WO2004011877A1 - Laser-type angle detection device, crankshaft deflection measuring-device, crankshaft deflection-measuring method, and crankshaft - Google Patents

Laser-type angle detection device, crankshaft deflection measuring-device, crankshaft deflection-measuring method, and crankshaft Download PDF

Info

Publication number
WO2004011877A1
WO2004011877A1 PCT/JP2003/009364 JP0309364W WO2004011877A1 WO 2004011877 A1 WO2004011877 A1 WO 2004011877A1 JP 0309364 W JP0309364 W JP 0309364W WO 2004011877 A1 WO2004011877 A1 WO 2004011877A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
deflection
crankshaft
angle
light
Prior art date
Application number
PCT/JP2003/009364
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Hazama
Hiroichi Takeda
Takehiko Yoshimura
Original Assignee
Asahi Shoji Ltd.
Koshin Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Shoji Ltd., Koshin Co.,Ltd. filed Critical Asahi Shoji Ltd.
Publication of WO2004011877A1 publication Critical patent/WO2004011877A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a laser complete angle detecting device, a crankshaft deflection measuring device, a crankshaft deflection measuring method, and a crankshaft.
  • the method of measuring the deflection of the crankshaft includes a method in which a measurer uses a rod-shaped measuring instrument having a dial gauge at one end, and a measurer reads the scale of the dial gauge to perform measurement.
  • a measurer uses a rod-shaped measuring instrument having a dial gauge at one end, and a measurer reads the scale of the dial gauge to perform measurement.
  • a deflection measuring device as described in Japanese Patent Application Laid-Open No. 02-39704.
  • the deflection measurement device includes: a rotation angle detection unit that detects a rotation angle of a crankshaft; a distance detection unit that detects a distance between a pair of arm portions in each throw of the crankshaft on a journal side; And a measuring base station for processing the detection data of the distance detecting means to obtain the deflection of the crankshaft.
  • the distance detecting means and the measuring base station are connected by wireless two-way communication.
  • a contact type digital dial gauge is used for the distance detection means.
  • a digital dial gauge is attached to the journal between the pair of arms through appropriate means such as a tensioning device, and the measuring element contacts the inner surface of the pair of arms. Then, while rotating the crankshaft in a predetermined direction, a change in the interval between the pair of arm portions on the journal portion side is detected as an electric signal by the mechanical movement of the tracing stylus at that time.
  • the conventional deflection measuring device uses a contact-type digital dial gauge as the distance detecting means, and attaches the distance detecting means to the journal side between the pair of arm parts via a tension means or the like. Therefore, it is necessary to carefully mount the vehicle with care and the mounting work is troublesome. Particularly, in the case of a multi-cylinder diesel engine, there is a problem that the preparation work before measurement becomes very complicated.
  • the connecting rod when turning or grinding the crankshaft, the connecting rod is not attached to its pin yet, so measurement can be performed with the distance detecting means attached between the pair of arms.
  • the distance detection means When assembling the vehicle, adjusting the shaft center when installing a diesel engine on a ship, or periodically inspecting the diesel engine installed on a ship, connect the distance detection means by rotating the crankshaft. Since the rod interferes with the rod, the distance detection means must be removed and replaced each time the rotation angle reaches the angle of the connecting rod. There is a problem that measurement can be performed only for each mouth.
  • the present invention uses a laser-type angle detecting device that can easily detect an angle formed by a laser beam with an object at a distant point in a non-contact manner, and a laser beam. It is an object of the present invention to provide a crankshaft deflection measurement device, a crankshaft deflection measurement method, and a crankshaft capable of easily measuring a deflection, etc., which can easily and quickly measure the deflection of the crankshaft. Disclosure of the invention
  • the laser-type angle detecting device includes a laser oscillating means 17 for oscillating a laser beam of a parallel light beam, and a laser receiving means ⁇ 8 for receiving one laser beam from the laser oscillating means 17.
  • the laser receiving means 18 is provided at an optical path 46 of laser light provided therein, a pinhole 48 provided at one end of the optical path 46, and provided at the other end of the optical path 46.
  • a light receiving element 49 for receiving the laser beam from the pinhole 48 and converting it into an electric signal. Therefore, it is possible to easily and surely detect the angle formed with the target at a remote point without using the laser beam.
  • a laser oscillation light receiving unit 90 including the laser oscillation means 17 and the laser light receiving means 18 and a reflection means 91 reflecting the laser light from the laser oscillation means 17 in the opposite direction.
  • the laser oscillation light receiving unit 90 transmits the laser light from the laser oscillation means 17 to the reflection means 91 side and transmits the laser light from the reflection means 9.1 to the reflection means 91.
  • a half mirror 92 is provided for reflecting the reflected light of the laser beam toward the pinhole 48 side.
  • one of the laser oscillation light receiving unit 90 and the reflecting means 91 may be provided with a mounting part 21 and a mounting part 21 so as to be removably mounted on the reference part and the other on the measuring part. desirable.
  • Angle calculating means 6 for calculating a detection angle based on a distance I from the pinhole 48 to the light receiving element 49 and a distance m from a reference position of the light receiving element 49 to a light receiving position of the laser beam 6. It is desirable to have 4. It is preferable that the optical path 46 includes one or a plurality of reflection mirrors 50 and 51 for reflecting one laser beam from the pinhole 48 to the light receiving element 49 side.
  • the crankshaft deflection measurement device is a crankshaft deflection measurement device configured to measure the amount of deflection at each predetermined rotation angle of the crankshaft 1.
  • a laser oscillating means 17, which is mounted on the side and oscillates a laser beam of a parallel light beam substantially in parallel with the axis of one of the journals 3, and which is mounted on the side of the journal 3 of the arm 4, The laser beam from the laser oscillating means 17 is received by the light receiving element 49 via the pinhole 48.
  • Laser receiving means 18 for detecting a relative angle between the two journal portions 3, and deflection calculating means for calculating the deflection amount based on the relative angle detected by the laser receiving means 18 for each predetermined rotation angle 8 and 6 are provided. Therefore, the deflection of the crankshaft 1 can be easily and quickly measured using the laser beam.
  • the laser oscillation means 7 and the laser light receiving means 18 are provided in each of the plurality of throws 2 of the crankshaft 1, and the deflection accumulating means 8 for accumulating the amount of deflection in each throw 2; It is desirable to have monitoring means for monitoring the accumulation results.
  • the method for measuring the deflection of a crankshaft comprises: a laser oscillating means 17 for oscillating a laser beam of a parallel light beam to a connecting rod 130 in a direction substantially parallel to the axis of the journal portion 3;
  • the laser light from the oscillating means 17 is received by the light receiving element 49 through the pinhole 48 by the light receiving element 49, and the laser light receiving means 18 for detecting the relative angle between the pair of journals 3 is used.
  • the deflection of the crankshaft 1 can be easily and quickly measured using the laser beam. It is desirable to use the above-mentioned laser set angle detecting device 15 as the laser oscillation means 17 and the laser light receiving means 18. Further, the laser oscillation means 17 and the laser light receiving means 18 are provided for each of the plurality of throws 2 of the crankshaft 1, and simultaneously the deflection It is desirable to measure the amount of shion.
  • the crankshaft according to the present invention includes a plurality of throws 2 each having a laser-type angle detection device 15. Therefore, the angle can be easily detected when necessary.
  • FIG. 1 is a configuration diagram of a deflection measurement device showing a first embodiment of the present invention
  • FIG. 2 is a side cross-sectional view of a laser oscillation means showing a first embodiment of the present invention
  • FIG. FIG. 4 is a front cross-sectional view of a laser oscillation unit according to a first embodiment of the present invention
  • FIG. 5 is a laser light receiving unit according to the first embodiment of the present invention.
  • FIG. 6 is a front view of a laser receiving unit according to the first embodiment of the present invention
  • FIG. 7 is an explanatory diagram of angle detection according to the first embodiment of the present invention
  • FIG. FIG. 9 is a block diagram showing the first embodiment
  • FIG. 9 is an explanatory diagram of a deflection showing the first embodiment of the present invention.
  • FIG. 10 is a configuration diagram of a laser-type angle detection device showing a second embodiment of the present invention.
  • FIG. 11 is a side sectional view of a laser oscillation light receiving unit showing a second embodiment of the present invention.
  • 2 is a plan sectional view of a laser oscillation light receiving unit showing a second embodiment of the present invention
  • FIG. 13 is a front sectional view of a laser oscillation light receiving unit showing a second embodiment of the present invention
  • FIG. FIG. 7 is a side sectional view of a reflecting means according to a second embodiment of the present invention
  • FIG. 15 is a front view of the reflecting means according to the second embodiment of the present invention.
  • FIG. 16 is a front view of a throw portion showing a third embodiment of the present invention
  • FIG. 17 is a cross-sectional view of a part of a mouth showing a third embodiment of the present invention
  • FIG. 18 is a third view of the third embodiment of the present invention.
  • FIG. 19 is a block diagram showing a third embodiment of the present invention.
  • FIG. 10 is a partially cutaway view of a throw portion showing a fourth embodiment of the present invention.
  • FIG. 1 to 9 illustrate a first embodiment of a crankshaft deflection measuring device using a laser complete angle detecting device.
  • the crankshaft 1 for which deflection is to be measured is for a multi-cylinder engine and has a plurality of throws 2 in the axial direction, each throw 2 having a journal 3 and a base having a journal. It is composed of a pair of arm portions 4 fixed to the portion 3 and a pin portion 5 fixed between the tip portions of the pair of arm portions 4.
  • the base side, which is the journal portion 3 side of each arm portion 4 is machined into an arc shape centering on the journal portion 3 on the side opposite to the pin portion 5 with respect to the journal portion 3.
  • a thrust portion 6 for supporting the thrust load is provided at one end of the crankshaft 1.
  • the crankshaft 1 is arranged on a bed 8 of a lathe 7 for machining a journal, and each journal 3 and thrust 6 are rotatable from below by a support means 9 on the bed 8.
  • the lathe 7 has a headstock 10 and a turret (not shown) in addition to the bed 8, and the headstock 10 is provided with a main shaft 11 for rotating the crankshaft 1 around the axis. Have been.
  • a chuck 12 for detachably holding the crankshaft 1 is provided at one end of the main shaft 11, and a rotation angle detecting means 13 for detecting the rotation angle of the crankshaft 1 is provided at the other end.
  • the rotation angle detecting means 13 is constituted by an encoder or the like.
  • the support means 9 supports the lower surface of the journal 3 at two points from the front and rear sides, and the height of the journal 3
  • the deflection measurement device ⁇ 4 which measures the deflection of the crankshaft ⁇ , adjusts the crankshaft 1 by adjusting the rotation angle detection means 13 as shown in FIG.
  • a measurement base station 16 that measures the deflection of each throw 2 based on the relative angle of the journal 3 and the crankshaft 1 mounted on a lathe 7 for processing the journal. Around the axis It is adapted to measure the Defurekushiyon while rotating the.
  • the laser type angle detecting device 15 is composed of a laser-oscillating means 17 (see FIGS. 2 to 4) detachably mounted on the journal 3 side of one arm 4 and the journal of the other arm 4. And a laser receiving means 18 (see FIGS. 5 and 6) detachably attached to the three sides.
  • the laser oscillating means 1 ⁇ and the laser receiving means 18 are separate parts, and the arc-shaped mounting surfaces 1 9 and 20 formed by machining on the journal 3 side of the arm 4 are magnet-type mounting means 2 It is attached detachably via 1, 2 2.
  • the laser oscillating means 17 is for oscillating a laser beam of a parallel light beam substantially in parallel with the axis of one of the journals 3, and as shown in FIGS.
  • a laser-oscillator 26 disposed in the housing recess 24 of the case body 23 in a front-rear direction and having an intermediate portion supported via an angle adjusting mechanism 25; and a power supply for supplying power to the laser-oscillator 26.
  • Power supply 27 is provided.
  • the laser-oscillator 26 has an optical system such as a convex lens for narrowing the light beam of the laser beam into a circular shape having a predetermined diameter on the distal end side, and a receiving recess formed at the upper side of the oscillation case body 23 with an opening on the front side.
  • the rear end side of the oscillation case body 23 is fitted in the holding recess 29 of the oscillation case body 23 via an elastic ring 28 such as a ⁇ ring.
  • the angle adjustment mechanism 25 is used to adjust the angle of the laser oscillator 26 up and down and left and right during assembly, and a holding ring 30 fixed to the outer periphery of the laser oscillator 26 and a front of the holding ring 30.
  • a support ring 31 fixed in the recessed portion 24 of the oscillation case body 23 and loosely fitted to the laser oscillator 26; an oscillation case body 23 interposed between the holding ring 30 and the support ring 31; And an intermediate ring 32 loosely fitted to the laser oscillator 26.
  • the holding ring 30 is supported via a pair of left and right fulcrum members 33 so as to be able to change the angle in the vertical direction with respect to the intermediate ring 32, and the upper and lower portions of the intermediate ring 32 contact the holding ring 30 from the front.
  • a pair of adjusting screws 34, 35 are screwed forward and backward to be able to move forward and backward.
  • a compression panel 34a is inserted between the holding ring 30 and the intermediate ring 32.
  • the intermediate ring 32 is supported by the pair of upper and lower fulcrum members 37 arranged on the same plane as the pair of left and right fulcrum members 33 so as to be capable of changing the angle in the left-right direction with respect to the oscillation case body 23.
  • a pair of right and left adjustment screws 38, 39 that come into contact with the intermediate ring 32 from the front side are screwed to the support ring 31.
  • On the outer periphery of the adjusting screw 38, a compression panel 38a is fitted between the intermediate ring 32 and the support ring 31.
  • the support ring 31 has an adjustment hole 31a corresponding to the adjustment screws 34, 35 of the intermediate ring 32.
  • a power supply chamber 40 for housing a power supply 27 is provided below the housing recess 24 for the laser oscillator 26.
  • Power supply 2 7 is charging It is composed of a plurality of batteries of the type, and is removably inserted into the power supply chamber 40 from the rear side.
  • the oscillation case body 23 has a front cover 41 that covers the opening end side of the housing recess 24 for the laser oscillator 26 and a power supply cover 42 that covers the power supply 27 from the rear side. It is attached to.
  • the front cover 41 is formed of a transparent plate, a colored plate, or the like having a light transmitting property for transmitting a laser beam.
  • the oscillation case body 23 is provided with a power switch 43 for turning on and off a power circuit of the laser oscillator 26 at an appropriate position such as a side surface.
  • the laser receiving means 18 includes a light receiving case body 45, a dark room 47 formed inside the light receiving case body 45 and having an optical path 46 for the laser light therein.
  • a pinhole 48 provided at one end of the optical path 46 with respect to the darkroom 47, and a laser disposed at the other end of the optical path 46 facing the darkroom 47 and from the pinhole 48.
  • a light receiving element 49 that receives one light and converts it into an electric signal, and one that is disposed in the optical path 46 in the dark room 47 and reflects the laser light from the pinhole 48 toward the light receiving element 49 Or, it is provided with a plurality of reflection mirrors 50, 51, various control boards 52, a transmitting / receiving antenna 53, and a power supply 54 for supplying power to each part.
  • the light receiving case body 45 has an inner support 55, and an external force bar 56 detachably attached to the outside of the inner support 55, and a dark room 47 inside the inner support 55. Is provided.
  • the inner support 55 has a front-to-rear entrance tube 58 projecting forward from the entrance 57 side of the dark room 47.
  • a pinhole 48 is provided at the front end of the entrance tube 58 at substantially the center.
  • Light receiving plate 59 is mounted.
  • the size of the pinhole 48 is larger than the diameter of the laser beam so that a part of the laser beam passes when the laser beam is applied to the approximate center of the light receiving plate 59. Is also getting smaller.
  • the pinhole 48 is generally formed of a round hole, a square hole, or the like.
  • the angle of the detection target is a one-dimensional direction
  • the one-dimensional direction (for example, The size of (downward) should be smaller than the one-dimensional (up-down) dimension of the laser beam.
  • the laser beam from the pinhole 48 is reflected in a zigzag shape before and after the darkroom 47 so as to ensure a sufficient optical path length.
  • a first reflecting mirror 50 and a second reflecting mirror 51 are provided.
  • the first reflecting mirror 50 is arranged on the optical path 46 on the side of the incident tube 58 on the rear side of the upper part of the dark room 47 so as to face the pinhole 48, and receives the laser beam from the pinhole 48. It is designed to reflect the light to the front of the mirror at 5 mm.
  • the second reflection mirror 51 is arranged on the lower front side of the dark room 47, and reflects the laser light from the first reflection mirror 50 to the light receiving element .49 toward the rear.
  • the reflection mirrors 50 and 51 are attached to the light receiving case body 45 with an adhesive or the like. Further, the reflection mirrors 50 and 51 are arranged vertically before and after in the dark room 47, but may be arranged left and right.
  • the light receiving element 49 is composed of a two-dimensional PSD, CCD, etc., mounted vertically on the back substrate 60, and the light receiving case body is provided via the substrate 60 corresponding to the lower rear opening 61 of the dark room 47. Attached to 4-5.
  • the light receiving element 49 receives an electric signal (light receiving signal) corresponding to the distance m from the reference position a to the light receiving positions b and c of the laser beam. No.) is output.
  • the control board 52 is mounted on the left and right sides and / or the upper side of the inner support 55 in the light receiving case body 45, and is covered with an external force bar 56. As shown in FIG. 8, the control board 52 includes transmission / reception means 62, timing means 63, angle calculation means 64, angle storage means 65, angle detection control means 66, and a power switch 67. And various other electronic components.
  • the power switch 67 has an operation part protruding above the external force bar 56 so that it can be operated from the outside.
  • the antenna 53 is for transmitting and receiving commands, data, and the like to and from the measurement base station 16 by wireless communication, and is disposed at an appropriate place such as the back side of the light receiving case body 45.
  • an antenna mounting portion 68 is provided at the upper end of the rear end of the light receiving case body 45, and the antenna 53 is mounted on the antenna mounting portion 68 in a downward direction substantially parallel to the light receiving case body 4.5. I have.
  • the antenna 53 is electrically connected to the transmitting / receiving means 62 of the control board 52.
  • the length of the antenna 53 is shorter than the lower end of the mounting means 22.
  • the power supply 54 is composed of a plurality of rechargeable batteries or the like, and is inserted and removed from the front into a power supply room 69 formed below the light-receiving case body 45 below the dark room 47 and stored therein.
  • a power supply cover 70 is mounted on the front side of the power supply chamber 69, and a cover 71 is mounted on the rear side of the board 49 so as to be detachable.
  • the mounting means 21 and 22 for detachably mounting the laser oscillating means 17 and the laser receiving means 18 on the reference part or the measuring part are the support base fixed to the lower side of each case body 23, 45. 7 2, 7 3, the permanent magnets (not shown) provided in the support tables 7 2, 7 3, and the front and rear sides of the support tables 7 2, 7 3 Operation levers 74, 75 for permanent magnets movably supported.
  • the operating levers 74 and 75 When the operating levers 74 and 75 are operated to one side in the left and right direction, the mounting means 21 and 22 move the support bases 71 and 73 to the reference part or the measuring part by the magnetic force of the permanent magnet. It can be fixed, and can be released when operated in the opposite direction.
  • a pair of left and right legs 76 and 77 are provided at the lower ends of the supports 72 and 73 so as to contact the mounting surfaces 19 and 20 such as the base of the arm 4.
  • the light receiving element 49 of the laser receiving means 18, the transmitting and receiving means 62, the timing means 63, the angle calculating means 64, the angle storing means 65, and the angle detecting controlling means 66 are As shown in FIG. 8, the angle detection control means 66 connected to the power supply 54 via the power switch 67 supplies at least one rotation of the crankshaft 1 when a measurement start command is issued from the measurement base station 16. It has a function to control the detection operation of each part in the inside, a function to read out the detection data when the detection result transmission command is sent from the measurement base station 16 and send it to the transmission / reception means 62, etc. This is for controlling each operation on the 8 side.
  • the transmission / reception means 62 is for transmitting / receiving various command signals, data, and the like to / from the measurement base station # 6 via the antenna 53.
  • the timing means 63 starts the timekeeping operation under the control of the angle detection control means 66, and the journal part 3 should detect the relative angle a between each other.
  • the angle calculation means 64 is controlled by the angle detection control means 66 each time the timing means 63 indicates the measurement time t0, t1, t2, t3 at a predetermined time interval t.
  • the distance m distance m 0, m 1, m 2, m 3- ⁇ ⁇
  • the angle storage means 65 stores detection angles ⁇ ⁇ ', a 1, a 2, a 3 which are the calculation results of the angle calculation means 64 at each of the measurement times t 0, t 1, t 2, t 3. - ⁇ ⁇ to memorize each measurement time t 0, t 1, t 2, t 3 ⁇ ⁇ 'and each detection angle ⁇ 0, a 1, a 2, a 3--- Detected —Ta “t O: ct O” “Se 1: a 1” '“t 2: a 2 j“ t 3: ct 3 ” ⁇ ⁇
  • the measurement base station 16 includes a transmitting / receiving antenna 80 and a transmitting / receiving means 81 for wirelessly transmitting and receiving data to and from the laser and the light receiving means 18, as well as a measurement processing controlling means 82 and an input means 8. 3. It has timekeeping means 84, correlation storage means 85, deflection calculation means 86, deflection integration means 87, monitoring means 88, etc. The input means 83, the timing means 84, the correlation storage means 85, the deflection operation means 86, the deflection accumulation means 87, the monitoring means 88, etc. are constituted by a personal computer or the like operated by predetermined measurement software. I have.
  • the measurement processing control means 82 is for controlling various operations on the measurement base station 16 side.
  • the input means 83 is composed of a keyboard or the like, and is used for inputting conditions of the crankshaft 1 to be measured, a measurement start command, a measurement result transmission command, a monitoring command, other conditions, commands, and the like.
  • the measurement processing control means 82 controls the timing operation by synchronizing with the laser light receiving means 18 and the time measurement means 63 on the side of the laser beam. Synchronize with the timing means 6 3, the measurement times t 0, t 1, t 2, t 3 are measured at predetermined time intervals t at which the relative angle a between the journal parts 3 should be detected. Time t O, t 1, t 2, t 3
  • --It is for sequentially instructing.
  • the correlation storage means 85 stores the rotation angle of the crankshaft 1 detected by the rotation angle detection means 13 and the clock times t 0, t 1, t 2, t 3 of the clock means 84.
  • the journal portion When evaluating the deflection amount based on the relative angle of the journal portion 3 when 5 is 0 °, 90 °, 180 °, and 270 °, the journal portion in a certain throw 2
  • the rotation angle of 3 is 0 °
  • the rotation angle of pin 5 is 0 If it is °, the rotation angle of the pin part 5 is 0.
  • 90 °, 180 °, 270 ° and the measurement times t 0, t90, t18 corresponding to the rotation angles 0 °, 90 °, 180 °, 270 ° 0 and t 27 0 are stored in association with each other.
  • the deflection calculating means 86 calculates the amount of deflection for each throw 2 from the relative angle ⁇ of the journal 3 in each mouth 12 detected by each laser light receiving means 18.
  • the transmitting / receiving means 62 of the measurement base station 16 issues a command to transmit the detection data necessary for evaluating the amount of deflection to the specific laser receiving means 18 or all the laser receiving means 18 and the laser receiving means. ⁇ ⁇
  • the detection data is transmitted from the transmission / reception means 6 2 of 8
  • the distance on the journal 3 side between the pair of arms 4 is calculated for each throw 2 based on the detection data of the journal 3 for each throw 2.
  • the deflection amount in the throw 2 is separately calculated from the distance between the arm portions 4.
  • the deflection calculating means 86 temporarily uses the pair of arm portions 4 based on the detected angles of the journal portions 3. Although the distance between the arm portions 4 is calculated, and then the deflection amount is calculated from the distance between the arm portions 4, the deflection amount may be calculated from the detected angles of the journal portions 3.
  • the deflection accumulating means 87 is for accumulating and storing the deflection amount in each throw 2 of the crankshaft 1 calculated separately by the deflection calculating means 86 sequentially.
  • Monitoring means 8 8 is input means
  • monitoring means 8 8 When the simultaneous or individual monitoring command is issued from 3, the amount of deflection in each throw 2, which is the accumulation result stored in the deflection accumulation means 87, is displayed on the display screen simultaneously or individually by numbers, graphs, etc. It is for displaying and monitoring, and is composed of liquid crystal display means.
  • monitoring means 8 8 Alternatively, it may be constituted by a printing means for printing the accumulation result of the deflection accumulation means 87 on recording paper or the like.
  • each set of lasers 15 is attached to each of the throws 2 of the crankshaft 1.
  • one of the laser oscillating means 17 and the laser receiving means ⁇ 8 constituting the laser type angle detecting device 15 is placed on one side of the arm section 4 on the journal section 3 side and the other is on the other side. It is mounted on the journal part 3 side of the arm part 4 via mounting means 21 and 22 respectively.However, since the mounting means 21 and 22 are attached by the attractive force of the permanent magnet, The laser-oscillating means 17 and the laser-receiving means 18 can be easily mounted on the arm 4. .
  • each arm part 4 has an arcuate mounting surface 19, 20 around the third round of the journal part, and a pair of support bases 7 2, 7 3 is provided on the mounting surface 19, 20.
  • the laser oscillator 26 of the laser oscillating means 17 is substantially parallel to the axis of the journal section 3, and the laser receiving means 18
  • the optical path 46 between the pinhole 48 and the first reflecting mirror 50 is substantially parallel to the axis of the other journal 3.
  • one of the laser-oscillating means 17 and the laser-receiving means 18 is mounted so that the light beam of the laser light from the laser-oscillator 26 irradiates substantially the center of the light-receiving plate 59 of the laser-receiving means 18. Since it is only necessary to adjust in the circumferential direction of the surfaces 19 and 20, complicated position adjustment despite the laser oscillation means ⁇ 7 and the laser receiving means 18 being separately mounted on the separate arm 4 Is not required.
  • the laser type angle detector 15 After the laser type angle detector 15 is attached to the crankshaft 1, when the crankshaft 1 is rotated at a low speed in a predetermined direction and a re-measurement start command is input by the input means 83 of the measurement base station 16 , Sending and receiving means 6 2 for each throw 2 At the same time, the measurement start command is wirelessly transmitted to the attached laser receiving means 18.
  • each laser-light receiving means 18 When the transmitting / receiving means 62 of each laser-light receiving means 18 receives the measurement start command, the timing means 84 of the measuring base station 16 and the timing means 63 of the laser-light receiving means 18 are simultaneously synchronized.
  • the timers 6 3 and 8 4 measure the time t 0 and t 1 at predetermined time intervals t at which the relative angle ⁇ of the journal 3 of each throw 2 should be detected. , t 2, t 3 ⁇ ⁇ -in order.
  • the correlation storage means 85 stores the respective rotation angles necessary for evaluating the deflection amount of each throw 2 and the measurement time corresponding to that rotation angle in each throw 2 in association with each other. For example, in a certain throw 2, the rotation angle is 0.
  • the measurement times are t0, t90, t180, and t270
  • the rotation angles are 0 °, 9 0 °, 180 °, 270 °
  • the measurement times t0, t90, t180, t270 are stored in association with each other.
  • each laser light receiving means 18 every time the timing means 63 indicates the measurement time t 0, t 1, t 2, t 3 at a predetermined time interval t, the angle is calculated.
  • the means 64 sequentially samples the distances m 0, m 1, m 2, m 3 from the laser light receiving means 18 according to the light receiving position at that time, and measures each time t 0, t 1, t 2, the relative angle ⁇ of the journal 3 at t 3---is calculated and stored.
  • the laser oscillator 26 of the laser oscillating means 17 oscillates one laser beam of a light beam parallel to the axis of the one journal part 3 to the laser receiving means 18 side. If part 3 is parallel, As shown in (A), the laser beam irradiates from the pinhole 48 to the reference position a of the light receiving element 49, and the laser light receiving means 18 outputs m O with a distance of zero.
  • the angle detection control means 66 Under control, the distances m O, m 1, m 2, and m 3-'of the light receiving means 18 at the measurement time points t 0, t 1, t 2, t 3 ⁇ ⁇ ⁇ are sampled and the angle calculation means 6 4 Calculates the relative angles ⁇ 0, a 1, a 2, a 3- ⁇ ⁇ , and the angle storage means 65 calculates the measurement times t 0, t 1, t 2, t 3 ⁇ ⁇ ⁇ and the relative angles ct 0, Detection data corresponding to 1, 2, ⁇ 3 ⁇ ⁇ ⁇ ⁇
  • the laser type angle detecting device 15 of each throw 2 performs the detecting operation at the same time, detects the relative angle ct of the journal portion 3 in each throw 2 at the same time, and stores it in the respective angle storage means 65.
  • the measurement base station 16 transmits a measurement start command to the laser receiving means 18 of each laser angle detector 15 at the same time. Therefore, since the timing means 63 simultaneously starts the timing operation in synchronization with each other, at each throw 2, the same measurement times t 0, t 1, t 2, t 3 ⁇ ⁇ ⁇ indicated by the timing means 63 are obtained. Each relative angle can be sequentially detected.
  • the laser beam is transmitted from the measurement processing control means 82 of the measurement base station ⁇ 6 to the transmission / reception means 81.
  • a detection result transmission command is transmitted to one light receiving means 18.
  • the rotation angles 0 ° and 90 of the crankshaft 1 necessary for evaluating both the deflections in each of the throws 2 in the correlation storage means 85. 180 °, 270 °, and the corresponding measurement times t0, t90, t180, t270, are determined. Specify the measurement time t 0, t 9 0, t 18 0, t 27 0 and specify.
  • the control of the measurement processing control means 82 changes the detection data “t 0: ct 0” stored in the angle storage means 65.
  • “T1: c3 ⁇ 41” "t2: a0”
  • the transmission / reception means 62 reads out the detected data of each of the above “t 0: a 0”.
  • “T 9 0: ct 9 0” “t 18 0: a 18 0” “t 27 0: a270J is transmitted to the measurement base station 16.
  • the transmission and reception of the detection data is performed for each laser light receiving means 18.
  • the transmission / reception means 81 detects the detected data of each slow 2 “t 0: a 0” “t 9 0: a 9 0 j” “t 1 8 0: a 1 8 0” “t 2 7 0 : ct 27 0 ”, the deflection calculation means 86 controls the respective detection data“ t 0: a 0 ”“ t 9 0: a 9 0 ”“ t 1 Calculate the interval on the journal 3 side between the pair of arms 4 in each throw 2 based on “80: a180” and “t270: a270” Then, the deflection amount of the journal section 3 is sequentially calculated for each throw 2 based on the calculation result. Then, the operation result is stored in the deflection accumulation means 87.
  • the detection data which is the detection result
  • the amount of deflection in the throw 2 is calculated. It is accumulated in the Deflection accumulation means 87. Then, after accumulating the deflection amounts of all the throws 2, if the input means 83 is monitored, the deflection quantity of each throw 2 stored in the deflection accumulating means 87 is monitored on the screen of the monitoring means 88 in a predetermined manner. It can be displayed in a format, and the amount of deflection can be monitored as needed.
  • a specific identification code is attached to each laser type angle detection device 15 and transmitted.
  • the laser type angle detector 15 can be specified and commanded.
  • the measurement base station 16 may specify the detection data of the measurement time necessary for evaluating the amount of deflection, but all of the detection data stored in the angle storage means 65 Is transmitted to the measurement base station 16 side, and after being received by the measurement base station 16 side, the detection data at the measurement time corresponding to the required rotation angle is extracted, and the amount of deflection in the slow 2 is calculated. You may do it.
  • each throw 2 of the crankshaft 1 if the journal portion 3 side between the pair of arm portions 4 is at a predetermined distance W as shown in FIG. 9 (A), the pin portion 5 and the journal portion 3 are generally parallel. And there is no deflection. However, when deflection occurs, the length of the pin portion 5 is constant, and the length of each pin portion 3 and the base side of each arm portion 4 fixed thereto are fixed. Because of the relationship, each arm 4 bends outward or inward as shown in Fig. 9 (B) or (C) between the pin 5 and the journal 3 side, which causes a deflection. As a result, the relative angle ⁇ between the journal portions 3 and the intervals W 1 and W 2 between the pair of arm portions 4 on the journal portion 3 side change.
  • the laser-oscillating means is provided on the base side of one arm part 4. 17 is attached to the base side of the other arm 4, respectively, and the laser beam receiving means 18 is attached to the base, respectively, and the relative angle ⁇ of the journal 3 at a predetermined rotation angle is measured. The interval on the journal part 3 side between 4 is known, and the amount of deflection in each throw 2 can be obtained.
  • the laser set angle detecting device 15 includes a laser oscillating means 1 for oscillating a laser beam of a parallel light beam, and a laser light receiving means 18 for receiving the laser light from the laser oscillating means 17.
  • the laser receiving means 18 includes an optical path 46 for laser light provided therein, a pinhole 48 provided at one end of the optical path 46, and a pin provided at the other end of the optical path 46.
  • Light receiving element 4 that receives laser light from hole 4 8 and converts it into an electric signal
  • the relative angle ⁇ of the journal 3 can be easily and reliably detected in a non-contact manner by using a single laser beam.
  • the laser type angle detector 15 has a laser oscillation unit 17 and a laser receiving unit 18 separately, one of which is provided on one arm 4 as a reference part and the other on the other arm which is a measurement part. 4 are detachably mounted via mounting means 20 and 21 respectively, so that the individual laser oscillation means ⁇ 7 and the laser-light receiving means 18 can be downsized, and the handling thereof is easy and the laser Oscillating means 17 and laser receiving means 18 as reference part and measurement part It can be easily attached to
  • the light path 46 is provided in the dark room 47, the light is hardly affected by disturbance light and can be reliably detected.
  • the size of the pinhole 48 is smaller than the diameter of the light beam of the laser beam, the laser-oscillating means 17 and the laser-receiving means 18 must be mounted within the range where the laser beam enters the pinhole 48. It is easy to mount it, and even if the angle of the detection target changes, such as the relative angle of the journal part 3 at each rotation angle, as long as one laser beam enters the pinhole 48. If so, the angle can be detected reliably.
  • the angle calculating means 64 calculates the detection angle based on the distance m from the pinhole 48 to the light receiving element 49 and the distance I from the reference position of the light receiving element 49 to the laser light receiving position. Therefore, the calculation of the detection can be easily performed as compared with the case where the angle is directly read from the light receiving position. Also, since one or a plurality of reflection mirrors 50 and 51 for reflecting the laser beam from the pinhole 48 to the light receiving element 49 side in the optical path 46 are provided, The distance I of the optical path 46 can be increased without increasing the size of 18, and the detection accuracy is improved.
  • Laser oscillation means 17 and laser light receiving means 18 are provided for each of the multiple throws 2 of the crankshaft 1, and the amount of deflection in each throw 2 is measured at the same time. Can be measured.
  • the deflection accumulation means 87 for accumulating the deflection amount in each throw 2 and the monitoring means 88 for monitoring the accumulation result the deflection amount of each throw 2 can be monitored individually or simultaneously.
  • the laser angle detector 15 is connected to the laser oscillation means 17 and the laser
  • a laser oscillation light receiving unit 90 that includes a light receiving means 18 and a reflecting means 91 that reflects the laser light from the laser oscillation means 17 in the opposite direction;
  • a half mirror 92 for transmitting the laser light from the laser oscillation means 17 to the reflection means 91 and reflecting the reflected laser light from the reflection means 91 to the pinhole 48 side is provided.
  • the laser oscillation light receiving unit 90 and the reflection means 91 are provided with mounting means 21 and 22 for detachably mounting one of them on a reference part and the other on a measurement part, respectively.
  • the laser mono-oscillation light receiving unit 90 includes a case body 93 in which the interior is a dark room 47, and a laser oscillation step 17 is provided inside the case body 93. And the laser-light receiving means 18 are arranged.
  • the case body 93 includes a pair of support frames 94, 95 arranged at predetermined intervals in the front-rear direction, and an upper frame 96 connecting the upper and lower ends of the support frames 94, 95 back and forth. And a lower frame 97, and an inverted U-shaped cover 89 fitted externally from above to cover them and detachably fixed to the upper frame 96 and the lower frame 97.
  • the mounting means 21 is attached to the lower side of the lower frame 97, and the antenna 53 is attached to the rear end of the upper frame 96 downward.
  • the laser oscillating means 17 has a laser oscillator 26 arranged in the front-rear direction on the upper part in the case body 93, and the laser-oscillator 26 has a front side attached to the mounting portion 99 of the support body 98. Attached via the angle adjustment mechanism 100, and the laser is transmitted from the optical path hole 101 on the side of the support frame 94 to the reflection means 91 in front through the half mirror 92 fixed to the support 98. It oscillates light.
  • the support member 98 includes a mounting portion 99 provided on the rear side for the laser oscillator 26 and a mounting portion 1 for the mirror 111 provided on the front side of the mounting portion 99. 0 2 and the bulkhead 1 0 3 And a mounting portion 105 for the reflecting mirror 50 provided below the cylindrical portion 104, and a support frame on the front side. It is arranged vertically and fixed at the corners of the upper frame 94 and the upper frame 96.
  • the angle adjusting mechanism 100 is provided with a receiving plate 106 fixed to the back of the mounting portion 99, an adjusting ring 107 fixed to the front side of the laser oscillator 26, and an adjusting ring 107.
  • the fixing screw 10 '8 in the front-rear direction which is passed through the hole from the back side and screwed to the mounting portion 99, and before and after screwing into the screw hole of the adjusting ring 107 and abutting on the receiving plate 106
  • Direction adjusting screw 109 There are at least three fixing screws 108 and adjusting screws 109 in the circumferential direction of the laser oscillator 26, and they are alternately arranged at substantially equal intervals in the circumferential direction.
  • This adjusting mechanism is operated by operating three adjusting screws 109 individually from the back side to adjust the angle of the laser oscillator 26 up, down, left and right, and then tightening the fixing screw 108 to re-laser oscillator. 2 6 is fixed to the mounting section 9 9.
  • the mirror 81 transmits the laser beam from the laser oscillator 26 forward and reflects the reflected laser beam from the reflection means 91 downward to the optical axis of the laser oscillator 26. Approximately 4 5. It is attached to the mounting part 102 at an inclination angle of. Note that a laser light absorber 110 is mounted on the upper frame 96 side of the half mirror 92 so as to receive the laser light reflected upward by the half mirror 92.
  • the optical path hole 101 is formed in a rotatable member 111 mounted on the front support frame 94, and its size is approximately the same as or slightly larger than the diameter of the laser beam.
  • B member ⁇ 1 ⁇ is provided with a transparent and other light-receiving plate 59 having laser light transmitting property, which is mounted on the front surface so as to cover the optical path hole 101.
  • the light is reflected by the half mirror 9 2 on the lower side.
  • the laser beam reflected by the half mirror 92 enters the light receiving element 49 from the pinhole 48 via the reflecting mirror 50 in the optical path 46 in the dark room 47. ing.
  • the reflecting mirror 50 is fixed to the mounting portion 105 at an inclination angle of about 45 °, almost parallel to the 81-milling mirror 92, and reflects the laser beam from the pinhole 48 backward. I'm going to let you.
  • the light receiving element 49 is mounted on the substrate 60, and is attached to the support frame 95 on the rear side in the dark room 47.
  • a control board 52 is vertically arranged on one side of the laser-oscillator 26 so as to straddle the upper frame 96 and the lower frame 97.
  • a power storage unit 112 is provided in the cover 98.
  • the reflecting means 91 includes a support frame 115 standing upright from the front of the mounting means 22 and an angle adjusting mechanism 111 on the upper side of the support frame 115. 6. It has a reflection mirror 118 mounted so that the angle can be adjusted via a mirror support plate 117.
  • the reflection mirror 118 is a disk shape and is mounted on the mirror support plate 117.
  • the angle adjustment mechanism 1 16 is interposed between the support frame 1 15 and the mirror support plate 1 17, and the spherical body 1 2 fixed to the support frame 1 15 by the central screw 1 19 0, a rotating body 1 21 that is rotatably fitted on the outer periphery of the spherical body 20 in an arbitrary direction, and the rotating body 1 21 fixed to the back side of the mirror support plate 1 7
  • Adjusting screw 1 which is hinged to the holding body 1 1 2 and the support frame 1 15 so as to be able to move back and forth in the front-rear direction, and abuts on the outer peripheral side of the holding body 1 1 2 from the side opposite to the reflective mirror 1 1 8 23 and a pole fitted into the recess of the support frame 115 and pressing the outer peripheral side of the presser 1 I 2 from the side opposite to the reflective mirror 111 by the panel pressure of the compression spring 114 And the like.
  • Adjustment screw 1 1 3 multiple pressing bodies ⁇ 1 5 in the circumferential direction, adjustment screw 1 1
  • the pressing members 3 and the pressing members 115 are arranged on the opposite sides so as to be adjacent to each other in the circumferential direction. Therefore, the angle adjusting mechanism 1 16 can be adjusted to any angle around the spherical body 1 I 0 by operating the knob 1 26 to move the adjusting screw 1 2 3 back and forth. The angle can be adjusted.
  • the mirror support plate 117 is provided with a detachable mirror cover 127 that covers the reflection mirror 118.
  • the mirror cover 117 may have a light transmitting property.
  • the mounting means 21 and 22 are the same as in the first embodiment.
  • various electronic components such as transmission / reception means 61, clocking means 63, angle calculation means 64, angle storage means 65, and angle detection control means 66 are provided on the control board 52. Is installed. Other configurations are the same as those of the first embodiment.
  • one of the laser oscillation light receiving unit 90 and the reflecting means 91 of the laser complete angle detector 15 is connected to one arm 4.
  • the other side is attached to the base side of the other arm part 4 on the base side of the other.
  • the laser beam from the laser oscillator 26 of the laser-oscillating means 17 is transmitted through the half mirror 92 to the reflecting means 91, and is reflected to the reflecting means 91.
  • the laser beam is reflected in the opposite direction.
  • the reflected laser light is reflected by the half mirror 92 and refracted to the lower pinhole 48 side, and irradiates the light receiving element 49 from the pinhole 48 via the reflection mirror 50 in the dark room 47.
  • the journal section 3 has a relative angle
  • the laser light receiving position on the light receiving element 49 changes upward and downward in accordance with the angle, so that the relative angle is changed as in the first embodiment. It can detect and measure the amount of deflection for each throw 2.
  • FIGS. 16 to 19 illustrate a third embodiment of the present invention.
  • a laser beam of a parallel light beam is made substantially parallel to the axis of one of the journals 3.
  • a laser oscillating means 17 oscillating to the connecting rod 13 0 side, and a laser beam from the laser oscillating means 17 is received by the light receiving element 49 via the pinhole 48 and a pair of journal portions.
  • the laser receiving means 18 for detecting the relative angle of 3 is mounted on the journal 3 side of each arm 4, and the amount of deflection is measured while rotating the crankshaft 1 in a predetermined direction at a constant speed. At this time, the relative angle of the laser beam is detected by the laser beam receiving means 18 at predetermined time intervals t, based on the point in time when the laser beam is blocked by the connecting rod # 30.
  • the control substrate 52 of the laser receiving means ⁇ 8 includes a time measuring means 63, an angle detection controlling means 66, a transmitting means 61, an angle calculating means 64, an angle storing means 65, etc.
  • the measurement base station 16 has transmission / reception means 81, measurement processing control means 81, input means 83, allocating means 131, deflection calculation means 86, deflection accumulating means 87, monitoring means 8 8 etc. are provided.
  • the angle detection control means 6 6 has a function of controlling the operation of each unit when a measurement start command is issued from the measurement base station ⁇ 6, and an angle storage means 6 when a detection result transmission command is issued from the measurement base station 16. In addition to the function of reading the detection data of 5 and transmitting it to the transmission / reception means 62, it also determines whether or not the laser light is blocked by the connecting rod 130 after the measurement start command. Judgment is made, and at the time when the connecting rod 130 cuts off the laser beam incident on the light receiving element 49, the clocking means 63 resets the clocking time to the initial state and starts the clocking operation. .
  • the timing means 63 is reset to the initial state by the control of the angle detection control means 66 when the laser beam is shielded by the connecting rod 130, for example. Assuming that the link shaft 1 makes one rotation from time t0 to t60, the measurement times t0 and t are determined at predetermined time intervals t at which the angles of the journals 3 are to be detected as shown in FIG. 1, t 2, t 3 ⁇ ⁇ ⁇ t 60 is measured, and the measurement times t 0, t 1, t 2, t 3 ⁇ .
  • the angle calculation means 64 is used for measuring the time t 0, t 1, t 2, t 3 t 6 0 at a predetermined time interval t when the time counting means 63 performs one rotation at time t 0 to t 60. Every time the command is issued, the distance signal m0, m1, m2, m 3 ⁇ ⁇ 'm SO is sampled, and each measurement time t 0, t 1, t 2, t 3 ⁇ ⁇ is determined based on the distance m and the distance I from the pinhole 48 to the light receiving element 49.
  • the angle storage means 65 stores the detection angles ⁇ 0, a 1, which are the calculation results of the angle calculation means 64 for each t 60, the measurement times t O, t 1, t 2, t 3 of the time counting means 63. , ⁇ 2, ⁇ 3 ⁇ ⁇ ⁇ Stores ⁇ 60, each measurement time t 0, t 1, t 2, t 3- ⁇ ⁇ t 60 and each detection angle ⁇ 0, a 1, 2, a 3 ⁇ ⁇ ⁇ Angle detection data corresponding to ⁇ 60 “t0: ⁇ 0” “t1: hi1” “t2: a2” “t3: a3” ⁇ ⁇ ⁇ “ t 60: a 60 ”and memorize as impossible to measure while the laser beam is blocked by the connecting rod 130.
  • the input means 83 of the measurement base station 16 is used for the crankshaft 1 based on the conditions of the crankshaft 1 to be measured, the measurement start command, the measurement result transmission command, the monitoring command, etc., and the design drawings of the diesel engine. Calculate the light-blocking angle at the time of laser-light blocking by the connecting rod 130 during the rotation of the shaft 1 by ⁇ . Is designed to be input.
  • the allocating means 131 transmits the laser beam by the connecting rod ⁇ 30 based on the detection data transmitted from the laser receiving means 18 based on the detection result transmission command and the shading angle input by the input means 83.
  • Calculate the time t 0 to t 60 required for one rotation of throw 2 from the light shielding time t 0 to the next light shielding time t 0 ( t 60) .
  • the light shielding angle is 20 °
  • the deflection calculation means 86 detects the detection data transmitted from the laser receiving means 18 based on the detection result transmission command and the rotation angles ⁇ 20, ⁇ 26, ⁇ 32 allocated by the allocating means 13 1. , ⁇ 38 ⁇ . ⁇ ⁇ 20, and each rotation angle of throw 2 ⁇ 20, ⁇ 26, ⁇ 32, ⁇ 3 8 ⁇ ⁇ ⁇ Journal part between a pair of arm parts 4 at ⁇ 20 Calculate the distance on the 3 side, calculate the amount of deflection in the slow 2 from the distance between the arms 4, and interpolate the amount of deflection during that time based on the change in the detected data before and after the unmeasurable light-shielded section. I do.
  • the other configurations such as the laser oscillating means 17, the laser-light receiving means 18, and the measurement base station 6 are substantially the same as those of the first embodiment.
  • a measurement start command is wirelessly transmitted from the measurement base station 16 to the laser-type angle detection device 15 of each throw 2.
  • the transmitting and receiving means 62 of the laser receiving means 18 of 18 receives the measurement start command, and the angle detection control means 66 resets the timing means 63 to the initial state at the time when the connecting rod ⁇ 30 blocks the laser light,
  • the clocking means 63 starts the clocking operation and indicates the clocking times t 0, t 1, t 2, t 3---t 60.
  • the measuring means 63 measures time t 0, t ⁇ , t 2, t 3 at a predetermined time interval t.
  • the angle calculation means 64 is the distance from the laser receiving means 18 to the distance m 0, m 1, m 2, m 3- ⁇ -m 6 according to the light receiving position at that time. 0 is sampled sequentially and each measurement time t 0, t 1, t 2, t 3 ⁇
  • ⁇ ⁇ The relative angles ⁇ 0, 1, a 2, 3 of the journal portions 3 at t 60 are calculated. ⁇ ⁇ 60 is calculated, and the angle storage means 65 measures the measurement times t 0, t 1, t 2, t 3 ⁇ ⁇ ⁇ Detection data “t O: a O” “t 1: a 1” “t 2” corresponding to t 60 and relative angles a 0, 1, a 2, a 3- ⁇ -a 60 : ce 0 ”“ t 3: a 0 ” ⁇ ⁇ ⁇ Stored as“ t 60: ct 60 ”.
  • the detection result is transmitted to the laser receiving means 18 from the measuring processing control means 82 of the measuring base station 16 via the transmitting / receiving means 62.
  • the deflection calculation processing is started in consideration of the light shielding angle 20 ° input by the input means 83.
  • the allocation means 13 1 detects the detection data “t 0: a 0” “t 1: ct 1” “t 2: a 0” “t 3: a O” ⁇ -'Based on “t 60: a 60” and the light-shielding angle of 20 °, the time required for one rotation of slow 2 from the point at which laser light is shielded by connecting rod 130 to the point at which the next light-shield is performed T 0, t 0, t 1, 2, t 3 ⁇ ⁇ ⁇ t 60 and rotation angles ⁇ 20, ⁇ 26, ⁇ 32, ⁇ 38- ⁇ ⁇ 20 Is assigned.
  • the deflection calculating means 86 sets each detected data "se 0: a0" "t1: ⁇ 1" "t2: a0” "t3: ct0" '--"t600: a600” , And the rotation angles ⁇ 20, ⁇ 26, ⁇ 32, ⁇ 3 8 ⁇ ⁇ 8 ⁇ ⁇ 20 assigned to the rotation means 3 20 by the allocating means 13 1. ⁇ 26, ⁇ 32, ⁇ 38- ⁇ Calculate the distance on the journal 3 side between the pair of arms 4 at 0 20, and from the distance between the arms 4 the deflection at the throw 2 Calculate the quantity.
  • the amount of deflection does not fluctuate sharply, and the light-shielding range X in which the connecting rod 130 blocks light is small within one rotation. Based on the detected data change tendency, the amount of deflection during that period is interpolated.
  • the measurement base station 16 calculates the defraction amount for each throw 2 and accumulates and stores the deflection amount by the deflection accumulating means 87 each time the specific slow 2 calculation process is completed. Monitoring is carried out by monitoring means 8 according to the requirements.
  • crankshaft 1 since communication with the base station 16 is not required during the detection of the angle by each laser-type angle detector 15, the crankshaft 1 is placed in a shielded casing. Even if wireless communication is difficult, the relative angle of the journal section 3 of each slot 2 can be detected. Also, the rotation angle detecting means 13 for detecting the rotation angle of the crank shaft 1 is not required, and Can be simplified.
  • FIG. 20 illustrates a fourth embodiment of the present invention.
  • a plurality of throws 2 of the crankshaft 1 are provided with a laser type angle detecting device 15 for detecting the relative angle of each journal portion 3.
  • the throw 2 is provided with mounting recesses 1 3 5 and 1 3 6 that are open on opposite sides on the journal 3 side of the pair of arms 4, and laser oscillation occurs in one of the mounting recesses 1 3 5
  • the means 17 has laser light receiving means 18 removably fixed in the other mounting recessed part 13 36 respectively.
  • the laser oscillation means 17 and the laser receiving means 18 have substantially the same optical axis.
  • Each of the mounting recesses 1 3 5 and 1 3 6 is sealed by a sealing lid 1 3 7 and 1 3 8 detachably mounted on the opening side, and detects the relative angle of the journal 3. In this case, remove the closed lids 13 7 and 13 8.
  • the laser-type angle detecting device 15 is suitably the laser-oscillating means 17 and the laser-receiving means 18 illustrated in the first embodiment, but the laser-type angle detecting apparatus 15 is the one illustrated in the second embodiment. May be used, or other structures and types may be used. Further, the laser type angle detector 15 may be mounted at another position with another structure, such as mounted on the outer peripheral surface of the arm 4 opposite to the pin 5.
  • the present invention is not limited to each embodiment, and can be implemented in various other modes.
  • the laser type angle detection device 15 is used for detecting the angle of the journal portion 3.
  • the laser type angle detection device 15 may be used for other purposes. You can also. It is also possible to use a light-receiving element 49 having a spread in the vertical and horizontal directions, etc. In this case, it is possible to detect the angle in two directions in addition to the angle in one direction.
  • the magnet type is convenient for attaching and detaching the laser-oscillating means 17 and the laser receiving means 18 to the reference part and the measuring part, but the clamp type, screw type, and other mounting types May be used. It is desirable to arrange a reflection mirror, light-receiving element 49, etc. in the dark room 47 on the side of the laser one light receiving means 18 side, but when using it in a place that is not easily affected by disturbance light, etc., it is necessary to use a dark room. There is no need to arrange a reflection mirror, light-receiving element 49, etc.
  • the laser type angle detector 15 used for measuring the deflection amount of the throw 2 of the crank shaft 1 Other than those exemplified in the form may be used.
  • the angle of each throw 2 may be detected simultaneously or individually.
  • the laser type angle detection device 15 of each throw 2 and the measurement base station 16 are connected by wireless communication using radio waves, but a communication method other than radio waves may be used.
  • a relay base may be provided therebetween.
  • the relative angle is detected by the laser receiving means 18 at predetermined time intervals t based on the time when the laser beam is blocked by the connecting rod 130. Shielding of laser beam by connecting rod 130 The cancellation time may be used as a reference.
  • the angle may be detected every predetermined rotation angle. In this case, the amount of deflection at each predetermined angle may be obtained in combination with the angle detection means for detecting the rotation angle of the crankshaft 1.
  • the laser-type angle detection device, the crankshaft deflection measurement device, the crankshaft deflection measurement method, and the crankshaft according to the present invention can be used, for example, by turning a crankshaft of a large marine diesel engine or the like.
  • it is especially useful when grinding, incorporating the crankshaft into the casing of a diesel engine, or periodically inspecting a diesel engine mounted on a ship.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A laser-type angle detection device comprises laser oscillation means (17) for oscillating laser light of parallel beam flux, and laser light reception means (18) for receiving laser light from the laser oscillation means. The laser light reception means (18) comprises a light path (46) for laser light, provided inside the laser light reception means, a pin hole (48) provided on one end side of the light path (46), and a light reception element (49) provided on the other side of the light path (46), for receiving laser light from the pin hole (48) and converting it to an electric signal. An angle formed by an object at a remote point is easily detected without contact using laser light.

Description

明 細 書 レーザー式角度検出装置、 クランク軸のデフレクシヨン計測装置、 クラ ンク軸のデフレクション計測方法及びクランク軸 技術分野  Description Laser angle detector, crankshaft deflection measurement device, crankshaft deflection measurement method, and crankshaft technical field
本発明は、 レーザ一式角度検出装置、 クランク軸のデフレクシヨン計 測装置、 クランク軸のデフレクシヨン計測方法及びクランク軸に関する ものである。 背景技術  The present invention relates to a laser complete angle detecting device, a crankshaft deflection measuring device, a crankshaft deflection measuring method, and a crankshaft. Background art
大型の舶用ディーゼル機関等のクランク軸を旋盤加工、 研削加工する 場合、 クランク軸をディーゼル機関のケーシング内に組み込む場合、 或 し、は船舶に搭載されたディ一ゼル機関を定期的に点検する場合に、 クラ ンク軸の各スローのデフレクションが問題になる。  When turning or grinding the crankshaft of a large marine diesel engine, etc., when incorporating the crankshaft into the casing of the diesel engine, or when regularly inspecting the diesel engine mounted on the ship Another problem is the deflection of each throw in the crank axis.
このクランク軸のデフレクシヨンを計測する方法には、 従来、 一端に ダイヤルゲージの付いた棒状の測定器を用い、 測定者がそのダイヤルゲ ージの目盛リを読み取って計測する方法以外に、 特許公開 2 0 0 2 - 3 9 7 4 0号公報に記載のようなデフレクシヨン計測装置を用いる方法が ある。  Conventionally, the method of measuring the deflection of the crankshaft includes a method in which a measurer uses a rod-shaped measuring instrument having a dial gauge at one end, and a measurer reads the scale of the dial gauge to perform measurement. There is a method using a deflection measuring device as described in Japanese Patent Application Laid-Open No. 02-39704.
このデフレクシヨン計測装置は、 クランク軸の回転角度を検出する回 転角度検出手段と、 クランク軸の各スローにおける一対のアーム部間の ジャーナル部側の距離を検出する距離検出手段と、 回転角度検出手段及 び距離検出手段の検出データを処理してクランク軸のデフレクシヨンを 求める計測基地局とを備え、 距離検出手段と計測基地局とを無線による 双方向通信により接続している。 距離検出手段には、 接触式のデジタルダイヤルゲージが使用されてい る。 そして、 計測に際しては、 デジタルダイヤルゲージを一対のアーム 部間のジャーナル部側に突っ張リ手段等の適宜手段を介して装着してお き、 その計測子を一対のアーム部の内面側に接触させて、 クランク軸を 所定方向に回転させながら、 そのときの計測子の機械的な動きにより、 ジャーナル部側における一対のアーム部間の間隔の変化を電気信号とし て検出する。 The deflection measurement device includes: a rotation angle detection unit that detects a rotation angle of a crankshaft; a distance detection unit that detects a distance between a pair of arm portions in each throw of the crankshaft on a journal side; And a measuring base station for processing the detection data of the distance detecting means to obtain the deflection of the crankshaft. The distance detecting means and the measuring base station are connected by wireless two-way communication. A contact type digital dial gauge is used for the distance detection means. At the time of measurement, a digital dial gauge is attached to the journal between the pair of arms through appropriate means such as a tensioning device, and the measuring element contacts the inner surface of the pair of arms. Then, while rotating the crankshaft in a predetermined direction, a change in the interval between the pair of arm portions on the journal portion side is detected as an electric signal by the mechanical movement of the tracing stylus at that time.
クランク軸にデフレクシヨンがあれば、 一対のアーム部間のジャーナ ル部側の間隔の変化となって現れるため、 距離検出手段でその間隔を検 出することにより、 ジャーナル部相互の相対角度が判る。 従って、 クラ ンク軸の回転角度を回転角度検出手段で検出し、 距離検出手段で一対の アーム部間のジャーナル部側の距離を検出すれば、 クランク軸のどのス 口一にどの程度のデフレクシヨンがあるかを計測できる。  If there is a deflection on the crankshaft, it appears as a change in the interval on the journal side between the pair of arms, and the relative angle between the journals can be determined by detecting the interval with the distance detecting means. Therefore, if the rotation angle of the crankshaft is detected by the rotation angle detection means, and the distance detection means detects the distance on the journal side between the pair of arms, the degree of deflection at which mouth of the crankshaft can be obtained. You can measure whether there is.
しかし、 従来のデフレクシヨン計測装置は、 距離検出手段として接触 式のデジタルダイヤルゲージを使用して、 この距離検出手段を一対のァ ー厶部間のジャーナル部側に突っ張り手段等を介して装着しているため 、 注意を払いながら慎重に装着する必要があってその装着作業が煩わし く、 特に多気筒ディーゼル機関の場合には、 計測前の準備作業が非常に 煩雑になるという問題がある。  However, the conventional deflection measuring device uses a contact-type digital dial gauge as the distance detecting means, and attaches the distance detecting means to the journal side between the pair of arm parts via a tension means or the like. Therefore, it is necessary to carefully mount the vehicle with care and the mounting work is troublesome. Particularly, in the case of a multi-cylinder diesel engine, there is a problem that the preparation work before measurement becomes very complicated.
またクランク軸を旋盤加工、 研削加工する場合には、 そのピン部に未 だ連接棒を取リ付けていないので、 距離検出手段を一対のアーム部間に 装着したままで計測できるが、 ディーゼル機関の組み立て時や、 船舶に ディーゼル機関を設置する場合の軸芯調整時、 或いは船舶に設置された ディーゼル機関を定期的に点検する場合には、 クランク軸の回転によつ て距離検出手段と連接棒とが干渉するため、 連接棒と干渉する回転角度 になる都度、 距離検出手段を取リ外して付け替えなければならず、 各ス 口一毎にしか計測できないという問題がある。 In addition, when turning or grinding the crankshaft, the connecting rod is not attached to its pin yet, so measurement can be performed with the distance detecting means attached between the pair of arms. When assembling the vehicle, adjusting the shaft center when installing a diesel engine on a ship, or periodically inspecting the diesel engine installed on a ship, connect the distance detection means by rotating the crankshaft. Since the rod interferes with the rod, the distance detection means must be removed and replaced each time the rotation angle reaches the angle of the connecting rod. There is a problem that measurement can be performed only for each mouth.
また距離検出手段の取リ付け位置を変更するとしても、 その都度、 作 業者がケーシング内に入って作業を行う必要があり、 スロー数の多い多 気筒ディーゼル機関の場合には、 距離検出手段の着脱作業に非常な時間 を要し、 作業能率が極端に低下するという欠点がある。 更に停船後のデ ィーゼル機関の検査では、 機関内は高温の油霧が存在する非常に劣悪な 環境であるため、 安全上の問題も大きい。  Also, even if the mounting position of the distance detecting means is changed, each time it is necessary for the operator to enter the casing and perform work, in the case of a multi-cylinder diesel engine with a large number of throws, There is a drawback that it takes an extremely long time to attach and detach the work, and the work efficiency is extremely reduced. In addition, the inspection of diesel engines after the stoppage of the engine has a serious safety problem because the engine is in a very poor environment with high temperature oil fog.
本発明は、 このような従来の問題点に鑑み、 レーザー光を使用して遠 隔点の対象物とのなす角度を非接触で容易に検出できるレーザー式角度 検出装置、 レーザ一光を使用してクランク軸のデフレクションを容易且 つ迅速に計測できるクランク軸のデフレクション計測装置及びクランク 軸のデフレクシヨン計測方法、 デフレクシヨンの計測等を容易に行える クランク軸を提供することを目的とする。 発明の開示  In view of such a conventional problem, the present invention uses a laser-type angle detecting device that can easily detect an angle formed by a laser beam with an object at a distant point in a non-contact manner, and a laser beam. It is an object of the present invention to provide a crankshaft deflection measurement device, a crankshaft deflection measurement method, and a crankshaft capable of easily measuring a deflection, etc., which can easily and quickly measure the deflection of the crankshaft. Disclosure of the invention
本発明に係るレーザー式角度検出装置は、 平行な光束のレーザー光を 発振するレーザー発振手段 1 7と、 該レーザー発振手段 1 7からのレー ザ一光を受光するレーザー受光手段〗 8とを備え、 前記レーザー受光手 段 1 8はその内部に設けられたレーザー光の光路 4 6と、 該光路 4 6の 一端側に設けられたピンホール 4 8と、 前記光路 4 6の他端側に設けら れ且つ前記ピンホール 4 8からのレーザー光を受光して電気信号に変換 する受光素子 4 9とを備えている。 従って、 レーザー光を使用して遠隔 点の対象物とのなす角度を非接触で容易且つ確実に検出できる。  The laser-type angle detecting device according to the present invention includes a laser oscillating means 17 for oscillating a laser beam of a parallel light beam, and a laser receiving means〗 8 for receiving one laser beam from the laser oscillating means 17. The laser receiving means 18 is provided at an optical path 46 of laser light provided therein, a pinhole 48 provided at one end of the optical path 46, and provided at the other end of the optical path 46. And a light receiving element 49 for receiving the laser beam from the pinhole 48 and converting it into an electric signal. Therefore, it is possible to easily and surely detect the angle formed with the target at a remote point without using the laser beam.
暗室 4 7内に前記光路 4 6を備えていることが望ましい。 前記ピンホ ール 4 8の大きさは前記レーザー光の光束の直径よりも小さいことが望 ましい。 前記レーザ一発振手段〗 7と前記レーザ一受光手段〗 8とを別体に備 え、 その一方を基準部位に、 他方を計測部位に夫々着脱自在に装着する ための装着手段 2 1 , 2 2を備えることもある。 It is desirable that the light path 46 be provided in the dark room 47. It is desirable that the size of the pinhole 48 be smaller than the diameter of the light beam of the laser beam. Mounting means 21 and 22 for separately mounting the laser-oscillating means〗 7 and the laser-light-receiving means〗 8, one of which is detachably mounted on a reference part and the other is mounted on a measuring part. May be provided.
また前記レーザー発振手段 1 7と前記レーザー受光手段 1 8とを含む レーザー発振受光ュニッ卜 9 0と、 前記レーザー発振手段 1 7からのレ 一ザ一光を逆方向へと反射させる反射手段 9 1 とを別体に備え、 前記レ ザ一発振受光ュニッ卜 9 0に、 前記レーザ一発振手段 1 7からのレーザ 一光を前記反射手段 9 1側へと透過し且つ該反射手段 9. 1からの反射レ —ザ一光を前記ピンホール 4 8側へと反射させるハーフミラー 9 2を備 しと あ 。  Further, a laser oscillation light receiving unit 90 including the laser oscillation means 17 and the laser light receiving means 18 and a reflection means 91 reflecting the laser light from the laser oscillation means 17 in the opposite direction. The laser oscillation light receiving unit 90 transmits the laser light from the laser oscillation means 17 to the reflection means 91 side and transmits the laser light from the reflection means 9.1 to the reflection means 91. A half mirror 92 is provided for reflecting the reflected light of the laser beam toward the pinhole 48 side.
この場合、 前記レーザー発振受光ユニット 9 0と前記反射手段 9 1 と の一方を基準部位に、 他方を計測部位に夫々着脱自在に装着するための 装着手段 2 1 , 2 2を備えていることが望ましい。  In this case, one of the laser oscillation light receiving unit 90 and the reflecting means 91 may be provided with a mounting part 21 and a mounting part 21 so as to be removably mounted on the reference part and the other on the measuring part. desirable.
前記ピンホール 4 8から前記受光素子 4 9までの距離 I と、 前記受光 素子 4 9の基準位置から前記レーザー光の受光位置までの距離 mとに基 づいて検出角度を演算する角度演算手段 6 4を備えていることが望まし い。 前記光路 4 6中に、 前記ピンホール 4 8からのレーザ一光を前記受 光素子 4 9側へと反射させる 1個又は複数個の反射ミラー 5 0 , 5 1を 備えていることが望ましい。  Angle calculating means 6 for calculating a detection angle based on a distance I from the pinhole 48 to the light receiving element 49 and a distance m from a reference position of the light receiving element 49 to a light receiving position of the laser beam 6. It is desirable to have 4. It is preferable that the optical path 46 includes one or a plurality of reflection mirrors 50 and 51 for reflecting one laser beam from the pinhole 48 to the light receiving element 49 side.
本発明に係るクランク軸のデフレクシヨン計測装置は、 クランク軸 1 の所定回転角度毎にそのデフレクション量を計測するようにしたクラン ク軸のデフレクシヨン計測装置において、 一対のアーム部 4のジャーナ ル部 3側に装着され且つ平行な光束のレーザー光を一方の前記ジャーナ ル部 3の軸心と略平行に発振するレーザー発振手段 1 7と、 前記アーム 部 4の前記ジヤーナル部 3側に装着され且つ前記レーザー発振手段 1 7 からのレーザー光をピンホール 4 8を経て受光素子 4 9によリ受光して 前記両ジャーナル部 3の相対角度を検出するレーザー受光手段 1 8と、 前記所定回転角度毎に前記レーザー受光手段 1 8により検出された前記 相対角度に基づいて前記デフレクシヨン量を演算するデフレクシヨン演 算手段 8 6とを備えている。 従って、 レーザー光を使用してクランク軸 1のデフレクシヨンを容易且つ迅速に計測できる。 The crankshaft deflection measurement device according to the present invention is a crankshaft deflection measurement device configured to measure the amount of deflection at each predetermined rotation angle of the crankshaft 1. A laser oscillating means 17, which is mounted on the side and oscillates a laser beam of a parallel light beam substantially in parallel with the axis of one of the journals 3, and which is mounted on the side of the journal 3 of the arm 4, The laser beam from the laser oscillating means 17 is received by the light receiving element 49 via the pinhole 48. Laser receiving means 18 for detecting a relative angle between the two journal portions 3, and deflection calculating means for calculating the deflection amount based on the relative angle detected by the laser receiving means 18 for each predetermined rotation angle 8 and 6 are provided. Therefore, the deflection of the crankshaft 1 can be easily and quickly measured using the laser beam.
前記レーザー発振手段 1 7及び前記レーザー受光手段 1 8として上記 のレーザ一式角度検出装置〗 5を用いることが望ましい。 また前記クラ ンク軸 1の複数個の各スロー 2に前記レーザー発振手段〗 7及び前記レ —ザー受光手段 1 8を設け、 各スロー 2におけるデフレクシヨン量を集 積するデフレクシヨン集積手段 8 了と、 その集積結果をモニタリングす るモニタリング手段 8 8とを備えていることが望ましい。  It is desirable to use the above-mentioned laser set angle detecting device # 5 as the laser oscillation means 17 and the laser light receiving means 18. Also, the laser oscillation means 7 and the laser light receiving means 18 are provided in each of the plurality of throws 2 of the crankshaft 1, and the deflection accumulating means 8 for accumulating the amount of deflection in each throw 2; It is desirable to have monitoring means for monitoring the accumulation results.
本発明に係るクランク軸のデフレクシヨン計測方法は、 平行な光束の レーザー光を一方めジャーナル部 3の軸心と略平行に連接棒 1 3 0側へ と発振するレーザー発振手段 1 7と、 該レーザー発振手段 1 7からのレ 一ザ一光をピンホール 4 8を経て受光素子 4 9によリ受光して一対の前 記ジャーナル部 3の相対角度を検出するレーザー受光手段 1 8とをァー 厶部 4の前記ジャーナル部 3側に装着しておき、 クランク軸 1を回転さ せながらそのデフレクシヨン量を計測するに際し、 前記連接棒 1 3 0に よるレーザ一光の遮光時点、 又は連接棒 1 3 0によるレーザー光の遮光 解除時点を基準に、 所定時間間隔又は所定回転角度毎に前記レーザー受 光手段 1 8によリ前記相対角度を検出する。 従って、 レーザー光を使用 してクランク軸 1のデフレクシヨンを容易且つ迅速に計測できる。 前記レーザー発振手段 1 7及び前記レーザ一受光手段 1 8として上記 のレーザ一式角度検出装置 1 5を用いることが望ましい。 また前記クラ ンク軸 1の複数個の各スロー 2に前記レーザー発振手段 1 7及び前記レ 一ザー受光手段 1 8を設けておき、 同時に各スロー 2におけるデフレク シヨン量を計測することが望ましい。 更に前記複数個の各スロー 2にお けるデフレクシヨン量を一度にモニタリングすることが望ましい。 本発明に係るクランク軸は、 複数個のスロー 2にレーザー式角度検出 装置 1 5を夫々備えている。 従って、 必要な場合に容易に角度を検出で きる。 図面の簡単な説明 The method for measuring the deflection of a crankshaft according to the present invention comprises: a laser oscillating means 17 for oscillating a laser beam of a parallel light beam to a connecting rod 130 in a direction substantially parallel to the axis of the journal portion 3; The laser light from the oscillating means 17 is received by the light receiving element 49 through the pinhole 48 by the light receiving element 49, and the laser light receiving means 18 for detecting the relative angle between the pair of journals 3 is used. When the amount of deflection is measured while rotating the crankshaft 1 at the time when the laser beam is blocked by the connecting rod 130 or when the connecting rod 1 is The relative angle is detected by the laser receiving means 18 at predetermined time intervals or at predetermined rotation angles with reference to the time point at which the shielding of the laser light by 30 is canceled. Therefore, the deflection of the crankshaft 1 can be easily and quickly measured using the laser beam. It is desirable to use the above-mentioned laser set angle detecting device 15 as the laser oscillation means 17 and the laser light receiving means 18. Further, the laser oscillation means 17 and the laser light receiving means 18 are provided for each of the plurality of throws 2 of the crankshaft 1, and simultaneously the deflection It is desirable to measure the amount of shion. It is also desirable to monitor the amount of deflection in each of the plurality of throws 2 at a time. The crankshaft according to the present invention includes a plurality of throws 2 each having a laser-type angle detection device 15. Therefore, the angle can be easily detected when necessary. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施形態を示すデフレクション計測装置の構成 図、 図 2は本発明の第 1の実施形態を示すレーザー発振手段の側面断面 図、 図 3は本発明の第 1の実施形態を示すレーザー発振手段の平面断面 図、 図 4は本発明の第 1の実施形態を示すレーザー発振手段の正面断面 図、 図 5は本発明の第 1の実施形態を示すレーザー受光手段の側面断面 図、 図 6は本発明の第 1の実施形態を示すレーザー受光手段の正面図、 図 7は本発明の第 1の実施形態を示す角度検出の説明図、 図 8は本発明 の第 1の実施形態を示すプロック図、 図 9は本発明の第 1の実施形態を 示すデフレクシヨンの説明図である。  FIG. 1 is a configuration diagram of a deflection measurement device showing a first embodiment of the present invention, FIG. 2 is a side cross-sectional view of a laser oscillation means showing a first embodiment of the present invention, and FIG. FIG. 4 is a front cross-sectional view of a laser oscillation unit according to a first embodiment of the present invention, and FIG. 5 is a laser light receiving unit according to the first embodiment of the present invention. FIG. 6 is a front view of a laser receiving unit according to the first embodiment of the present invention, FIG. 7 is an explanatory diagram of angle detection according to the first embodiment of the present invention, and FIG. FIG. 9 is a block diagram showing the first embodiment, and FIG. 9 is an explanatory diagram of a deflection showing the first embodiment of the present invention.
図 1 0は本発明の第 2の実施形態を示すレーザー式角度検出装置の構 成図、 図 1 1は本発明の第 2の実施形態を示すレーザー発振受光ュニッ 卜の側面断面図、 図 1 2は本発明の第 2の実施形態を示すレーザー発振 受光ユニットの平面断面図、 図 1 3は本発明の第 2の実施形態を示すレ 一ザ—発振受光ユニットの正面断面図、 図 1 4は本発明の第 2の実施形 態を示す反射手段の側面断面図、 図 1 5は本発明の第 2の実施形態を示 す反射手段の正面図である。  FIG. 10 is a configuration diagram of a laser-type angle detection device showing a second embodiment of the present invention. FIG. 11 is a side sectional view of a laser oscillation light receiving unit showing a second embodiment of the present invention. 2 is a plan sectional view of a laser oscillation light receiving unit showing a second embodiment of the present invention, FIG. 13 is a front sectional view of a laser oscillation light receiving unit showing a second embodiment of the present invention, FIG. FIG. 7 is a side sectional view of a reflecting means according to a second embodiment of the present invention, and FIG. 15 is a front view of the reflecting means according to the second embodiment of the present invention.
図 1 6は本発明の第 3の実施形態を示すスロー部分の正面図、 図 1 7 は本発明の第 3の実施形態を示すス口一部分の断面図、 図 1 8は本発明 の第 3の実施形態を示すブロック図、 図 1 9は本発明の第 3の実施形態 を示す遮光説明図である。 FIG. 16 is a front view of a throw portion showing a third embodiment of the present invention, FIG. 17 is a cross-sectional view of a part of a mouth showing a third embodiment of the present invention, and FIG. 18 is a third view of the third embodiment of the present invention. FIG. 19 is a block diagram showing a third embodiment of the present invention. FIG.
図 1 0は本発明の第 4の実施形態を示すスロー部分の一部破断図であ る。 発明を実施するための最良の形態  FIG. 10 is a partially cutaway view of a throw portion showing a fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施形態を図面に基づいて詳述する。 図 1〜図 9は レーザ一式角度検出装置を使用したクランク軸のデフレクション計測装 置の第 1の実施形態を例示する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 to 9 illustrate a first embodiment of a crankshaft deflection measuring device using a laser complete angle detecting device.
デフレクションの計測対象であるクランク軸 1は、 図 1 に示すように 多気筒用であって、 軸心方向に複数個のスロー 2を備え、 その各スロー 2はジャーナル部 3と、 基部側がジャーナル部 3に固定された一対のァ ー厶部 4と、 この一対のァ一厶部 4の先端部間に固定されたピン部 5と によリ構成されている。 各ァ一厶部 4のジャーナル部 3側である基部側 は、 ジャーナル部 3に対してピン部 5と反対側がジャーナル部 3を中心 とする円弧状に機械加工されている。  As shown in Fig. 1, the crankshaft 1 for which deflection is to be measured is for a multi-cylinder engine and has a plurality of throws 2 in the axial direction, each throw 2 having a journal 3 and a base having a journal. It is composed of a pair of arm portions 4 fixed to the portion 3 and a pin portion 5 fixed between the tip portions of the pair of arm portions 4. The base side, which is the journal portion 3 side of each arm portion 4, is machined into an arc shape centering on the journal portion 3 on the side opposite to the pin portion 5 with respect to the journal portion 3.
クランク軸 1の一端側には、 そのスラスト加重を支承するスラス卜部 6が設けられている。 そして、 クランク軸 1はジャーナル部加工用の旋 盤 7のべッド 8上に配置され、 各ジャーナル部 3とスラス卜部 6とがべ ッド 8上の支持手段 9により下側から回転自在に支持されている。 旋盤 7はべッド 8の他にへッドストック 1 0と刃物台 (図示省略) と を有し、 そのヘッ ドストック 1 0にクランク軸 1を軸心廻リに回転駆動 する主軸 1 1が設けられている。 主軸 1 1の一端側にはクランク軸 1を 着脱自在に把持するチャック 1 2が、 他端側にはクランク軸 1の回転角 度を検出する回転角度検出手段 1 3が夫々設けられている。 回転角度検 出手段 1 3はエンコーダ等により構成されている。 支持手段 9はジャー ナル部 3の下面側を前後両側から二点で支持し、 ジャーナル部 3の高さ を調整することによリ、 クランク軸 1の芯出しを行うようになっている クランク軸 Ίのデフレクションを計測するデフレクション計測装置 Ί 4は、 図 1 に示すように回転角度検出手段 1 3と、 複数個の各スロー 2 毎に装着され且つレーザー光を利用してそのジャーナル部 3相互の相対 角度を非接触で検出するレーザ一式角度検出装置 1 5と、 各スロー 2の レーザー式角度検出装置 1 5との間で無線通信によリ指令、 データ等を 送受信しながら、 回転角度検出手段 1 3で検出されたクランク軸〗の回 転角度と、 レーザ一式角度検出装置 1 5で検出されたジャーナル部 3の 相対角度とに基づいて、 各スロー 2毎にそのデフレクシヨンの計測処理 を行う計測基地局 1 6とを備え、 ジャーナル部加工用の旋盤 7上に装着 されたクランク軸 1をその軸心廻りに回転させながらデフレクシヨンを 計測するようになっている。 At one end of the crankshaft 1, a thrust portion 6 for supporting the thrust load is provided. The crankshaft 1 is arranged on a bed 8 of a lathe 7 for machining a journal, and each journal 3 and thrust 6 are rotatable from below by a support means 9 on the bed 8. Supported. The lathe 7 has a headstock 10 and a turret (not shown) in addition to the bed 8, and the headstock 10 is provided with a main shaft 11 for rotating the crankshaft 1 around the axis. Have been. A chuck 12 for detachably holding the crankshaft 1 is provided at one end of the main shaft 11, and a rotation angle detecting means 13 for detecting the rotation angle of the crankshaft 1 is provided at the other end. The rotation angle detecting means 13 is constituted by an encoder or the like. The support means 9 supports the lower surface of the journal 3 at two points from the front and rear sides, and the height of the journal 3 The deflection measurement device Ί4, which measures the deflection of the crankshaft Ί, adjusts the crankshaft 1 by adjusting the rotation angle detection means 13 as shown in FIG. A set of laser angle detectors 15 attached to each of the plurality of throws 2 and using laser light to detect the relative angle between the journal portions 3 in a non-contact manner, and a laser type angle detector for each throw 2 While transmitting and receiving commands, data, etc. by wireless communication with the device 15, the rotation angle of the crankshaft〗 detected by the rotation angle detection means 13 and the laser complete angle detection device 15 are detected. A measurement base station 16 that measures the deflection of each throw 2 based on the relative angle of the journal 3 and the crankshaft 1 mounted on a lathe 7 for processing the journal. Around the axis It is adapted to measure the Defurekushiyon while rotating the.
レーザー式角度検出装置 1 5は、 一方のアーム部 4のジャーナル部 3 側に着脱自在に装着されたレーザ一発振手段 1 7 (図 2〜図 4参照) と 、 他方のアーム部 4のジャーナル部 3側に着脱自在に装着されたレーザ ー受光手段 1 8 (図 5、 図 6参照) とを備えている。 レーザー発振手段 1 飞、 レーザー受光手段 1 8は別体であって、 アーム部 4のジャーナル 部 3側に機械加工により形成された円弧状の装着面 1 9 , 2 0に磁石式 の装着手段 2 1 , 2 2を介して着脱自在に装着されている。  The laser type angle detecting device 15 is composed of a laser-oscillating means 17 (see FIGS. 2 to 4) detachably mounted on the journal 3 side of one arm 4 and the journal of the other arm 4. And a laser receiving means 18 (see FIGS. 5 and 6) detachably attached to the three sides. The laser oscillating means 1 飞 and the laser receiving means 18 are separate parts, and the arc-shaped mounting surfaces 1 9 and 20 formed by machining on the journal 3 side of the arm 4 are magnet-type mounting means 2 It is attached detachably via 1, 2 2.
レーザー発振手段 1 7は平行な光束のレーザー光を一方のジャーナル 部 3の軸心と略平行に発振するためのもので、 図 2〜図 4に示すように 発振ケース体 2 3と、 この発振ケース体 2 3の収容凹部 2 4内に前後方 向に配置され且つ中間部分が角度調整機構 2 5を介して支持されたレー ザ一発振器 2 6と、 レーザ一発振器 2 6に給電するための電源 2 7とを 備えている。 W The laser oscillating means 17 is for oscillating a laser beam of a parallel light beam substantially in parallel with the axis of one of the journals 3, and as shown in FIGS. A laser-oscillator 26 disposed in the housing recess 24 of the case body 23 in a front-rear direction and having an intermediate portion supported via an angle adjusting mechanism 25; and a power supply for supplying power to the laser-oscillator 26. Power supply 27 is provided. W
レーザ一発振器 2 6はレーザー光の光束を所定の直径の円形状に絞る ための凸レンズ等の光学系を先端側に備え、 発振ケース体 2 3の上部に 前側に開口して形成された収容凹部 2 4の略中央に前後方向に配置され 、 後端側が◦リング等の弾性リング 2 8を介して発振ケース体 2 3の保 持凹部 2 9に嵌合されている。 The laser-oscillator 26 has an optical system such as a convex lens for narrowing the light beam of the laser beam into a circular shape having a predetermined diameter on the distal end side, and a receiving recess formed at the upper side of the oscillation case body 23 with an opening on the front side. The rear end side of the oscillation case body 23 is fitted in the holding recess 29 of the oscillation case body 23 via an elastic ring 28 such as a ◦ ring.
角度調整機構 2 5は組み立て時にレーザー発振器 2 6を上下、 左右に 角度調整するためのもので、 レーザー発振器 2 6の外周に固定された保 持リング 3 0と、 この保持リング 3 0の前で発振ケース体 2 3の収容凹 部 2 4内に固定され且つレーザー発振器 2 6に遊嵌された支持リング 3 1と、 保持リング 3 0及び支持リング 3 1間に介在され且つ発振ケース 体 2 3及びレーザー発振器 2 6に対して遊嵌された中間リング 3 2とを 有する。  The angle adjustment mechanism 25 is used to adjust the angle of the laser oscillator 26 up and down and left and right during assembly, and a holding ring 30 fixed to the outer periphery of the laser oscillator 26 and a front of the holding ring 30. A support ring 31 fixed in the recessed portion 24 of the oscillation case body 23 and loosely fitted to the laser oscillator 26; an oscillation case body 23 interposed between the holding ring 30 and the support ring 31; And an intermediate ring 32 loosely fitted to the laser oscillator 26.
保持リング 3 0は左右一対の支点体 3 3を介して中間リング 3 2に対 して上下方向に角度変更可能に支持され、 また中間リング 3 2に、 保持 リング 3 0に前側から当接する上下一対の調整ネジ 3 4 , 3 5か前後方 向に進退自在に螺合されている。 調整ネジ 3 4の外周には保持リング 3 0と中間リング 3 2との間に圧縮パネ 3 4 aが套嵌されている。  The holding ring 30 is supported via a pair of left and right fulcrum members 33 so as to be able to change the angle in the vertical direction with respect to the intermediate ring 32, and the upper and lower portions of the intermediate ring 32 contact the holding ring 30 from the front. A pair of adjusting screws 34, 35 are screwed forward and backward to be able to move forward and backward. On the outer periphery of the adjusting screw 34, a compression panel 34a is inserted between the holding ring 30 and the intermediate ring 32.
中間リング 3 2は左右一対の支点体 3 3と同一平面上に配置された上 下一対の支点体 3 7を介して発振ケース体 2 3に対して左右方向に角度 変更可能に支持され、 また中間リング 3 2に前側から当接する左右一対 の調整ネジ 3 8 , 3 9が支持リング 3 1 に螺合されている。 調整ネジ 3 8の外周には中間リング 3 2と支持リング 3 1 との間に圧縮パネ 3 8 a が套嵌されている。 なお、 支持リング 3 1 には、 中間リング 3 2の調整 ネジ 3 4 , 3 5に対応して調整孔 3 1 aが設けられている。  The intermediate ring 32 is supported by the pair of upper and lower fulcrum members 37 arranged on the same plane as the pair of left and right fulcrum members 33 so as to be capable of changing the angle in the left-right direction with respect to the oscillation case body 23. A pair of right and left adjustment screws 38, 39 that come into contact with the intermediate ring 32 from the front side are screwed to the support ring 31. On the outer periphery of the adjusting screw 38, a compression panel 38a is fitted between the intermediate ring 32 and the support ring 31. The support ring 31 has an adjustment hole 31a corresponding to the adjustment screws 34, 35 of the intermediate ring 32.
発振ケース体 2 3には、 レーザー発振器 2 6用の収容凹部 2 4の下側 に、 電源 2 7を収容する電源室 4 0が設けられている。 電源 2 7は充電 式の複数の電池等から成り、 電源室 4 0に後側から着脱自在に挿入され ている。 また発振ケース体 2 3には、 レーザ一発振器 2 6用の収容凹部 2 4の開口端側を覆う前カバー 4 1 と、 電源 2 7を後側から覆う電源力 バ一4 2とが着脱自在に装着されている。 前カバー 4 1はレーザー光が 透過する光透過性を有する透明板、 着色板等により構成されている。 ま た発振ケース体 2 3には、 側面等の適当箇所にレーザー発振器 2 6の電 源回路をオンオフするための電源スィツチ 4 3が設けられている。 In the oscillation case body 23, a power supply chamber 40 for housing a power supply 27 is provided below the housing recess 24 for the laser oscillator 26. Power supply 2 7 is charging It is composed of a plurality of batteries of the type, and is removably inserted into the power supply chamber 40 from the rear side. The oscillation case body 23 has a front cover 41 that covers the opening end side of the housing recess 24 for the laser oscillator 26 and a power supply cover 42 that covers the power supply 27 from the rear side. It is attached to. The front cover 41 is formed of a transparent plate, a colored plate, or the like having a light transmitting property for transmitting a laser beam. Further, the oscillation case body 23 is provided with a power switch 43 for turning on and off a power circuit of the laser oscillator 26 at an appropriate position such as a side surface.
レーザー受光手段 1 8は図 5、 図 6に示すように受光ケース体 4 5と 、 この受光ケース体 4 5内に形成され且つ内部がレーザー光の光路 4 6 となった暗室 4 7と、 この暗室 4 7に対して光路 4 6の一端側に設けら れたピンホール 4 8と、 暗室 4 7内に面して光路 4 6の他端側に配置さ れ且つピンホール 4 8からのレーザ一光を受光して電気信号に変換する 受光素子 4 9と、 暗室 4 7内で光路 4 6中に配置され且つピンホール 4 8からのレーザー光を受光素子 4 9側へと反射させる 1個又は複数個の 反射ミラ一 5 0 , 5 1 と、 各種の制御基板 5 2と、 送受信用のアンテナ 5 3と、 各部に給電するための電源 5 4とを備えている。  As shown in FIGS. 5 and 6, the laser receiving means 18 includes a light receiving case body 45, a dark room 47 formed inside the light receiving case body 45 and having an optical path 46 for the laser light therein. A pinhole 48 provided at one end of the optical path 46 with respect to the darkroom 47, and a laser disposed at the other end of the optical path 46 facing the darkroom 47 and from the pinhole 48. A light receiving element 49 that receives one light and converts it into an electric signal, and one that is disposed in the optical path 46 in the dark room 47 and reflects the laser light from the pinhole 48 toward the light receiving element 49 Or, it is provided with a plurality of reflection mirrors 50, 51, various control boards 52, a transmitting / receiving antenna 53, and a power supply 54 for supplying power to each part.
受光ケース体 4 5は内支持体 5 5と、 この内支持体 5 5の外側に着脱 自在に装着された外力バー 5 6とを有し、 その内支持体 5 5の内部に暗 室 4 7が設けられている。 内支持体 5 5にはその暗室 4 7の入射口 5 7 側に前側に突出する前後方向の入射筒 5 8が取り付けられ、 この入射筒 5 8の前端に、 略中心にピンホール 4 8を有する受光板 5 9が装着され ている。 ピンホール 4 8の大きさは、 受光板 5 9の略中央部にレーザー 光の光束が照射したときに、 その一部のレ―ザ一光が通過するように、 レーザー光の光束の直径よりも小さくなつている。  The light receiving case body 45 has an inner support 55, and an external force bar 56 detachably attached to the outside of the inner support 55, and a dark room 47 inside the inner support 55. Is provided. The inner support 55 has a front-to-rear entrance tube 58 projecting forward from the entrance 57 side of the dark room 47.A pinhole 48 is provided at the front end of the entrance tube 58 at substantially the center. Light receiving plate 59 is mounted. The size of the pinhole 48 is larger than the diameter of the laser beam so that a part of the laser beam passes when the laser beam is applied to the approximate center of the light receiving plate 59. Is also getting smaller.
なお、 ピンホール 4 8は一般的には丸孔、 角孔等により構成されるが 、 検出対象の角度が一次元方向の場合には、 その 1次元方向 (例えば上 下方向) の大きさがレーザー光の光束の 1次元方向 (上下方向) の寸法 よりも小さければ良い。 Note that the pinhole 48 is generally formed of a round hole, a square hole, or the like. However, when the angle of the detection target is a one-dimensional direction, the one-dimensional direction (for example, The size of (downward) should be smaller than the one-dimensional (up-down) dimension of the laser beam.
暗室 4 7内には、 ピンホール 4 8から受光素子 4 9までの光路長を十 分に確保するために、 ピンホール 4 8からのレーザー光をジグザグ状に 反射させるように、 その前後に第 1反射ミラー 5 0と第 2反射ミラー 5 1 とが設けられている。 第 1反射ミラー 5 0は入射筒 5 8側の光路 4 6 上でピンホール 4 8と対向して暗室 4 7の上部後側に配置され、 ピンホ ール 4 8からのレーザ一光を第 2反射ミラ一 5 〗側へと前下方向に反射 させるようになつている。 第 2反射ミラー 5 1 は暗室 4 7の下部前側に 配置され、 第 1反射ミラー 5 0からのレーザー光を受光素子 .4 9へと後 方に向かって反射させるようになつている。 なお、 各反射ミラ一 5 0 , 5 1は接着剤等によって受光ケース体 4 5に装着されている。 また各反 射ミラ一 5 0 , 5 1は暗室 4 7内の前後に上下に配置しているが、 左右 に配置しても良い。  In order to secure a sufficient optical path length from the pinhole 48 to the light receiving element 49, the laser beam from the pinhole 48 is reflected in a zigzag shape before and after the darkroom 47 so as to ensure a sufficient optical path length. A first reflecting mirror 50 and a second reflecting mirror 51 are provided. The first reflecting mirror 50 is arranged on the optical path 46 on the side of the incident tube 58 on the rear side of the upper part of the dark room 47 so as to face the pinhole 48, and receives the laser beam from the pinhole 48. It is designed to reflect the light to the front of the mirror at 5 mm. The second reflection mirror 51 is arranged on the lower front side of the dark room 47, and reflects the laser light from the first reflection mirror 50 to the light receiving element .49 toward the rear. The reflection mirrors 50 and 51 are attached to the light receiving case body 45 with an adhesive or the like. Further, the reflection mirrors 50 and 51 are arranged vertically before and after in the dark room 47, but may be arranged left and right.
受光素子 4 9は裏側の基板 6 0に上下方向に装着された 2次元 P S D 、 C C D等から成り、 暗室 4 7の下部後側の開口 6 1に対応して基板 6 0を介して受光ケース体 4 5に取り付けられている。 そして、 受光素子 4 9は、 図 7に示すようにレーザー光を受光したときに、 基準位置 aか らレ一ザ一光の受光位置 b , cまでの距離 mに応じた電気信号 (受光信 号) を出力するようになっている。  The light receiving element 49 is composed of a two-dimensional PSD, CCD, etc., mounted vertically on the back substrate 60, and the light receiving case body is provided via the substrate 60 corresponding to the lower rear opening 61 of the dark room 47. Attached to 4-5. When receiving the laser beam as shown in FIG. 7, the light receiving element 49 receives an electric signal (light receiving signal) corresponding to the distance m from the reference position a to the light receiving positions b and c of the laser beam. No.) is output.
制御基板 5 2は受光ケース体 4 5内で内支持体 5 5の左右両側及び/ 又は上側に装着され、 外力バー 5 6により覆われている。 そして、 この 制御基板 5 2には、 図 8に示すように送受信手段 6 2、 計時手段 6 3、 角度演算手段 6 4、 角度記憶手段 6 5、 角度検出制御手段 6 6、 電源ス イッチ 6 7等の各種の電子部品が装着されている。 なお、 電源スィッチ 6 7は外部から操作可能に操作部が外力バー 5 6の上側に突出している アンテナ 5 3は計測基地局 1 6との間で無線通信により指令、 データ 等を送受信するためのもので、 受光ケース体 4 5の裏側等の適当箇所に 配置されている。 例えば、 受光ケース体 4 5の後端上部にアンテナ取リ 付け部 6 8が設けられ、 このアンテナ取り付け部 6 8に、 受光ケース体 4 .5と略平行に下向きにアンテナ 5 3が装着されている。 そして、 アン テナ 5 3は制御基板 5 2の送受信手段 6 2に電気的に接続されている。 なお、 アンテナ 5 3の長さは、 装着手段 2 2の下端よリも短くなつてい る。 The control board 52 is mounted on the left and right sides and / or the upper side of the inner support 55 in the light receiving case body 45, and is covered with an external force bar 56. As shown in FIG. 8, the control board 52 includes transmission / reception means 62, timing means 63, angle calculation means 64, angle storage means 65, angle detection control means 66, and a power switch 67. And various other electronic components. The power switch 67 has an operation part protruding above the external force bar 56 so that it can be operated from the outside. The antenna 53 is for transmitting and receiving commands, data, and the like to and from the measurement base station 16 by wireless communication, and is disposed at an appropriate place such as the back side of the light receiving case body 45. For example, an antenna mounting portion 68 is provided at the upper end of the rear end of the light receiving case body 45, and the antenna 53 is mounted on the antenna mounting portion 68 in a downward direction substantially parallel to the light receiving case body 4.5. I have. The antenna 53 is electrically connected to the transmitting / receiving means 62 of the control board 52. The length of the antenna 53 is shorter than the lower end of the mounting means 22.
電源 5 4は充電式の複数の電池等にょリ構成され、 暗室 4 7の下側で 受光ケース体 4 5の下部に形成された電源室 6 9に前側から出し入れ自 在に収納されている。 電源室 6 9の前側には電源カバ一 7 0が、 基板 4 9の後側にはカバー 7 1が夫々着脱自在に取リ付けられている。  The power supply 54 is composed of a plurality of rechargeable batteries or the like, and is inserted and removed from the front into a power supply room 69 formed below the light-receiving case body 45 below the dark room 47 and stored therein. A power supply cover 70 is mounted on the front side of the power supply chamber 69, and a cover 71 is mounted on the rear side of the board 49 so as to be detachable.
レーザー発振手段 1 7、 レーザー受光手段 1 8を基準部位又は計測部 位に着脱自在に装着する装着手段 2 1 , 2 2は、 各ケース体 2 3 , 4 5 の下側に固定された支持台 7 2 , 7 3と、 この支持台 7 2 , 7 3内に設 けられた永久磁石 (図示省略) と、 支持台 7 2 , 7 3の前側又は後側で 前後方向の操作軸廻りに揺動自在に支持された永久磁石用の操作レバー 7 4 , 7 5とを備えている。 そして、 装着手段 2 1, 2 2は操作レバー 7 4 , 7 5を左右方向の一方側に操作したときに、 永久磁石の磁力によ リ支持台 7 1 , 7 3を基準部位又は計測部位に固定でき、 逆方向に操作 したときにその固定を解除できるようになつている。 支持台 7 2 , 7 3 の下端側には、 アーム部 4の基部側等の装着面 1 9, 2 0に当接する左 右一対の脚部 7 6 , 7 7が夫々設けられている。  The mounting means 21 and 22 for detachably mounting the laser oscillating means 17 and the laser receiving means 18 on the reference part or the measuring part are the support base fixed to the lower side of each case body 23, 45. 7 2, 7 3, the permanent magnets (not shown) provided in the support tables 7 2, 7 3, and the front and rear sides of the support tables 7 2, 7 3 Operation levers 74, 75 for permanent magnets movably supported. When the operating levers 74 and 75 are operated to one side in the left and right direction, the mounting means 21 and 22 move the support bases 71 and 73 to the reference part or the measuring part by the magnetic force of the permanent magnet. It can be fixed, and can be released when operated in the opposite direction. A pair of left and right legs 76 and 77 are provided at the lower ends of the supports 72 and 73 so as to contact the mounting surfaces 19 and 20 such as the base of the arm 4.
レーザー受光手段 1 8の受光素子 4 9、 送受信手段 6 2、 計時手段 6 3、 角度演算手段 6 4、 角度記憶手段 6 5、 角度検出制御手段 6 6は、 図 8に示すように電源スィッチ 6 7を介して電源 5 4に接続されている 角度検出制御手段 6 6は計測基地局 1 6から計測開始指令があつたと きに、 クランク軸 1の少なくとも 1回転中における各部の検出動作を制 御する機能、 計測基地局 1 6から検出結果送信指令があつたときに検出 データを読み出して送受信手段 6 2に送信させる機能等を有し、 レーザ ー受光手段 1 8側での各動作を制御するためのものである。 The light receiving element 49 of the laser receiving means 18, the transmitting and receiving means 62, the timing means 63, the angle calculating means 64, the angle storing means 65, and the angle detecting controlling means 66 are As shown in FIG. 8, the angle detection control means 66 connected to the power supply 54 via the power switch 67 supplies at least one rotation of the crankshaft 1 when a measurement start command is issued from the measurement base station 16. It has a function to control the detection operation of each part in the inside, a function to read out the detection data when the detection result transmission command is sent from the measurement base station 16 and send it to the transmission / reception means 62, etc. This is for controlling each operation on the 8 side.
送受信手段 6 2は、 計測基地局〗 6との間でアンテナ 5 3を介して各 種の指令信号、 データ等を送受信するためのものである。 計時手段 6 3 は送受信手段 6 2が計測開始指令を受信したときに角度検出制御手段 6 6の制御によリ計時動作を開始し、 ジャ一ナル部 3相互の相対角度 aを 検出すべき所定の時間間隔 tで計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■ を計時して、 その計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■を順次指示す るためのものである。  The transmission / reception means 62 is for transmitting / receiving various command signals, data, and the like to / from the measurement base station # 6 via the antenna 53. When the transmitting / receiving means 62 receives the measurement start command, the timing means 63 starts the timekeeping operation under the control of the angle detection control means 66, and the journal part 3 should detect the relative angle a between each other. To measure the measurement times t 0, t 1, t 2, t 3 ■ ■ ■ at the time interval t, and to sequentially indicate the measurement times t 0, t 1, t 2, t 3 ■ ■ ■ Things.
角度演算手段 6 4は、 計時手段 6 3が所定の時間間隔 tで計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■を指示する毎に、 角度検出制御手段 6 6の 制御により、 受光素子 4 9の基準位置からレーザー光の受光位置までの 距離 m (距離 m 0 , m 1 , m 2 , m 3 - ■ ■ ) をサンプリングして、 そ の距離 mとピンホール 4 8から受光素子 4 9までの距離 I とに基づいて 、 各計測時間 t 0 , t 1 , t 2 , t 3 ■ ■ ·毎の検出角度である両ジャ 一ナル部 3の相対角度 α 0 , α 1 , α 2 , α 3 · ■ 'を所定の演算プロ グラム (a= t a n— 'm/ l ) によリ演算するためのものである。  The angle calculation means 64 is controlled by the angle detection control means 66 each time the timing means 63 indicates the measurement time t0, t1, t2, t3 at a predetermined time interval t. The distance m (distance m 0, m 1, m 2, m 3-■ ■) from the reference position of the light receiving element 49 to the light receiving position of the laser beam is sampled, and the distance m and the light from the pinhole 48 are sampled. Based on the distance I to the element 49, the relative angles α 0, α 1, of the two jaw parts 3, which are the detection angles for each measurement time t 0, t 1, t 2, t 3 α 2, α 3... ′ are calculated using a predetermined calculation program (a = tan—'m / l).
角度記憶手段 6 5は計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■毎におけ る角度演算手段 6 4の演算結果である検出角度 α Ο', a 1 , a 2 , a 3 - ■ ·を記憶するためのもので、 各計測時間 t 0 , t 1 , t 2 , t 3 ■ ■ 'と各検出角度 α 0 , a 1 , a 2 , a 3 - - -とを対応させた検出デ —タ 「t O : ct O」 「セ 1 : a 1」 ' 「t 2 : a 2 j 「t 3 : ct 3」 ■ ■The angle storage means 65 stores detection angles α Ο ', a 1, a 2, a 3 which are the calculation results of the angle calculation means 64 at each of the measurement times t 0, t 1, t 2, t 3. -■ · to memorize each measurement time t 0, t 1, t 2, t 3 ■ ■ 'and each detection angle α 0, a 1, a 2, a 3--- Detected —Ta “t O: ct O” “Se 1: a 1” '“t 2: a 2 j“ t 3: ct 3 ”■ ■
' として記憶するようになっている。 'To be memorized.
計測基地局 1 6は、 レーザ,受光手段 1 8との間で相互に無線送信す るための送受信用のアンテナ 8 0及び送受信手段 8 1の他に計測処理制 御手段 8 2、 入力手段 8 3、 計時手段 8 4、 相関記憶手段 8 5、 デフレ クシヨン演算手段 8 6、 デフレクシヨン集積手段 8 7、 モニタリング手 段 8 8等を備えている。 なお、 入力手段 8 3、 計時手段 8 4、 相関記憶 手段 8 5、 デフレクシヨン演算手段 8 6、 デフレクシヨン集積手段 8 7 、 モニタリング手段 8 8等は、 所定の計測ソフトで作動するパソコン等 により構成されている。  The measurement base station 16 includes a transmitting / receiving antenna 80 and a transmitting / receiving means 81 for wirelessly transmitting and receiving data to and from the laser and the light receiving means 18, as well as a measurement processing controlling means 82 and an input means 8. 3. It has timekeeping means 84, correlation storage means 85, deflection calculation means 86, deflection integration means 87, monitoring means 88, etc. The input means 83, the timing means 84, the correlation storage means 85, the deflection operation means 86, the deflection accumulation means 87, the monitoring means 88, etc. are constituted by a personal computer or the like operated by predetermined measurement software. I have.
計測処理制御手段 8 2は計測基地局 1 6側の各種の動作を制御するた めのものである。 入力手段 8 3はキーボード等により構成され、 計測対 象となるクランク軸 1の条件、 計測開始指令、 計測結果送信指令、 モニ タリング指令、 その他の条件、 指令等を入力するためのものである。 計 時手段 8 4は入力手段 8 3から計測開始指令があった場合に、 計測処理 制御手段 8 2の制御によりレーザー受光手段 1 8側の計時手段 6 3と同 期して計時動作を開始し、 その計時手段 6 3と同期してジャーナル部 3 相互の相対角度 aを検出すべき所定の時間間隔 tで計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■を計時して、 その計測時刻 t O , t 1 , t 2 , t 3 The measurement processing control means 82 is for controlling various operations on the measurement base station 16 side. The input means 83 is composed of a keyboard or the like, and is used for inputting conditions of the crankshaft 1 to be measured, a measurement start command, a measurement result transmission command, a monitoring command, other conditions, commands, and the like. When the measurement means 84 receives a measurement start command from the input means 83, the measurement processing control means 82 controls the timing operation by synchronizing with the laser light receiving means 18 and the time measurement means 63 on the side of the laser beam. Synchronize with the timing means 6 3, the measurement times t 0, t 1, t 2, t 3 are measured at predetermined time intervals t at which the relative angle a between the journal parts 3 should be detected. Time t O, t 1, t 2, t 3
- - ·を順次指示するためのものである。 --It is for sequentially instructing.
相関記憶手段 8 5は回転角度検出手段 1 3により検出されたクランク 軸 1の回転角度と計時手段 8 4の計時時刻 t 0 , t 1 , t 2 , t 3 ■ ■ The correlation storage means 85 stores the rotation angle of the crankshaft 1 detected by the rotation angle detection means 13 and the clock times t 0, t 1, t 2, t 3 of the clock means 84.
■ とを各スロー 2別に関連させて記憶するためのもので、 例えばピン部■ This is for storing in association with each throw 2 separately, for example, the pin part
5が 0 ° 、 9 0 ° 、 1 8 0° 、 2 7 0° のときのジャーナル部 3の相対 角度を基準にデフレクシヨン量を評価する場合には、 或るスロー 2にお いてジャ一ナル部 3の回転角度が 0 ° のときにピン部 5の回転角度が 0 ° であれば、 ピン部 5の回転角度 0。 , 9 0 ° , 1 8 0 ° , 2 7 0 ° と 、 この回転角度 0 ° , 9 0 ° , 1 8 0 ° , 2 7 0 ° に対応する計測時刻 t 0 , t 9 0 , t 1 8 0 , t 2 7 0とを関連させて記憶する。 When evaluating the deflection amount based on the relative angle of the journal portion 3 when 5 is 0 °, 90 °, 180 °, and 270 °, the journal portion in a certain throw 2 When the rotation angle of 3 is 0 °, the rotation angle of pin 5 is 0 If it is °, the rotation angle of the pin part 5 is 0. , 90 °, 180 °, 270 ° and the measurement times t 0, t90, t18 corresponding to the rotation angles 0 °, 90 °, 180 °, 270 ° 0 and t 27 0 are stored in association with each other.
デフレクシヨン演算手段 8 6は各レーザ一受光手段 1 8によリ検出さ れた各ス口一 2におけるジャ一ナル部 3の相対角度 αからデフレクショ ン量を各スロー 2別に演算するためのもので、 計測基地局 1 6の送受信 手段 6 2が特定のレーザー受光手段 1 8又は全てのレーザ一受光手段 1 8に対してデフレクシヨン量の評価に必要な検出データの送信指令を出 し、 レーザー受光手段〗 8の送受信手段 6 2から検出データの送信があ つた場合に、 各スロー 2別にジャーナル部 3の検出データに基づいて一 対のアーム部 4間のジャーナル部 3側の距離を演算し、 このアーム部 4 間の距離からそのスロー 2におけるデフレクシヨン量を別々に演算する なお、 この場合のデフレクシヨン演算手段 8 6はジャーナル部 3相互 の検出角度に基づいて一旦一対のアーム部 4間の距離を演算し、 その後 にアーム部 4間の距離からデフレクシヨン量を演算するようにしている が、 ジャーナル部 3相互の検出角度からデフレクシヨン量を演算しても 良い。  The deflection calculating means 86 calculates the amount of deflection for each throw 2 from the relative angle α of the journal 3 in each mouth 12 detected by each laser light receiving means 18. The transmitting / receiving means 62 of the measurement base station 16 issues a command to transmit the detection data necessary for evaluating the amount of deflection to the specific laser receiving means 18 or all the laser receiving means 18 and the laser receiving means.検 出 When the detection data is transmitted from the transmission / reception means 6 2 of 8, the distance on the journal 3 side between the pair of arms 4 is calculated for each throw 2 based on the detection data of the journal 3 for each throw 2. The deflection amount in the throw 2 is separately calculated from the distance between the arm portions 4. In this case, the deflection calculating means 86 temporarily uses the pair of arm portions 4 based on the detected angles of the journal portions 3. Although the distance between the arm portions 4 is calculated, and then the deflection amount is calculated from the distance between the arm portions 4, the deflection amount may be calculated from the detected angles of the journal portions 3.
デフレクシヨン集積手段 8 7はデフレクシヨン演算手段 8 6で別々に 演算されたクランク軸 1の各スロー 2におけるデフレクシヨン量を順次 集積して記憶するためのものである。 モニタリング手段 8 8は入力手段 The deflection accumulating means 87 is for accumulating and storing the deflection amount in each throw 2 of the crankshaft 1 calculated separately by the deflection calculating means 86 sequentially. Monitoring means 8 8 is input means
8 3から同時モニタリング又は個別モニタリングの指令があつた場合に 、 デフレクシヨン集積手段 8 7に記憶された集積結果である各スロー 2 におけるデフレクシヨン量を表示画面に数字、 グラフ、 その他で同時又 は個別に表示してモニタリングするためのもので、 液晶表示手段等によ リ構成されている。 なお、 モニタリング手段 8 8は液晶表示手段等の他 、 デフレクシヨン集積手段 8 7の集積結果を記録紙等に印刷する印刷手 段により構成しても良い。 8 When the simultaneous or individual monitoring command is issued from 3, the amount of deflection in each throw 2, which is the accumulation result stored in the deflection accumulation means 87, is displayed on the display screen simultaneously or individually by numbers, graphs, etc. It is for displaying and monitoring, and is composed of liquid crystal display means. In addition, monitoring means 8 8 Alternatively, it may be constituted by a printing means for printing the accumulation result of the deflection accumulation means 87 on recording paper or the like.
クランク軸 1の各スロー 2におけるデフレクシヨン量を計測する場合 には、 先ずクランク軸 1 の各スロー 2にレーザ一式角度検出装置 1 5を 夫々装着する。 この場合、 レーザー式角度検出装置 1 5を構成するレー ザ一発振手段 1 7とレーザー受光手段〗 8との内、 その一方を一方のァ —厶部 4のジャーナル部 3側に、 他方を他方のァ一厶部 4のジャーナル 部 3側に夫々装着手段 2 1 , 2 2を介して装着するが、 装着手段 2 1 , 2 2は永久磁石の吸着力で取り付けるようになつているため、 各アーム 部 4にレーザ一発振手段 1 7、 レーザー受光手段 1 8を容易に装着でき る。 .  When measuring the deflection amount in each of the throws 2 of the crankshaft 1, first, each set of lasers 15 is attached to each of the throws 2 of the crankshaft 1. In this case, one of the laser oscillating means 17 and the laser receiving means〗 8 constituting the laser type angle detecting device 15 is placed on one side of the arm section 4 on the journal section 3 side and the other is on the other side. It is mounted on the journal part 3 side of the arm part 4 via mounting means 21 and 22 respectively.However, since the mounting means 21 and 22 are attached by the attractive force of the permanent magnet, The laser-oscillating means 17 and the laser-receiving means 18 can be easily mounted on the arm 4. .
また各アーム部 4のジャーナル部 3側はジャーナル部 3廻リの円弧状 の装着面 1 9 , 2 0となっており、 その装着面 1 9 , 2 0に支持台 7 2 , 7 3の一対の脚部 7 6, 7 7を当接させることによリ、 レーザー発振 手段 1 7のレーザー発振器 2 6がー方のジャーナル部 3の軸心と略平行 になリ、 レーザー受光手段 1 8のピンホール 4 8と第 1反射ミラー 5 0 との間の光路 4 6が他方のジャーナル部 3の軸心と略平行になる。  In addition, the journal part 3 side of each arm part 4 has an arcuate mounting surface 19, 20 around the third round of the journal part, and a pair of support bases 7 2, 7 3 is provided on the mounting surface 19, 20. By bringing the legs 76, 77 of the laser contact means into contact with each other, the laser oscillator 26 of the laser oscillating means 17 is substantially parallel to the axis of the journal section 3, and the laser receiving means 18 The optical path 46 between the pinhole 48 and the first reflecting mirror 50 is substantially parallel to the axis of the other journal 3.
従って、 レーザ一発振器 2 6からのレーザー光の光束がレーザー受光 手段 1 8の受光板 5 9の略中央に照射するように、 レーザ一発振手段 1 7とレーザー受光手段 1 8との一方を装着面 1 9 , 2 0の周方向に調整 すれば良いので、 レーザー発振手段〗 7とレーザー受光手段 1 8とを別 々のアーム部 4に離間して装着するにも拘わらず、 複雑な位置調整等が 不要である。  Therefore, one of the laser-oscillating means 17 and the laser-receiving means 18 is mounted so that the light beam of the laser light from the laser-oscillator 26 irradiates substantially the center of the light-receiving plate 59 of the laser-receiving means 18. Since it is only necessary to adjust in the circumferential direction of the surfaces 19 and 20, complicated position adjustment despite the laser oscillation means〗 7 and the laser receiving means 18 being separately mounted on the separate arm 4 Is not required.
レーザー式角度検出装置 1 5をクランク軸 1 に装着した後、 クランク 軸 1を低速で所定方向に回転させた状態で、 計測基地局 1 6の入力手段 8 3によリ計測開始指令を入力すると、 送受信手段 6 2が各スロー 2に 装着されたレーザー受光手段 1 8へと計測開始指令を同時に無線送信す る。 After the laser type angle detector 15 is attached to the crankshaft 1, when the crankshaft 1 is rotated at a low speed in a predetermined direction and a re-measurement start command is input by the input means 83 of the measurement base station 16 , Sending and receiving means 6 2 for each throw 2 At the same time, the measurement start command is wirelessly transmitted to the attached laser receiving means 18.
そして、 各レーザ—受光手段 1 8の送受信手段 6 2が計測開始指令を 受信すると、 計測基地局 1 6の計時手段 8 4とレーザ一受光手段 1 8側 の計時手段 6 3とが同時に同期して計時動作を開始して時刻合わせを行 い、 各スロー 2のジヤーナル部 3の相対角度 αを検出すべき所定の時間 間隔 tで各計時手段 6 3 , 8 4が計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ -を順次指示する。  When the transmitting / receiving means 62 of each laser-light receiving means 18 receives the measurement start command, the timing means 84 of the measuring base station 16 and the timing means 63 of the laser-light receiving means 18 are simultaneously synchronized. The timers 6 3 and 8 4 measure the time t 0 and t 1 at predetermined time intervals t at which the relative angle α of the journal 3 of each throw 2 should be detected. , t 2, t 3 ■ ■-in order.
計測基地局 1 6側では、 回転角度検出手段 1 3が検出するクランク軸 1の回転角度と、 計時手段 8 4が計時する計測時刻 t O , t 1 , t 2 , t 3 · ■ ■とに基づいて、 相関記憶手段 8 5が各スロー 2のデフレクシ ョン量の評価に必要な各回転角度と、 各スロー 2におけるその回転角度 に対応する計測時刻とを夫々対応させて記憶する。 例えば、 或るスロー 2において、 回転角度が 0。 , 9 0° , 1 8 0° , 2 7 0 ° のときの計 測時刻が t 0 , t 9 0 , t 1 8 0 , t 2 7 0であるとすれば、 その回転 角度 0° , 9 0° , 1 8 0° , 2 7 0 ° と計測時刻 t 0, t 9 0 , t 1 8 0 , t 2 7 0とを対応させて記憶する。  On the measurement base station 16 side, the rotation angle of the crankshaft 1 detected by the rotation angle detection means 13 and the measurement times t O, t 1, t 2, t 3 · ■ ■ measured by the timing means 84 Based on this, the correlation storage means 85 stores the respective rotation angles necessary for evaluating the deflection amount of each throw 2 and the measurement time corresponding to that rotation angle in each throw 2 in association with each other. For example, in a certain throw 2, the rotation angle is 0. , 90 °, 180 °, and 270 °, if the measurement times are t0, t90, t180, and t270, the rotation angles are 0 °, 9 0 °, 180 °, 270 ° and the measurement times t0, t90, t180, t270 are stored in association with each other.
—方、 各レーザー受光手段 1 8側では、 その計時手段 6 3が所定の時 間間隔 tで計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■を指示する毎に、 角 度演算手段 6 4がレーザ一受光手段 1 8からその時点の受光位置に応じ た距離 m 0 , m 1 , m 2 , m 3 ■ ■ 'を順次サンプリングして、 各計測 時刻 t 0 , t 1 , t 2 , t 3 - - -におけるジャーナル部 3の相対角度 αを演算して記憶する。  On the other hand, on the side of each laser light receiving means 18, every time the timing means 63 indicates the measurement time t 0, t 1, t 2, t 3 at a predetermined time interval t, the angle is calculated. The means 64 sequentially samples the distances m 0, m 1, m 2, m 3 from the laser light receiving means 18 according to the light receiving position at that time, and measures each time t 0, t 1, t 2, the relative angle α of the journal 3 at t 3---is calculated and stored.
この場合、 レーザー発振手段 1 7のレーザー発振器 2 6は、 一方のジ ヤーナル部 3の軸心と平行な光束のレーザ一光をレーザー受光手段 1 8 側へと発振しているので、 他方のジャーナル部 3が平行であれば、 図 7 (A) に示すようにそのレーザー光はピンホール 4 8から受光素子 4 9 の基準位置 aに照射し、 レーザ一受光手段 1 8が距離ゼロの m Oを出力 する。 In this case, the laser oscillator 26 of the laser oscillating means 17 oscillates one laser beam of a light beam parallel to the axis of the one journal part 3 to the laser receiving means 18 side. If part 3 is parallel, As shown in (A), the laser beam irradiates from the pinhole 48 to the reference position a of the light receiving element 49, and the laser light receiving means 18 outputs m O with a distance of zero.
両ジャーナル部 3の軸心が相対的に傾斜している場合には、 図 7 (B :) 又は (C) に示すようにレーザー光の受光素子 4 9上の受光位置 b, cが上方向又は下方向に移動し、 その基準位置 aから受光位置 b, cま での距離 mが両ジャーナル部 3の相対角度 αに比例する。  When the axes of the two journal portions 3 are relatively inclined, the light receiving positions b and c on the light receiving element 49 of the laser beam are directed upward as shown in FIG. 7 (B :) or (C). Or, it moves downward, and the distance m from the reference position a to the light receiving positions b and c is proportional to the relative angle α of both journal portions 3.
そして、 受光素子 4 9から基準位置 aと受光位置 b, cとの間の距離 mに応じた電気信号を読み込んで、 その距離 mとピンホール 4 8から受 光素子 4 9までの光路 4 6の距離 I とに基づいて、 角度演算手段 6 4に より α = t a n— 1m/ Iの演算式に従って演算を行うことによって両ジ ヤーナル部 3の相対角度 αを求めることができる。 Then, an electric signal corresponding to the distance m between the reference position a and the light receiving positions b and c is read from the light receiving element 49 and the distance m and the optical path 46 from the pinhole 48 to the light receiving element 49 are read. The relative angle α between the two journal sections 3 can be obtained by performing an arithmetic operation according to the arithmetic expression of α = tan− 1 m / I by the angle arithmetic means 64 based on the distance I of the two.
このようにしてクランク軸 1が少なくとも 1回転する間に、 計時手段 6 3が計時する各計測時刻 t O, t 1 , t 2 , t 3 ■ ■ ■毎に、 角度検 出制御手段 6 6の制御によりその計測時点 t 0 , t 1 , t 2 , t 3 · ■ ■における受光手段 1 8の距離 m O , m 1 , m 2 , m 3 - ' ■をサンプ リングして角度演算手段 6 4が各相対角度 α 0, a 1 , a 2 , a 3 - · ■を演算し、 角度記憶手段 6 5が計測時刻 t 0, t 1 , t 2 , t 3 ■ ■ ■と相対角度 ct 0 , 1 , 2 , α 3 ■ ■ ■とを対応させた検出データ In this way, at least one measurement time t O, t 1, t 2, t 3 measured by the time counting means 63 while the crankshaft 1 makes at least one rotation, the angle detection control means 66 Under control, the distances m O, m 1, m 2, and m 3-'of the light receiving means 18 at the measurement time points t 0, t 1, t 2, t 3 · · ■ are sampled and the angle calculation means 6 4 Calculates the relative angles α 0, a 1, a 2, a 3-· ■, and the angle storage means 65 calculates the measurement times t 0, t 1, t 2, t 3 ■ ■ ■ and the relative angles ct 0, Detection data corresponding to 1, 2, α 3 ■ ■ ■
「t O : ct O」 「t l : a 「t 2 : a 0」 「t 3 : ct 0」 '一と して記憶する。 “T O: ct O” “t l: a“ t 2: a 0 ”“ t 3: ct 0 ”'Store as one.
各スロー 2のレーザー式角度検出装置 1 5は検出動作を同時に行い、 各スロー 2におけるジャーナル部 3の相対角度 ctを同時に検出して、 夫 々の角度記憶手段 6 5に記憶する。 即ち、 各スロー 2毎にレーザー式角 度検出装置 1 5があるが、 計測基地局 1 6から各レーザー式角度検出装 置 1 5のレーザー受光手段 1 8に計測開始指令を同時に送信することに より、 その計時手段 6 3が同期して同時に計時動作を開始するので、 各 スロー 2において、 その計時手段 6 3が指示する同じ計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■に夫々の相対角度を順次検出できる。 The laser type angle detecting device 15 of each throw 2 performs the detecting operation at the same time, detects the relative angle ct of the journal portion 3 in each throw 2 at the same time, and stores it in the respective angle storage means 65. In other words, there is a laser angle detector 15 for each throw 2, but the measurement base station 16 transmits a measurement start command to the laser receiving means 18 of each laser angle detector 15 at the same time. Therefore, since the timing means 63 simultaneously starts the timing operation in synchronization with each other, at each throw 2, the same measurement times t 0, t 1, t 2, t 3 ■ ■ ■ indicated by the timing means 63 are obtained. Each relative angle can be sequentially detected.
クランク軸 1を 1回転させて各スロー 2におけるジャーナル部 3の相 対角度 αの検出が終了すれば、 次に計測基地局 Ί 6の計測処理制御手段 8 2から送受信手段 8 1を経て各レーザ一受光手段 1 8に対して検出結 果送信指令を送信する。 このとき、 計測処理制御手段 8 2では、 相関記 憶手段 8 5において各スロー 2毎にそのデフレクシヨン両の評価に必要 なクランク軸 1の回転角度 0 ° 、 9 0。 、 1 8 0 ° 、 2 7 0 ° と、 それ に対応する計測時刻 t 0 , t 9 0 , t 1 8 0 , t 2 7 0とが決まってい るので、 計測処理制御手段 8 2ではその各計測時刻 t 0 , t 9 0 , t 1 8 0 , t 2 7 0を指定して指令する。  When the crankshaft 1 is rotated once and the detection of the relative angle α of the journal section 3 in each throw 2 is completed, the laser beam is transmitted from the measurement processing control means 82 of the measurement base station Ί6 to the transmission / reception means 81. A detection result transmission command is transmitted to one light receiving means 18. At this time, in the measurement processing control means 82, the rotation angles 0 ° and 90 of the crankshaft 1 necessary for evaluating both the deflections in each of the throws 2 in the correlation storage means 85. , 180 °, 270 °, and the corresponding measurement times t0, t90, t180, t270, are determined. Specify the measurement time t 0, t 9 0, t 18 0, t 27 0 and specify.
そして、 各レーザ一受光手段 1 8の送受信手段 6 2がその検出結果送 信指令を受信すると、 計測処理制御手段 8 2の制御が角度記憶手段 6 5 が記憶する検出データ 「t 0 : ct 0」 「t 1 : c¾ 1」 「t 2 : a 0」 「 t 3 : a 0」 ■ ■ ·の中から、 指定された計測時刻 t 0 , t 9 0 , t 1 8 0 , t 2 7 0の検出データを読み出し、 送受信手段 6 2がその各検出 データを 「t 0 : a 0」. 「t 9 0 : ct 9 0」 「t 1 8 0 : a 1 8 0」 「 t 2 7 0 : a 2 7 0 J を計測基地局 1 6へと送信する。 なお、 この検出 データの送受信は、 各レーザー受光手段 1 8毎に行う。  When the transmission / reception means 62 of each laser light receiving means 18 receives the detection result transmission command, the control of the measurement processing control means 82 changes the detection data “t 0: ct 0” stored in the angle storage means 65. "T1: c¾1" "t2: a0" "t3: a0" ■ ■ · The specified measurement time t0, t90, t180, t2700 The transmission / reception means 62 reads out the detected data of each of the above “t 0: a 0”. “T 9 0: ct 9 0” “t 18 0: a 18 0” “t 27 0: a270J is transmitted to the measurement base station 16. The transmission and reception of the detection data is performed for each laser light receiving means 18.
計測基地局 1 6では、 送受信手段 8 1が各スロー 2の検出データ 「t 0 : a 0」 「t 9 0 : a 9 0 j 「t 1 8 0 : a 1 8 0」 「t 2 7 0 : ct 2 7 0」 を受信すると、 計測処理制御手段 8 2の制御によりデフレクシ ョン演算手段 8 6がその各検出データ 「t 0 : a 0」 「t 9 0 : a 9 0 」 「t 1 8 0 : a 1 8 0」 「 t 2 7 0 : a 2 7 0」 に基づいて、 夫々の スロー 2における一対のアーム部 4間のジャーナル部 3側の間隔を演算 し、 その演算結果を基にジャーナル部 3のデフレクシヨン量を各スロー 2別に順次演算する。 そして、 その演算結果をデフレクシヨン集積手段 8 7が記憶する。 In the measurement base station 16, the transmission / reception means 81 detects the detected data of each slow 2 “t 0: a 0” “t 9 0: a 9 0 j” “t 1 8 0: a 1 8 0” “t 2 7 0 : ct 27 0 ”, the deflection calculation means 86 controls the respective detection data“ t 0: a 0 ”“ t 9 0: a 9 0 ”“ t 1 Calculate the interval on the journal 3 side between the pair of arms 4 in each throw 2 based on “80: a180” and “t270: a270” Then, the deflection amount of the journal section 3 is sequentially calculated for each throw 2 based on the calculation result. Then, the operation result is stored in the deflection accumulation means 87.
このようにして各スロー 2毎にそのレーザー角度検出装置 1 5から検 出結果である検出データを別々に受信して、 そのスロー 2におけるデフ レクシヨン量を演算して、 各スロー 2におけるデフレクシヨン量をデフ レクシヨン集積手段 8 7に集積して行く。 そして、 全てのスロー 2のデ フレクシヨン量を集積した後、 入力手段 8 3をモニタリング操作すれば 、 デフレクシヨン集積手段 8 7が記憶する各スロー 2のデフレクシヨン 量がモニタリング手段 8 8の画面に所定のモニタリング形式で表示でき 、 そのデフレクシヨン量を必要に応じてモニタリングすることができる なお、 検出結果送信指令を送信する場合には、 各レーザー式角度検出 装置 1 5毎に特定の識別符号を付して送信すれば、 各スロー 2毎にその レーザー式角度検出装置 1 5を特定して指令することができる。 また検 出結果送信指令の送信時に、 デフレクション量の評価に必要な計測時刻 の検出データを計測基地局 1 6側で指定しても良いが、 角度記憶手段 6 5が記憶する検出データの全てを計測基地局 1 6側へと送信して、 計測 基地局 1 6側で受信した後に、 必要な回転角度に対応する計測時刻の検 出データを抽出してそのスロー 2におけるデフレクシヨン量を演算する ようにしても良い。  In this way, the detection data, which is the detection result, is separately received from the laser angle detector 15 for each of the throws 2 and the amount of deflection in the throw 2 is calculated. It is accumulated in the Deflection accumulation means 87. Then, after accumulating the deflection amounts of all the throws 2, if the input means 83 is monitored, the deflection quantity of each throw 2 stored in the deflection accumulating means 87 is monitored on the screen of the monitoring means 88 in a predetermined manner. It can be displayed in a format, and the amount of deflection can be monitored as needed.When transmitting the detection result transmission command, a specific identification code is attached to each laser type angle detection device 15 and transmitted. Then, for each throw 2, the laser type angle detector 15 can be specified and commanded. When transmitting the detection result transmission command, the measurement base station 16 may specify the detection data of the measurement time necessary for evaluating the amount of deflection, but all of the detection data stored in the angle storage means 65 Is transmitted to the measurement base station 16 side, and after being received by the measurement base station 16 side, the detection data at the measurement time corresponding to the required rotation angle is extracted, and the amount of deflection in the slow 2 is calculated. You may do it.
クランク軸 1の各スロー 2では、 通常、 図 9 ( A ) に示すように一対 のアーム部 4間のジャーナル部 3側が所定の間隔 Wであれば、 そのピン 部 5とジャーナル部 3とが平行であり、 デフレクシヨンはない。 しかし 、 デフレクシヨンが発生する場合には、 ピン部 5の長さが一定でぁリ、 各ジャーナル部 3とそれに固定された各アーム部 4の基部側とが一定の 関係にあるため、 ピン部 5とジャーナル部 3側との間で各アーム部 4が 図 9 ( B ) 又は (C ) に示すように外側又は内側に撓むことによりデフ レクシヨンが発生し、 これによつてジャーナル部 3相互の相対角度 α、 及び一対のァ一厶部 4間のジャーナル部 3側の間隔 W 1 , W 2が変化す る。 In each throw 2 of the crankshaft 1, if the journal portion 3 side between the pair of arm portions 4 is at a predetermined distance W as shown in FIG. 9 (A), the pin portion 5 and the journal portion 3 are generally parallel. And there is no deflection. However, when deflection occurs, the length of the pin portion 5 is constant, and the length of each pin portion 3 and the base side of each arm portion 4 fixed thereto are fixed. Because of the relationship, each arm 4 bends outward or inward as shown in Fig. 9 (B) or (C) between the pin 5 and the journal 3 side, which causes a deflection. As a result, the relative angle α between the journal portions 3 and the intervals W 1 and W 2 between the pair of arm portions 4 on the journal portion 3 side change.
従って、 この実施形態に例示するように、 レーザ一式角度検出装置 1 5のレーザー発振手段 1 7とレーザ一受光手段 1 8との内、 一方のァ一 厶部 4の基部側にレーザ—発振手段 1 7を、 他方のアーム部 4の基部側 にレーザ一受光手段 1 8を夫々装着し、 所定の回転角度におけるジャー ナル部 3の相対角度 αを計測すれば、 それに対応して一対のアーム部 4 間のジャーナル部 3側の間隔が判り、 各スロー 2におけるデフレクショ ン量を求めることができる。  Therefore, as exemplified in this embodiment, of the laser oscillating means 17 and the laser receiving means 18 of the laser set angle detecting device 15, the laser-oscillating means is provided on the base side of one arm part 4. 17 is attached to the base side of the other arm 4, respectively, and the laser beam receiving means 18 is attached to the base, respectively, and the relative angle α of the journal 3 at a predetermined rotation angle is measured. The interval on the journal part 3 side between 4 is known, and the amount of deflection in each throw 2 can be obtained.
またレーザ一式角度検出装置 1 5は平行な光束のレーザー光を発振す るレーザ一発振手段 1 了と、 このレーザー発振手段 1 7からのレーザ一 光を受光するレーザ一受光手段 1 8とを備え、 レーザー受光手段 1 8は その内部に設けられたレーザー光の光路 4 6と、 この光路 4 6の一端側 に設けられたピンホール 4 8と、 光路 4 6の他端側に設けられ且つピン ホール 4 8からのレーザー光を受光して電気信号に変換する受光素子 4 Further, the laser set angle detecting device 15 includes a laser oscillating means 1 for oscillating a laser beam of a parallel light beam, and a laser light receiving means 18 for receiving the laser light from the laser oscillating means 17. The laser receiving means 18 includes an optical path 46 for laser light provided therein, a pinhole 48 provided at one end of the optical path 46, and a pin provided at the other end of the optical path 46. Light receiving element 4 that receives laser light from hole 4 8 and converts it into an electric signal
9とを備えているため、 ジャーナル部 3の相対角度 αをレーザ一光を利 用して非接触で容易且つ確実に検出できる。 9, the relative angle α of the journal 3 can be easily and reliably detected in a non-contact manner by using a single laser beam.
レーザー式角度検出装置 1 5はレーザー発振手段 1 7とレーザー受光 手段 1 8とを別体に備え、 その一方を基準部位である一方のアーム部 4 に、 他方を計測部位である他方のアーム部 4に夫々装着手段 2 0 , 2 1 を介して着脱自在に装着しているため、 個々のレーザー発振手段〗 7、 レーザ一受光手段 1 8を小型化でき、 その取り扱いが容易であると共に 、 レーザー発振手段 1 7、 レーザー受光手段 1 8を基準部位、 計測部位 に対して容易に装着できる。 The laser type angle detector 15 has a laser oscillation unit 17 and a laser receiving unit 18 separately, one of which is provided on one arm 4 as a reference part and the other on the other arm which is a measurement part. 4 are detachably mounted via mounting means 20 and 21 respectively, so that the individual laser oscillation means〗 7 and the laser-light receiving means 18 can be downsized, and the handling thereof is easy and the laser Oscillating means 17 and laser receiving means 18 as reference part and measurement part It can be easily attached to
しかも暗室 4 7内に光路 4 6を備えているため、 外乱光の影響を受け 難く確実に検出できる。 またピンホール 4 8の大きさがレーザ一光の光 束の直径よりも小さいので、 レーザ一光がピンホール 4 8に入る範囲に レーザ一発振手段 1 7、 レーザ一受光手段 1 8を装着すれば良く、 その 装着が容易であると共に、 各回転角度におけるジャーナル部 3の相対角 度 のように、 検出対象の角度が変化するような場合でも、 レーザ一光 がピンホール 4 8に入る範囲であれば、 その角度を確実に検出できる。 更にピンホール 4 8から受光素子 4 9までの距離 mと、 受光素子 4 9 の基準位置からレーザー光の受光位置までの距離 Iとに基づいて角度演 算手段 6 4により検出角度を演算するようにしているので、 受光位置か ら直接角度を読み取る場合等に比較して検出の演算が容易にできる。 ま た光路 4 6中に、 ピンホール 4 8からのレーザー光を受光素子 4 9側へ と反射させる 1個又は複数個の反射ミラ一 5 0 , 5 1を備えているため 、 レーザ一受光手段 1 8を大型化することなく光路 4 6の距離 Iを長く でき、 検出精度が向上する。  In addition, since the light path 46 is provided in the dark room 47, the light is hardly affected by disturbance light and can be reliably detected. Also, since the size of the pinhole 48 is smaller than the diameter of the light beam of the laser beam, the laser-oscillating means 17 and the laser-receiving means 18 must be mounted within the range where the laser beam enters the pinhole 48. It is easy to mount it, and even if the angle of the detection target changes, such as the relative angle of the journal part 3 at each rotation angle, as long as one laser beam enters the pinhole 48. If so, the angle can be detected reliably. Furthermore, the angle calculating means 64 calculates the detection angle based on the distance m from the pinhole 48 to the light receiving element 49 and the distance I from the reference position of the light receiving element 49 to the laser light receiving position. Therefore, the calculation of the detection can be easily performed as compared with the case where the angle is directly read from the light receiving position. Also, since one or a plurality of reflection mirrors 50 and 51 for reflecting the laser beam from the pinhole 48 to the light receiving element 49 side in the optical path 46 are provided, The distance I of the optical path 46 can be increased without increasing the size of 18, and the detection accuracy is improved.
クランク軸 1の複数個の各スロー 2にレーザー発振手段 1 7及びレー ザー受光手段 1 8を設け、 同時に各スロー 2におけるデフレクシヨン量 を計測するようにしているため、 スロー 2が多数ある場合でも迅速に計 測できる。 しかも各スロー 2におけるデフレクシヨン量を集積するデフ レクシヨン集積手段 8 7と、 集積結果をモニタリングするモニタリング 手段 8 8とを備えているため、 各スロー 2のデフレクシヨン量を個別又 は同時にモニタリングできる。  Laser oscillation means 17 and laser light receiving means 18 are provided for each of the multiple throws 2 of the crankshaft 1, and the amount of deflection in each throw 2 is measured at the same time. Can be measured. In addition, since there are provided the deflection accumulation means 87 for accumulating the deflection amount in each throw 2 and the monitoring means 88 for monitoring the accumulation result, the deflection amount of each throw 2 can be monitored individually or simultaneously.
図 1 0〜図 1 4は本発明の第 2の実施形態を例示する。 レーザー式角 度検出装置 1 5は図 1 0に示すようにレーザー発振手段 1 7とレーザ一 受光手段 1 8とを含むレーザー発振受光ユニット 9 0と、 レーザ一発振 手段 1 7からのレーザ一光を逆方向へと反射させる反射手段 9 1 とを別 体に備え、 レザー発振受光ユニット 9 0に、 レーザー発振手段 1 7から のレーザー光を反射手段 9 1側へと透過し且つ該反射手段 9 1からの反 射レーザー光をピンホール 4 8側へと反射させるハーフミラー 9 2が設 けられている。 レーザー発振受光ュニッ卜 9 0、 反射手段 9 1 には、 そ の一方を基準部位に、 他方を計測部位に夫々着脱自在に装着するための 装着手段 2 1 , 2 2が設けられている。 10 to 14 illustrate a second embodiment of the present invention. As shown in FIG. 10, the laser angle detector 15 is connected to the laser oscillation means 17 and the laser A laser oscillation light receiving unit 90 that includes a light receiving means 18 and a reflecting means 91 that reflects the laser light from the laser oscillation means 17 in the opposite direction; In addition, a half mirror 92 for transmitting the laser light from the laser oscillation means 17 to the reflection means 91 and reflecting the reflected laser light from the reflection means 91 to the pinhole 48 side is provided. Have been. The laser oscillation light receiving unit 90 and the reflection means 91 are provided with mounting means 21 and 22 for detachably mounting one of them on a reference part and the other on a measurement part, respectively.
レーザ一発振受光ュニッ卜 9 0は、 図 1 1〜図 1 3に示すように内部 が暗室 4 7となったケース本体 9 3を備え、 このケース本体 9 3の内部 にレーザー発振丰段 1 7とレーザ一受光手段 1 8とが配置されている。 ケース本体 9 3は、 前後方向に所定の間隔を置いて配置された一対の支 持枠 9 4, 9 5と、 この支持枠 9 4 , 9 5の上下両端を前後に連結する 上枠 9 6及び下枠 9 7と、 これらを覆うように上側から外嵌され且つ上 枠 9 6及び下枠 9 7に着脱自在に固定された逆 U字状のカバー 8 9とを 備えている。 そして、 下枠 9 7の下側に装着手段 2 1が取リ付けられ、 また上枠 9 6の後端に下向きにアンテナ 5 3が取り付けられている。  As shown in FIGS. 11 to 13, the laser mono-oscillation light receiving unit 90 includes a case body 93 in which the interior is a dark room 47, and a laser oscillation step 17 is provided inside the case body 93. And the laser-light receiving means 18 are arranged. The case body 93 includes a pair of support frames 94, 95 arranged at predetermined intervals in the front-rear direction, and an upper frame 96 connecting the upper and lower ends of the support frames 94, 95 back and forth. And a lower frame 97, and an inverted U-shaped cover 89 fitted externally from above to cover them and detachably fixed to the upper frame 96 and the lower frame 97. The mounting means 21 is attached to the lower side of the lower frame 97, and the antenna 53 is attached to the rear end of the upper frame 96 downward.
レーザー発振手段 1 7は、 ケース本体 9 3内の上部に前後方向に配置 されたレーザー発振器 2 6を有し、 このレーザ一発振器 2 6はその前部 側が支持体 9 8の取り付け部 9 9に角度調整機構 1 0 0を介して取り付 けられ、 支持体 9 8に固定されたハーフミラー 9 2を介して支持枠 9 4 側の光路孔 1 0 1から前方の反射手段 9 1へとレーザー光を発振させる ようになつている。  The laser oscillating means 17 has a laser oscillator 26 arranged in the front-rear direction on the upper part in the case body 93, and the laser-oscillator 26 has a front side attached to the mounting portion 99 of the support body 98. Attached via the angle adjustment mechanism 100, and the laser is transmitted from the optical path hole 101 on the side of the support frame 94 to the reflection means 91 in front through the half mirror 92 fixed to the support 98. It oscillates light.
支持体 9 8は、 その後部側に設けられたレーザ一発振器 2 6用の取り 付け部 9 9と、 この取リ付け部 9 9の前側に設けられた八一フミラー 9 2用の取り付け部 1 0 2と、 この取り付け部 1 0 2の下側に隔壁 1 0 3 を介して設けられた筒状部 1 0 4と、 筒状部 1 0 4の下側に設けられた 反射ミラー 5 0用の取リ付け部 1 0 5とを一体に備え、 前側の支持枠 9 4と上枠 9 6との隅部に上下方向に配置され固定されている。 The support member 98 includes a mounting portion 99 provided on the rear side for the laser oscillator 26 and a mounting portion 1 for the mirror 111 provided on the front side of the mounting portion 99. 0 2 and the bulkhead 1 0 3 And a mounting portion 105 for the reflecting mirror 50 provided below the cylindrical portion 104, and a support frame on the front side. It is arranged vertically and fixed at the corners of the upper frame 94 and the upper frame 96.
角度調整機構 1 0 0は取り付け部 9 9の裏面に固定された受け板 1 0 6と、 レーザー発振器 2 6の前部側に固定された調整リング 1 0 7と、 調整リング 1 0 7の通孔に裏側から揷通され且つ取り付け部 9 9に螺合 された前後方向の固定ネジ 1 0 ' 8と、 調整リング 1 0 7のネジ孔に螺合 され且つ受け板 1 0 6に当接する前後方向の調整ネジ 1 0 9とを備えて いる。 固定ネジ 1 0 8、 調整ネジ 1 0 9はレーザ一発振器 2 6の周方向 に少なくとも 3個あり、 周方向に略等間隔をおいて交互に配置されてい る。  The angle adjusting mechanism 100 is provided with a receiving plate 106 fixed to the back of the mounting portion 99, an adjusting ring 107 fixed to the front side of the laser oscillator 26, and an adjusting ring 107. The fixing screw 10 '8 in the front-rear direction, which is passed through the hole from the back side and screwed to the mounting portion 99, and before and after screwing into the screw hole of the adjusting ring 107 and abutting on the receiving plate 106 Direction adjusting screw 109. There are at least three fixing screws 108 and adjusting screws 109 in the circumferential direction of the laser oscillator 26, and they are alternately arranged at substantially equal intervals in the circumferential direction.
なお、 この調整機構は、 3個の調整ネジ 1 0 9を裏側から個々に操作 してレーザー発振器 2 6の上下左右の角度を調整した後、 固定ネジ 1 0 8を締め付けることによリレーザ一発振器 2 6を取り付け部 9 9に固定 するようになつている。  This adjusting mechanism is operated by operating three adjusting screws 109 individually from the back side to adjust the angle of the laser oscillator 26 up, down, left and right, and then tightening the fixing screw 108 to re-laser oscillator. 2 6 is fixed to the mounting section 9 9.
八一フミラー 9 2はレーザー発振器 2 6からのレーザー光を前方に透 過すると共に、 反射手段 9 1からの反射レーザー光を下側へと反射する ように、 レーザー発振器 2 6の光軸に対して略 4 5。 の傾斜角度で取リ 付け部 1 0 2に装着されている。 なお、 ハーフミラー 9 2の上側の上枠 9 6側には、 ハーフミラー 9 2で上側に反射するレーザー光を受けるよ うにレーザー光吸収体 1 1 0が装着されている。  The mirror 81 transmits the laser beam from the laser oscillator 26 forward and reflects the reflected laser beam from the reflection means 91 downward to the optical axis of the laser oscillator 26. Approximately 4 5. It is attached to the mounting part 102 at an inclination angle of. Note that a laser light absorber 110 is mounted on the upper frame 96 side of the half mirror 92 so as to receive the laser light reflected upward by the half mirror 92.
光路孔 1 0 1は前側の支持枠 9 4に装着されたロ部材 1 1 1 に形成さ れ、 その大きさはレーザー光の光束の直径と同程度か又は若干大きくな つている。 ロ部材 Ί 1 Ίには、 レーザー光の透過性を有する透明、 その 他の受光板 5 9が光路孔 1 0 1を塞ぐように前面に装着されている。 下側にはハーフミラ一 9 2で反射する.レーザー光の光軸上にピンホ一 ル 4 8が設けられ、 ハーフミラー 9 2で反射したレーザ一光は、 このピ ンホール 4 8から暗室 4 7内の光路 4 6中の反射ミラー 5 0を経て受光 素子 4 9に入るようになつている。 反射ミラ一 5 0は取リ付け部 1 0 5 に八一フミラ一 9 2と略平行に略 4 5 ° の傾斜角度で固定され、 ピンホ —ル 4 8からのレーザ一光を後方へと反射させるようになつている。 受 光素子 4 9は基板 6 0に装着され、 暗室 4 7内で後側の支持枠 9 5に取 リ付けられている。 The optical path hole 101 is formed in a rotatable member 111 mounted on the front support frame 94, and its size is approximately the same as or slightly larger than the diameter of the laser beam. B member {1} is provided with a transparent and other light-receiving plate 59 having laser light transmitting property, which is mounted on the front surface so as to cover the optical path hole 101. The light is reflected by the half mirror 9 2 on the lower side. The laser beam reflected by the half mirror 92 enters the light receiving element 49 from the pinhole 48 via the reflecting mirror 50 in the optical path 46 in the dark room 47. ing. The reflecting mirror 50 is fixed to the mounting portion 105 at an inclination angle of about 45 °, almost parallel to the 81-milling mirror 92, and reflects the laser beam from the pinhole 48 backward. I'm going to let you. The light receiving element 49 is mounted on the substrate 60, and is attached to the support frame 95 on the rear side in the dark room 47.
なお、 ケース本体 9 3内には、 レーザ一発振器 2 6の一側に上枠 9 6 と下枠 9 7とに跨がって制御基板 5 2が上下方向に配置され、 またこの 制御基板 5 2と反対側でカバ一 9 8に電源収納部 1 1 2が設けられてい る。  In the case main body 93, a control board 52 is vertically arranged on one side of the laser-oscillator 26 so as to straddle the upper frame 96 and the lower frame 97. On the opposite side to 2, a power storage unit 112 is provided in the cover 98.
反射手段 9 1は、 図 1 4、 図 1 5に示すように装着手段 2 2の前部か ら起立する支持枠 1 1 5と、 この支持枠 1 1 5の上部側に角度調整機構 1 1 6、 ミラ一支持板 1 1 7を介して角度調整可能に装着された反射ミ ラー 1 1 8とを備えている。 反射ミラ一 1 1 8は円板状であって、 ミラ —支持板 1 1 7に装着されている。  As shown in FIGS. 14 and 15, the reflecting means 91 includes a support frame 115 standing upright from the front of the mounting means 22 and an angle adjusting mechanism 111 on the upper side of the support frame 115. 6. It has a reflection mirror 118 mounted so that the angle can be adjusted via a mirror support plate 117. The reflection mirror 118 is a disk shape and is mounted on the mirror support plate 117.
角度調整機構 1 1 6は支持枠 1 1 5とミラー支持板 1 1 7との間に介 在されておリ、 中央のネジ 1 1 9により支持枠 1 1 5に固定された球面 体 1 2 0と、 この球面体〗 2 0の外周に任意の方向に回動自在に套嵌さ れた回動体 1 2 1と、 この回動体 1 2 1をミラ一支持板 1 〗 7の裏側に 固定する押さえ体 1 1 2と、 支持枠 1 1 5に前後方向に出退自在に蝶合 され且つ押さえ体 1 1 2の外周部側に反射ミラ一 1 1 8と反対側から当 接する調整ネジ 1 2 3と、 支持枠 1 1 5の凹部内に嵌合され且つ圧縮バ ネ 1 1 4のパネ圧により押さえ体 1 I 2の外周部側を反射ミラ一 1 1 8 と反対側から押圧するポール等の押圧体 1 1 5とを備えている。  The angle adjustment mechanism 1 16 is interposed between the support frame 1 15 and the mirror support plate 1 17, and the spherical body 1 2 fixed to the support frame 1 15 by the central screw 1 19 0, a rotating body 1 21 that is rotatably fitted on the outer periphery of the spherical body 20 in an arbitrary direction, and the rotating body 1 21 fixed to the back side of the mirror support plate 1 7 Adjusting screw 1 which is hinged to the holding body 1 1 2 and the support frame 1 15 so as to be able to move back and forth in the front-rear direction, and abuts on the outer peripheral side of the holding body 1 1 2 from the side opposite to the reflective mirror 1 1 8 23 and a pole fitted into the recess of the support frame 115 and pressing the outer peripheral side of the presser 1 I 2 from the side opposite to the reflective mirror 111 by the panel pressure of the compression spring 114 And the like.
調整ネジ 1 1 3、 押圧体〗 1 5は周方向に複数個ぁリ、 調整ネジ 1 1 3同士、 押圧体 1 1 5同士が周方向に隣接するように、 互いに反対側に 対応して配置されている。 従って、 この角度調整機構 1 1 6は、 つまみ 1 2 6を操作して調整ネジ 1 2 3を出退させることによリ、 反射ミラー 1 1 8の角度を球面体 1 I 0廻りに任意の角度に調整可能である。 なお、 ミラー支持板 1 1 7には、 反射ミラ一 1 1 8を覆うミラーカバ — 1 2 7が着脱自在に装着されている。 ミラーカバー 1 1 7は光透過性 を有するものでも良い。 各装着手段 2 1 , 2 2は第 1の実施形態と同様 である。 また制御基板 5 2には、 第 1の実施形態と同様に送受信手段 6 1、計時手段 6 3、 角度演算手段 6 4、 角度記憶手段 6 5及び角度検出 制御手段 6 6等の各種の電子部品が装着されている。 その他の構成も第 1の実施形態と同じである。 Adjustment screw 1 1 3, multiple pressing bodies〗 1 5 in the circumferential direction, adjustment screw 1 1 The pressing members 3 and the pressing members 115 are arranged on the opposite sides so as to be adjacent to each other in the circumferential direction. Therefore, the angle adjusting mechanism 1 16 can be adjusted to any angle around the spherical body 1 I 0 by operating the knob 1 26 to move the adjusting screw 1 2 3 back and forth. The angle can be adjusted. The mirror support plate 117 is provided with a detachable mirror cover 127 that covers the reflection mirror 118. The mirror cover 117 may have a light transmitting property. The mounting means 21 and 22 are the same as in the first embodiment. Further, similarly to the first embodiment, various electronic components such as transmission / reception means 61, clocking means 63, angle calculation means 64, angle storage means 65, and angle detection control means 66 are provided on the control board 52. Is installed. Other configurations are the same as those of the first embodiment.
クランク軸 1の各スロー 2のデフレクシヨン量を計測する場合には、 レーザ一式角度検出装置 1 5のレーザー発振受光ュニッ卜 9 0と反射手 段 9 1 との内、 その一方を一方のアーム部 4の基部側に、 他方を他方の ァ一厶部 4の基部側に夫々装着する。 そして、 レーザ一発振手段 1 7の レーザー発振器 2 6からの.レーザ一光をハーフミラー 9 2を透過して反 射手段 9 1側へと照射し、 この反射手段 9 1の反射ミラ一 1 1 8でその レーザ一光を逆方向に反射する。  When measuring the deflection amount of each throw 2 of the crankshaft 1, one of the laser oscillation light receiving unit 90 and the reflecting means 91 of the laser complete angle detector 15 is connected to one arm 4. The other side is attached to the base side of the other arm part 4 on the base side of the other. Then, the laser beam from the laser oscillator 26 of the laser-oscillating means 17 is transmitted through the half mirror 92 to the reflecting means 91, and is reflected to the reflecting means 91. At 8, the laser beam is reflected in the opposite direction.
すると反射レーザー光はハーフミラ一 9 2で反射して下方のピンホー ル 4 8側へと屈折し、 ピンホール 4 8から暗室 4 7内の反射ミラー 5 0 を経て受光素子 4 9に照射する。 そして、 ジャーナル部 3に相対角度が あれば、 受光素子 4 9上のレーザー光の受光位置がその角度に応じて上 下に変化するため、 第 1の実施形態の場合と同様にその相対角度を検出 でき、 また各スロー 2毎にそのデフレクシヨン量を計測することができ る。  Then, the reflected laser light is reflected by the half mirror 92 and refracted to the lower pinhole 48 side, and irradiates the light receiving element 49 from the pinhole 48 via the reflection mirror 50 in the dark room 47. If the journal section 3 has a relative angle, the laser light receiving position on the light receiving element 49 changes upward and downward in accordance with the angle, so that the relative angle is changed as in the first embodiment. It can detect and measure the amount of deflection for each throw 2.
図 1 6〜図 1 9は本発明の第 3の実施形態を例示する。 各ピン部 5に 連接棒 1 3 0が連接されたクランク軸 1を対象とする場合には、 図 1 6 、 図 1 7に示すように平行な光束のレーザー光を一方のジャーナル部 3 の軸心と略平行に連接棒 1 3 0側へと発振するレーザ一発振手段 1 7と 、 このレーザー発振手段 1 7からのレーザ一光をピンホール 4 8を経て 受光素子 4 9によリ受光して一対のジャーナル部 3の相対角度を検出す るレーザー受光手段 1 8とを各アーム部 4のジャーナル部 3側に装着し ておき、 クランク軸 1を所定方向に一定速度で回転させながらそのデフ レクシヨン量を計測するに際し、 連接棒〗 3 0によるレーザ一光の遮光 時点を基準に、 所定時間間隔 t毎にレーザ一受光手段 1 8によリ相対角 度を検出する。 FIGS. 16 to 19 illustrate a third embodiment of the present invention. To each pin part 5 When targeting the crankshaft 1 to which the connecting rod 130 is connected, as shown in FIGS. 16 and 17, a laser beam of a parallel light beam is made substantially parallel to the axis of one of the journals 3. A laser oscillating means 17 oscillating to the connecting rod 13 0 side, and a laser beam from the laser oscillating means 17 is received by the light receiving element 49 via the pinhole 48 and a pair of journal portions. The laser receiving means 18 for detecting the relative angle of 3 is mounted on the journal 3 side of each arm 4, and the amount of deflection is measured while rotating the crankshaft 1 in a predetermined direction at a constant speed. At this time, the relative angle of the laser beam is detected by the laser beam receiving means 18 at predetermined time intervals t, based on the point in time when the laser beam is blocked by the connecting rod # 30.
レーザー受光手段〗 8の制御基板 5 2には、 図 1 8に示すように計時 手段 6 3、 角度検出制御手段 6 6、 送信手段 6 1、角度演算手段 6 4、 角度記憶手段 6 5等が設けられ、 また計測基地局 1 6には送受信手段 8 1、 計測処理制御手段 8 1、入力手段 8 3、 割り付け手段 1 3 1、 デフ レクシヨン演算手段 8 6、 デフレクシヨン集積手段 8 7、 モニタリング 手段 8 8等が設けられている。  As shown in FIG. 18, the control substrate 52 of the laser receiving means〗 8 includes a time measuring means 63, an angle detection controlling means 66, a transmitting means 61, an angle calculating means 64, an angle storing means 65, etc. The measurement base station 16 has transmission / reception means 81, measurement processing control means 81, input means 83, allocating means 131, deflection calculation means 86, deflection accumulating means 87, monitoring means 8 8 etc. are provided.
角度検出制御手段 6 6は、 計測基地局〗 6から計測開始指令があった ときに各部の動作を制御する機能、 計測基地局 1 6から検出結果送信指 令があつたときに角度記憶手段 6 5の検出データを読み出して送受信手 段 6 2に送信させる機能等の他に、 計測開始指令後に受光素子 4 9の受 光出力の変化にょリ連接棒 1 3 0によるレーザー光の遮光の有無を判定 して、 連接棒 1 3 0が受光素子 4 9に入射するレーザ一光を遮光した遮 光時点で計時手段 6 3の計時時刻を初期状態にリセッ卜して計時動作を 開始させる機能を有する。  The angle detection control means 6 6 has a function of controlling the operation of each unit when a measurement start command is issued from the measurement base station〗 6, and an angle storage means 6 when a detection result transmission command is issued from the measurement base station 16. In addition to the function of reading the detection data of 5 and transmitting it to the transmission / reception means 62, it also determines whether or not the laser light is blocked by the connecting rod 130 after the measurement start command. Judgment is made, and at the time when the connecting rod 130 cuts off the laser beam incident on the light receiving element 49, the clocking means 63 resets the clocking time to the initial state and starts the clocking operation. .
計時手段 6 3は連接棒 1 3 0によるレーザー光の遮光時点を契機に角 度検出制御手段 6 6の制御にょリ初期状態にリセッ卜され、 例えばクラ ンク軸 1が時間 t 0〜t 6 0で 1回転するとした場合、 図 1 9に示すよ うにジャ一ナル部 3相互の角度を検出すべき所定の時間間隔 tで計測時 刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■ t 6 0を計時して、 その計測時刻 t 0 , t 1, t 2 , t 3 ■ · ■ t 6 0を順次支持する。 The timing means 63 is reset to the initial state by the control of the angle detection control means 66 when the laser beam is shielded by the connecting rod 130, for example. Assuming that the link shaft 1 makes one rotation from time t0 to t60, the measurement times t0 and t are determined at predetermined time intervals t at which the angles of the journals 3 are to be detected as shown in FIG. 1, t 2, t 3 ■ ■ ■ t 60 is measured, and the measurement times t 0, t 1, t 2, t 3 ■.
角度演算手段 6 4は、 計時手段 6 3が所定の時間間隔 tで計測時刻 t 0 , t 1 , t 2 , t 3 · · · t 6 0 (時間 t 0〜 t 6 0で 1回転する場 合) を指示する毎に、 角度検出制御手段 6 6の制御にょリ、 受光素子 4 9の基準位置からレーザー光の受光位置までの距離 mに応じた距離信号 m 0 , m 1 , m 2 , m 3 ■ ■ ' m S Oをサンプリングして、 その距離 m とピンホール 4 8から受光素子 4 9までの距離 Iとに基づいて、 各計測 時刻 t 0 , t 1 , t 2 , t 3 ■ · ■ t 6 0毎の検出角度であるジャーナ ル部 3の相対角度 α 0 , 1 , a 1 , a 3 - ■ ■ α 6 0を所定の演算プ ログラム (α = t a n— 'm/ I ) により演算し、 また連接棒 1 3 0によ るレーザー光の遮光中は計測不能として処理する。  The angle calculation means 64 is used for measuring the time t 0, t 1, t 2, t 3 t 6 0 at a predetermined time interval t when the time counting means 63 performs one rotation at time t 0 to t 60. Every time the command is issued, the distance signal m0, m1, m2, m 3 ■ ■ 'm SO is sampled, and each measurement time t 0, t 1, t 2, t 3 ■ · is determined based on the distance m and the distance I from the pinhole 48 to the light receiving element 49. ■ The relative angle α 0, 1, a 1, a 3-of the journal section 3, which is the detection angle for each t 60, ■ ■ α 60 is determined by a predetermined arithmetic program (α = tan—'m / I). The calculation is performed, and processing is performed while the measurement is not possible while the laser beam is being shielded by the connecting rod 130.
角度記憶手段 6 5は計時手段 6 3の計測時刻 t O , t 1 , t 2 , t 3 • ■ ■ t 6 0毎の、 角度演算手段 6 4の演算結果である検出角度 α 0 , a 1 , α 2 , α 3 ■ ■ · α 6 0を記憶するためのもので、 各計測時間 t 0 , t 1 , t 2 , t 3 - ■ ■ t 6 0と各検出角度 α 0 , a 1 , 2 , a 3 ■ ■ ■ α 6 0とを対応させた角度検出データ 「t 0 : α 0」 「t 1 : ひ 1」 「t 2 : a 2」 「t 3 : a 3」 ■ ■ ■ 「t 6 0 : a 6 0」 として 記憶し、 また連接棒 1 3 0によるレーザー光の遮光中は計測不能として 記憶する。  The angle storage means 65 stores the detection angles α 0, a 1, which are the calculation results of the angle calculation means 64 for each t 60, the measurement times t O, t 1, t 2, t 3 of the time counting means 63. , α 2, α 3 ■ ■ · Stores α 60, each measurement time t 0, t 1, t 2, t 3-■ ■ t 60 and each detection angle α 0, a 1, 2, a 3 ■ ■ ■ Angle detection data corresponding to α60 “t0: α0” “t1: hi1” “t2: a2” “t3: a3” ■ ■ ■ “ t 60: a 60 ”and memorize as impossible to measure while the laser beam is blocked by the connecting rod 130.
計測基地局 1 6の入力手段 8 3は、 計測対象となるクランク軸 1の条 件、 計測開始指令、 計測結果送信指令、 モニタリング指令等の他、 ディ ーゼル機関の設計図面等に基づいて、 クランク軸 1の〗回転中における 、 連接棒 1 3 0によるレーザ—光の遮光時点の遮光角度を計算して、 そ の設計値を入力するようになっている。 The input means 83 of the measurement base station 16 is used for the crankshaft 1 based on the conditions of the crankshaft 1 to be measured, the measurement start command, the measurement result transmission command, the monitoring command, etc., and the design drawings of the diesel engine. Calculate the light-blocking angle at the time of laser-light blocking by the connecting rod 130 during the rotation of the shaft 1 by〗. Is designed to be input.
割り付け手段 1 31は、 検出結果送信指令に基づいてレーザー受光手 段 1 8側から送信される検出データと、 入力手段 83で入力された遮光 角度とに基づいて、 連接棒〗 30によるレーザー光の遮光時点 t 0から 次の遮光時点 t 0 (= t 6 0 ) までのスロー 2の 1回転に要する時間 t 0〜t 60を求め、 例えば遮光角度が 20° の場合には計測時刻 t 0を 回転角度 Θ 20として、 各計測時刻 t 0, t 1 , t 2, t 3 . . . t 6 0に対するスロー 2の回転角度 Θ 20, Θ 26 , Θ 32 , Θ 38 ■ ■ ■ 〇 20の割リ付けを行うためのものである。  The allocating means 131 transmits the laser beam by the connecting rod〗 30 based on the detection data transmitted from the laser receiving means 18 based on the detection result transmission command and the shading angle input by the input means 83. Calculate the time t 0 to t 60 required for one rotation of throw 2 from the light shielding time t 0 to the next light shielding time t 0 (= t 60) .For example, if the light shielding angle is 20 °, measure the measurement time t 0. Assuming the rotation angle ス ロ ー 20, the rotation angle of the throw 2 with respect to each measurement time t 0, t 1, t 2, t 3... T 60 0 Θ 20, Θ 26, Θ 32, Θ 38 ■ ■ ■ This is for attaching the parts.
デフレクション演算手段 86は検出結果送信指令に基づいてレーザー 受光手段 1 8側から送信される検出データと、 割り付け手段 1 3 1で割 リ付けられた回転角度 Θ 2 0, Θ 2 6, Θ 32, Θ 38 · . · Θ 20と に基づいて、 スロー 2の各回転角度各 Θ 20, Θ 26, Θ 32 , Θ 3 8 ■ ■ ■ Θ 20での一対のァ一厶部 4間のジャーナル部 3側の距離を算出 し、 このアーム部 4間の距離からそのスロー 2におけるデフレクシヨン 量を演算すると共に、 計測不能な遮光区間の前後の検出データの変化傾 向に基づいてその間のデフレクシヨン量を補間する。  The deflection calculation means 86 detects the detection data transmitted from the laser receiving means 18 based on the detection result transmission command and the rotation angles Θ 20, Θ 26, Θ 32 allocated by the allocating means 13 1. , Θ 38 ·. · Θ 20, and each rotation angle of throw 2 Θ 20, Θ 26, Θ 32, Θ 3 8 ■ ■ ■ Journal part between a pair of arm parts 4 at Θ 20 Calculate the distance on the 3 side, calculate the amount of deflection in the slow 2 from the distance between the arms 4, and interpolate the amount of deflection during that time based on the change in the detected data before and after the unmeasurable light-shielded section. I do.
なお、 レーザー発振手段 1 7、 レーザ一受光手段 1 8、 計測基地局 Ί 6等の他の構成は、 第 1の実施形態と略同じである。  The other configurations such as the laser oscillating means 17, the laser-light receiving means 18, and the measurement base station 6 are substantially the same as those of the first embodiment.
この場合にはクランク軸 1を一定速度で回転させた後、 計測基地局 1 6から各スロー 2のレーザー式角度検出装置 1 5に対して計測開始指令 を無線送信すると、 そのレーザー式角度検出装置 1 5のレーザー受光手 段 1 8の送受信手段 62が計測開始指令を受信して、 角度検出制御手段 66が連接棒〗 30によるレーザー光の遮光時点で計時手段 63を初期 状態にリセットして、 この計時手段 6 3が計時動作を開始して計時時刻 t 0, t 1 , t 2, t 3 - - - t 6 0を指示する。 計時手段 6 3が所定の時間間隔 tで計測時刻 t 0 , t 〗, t 2 , t 3In this case, after the crankshaft 1 is rotated at a constant speed, a measurement start command is wirelessly transmitted from the measurement base station 16 to the laser-type angle detection device 15 of each throw 2. 15 The transmitting and receiving means 62 of the laser receiving means 18 of 18 receives the measurement start command, and the angle detection control means 66 resets the timing means 63 to the initial state at the time when the connecting rod〗 30 blocks the laser light, The clocking means 63 starts the clocking operation and indicates the clocking times t 0, t 1, t 2, t 3---t 60. The measuring means 63 measures time t 0, t〗, t 2, t 3 at a predetermined time interval t.
■ ■ ■ t 6 0を指示する毎に、 角度演算手段 6 4がレーザ一受光手段 1 8からその時点の受光位置に応じた距離 m 0, m 1 , m 2 , m 3 - ■ - m 6 0を順次サンプリングして、 各計測時刻 t 0 , t 1 , t 2 , t 3 ■■ ■ ■ Every time t 60 is specified, the angle calculation means 64 is the distance from the laser receiving means 18 to the distance m 0, m 1, m 2, m 3-■-m 6 according to the light receiving position at that time. 0 is sampled sequentially and each measurement time t 0, t 1, t 2, t 3 ■
■ ■ t 6 0におけるジャーナル部 3相互の相対角度 α 0 , 1 , a 2 , 3 ■ ■ ■ α 6 0を演算し、 角度記憶手段 6 5が計測時刻 t 0 , t 1 , t 2 , t 3 ■ ■ ■ t 6 0と相対角度 a 0 , 1 , a 2 , a 3 - ■ - a 6 0とを対応させた検出データ 「t O : a O」 「t 1 : a 1」 「t 2 : ce 0」 「t 3 : a 0」 · ■ ■ 「t 6 0 : ct 6 0」 として記憶する。 ■ ■ The relative angles α 0, 1, a 2, 3 of the journal portions 3 at t 60 are calculated. Α ■ 60 is calculated, and the angle storage means 65 measures the measurement times t 0, t 1, t 2, t 3 ■ ■ ■ Detection data “t O: a O” “t 1: a 1” “t 2” corresponding to t 60 and relative angles a 0, 1, a 2, a 3-■-a 60 : ce 0 ”“ t 3: a 0 ”· ■ ■ Stored as“ t 60: ct 60 ”.
この場合、 連接棒 1 3 0による遮光時点の遮光角度 2 0 ° から、 連接 棒 1 3 0が通過して遮光状態が解除されるまでの遮光範囲 X内の計測時 刻 ct O , 1 , ct 6 0では、 受光素子 4 9がレーザー光を受光しないの で、 その計測時刻 a 0 , a 1 , 6 0に対応する角度 ct 0 , a 1 , 6 0は計測不能として処理する。  In this case, the measurement time within the light-shielding range X from the light-shielding angle of 20 ° at the time of light-shielding by the connecting rod 130 until the light-shielding state is released after the connecting rod 130 passes, ct O, 1, ct At 60, since the light receiving element 49 does not receive the laser beam, the angles ct 0, a 1, 60 corresponding to the measurement times a 0, a 1, 60 are processed as unmeasurable.
各スロー 2におけるジャーナル部 3の相対角度の検出が終了すれば、 次に計測基地局 1 6の計測処理制御手段 8 2から送受信手段 6 2を経て 各レーザー受光手段 1 8に対して検出結果送信指令を送信し、 各スロー 2別に送信される検出データ 「t O : a O」 「t 1 : a 1」 「t 2 : ci 0」 「t 3 : a 0」 ■ ■ · 「t 6 0 : a 6 0」 を計測基地局 1 6側で受 信して記憶する。  When the detection of the relative angle of the journal section 3 in each throw 2 is completed, the detection result is transmitted to the laser receiving means 18 from the measuring processing control means 82 of the measuring base station 16 via the transmitting / receiving means 62. Sends the command and the detection data transmitted for each throw 2 "tO: aO" "t1: a1" "t2: ci0" "t3: a0" ■ ■ · “t60: a 60 ”is received and stored by the measurement base station 16 side.
そして、 計測基地局 1 6側では入力手段 8 3によリ入力された遮光角 度 2 0° を考慮して、 デフレクシヨン演算処理を開始する。 例えば、 遮 光角度 2 0 ° の場合には、 割り付け手段 1 3 1が検出データ 「t 0 : a 0」 「t 1 : ct 1」 「t 2 : a 0」 「t 3 : a O」 - - ' 「t 6 0 : a 6 0」 と遮光角度 2 0 ° とに基づいて、 連接棒 1 3 0によるレーザー光 の遮光時点から次の遮光時点までのスロー 2の 1回転に要する時間 t 0 〜 t 6 0を求め、 その各計測時刻 t O, t 1 , 2 , t 3 ■ ■ ■ t 6 0 と回転角度 Θ 2 0, θ 2 6 , Θ 3 2 , Θ 3 8 - ■ Θ 2 0との割り付け を行う。 この場合、 スロー 2が時間 t 0〜 t 6 0 (= 6 0秒) で 1回転 したと仮定すると、 各計測時刻毎の回転角度は 6度になるので、 遮光開 始時点の回転角度が 2 0° であるとすれば、 1 0° から 6° づっ加算す れぱ良い。 Then, on the measurement base station 16 side, the deflection calculation processing is started in consideration of the light shielding angle 20 ° input by the input means 83. For example, when the light shielding angle is 20 °, the allocation means 13 1 detects the detection data “t 0: a 0” “t 1: ct 1” “t 2: a 0” “t 3: a O” − -'Based on “t 60: a 60” and the light-shielding angle of 20 °, the time required for one rotation of slow 2 from the point at which laser light is shielded by connecting rod 130 to the point at which the next light-shield is performed T 0, t 0, t 1, 2, t 3 ■ ■ ■ t 60 and rotation angles Θ 20, θ 26, Θ 32, Θ 38-■ Θ 20 Is assigned. In this case, assuming that Throw 2 makes one rotation from time t0 to t60 (= 60 seconds), the rotation angle at each measurement time is 6 degrees, so the rotation angle at the start of shading is 2 If it is 0 °, it is good to add 10 ° in 6 ° increments.
次にデフレクシヨン演算手段 8 6が各検出データ 「セ 0 : a 0」 「t 1 : α 1」 「t 2 : a 0」 「t 3 : ct 0」 ' - - 「t 6 0 : a 6 0」 と 、 割り付け手段 1 3 1で割り付けられた回転角度 Θ 2 0 , Θ 2 6 , 〇 3 2 , Θ 3 8 ■ ■ ■ Θ 2 0とに基づいて、 スロー 2の各回転角度 Θ 2 0, Θ 2 6 , Θ 3 2 , Θ 3 8 - · · Θ 2 0での一対のアーム部 4間のジャー ナル部 3側の距離を算出し、 このアーム部 4間の距離からそのスロー 2 におけるデフレクシヨン量を演算する。  Next, the deflection calculating means 86 sets each detected data "se 0: a0" "t1: α1" "t2: a0" "t3: ct0" '--"t600: a600" , And the rotation angles で 20, Θ 26, 〇 32, Θ 3 8 ■ ■ 8 割 り 20 assigned to the rotation means 3 20 by the allocating means 13 1.距離 26, Θ 32, Θ 38-· Calculate the distance on the journal 3 side between the pair of arms 4 at 0 20, and from the distance between the arms 4 the deflection at the throw 2 Calculate the quantity.
デフレクシヨン量は一般的に急峻な変動がなく、 しかも連接棒 1 3 0 が遮光する遮光範囲 Xは 1回転の内の僅かであるため、 連接棒 1 3 0に よる遮光範囲 Xについては、 その前後の検出データの変化傾向に基づい てその間のデフレクシヨン量を補間する。  In general, the amount of deflection does not fluctuate sharply, and the light-shielding range X in which the connecting rod 130 blocks light is small within one rotation. Based on the detected data change tendency, the amount of deflection during that period is interpolated.
計測基地局 1 6では、 各スロー 2毎にそのデフレグシヨン量の演算処 理を行い、 特定のスロー 2の演算処理が終わる毎にそのデフレクシヨン 量をデフレクシヨン集積手段 8 7により集積して記憶し、 必要に応じて モニタリング手段 8 8によりモニタリングする。  The measurement base station 16 calculates the defraction amount for each throw 2 and accumulates and stores the deflection amount by the deflection accumulating means 87 each time the specific slow 2 calculation process is completed. Monitoring is carried out by monitoring means 8 according to the requirements.
この実施形態の場合には、 各レーザー式角度検出装置 1 5での角度の 検出中は、 基地局 1 6との間での通信が不要であるため、 クランク軸 1 が遮蔽されたケーシング内にぁリ、 無線通信が困難な場合でも、 各スロ 一 2のジャーナル部 3の相対角度を検出することができる。 またクラン ク軸 1の回転角度を検出する回転角度検出手段 1 3が不要であり、 構成 を簡素化できる。 In the case of this embodiment, since communication with the base station 16 is not required during the detection of the angle by each laser-type angle detector 15, the crankshaft 1 is placed in a shielded casing. Even if wireless communication is difficult, the relative angle of the journal section 3 of each slot 2 can be detected. Also, the rotation angle detecting means 13 for detecting the rotation angle of the crank shaft 1 is not required, and Can be simplified.
図 2 0は本発明の第 4の実施形態を例示する。 この実施形態では、 ク ランク軸 1の複数個のスロー 2に、 その各ジャーナル部 3の相対角度を 検出するレーザー式角度検出装置 1 5が装着されている。  FIG. 20 illustrates a fourth embodiment of the present invention. In this embodiment, a plurality of throws 2 of the crankshaft 1 are provided with a laser type angle detecting device 15 for detecting the relative angle of each journal portion 3.
スロー 2には、 その一対のアーム部 4のジャーナル部 3側に、 相対向 する側に開口する装着凹部 1 3 5 , 1 3 6が設けられ、 その一方の装着 凹部 1 3 5内にレーザー発振手段 1 7が、 他方の装着凹部 1 3 6内にレ 一ザー受光手段 1 8が夫々着脱自在に固定されている。 レーザー発振手 段 1 7、 レーザー受光手段 1 8はその光軸が略一致している。 各装着凹 部 1 3 5 , 1 3 6は、 その開口側に着脱自在に装着れた密閉蓋 1 3 7 , 1 3 8によリ密封されておリ、 ジャーナル部 3の相対角度を検出する際 には密閉蓋 1 3 7 , 1 3 8を取り外して行う。  The throw 2 is provided with mounting recesses 1 3 5 and 1 3 6 that are open on opposite sides on the journal 3 side of the pair of arms 4, and laser oscillation occurs in one of the mounting recesses 1 3 5 The means 17 has laser light receiving means 18 removably fixed in the other mounting recessed part 13 36 respectively. The laser oscillation means 17 and the laser receiving means 18 have substantially the same optical axis. Each of the mounting recesses 1 3 5 and 1 3 6 is sealed by a sealing lid 1 3 7 and 1 3 8 detachably mounted on the opening side, and detects the relative angle of the journal 3. In this case, remove the closed lids 13 7 and 13 8.
この場合には、 クランク軸 1側にレーザー式角度検出装置 1 5がある ので、 デフレクシヨン量の計測に際して、 クランク軸 1側にレーザ一式 角度検出装置 1 5を装着する煩わしさがなく、 容易に計測作業を開始で きる。 また密閉室内にレーザー発振手段〗 7、 レーザー受光手段〗 8を 配置しているため、 レーザー光を利用して計測するにも拘わらず、 ケー シング内の潤滑油等によつて計測不能になることもない。  In this case, since there is a laser type angle detector 15 on the crankshaft 1 side, when measuring the deflection amount, there is no need to mount the laser type angle detector 15 on the crankshaft 1 side, and the measurement is easy. Work can be started. In addition, since laser oscillation means〗 7 and laser light receiving means〗 8 are arranged in a closed room, measurement becomes impossible due to lubricating oil etc. in the case, despite measurement using laser light. Nor.
なお、 レーザー式角度検出装置 1 5には、 第 1の実施形態に例示のレ 一ザ一発振手段 1 7、 レーザー受光手段 1 8が適当であるが、 第 2の実 施形態に例示のものを使用しても良いし、 その他の構造、 形式のものを 使用しても良い。 またレーザー式角度検出装置 1 5はアーム部 4のピン 部 5と反対側の外周面に装着する等、 他の位置に他の構造で装着ても良 い。  The laser-type angle detecting device 15 is suitably the laser-oscillating means 17 and the laser-receiving means 18 illustrated in the first embodiment, but the laser-type angle detecting apparatus 15 is the one illustrated in the second embodiment. May be used, or other structures and types may be used. Further, the laser type angle detector 15 may be mounted at another position with another structure, such as mounted on the outer peripheral surface of the arm 4 opposite to the pin 5.
以上、 本発明の各実施形態について詳述したが、 本発明は各実施形態 に限定されるものではなく、 その他種々の態様で実施することができる 。 例えば、 実施形態では、 レーザー式角度検出装置 1 5をジャーナル部 3の角度検出用に利用しているが、 基準部位と計測部位との相対角度の 検出であれば、 他の目的に使用することもできる。 また受光素子 4 9に 上下、 左右等に広がりのあるものを使用することも可能であり、 その場 合には一方向の角度の他、 2方向の角度を検出することも可能である。 レーザ一発振手段 1 7、 レーザー受光手段 1 8等を基準部位、 計測部 位に装着する装着手段は、 磁石式がその着脱に便利であるが、 クランプ 式、 ネジ式、 その他の装着形式のものを使用しても良い。 レーザ一受光 手段 1 8側は暗室 4 7内に反射ミラー、 受光素子 4 9等を配置すること が望ましいが、 外乱光等の影響を受け難い箇所で使用する場合には、 必 ずしも暗室 4 7内に反射ミラ一、 受光素子 4 9等を配置する必要もない 更にクランク軸 1のスロー 2のデフレクシヨン量の計測に際して使用 するレーザー式角度検出装置 1 5はレーザ一式であれば、 各実施形態に 例示する以外のものを使用しても良い。 また複数個のスロー 2のデフレ クションを計測する場合には、 各スロー 2の角度を同時に検出しても良 いし、 個別に順次検出しても良い。 As described above, each embodiment of the present invention has been described in detail. However, the present invention is not limited to each embodiment, and can be implemented in various other modes. . For example, in the embodiment, the laser type angle detection device 15 is used for detecting the angle of the journal portion 3. However, if the relative angle between the reference portion and the measurement portion is detected, the laser type angle detection device 15 may be used for other purposes. You can also. It is also possible to use a light-receiving element 49 having a spread in the vertical and horizontal directions, etc. In this case, it is possible to detect the angle in two directions in addition to the angle in one direction. The magnet type is convenient for attaching and detaching the laser-oscillating means 17 and the laser receiving means 18 to the reference part and the measuring part, but the clamp type, screw type, and other mounting types May be used. It is desirable to arrange a reflection mirror, light-receiving element 49, etc. in the dark room 47 on the side of the laser one light receiving means 18 side, but when using it in a place that is not easily affected by disturbance light, etc., it is necessary to use a dark room. There is no need to arrange a reflection mirror, light-receiving element 49, etc. in 47.Furthermore, if the laser type angle detector 15 used for measuring the deflection amount of the throw 2 of the crank shaft 1 Other than those exemplified in the form may be used. When measuring the deflection of a plurality of throws 2, the angle of each throw 2 may be detected simultaneously or individually.
実施形態では各スロー 2のレーザー式角度検出装置 1 5と計測基地局 1 6とを電波による無線通信で接続しているが、 電波以外の通信方式を 採用しても良い。 またケーシング内の内外のレーザー式角度検出装置 1 5と計測基地局 1 6との間で電波にょリ無線通信を行う場合には、 その 中間に中継基地を設けても良い。  In the embodiment, the laser type angle detection device 15 of each throw 2 and the measurement base station 16 are connected by wireless communication using radio waves, but a communication method other than radio waves may be used. In the case where wireless communication is performed between the laser-based angle detection device 15 inside and outside the casing and the measurement base station 16 by radio waves, a relay base may be provided therebetween.
第 3の実施形態では、 連接棒 1 3 0によるレーザ一光の遮光時点を基 準に、 所定時間間隔 t毎に前記レーザー受光手段 1 8により前記相対角 度を検出するようにしているが、 連接棒 1 3 0によるレーザー光の遮光 解除時点を基準にしても良い。 また所定時間毎にレーザー受光手段 1 8 により相対角度を検出する他、 所定回転角度毎に角度を検出するように しても良い。 その場合、 クランク軸 1の回転角度を検出する角度検出手 段と併用して、 所定角度毎のデフレクション量を求めても良い。 産業上の利用可能性 In the third embodiment, the relative angle is detected by the laser receiving means 18 at predetermined time intervals t based on the time when the laser beam is blocked by the connecting rod 130. Shielding of laser beam by connecting rod 130 The cancellation time may be used as a reference. In addition to the relative angle being detected by the laser light receiving means 18 every predetermined time, the angle may be detected every predetermined rotation angle. In this case, the amount of deflection at each predetermined angle may be obtained in combination with the angle detection means for detecting the rotation angle of the crankshaft 1. Industrial applicability
以上のように、 本発明に係るレーザー式角度検出装置、 クランク軸の デフレクション計測装置、 クランク軸のデフレクション計測方法及びク ランク軸は、 例えば大型の舶用ディ一ゼル機関等のクランク軸を旋盤加 ェ、 研削加工する場合、 クランク軸をディーゼル機関のケーシング内に 組み込む場合、 或いは船舶に搭載されたディーゼル機関を定期的に点検 する場合等において特に有用である。  As described above, the laser-type angle detection device, the crankshaft deflection measurement device, the crankshaft deflection measurement method, and the crankshaft according to the present invention can be used, for example, by turning a crankshaft of a large marine diesel engine or the like. In addition, it is especially useful when grinding, incorporating the crankshaft into the casing of a diesel engine, or periodically inspecting a diesel engine mounted on a ship.

Claims

請 求 の 範 囲 The scope of the claims
1. 平行な光束のレーザ一光を発振するレーザー発振手段 (1 7) と、 s ;亥レーザー発振手段 (1 7) からのレーザー光を受光するレーザー受光 手段 (1 8) とを備え、 前記レーザー受光手段 (1 8) はその内部に設 けられたレーザー光の光路 (46) と、 該光路 (46) の一端側に設け られたピンホール (48) と、 前記光路 (46) の他端側に設けられ且 つ前記ピンホール (48) からのレーザー光を受光して電気信号に変換 する受光素子 (49) とを備えていることを特徴とするレーザー式角度 1. a laser oscillating means (17) for oscillating a laser beam of a parallel light beam ; and s ; a laser receiving means (18) for receiving a laser beam from the laser oscillating means (17) ; The laser receiving means (18) is provided with an optical path (46) of the laser light provided therein, a pinhole (48) provided at one end of the optical path (46), and another part of the optical path (46). A light-receiving element (49) provided on an end side and receiving the laser beam from the pinhole (48) and converting the laser beam into an electric signal.
2. 暗室 (47) 内に前記光路 (46) を備えていることを特徴とする 請求の範囲第 1項に記載のレーザー式角度検出装置。 2. The laser type angle detecting device according to claim 1, wherein the optical path (46) is provided in a dark room (47).
3. 前記ピンホール (48) の大きさが前記レーザー光の光束の直径よ リも小さいことを特徴とする請求の範囲第 1項又は第 2項に記載のレー ザ—式角度検出装置。 3. The laser type angle detecting device according to claim 1, wherein the size of the pinhole (48) is smaller than the diameter of the light beam of the laser beam.
4. 前記レーザ一発振手段 (1 7) と前記レーザー受光手段 (1 8) と を別体に備え、 その一方を基準部位に、 他方を計測部位に夫々着脱自在 に装着するための装着手段 (2 1 ) (22) を備えていることを特徴と する請求の範囲第 1項〜第 3項の何れかに記載のレーザ一式角度検出装 置。  4. The laser mono-oscillation means (17) and the laser light receiving means (18) are provided separately, and one of them is detachably attached to a reference part and the other is detachably attached to a measurement part. 21. The laser complete angle detection device according to any one of claims 1 to 3, characterized by comprising (22).
5. 前記レーザー発振手段 (1 7) と前記レーザー受光手段 (1 8) と を含むレーザ一発振受光ユニット (90) と、 前記レーザー発振手段 ( 1 7) からのレーザ一光を逆方向へと反射させる反射手段 (91 ) とを 別体に備え、 前記レザー発振受光ュニッ卜 (9 0) に、 前記レーザー発 振手段 (1 7) からのレーザー光を前記反射手段 (9 1 ) 側へと透過し 且つ該反射手段 (91 ) からの反射レーザ一光を前記ピンホール (4 8 ) 側へと反射させる八一フミラー (9 2) を備えていることを特徴とす る請求の範囲第 1項〜第 3項の何れかに記載のレーザー式角度検出装置 5. A laser oscillation light receiving unit (90) including the laser oscillation means (17) and the laser light receiving means (18); and a laser beam emitted from the laser oscillation means (17) in a reverse direction. A reflecting means (91) for reflecting light is provided separately, and the laser beam from the laser oscillating means (17) is directed to the laser oscillating light receiving unit (90) toward the reflecting means (91). The transmitted laser beam reflected by the reflecting means (91) is reflected by the pinhole (48). The laser type angle detecting device according to any one of claims 1 to 3, further comprising an eighty-first mirror (92) for reflecting the light to the side.
6. 前記レーザー発振受光ュニッ卜 (9 0) と前記反射手段 (9 1 ) と の一方を基準部位に、 他方を計測部位に夫々着脱自在に装着するための 装着手段 (21 ) (2 2) を備えていることを特徴とする請求の範囲第 5項に記載のレーザ一式角度検出装置。 6. Attachment means (21) (22) for detachably attaching one of the laser oscillation light receiving unit (90) and the reflection means (91) to a reference part and the other to a measurement part, respectively. 6. The laser complete angle detecting device according to claim 5, comprising:
7. 前記ピンホール (48) から前記受光素子 (4 9) までの距離 ( I ) と、 前記受光素子 (49) の基準位置から前記レーザ—光の受光位置 までの距離 (m) とに基づいて検出角度を演算する角度演算手段 (64 ) を備えていることを特徴とする請求の範囲第 1項〜第 6項の何れかに 記載のレーザー式角度検出装置。  7. Based on the distance (I) from the pinhole (48) to the light receiving element (49) and the distance (m) from the reference position of the light receiving element (49) to the laser-light receiving position. The laser type angle detecting device according to any one of claims 1 to 6, further comprising an angle calculating means (64) for calculating the detected angle by using the angle calculating means.
8. 前記光路 (46) 中に、 前記ピンホール (48) からのレーザ一光 を前記受光素子 (49)側へと反射させる 1個又は複数個の反射ミラー 8. One or a plurality of reflection mirrors for reflecting one laser beam from the pinhole (48) toward the light receiving element (49) in the optical path (46).
(50) (51 ) を備えていることを特徴とする請求の範囲第 1項〜第 7項の何れかに記載のレーザ一式角度検出装置。 (50) The laser complete angle detection device according to any one of claims 1 to 7, comprising (51).
9. クランク軸 (1 ) の所定回転角度毎にそのデフレクシヨン量を計測 するようにしたクランク軸のデフレクシヨン計測装置において、 一対の アーム部 (4) のジャーナル部 (3) 側に装着され且つ平行な光束のレ —ザ一光を一方の前記ジャーナル部 (3) の軸心と略平行に発振するレ —ザ一発振手段 (1 7) と、 前記アーム部 (4) の前記ジャーナル部 ( 3) 側に装着され且つ前記レーザー発振手段 (1 7) からのレーザー光 をピンホール (4 8) を経て受光素子 (4 9) によリ受光して前記両ジ ヤーナル部 (3) の相対角度を検出するレーザー受光手段 (1 8) と、 前記所定回転角度毎に前記レーザ一受光手段 (1 8) により検出された 前記相対角度に基づいて前記デフレクシヨン量を演算するデフレクショ ン演算手段 (86) とを備えていることを特徴とするクランク軸のデフ レクシヨン計測装置。 9. In a crankshaft deflection measuring device for measuring the amount of deflection at each predetermined rotation angle of the crankshaft (1), the crankshaft (1) is mounted on the journal (3) side of a pair of arms (4) and parallel to each other. A laser oscillating means (17) for oscillating a laser beam of light substantially parallel to the axis of one of the journals (3), and the journal (3) of the arm (4) And the laser beam from the laser oscillation means (17) is received by a light receiving element (49) through a pinhole (48) to determine the relative angle between the two journal sections (3). A laser receiving means for detecting (18); and a deflection calculating the deflection amount based on the relative angle detected by the laser receiving means for each predetermined rotation angle (18). And a crank calculation means (86).
1 0. 前記レーザー発振手段 (1 7) 及び前記レーザ一受光手段 (1 8 ) として請求の範囲第 1項〜第 8項の何れかに記載のレーザ一式角度検 出装置 (1 5) を用いることを特徴とする請求の範囲第 9項に記載のク ランク軸のデフレクション計測装置。  10. A laser set angle detector (15) according to any one of claims 1 to 8 is used as the laser oscillation means (17) and the laser light receiving means (18). 10. The crank axis deflection measurement apparatus according to claim 9, wherein:
1 1. 前記クランク軸 (1 ) の複数個の各スロー (2) に前記レーザ一 発振手段 (1 7)及び前記レーザー受光手段 (1 8) を設け、 各スロー 1 1. Each of the plurality of throws (2) of the crankshaft (1) is provided with the laser-oscillating means (17) and the laser receiving means (18).
(2) におけるデフレクシヨン量を集積するデフレクシヨン集積手段 ( 87) と、 その集積結果をモニタリングするモニタリング手段 (88) とを備えていることを特徴とする請求の範囲第 9項又は第 1 0項に記載 のクランク軸のデフレクシヨン計測装置。 Claim 9 or 10 characterized by comprising a deflection accumulating means (87) for accumulating the deflection amount in (2) and a monitoring means (88) for monitoring the accumulation result. 13. The crankshaft deflection measurement device according to claim 1.
1 2. 平行な光束のレーザー光を一方のジャーナル部 (3) の軸心と略 平行に連接棒 (1 30) 側へと発振するレーザー発振手段 (〗 7) と、 該レーザ一発振手段 (1 7) からのレーザー光をピンホール (4 8) を 経て受光素子 (49) によリ受光して一対の前記ジャーナル部 (3) の 相対角度を検出するレーザー受光手段 (1 8) とをアーム部 (4) の前 記ジャーナル部 (3) 側に装着しておき、 クランク軸 (1 ) を回転させ ながらそのデフレクシヨン量を計測するに際し、 前記連接棒 (1 30) によるレーザー光の遮光時点、 又は連接棒 (1 30) によるレーザー光 の遮光解除時点を基準に、 所定時間間隔又は所定回転角度毎に前記レー ザ一受光手段 (1 8) により前記相対角度を検出することを特徴とする クランク軸のデフレクション計測方法。  1 2. A laser oscillating means (〗 7) for oscillating a laser beam of a parallel light beam to the connecting rod (1 30) side substantially in parallel with the axis of one of the journals (3); The laser beam from (17) passes through the pinhole (48) and is received by the light receiving element (49) to detect the relative angle between the pair of journals (3). The arm (4) is mounted on the journal (3) side, and when measuring the amount of deflection while rotating the crankshaft (1), when the laser beam is blocked by the connecting rod (130) Or the relative angle is detected by the laser light receiving means (18) at predetermined time intervals or at predetermined rotation angles based on the time point at which the laser beam is released from the light blocking by the connecting rod (130). How to measure the deflection of the crankshaft.
1 3. 前記レーザ—発振手段 (1 7) 及び前記レーザー受光手段 (1 8 ) として請求の範囲第 1項〜第 8項の何れかに記載のレーザ—式角度検 出装置 (1 5) を用いることを特徴とする請求の範囲第 1 2項に記載の クランク軸のデフレクション計測方法。 1 3. The laser-type angle detecting device (15) according to any one of claims 1 to 8 as the laser-oscillating means (17) and the laser-receiving means (18). Use according to claim 12 characterized by the use How to measure the deflection of the crankshaft.
1 4. 前記クランク軸 (1 ) の複数個の各スロー (2) に前記レーザ一 発振手段 (1 7) 及び前記レーザー受光手段 (1 8) を設けておき、 同 時に各スロー (2) におけるデフレクシヨン量を計測することを特徴と する請求の範囲第 1 2項又は第 1 3項に記載のクランク軸のデフレクシ ョン計測方法。  1 4. A plurality of the throws (2) of the crankshaft (1) are provided with the laser-oscillating means (17) and the laser receiving means (18), respectively. The method for measuring deflection of a crankshaft according to claim 12, wherein the amount of deflection is measured.
1 5. 前記複数個の各スロー (2) におけるデフレクシヨン量を一度に モニタリングすることを特徴とする請求の範囲第 1 4項に記載のクラン ク軸のデフレクション計測方法。  15. The method for measuring deflection of a crankshaft according to claim 14, wherein the amount of deflection in each of the plurality of throws (2) is monitored at a time.
1 6. 複数個のスロー (2) に、 請求の範囲第 Ί項〜第 8項の何れかに 記載のレーザ一式角度検出装置 (1 5) を夫々備えていることを特徴と するクランク軸。  1 6. A crankshaft characterized in that each of a plurality of throws (2) is provided with the laser complete angle detecting device (15) according to any one of claims (1) to (8).
PCT/JP2003/009364 2002-07-29 2003-07-24 Laser-type angle detection device, crankshaft deflection measuring-device, crankshaft deflection-measuring method, and crankshaft WO2004011877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-220090 2002-07-29
JP2002220090A JP2004061300A (en) 2002-07-29 2002-07-29 Laser type angle detection device, deflection measuring device of crank shaft, deflection measuring method of crank shaft, and crank shaft

Publications (1)

Publication Number Publication Date
WO2004011877A1 true WO2004011877A1 (en) 2004-02-05

Family

ID=31184753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009364 WO2004011877A1 (en) 2002-07-29 2003-07-24 Laser-type angle detection device, crankshaft deflection measuring-device, crankshaft deflection-measuring method, and crankshaft

Country Status (2)

Country Link
JP (1) JP2004061300A (en)
WO (1) WO2004011877A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589514A (en) * 2011-01-15 2012-07-18 毛君 Heading machine pose parameter measuring device and method thereof
KR101453336B1 (en) 2013-03-27 2014-10-22 케이.엘.이.에스 주식회사 Non contact displacement measurement system
CN112595248A (en) * 2020-12-23 2021-04-02 莱芜环球汽车零部件有限公司 Automobile crankshaft journal precision measuring equipment
CN113847889A (en) * 2021-01-29 2021-12-28 上海西门子开关有限公司 Device, method and system for measuring angle of connecting arm of main shaft of circuit breaker
CN117553732A (en) * 2023-10-27 2024-02-13 河北省科学院应用数学研究所 Crankshaft relative rotation angle measuring device and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006004670D1 (en) * 2005-04-20 2009-10-08 Busch Dieter & Co Prueftech ENHANCEMENT OF CRANKSHAFTS
EP2950041B1 (en) * 2013-01-25 2018-06-20 The Chugoku Electric Power Co., Inc. System and method for distance measurement
CN108917654A (en) * 2018-06-28 2018-11-30 北方民族大学 Novel angle sensor and its measurement method
JP7311250B2 (en) * 2018-08-31 2023-07-19 株式会社小松製作所 Device for identifying goods carried by working machine, working machine, method for identifying goods carried by working machine, method for producing complementary model, and data set for learning
CN110132176A (en) * 2019-04-30 2019-08-16 上海航天壹亘智能科技有限公司 The detection method of crankshaft crank phase

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023688Y2 (en) * 1983-04-21 1985-07-15 三菱重工業株式会社 Crankshaft deflection measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023688Y2 (en) * 1983-04-21 1985-07-15 三菱重工業株式会社 Crankshaft deflection measuring device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589514A (en) * 2011-01-15 2012-07-18 毛君 Heading machine pose parameter measuring device and method thereof
CN102589514B (en) * 2011-01-15 2014-05-07 辽宁工程技术大学 Heading machine pose parameter measuring device and method thereof
KR101453336B1 (en) 2013-03-27 2014-10-22 케이.엘.이.에스 주식회사 Non contact displacement measurement system
CN112595248A (en) * 2020-12-23 2021-04-02 莱芜环球汽车零部件有限公司 Automobile crankshaft journal precision measuring equipment
CN113847889A (en) * 2021-01-29 2021-12-28 上海西门子开关有限公司 Device, method and system for measuring angle of connecting arm of main shaft of circuit breaker
CN117553732A (en) * 2023-10-27 2024-02-13 河北省科学院应用数学研究所 Crankshaft relative rotation angle measuring device and method
CN117553732B (en) * 2023-10-27 2024-04-26 河北省科学院应用数学研究所 Crankshaft relative rotation angle measuring device and method

Also Published As

Publication number Publication date
JP2004061300A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP5210536B2 (en) Measuring probe
US6441908B1 (en) Profiling of a component having reduced sensitivity to anomalous off-axis reflections
US8677643B2 (en) Coordinate measurement machines with removable accessories
RU2653771C2 (en) Two bodies misalignment device and determination method
WO2004011877A1 (en) Laser-type angle detection device, crankshaft deflection measuring-device, crankshaft deflection-measuring method, and crankshaft
JP2001503133A (en) 5-axis / 6-axis laser measurement system
JP2023126981A (en) optical displacement meter
CA2214758A1 (en) Method and apparatus for measuring axial and torsional loads on a valve stem
WO2013188025A1 (en) Coordinate measurement machines with removable accessories
JP2010019685A (en) Curvature radius measuring apparatus
JP2001183117A (en) Instrument and method for measuring surface shape
JP2637170B2 (en) Method and apparatus for measuring brush wear of motor
JP5645311B2 (en) Light wave distance meter
US20140125997A1 (en) Device and method for calibrating the direction of a polar measurement device
JP2007010516A (en) Wave aberration measuring device, wave aberration measuring method and inspection lens holding adjusting mechanism
CN210268552U (en) Non-contact ultra-precise part surface measuring device
JP2013024748A (en) Measuring device
JPH10221029A (en) Apparatus for measuring aspherical shape
WO2024004166A1 (en) Distance measurement device
JPH1062117A (en) Laser type probe of 3-dimension measuring device
EP1309886A2 (en) 3d motion distant measuring device from a single reference point
JPH08285553A (en) Optical type angular change detector
JPH10221010A (en) Interferometer
WO1993014375A1 (en) Gauging apparatus
JPH0781841B2 (en) Thickness measuring device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR