 1から 3の何 れか一つに記載の電球形無電極蛍光ランプ。  4. The bulb-shaped electrodeless fluorescent lamp according to any one of claims 1 to 3, wherein a residual stress of the neck projection is 14 MPa or less.
5 . 前記ネック凹部の残留応力が 1 4 M P a以下である、 請求項 1から 4の何 れか一つに記載の電球形無電極蛍光ランプ。  5. The bulb-shaped electrodeless fluorescent lamp according to any one of claims 1 to 4, wherein the residual stress in the neck recess is 14 MPa or less.
6 . 前記ネック凸部および前記ネック凹部を含む前記ネック部の残留応力が 7 M P a以下である、 請求項 1から 3の何れか一つに記載の電球形無電極蛍光ラン プ。  6. The bulb-shaped electrodeless fluorescent lamp according to any one of claims 1 to 3, wherein a residual stress of the neck portion including the neck convex portion and the neck concave portion is 7 MPa or less.
7 . 前記発光管における前記外管全体の残留応力が 7 M P a以下である、 請求 項 6に記載の電球形無電極蛍光ランプ。  7. The bulb-type electrodeless fluorescent lamp according to claim 6, wherein a residual stress of the entire outer bulb in the arc tube is 7 MPa or less.
8 . —端に略球形の部位を有し且つ他端に開口部を有する外管と、 筒状の内管 とを用意する工程 (a ) と、  8. A step (a) of preparing an outer tube having a substantially spherical portion at one end and an opening at the other end, and a cylindrical inner tube;
前記外管内に前記内管をセットした後、 前記外管の一部と前記内管の一部とを 封着して、 前記外管と前記内管とを接合する工程 (b ) と After setting the inner pipe in the outer pipe, a part of the outer pipe and a part of the inner pipe are separated. Sealing and joining the outer tube and the inner tube (b);
を包含し、  ,
前記工程 (b ) において、 前記外管と前記内管とが接合する封止部の周囲に位 置するネック部に、 ネック凹部とネック凸部とを形成する工程を実行し、 前記工程 (b ) の後、 少なくとも前記ネック凸部を加熱することによって、 前 記ネック凸部の残留応力を 1 4 M P a以下にする工程を実行する、 電球形無電極 蛍光ランプの製造方法。  In the step (b), a step of forming a neck concave portion and a neck convex portion in a neck portion located around a sealing portion where the outer tube and the inner tube are joined is performed. ), After which at least the neck convex portion is heated to reduce the residual stress of the neck convex portion to 14 MPa or less.
9 . 前記残留応力を 1 4 M P a以下にする工程は、  9. The step of reducing the residual stress to 14 MPa or less,
前記外管を構成するガラス材料についての徐冷点の温度でァニールする工程を 含む、 請求項 8に記載の電球形無電極蛍光ランプの製造方法。  9. The method for producing a bulb-type electrodeless fluorescent lamp according to claim 8, further comprising a step of annealing the glass material constituting the outer tube at a temperature of an annealing point.
PCT/JP2003/009519 2002-07-30 2003-07-28 Bulb type electrodeless fluorescent lamp and method of manufacturing the fluorescent lamp WO2004012224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003252707A AU2003252707A1 (en) 2002-07-30 2003-07-28 Bulb type electrodeless fluorescent lamp and method of manufacturing the fluorescent lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002221944A JP2006054054A (en) 2002-07-30 2002-07-30 Bulb type electrodeless fluorescent lamp and method of manufacturing the same
JP2002-221944 2002-07-30

Publications (1)

Publication Number Publication Date
WO2004012224A1 true WO2004012224A1 (en) 2004-02-05

Family

ID=31184885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009519 WO2004012224A1 (en) 2002-07-30 2003-07-28 Bulb type electrodeless fluorescent lamp and method of manufacturing the fluorescent lamp

Country Status (3)

Country Link
JP (1) JP2006054054A (en)
AU (1) AU2003252707A1 (en)
WO (1) WO2004012224A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270101A (en) * 2007-04-24 2008-11-06 Matsushita Electric Works Ltd Manufacturing method of bulb for electrodeless lamp
US9129792B2 (en) 2012-11-26 2015-09-08 Lucidity Lights, Inc. Fast start induction RF fluorescent lamp with reduced electromagnetic interference
US8975829B2 (en) 2013-04-25 2015-03-10 Lucidity Lights, Inc. RF induction lamp with isolation system for air-core power coupler
US20140375203A1 (en) 2012-11-26 2014-12-25 Lucidity Lights, Inc. Induction rf fluorescent lamp with helix mount
US10128101B2 (en) 2012-11-26 2018-11-13 Lucidity Lights, Inc. Dimmable induction RF fluorescent lamp with reduced electromagnetic interference
US9460907B2 (en) 2012-11-26 2016-10-04 Lucidity Lights, Inc. Induction RF fluorescent lamp with load control for external dimming device
US9305765B2 (en) 2012-11-26 2016-04-05 Lucidity Lights, Inc. High frequency induction lighting
US8901842B2 (en) 2013-04-25 2014-12-02 Lucidity Lights, Inc. RF induction lamp with ferrite isolation system
US9209008B2 (en) 2012-11-26 2015-12-08 Lucidity Lights, Inc. Fast start induction RF fluorescent light bulb
US9245734B2 (en) 2012-11-26 2016-01-26 Lucidity Lights, Inc. Fast start induction RF fluorescent lamp with burst-mode dimming
US8872426B2 (en) 2012-11-26 2014-10-28 Lucidity Lights, Inc. Arrangements and methods for triac dimming of gas discharge lamps powered by electronic ballasts
US8941304B2 (en) 2012-11-26 2015-01-27 Lucidity Lights, Inc. Fast start dimmable induction RF fluorescent light bulb
CN104937693B (en) * 2012-11-26 2018-02-02 明灯有限公司 Induced RF fluorescent lamp
US9524861B2 (en) 2012-11-26 2016-12-20 Lucidity Lights, Inc. Fast start RF induction lamp
US9129791B2 (en) 2012-11-26 2015-09-08 Lucidity Lights, Inc. RF coupler stabilization in an induction RF fluorescent light bulb
US10141179B2 (en) 2012-11-26 2018-11-27 Lucidity Lights, Inc. Fast start RF induction lamp with metallic structure
US10529551B2 (en) 2012-11-26 2020-01-07 Lucidity Lights, Inc. Fast start fluorescent light bulb
US9161422B2 (en) 2012-11-26 2015-10-13 Lucidity Lights, Inc. Electronic ballast having improved power factor and total harmonic distortion
USD745982S1 (en) 2013-07-19 2015-12-22 Lucidity Lights, Inc. Inductive lamp
USD746490S1 (en) 2013-07-19 2015-12-29 Lucidity Lights, Inc. Inductive lamp
USD745981S1 (en) 2013-07-19 2015-12-22 Lucidity Lights, Inc. Inductive lamp
USD747009S1 (en) 2013-08-02 2016-01-05 Lucidity Lights, Inc. Inductive lamp
USD747507S1 (en) 2013-08-02 2016-01-12 Lucidity Lights, Inc. Inductive lamp
USD854198S1 (en) 2017-12-28 2019-07-16 Lucidity Lights, Inc. Inductive lamp
US10236174B1 (en) 2017-12-28 2019-03-19 Lucidity Lights, Inc. Lumen maintenance in fluorescent lamps

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893183A (en) * 1972-03-09 1973-12-03
JPS58184258A (en) * 1982-04-21 1983-10-27 株式会社東芝 Method of producing lamp
JPS59205150A (en) * 1983-05-09 1984-11-20 松下電子工業株式会社 Method of producing tubular bulb
JPS629360U (en) * 1984-11-09 1987-01-20
JPH04138657A (en) * 1990-09-29 1992-05-13 Toshiba Lighting & Technol Corp Manufacture of bulb
JPH08212981A (en) * 1995-02-02 1996-08-20 Hitachi Ltd Electrodeless lamp
JPH09320541A (en) * 1996-05-24 1997-12-12 Hitachi Ltd Electrodeless fluorescent lamp
JPH1125925A (en) * 1997-07-02 1999-01-29 Hitachi Ltd Electrodeless fluorescent lamp
US5903109A (en) * 1996-04-19 1999-05-11 U.S. Philips Corporation Electrodeless low-pressure discharge lamp with specific electrical conductor clamping means
JP2001143889A (en) * 1999-11-17 2001-05-25 Matsushita Electric Works Ltd Lighting device for non-electrode discharge lamp

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893183A (en) * 1972-03-09 1973-12-03
JPS58184258A (en) * 1982-04-21 1983-10-27 株式会社東芝 Method of producing lamp
JPS59205150A (en) * 1983-05-09 1984-11-20 松下電子工業株式会社 Method of producing tubular bulb
JPS629360U (en) * 1984-11-09 1987-01-20
JPH04138657A (en) * 1990-09-29 1992-05-13 Toshiba Lighting & Technol Corp Manufacture of bulb
JPH08212981A (en) * 1995-02-02 1996-08-20 Hitachi Ltd Electrodeless lamp
US5903109A (en) * 1996-04-19 1999-05-11 U.S. Philips Corporation Electrodeless low-pressure discharge lamp with specific electrical conductor clamping means
JPH09320541A (en) * 1996-05-24 1997-12-12 Hitachi Ltd Electrodeless fluorescent lamp
JPH1125925A (en) * 1997-07-02 1999-01-29 Hitachi Ltd Electrodeless fluorescent lamp
JP2001143889A (en) * 1999-11-17 2001-05-25 Matsushita Electric Works Ltd Lighting device for non-electrode discharge lamp

Also Published As

Publication number Publication date
JP2006054054A (en) 2006-02-23
AU2003252707A1 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
WO2004012224A1 (en) Bulb type electrodeless fluorescent lamp and method of manufacturing the fluorescent lamp
US7215081B2 (en) HID lamp having material free dosing tube seal
US20100253220A1 (en) Metal vapor discharge lamp and illumination device
US7132797B2 (en) Hermetical end-to-end sealing techniques and lamp having uniquely sealed components
CN100543906C (en) Halogen lamp LED
US20010053080A1 (en) Electric lamp/reflector unit
JP2008181716A (en) Discharge lamp and lighting system
US20100127609A1 (en) Coating liquid for diffusing film of high-pressure discharge lamp and high-pressure discharge lamp
CN1538492A (en) High-pressure discharge lamp
US20090079346A1 (en) High intensity discharge lamp having composite leg
TWI307111B (en) Manufacturing method of a cold cathode florescent lamp
JP2002298729A (en) Circular fluorescent lamp and luminaire
JP2007273373A (en) Metal halide lamp and lighting system
JP4599359B2 (en) High pressure discharge lamp
JPH07262967A (en) High pressure discharge lamp and manufacture thereof
JP3618332B2 (en) High pressure discharge lamp manufacturing method, high pressure discharge lamp and lamp unit
JP3610908B2 (en) Short arc type ultra high pressure discharge lamp
TW200428458A (en) High-pressure discharge lamp
KR102314577B1 (en) Lamp with long life time for rapid thermal processing
JPH08129992A (en) Tungsten halogen lamp having external bulb
JP2009021201A (en) Light source using airtight glass container
EP0801417A2 (en) Double-ended type halogen lamp and method of making the same
JP4649409B2 (en) High pressure discharge lamp
JPH11297274A (en) High-pressure mercury vapor discharge lamp and light source device using it
JP2007273226A (en) Compact self-ballasted fluorescent lamp, luminaire, and manufacturing method of compact self-ballasted fluorescent lamp

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP