WO2004011428A1 - Process for production of amides - Google Patents

Process for production of amides Download PDF

Info

Publication number
WO2004011428A1
WO2004011428A1 PCT/JP2003/009749 JP0309749W WO2004011428A1 WO 2004011428 A1 WO2004011428 A1 WO 2004011428A1 JP 0309749 W JP0309749 W JP 0309749W WO 2004011428 A1 WO2004011428 A1 WO 2004011428A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
anhydride
reaction
oxime
solvent
Prior art date
Application number
PCT/JP2003/009749
Other languages
French (fr)
Japanese (ja)
Inventor
Naoko Fujita
Yuji Kawaragi
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002224011A external-priority patent/JP2004059553A/en
Priority claimed from JP2002224012A external-priority patent/JP4218277B2/en
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to AU2003254791A priority Critical patent/AU2003254791A1/en
Publication of WO2004011428A1 publication Critical patent/WO2004011428A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • C07D201/02Preparation of lactams
    • C07D201/04Preparation of lactams from or via oximes by Beckmann rearrangement

Definitions

  • the present invention relates to a method for producing an amide compound. More specifically, the present invention relates to a method for efficiently producing an amide compound by performing a Beckmann rearrangement reaction of oxime in a liquid phase in the presence of a catalyst.
  • a method for producing an amide compound which is industrially performed a method of converting an oxime compound into an amide compound by a Beckmann rearrangement reaction is known.
  • ⁇ -force prolatatam is cyclohexanone oxime.
  • ⁇ -laurin lactam is produced by the Beckmann rearrangement of dodecanonone oxime by the Beckmann rearrangement reaction.
  • such a Beckmann rearrangement reaction is industrially adopted as a liquid phase reaction using a strong acid such as concentrated sulfuric acid or fuming sulfuric acid as a catalyst.
  • the generated ratatam compound strongly binds to sulfuric acid.
  • Beckmann rearrangement of a cyclic oxime compound having 8 to 15 carbon atoms in an organic solvent can be carried out using an organic sulfonic acid, an anhydride of sulfuric acid half ester, or a mixed anhydride of organic sulfonic acid and sulfuric acid half ester as a catalyst.
  • a method of performing Beckmann rearrangement Japanese Patent Application Laid-Open No. Hei 62-108681 is known. ⁇
  • Example 1 described in Japanese Patent Application Laid-Open No. 62-10886'1.
  • Force S Because there was no commercial product of benzolsulfonic anhydride, instead! Sulfonic anhydride was used, and the reaction scale was 1 Z4), and the catalyst was not dissolved in the solvent but was dispersed in the reactor as a solid, and as described in the Examples, A strong heat is generated immediately. "The phenomenon was not observed. Further, the ratatam yield after 0.5 hour was examined by NMR, but the ratatam yield was only 0.5%, and the Example could not be reproduced (Comparative Example 1 of the present application).
  • the present inventors have proposed a method of Beckmann rearrangement of an oxime compound as a catalyst system containing a non-fluorine-containing sulfonic anhydride having high catalytic activity and N, N-disubstituted amide, or sulfonic acid or sulfonic acid.
  • Compounds selected from anhydrides and N, N— A catalyst system containing a disubstituted amide and a carboxylic acid anhydride was proposed (WO O 1/813002).
  • the catalyst component must be neutralized while containing a large amount of the amide compound, which makes the reactor for neutralization extremely large, dissolving the amide compound. Therefore, a large amount of solvent is required.
  • the amide compound present in a large amount inhibits the neutralization reaction of the catalyst, there has been a problem. ——:.
  • the inventors of the present invention have conducted intensive studies. As a result, when oxime is produced by a general method, the oxime compound contains about 5 to 15% by weight of water, and water is usually present in the organic solvent. Therefore, a certain amount of water is inevitably present in the reaction system, but it has been found that the amide compound can be produced with high efficiency by reducing the amount of water. Furthermore, the amide compound and the unreacted oxime compound are reacted with the catalyst from the reaction solution.
  • the present inventors have found a method for directly separating the components and obtaining an amide compound, and at the same time, have found a method for regenerating the catalyst component.
  • a first gist of the present invention is a method for producing an amide compound by subjecting an oxime compound having 8 or more carbon atoms to a Beckmann rearrangement reaction in an organic solvent in the presence of a catalyst component containing an acid anhydride.
  • the present invention also provides a method for producing an amide compound, wherein the rearrangement reaction is carried out by setting the total molar ratio of the oxime compound and water contained in the solvent to 15 or less with respect to the added acid anhydride.
  • a second gist of the present invention is a method for producing an amide compound by subjecting an oxime compound to a Beckmann rearrangement reaction in an organic solvent in the presence of a catalyst component containing an acid anhydride.
  • the present invention is directed to a method for producing an amide compound, which comprises directly separating a catalyst component and an amide compound from the amide compound.
  • an oxime compound having 8 or more carbon atoms is used in the first invention, and usually has 20 carbon atoms or less, preferably 1 carbon atom.
  • an oxime of an alicyclic ketone or an oxime of a substituted alicyclic ketone is preferable.
  • cyclodecanonone oxime, cyclodexamedecoxime, cyclodexodenonoxime, more preferably cycloundecanone oxime, cyclodexcanone oxime are used.
  • the oxime compound used in the second invention of the present invention is not limited, and a known oxime compound is applied.
  • Specific examples of the oxime compounds include cyclohexanone oxime, cyclopentanone oxime, cyclododecanonoxime, acetone oxime, 2-butanone oxime, acetophenone oxime, benzophenone oxime, and 4'-didroxyacetophenone.
  • cyclic oximes having 4 to 20 carbon atoms, preferably 8 or more carbon atoms, such as cyclohexanone oxime, pentanone oxime, cycloundecanone oxime and cyclododecanone oxime, and particularly cycloundecanonone oxime. Cyclodode canonoxime is suitable because it is easily separated by crystallization.
  • oxime compounds salts such as oxime hydrochloride can be used.
  • oxime hydrochloride a cycloalkane obtained by photosodium oxidation in the presence of hydrogen chloride can be used, and a product obtained by bringing oxime into contact with hydrogen chloride can also be used.
  • the molar ratio of hydrochloric acid / oxime in the reaction system must be 2 or more, the amount of hydrochloric acid used is large, and the material and operability of the reactor 31. (1 981) 250 .; Japanese Patent Publication No. 47-181114; Japanese Patent Publication No. 52-17035; DE 1, 620, 478).
  • the reaction when this oxime hydrochloride is used, the reaction can proceed sufficiently even if the molar ratio of hydrochloric acid / oxime in the reaction system is less than 2.
  • the molar ratio of Z oxime hydrochloride is more preferably 1.3 or less, and further preferably less than 1.1.
  • the amount of hydrochloric acid in the reaction system includes not only hydrogen chloride constituting oxime hydrochloride but also hydrogen chloride contained in the reaction solution in the number of moles of hydrogen chloride.
  • the Beckmann rearrangement reaction can be advanced without using a catalyst component containing an acid anhydride.
  • the catalyst component used in the Beckmann rearrangement reaction of the present invention is not particularly limited as long as it is a catalyst component containing an acid anhydride, but it is preferable to use an acid anhydride which generates a strong acid when hydrolyzed.
  • the strong acid is not particularly limited, but a strong acid having a pKa of 4 or less is more preferable.
  • the catalyst component containing an acid anhydride include (1) an acid anhydride that produces a strong acid upon hydrolysis, (2) carboxylic acid anhydride, and a strong acid and a diacid or a strong acid anhydride. It is.
  • the acid anhydride that produces a strong acid upon hydrolysis may be any of a strong acid and a strong acid anhydride, and a strong acid and a weak acid anhydride.
  • sulfonic anhydrides such as aromatic sulfonic anhydride and aliphatic sulfonic anhydride, fluorinated anhydride such as trifluoromethanesulfonic anhydride, and pentoxide, which is an anhydride of phosphoric acid.
  • Phosphorus which is an anhydride of perrhenic acid
  • sulfur trioxide which is an anhydride of sulfuric acid
  • boron phosphate which is an anhydride of phosphoric acid and boric acid
  • anhydride of a half ester of sulfuric acid is more preferred. May be mixed acid anhydride.
  • sulfonic anhydride and phosphorus pentoxide are preferred, and sulfonic anhydride is preferred in terms of easier handling.
  • the sulfonic anhydride is not particularly limited, and aromatic sulfonic anhydride, linear or cyclic aliphatic sulfonic anhydride and the like can be used.
  • the aromatic sulfonic anhydride usually has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms, and may have a substituent on the aromatic ring.
  • the aliphatic sulfonic anhydride usually has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and may have a substituent.
  • the substituent represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, or a halogen atom such as F, Cl, or Br.
  • Specific compounds include benzenesulfonic anhydride, ⁇ _toluenesulfonic anhydride, m-xylene-14-sulfonic anhydride, p-dodecylbenzenesulfonic anhydride, 2,4-dimethylbenzenesulfonic anhydride, 2,5-Dimethylbenzensnolefonic anhydride, 4-monobenzenebenzenesnolefonic anhydride, a-naphthylsnolefonic anhydride,] 3-Naphthylsulfonic anhydride, biphenylsulfonic anhydride, methanesulfonic anhydride Product, ethanesulfonic anhydride, pulppansulfonic anhydride, 1-hexanesulfonic anhydride, 1-octanesulfonic anhydride, trifluoromethanesulfonic acid, a mixed acid anhydride of p-tolu
  • the amount of acid anhydride results in a strong acid by hydrolysis is not particularly limited, in general, about relative Okishimu the starting compounds of 0.1 to 2 0 mole 0/0, preferably 0. 3 It is used in an amount of 15 mol%, more preferably 0.5 to 10 mol%. If the amount is less than this range, sufficient catalytic activity cannot be obtained. On the other hand, if the amount is too large, the load required for the catalyst treatment after the rearrangement reaction increases, which is not preferable. ⁇
  • the carboxylic acid anhydride is not particularly limited. It is possible to use an aliphatic carboxylic anhydride having a good carbon number of 1 to 20, preferably 1 to 8 and an aromatic carboxylic anhydride having 6 to 12 carbon atoms which may have a substituent. Yes (where the substituent represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, a halogen atom such as Cl, Br, and F) ).
  • the valence of the carboxylic acid is not particularly limited, and is preferably a force S, preferably monovalent.
  • Specific compounds include acetic anhydride, propionic anhydride, n-butyric anhydride, n-valeric anhydride, n-caproic anhydride, n-heptanoic anhydride, 2-ethylhexanoic anhydride Examples thereof include benzoic anhydride, phthalic anhydride, maleic anhydride, and succinic anhydride.
  • acetic anhydride and propionic anhydride which are low-boiling compounds, are preferred in the present invention.
  • the amount of the carboxylic acid anhydride used in the present invention is not particularly limited, it is generally based on at least one compound selected from the group consisting of strong acids and / or strong acid anhydrides described below. It is used in a range of about 0.5 to 200 mole times, preferably 1.0 to 100 mole times, and more preferably 2.0 to 50 mole times. If the amount is less than this range, sufficient catalytic activity cannot be obtained. On the other hand, if the amount is too large, the load required for catalyst separation after the rearrangement reaction increases, which is not preferable.
  • the “strong acid anhydride” in the strong acid and Z or the strong acid anhydride may be a strong acid and a weak acid anhydride or a strong acid and a strong acid anhydride.
  • a compound selected from sulfonic acid and / or an acid anhydride thereof is preferable.
  • the compound selected from sulfonic acid and / or an acid anhydride thereof is not particularly limited, and may be an aromatic sulfone having 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms which may have a substituent.
  • An acid, an aliphatic sulfonic acid having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms which may have a substituent, and an acid anhydride thereof can be used (where the substituent is a carbon atom).
  • Specific compounds include benzenesulfonic acid,: —toluenesulfonic acid,; _toluenesulfonic acid monohydrate, monododecylbenzenesulfonic acid, 2,4-dimethylbenzenesulfonic acid, 2,5-dimethylbenzenesulfonic acid Acid, 4-chlorobenzene zensnolephonic acid, 4-funoleo-benzene benzenesnolephonic acid, ⁇ -naphthinolesnolephonic acid,] 3-naphthinolesnolephonic acid, bifu.
  • Soil nilsnolefonic acid, methanesnolefonic acid, trifluoromethanesnole examples thereof include sulfonic acid, ethanesulfonic acid, sulfonic acid, sulfonic acid, 1-hexanesulphonic acid, 1-octanesulfonic acid, and acid anhydrides or mixed acid anhydrides thereof, among which methanesulfonic acid, trifluoromethanesulfonic acid, Ethane Snorefonic acid, Proha.
  • snolefonic acid benzenesnolefonic acid,: — tonoleensnorefonic acid,: ⁇ -dodecylbenzenesulfonic acid and their acid anhydrides or mixed acid anhydrides, particularly methanesulfonic acid, ⁇ -toluenesulfonic acid and Acid anhydrides are preferred.
  • the amount of a compound selected from strong acids and ⁇ or strong anhydride in the present invention is not particularly limited, but is generally about relative Okishimu the starting compounds of 0.1 to 2 0 mole 0/0 , preferably from 0.3 to 1 5 moles 0/0, used more preferably in the range of 0.5 to 1 0 mol%. If the amount is less than this range, sufficient catalytic activity cannot be obtained. On the other hand, if the amount is too large, the load required for the catalyst treatment after the rearrangement reaction increases, which is not preferable.
  • the solvent that can be used in the rearrangement reaction of the present invention is not particularly limited as long as it does not inhibit the rearrangement reaction, but usually an organic solvent having 1 to 20 carbon atoms is used.
  • organic solvent having 1 to 20 carbon atoms
  • aliphatic hydrocarbon compounds such as n-hexane, n-heptane, n-dodecane, and cyclohexane
  • aromatic hydrocarbon compounds such as benzene, toluene, xylene, mesitylene, monochrome benzene, and methoxybenzene
  • Acetonitrile, propanitrile, forcepronitrile, aprotolyl, benzoetrile, tonorenitrile, etc.-tolyl compounds dimethyl phthalate, dibutyl phthalate, dimethyl malonate, dimethyl succinate, etc.
  • N, N N, N-disubstituted amide compounds such as dimethylformamide, N, N, NN
  • a solvent selected from an aromatic hydrocarbon compound, an aliphatic hydrocarbon compound and a -tolyl compound is used.
  • These compounds may have a substituent such as an alkyl group, an acyl group, a nitro group, a hydroxyl group and a halogen atom.
  • a solvent that dissolves the catalyst under the reaction conditions is more preferable because the reaction rate may decrease if the catalyst is not dissolved.
  • the Beckmann rearrangement reaction can proceed without using an acid anhydride catalyst. It is preferable to use a nitrile compound, a nitro hydrocarbon, or a halogenated hydrocarbon, and it is more preferable to use a nitrile compound.
  • the amount of the solvent to be used is not particularly limited, but it is usually 1 to 100 times, preferably 2 to 10 times the weight of the oxime compound.
  • the reaction is carried out by controlling the total molar ratio of the oxime compound and water contained in the reaction solvent to 15 or less with respect to the added acid anhydride.
  • the molar ratio is preferably 10 or less, more preferably 6 or less, and particularly preferably 3 or less.
  • the molar ratio is preferably 0.5 or less, more preferably 0.1 or less, and further preferably 0.05 or less. Is preferred.
  • the measurement of the water content in the present invention may be performed by a known method, for example, a Karl Fischer method can be used.
  • the molar ratio of the total amount of water contained in the oxime compound and the reaction solvent to the acid anhydride it is determined by the amount of the compound charged in the reactor in the case of a batch reaction, and in the case of a continuous reaction, It may be determined based on the amount of the compound introduced into the reactor per unit time. Also, when the catalyst component is separated from the reaction solution as described below and the catalyst component is recycled to the reactor without going through the catalyst regeneration process, the amount of “acid anhydride” in the preparation is not counted here. . “Charged anhydride” refers to an acid anhydride newly introduced into the reaction system and a regenerated acid anhydride.
  • the ratio of water present in the reaction system to the total of the derivative containing the acid and the acid component corresponding to the acid anhydride in the reaction system is usually less than 7, and Among them, 5 or less is preferable, 3 or less is preferable, and 1.5 or less is particularly preferable.
  • the acid anhydride is used. It is preferable to measure and sum the solid and the solution, respectively, when the oxime compound as the raw material or the amide compound as the target product is present as the solid content. Since acid anhydrides are gradually hydrolyzed by water, if a sample mixed with acid anhydrides is introduced into a moisture measuring device, it may affect the amount of water during analysis. In addition, the oxime compound as the raw material and the amino acid as the target product are used as solids. If a compound exists, it may contain water, so it is necessary to measure the water content.
  • an oxime compound a method of reacting a ketone with hydroxylamine sulfate, a method of producing a cyclium alkane by photo-to-sophorization, and the like are known.
  • the oxime compound obtained through such a production method generally contains about 5 to 15% by weight of water.
  • the reaction solvent also depends on the type, the reaction solvent usually contains water of the number 100 ppm, and in some cases, the water of the number 100 ppm. It may contain more water depending on the storage method.
  • the reactor and its associated receiver and piping also have moisture on the walls.
  • the total molar ratio of the water contained in the oxime compound and the reaction solvent is reduced to a specific value or less with respect to the acid anhydride used.
  • it is preferable to limit the water content in the reaction liquid phase it is preferable to dry not only these but also the reactor and the associated receiver.
  • the acid anhydride to be used is preferably stored in a manner not to be mixed with water, and the rearrangement reactor, the receiver and the piping are preferably dried.
  • the preparation and the reaction of the reaction are preferably carried out in an atmosphere of a dried gas, and it is preferred to avoid the incorporation of moisture-containing air.
  • an inert gas atmosphere such as nitrogen, argon or helium, but dry air can also be used.
  • a water absorbing agent may be present in the reaction solution, or the reaction may be performed while removing water.
  • the above-described oxime compound, reaction solvent and reaction atmosphere gas, and a method for drying the reactor are not particularly limited, but are preferably performed in the following steps, respectively.
  • the starting oxime compound of the method of the present invention is usually at most 5% by weight, preferably at most 1. 5 weight. / 0 or less, more preferably 0.6% by weight or less, particularly preferably 0.3% by weight or less.
  • Specific examples of the method for drying the oxime compound include general distillation, distillation using a thin film evaporator, crystallization, and drying under reduced pressure of solid oxime. These methods may be appropriately combined.
  • the organic solvent of the present invention generally has a water content reduced to 1% or less, preferably 0.2% or less, more preferably 0.1% or less, and particularly preferably 0.05% or less. Is preferred.
  • Examples of the method for drying the organic solvent include general distillation, distillation using a thin film evaporator, drying using molecular sieves, a method using metallic sodium, etc., salts such as sodium sulfate and magnesium sulfate. For example, a method such as drying using a method can be used. These can also be combined. If the organic solvent is sufficiently dried, this step need not necessarily be included.
  • Examples of a method for drying the gas in the reaction atmosphere include a method of incorporating a moisture absorbent such as molecular sieves between gas pipes leading to the reactor. May not necessarily be included.
  • the drying gas is circulated in advance, the drying gas is circulated while keeping the temperature, or the moisture is removed by a method such as drying under reduced pressure.
  • a method or the like can be adopted.
  • the amount of water to be charged can be brought to a predetermined state.
  • an acid anhydride is used.
  • the acid anhydride is hydrolyzed by water adhering to the reaction raw material or solvent or to the reactor.
  • water may be consumed. Therefore, it is the raw material of the reaction and the catalyst
  • the amount of water measured may vary.
  • the amount of water in the reaction atmosphere and the reactor should be limited so that the molar ratio of water in the raw materials added to the reaction to the acid anhydride is not more than a predetermined amount, and the amount of water in the reaction solution itself should not be increased. Is preferred.
  • the yield of the target amide compound can be improved by reducing the amount of water with respect to the acid anhydride used as described above.
  • the reaction temperature is usually from o ° C to 200 ° C, preferably from 40 ° C to 150 ° C, more preferably from 50 ° C to 150 ° C. It is carried out in the range of 30 ° C.
  • the reaction pressure is not particularly limited, and the reaction can be carried out under reduced pressure, normal pressure and pressurized conditions.
  • the reaction time or the residence time of the reaction substrate in the reactor is usually from 10 seconds to 10 hours, preferably from 1 minute to 7 hours.
  • the rearrangement reaction proceeds even if the acid anhydride and the starting oxime compound are mixed in any order.
  • the raw material oxime may be mixed with an organic solvent, and after reaching a predetermined temperature, an acid anhydride may be added, or a mixture of the acid anhydride mixed with the organic solvent, or a smaller amount of the raw material oxime added to the mixture.
  • the mixture to which the compound has been added is heated to a predetermined temperature, and then the raw material solution in which the raw material oxime compound is dissolved may be added at once, or the reaction may be started by sequentially supplying the raw material oxime compound.
  • the starting oxime compound may be dissolved in a part of the solvent and used for the reaction, or may be added as it is without being dissolved.
  • the reaction mode for carrying out the reaction of the present invention is not particularly limited, and the reaction can be carried out in any of a batch reaction and a continuous flow reaction. However, industrially, it is preferable to use a continuous flow reaction mode.
  • the type of the reactor is not particularly limited, and a general reactor such as a reactor having one or two or more continuous stirring tanks or a tubular reactor can be used.
  • the anhydride used in the present invention is a reaction It is preferable to use a corrosion-resistant material for the reactor because it is hydrolyzed by water contained in the liquid to generate an acid.
  • stainless steel Hastelloy, Monel, Inconel
  • titanium titanium alloy, dinoleconium, zirconium
  • examples include alloys, nickel, nickel alloy, tantalum, or fluororesins, and materials coated with various types of glass on the inside.
  • reaction method of the present invention is not particularly limited, for example, it may be batch or continuous, and it is preferable to carry out the reaction continuously from the industrial point of view.
  • a catalyst component containing the acid anhydride of the present invention specifically, a strong acid anhydride or a carboxylic acid anhydride and a strong acid and / or a strong acid anhydride are placed in a sufficiently dried reactor.
  • the catalyst solution in which the substances are dissolved is charged and maintained at a predetermined temperature.
  • the reaction is carried out continuously with the solvent in which the raw material oxime compound is dissolved and reacted during the desired residence time, and simultaneously the amide compound, unreacted oxime compound and catalyst component, and the reaction containing the solvent The mixture is continuously removed.
  • the reaction mixture after the rearrangement reaction is composed of a low-boiling product, a solvent, an amide compound as an intended product, unreacted oxime, and the remaining catalyst components (a carboxylic acid anhydride and a strong acid and / or a strong acid anhydride as catalyst components). (When used, carboxylic acid is included.)
  • the catalyst component and the amide compound it is desirable to directly separate the catalyst component and the amide compound from the reaction mixture after the rearrangement reaction.
  • the amide compound can be easily separated from the catalyst component, and the catalyst can be easily regenerated.
  • separating the catalyst component and the amide compound means separating the reaction solution without neutralization, addition of water and z or washing.
  • neutralization refers to the addition of a base in an amount equal to or more than that of the existing acid
  • water addition and / or washing refers to the addition of 30% by weight or more of water to the reaction mixture.
  • the step of separating the amide compound, the unreacted oxime compound and the catalyst component may be carried out from the reaction solution after the catalyst has been deactivated or from the reaction solution if the catalyst has not been deactivated.
  • the mother liquor containing the catalyst component after separation of the amide compound and unreacted oxime compound may be led to the catalyst regeneration step or may be recycled to the rearrangement step without being led to the regeneration step. You can choose.
  • the regeneration step In the case of leading to the regeneration step, it can be led in the form of an acid, or if necessary, can be regenerated to an acid after the neutralization step and further to an acid anhydride. Since the amide compound and the separated catalyst component are led to the neutralization step after separating a large amount of the amide compound, the neutralization can be easily performed.
  • the separated amide and oxime compounds are separated into amide and oxime compounds by various separation operations such as distillation, extraction, and crystallization separation.
  • the target amide compound can be further purified by a method such as distillation or crystallization to obtain a higher purity product.
  • the unreacted oxime compound separated from the target amide compound can be appropriately purified and used as a reaction raw material. It is not necessary to separate the unreacted oxime compound from the amide compound, provided that Beckmann rearrangement reaction conditions in which the unreacted oxime compound does not remain are selected.
  • any known method such as distillation, crystallization, or extraction can be employed. Crystallization is preferred because it is simple and the equipment is simple.
  • the solvent used in the reaction can be used as it is, or part or all of the solvent used in the reaction is distilled off, and another solvent such as toluene is added, and the crystallization is performed. May be done.
  • the crystallization of the rearrangement reaction solution precipitates an amide compound containing almost no catalyst component as a solid component, and the catalyst component is recovered in the filtrate.
  • carboxylic acid When a carboxylic acid is contained as a catalyst component, it is preferable to distill the carboxylic acid by distillation before crystallization. The removed carboxylic acid can be recycled to the reaction step after being converted to the anhydride.
  • the amount of the solvent used for crystallization is not particularly limited, but is usually The amount is usually 0.5 to 20 times, preferably 1 to 10 times, and more preferably 2 to 7 times the total weight of the compound and the unreacted oxime compound.
  • any crystallization temperature may be used. Usually, a temperature from the melting point to the boiling point of the solvent to be used is used, but a temperature between 110 ° C. and room temperature is preferable.
  • known methods such as ordinary atmospheric pressure filtration, vacuum filtration, and pressure filtration can be used.
  • the amide compound and the unreacted oxime compound separated by filtration can be used to wash the catalyst component attached to the crystal surface with a solvent. ,
  • the catalyst solution after separating the catalyst component, the amide compound and the unreacted oxime compound from the reaction solution is returned to the rearrangement step as it is, the catalyst is deactivated by moisture, so these separation operations must be performed in a dry atmosphere. It is preferable not to mix water by a method such as performing, or collecting a solution in which the catalyst component is dissolved using a dried syringe or the like. In addition, even when regeneration of the catalyst is necessary, it is preferable to prevent water from being mixed into the catalyst solution by the method described above. '
  • the amount of water is 30% by weight or less based on the rearrangement reaction solution, and 20% by weight considering the burden of water separation operation. . / 0 or less, preferably 15% by weight or less.
  • the mode of operation in this step is not particularly limited, and the catalyst component and the amide compound can be separated as they are in the reactor used for the reaction, or they can be transferred to another container and then performed. Good. In addition, it can be implemented in either a batch format or a continuous distribution format.
  • a corrosion-resistant material for the reactor such as stainless steel, Hastelloy, Monel, Inconel, or the like.
  • a corrosion-resistant material for the reactor such as stainless steel, Hastelloy, Monel, Inconel, or the like.
  • examples thereof include titanium, a titanium alloy, a zinc alloy, a zinc alloy, nickel, a nickel alloy, tantalum, a fluororesin, and a material in which various kinds of glass are coated on the inside.
  • the catalyst component separated after the Beckmann rearrangement reaction is dissolved in a solvent It can be recycled to the reaction system as it is, but it can be recycled to the rearrangement reaction system after conversion to the acid anhydride. At that time, if necessary, a neutralization step and a regeneration to an acid may be performed, and then a step of acid anhydride may be conducted.
  • a step of neutralizing an acid derived from an acid anhydride with an alkaline compound to form an alkali salt of the acid is a step of neutralizing an acid derived from an acid anhydride with an alkaline compound to form an alkali salt of the acid.
  • Any alkaline compound may be used, but preferably an alkali metal hydroxide, an alkaline earth metal hydroxide, or ammonia is used. These alkaline compounds are preferably mixed with water in advance and used as an aqueous alkaline solution.
  • the temperature at which the catalyst component and the alkaline compound are mixed is generally 0 to 200 ° C, preferably 10 to 150 ° C.
  • the amount of the alkaline compound used is usually 0.1 to 20 mol times, preferably 0.5 to 10 mol times, relative to the acid anhydride used for the rearrangement reaction.
  • the solution containing the neutralized catalyst component When neutralized with an aqueous solution of an alkaline compound, the solution containing the neutralized catalyst component contains a reaction solvent, a low-boiling by-product, and water in addition to the catalyst component.
  • the neutralized solution contains the target amide compound and the starting oxime compound.
  • the target amide compound and unreacted oxime compound can be separated from the acid derived from the acid anhydride by a method such as extraction, crystallization, or distillation.
  • the neutralized salt of the catalyst component By distilling off the reaction solvent and light-boiling by-products from the solution containing the neutralized catalyst component, the neutralized salt of the catalyst component can be obtained in the form of an aqueous solution.
  • the recovered solvent can be recycled to the reactor. In this case, unnecessary by-products are separated and removed by a separate means such as distillation.
  • Examples of other acids used in this step include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, organic acids such as acetic acid and propionic acid, solid acids, and acid-type ion exchange resins. If the acidity of the acid derived from the acid anhydride is stronger than the acidity of the other acid used for acid regeneration, the amount of the other acid used is increased or the free acid is used. The acid can be recovered by removing the strong acid out of the system during the process, even if it is disadvantageous for the equilibrium of the reaction.
  • the reaction is preferably performed in the presence of an organic solvent in which the sulfonic acid is soluble.
  • an organic solvent it is preferable to use an organic solvent in which the sulfonic acid is dissolved and the inorganic acid is hardly dissolved.
  • aromatic hydrocarbons such as toluene and benzene, aliphatic hydrocarbons such as hexane and octane, ketones such as acetone and methylethyl ketone, esters such as ethyl acetate and methyl phthalate
  • ethers such as dimethyl ether
  • -tolyls such as acetonitrile
  • alcohols such as ethanol and isopropanol.
  • the solubility of sulfonic acid is high, Since the solubility of the alkali salt is low, aromatic hydrocarbons and aliphatic hydrocarbons are preferably used.
  • the sulfonic acid generated from the sulfonic acid salt and the inorganic acid dissolves in the organic solvent, is removed outside the system of the salt exchange reaction, and the equilibrium easily shifts to the sulfonic acid generating side, Sulfonic acid can be obtained with good yield.
  • the solubility in toluene is low in the form of an ammonium salt, and the solubility in toluene is improved in the form of a free acid. Therefore, it is produced by contact with other acids in the presence of toluene! )
  • One toluenesulfonic acid can be transferred to a toluene layer in which other acids are not dissolved, so that the equilibrium can be improved. .
  • the solubility of the sulfonic acid in the organic solvent is not particularly limited as long as the sulfonic acid generated in the reaction system can be dissolved, but is preferably 0.1% by weight. /. And more preferably 1% by weight or more.
  • the amount of the organic solvent to be used is from 0.5 to 100 parts by weight, preferably from 2 to 100 parts by weight, based on 1 part by weight of the sulfonic acid.
  • the other acid is preferably an inorganic acid, more preferably sulfuric acid.
  • an alkali salt of a sulfonic acid is used as an alkali salt of an acid and sulfuric acid is used as another acid
  • the amount of the sulfuric acid to be used is usually 0.1 to 10 mole times the alkali salt of the acid. Preferably, it is 0.5 to 5 mole times.
  • the reaction temperature of the salt exchange can be usually carried out in the range of 0 to 200 ° C, preferably in the range of 20 to 180 ° C. Although the reaction time is not particularly limited, it is selected from 1 minute to 100 hours.
  • an acid such as p-toluenesulfonic acid
  • it may have water of crystallization.
  • the solubility in the organic solvent is low, it is possible to dissolve the sulfonic acid in the organic solvent by removing the water of crystallization by operating using a solvent azeotropic with water and distilling off with the solvent and water. It is possible to obtain a high yield.
  • toluene when used as a solvent, water contained in an alkali salt of sulfonic acid or another acid used can be distilled off together with toluene.
  • the reaction temperature depends on the amount of coexisting water, when a small amount of water coexists, toluene and water flow out from a temperature lower than the boiling point of toluene under the operating pressure, and as the removal of water proceeds, It approaches the boiling point of Truen. This reaction proceeds sufficiently when the reaction is maintained under such temperature conditions. After phase separation between the distilled toluene and water, toluene can be used again as a solvent.
  • the sulfonic acid is dissolved in the organic solvent, and the salt of the inorganic acid and the inorganic acid are present in an insoluble form in the organic solvent.
  • the sulfonic acid can be recovered. Further, sulfonic acid can be isolated by a method such as distillation of a solvent or crystallization separation of sulfonic acid.
  • a regeneration treatment can be performed by packing these in a packed column or the like and flowing an aqueous solution of an acid alkali salt.
  • a solvent, an amide compound, or an impurity derived from the reaction may be mixed in the alkali salt of the acid derived from the acid anhydride. If such a compound is present in excess, the regeneration reaction to the acid may be inhibited, or the purity of the obtained acid may be reduced. In such a case, if necessary, the alkali salt of the acid is purified, and the number of moles of the amide compound and the unreacted oxime compound contained in 1 mole of the alkali salt is 0.2 or less, more preferably 0 or less. It is preferable to subject it to a contact treatment with another acid after reducing it to 1 or less.
  • purification methods include crystallization of impurities, extraction of alkali salts of acids with water, extraction and removal of impurities with organic solvents, solvent washing, distillation and removal of low-boiling impurities, and purification by crystallization.
  • the acid derived from the acid anhydride is sulfonic acid
  • the target amide compound and the starting oxime compound can be precipitated in the form of an aqueous solution of an alkali salt of sulfonic acid and removed from the aqueous solution of the alkali salt of sulfonic acid.
  • the amount of water in which the neutralized salt is dissolved is not particularly limited if the neutralized salt is ammonium p-tonolenesulfonic acid, as long as the salt is dissolved in water.
  • the amount is too small, it is neutralized: —Ammone-toluenesulfonic acid cannot be sufficiently extracted into the aqueous phase, and if it is too large, the target amide compound and the starting oxime compound are converted to salts. It is disadvantageous because it is mixed and the load of water removal in the next process increases.
  • the amount of water contained is usually 1 to 10 times, preferably 2 to 5 times the weight of the neutralized salt.
  • the reaction format in this step is not particularly limited, and it can be carried out in either a batch reaction or a continuous flow reaction.
  • the continuous flow reaction format is industrially preferable.
  • the type of the reactor is not particularly limited, and a general reactor such as a reactor having one or more continuous stirring tanks or a tubular reactor can be used.
  • an acid anhydride an acid derived from an acid anhydride, or another acid that regenerates an alkali salt of an acid derived from an acid anhydride is used. It is preferable to use, for example, stainless steel, Hastelloy, Monel, Inconel, titanium, titanium alloy, dinoreconium, dinoreconium alloy, nickel, -nickel alloy, tantalum, or fluororesin, or a material coated with various types of glass on the inside. Can be illustrated.
  • the regenerated acid can be used as it is in the Beckmann rearrangement reaction with the above-mentioned catalyst system, and the regenerated acid can be converted to an acid anhydride by a method described later.
  • the acid regenerated in the above step (2) or the acid separated from the amide compound and the starting oxime compound without passing through the neutralization step is then converted to an acid anhydride by dehydration condensation.
  • the dehydration-condensation reaction is usually performed by reacting with a dehydrating agent.
  • a dehydrating agent carboxylic acid anhydride, fuming sulfuric acid, diphosphorus pentoxide, condensed phosphoric acid, more preferably carboxylic acid anhydride, phosphorus pentoxide Is used.
  • Commonly used methods for producing sulfonic anhydride include a method in which the corresponding sulfonic acid is dehydrated with dicyclohexylcarbodiimide ⁇ thionyl chloride, diphosphorus pentoxide, or the like.
  • a method in which the corresponding sulfonic acid is dehydrated with dicyclohexylcarbodiimide ⁇ thionyl chloride, diphosphorus pentoxide, or the like.
  • Toluenesulfonic acid and diphenyl Mercury and tributylphosphine Is mixed with benzene in benzene and heated to obtain p -toluenesulfonic anhydride together with mercury and triptylphosphine oxide (T. Mukaiyama, I. Kuwajima, Z. Suzuki, J.
  • acetyl p-toluenesulfonate a mixed acid anhydride that can be synthesized from p-toluenesulfonic acid and acetic anhydride
  • acetyl methanesulfonate which can also be synthesized from methanesulfonic acid and acetic anhydride, was synthesized from acetoyl sulfide and methanesulfonic acid.
  • methanesulfonic anhydride was successfully obtained in a yield of about 50% by shortening the reflux time and distilling as it was at 120 ° C-10-3 mmHg (both by MH Karger).
  • Y. Mazur J. Org.Chem., 36, 528 (1971)
  • all of them have problems such as a very long reaction time, a distillation process at high temperature and high vacuum, and the influence of acetic acid during the reaction or the necessity of removing it.
  • a method for purifying the crude sulfonic anhydride generally, a method in which a crude sulfonic anhydride containing impurities is poured into ice water or cold water to recover a sulfonic anhydride which is hardly soluble in water, Method of Recrystallization and Recovery from Various Solvents' (W..F1a Vel1, NC Ross, JChem.Soc., 5474 (1964), N.H.C hristensen, A cta C he m. S cand., 1 5, 2 1 9
  • sulfonic acid and inexpensive carboxylic acid anhydride can be mixed without using an expensive dehydrating agent or reaction reagent. Remove by-products or residual carboxylic acids and carboxylic anhydrides from the system It has been found that the sulfonic anhydride can be obtained easily and economically by performing the above reaction.
  • the purification method of the synthesized sulfonic anhydride does not involve the inefficient operation of recrystallization or the complicated procedure of continuous washing with several types of solvents. Even with sulfonic anhydride, it was found that high-purity sulfonic anhydride can be recovered more easily, safely, and economically by rinsing with an inexpensive aprotic washing solvent2. Was.
  • reaction for producing sulfonic anhydride from sulfonic acid is represented by the following formula
  • p-toluenesulfonic acid (A) and acetic anhydride (B) react to form a mixed acid anhydride (C) as an intermediate product.
  • acetic acid (D) derived from acetic anhydride is produced as a by-product.
  • either of the following two methods (1) and (2) can be used to obtain p-toluenesulfonic anhydride (E) .
  • reaction method (1) or (2) By controlling the amount of acetic anhydride used, the reaction method (1) or (2) can be adopted.
  • both the first and second reactions ((1) and (2)) are considered to be equilibrium reactions. Therefore, acetic acid (D) (or acetic anhydride) by-produced in the reaction system
  • acetic acid or acetic anhydride can be removed from the system by reduced pressure
  • p_toluenesulfonic anhydride can be removed from the system by crystallization.
  • the sulfonic acid used in this step is not particularly limited as long as it is derived from the sulfonic anhydride used in the Beckmann rearrangement reaction of the present invention. Two or more sulfonic acids can be used as the sulfonic acid.
  • an asymmetric sulfonic anhydride can be obtained by producing a mixed anhydride of sulfonic acid and carboxylic acid and then reacting with another type of sulfonic acid.
  • the carboxylic anhydride used in this step is not particularly limited, Specifically, in addition to linear aliphatic carboxylic acids such as acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, and cyclohexylacetic anhydride, maleic anhydride, succinic anhydride, and hexahexanedicarboxylic acid Examples thereof include aliphatic carboxylic anhydrides which have become cyclic by intramolecular dehydration of anhydrides and the like, and various aromatic carboxylic anhydrides such as phthalic anhydride and benzoic anhydride. Further, in all of these carboxylic anhydrides, a hydrogen atom on carbon in the molecule may be substituted by a halogen atom, an acyl group, an alkoxy group or the like.
  • an acid anhydride can be effectively obtained by removing the by-produced carboxylic acid, carboxylic anhydride and target sulfonic anhydride from the system.
  • the sulfonic acid anhydride and the sulfonic acid anhydride should be removed so that at least one of the carboxylic acid derived from the carboxylic acid anhydride, the carboxylic acid anhydride, and the target sulfonic anhydride can be removed out of the system in the reaction process. Therefore, it is important to appropriately select the sulfonic acid and the desired sulfonic anhydride in consideration of the combination so that the product and the carboxylic acid and the carboxylic anhydride can be separated.
  • those having a boiling point of 300 ° C. or less at normal pressure preferably hydrated acetic acid, are preferably used, and the carboxylic acid formed by hydrolyzing the sulfonic acid anhydride and the carboxylic acid anhydride is preferably used.
  • the amount of the sulfonic acid anhydride used in this step is not particularly limited, but is 0.1 to 50 equivalents to the sulfonic acid.
  • the amount of carboxylic anhydride used varies depending on the method employed as described above. In the case of synthesizing sulfonic anhydride with high yield and high purity by the method (1), the amount of carboxylic anhydride is used in the range of 1 to 25 equivalents, preferably 1 to 10 equivalents. You. When it is desired to proceed the reaction with low selectivity by the method (2) at a low temperature, 0.1 to 3 equivalents, preferably 0.25 to 1.5 equivalents, more preferably 0.2. It is used in the range of 5 to 1 equivalent.
  • the amount of the carboxylic acid anhydride is excessively larger than the above amount, most of the charged sulfonic acid easily mixes with the sulfonic acid and the carboxylic acid at the beginning of the reaction. It becomes a mixed acid anhydride, and the reaction of (second stage 1) and the reaction of (second stage 1) catalyzed by sulfonic acid do not proceed, and the disproportionation reaction from the mixed acid anhydride of (1) proceeds .
  • any reaction solvent or additive other than the carboxylic anhydride having the function as a reactant from an economical viewpoint.
  • Possible additives or solvents include, for example, aliphatic hydrocarbon compounds such as n-hexane, n-heptane, n-octane, n-dodecane, benzene, toluene, xylene, mesitylene, monochrome benzene, methacrylate Aromatic hydrocarbon compounds such as xylene, acetonitrile, propane etrile, force proethanole, adipole ⁇ /, benzonitrile, tonole nitrile, etc.
  • Ester compounds such as methyl acetate, dimethyl ether Jefferies Chirueteru, diglyme, ether compounds such as tetrahydrofuran, methylcarbamoyl Ren chloride, black hole Holm, halogenated alkyl compound of dichloroethane, Jimechinore formamide, 1, 3-dimethyl-2-amide compounds such Imidazorijinon the like.
  • ethers such as tetrahydrofuran, nitriles such as acetonitrile, and alkyl halides are preferable in terms of reaction. These may be used alone or in combination.
  • the method for removing by-product carboxylic acid is not particularly limited, and specifically, 1) a method of distilling off under reduced pressure, 2) a gas that is inert or has no adverse effect on the reaction. And 3) crystallization.
  • removal methods may be used alone or in combination. It is also preferable to remove the residual carboxylic acid anhydride or the target product, sulfonic anhydride together with the carboxylic acid, if necessary.
  • the concentration of the carboxylic acid in the system after the reaction is preferably not more than a certain value, specifically, 10%, more preferably 5% or less as a weight percentage in the reaction product. preferable.
  • the pressure at which carboxylic acid or carboxylic anhydride is distilled off under reduced pressure may be lower than atmospheric pressure, but is preferably 0.01 Pa to 99000 Pa, more preferably 0.05 Pa to It is 50000 Pa, and furthermore, 10 to 50000 Pa.
  • the carboxylic acid is removed by distillation under reduced pressure, the boiling point of the sulfonic acid as a reactant, the mixed acid anhydride as an intermediate, and, if possible, the carboxylic acid to be removed from the target sulfonic acid anhydride is reduced. Since it needs to be low, the carboxylic anhydride of the substrate is selected in consideration of the boiling point of these alone or in the mixture.
  • Inert gases used when carboxylic acid is passed through a gas that is inert or has no adverse effect on the reaction and is entrained in the reaction are, for example, argon, helium, neon, nitrogen, methane, and ethane. , Propane, or a mixed gas thereof.
  • the sulfonic acid as a reactant and the mixed anhydride as an intermediate and, if possible, the target sulfonic anhydride should be removed, since the volatility of the carboxylic acid needs to be high.
  • the carboxylic anhydride of the substrate is selected taking into account the volatility of these alone or of the mixture. -When carboxylic acid is removed by crystallization, there are methods such as lowering the temperature for crystallization in the middle of the reaction and adding a poor solvent.
  • the melting point of the sulfonic acid, which is the reactant, and the mixed acid anhydride, which is the intermediate, and, if possible, the melting point of the carboxylic acid to be removed is higher than that of the target sulfonic anhydride
  • the carboxylic anhydride of the substrate is selected in consideration of the melting point of these alone or the mixture.
  • the sulfonic acid as a reactant, the mixed acid anhydride as an intermediate, and the carboxylic acid to be removed from the target sulfonic acid anhydride, if possible, are added to the solvent to be used.
  • the carboxylic anhydride of the substrate is selected so that the solubility is low.
  • reaction is performed while removing by-produced carboxylic acid
  • an operation for removing carboxylic acid is added at any point during the reaction.
  • the operation for removing the carboxylic acid may be performed intermittently.
  • the desired sulfonic anhydride is obtained without isolating the mixed acid anhydride obtained as an intermediate product during the reaction.
  • the mixed acid anhydride is finally consumed, so that it is easier to operate without isolation. Good yield and high selectivity can be achieved.
  • the reaction is carried out substantially without a solvent.
  • substantially solvent-free does not prevent the presence of an inert gas or solid in the reaction system as long as it has no adverse effect on the reaction and does not substantially reduce the concentration of the substrate.
  • the solvent substance other than the substrate and the reaction product in the reaction mixture is 10% or less, preferably 5% or less by weight percentage.
  • the conditions for carrying out this step are not particularly limited, but the reaction temperature is usually 0 ° G to 250 ° C., preferably 10 ° C. to 130 ° C., more preferably 15 ° C. to 12 ° C. It is performed in the range of 0 ° C.
  • the reaction pressure is not particularly limited, and the reaction is carried out under reduced pressure to increased pressure. It is preferably carried out under reduced pressure to normal pressure. More preferably, it is carried out under reduced pressure of 500 Pa or less. It is also preferable to carry out the reaction while passing an inert gas or the like irrespective of the reaction pressure.
  • the reaction time is usually 5 minutes to 30 hours, preferably 10 minutes to 15 hours, including the temperature raising step and the pressure reducing step.
  • the reaction proceeds regardless of whether sulfonic acid or carboxylic anhydride is charged into the reactor first.
  • the reaction proceeds even when one of them is heated to a predetermined temperature first, and then the other is added.
  • the reaction proceeds regardless of which combination is selected. The reaction can proceed even if the persons are started simultaneously.
  • the type of reaction in this step is not particularly limited, and may be a batch reaction or a continuous flow. Any of the reactions can be performed.
  • the type of the reactor is not particularly limited, and a general reactor such as a reactor having one or two or more continuous stirring tanks or a tubular reactor can be used.
  • an acid anhydride or an acid derived from an acid anhydride, another acid for regenerating an acid derived from the acid anhydride, a carboxylic anhydride and a carboxylic acid are used.
  • stainless steel, Hastelloy, Monel, Inconel, Titanium, Titanium alloy, Zirconium, Zinoleco-Pem alloy, Nickel, Nickel alloy, Tantalum, or fluororesin, or various kinds of glass are coated inside. Examples of such materials include: ⁇
  • the sulfonic acid, carboxylic anhydride and reaction solvent used in this reaction are preferably subjected to sufficient water removal in advance before the reaction. 'It is desirable that the operation during the process be performed in a dry atmosphere.
  • reaction format of this step will be described below with reference to an example of a batch reaction.
  • the sulfonic anhydride and carboxylic anhydride are supplied to the reactor together with a solvent as required, and the reaction is carried out at a predetermined temperature and a predetermined pressure for a desired time. And the reaction mixture containing carboxylic anhydride. If the sulfonic anhydride can be separated as a solid from these reaction mixtures, the sulfonic anhydride can be filtered off by filtration. In this case, if the filtrate contains sulfonic acid, sulfonic anhydride, or a mixed acid anhydride of sulfonic acid and carboxylic acid, the sulfonic acid anhydride or the mixed acid anhydride of sulfonic acid and carboxylic acid is filtrated. After separation from the acid anhydride, it can be reused again in the acid anhydride process.
  • the reaction product can be recovered as a sulfonic anhydride having considerably high purity by suitably selecting the reaction conditions. If carboxylic acid, carboxylic anhydride, or trace amounts of color-forming or polymeric substances are present as impurities in addition to unreacted sulfonic acids and mixed acid anhydrides in sulfonic acid anhydride, if necessary It is also possible to purify by distillation, crystallization, washing and extraction.
  • the yield of the regeneration reaction is reduced. Therefore, it is preferable to reduce the number of moles of the amide compound or unreacted oxime compound to 0.2 or less, more preferably 0.1 or less, and further preferably 0.05 or less per mole of the acid.
  • the obtained acid anhydride can be recycled to the Beckmann rearrangement reaction step.
  • the obtained sulfonic anhydride contains impurities as described above, it is preferable to carry out purification by washing with an aprotic solvent.
  • the sulfonic anhydride is a sulfonic anhydride used in the Beckmann rearrangement reaction
  • the washing solvent is a carboxylic anhydride, a carbonate
  • It is an aprotic and relatively low-boiling organic solvent represented by nitrile compounds, ethers, carboxylate esters, nitro compounds, halogenated hydrocarbons, etc., and more preferably acetic anhydride. It can be mentioned that. ⁇
  • the amount of the target sulfonic anhydride dissolved in 1 g of the washing solvent is adjusted to the atmospheric pressure at the temperature at which the washing operation is performed. Below 0.0001 g to 10 g, the washing solvent used in the range of 0.5 to 200 equivalents to the amount of sulfonic anhydride in the crude sulfonic anhydride, and the washing operation temperature Is below 200 ° C.
  • the weight percentage (purity) of the sulfonic anhydride in the crude sulfonic anhydride is preferably 3% to 99.999%, and the sulfonic anhydride in the finally obtained sulfonic anhydride is preferably used. It is characterized in that impurities are contained in a total concentration of 1% to 5% by weight, and the purity of sulfonic anhydride per weight is 95% to 99.999%.
  • the sulfonic anhydride used in this step is not particularly limited as long as it can be used in the Beckmann rearrangement reaction of the present invention. Considering the efficiency of the rinsing operation, the sulfonic anhydride is preferably solid at the temperature at which the rinsing operation is performed. Therefore, the melting point of the sulfonic anhydride is preferably 150 ° C. or more, more preferably 0 ° C. to 300 ° C.
  • the washing solvent used in this step includes aprotic and relatively low boiling points such as carboxylic acid anhydride, carbonate, nitrile compound, ether, carboxylic acid ester, nitroylide compound, and halogenated hydrocarbon.
  • Organic solvents are preferably applied. In these organic solvents, all hydrogen atoms on carbon in the molecule may be substituted by halogen atoms or other substituents. Also, a mixed solvent obtained by combining these solvents can be suitably used.
  • washing solvents When these washing solvents are applied to the present invention, they must be liquid at each operating temperature.
  • a solvent having a boiling point of usually 250 ° C. or lower is preferable. More preferably, a solvent having a boiling point of 200 ° C. or lower is selected, and more preferably, a solvent having a boiling point of 150 ° C. or lower is selected.
  • acetic anhydride (boiling point 140 ° C), propylene carbonate (boiling point 240 ° C), acetutrile (boiling point 81 ° C to 82 ° C), benzonitrile (boiling point 191 ° C), THF (Boiling point 65 ° C to 67 ° C), methyl formate (boiling point 34 ° C) and the like are preferred.
  • a solvent having a boiling point of 10 ° C or more is preferable, and a solvent having a boiling point of 30 ° C or more is more preferable.
  • the amount of the washing solvent used in this step is not particularly limited, but is generally about 0.5 to 200 equivalents, preferably 0 to 200 equivalents to the amount of sulfonic anhydride in the crude sulfonic anhydride. It is used in the range of 8 to 100 equivalents, more preferably 1 to 80 equivalents. If the amount is less than this range, sufficient washing cannot be performed.On the other hand, if the amount is too large, the amount of hold in the purification system increases, which reduces the economic effect and often dissolves in some solvents. Therefore, the yield of sulfonic anhydride is reduced. (Mixing of solvents or additives)
  • the crude sulfonic anhydride purification step of this step it is preferable not to use an additive from an economic viewpoint, and it is not particularly necessary to use a mixed solvent as a washing solvent.
  • Anhydrides, carbonates, nitrile compounds, ethers, carboxylate esters, nitro compounds, halogenated hydrocarbons and the like can be used in combination.
  • the mixing method-order-ratio is not particularly limited.
  • the crude sulfonic anhydride is rinsed with a solvent.
  • Rinsing is an operation in which a solvent is once brought into contact with a crude sulfonic anhydride and then the solvent is removed from the sulfonic anhydride, and the method is not particularly limited.
  • the washing method is not particularly limited.For example, a method in which a washing solvent is put into a container having crude sulfonic anhydride in a fixed bed form from the bottom, and then the solution is simply removed by filtration. Or a method of sprinkling in the form of a shower from above and filtering, a method of charging the solvent and the crude sulfonic anhydride in the same container, stirring and washing the slurry with stirring blades, and then filtering. .
  • the technique is not particularly limited, but one suitable technique is to add a small amount of a solvent to be used for washing in advance, and then physically mix and pulverize. In this case, either the solvent or the crude sulfonic anhydride may be charged into the container first. Purification can be performed, for example, by pulverizing and filtering, and then sprinkling a solvent directly on the sulfonic anhydride recovered as a filtration residue.
  • the weight of the sulfonic anhydride in the crude sulfonic anhydride depends on the type of the sulfonic anhydride and the method adopted. Even if the percentage (purity) is extremely low, such as 10% or 20%, it is possible to purify into high-purity sulfonic anhydride.
  • washing solvent used for the sulfonic anhydride immediately after the purification may be attached or mixed, but this residual solvent may be removed by drying at normal temperature and normal pressure.
  • it may be placed under a flow of a dry gas inert to the chemicals used, or may be forcibly evaporated or distilled off by heating or reducing the pressure.
  • the pressure for the distillation under reduced pressure may be lower than the atmospheric pressure, but it is necessary to set the degree of reduced pressure in consideration of the boiling point of the sulfonic anhydride.
  • the boiling point of the target sulfonic anhydride When removing the residual washing solvent by distilling off under reduced pressure, the boiling point of the target sulfonic anhydride must be taken into consideration, since the boiling point of the cleaning solvent to be removed must be lower than that of the target sulfonic anhydride.
  • a washing solvent Conversely, when it is preferable to use a washing solvent having a boiling point higher than the boiling point of the sulfonic anhydride, the sulfonic anhydride can be separated by distillation. When the solvent is distilled off by heating, a washing solvent having a boiling point that allows sufficient distillation at a temperature at which the target sulfonic anhydride is not decomposed should be selected.
  • argon for example, argon, beryde, neon, nitrogen, methane, ethane, propane, or These mixed gases can be mentioned.
  • the cleaning solvent is selected in consideration of the volatility of the target sulfonic anhydride.
  • the solvent after washing contains a sulfonic acid or a mixed anhydride of a sulfonic acid and a carboxylic acid
  • separate the solvent from the solvent as necessary, and then remove the mixed anhydride of the sulfonic acid or the mixed anhydride of the sulfonic acid and the carboxylic acid. It can be reused in the acid anhydride conversion step.
  • all the purification steps are carried out in the presence of a dry inert gas having no adverse effect.
  • the combination of sulfonic anhydride and the washing solvent does not cause any adverse effects such as oxygen and moisture, etc., that will alter the target sulfonic anhydride, operate in an open system. Is also possible.
  • an inert solid can coexist in the system throughout the purification process.
  • the conditions for carrying out the present purification step are not particularly limited, but the temperature is usually 200 ° C or lower, preferably 100 ° C to 100 ° C, more preferably 0 ° C to 50 ° C. It is implemented in the range of.
  • the temperature is usually 200 ° C or lower, preferably 100 ° C to 100 ° C, more preferably 0 ° C to 50 ° C. It is implemented in the range of.
  • a solvent used as a washing solvent at the purification temperature is appropriately selected.
  • the pressure in the purification step is not particularly limited, either, and it is carried out under reduced pressure to increased pressure depending on the type of the sulfonic anhydride and the washing solvent used, and the method employed. Steps other than the final separation step between the residual washing solvent and the purified sulfonic anhydride are preferably carried out under normal pressure to slight pressure.
  • the purification format for carrying out the purification in this step is not particularly limited, and it can be carried out by either a batch system or a continuous flow system.
  • the target amide compound and the catalyst component can be separated, purified, or regenerated respectively by the following method, for example.
  • the hydrochloride of the amide compound is crystallized and separated by, for example, partially distilling off the solvent or adding a poor solvent as necessary, and recovering the catalyst component in the filtrate.
  • the catalyst component or the hydrochloride of the amide compound is used. Either one is removed by a known operation such as extraction, crystallization, or distillation, and the catalyst component and the hydrochloride of the amide compound are separated.
  • a method of extracting the catalyst component by distilling off the solvent from the filtrate and then adding a solvent that selectively dissolves only the catalyst component for example, toluene in the case of P-toluenesulfonic acid
  • a solvent that selectively dissolves only the catalyst component for example, toluene in the case of P-toluenesulfonic acid
  • the separated hydrochloride of the amide compound is transported together with the hydrochloride of the crystallized amide compound to a known separation and purification step (for example, a thermal decomposition step or a decomposition step by adding water) to form the amide compound and hydrochloric acid. It is purified after being decomposed.
  • the recovered hydrochloric acid can be recycled to the process for producing oxime hydrochloride, or can be recycled to the cycloalkanone photolithography process.
  • the recovered catalyst component can be converted to an acid anhydride in the above (step of dehydrating and condensing the regenerated acid to regenerate the acid anhydride).
  • the Beckmann rearrangement reaction is carried out using oxime hydrochloride as an oxime raw material without using an acid anhydride
  • the solvent is partially distilled off
  • the hydrochloride of the amide compound is separated by crystallization filtration, and the solvent and light-boiling by-products are recovered in the filtrate.
  • the separated hydrochloride of the amide compound is carried to a known separation / purification step (for example, a thermal decomposition step or a decomposition step by adding water) ′, and is decomposed into an amide compound and hydrochloric acid.
  • the amide compound is purified, if necessary, by a known purification method.
  • the recovered hydrochloric acid can be recycled to the process of photo-trosation of cycloalkanone, which is recycled to the process for producing oxime hydrochloride.
  • the recovered solvent is distilled appropriately after removing light boiling by distillation, and is then circulated to the Beckmann rearrangement step.
  • amide acetamide in the case of aceto-tolyl solvent
  • oxime hydrochloride and a nitrile solvent (Chem. Purrun) , 3 1 (1 98 1) 250.
  • the production of Tokubiko 49-8 7687 can be greatly reduced.
  • Ratatam yield and TON were determined by iH-NMR unless otherwise specified.
  • the amount of ratatum produced was determined based on hydrogen (2H) in the benzene nucleus of p_toluenesulfonic acid.
  • the conversion of the oxime compound was determined by the mole% of all the products based on the sum of the remaining oxime compound and all the products, and the selectivity of lactam and ketone was determined by the mole% of each product relative to the total products.
  • Reference Example 1 Synthesis of cyclododecanone oxime
  • Cyclododecanone oxime was synthesized because there is no commercial product. An example of the synthesis method is shown below.
  • Cyclododecanone (19.04 g, 0.104mo1) was charged into a flask having four ports equipped with a mechanical stirrer and a thermometer, and ethanol (164 g) was added, and the mixture was stirred at room temperature and dissolved. .
  • the dissociated aqueous solution was added dropwise to a solution of dodecanonone oxime in ethanol with sufficient stirring at room temperature. During the dropwise addition, the temperature of the reaction solution rose to 33 ° C.
  • ethanol ′ was distilled off at 40 ° C. under reduced pressure. 195 ml of water was added, the white solid was washed, filtered, and then washed with 40 Om1 of water. Demineralized water was added to the white solid, and the mixture was heated and stirred at 90 ° C, filtered, and washed with 90 ° C demineralized water. Ethanol was added to the washed white solid, and the mixture was dissolved by heating.
  • the crystals were recrystallized from a mixed solvent of ethanol (300 g) and water (112 g) and filtered under reduced pressure to obtain crystals. .
  • the crystals were washed with a mixed solvent of ethanol (74 g) and water (28 g) at 0 ° C on a filtration bell of a reduced pressure filter, filtered under reduced pressure, and further air-dried for 1.5 hours to obtain cyclododecanone oxime.
  • the water content of cyclododecanone oxime was 11.3 wt. /. Met. '
  • dodecanonone oxime can be obtained at a yield of about 9 Omo 1% based on the charged dodecanone.
  • the analysis of the water content of the preparation in the following Examples was calculated from the water content of cyclododecanone oxime and the reaction solvent.
  • the water content after the reaction was analyzed for the reaction solution as it was.
  • the water content was analyzed by the Karl Fischer method (coulometric titration method), and the anolyte was Aquamicron AX (manufactured by Mitsubishi Chemical) and the catholyte was Aquamicron CXU (manufactured by Mitsubishi Chemical).
  • the water content of cyclododecanone oxime was analyzed as a solid in a dry atmosphere, poured into an anolyte in a moisture measurement device, and dissolved in the anolyte.
  • Example 1 The water content of cyclododecanone oxime was analyzed as a solid in a dry atmosphere, poured into an anolyte in a moisture measurement device, and dissolved in the anolyte.
  • the reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, the yield of ⁇ -laurin lactam after 0.5 hour was 12.7 ° / 0 , and the ⁇ value was 9.7.
  • the reaction solution was similarly analyzed by iH-NMR. As a result, the yield of ⁇ -laurinlactam was 0.5% in 0.5 hours, and the TON value was 0.4. The TON value after 1.0 hour was 0.7, and no remarkable increase was observed.
  • Example 2 Under an atmosphere, cyclododecanone oxime 10.050 g (50.98 g) was dried in a 50 ml round bottom flask dried at 70 ° C. under reduced pressure to a water content of 0.128 wt% by vacuum drying. mmo 1) and 40.0 g of acetonitrile (water content Op (below detection limit)) previously dried with molecular sieve 3A were charged.
  • the reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, after 3 hours, the yield of ⁇ -laurinlactam was 100%, the TON value was 76, and all dodecanonone oximes had disappeared.
  • cyclododecanone oxam 8.00231 g (40%) was placed in a 50 ml round bottom flask dried with a dryer at 70 ° C and dried under reduced pressure to reduce the water content to 0.249 wt%.
  • 66 mmo 1 32.15 g (133 ppm water content) of acetonitrile manufactured by Junsei Chemical Co., Ltd. were charged.
  • 0.1772 g (0.5429 mmo 1) of p-toluenesulfonic anhydride was dried with 2.5 g of acetonitrile (water content 0 ppm), and a Beckmann rearrangement reaction was performed with stirring.
  • a Beckmann rearrangement reaction was performed in the same manner as in Example 3 except that cyclododecanone oxime having a water content of 0.536 wt% was used.
  • the reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, the yield of ⁇ -laurinlactam after 0.5 hours was 77%, and the ⁇ value was 57. The TON value after one hour was 58.
  • Example 3 except that cyclododecanone oxime having a water content of 1.1 wt% and aceto ⁇ tolyl (water content 0 ppm (below the detection limit)) previously dried with Molecular Sieves 3 A were used.
  • a Beckmann rearrangement reaction was performed in the same manner as in Example 1.
  • the reaction solution was sampled as a hot solution and analyzed by 1 H-NMR. As a result, the yield of ⁇ -laurinlatatam after 0.5 hours was 58%, and the ⁇ value was 43. The TON value after one hour was 46.
  • Cyclododecanone oxime synthesized in the same manner as in the Reference Example was filtered under reduced pressure and air-dried until further. At this time, the water content was 1.71 wt ° / 0 . 8.0 500 g (40.8 Ommol) of this cyclododecanone oxime and 32.13 g of acetotrile (purity of water: 395 ppm) manufactured by Junsei Kagaku Co., Ltd. were added to a 5 Om1 round bottom flask in air. Was charged.
  • reaction solution was sampled as a hot solution and analyzed with iH-NMIl.
  • the yield of co-laurin lactam after 0.5 hour was 38%, and the TON value was 30.
  • the yield of ⁇ -laurin pectam was 40% and the TON value was 31, indicating no significant increase.
  • the reaction solution temperature gradually increased from 2 minutes later, and reached 80 ° C after 12 minutes. After 35 minutes, the temperature reached 78 ° C, and the temperature was maintained until 1 hour and 7 minutes.
  • the reaction solution was cooled, white crystals were collected by filtration under reduced pressure, and the white crystals were washed with cold acetonitrile. Each of the obtained white crystals and the mixture of the filtrate and the washing solution was analyzed by gas chromatography.
  • the white crystal contained 12.2 mmol of ⁇ -laurinlatatam and 5 mmol of unreacted cyclododecanone oxime, and 1.04 mmol of ⁇ -laurinlatatam in the solution. It was found that the reaction contained 0.01 mmo 1 of cyclododecanone oxime and 0.04 mmo 1 of cyclododecanone.
  • the conversion of dodecanone oxime at the mouth was 99.5%
  • the selectivity of ⁇ -laurinlactam was 99.7%
  • the selectivity of dodecanone at the mouth was 0.3%.
  • the molar ratio of the total amount of water contained in the dodecanonone oxime and acetonitrile to ⁇ -toluenesulfonic anhydride was 1.1.
  • reaction solution A part of the reaction solution was taken out and neutralized with 28 wt% NH 3 water.
  • the generated crystals were separated by filtration and washed, and the components contained in each of the crystals and the filtrate were analyzed by gas chromatography.
  • the reaction solution was sampled as a hot solution, and analyzed by iH-NMil. As a result, the TON after 3 hours and 45 minutes was 41, and the TON after 6 hours was 39.
  • the molar ratio of the water contained in the charged oxime and the solvent to p-toluenesulfonic anhydride was 0.6.
  • reaction solution was cooled to room temperature and stored tightly.
  • the stored reaction solution was equivalent to 99.3% of the charged reaction solution, and 1H-NMR analysis showed that unreacted dodecanononoxime was 23.9 mm o 1 and ⁇ -laurin ratatam was 26.6 mm.
  • o 1 p- Contains 1.4 mmo 1 of toluenesulfonic acid.
  • the reaction solution was filtered under reduced pressure to separate the crystals and the filtrate, and the crystals were washed with a small amount of toluene cooled to 0 ° C, and the washed solution was combined with the filtrate.
  • the crystals weighed 6.65 g and the filtrate weighed 50.lg.
  • the filtrate was kept in a refrigerator at 0 ° C. for 2 days. Analysis The resulting crystals were similarly filtered under reduced pressure to separate from the filtrate. 1.555 g of crystals and 46.31 g of filtrate were obtained.
  • Raurinratatamu is 3. 9mmo 1
  • Shikurodo Dekanonokishimu unreacted 4.
  • 3Mmo 1 s p-toluenesulfonic acid was found to contain 1. 4mmo l.
  • Cyclododecanone was prepared in the same manner as in Example 2 except that instead of toluene, dehydrated water of 0.0004 1: ° / 0 ; ⁇ , N-dimethylformamide (DMF) was used. A Beckmann rearrangement reaction of Kissim was performed. P-toluenesulfonic anhydride was dissolved in DMF and added to a DMF solution of cyclododecanone oxime. Immediately after the addition, the temperature of the reaction solution rose to 120 ° C, then gradually decreased, and after 40 minutes had passed, the temperature reached 96 ° C—a constant temperature.
  • the reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, the yield of ⁇ -laurin ratatam after 30 minutes was 80.2%, and the TON value was 59. Sampling was performed at 45 minutes for 2 hours and 50 minutes for 3 hours. 2003/009749 There was not.
  • the molar ratio of the water contained in the charged oxime and the solvent to the water of P-toluenesulfonic anhydride was 0.6.
  • the reaction solution obtained after the completion of the reaction was in an amount corresponding to 98.3 wt% of the preparation.
  • the reaction solution was cooled to room temperature to precipitate crystals. After filtration under reduced pressure to separate the crystals and the filtrate, the crystals were washed with a small amount of DMF cooled to 0 ° C. At this time, the weight of the obtained crystal was 1.59 g, and the filtrate was 50.66 g. The filtrate was kept in a refrigerator at 0 ° C. for 2 days. The precipitated crystals were similarly filtered under reduced pressure to separate from the filtrate. The crystals at this time were 3.lg and the filtrate was 45.05 g
  • cyclododecanone oxime 5.0486 g whose water content was reduced to ⁇ 07 wt% by drying under reduced pressure (25.59 mmo 1) and 42.7 g (water content: 0.4 wt%, 0.4 wt%) of DMF previously dried with Molecular Sheep 3A.
  • 0.227 g (0.6955 mmo1) of P-toluenesnorenoic anhydride was added to 2.6 g of the above DMF.
  • reaction solution was placed in an ice bath to precipitate crystals, and then most of the solution components were taken out using a syringe dried in a drier at 70 ° C.
  • a syringe dried in a drier at 70 ° C.
  • the cyclododeca water content was reduced to 0.07 wt% by vacuum drying. 5.0549 g (25.62 mmo 1) of nonoxime was charged, and the solution component collected from the reactor 1 by a syringe was charged to the reactor 2.
  • the amount of the solution transferred from the reactor 1 to the reactor 2 was 33.35 g, and the amount of the solution remaining in the syringe was 2.20 g.
  • the reactor 2 was heated and stirred at 95 ° C. under an argon atmosphere to carry out a Beckmann rearrangement reaction.
  • the amount of ⁇ -laurin lactam contained in the crystals remaining in the reactor 1 was 11.6 mmo1, and 45 mol% of the generated ⁇ -laurin lactam was recovered in the crystals.
  • p-toluenesulfonic acid which is a catalyst component, is contained in the same crystal at a concentration of 0. 2 lmmol (15mo 1% of the charged component) was contained in the crystals, and most of the catalyst components were transferred to the reactor 2, and it was found that the Beckmann rearrangement reaction also proceeded in the reactor 2.
  • the filtrate and the washings were neutralized with 4.8 g of 4.7 wt% aqueous ammonia. Crystals precipitated, but were evaporated to dryness. Then, water was added to the solid, and the solid was filtered and washed to obtain 7.36 g of the solid and 11.12.13 g of the filtrate.
  • the solid component contained a small amount of ⁇ -laurin ratatam, dissolve the solid component in 11.9 g of water, filter the solid with a 0.5 ⁇ m membrane filter, and then remove the water. After evaporation to dryness, 2.3 g of a solid component mainly composed of ammonium p-toluenesulfonate was obtained.
  • the solid component obtained was p-toluenesulfonic acid 3009749 Nmo - besides ⁇ beam, omega - Lau cyclododecanone O key shim lactam and unreacted are contained trace amounts, cyclododecanone O oxime of ⁇ - laurolactam and unreacted against p_-toluenesulfonic acid Anmoniumu was 0.08. Also, when converted on a weight basis, the purity of ammonium ⁇ -toluenesulfonic acid was 91.7 wt%.
  • This toluene phase was refluxed, and water was obtained with the above phase separator.
  • the toluene solution of monotoluenesulfonic acid was removed by an evaporator to remove toluene, and p-toluenesulfonic acid crystals were obtained.
  • the yield of toluene sulfonic acid was 93 mol% based on the amount of p-toluenesulfonic acid used in the regeneration process of p-toluenesulfonic acid.
  • the total molar ratio of ⁇ -laurinlactam and unreacted dodecanonone oxime to p-toluenesulfonic acid was 0.03.
  • the mixture was stirred at room temperature for 20 minutes and subsequently at 60 ° C for 20 minutes. Subsequently, the pressure was reduced to 400 Pa with a vacuum pump, and the mixture was stirred at 60 ° C. for 30 minutes. Subsequently, the mixture was stirred at 95 ° C for 1 hour and 30 minutes while maintaining the reduced pressure condition.
  • the flask was cooled and returned to atmospheric pressure under a stream of dry nitrogen. 1.8992 g of crude p_toluenesulfonic anhydride was obtained from the flask.
  • an amide compound can be produced at a high yield from an oxime compound under mild reaction conditions, and the amide compound and the catalyst component can be easily separated to regenerate the catalyst component, which is industrially advantageous. It is a way.

Abstract

A process for producing an amide in a high yield by subjecting an oxime to Beckmann rearrangement in a liquid phase under mild reaction conditions, namely, a process for the production of amides by subjecting an oxime having eight or more carbon atoms to Beckmann rearrangement in an organic solvent in the presence of a catalyst component containing an acid anhydride, characterized in that the rearrangement is conducted at a ratio of the total molar amount of water contained in both the oxime and the solvent to the molar amount of the acid anhydride added of 15 or below.

Description

明 細 書 アミ ド化合物の製造方法 <技術分野 >  Description Method for producing amide compounds <Technical field>
本発明はアミド化合物の製造方法に関する。 詳しくは、 液相中で触媒の存在下 にォキシムのベックマン転位反応を行うことによりァミ ド化合物を効率よく製造 する方法に関する。  The present invention relates to a method for producing an amide compound. More specifically, the present invention relates to a method for efficiently producing an amide compound by performing a Beckmann rearrangement reaction of oxime in a liquid phase in the presence of a catalyst.
<背景技術 > <Background technology>
一般的に、 工業的に行われているアミド化合物の製造方法としては、 ォキシム 化合物をベックマン転位反応させてアミド化合物に変換させる方法が知られてお り、 例えば、 ε—力プロラタタムはシクロへキサノンォキシムのベックマン転位 反応により、 ω—ラウリンラクタムはシク口ドデカノンォキシムのベックマン転 位により製造されている。 かかるベックマン転位反応は、 現在、 工業的には濃硫 酸または発煙硫酸のような強酸を触媒として用いた液相反応が採用されている。 しかしながら、 この濃硫酸を使用する方法では、 生成したラタタム化合物は硫酸 と強く結合するので、 ラタタム化合物を分離するために、 通常、 硫酸をアンモニ ァで中和する必要があり、前記ラタタム化合物の約 2倍量の硫酸アンモニゥム(硫 安) が副生すること、 および大量の強酸を用いるために反応装置の腐食などの問 題があり、 必ずしも経済的な方法とは言えず、 効率的な転位反応用触媒の開発が 期待されてきた。  In general, as a method for producing an amide compound which is industrially performed, a method of converting an oxime compound into an amide compound by a Beckmann rearrangement reaction is known. For example, ε-force prolatatam is cyclohexanone oxime. Ω-laurin lactam is produced by the Beckmann rearrangement of dodecanonone oxime by the Beckmann rearrangement reaction. At present, such a Beckmann rearrangement reaction is industrially adopted as a liquid phase reaction using a strong acid such as concentrated sulfuric acid or fuming sulfuric acid as a catalyst. However, in the method using concentrated sulfuric acid, the generated ratatam compound strongly binds to sulfuric acid. Therefore, in order to separate the ratatam compound, it is usually necessary to neutralize the sulfuric acid with ammonia. The problem is that twice the amount of ammonium sulfate (ammonium sulfate) is produced as a by-product, and the use of a large amount of strong acid leads to problems such as corrosion of the reactor. The development of catalysts for industrial use has been expected.
そこで、 硫酸触媒を使用しない液相でのベックマン転位反応に関し、 種々の検 討が行なわれてきた。 例えば、 均一触媒を用いた液相でのシクロへキサノンォキ シムのベックマン転位反応では、 Ν , Ν—ジメチノレホノレムアミ ドとクロノレスノレホ ン酸の反応で得られるイオン対(ビスマイヤー錯体)を触媒とする方法(M.A.Kira and YM.Shaker ,Egypt. J.Chem., 16,551(1973)), エポキシ化合物と強酸 (三フ ッ化ホウ素 · エーテラート等) から生成するアルキル化剤と N, N—ジアルキル 9 ホル ム ア ミ ド か ら 成 る 触媒 を 用 い る 方法 ( Y.Izumi,Chemistiy Letters, pp.2171(1990))、 シクロへキサノンォキシムをヘプタン溶媒中でリン酸 或いは縮合性リン酸化合物を用いて転位させる方法 (特開昭 6 2 - 1 4 9 6 6 5 号公報)、五酸化リンおよび N , N—ジアルキルホルムアミド等の化合物から成る 触媒を用いる方法(特許第 2 6 5 2 2 8 0号)、五酸化リンおょぴ含フッ素強酸あ るいはその誘導体と N, N—ジアルキルホルムアミド等の化合物から成る触媒を 用いる方法 (特開平 5— 1 0 5 6 5 4号公報) 等が提案されている。 Therefore, various studies have been conducted on the Beckmann rearrangement reaction in the liquid phase without using a sulfuric acid catalyst. For example, in the Beckmann rearrangement reaction of cyclohexanone oxime in the liquid phase using a homogeneous catalyst, an ion pair (bismeier complex) obtained by the reaction of Ν, Ν-dimethinolephonoremamide and chlororesnolefonic acid is used as a catalyst. (MAKira and YM. Shaker, Egypt. J. Chem., 16,551 (1973)), alkylating agents formed from epoxy compounds and strong acids (boron trifluoride, etherate, etc.) and N, N-dialkyl 9 A method using a catalyst consisting of formamide (Y. Izumi, Chemistiy Letters, pp. 2171 (1990)), using cyclohexanone oxime in a heptane solvent with phosphoric acid or a condensable phosphoric acid compound. (Japanese Patent Application Laid-Open No. 62-149665) and a method using a catalyst comprising a compound such as phosphorus pentoxide and N, N-dialkylformamide (Japanese Patent No. 2652228). ), And a method using a catalyst comprising a compound such as N, N-dialkylformamide or the like containing phosphorus pentoxide or a fluorine-containing strong acid or its derivative (Japanese Patent Application Laid-Open No. 5-105564). Have been.
しかしながら、 これらの触媒系を使用してォキシム化合物を液相でベックマン 転位反応させラクタムを製造する方法は、 工業的な製造方法としては必ずしも満 足し得るものではなかった。  However, a method for producing a lactam by carrying out a Beckmann rearrangement reaction of an oxime compound in a liquid phase using these catalyst systems has not always been satisfactory as an industrial production method.
<発明の開示 > <Disclosure of Invention>
炭素数 8〜1 5の環状ォキシム化合物を、 有機溶媒中、 ベックマン転位させる 方法としては、 有機スルホン酸、 硫酸半エステルの無水物、 または有機スルホン 酸と硫酸半エステルとの混合無水物を触媒としてベックマン転位する方法 (特開 平 6 2— 1 0 8 8 6 1号公報) が知られている。 ■  Beckmann rearrangement of a cyclic oxime compound having 8 to 15 carbon atoms in an organic solvent can be carried out using an organic sulfonic acid, an anhydride of sulfuric acid half ester, or a mixed anhydride of organic sulfonic acid and sulfuric acid half ester as a catalyst. A method of performing Beckmann rearrangement (Japanese Patent Application Laid-Open No. Hei 62-108681) is known. ■
本発明者らは、 特開平 6 2 - 1 0 8 8 6' 1号公報に記載の実施例 1を追試した 力 S (ベンゾールスルホン酸無水物は市販品がなかったため、 代わりに!)一トルェ ンスルホン酸無水物を使用し、 また、反応スケールを 1 Z 4にした)、触媒が溶媒 に溶けきらずに反応器中で固体のまま分散しており、 実施例に記述されているよ うに、 「直ちに強い発熱がおきる」 現象も観測されなかった。 さらに、 0 . 5時間 後のラタタム収率を — NMRにより調べたが、 ラタタム収率は 0 . 5 %にす ぎず、 実施例を再現することはできなかった (本願比較例 1 )。  The present inventors have repeated Example 1 described in Japanese Patent Application Laid-Open No. 62-10886'1. Force S (Because there was no commercial product of benzolsulfonic anhydride, instead!) Sulfonic anhydride was used, and the reaction scale was 1 Z4), and the catalyst was not dissolved in the solvent but was dispersed in the reactor as a solid, and as described in the Examples, A strong heat is generated immediately. "The phenomenon was not observed. Further, the ratatam yield after 0.5 hour was examined by NMR, but the ratatam yield was only 0.5%, and the Example could not be reproduced (Comparative Example 1 of the present application).
このように、 触媒的なベックマン転位も、 工業的な製造方法して満足しうるも のではなかった。  Thus, the catalytic Beckmann rearrangement was not satisfactory with an industrial production method.
一方、 本発明者らは、 ォキシム化合物のベックマン転位の方法として、 高い触 媒活性を示す非フッ素含有スルホン酸無水物と N , N—二置換アミドを含む触媒 系、 又は、 スルホン酸もしくはスルホン酸無水物から選ばれた化合物と N , N— 二置換アミド、 カルボン酸無水物を含む触媒系を提案した (WO O 1 / 8 1 3 0 2号公報)。 On the other hand, the present inventors have proposed a method of Beckmann rearrangement of an oxime compound as a catalyst system containing a non-fluorine-containing sulfonic anhydride having high catalytic activity and N, N-disubstituted amide, or sulfonic acid or sulfonic acid. Compounds selected from anhydrides and N, N— A catalyst system containing a disubstituted amide and a carboxylic acid anhydride was proposed (WO O 1/813002).
ところで、これまではこれらのような触媒的なベックマン転位反応においても、 強い酸性質をもつ触媒成分と塩基性質をもつアミド化合物、 未反応のォキシム化 合物との分離のためには、 触媒成分の中和工程もしくは反応液への水添加及びノ または洗浄による触媒の除去が必須であると考えられてきた。 しかしながら中和 工程を経て、 アミ ド化合物、 未反応のォキシム化合物と触媒成分の分離を行う場 合には、 酸成分が中和により塩になるため、 触媒成分をそのまま廃棄するか、 も しくは触媒成分の回収、 再使用が必要な場合には塩を酸に転換してから触媒を無 水物化しなければならなかった。 このような問題があるばかりでなく、 多量のァ ミド化合物を含有したまま触媒成分の中和を行わなければならないため、 中和の ための反応器が非常に大きくなる、 アミ ド化合物を溶解させるための多量の溶媒 が必要になる.、 多量に存在するアミ ド化合物が触媒の中和反応を阻害するといつ た問題があった。 ——: . .  In the past, even in such catalytic Beckmann rearrangement reactions, the separation of a catalyst component having a strong acid property from an amide compound having a basic property and an unreacted oxime compound requires a catalyst component. It has been considered that it is essential to remove the catalyst by a neutralization step or by adding water to the reaction solution and by washing or washing. However, when the amide compound and the unreacted oxime compound are separated from the catalyst component after the neutralization step, the acid component is converted into a salt by neutralization, and thus the catalyst component is discarded as it is, or When it was necessary to recover and reuse the catalyst components, the salts had to be converted to acids before the catalyst had to be dehydrated. In addition to these problems, the catalyst component must be neutralized while containing a large amount of the amide compound, which makes the reactor for neutralization extremely large, dissolving the amide compound. Therefore, a large amount of solvent is required. When the amide compound present in a large amount inhibits the neutralization reaction of the catalyst, there has been a problem. ——:.
また、 水を添加及び Z又は洗浄した場合には、 活性触媒が歹身っていると、 完全 に触媒が失活してしまうため、 分離した触媒成分をそのまま転位工程にもどして 触媒液をリサイクルすることはできなかった。 触媒が失活している場合にも、 そ のまま触媒成分を脱水して酸無水物に再生する場合には、 用いた大量の水を、 触 媒成分を含む水相から除かなければならないという問題があり、 経済的に不利で めった。  In addition, when water is added and Z or washing is performed, if the active catalyst is weak, the catalyst is completely deactivated, so the separated catalyst component is returned to the rearrangement step as it is to recycle the catalyst solution. I couldn't. Even when the catalyst is deactivated, if the catalyst components are dehydrated and regenerated to acid anhydrides, a large amount of water used must be removed from the aqueous phase containing the catalyst components It was economically disadvantaged.
さらに、触媒成分である酸無水物に由来する酸を工業的に無水物化する方法は、 確立されておらず、 実質的に触媒成分を再生し、 ベックマン転位反応工程に循環 することはできなかった。  Furthermore, a method for industrially converting an acid derived from an acid anhydride as a catalyst component into an anhydride has not been established, and the catalyst component could not be substantially regenerated and recycled to the Beckmann rearrangement reaction step. .
そこで本発明者らは鋭意検討を重ねた結果、 一般的な方法によりォキシムを製 造すると、 ォキシム化合物は、 5〜1 5重量%程度の水を含有し、 また有機溶媒 にも通常水が存在するため、 必然的に反応系に一定量の水が存在するが、 これら の水分量を減少させることにより高効率でァミ ド化合物を製造できることを見い だした。 さらには、 反応液からアミド化合物及び未反応のォキシム化合物と触媒 成分とを直接分離して、 アミド化合物を得る方法を見出すと同時に、 触媒成分を 再生できる方法を見いだし、 本発明を完成した。 The inventors of the present invention have conducted intensive studies. As a result, when oxime is produced by a general method, the oxime compound contains about 5 to 15% by weight of water, and water is usually present in the organic solvent. Therefore, a certain amount of water is inevitably present in the reaction system, but it has been found that the amide compound can be produced with high efficiency by reducing the amount of water. Furthermore, the amide compound and the unreacted oxime compound are reacted with the catalyst from the reaction solution. The present inventors have found a method for directly separating the components and obtaining an amide compound, and at the same time, have found a method for regenerating the catalyst component.
すなわち、 本発明の第一の要旨は、 炭素数が 8以上のォキシム化合物を、 有機 溶媒中で、 酸無水物を含む触媒成分の存在下、 ベックマン転位反応させてアミ ド 化合物を製造する方法において、 ォキシム化合物及び溶媒に含まれる水の合計の モル比を、 添加した酸無水物に対して 1 5以下にして転位反応を行うことを特徴 とするアミド化合物の製造方法に存する。  That is, a first gist of the present invention is a method for producing an amide compound by subjecting an oxime compound having 8 or more carbon atoms to a Beckmann rearrangement reaction in an organic solvent in the presence of a catalyst component containing an acid anhydride. The present invention also provides a method for producing an amide compound, wherein the rearrangement reaction is carried out by setting the total molar ratio of the oxime compound and water contained in the solvent to 15 or less with respect to the added acid anhydride.
また、 本発明の第二の要旨は、 ォキシム化合物を、 有機溶媒中で、 酸無水物を 含む触媒成分の存在下、 ベックマン転位反応させてアミド化合物を製造する方法 において、 転位反応後、 反応液から触媒成分とアミ ド化合物とを直接分離するこ とを特徴とするアミ ド化合物の製造方法に存する。  Further, a second gist of the present invention is a method for producing an amide compound by subjecting an oxime compound to a Beckmann rearrangement reaction in an organic solvent in the presence of a catalyst component containing an acid anhydride. The present invention is directed to a method for producing an amide compound, which comprises directly separating a catalyst component and an amide compound from the amide compound.
<発明を実施するための最良の形態 > <Best mode for carrying out the invention>
以下、 本発明の詳細について説明する。 '  Hereinafter, details of the present invention will be described. '
<ォキシム化合物 > <Oxime compound>
本発明のべックマン転位反応で使用される原料のォキシム化合物は、 第一の発 明においては炭素数が 8·以上のォキシム化合物が用いられ、通常炭素数 ·2 0以下、 好ましくは炭素数 1 3以下のォキシム化合物を用いる。 ォキシムとしては、 脂環 式ケトンのォキシムまたは置換脂環式ケトンのォキシムが好ましい。 中でもシク ロデカノンォキシム、シク口ゥンデカノンォキシム、シク口ドデカノンォキシム、 より好ましくはシクロウンデカノンォキシム、 シク口ドデカノンォキシムが用い られる。  As the starting oxime compound used in the Beckmann rearrangement reaction of the present invention, an oxime compound having 8 or more carbon atoms is used in the first invention, and usually has 20 carbon atoms or less, preferably 1 carbon atom. Use up to three oxime compounds. As the oxime, an oxime of an alicyclic ketone or an oxime of a substituted alicyclic ketone is preferable. Above all, cyclodecanonone oxime, cyclodexamedecoxime, cyclodexodenonoxime, more preferably cycloundecanone oxime, cyclodexcanone oxime are used.
また本発明の第二の発明において使用されるォキシム化合物は、 何ら制限され ることなく、 公知のォキシム化合物が適用される。 ォキシム化合物として具体的 には、 シクロへキサノンォキシム、 シクロペンタノンォキシム、 シクロドデカノ ンォキシム、 アセトンォキシム、 2—ブタノンォキシム、 ァセトフエノンォキシ ム、 ベンゾフエノンォキシム、 4 'ージドロキシァセトフエノンォキシム等の炭 素数 2〜2 0、 好ましくは炭素数 3〜 1 3のォキシム化合物が挙げられる。 中で もシク口へキサノンォキシム、 シク口ペンタノンォキシム、 シクロウンデカノン ォキシム、 シクロドデカノンォキシム等の炭素数 4〜 20, 好ましくは炭素数 8 以上の環状ォキシムが用いられ、 特にシクロウンデカノンォキシム、 シクロドデ カノンォキシムが晶析分離しやすいため、 好適である。 The oxime compound used in the second invention of the present invention is not limited, and a known oxime compound is applied. Specific examples of the oxime compounds include cyclohexanone oxime, cyclopentanone oxime, cyclododecanonoxime, acetone oxime, 2-butanone oxime, acetophenone oxime, benzophenone oxime, and 4'-didroxyacetophenone. Oxime compounds having 2 to 20 carbon atoms, preferably 3 to 13 carbon atoms, such as oxime. Inside Also used are cyclic oximes having 4 to 20 carbon atoms, preferably 8 or more carbon atoms, such as cyclohexanone oxime, pentanone oxime, cycloundecanone oxime and cyclododecanone oxime, and particularly cycloundecanonone oxime. Cyclodode canonoxime is suitable because it is easily separated by crystallization.
また、 これらのォキシム化合物として、 ォキシム塩酸塩等の塩も使用可能であ る。 この場合のォキシム塩酸塩は、 シクロアルカンを塩化水素存在下に光二ト口 ソ化したものも使用可能であり、 ォキシムを塩化水素と接触させて得られるもの を用いることもできる。  In addition, as these oxime compounds, salts such as oxime hydrochloride can be used. In this case, as the oxime hydrochloride, a cycloalkane obtained by photosodium oxidation in the presence of hydrogen chloride can be used, and a product obtained by bringing oxime into contact with hydrogen chloride can also be used.
従来、 ォキシム塩酸塩を基質として用い、 完全な転位を達成させるためには、 反応系中の塩酸/ォキシムモル比は 2以上必要であり、 塩酸の使用量が多く、 反 応器の材質や操作性、経済性の点で不利であった(Ch em. P r urn. 3 1 (1 98 1) 250. ;特公昭 47— 1 8 1 14 ;特公昭 5 2— 1 7035 ; DE 1, 620, 478)。  Conventionally, to achieve complete rearrangement using oxime hydrochloride as a substrate, the molar ratio of hydrochloric acid / oxime in the reaction system must be 2 or more, the amount of hydrochloric acid used is large, and the material and operability of the reactor 31. (1 981) 250 .; Japanese Patent Publication No. 47-181114; Japanese Patent Publication No. 52-17035; DE 1, 620, 478).
本発明においては、 このォキシム塩酸塩を用いる場合には、 反応系中の塩酸/ ォキシムモル比が 2未満であっても、 反応を十分に進行させることができる。 塩 酸 Zォキシムモル比は、 1. 3以下にすることがより好ましく、 さらには 1. 1 未満にすることが好ましい。 ここで、 反応系中の塩酸の量とは、 ォキシム塩酸塩 を構成している塩化水素のみでなく反応液中に含まれる塩化水素も塩化水素のモ ル数に含まれる。さらに、ォキシム塩酸塩をォキシム原料として用いた場合には、 酸無水物を含む触媒成分を用いることなくベックマン転位反応を進行させること もできる。  In the present invention, when this oxime hydrochloride is used, the reaction can proceed sufficiently even if the molar ratio of hydrochloric acid / oxime in the reaction system is less than 2. The molar ratio of Z oxime hydrochloride is more preferably 1.3 or less, and further preferably less than 1.1. Here, the amount of hydrochloric acid in the reaction system includes not only hydrogen chloride constituting oxime hydrochloride but also hydrogen chloride contained in the reaction solution in the number of moles of hydrogen chloride. Further, when oxime hydrochloride is used as a raw material for oxime, the Beckmann rearrangement reaction can be advanced without using a catalyst component containing an acid anhydride.
ぐ触媒成分 > Catalyst component>
本発明のベックマン転位反応で使用される触媒成分は、 酸無水物を含む触媒成 分であれば特に限定されるものではないが、 加水分解した場合強酸を生ずる酸無 水物を用いるのが好ましい。 なお、該強酸としては特に限定されないが、 pKa4以 下の強酸がより好ましい。  The catalyst component used in the Beckmann rearrangement reaction of the present invention is not particularly limited as long as it is a catalyst component containing an acid anhydride, but it is preferable to use an acid anhydride which generates a strong acid when hydrolyzed. . The strong acid is not particularly limited, but a strong acid having a pKa of 4 or less is more preferable.
酸無水物を含む触媒成分としては具体的には、 ( 1 )加水分解により強酸を生ず る酸無水物、 ( 2 )力ルボン酸無水物並びに強酸及びノまたは強酸無水物が挙げら れる。 Specific examples of the catalyst component containing an acid anhydride include (1) an acid anhydride that produces a strong acid upon hydrolysis, (2) carboxylic acid anhydride, and a strong acid and a diacid or a strong acid anhydride. It is.
( 1 ) 加水分解により強酸を生ずる酸無水物  (1) Acid anhydrides that produce strong acids by hydrolysis
加水分解により強酸を生ずる酸無水物とは、 強酸と強酸の無水物、 強酸と弱酸 の無水物のいずれでもよい。 具体的には、 芳香族スルホン酸無水物、 脂肪族スル ホン酸無水物等のスルホン酸無水物や、 トリフルォロメタンスルホン酸無水物等 の含フッ素酸無水物、 燐酸の無水物である五酸化燐、 過レニウム酸の無水物であ る七酸化レニウム、 硫酸の無水物である三酸化硫黄、 燐酸と硼酸の無水物である 燐酸硼素、 硫酸半エステルの無水物等がより好ましく例示され、 これらの混合酸 無水物でもよい。 ここで硫酸半エステルの無水物とは、一般式 R— O S 02_ 0— O S 02— R, (但し Rおよび R,は、 同一でも異なっても良い炭素数 1〜2 0、 好 ましくは 1〜 1 0の脂肪族基、 または炭素数 6〜 2 0、 好ましくは 6〜 1 0の芳 香族基であり、 ハロゲンを含んでも良いが、 通常アルキル基である。 また、 Rと R 'とが閉環してもよい) により示される化合物である。 The acid anhydride that produces a strong acid upon hydrolysis may be any of a strong acid and a strong acid anhydride, and a strong acid and a weak acid anhydride. Specifically, sulfonic anhydrides such as aromatic sulfonic anhydride and aliphatic sulfonic anhydride, fluorinated anhydride such as trifluoromethanesulfonic anhydride, and pentoxide, which is an anhydride of phosphoric acid. Phosphorus, rhenium pentoxide which is an anhydride of perrhenic acid, sulfur trioxide which is an anhydride of sulfuric acid, boron phosphate which is an anhydride of phosphoric acid and boric acid, and anhydride of a half ester of sulfuric acid are more preferred. May be mixed acid anhydride. Here, the anhydride of sulfuric acid half esters of the general formula R- OS 0 2 _ 0- OS 0 2 - R, ( where R and R, are also good C 1-2 0 be different, better good at the same Or an aliphatic group having 1 to 10 or an aromatic group having 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms, and may contain a halogen, but is usually an alkyl group. And R ′ may be ring-closed).
これらの中でも、 スルホン酸無水物や五酸化燐等が好ましく、 さらに取り扱い 易いという意味では、 スルホン酸無水物が好ましい。 スルホン酸無水物としては 特に限定されるものではなく、 芳香族スルホン酸無水物、 鎖状または環状の脂肪 族スルホン酸無水物等を用いることができる。 芳香族スルホン酸無水物は、 通常 炭素数 6〜2 0、 好ましくは炭素数 6〜1 0であって、 芳香環に置換基を有して いても良い。 脂肪族スルホン酸無水物は、 通常炭素数 1〜2 0、 好ましくは炭素 数 1〜1 0であって、 置換基を有していても良い。 ここで、 置換基とは炭素数 1 〜 8のアルキル基、炭素数 1〜4のアルコキシ基、炭素数 2〜4のァシル基、 F、 C l、 B r等のハロゲン原子を表す。  Of these, sulfonic anhydride and phosphorus pentoxide are preferred, and sulfonic anhydride is preferred in terms of easier handling. The sulfonic anhydride is not particularly limited, and aromatic sulfonic anhydride, linear or cyclic aliphatic sulfonic anhydride and the like can be used. The aromatic sulfonic anhydride usually has 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms, and may have a substituent on the aromatic ring. The aliphatic sulfonic anhydride usually has 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and may have a substituent. Here, the substituent represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, or a halogen atom such as F, Cl, or Br.
具体的な化合物としてはベンゼンスルホン酸無水物、 ρ _ トルエンスルホン酸 無水物、 m—キシレン一 4ースルホン酸無水物、 p—ドデシルベンゼンスルホン 酸無水物、 2 , 4—ジメチルベンゼンスルホン酸無水物、 2 , 5—ジメチルベンゼ ンスノレホン酸無水物、 4一クロ口ベンゼンスノレホン酸無水物、 a—ナフチルスノレ ホン酸無水物、 ]3—ナフチルスルホン酸無水物、 ビフエニルスルホン酸無水物、 メタンスルホン酸無水物、ェタンスルホン酸無水物、プ口パンスルホン酸無水物、 1—へキサンスルホン酸無水物、 1一オクタンスルホン酸無水物、 トリフロロメ タンスルホン酸、 p—トルエンスルホン酸とメタンスルホン酸との混合酸無水物 等が挙げられ、 中でも p—トルエンスルホン酸無水物、 メタンスルホン酸無水物 が好ましい。 Specific compounds include benzenesulfonic anhydride, ρ_toluenesulfonic anhydride, m-xylene-14-sulfonic anhydride, p-dodecylbenzenesulfonic anhydride, 2,4-dimethylbenzenesulfonic anhydride, 2,5-Dimethylbenzensnolefonic anhydride, 4-monobenzenebenzenesnolefonic anhydride, a-naphthylsnolefonic anhydride,] 3-Naphthylsulfonic anhydride, biphenylsulfonic anhydride, methanesulfonic anhydride Product, ethanesulfonic anhydride, pulppansulfonic anhydride, 1-hexanesulfonic anhydride, 1-octanesulfonic anhydride, trifluoromethanesulfonic acid, a mixed acid anhydride of p-toluenesulfonic acid and methanesulfonic acid, etc., and among them, p-toluenesulfonic anhydride And methanesulfonic anhydride are preferred.
加水分解により強酸を生ずる酸無水物の量は、特に制限されるものではないが、 一般には、原料のォキシム化合物に対して約 0 . 1 ~ 2 0モル0 /0、好ましくは 0 . 3〜1 5モル%、 更に好ましくは 0 . 5〜 1 0モル%の範囲で用いられる。 この 範囲を超えて少な過ぎると十分な触媒活性が得られず、 他方、 過多にすぎると転 位反応後の触媒処理に要する負荷が多くなりいずれも好ましくない。 · The amount of acid anhydride results in a strong acid by hydrolysis, is not particularly limited, in general, about relative Okishimu the starting compounds of 0.1 to 2 0 mole 0/0, preferably 0. 3 It is used in an amount of 15 mol%, more preferably 0.5 to 10 mol%. If the amount is less than this range, sufficient catalytic activity cannot be obtained. On the other hand, if the amount is too large, the load required for the catalyst treatment after the rearrangement reaction increases, which is not preferable. ·
( 2 ) カルボン酸無水物並びに強酸及び Zまたは強酸無水物 .  (2) Carboxylic anhydrides and strong acids and Z or strong acid anhydrides.
また、 酸無水物として、 カルボン酸無水物並びに強酸及び/または強酸無水物 を用いる場合には、カルボン酸無水物としては、特に限定されるものではないが、 例えば置換基を有していても良い炭素数 1〜 2 0、 好ましくは 1〜8の脂肪族力 ルボン酸無水物、ノ置換基を有していてもよい炭素数 6〜 1 2の芳香族カルボン酸 無水物を使用することができる (ここで、 置換基とは炭素数 1〜1 2のアルキル 基、 炭素数 1〜4のアルコキシ基、 炭素数 2〜4のァシル基、 C l、 B r、 F等 のハロゲン原子を表す)。カルボン酸の価数は特に限定されない力 S、好ましくは一 価である。 具体的な化合物としては、 無水酢酸、 プロピオン酸無水物、 n—酪酸 無水物、 n—吉草酸無水物、 n—力プロン酸無水物、 n—ヘプタン酸無水物、 2 ーェチルへキサン酸無水物、 安息香酸無水物、 フタル酸無水物、 マレイン酸無水 物、 コハク酸無水物等が挙げられるが、 中でも低沸点化合物の無水酢酸、 プロピ オン酸無水物が本発明では好ましい。  Further, when a carboxylic acid anhydride and a strong acid and / or a strong acid anhydride are used as the acid anhydride, the carboxylic acid anhydride is not particularly limited. It is possible to use an aliphatic carboxylic anhydride having a good carbon number of 1 to 20, preferably 1 to 8 and an aromatic carboxylic anhydride having 6 to 12 carbon atoms which may have a substituent. Yes (where the substituent represents an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, a halogen atom such as Cl, Br, and F) ). The valence of the carboxylic acid is not particularly limited, and is preferably a force S, preferably monovalent. Specific compounds include acetic anhydride, propionic anhydride, n-butyric anhydride, n-valeric anhydride, n-caproic anhydride, n-heptanoic anhydride, 2-ethylhexanoic anhydride Examples thereof include benzoic anhydride, phthalic anhydride, maleic anhydride, and succinic anhydride. Among them, acetic anhydride and propionic anhydride, which are low-boiling compounds, are preferred in the present invention.
本発明における力ルポン無水物の使用量は、 特に制限されるものではないが、 一般には、 以下に述べる強酸及び/又は強酸無水物からなる群より選ばれた少な くとも一種の化合物に対して約 0 . 5〜2 0 0モル倍、 好ましくは 1 . 0〜1 0 0モル倍、 更に好ましくは 2 . 0〜5 0モル倍の範囲で用いられる。 この範囲を 越えて少なすぎると十分な触媒活性が得られず、 他方、 過多にしすぎると転位反 応後の触媒分離に要する負荷が多くなりいずれも好ましくない。 強酸及ぴ Zまたは強酸無水物における 「強酸無水物」 とは、 強酸と弱酸の無水 物でも、 強酸と強酸の無水物でもよい。 強酸及ぴノまたは強酸無水物としてはス ルホン酸及び/またはその酸無水物から選ばれる化合物が好ましい。 スルホン酸 及び/またはその酸無水物から選ばれた化合物は特に限定されるものではなく、 置換基を有していても良い炭素数 6〜2 0、 好ましくは 6〜 1 0の芳香族スルホ ン酸、 置換基を有していても良い炭素数 1〜 2 0、 好ましくは 1 ~ 1 0の脂肪族 スルホン酸およびこれらの酸無水物を使用することができる (ここで、 置換基と は炭素数 1〜1 2のアルキル基、 炭素数 1〜4のアルコキシ基、 炭素数 2〜4の ァシル基、 F、 C l、 B r等のハロゲン原子を表す)。 Although the amount of the carboxylic acid anhydride used in the present invention is not particularly limited, it is generally based on at least one compound selected from the group consisting of strong acids and / or strong acid anhydrides described below. It is used in a range of about 0.5 to 200 mole times, preferably 1.0 to 100 mole times, and more preferably 2.0 to 50 mole times. If the amount is less than this range, sufficient catalytic activity cannot be obtained. On the other hand, if the amount is too large, the load required for catalyst separation after the rearrangement reaction increases, which is not preferable. The “strong acid anhydride” in the strong acid and Z or the strong acid anhydride may be a strong acid and a weak acid anhydride or a strong acid and a strong acid anhydride. As the strong acid and the strong acid anhydride, a compound selected from sulfonic acid and / or an acid anhydride thereof is preferable. The compound selected from sulfonic acid and / or an acid anhydride thereof is not particularly limited, and may be an aromatic sulfone having 6 to 20 carbon atoms, preferably 6 to 10 carbon atoms which may have a substituent. An acid, an aliphatic sulfonic acid having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms which may have a substituent, and an acid anhydride thereof can be used (where the substituent is a carbon atom). An alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, and a halogen atom such as F, Cl, or Br).
具体的な化合物としてはベンゼンスルホン酸、 : —トルエンスルホン酸、 ; _ トルエンスルホン酸 ·一水和物、 一ドデシルベンゼンスルホン酸、 2, 4—ジメ チルベンゼンスルホン酸、 2 , 5—ジメチルベンゼンスルホン酸、 4—クロ口ベン ゼンスノレホン酸、 4—フノレオ口ベンゼンスノレホン酸、 α—ナフチノレスノレホン酸、 ]3—ナフチノレスノレホン酸、 ビフ.土ニルスノレホン酸、 メタンスノレホン酸、 トリフロ ロメタンスノレホン酸、 エタンスルホン酸、 プロノ ンスノレホン酸、 1—へキサンス ルホン酸、 1—オクタンスルホン酸およびこれらの酸無水物または混合酸無水物 等が挙げられ、 中でもメタンスルホン酸、 トリフロロメタンスルホン酸、 ェタン スノレホン酸、 プロハ。ンスノレホン酸、 ベンゼンスノレホン酸、 : — トノレエンスノレホン 酸、 : ρ—ドデシルベンゼンスルホン酸およびこれらの酸無水物または混合酸無水 物が好ましく、 特にメタンスルホン酸、 ρ - トルエンスルホン酸およびこれらの 酸無水物が好ましい。  Specific compounds include benzenesulfonic acid,: —toluenesulfonic acid,; _toluenesulfonic acid monohydrate, monododecylbenzenesulfonic acid, 2,4-dimethylbenzenesulfonic acid, 2,5-dimethylbenzenesulfonic acid Acid, 4-chlorobenzene zensnolephonic acid, 4-funoleo-benzene benzenesnolephonic acid, α-naphthinolesnolephonic acid,] 3-naphthinolesnolephonic acid, bifu. Soil nilsnolefonic acid, methanesnolefonic acid, trifluoromethanesnole Examples thereof include sulfonic acid, ethanesulfonic acid, sulfonic acid, sulfonic acid, 1-hexanesulphonic acid, 1-octanesulfonic acid, and acid anhydrides or mixed acid anhydrides thereof, among which methanesulfonic acid, trifluoromethanesulfonic acid, Ethane Snorefonic acid, Proha. Preferred are snolefonic acid, benzenesnolefonic acid,: — tonoleensnorefonic acid,: ρ-dodecylbenzenesulfonic acid and their acid anhydrides or mixed acid anhydrides, particularly methanesulfonic acid, ρ-toluenesulfonic acid and Acid anhydrides are preferred.
本発明における強酸及び Ζまたは強酸無水物から選ばれた化合物の使用量は、 特に制限されるものではないが、一般には、原料のォキシム化合物に対して約 0 . 1〜 2 0モル0 /0、 好ましくは 0 . 3〜1 5モル0 /0、 更に好ましくは 0 . 5〜1 0 モル%の範囲で用いられる。 この範囲を越えて少なすぎると十分な触媒活性が得 られず、 他方、 過多にすぎると転位反応後の触媒処理に要する負荷が多くなりい ずれも好ましくない。 The amount of a compound selected from strong acids and Ζ or strong anhydride in the present invention is not particularly limited, but is generally about relative Okishimu the starting compounds of 0.1 to 2 0 mole 0/0 , preferably from 0.3 to 1 5 moles 0/0, used more preferably in the range of 0.5 to 1 0 mol%. If the amount is less than this range, sufficient catalytic activity cannot be obtained. On the other hand, if the amount is too large, the load required for the catalyst treatment after the rearrangement reaction increases, which is not preferable.
ぐ溶媒〉 本発明の転位反応に使用することが出来る溶媒としては、 転位反応を阻害する ものでなければ特に限定されないが、 通常炭素数 1〜2 0の有機溶媒を用いる。 例えば、 n—へキサン、 n—ヘプタン、 n—ドデカン、 シクロへキサン等の脂肪 族炭化水素化合物、 ベンゼン、 トルエン、 キシレン、 メシチレン、 モノクロ口べ ンゼン、 メ トキシベンゼン等の芳香族炭化水素化合物、 ァセトニトリル、 プロパ ンニ トリル、 力プロニトリル、 ア ポ- ト リル、 ベンゾェトリル、 トノレニ ト リル 等の-トリル化合物、フタル酸ジメチル、フタル酸ジブチル、マロン酸ジメチル、 コハク酸ジメチル等のエステル化合物、 N , N—ジメチルホルムアミ ド等の N, N—二置換アミ ド化合物、 N, N , N N ' テトラメチル尿素等のそのほかの アミ ド類、 テトラヒ ドロフラン、 ジォキサン、 ジエチレングリコールジメチルェ 一テル等のエーテル類、 ジメチルスルホキシド、 スルホラン等のスルホキシド類 を挙げることができ、 これらは単独でも混合しても使用することが出来る。 好ま しくは、 芳香族炭化水素化合物、 脂肪族炭化水素化合物及び-トリル化合物から 選ばれる溶媒が使用される。 これらの化合物は、 アルキル基、 ァシル基、 ニトロ 基、 ヒ ドロキシル基及ぴハロゲン原子等の置換基を有してもよい。 Solvent> The solvent that can be used in the rearrangement reaction of the present invention is not particularly limited as long as it does not inhibit the rearrangement reaction, but usually an organic solvent having 1 to 20 carbon atoms is used. For example, aliphatic hydrocarbon compounds such as n-hexane, n-heptane, n-dodecane, and cyclohexane; aromatic hydrocarbon compounds such as benzene, toluene, xylene, mesitylene, monochrome benzene, and methoxybenzene; Acetonitrile, propanitrile, forcepronitrile, aprotolyl, benzoetrile, tonorenitrile, etc.-tolyl compounds, dimethyl phthalate, dibutyl phthalate, dimethyl malonate, dimethyl succinate, etc., N, N N, N-disubstituted amide compounds such as dimethylformamide, N, N, NN 'Other amides such as tetramethylurea, ethers such as tetrahydrofuran, dioxane, diethylene glycol dimethyl ether, dimethyl Examples of sulfoxides such as sulfoxide and sulfolane These can be used alone or in combination. Preferably, a solvent selected from an aromatic hydrocarbon compound, an aliphatic hydrocarbon compound and a -tolyl compound is used. These compounds may have a substituent such as an alkyl group, an acyl group, a nitro group, a hydroxyl group and a halogen atom.
これらの溶媒の中でも、 触媒が溶解していないと反応速度が低下することがあ るため、 反応条件において触媒を溶解させる溶媒がより好ましい。  Among these solvents, a solvent that dissolves the catalyst under the reaction conditions is more preferable because the reaction rate may decrease if the catalyst is not dissolved.
また、 原料として、 ォキシム塩酸塩を用いる場合には、 酸無水物触媒を用いる ことなくベックマン転位反応を進行させることが可能であるが、 この場合用 ヽる 溶媒としては上記の溶媒のうち特に、 二トリル化合物、 ニトロ炭化水素、 ハロゲ ン化炭化水素を用いることが好ましく、 二トリル化合物を用いることがより好ま しい。  In addition, when oxime hydrochloride is used as a raw material, the Beckmann rearrangement reaction can proceed without using an acid anhydride catalyst. It is preferable to use a nitrile compound, a nitro hydrocarbon, or a halogenated hydrocarbon, and it is more preferable to use a nitrile compound.
溶媒の使用量は特に限定されないが、 通常、 ォキシム化合物に対して、 1重量 倍から 1 0 0重量倍、 好ましくは 2重量倍から 1 0重量倍の量を用いることがで さる。  The amount of the solvent to be used is not particularly limited, but it is usually 1 to 100 times, preferably 2 to 10 times the weight of the oxime compound.
<ォキシム化合物及び反応溶媒に含まれる水の合計のモル比 >  <Total molar ratio of water contained in the oxime compound and the reaction solvent>
本発明の第一の発明では、 ォキシム化合物及び反応溶媒に含まれる水の合計の モル比を、 添加した酸無水物に対して 1 5以下となるよう制御して反応を行う。 該モル比は 1 0以下が好ましく、 6以下が更に好ましく、 3以下が特に好ましい。 該モル比を制限することにより、 目的のアミ ド化合物の収率あるいは、 単位触 媒あたりに生成するアミド化合物の量 (TON) を向上させることができる。 In the first invention of the present invention, the reaction is carried out by controlling the total molar ratio of the oxime compound and water contained in the reaction solvent to 15 or less with respect to the added acid anhydride. The molar ratio is preferably 10 or less, more preferably 6 or less, and particularly preferably 3 or less. By limiting the molar ratio, the yield of the target amide compound or the amount (TON) of the amide compound formed per unit catalyst can be improved.
なお、 ォキシム塩酸塩を二トリル溶媒中、 酸無水物なしでベックマン転位させ る場合は、 かかるモル比は、 0 . 5以下、 よりこのましくは 0 . 1以下、 さらに は 0 . 0 5以下が好ましい。  When oxime hydrochloride is subjected to Beckmann rearrangement in a nitrile solvent without an acid anhydride, the molar ratio is preferably 0.5 or less, more preferably 0.1 or less, and further preferably 0.05 or less. Is preferred.
なお、 本発明における水分量の測定は公知の方法によって行えばよく、 例えば カールフィッシャー法を用いることができる。  The measurement of the water content in the present invention may be performed by a known method, for example, a Karl Fischer method can be used.
酸無水物に対して、 ォキシム化合物及び反応溶媒に含まれる水の合計のモル比 を求めるためには、 回分反応であれば反応器に仕込む化合物の量で求められ、 連 続反応である場合、 単位時間あたりに反応器に導入される化合物の量によって求 めればよい。 また、 後述するように反応液から触媒成分を分離し、 触媒の再生ェ 程を経ずに触媒成分を反応器にリサイクルする場合は、 ここでは 「仕込みの酸無 水物」量には算入しない。 「仕込みの酸無水物」 とは反応系に新たに導入される酸 無水物と再生された酸無水物を指す。  In order to determine the molar ratio of the total amount of water contained in the oxime compound and the reaction solvent to the acid anhydride, it is determined by the amount of the compound charged in the reactor in the case of a batch reaction, and in the case of a continuous reaction, It may be determined based on the amount of the compound introduced into the reactor per unit time. Also, when the catalyst component is separated from the reaction solution as described below and the catalyst component is recycled to the reactor without going through the catalyst regeneration process, the amount of “acid anhydride” in the preparation is not counted here. . “Charged anhydride” refers to an acid anhydride newly introduced into the reaction system and a regenerated acid anhydride.
なお、 本反応では酸無水物を用いるが、 反応中酸無水物は次第に対応する酸ま たは、 酸成分を含む誘導体に変化することが、 删 Rによりわかっている。 した がって、 本発明においては反応系中での酸無水物に対応する酸及ぴ酸成分を含む 誘導体の合計に対する、 反応系中に存在する水の比率としては通常 7未満であつ て、 中でも 5以下が好ましく、 更には 3以下が好ましく、 特に 1 . 5以下が好ま しい。  In this reaction, an acid anhydride is used, but it is known from R that the acid anhydride gradually changes to a corresponding acid or a derivative containing an acid component during the reaction. Therefore, in the present invention, the ratio of water present in the reaction system to the total of the derivative containing the acid and the acid component corresponding to the acid anhydride in the reaction system is usually less than 7, and Among them, 5 or less is preferable, 3 or less is preferable, and 1.5 or less is particularly preferable.
反応系中に存在する水の存在量を測定する際に、 カールフィッシヤー法を用い る場合には、 以下に記述する理由から、 溶解していない酸無水物が存在する場合 には酸無水物を除去して測定し、 固形分として原料のォキシム化合物や目的生成 物であるアミド化合物が存在する場合には、 固体と溶液とをそれぞれ測定して合 計するのが好ましい。 酸無水物は水により除々に加水分解するため、 酸無水物が 混合した試料が水分測定装置に導入されると、 分析の時の水分量に影響を及ぼす ことがある。 また、 固形分として原料のォキシム化合物や目的生成物であるアミ ド化合物が存在する場合その内部に水を含有する可能性があるため、 水分量を測 定する必要がある。 しかしながら、 固形分と溶液のスラリー状態のまま一部サン プリングして水分測定を行うと、 本来の溶液組成との誤差が大きくなりやすい。 このため、 酸無水物や固形分と溶液とを一緒に測定すると、 正確な水の存在量を 求められないことがある。 When measuring the amount of water present in the reaction system, if the Karl Fischer method is used, for the reasons described below, if the undissolved acid anhydride is present, the acid anhydride is used. It is preferable to measure and sum the solid and the solution, respectively, when the oxime compound as the raw material or the amide compound as the target product is present as the solid content. Since acid anhydrides are gradually hydrolyzed by water, if a sample mixed with acid anhydrides is introduced into a moisture measuring device, it may affect the amount of water during analysis. In addition, the oxime compound as the raw material and the amino acid as the target product are used as solids. If a compound exists, it may contain water, so it is necessary to measure the water content. However, if the water content is measured by partially sampling the solid content and the solution in a slurry state, the error from the original solution composition tends to increase. For this reason, when acid anhydride or solid content and a solution are measured together, an accurate amount of water may not be obtained.
またォキシム化合物の一般的な工業的な製造方法は、 ケトン類にヒドロキシル ァミン硫酸塩を作用させる方法、 シク口アルカンを光-ト口ソ化することにより 製造する方法等が知られている。 この様な製造方法を経て得られたォキシム化合 物は、 5から 1 5重量%程度の水を含有するのが一般的である。 また、 反応溶媒 も種類にもよるが、 通常、 数 1 0 0 p p m、 場合によっては、 数 1 0 0 O p p m の水分が含まれる場合もある。 保存方法によってそれ以上の水分を含む場合もあ りうる。 また、 反応器やそれに付随する受器ゃ配管も壁に水分が付着している。 本発明においては、 ォキシム化合物及び反応溶媒に含まれる水分の合計モル比 が、 用いる酸無水物に.対'して特定値以下になるまで低減させて使用する。 また、 反応液相中の水分を制限することが好ましいので、 これらだけでなく、.反応器や それに付随する受器なども乾燥させることが好ましい。 '  Further, as a general industrial production method of an oxime compound, a method of reacting a ketone with hydroxylamine sulfate, a method of producing a cyclium alkane by photo-to-sophorization, and the like are known. The oxime compound obtained through such a production method generally contains about 5 to 15% by weight of water. In addition, although the reaction solvent also depends on the type, the reaction solvent usually contains water of the number 100 ppm, and in some cases, the water of the number 100 ppm. It may contain more water depending on the storage method. In addition, the reactor and its associated receiver and piping also have moisture on the walls. In the present invention, the total molar ratio of the water contained in the oxime compound and the reaction solvent is reduced to a specific value or less with respect to the acid anhydride used. In addition, since it is preferable to limit the water content in the reaction liquid phase, it is preferable to dry not only these but also the reactor and the associated receiver. '
また、 用いる酸無水物は、 ·水分が混入しないよう ·に保管することが好ましく、 転位反応器、 受器、 配管の乾燥をおこなうことが好ましい。 そして、 反応系中に 水分の混入を避けるため、 反応の仕込み及び反応は乾燥処理したガスの雰囲気下 で実施することが好ましく、水分を含有する大気の混入は避けることが好ましい。 通常は窒素、 アルゴン、 ヘリウムなどの不活性なガス雰囲気で行われるが、 乾燥 した空気も使用できる。 反応液中の水分を除去するために、 反応液中に吸水剤を 存在させてもよいし、 水を除きながら反応を行っても良い。  The acid anhydride to be used is preferably stored in a manner not to be mixed with water, and the rearrangement reactor, the receiver and the piping are preferably dried. In order to avoid the incorporation of moisture into the reaction system, the preparation and the reaction of the reaction are preferably carried out in an atmosphere of a dried gas, and it is preferred to avoid the incorporation of moisture-containing air. Usually performed in an inert gas atmosphere such as nitrogen, argon or helium, but dry air can also be used. In order to remove water in the reaction solution, a water absorbing agent may be present in the reaction solution, or the reaction may be performed while removing water.
ぐ水分量を制限する方法 > How to limit the amount of water flowing>
上記したォキシム化合物、 反応溶媒および反応雰囲気ガス、 反応器の乾燥方法 は特に限定されないが、それぞれ以下に示されるような工程で行うのが好ましい。  The above-described oxime compound, reaction solvent and reaction atmosphere gas, and a method for drying the reactor are not particularly limited, but are preferably performed in the following steps, respectively.
( 1 ) ォキシム化合物  (1) Oxime compound
本発明方法の原料ォキシム化合物としては、通常 5重量%以下、好ましくは 1 . 5重量。 /0以下、 さらに好ましくは 0 . 6重量%以下、 特には 0 . 3重量%以下に 含水量を低減したものを使用するのが好ましい。 The starting oxime compound of the method of the present invention is usually at most 5% by weight, preferably at most 1. 5 weight. / 0 or less, more preferably 0.6% by weight or less, particularly preferably 0.3% by weight or less.
ォキシム化合物の乾燥方法としては、 具体的には、 一般的な蒸留、 薄膜蒸発器 を用いた蒸留、 晶析、 固体ォキシムの減圧乾燥等の方法が挙げられ、 これらを適 宜組み合わせても良い。  Specific examples of the method for drying the oxime compound include general distillation, distillation using a thin film evaporator, crystallization, and drying under reduced pressure of solid oxime. These methods may be appropriately combined.
( 2 ) 有機溶媒  (2) Organic solvent
本発明の有機溶媒は、 通常 1 %以下、 好ましくは 0 . 2 %以下、 さらに好まし くは 0 . 1 %以下、 特には 0 . 0 5 %以下に含水量を低減したものを使用するの が好ましい。  The organic solvent of the present invention generally has a water content reduced to 1% or less, preferably 0.2% or less, more preferably 0.1% or less, and particularly preferably 0.05% or less. Is preferred.
有機溶媒の乾燥方法としては、 具体的には、 一般的な蒸留、 薄膜蒸発器を用い た蒸留、 モレキュラーシブス等を用いた乾燥、 金属ナトリウム等を用いる方法、 硫酸ナトリゥムゃ硫酸マグネシウム等の塩類を用いた乾燥等の手法を用いること ができる。 またこれらを組合わせることもできる。 有機溶媒の乾燥が十分に行わ れているものを入手出来る場合は、 本工程を必ず.しも含まなくてもよい。  Examples of the method for drying the organic solvent include general distillation, distillation using a thin film evaporator, drying using molecular sieves, a method using metallic sodium, etc., salts such as sodium sulfate and magnesium sulfate. For example, a method such as drying using a method can be used. These can also be combined. If the organic solvent is sufficiently dried, this step need not necessarily be included.
( 3 ) 反応雰囲気ガス .  (3) Reaction atmosphere gas.
反応雰囲気のガスを乾燥させる方法としては、 反応器に至るまでのガス配管の 間にモレキュラーシーブス等の吸湿剤を組み込む方法などが挙げられるが、 水分 量が充分少ないものを供給できる場合は本工程を必ずしも含まなくても良い。  Examples of a method for drying the gas in the reaction atmosphere include a method of incorporating a moisture absorbent such as molecular sieves between gas pipes leading to the reactor. May not necessarily be included.
( 4 ) 転位反応器および反応器に付随する受器ゃ配管類等  (4) Rearrangement reactor and receivers and piping associated with the reactor
また、転位反応器および反応器に付随する受器ゃ配管類等の乾燥方法としては、 乾燥ガスを予め流通させる、 保温しながら乾燥ガスを流通させる、 若しくは減圧 乾燥などの方法により水分を除去する方法などを採用することができる。  In addition, as a method for drying the rearrangement reactor and the receivers and pipes attached to the reactor, the drying gas is circulated in advance, the drying gas is circulated while keeping the temperature, or the moisture is removed by a method such as drying under reduced pressure. A method or the like can be adopted.
以上説明した乾燥工程を経て得られたォキシム化合物、 反応溶媒の乾燥の程度 を適宜組み合わることにより、 仕込まれる水分量を所定の状態にすることができ る。  By appropriately combining the degree of drying of the oxime compound and the reaction solvent obtained through the above-described drying step, the amount of water to be charged can be brought to a predetermined state.
本反応では酸無水物を用いており、 反応原料や溶媒と触媒である酸無水物を混 合すると、 反応原料や溶媒中、 又は反応器に付着している水分により酸無水物が 加水分解し、 水が消費されることがある。 したがって、 反応の原料と触媒である 酸無水物を混合させる前と混合させた後 (酸無水物の加水分解がおきたあと) で は、 測定される水の量が変化する場合がある。 本反応では、 反応に添加する原料 中の水の酸無水物に対するモル比が所定量以下とするように、 反応雰囲気、 反応 器などの水分を制限し、 反応液自体の水分量を増加させないことが好ましい。 本発明では、 上記した通りに用いた酸無水物に対する水分量を低減させること により、 目的とするアミ ド化合物の収率を向上させるこどができる。 In this reaction, an acid anhydride is used.When a reaction raw material or solvent is mixed with a catalyst acid anhydride, the acid anhydride is hydrolyzed by water adhering to the reaction raw material or solvent or to the reactor. However, water may be consumed. Therefore, it is the raw material of the reaction and the catalyst Before and after mixing (after hydrolysis of the anhydride), the amount of water measured may vary. In this reaction, the amount of water in the reaction atmosphere and the reactor should be limited so that the molar ratio of water in the raw materials added to the reaction to the acid anhydride is not more than a predetermined amount, and the amount of water in the reaction solution itself should not be increased. Is preferred. In the present invention, the yield of the target amide compound can be improved by reducing the amount of water with respect to the acid anhydride used as described above.
<転位反応条件 > <Translocation reaction conditions>
本発明方法を実施する条件としては特に規定されないが、 反応温度は通常 o °c から 2 0 0 °C、 好ましくは 4 0 °Cから 1 5 0 °C、 更に好ましくは 5 0 °Cから 1 3 0 °Cの範囲で実施される。  Although the conditions for carrying out the method of the present invention are not particularly limited, the reaction temperature is usually from o ° C to 200 ° C, preferably from 40 ° C to 150 ° C, more preferably from 50 ° C to 150 ° C. It is carried out in the range of 30 ° C.
反応圧力も特に制限されるものでなく、 減圧、 常圧および加圧条件下で実施で きるが、 通常常圧下で実施する。  The reaction pressure is not particularly limited, and the reaction can be carried out under reduced pressure, normal pressure and pressurized conditions.
反応時間或いは反応基質の反応器中の滞留時間は、 通常 1 0秒〜 1 0時間であ り、 好ましくは 1分〜 7時間である。  The reaction time or the residence time of the reaction substrate in the reactor is usually from 10 seconds to 10 hours, preferably from 1 minute to 7 hours.
本発明では酸無水物と原料ォキシム化合物を如何なる順序で混合しても転位反 応は進行する。例えば、原料ォキシムを有機溶媒に混合し、所定温度に達した後、 酸無水物を添加してもよいし、 酸無水物を有機溶媒に混合した混合物、 あるいは これらの混合物に更に少量の原料ォキシム化合物を加えた混合物を所定の温度に 加熱し、 次いで原料ォキシム化合物の溶解した原料液を一括添加してもよいし、 逐次的に供給して反応を開始してもよい。  In the present invention, the rearrangement reaction proceeds even if the acid anhydride and the starting oxime compound are mixed in any order. For example, the raw material oxime may be mixed with an organic solvent, and after reaching a predetermined temperature, an acid anhydride may be added, or a mixture of the acid anhydride mixed with the organic solvent, or a smaller amount of the raw material oxime added to the mixture. The mixture to which the compound has been added is heated to a predetermined temperature, and then the raw material solution in which the raw material oxime compound is dissolved may be added at once, or the reaction may be started by sequentially supplying the raw material oxime compound.
原料ォキシム化合物は、 溶媒の一部に溶解して反応に供することもできるし、 溶解させずにそのまま添加することも出来る。  The starting oxime compound may be dissolved in a part of the solvent and used for the reaction, or may be added as it is without being dissolved.
く転位反応形式 > Ku rearrangement reaction form>
本発明の反応を実施する反応形式は特に規定されるものではなく、 回分反応、 連続流通反応のいずれでも実施することができるが、 工業的には連続流通反応形 式を用いるのが好ましい。 反応器の形式については特に制約はなく、 1槽あるい は 2槽以上の連続した攪拌槽からなる反応器や、 チューブラー型反応器等、 一般 的な反応器を使用することができる。 また、 本発明で使用される無水物は、 反応 液中に含まれる水により加水分解して酸が生ずるため反応器材質は耐腐食性材質 のものを用いるのが好ましく、 例えばステンレス鋼、 ハステロイ、 モネル、 イン コネル、 チタン、 チタン合金、 ジノレコニゥム、 ジルコニウム合金、 二ッケル、 二 ッケル合金、 タンタル、 又はフッ素樹脂、 各種ガラスを内側にコーティングした 材料などが例示できる。 The reaction mode for carrying out the reaction of the present invention is not particularly limited, and the reaction can be carried out in any of a batch reaction and a continuous flow reaction. However, industrially, it is preferable to use a continuous flow reaction mode. The type of the reactor is not particularly limited, and a general reactor such as a reactor having one or two or more continuous stirring tanks or a tubular reactor can be used. Further, the anhydride used in the present invention is a reaction It is preferable to use a corrosion-resistant material for the reactor because it is hydrolyzed by water contained in the liquid to generate an acid. For example, stainless steel, Hastelloy, Monel, Inconel, titanium, titanium alloy, dinoleconium, zirconium Examples include alloys, nickel, nickel alloy, tantalum, or fluororesins, and materials coated with various types of glass on the inside.
<転位反応方法 > <Relocation reaction method>
本発明の反応方法は特に限定されないが、 例えばバッチでも連続でもよく、 ェ 業的には連続反応で行うのが好ましい。  Although the reaction method of the present invention is not particularly limited, for example, it may be batch or continuous, and it is preferable to carry out the reaction continuously from the industrial point of view.
連続流通反応の場合には、 十分に乾燥処理した反応器に本発明の酸無水物を含 む触媒成分、 具体的には、 強酸無水物、 もしくはカルボン酸無水物並びに強酸及 び/または強酸無水物を溶解させた触媒液を仕込み、 所定温度に維持する。'これ に原料ォキシム化合物を溶解させた溶媒とともに連続的に供給して所望の滞留時 間の間に反応させ、 同時に生成したアミ ド化合物、 未反応ォキシム化合物および 触媒成分、 更には溶媒を含む反応混合物を連続的に取り出す。  In the case of a continuous flow reaction, a catalyst component containing the acid anhydride of the present invention, specifically, a strong acid anhydride or a carboxylic acid anhydride and a strong acid and / or a strong acid anhydride are placed in a sufficiently dried reactor. The catalyst solution in which the substances are dissolved is charged and maintained at a predetermined temperature. 'The reaction is carried out continuously with the solvent in which the raw material oxime compound is dissolved and reacted during the desired residence time, and simultaneously the amide compound, unreacted oxime compound and catalyst component, and the reaction containing the solvent The mixture is continuously removed.
ぐ反応混合物 > Reaction mixture>
転位反応後の反応混合物は、 軽沸生成物、 溶媒、 目的生成物であるアミ ド化合 物、 未反応ォキシム、 残りの触媒成分 (カルボン酸無水物並びに強酸及び また は強酸無水物を触媒成分として用いた場合はカルボン酸を含む) を含む。  The reaction mixture after the rearrangement reaction is composed of a low-boiling product, a solvent, an amide compound as an intended product, unreacted oxime, and the remaining catalyst components (a carboxylic acid anhydride and a strong acid and / or a strong acid anhydride as catalyst components). (When used, carboxylic acid is included.)
ぐ触媒成分とアミ ド化合物との分離 > Separation of catalyst components from amide compounds>
本発明においては、 転位反応後、 反応混合物から直接触媒成分とアミ ド化合物 とを分離することが望ましい。 直接触媒を分離することによりアミド化合物を簡 便に触媒成分から分離でき、 触媒の再生も容易となる。  In the present invention, it is desirable to directly separate the catalyst component and the amide compound from the reaction mixture after the rearrangement reaction. By directly separating the catalyst, the amide compound can be easily separated from the catalyst component, and the catalyst can be easily regenerated.
ここで触媒成分とアミド化合物とを分離するとは、 反応液を中和も水添加及び zまたは洗浄もすることなく分離することを指す。 なお、 本発明において中和と は存在する酸と等量以上の塩基を添加することをいい、 水添加及び/または洗浄 とは反応混合液に対して水を 3 0重量%以上添加することをいう。  Here, separating the catalyst component and the amide compound means separating the reaction solution without neutralization, addition of water and z or washing. In the present invention, the term "neutralization" refers to the addition of a base in an amount equal to or more than that of the existing acid, and the term "water addition and / or washing" refers to the addition of 30% by weight or more of water to the reaction mixture. Say.
アミド化合物、 未反応のォキシム化合物と触媒成分を分離する工程は、 触媒が 失活したあとの反応液でも、 触媒が失活していな 、反応液からでもよい。 アミ ド化合物、 未反応のォキシム化合物を分離した後の触媒成分を含有する母 液は、 触媒の再生工程に導くか、 再生工程に導かずにそのまま転位工程にリサイ クルする方法かのいずれかを選ぶことができる。 The step of separating the amide compound, the unreacted oxime compound and the catalyst component may be carried out from the reaction solution after the catalyst has been deactivated or from the reaction solution if the catalyst has not been deactivated. The mother liquor containing the catalyst component after separation of the amide compound and unreacted oxime compound may be led to the catalyst regeneration step or may be recycled to the rearrangement step without being led to the regeneration step. You can choose.
再生工程に導く場合には、 酸型のまま導くこともできるし、 必要が有れば中和 工程を経た後に酸に再生し、 さらに酸無水物に再生することもできる。 アミド化 合物と分離後の触媒成分は、 多量のアミド化合物を分離した後に中和工程に導か れるので、 容易に中和を行うことができる。  In the case of leading to the regeneration step, it can be led in the form of an acid, or if necessary, can be regenerated to an acid after the neutralization step and further to an acid anhydride. Since the amide compound and the separated catalyst component are led to the neutralization step after separating a large amount of the amide compound, the neutralization can be easily performed.
一方、 分離されたナミ ド化合物およびォキシム化合物は、 蒸留、 抽出、 晶析分 離等の各種分離操作により、 アミ ド化合物とォキシム化合物とに分離する。 目的 アミド化合物はさらに、 蒸留、 晶析等の方法で精製することにより、 さらに高純 度品を得ることができる。  On the other hand, the separated amide and oxime compounds are separated into amide and oxime compounds by various separation operations such as distillation, extraction, and crystallization separation. The target amide compound can be further purified by a method such as distillation or crystallization to obtain a higher purity product.
また、目的アミ ド化合物から分離された未反応のォキシム化合物は適宜精製し、 反応原料として使用することができる。 未反応のォキシム化合物が残留しないべ ックマン転位反応条件が選ばれていれば、 未反応ォキシム化合物をァミド化合物 から分離する必要はない。  The unreacted oxime compound separated from the target amide compound can be appropriately purified and used as a reaction raw material. It is not necessary to separate the unreacted oxime compound from the amide compound, provided that Beckmann rearrangement reaction conditions in which the unreacted oxime compound does not remain are selected.
' <分離方法〉 . ' '<Separation method>.'
転位反応液から、 溶媒、 アミド化合物、 未反応のォキシム化合物と触媒成分を 分離する方法としては、 蒸留、 晶析、 抽出等の、 公知のいずれの方法でも採用す ることができるが、 操作が簡便で、 設備が簡易である点で晶析が好ましい。  As a method for separating the catalyst component from the solvent, the amide compound, the unreacted oxime compound and the catalyst component from the rearrangement reaction solution, any known method such as distillation, crystallization, or extraction can be employed. Crystallization is preferred because it is simple and the equipment is simple.
晶析による場合には、 反応に用いた溶媒をそのまま用いることもできるし、 反 応に用いた溶媒を一部または全部留去し、 別のトルエン等の溶媒を添カ卩後、 晶析 をおこなってもよい。  In the case of crystallization, the solvent used in the reaction can be used as it is, or part or all of the solvent used in the reaction is distilled off, and another solvent such as toluene is added, and the crystallization is performed. May be done.
本法によれば、 転位反応液を晶析することにより、 固体成分として殆ど触媒成 分の含有しないアミ ド化合物が析出し、 触媒成分は濾液中に回収される。  According to this method, the crystallization of the rearrangement reaction solution precipitates an amide compound containing almost no catalyst component as a solid component, and the catalyst component is recovered in the filtrate.
触媒成分としてカルボン酸が含有される場合には、 晶析前にカルボン酸を蒸留 して除く力 \ 晶析後の濾液からカルボン酸を蒸留することが好ましい。 除かれた カルボン酸は無水物に変換された後に反応工程に循環することができる。  When a carboxylic acid is contained as a catalyst component, it is preferable to distill the carboxylic acid by distillation before crystallization. The removed carboxylic acid can be recycled to the reaction step after being converted to the anhydride.
晶析の際の、 溶媒の使用量は特に制限されるものではないが、 通常、 上記アミ 3 009749 ド化合物及び未反応のォキシム化合物の合計重量に対し、 通常、 0 . 5倍から 2 0倍、 好ましくは 1倍から 1 0倍、 さらには 2倍から 7倍の範囲で用いられる。 晶析操作においては、 晶析温度はいずれでもよく、 通常、 用いる溶媒の融点か ら沸点までの温度が用いられるが、 一 1 0 °Cから常温の間の温度が好ましい。 ァ ミ ド化合物及び未反応ォキシム化合物と、 触媒成分との分離は、 通常の常圧濾過 や減圧濾過、 加圧濾過等公知の方法を用いることができる。 濾別されたアミ ド化 合物及び未反応のォキシム化合物は、 溶媒で、 結晶表面に付着した触媒成分を洗 浄することができる。 , The amount of the solvent used for crystallization is not particularly limited, but is usually The amount is usually 0.5 to 20 times, preferably 1 to 10 times, and more preferably 2 to 7 times the total weight of the compound and the unreacted oxime compound. In the crystallization operation, any crystallization temperature may be used. Usually, a temperature from the melting point to the boiling point of the solvent to be used is used, but a temperature between 110 ° C. and room temperature is preferable. For separation of the amide compound and the unreacted oxime compound from the catalyst component, known methods such as ordinary atmospheric pressure filtration, vacuum filtration, and pressure filtration can be used. The amide compound and the unreacted oxime compound separated by filtration can be used to wash the catalyst component attached to the crystal surface with a solvent. ,
反応液から触媒成分とアミ ド化合物及び未反応ォキシム化合物を分離したあと の触媒溶液をそのまま転位工程に戻 場合には、水分により触媒が失活するので、 これらの分離操作は、 乾燥雰囲気下で行う、 若しくは乾燥させたシリンジなどで 触媒成分の溶解した溶液を採取する、 などの方法により水分を混入させないこと が好ましい。 また、 触媒の再生が必要な場合にも、 上記のような方法で、 触媒溶 液への水分の混入を防.ぐことが好ましい。 . '  If the catalyst solution after separating the catalyst component, the amide compound and the unreacted oxime compound from the reaction solution is returned to the rearrangement step as it is, the catalyst is deactivated by moisture, so these separation operations must be performed in a dry atmosphere. It is preferable not to mix water by a method such as performing, or collecting a solution in which the catalyst component is dissolved using a dried syringe or the like. In addition, even when regeneration of the catalyst is necessary, it is preferable to prevent water from being mixed into the catalyst solution by the method described above. '
晶析効率を上げるために、 水を貧溶媒として使用する場合には、 水の量は転位 反応液に対して 3 0重量%以下、 水の分離操作の負担を考慮するならば 2 0重 量。 /0以下、 好ましくは 1 5重量%以下とする。 ' 本工程に於ける操作形式は特に規定されるものではなく、 反応に用いた反応器 でそのまま触媒成分とアミド化合物との分離を行うこともできるし、 ほかの容器 に移してからおこなってもよい。 また、 回分形式、 連続流通形式のいずれでも実 施することができる。 When water is used as a poor solvent to increase the crystallization efficiency, the amount of water is 30% by weight or less based on the rearrangement reaction solution, and 20% by weight considering the burden of water separation operation. . / 0 or less, preferably 15% by weight or less. '' The mode of operation in this step is not particularly limited, and the catalyst component and the amide compound can be separated as they are in the reactor used for the reaction, or they can be transferred to another container and then performed. Good. In addition, it can be implemented in either a batch format or a continuous distribution format.
本工程では酸無水物または、酸無水物に由来する酸が反応系中に存在するので、 反応器材質は耐腐食性材質のものを用いるのが好ましく、 例えばステンレス鋼、 ハステロイ、 モネル、 ィンコネル、 チタン、 チタン合金、 ジノレコニゥム、 ジノレコ ニゥム合金、 ニッケル、 ニッケル合金、 タンタル、 又はフッ素樹脂、 各種ガラス を内側にコーティングした材料などが例示できる。  In this step, since an acid anhydride or an acid derived from the acid anhydride is present in the reaction system, it is preferable to use a corrosion-resistant material for the reactor, such as stainless steel, Hastelloy, Monel, Inconel, or the like. Examples thereof include titanium, a titanium alloy, a zinc alloy, a zinc alloy, nickel, a nickel alloy, tantalum, a fluororesin, and a material in which various kinds of glass are coated on the inside.
<触媒成分の再生、 リサイクル >  <Regeneration and recycling of catalyst components>
ベックマン転位反応後に分離された触媒成分は、 溶媒に溶解させた状態でその まま反応系に再循環することが可能であるが、 酸無水物に転換してから転位反応 系に再循環することができる。 その際、 必要に応じて中和工程、 酸への再生を経 た後に、 酸無水物化の工程に導いてもよい。 The catalyst component separated after the Beckmann rearrangement reaction is dissolved in a solvent It can be recycled to the reaction system as it is, but it can be recycled to the rearrangement reaction system after conversion to the acid anhydride. At that time, if necessary, a neutralization step and a regeneration to an acid may be performed, and then a step of acid anhydride may be conducted.
触媒成分の再生の方法については、 次の 3工程にわけて説明する。  The method of regenerating the catalyst component will be explained in the following three steps.
( 1 ) 酸無水物に由来する酸をアルカリ性化合物により中和して酸のアル力リ 塩とする工程  (1) A step of neutralizing an acid derived from an acid anhydride with an alkaline compound to form an acid salt of the acid
( 2 ) 酸無水物由来の酸のアルカリ塩から無水物由来の酸を再生する工程 (2) A step of regenerating an acid derived from an anhydride from an alkali salt of an acid derived from an acid anhydride
( 3 ) 再生した酸を脱水縮合して、 酸無水物を再生する工程 中和工程が不要な場合は、 (1 ) 及び(2 ) の工程は省かれる。 以下それぞれの 工程について順次説明する。 (3) Step of dehydrating and condensing the regenerated acid to regenerate the acid anhydride If the neutralization step is unnecessary, steps (1) and (2) are omitted. Hereinafter, each of the steps will be sequentially described.
( 1 ) 酸無水物に由来する酸をアルカリ性化合物により中和して酸のアルカリ塩 とする工程  (1) A step of neutralizing an acid derived from an acid anhydride with an alkaline compound to form an alkali salt of the acid.
ベックマン転位反応後に分離された触媒成分を、 中和工程を経て再生する場合 には、 以下に示す方法が好ましい。 ' ' When the catalyst component separated after the Beckmann rearrangement reaction is regenerated through a neutralization step, the following method is preferable. ''
(アルカリ性化合物) (Alkaline compound)
- 用いるアルカリ性化合物は、 任意のものが用いられるが、 好ましくはアルカリ 金属の水酸化物、アルカリ土類金属の水酸化物、またはアンモニアが用いられる。 これらアルカリ性化合物は予め水と混合し、 アルカリ水溶液として用いることが 好ましい。  -Any alkaline compound may be used, but preferably an alkali metal hydroxide, an alkaline earth metal hydroxide, or ammonia is used. These alkaline compounds are preferably mixed with water in advance and used as an aqueous alkaline solution.
(中和条件)  (Neutralization conditions)
触媒成分とアルカリ性化合物とを混合する際の温度としては、 通常 0〜2 0 0 °Cであり、 好ましくは 1 0〜 1 5 0 °Cである。 また、 用いられるアルカリ性化 合物の量としては、 転位反応に用いた酸無水物に対して通常 0 . 1〜2 0モル倍 であり、 好ましくは 0 . 5〜 1 0モル倍である。  The temperature at which the catalyst component and the alkaline compound are mixed is generally 0 to 200 ° C, preferably 10 to 150 ° C. The amount of the alkaline compound used is usually 0.1 to 20 mol times, preferably 0.5 to 10 mol times, relative to the acid anhydride used for the rearrangement reaction.
アルカリ性化合物の水溶液で中和された場合には、 中和された触媒成分を含む 溶液には、 触媒成分の他に、 反応溶媒、 軽沸副生成物及び水を含有する。 この中 和した溶液中に目的物であるアミ ド化合物や原料のォキシム化合物が含有される 場合には、 抽出、 晶析、 蒸留等の方法により、 目的物であるアミド化合物及び未 反応のォキシム化合物を酸無水物由来の酸から分離する事ができる。 中和された 触媒成分を含む溶液から、 反応溶媒、 軽沸副生成物を留去することにより、 中和 された触媒成分のアル力リ塩を水溶液の形態で得ることができる。 回収した溶媒 は反応器に再循環しうるが、 この場合、 不要な副生成物類は別途蒸留等の分離手 段で分離除去する。 When neutralized with an aqueous solution of an alkaline compound, the solution containing the neutralized catalyst component contains a reaction solvent, a low-boiling by-product, and water in addition to the catalyst component. The neutralized solution contains the target amide compound and the starting oxime compound. In such a case, the target amide compound and unreacted oxime compound can be separated from the acid derived from the acid anhydride by a method such as extraction, crystallization, or distillation. By distilling off the reaction solvent and light-boiling by-products from the solution containing the neutralized catalyst component, the neutralized salt of the catalyst component can be obtained in the form of an aqueous solution. The recovered solvent can be recycled to the reactor. In this case, unnecessary by-products are separated and removed by a separate means such as distillation.
( 2 ) 酸無水物由来の酸のアルカリ塩から酸無水物由来の酸を再生する工程 中和された酸のアルカリ塩は、 他の酸を用いてアルカリ塩から酸へ再生する。 (再生に用いる酸)  (2) Step of Regenerating Acid Derived from Acid Anhydride from Acid Salt Derived from Acid Anhydride The alkali salt of a neutralized acid is regenerated from the alkali salt to an acid using another acid. (Acid used for regeneration)
この工程で用いられる他の酸としては、 硫酸、 塩酸、 硝酸等の無機酸、 酢酸、 プロピオン酸等の有機酸、 あるいは固体酸、 酸型のイオン交換樹脂等を用いるこ とができる。 酸の再生に用いられる他の酸の酸性度に対して、 酸無水物に由来す る酸の酸性度の方が強い場合には、 用いる他の酸の量を多くしたり、 フリーとな つた強酸を工程中に系外に取り出すなどして、 反応の平衡としては不利であって も酸を回収することができる。  Examples of other acids used in this step include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, organic acids such as acetic acid and propionic acid, solid acids, and acid-type ion exchange resins. If the acidity of the acid derived from the acid anhydride is stronger than the acidity of the other acid used for acid regeneration, the amount of the other acid used is increased or the free acid is used. The acid can be recovered by removing the strong acid out of the system during the process, even if it is disadvantageous for the equilibrium of the reaction.
酸無水物由来の酸がスルホン酸の場合について例を挙げて以下に述べる。 従来、 スルホン酸のアルカリ塩を他の酸と接触させた場合には、 平衡の制約が あり、 反応を押し切ることが非常に難しく、 他の酸を大過剰用いる事が必要であ つた。 その場合他の酸を廃棄するか、 再び分離回収する必要が生じて経済的に有 利な方法ではなかった。  The case where the acid derived from the acid anhydride is sulfonic acid will be described below with reference to examples. Conventionally, when an alkaline salt of sulfonic acid is brought into contact with another acid, there is a restriction in equilibrium, it is very difficult to push the reaction over, and it is necessary to use a large excess of the other acid. In that case, other acids had to be discarded or separated and recovered again, which was not an economically effective method.
(有機溶媒)  (Organic solvent)
本工程では、 スルホン酸が溶解する有機溶媒存在下で反応を実施することが好 ましい。 有機溶媒は、 スルホン酸が溶解し、 無機酸が溶解し難い有機溶媒を用い る事が好ましい。 具体的には、 トルエン、 ベンゼン等の芳香族炭化水素、 へキサ ン、 オクタン等の脂肪族炭化水素類、 ァセトン、 メチルェチルケトン等のケトン 類、 酢酸ェチル、 フタル酸メチル等のエステル類、 ジメチルエーテル等のエーテ ル類、 ァセトニトリル等の-トリル類、 エタノール、 イソプロパノール等のアル コール類等を挙げることができ.る。 中でもスルホン酸の溶解度が高く、 無機酸の アルカリ塩の溶解度が小さいことから、 芳香族炭化水素類、 脂肪族炭化水素類が 好適に用いられる。 In this step, the reaction is preferably performed in the presence of an organic solvent in which the sulfonic acid is soluble. As the organic solvent, it is preferable to use an organic solvent in which the sulfonic acid is dissolved and the inorganic acid is hardly dissolved. Specifically, aromatic hydrocarbons such as toluene and benzene, aliphatic hydrocarbons such as hexane and octane, ketones such as acetone and methylethyl ketone, esters such as ethyl acetate and methyl phthalate, Examples thereof include ethers such as dimethyl ether, -tolyls such as acetonitrile, and alcohols such as ethanol and isopropanol. Among them, the solubility of sulfonic acid is high, Since the solubility of the alkali salt is low, aromatic hydrocarbons and aliphatic hydrocarbons are preferably used.
かかる有機溶媒の存在下では、 スルホン酸塩と無機酸から生成したスルホン酸 が有機溶媒中に溶解し、 塩交換反応の系外に除かれる格好となり平衡がスルホン 酸生成側に移行し易くなり、 収率よくスルホン酸を得ることができる。  In the presence of such an organic solvent, the sulfonic acid generated from the sulfonic acid salt and the inorganic acid dissolves in the organic solvent, is removed outside the system of the salt exchange reaction, and the equilibrium easily shifts to the sulfonic acid generating side, Sulfonic acid can be obtained with good yield.
例えば、 p—トルエンスルホン酸の場合には、 アンモニゥム塩の形態ではトル ェンへの溶解度が低い力 フリ一の酸の形態ではトルエンへの溶解度が向上する。 従って、 トルエン共存下、 他の酸と接触させる事で生成した!)一 トルエンスルホ ン酸を他の酸が溶解しないトルエン層に移動させる事ができる為、 平衡を有利に する事ができる。 .  For example, in the case of p-toluenesulfonic acid, the solubility in toluene is low in the form of an ammonium salt, and the solubility in toluene is improved in the form of a free acid. Therefore, it is produced by contact with other acids in the presence of toluene! ) One toluenesulfonic acid can be transferred to a toluene layer in which other acids are not dissolved, so that the equilibrium can be improved. .
有機溶媒に対するスルホン酸の溶解度としては、 反応系に於いて生成するスル ホン酸が溶解可能であれば特に制限はないが、 好ましくは 0 . 1重量。/。以上であ り、 さらに好ましくは 1重量%以上である。  The solubility of the sulfonic acid in the organic solvent is not particularly limited as long as the sulfonic acid generated in the reaction system can be dissolved, but is preferably 0.1% by weight. /. And more preferably 1% by weight or more.
有機溶媒の使用量は、 スルホン酸 1重量部に対し、 .0 . 5重量部から 1 0 0重 量部、 好ましくは 2重量部から 1 0 0重量部である。  The amount of the organic solvent to be used is from 0.5 to 100 parts by weight, preferably from 2 to 100 parts by weight, based on 1 part by weight of the sulfonic acid.
(反応条件)  (Reaction conditions)
他の酸としては好ましくは、 無機酸であり、 更に好ましくは硫酸である。 '酸の アルカリ塩としてスルホン酸のアルカリ塩を用い、 他の酸として硫酸を用いた場 合、 硫酸の使用量は通常酸のアルカリ塩に対して 0 . 1〜1 0モル倍であり、 好 ましくは 0 . 5〜 5モル倍である。 塩交換の反応温度は通常 0〜2 0 0 °Cの範囲 で、 好ましくは 2 0〜1 8 0 °Cの範囲で実施可能である。 反応時間も特に制限は ないが、 1分から 1 0 0時間の中から選択される。  The other acid is preferably an inorganic acid, more preferably sulfuric acid. 'When an alkali salt of a sulfonic acid is used as an alkali salt of an acid and sulfuric acid is used as another acid, the amount of the sulfuric acid to be used is usually 0.1 to 10 mole times the alkali salt of the acid. Preferably, it is 0.5 to 5 mole times. The reaction temperature of the salt exchange can be usually carried out in the range of 0 to 200 ° C, preferably in the range of 20 to 180 ° C. Although the reaction time is not particularly limited, it is selected from 1 minute to 100 hours.
なお、 p—トルエンスルホン酸のように、 酸の状態では、 結晶水を有する場合 がある。かかる場合、有機溶媒への溶解度が低いため、水と共沸する溶媒を用い、 溶媒と水と共に留去しながら操作することで結晶水を除き、 スルホン酸を有機溶 媒中に溶解せしめることができ、 高い収率を得ることが可能である。  In addition, in the state of an acid such as p-toluenesulfonic acid, it may have water of crystallization. In such a case, since the solubility in the organic solvent is low, it is possible to dissolve the sulfonic acid in the organic solvent by removing the water of crystallization by operating using a solvent azeotropic with water and distilling off with the solvent and water. It is possible to obtain a high yield.
例えば、 溶媒としてトルエンを用いると、 スルホン酸のアルカリ塩や用いた他 の酸の中に含まれる水を、 トルエンと共に留去することが可能となる。 この際の 反応温度は共存する水の量に依存するが、 少量水が共存する場合には、 操作圧力 下でのトルエンの沸点より低めの温度からトルエンと水の流出が生じ、 水の除去 は進むに従って、トルェンの沸点に近づく。かかる温度条件で保持されることで、 本反応は充分進行する。 留去されたトルエンと水は相分離したのち、 トルエンは 再び溶媒として使用することが可能である。 For example, when toluene is used as a solvent, water contained in an alkali salt of sulfonic acid or another acid used can be distilled off together with toluene. At this time Although the reaction temperature depends on the amount of coexisting water, when a small amount of water coexists, toluene and water flow out from a temperature lower than the boiling point of toluene under the operating pressure, and as the removal of water proceeds, It approaches the boiling point of Truen. This reaction proceeds sufficiently when the reaction is maintained under such temperature conditions. After phase separation between the distilled toluene and water, toluene can be used again as a solvent.
(分離)  (Separate)
塩交換反応後、 スルホン酸は有機溶媒中に溶解し、 無機酸の塩や無機酸等は.有 機溶媒には不溶の形態で存在する。 反応液から有機相を分離することで、 スルホ ン酸を回収することができる。 さらに溶媒の蒸留や、 スルホン酸の晶析分離等の 方法でスルホン酸を単離する事も可能である。  After the salt exchange reaction, the sulfonic acid is dissolved in the organic solvent, and the salt of the inorganic acid and the inorganic acid are present in an insoluble form in the organic solvent. By separating the organic phase from the reaction solution, the sulfonic acid can be recovered. Further, sulfonic acid can be isolated by a method such as distillation of a solvent or crystallization separation of sulfonic acid.
一方、 イオン交換樹脂や固体酸も好適に使用する場合は、 これらを充填塔など に充填し、 酸のアルカリ塩水溶液を流通せしめる事で再生処理ができる。  On the other hand, when an ion exchange resin or a solid acid is also suitably used, a regeneration treatment can be performed by packing these in a packed column or the like and flowing an aqueous solution of an acid alkali salt.
(アルカリ塩中の不純物)  (Impurities in alkali salts)
又、酸無水物に由来する酸のアルカリ塩中に、反応由来の溶媒、アミ ド化合物、 不純物が混入する場合がある。 かかる化合物が過度に存在すると酸への再生反応 が阻害されたり、 得られる酸の純度が低下する恐れがある。 かかる場合には、 必 要に応じ、 酸のアルカリ塩を精製し、 アルカリ塩 1モルに対して含有するアミ ド 化合物及ぴ未反応のォキシム化合物のモル数を 0 . 2以下、 より好ましくは 0 . 1以下に減少させた後に他の酸との接触処理に供する事が好ましい。  Further, a solvent, an amide compound, or an impurity derived from the reaction may be mixed in the alkali salt of the acid derived from the acid anhydride. If such a compound is present in excess, the regeneration reaction to the acid may be inhibited, or the purity of the obtained acid may be reduced. In such a case, if necessary, the alkali salt of the acid is purified, and the number of moles of the amide compound and the unreacted oxime compound contained in 1 mole of the alkali salt is 0.2 or less, more preferably 0 or less. It is preferable to subject it to a contact treatment with another acid after reducing it to 1 or less.
精製する手法としては、 不純物の晶析、 水による酸のアルカリ塩の抽出、 有機 溶媒による不純物の抽出除去、 溶媒洗浄、 低沸点不純物の蒸留除去、 晶析による 高純度化、 等が例示される。 酸無水物に由来する酸がスルホン酸の場合には、 例 えばスルホン酸のアルカリ塩水溶液の状態で、 目的アミ ド化合物と原料ォキシム 化合物を析出させ、 スルホン酸のアルカリ塩水溶液から除くことができる。 この 際、 中和された塩を溶解させている水の量としては、 中和された塩が、 p—トノレ エンスルホン酸アンモニゥムの場合には、 塩が水に溶解していれば特に制限はな いが、 少なすぎると中和された: —トルエンスルホン酸アンモ-ゥムが充分水相 側に抽出できず、 また多すぎると目的アミ ド化合物と原料ォキシム化合物が塩に 混入したり、 次工程における水の除去の負荷が大きくなり不利となる。 この場合 含有される水の量は、 通常中和された塩の 1〜1 0倍、 好ましくは 2〜5重量倍 である。 Examples of purification methods include crystallization of impurities, extraction of alkali salts of acids with water, extraction and removal of impurities with organic solvents, solvent washing, distillation and removal of low-boiling impurities, and purification by crystallization. . When the acid derived from the acid anhydride is sulfonic acid, for example, the target amide compound and the starting oxime compound can be precipitated in the form of an aqueous solution of an alkali salt of sulfonic acid and removed from the aqueous solution of the alkali salt of sulfonic acid. . At this time, the amount of water in which the neutralized salt is dissolved is not particularly limited if the neutralized salt is ammonium p-tonolenesulfonic acid, as long as the salt is dissolved in water. However, if the amount is too small, it is neutralized: —Ammone-toluenesulfonic acid cannot be sufficiently extracted into the aqueous phase, and if it is too large, the target amide compound and the starting oxime compound are converted to salts. It is disadvantageous because it is mixed and the load of water removal in the next process increases. In this case, the amount of water contained is usually 1 to 10 times, preferably 2 to 5 times the weight of the neutralized salt.
本工程に於ける反応形式は特に規定されるものではなく、 回分反応、 連続流通 反応のいずれでも実施することができるが、 工業的には連続流通反応形式を用い るのが好ましい。 反応器の形式についても特に制約はなく、 1槽あるいは 2槽以 上の連続した攪拌槽からなる反応器や、 チューブラー型反応器等、 一般的な反応 器を使用することができる。  The reaction format in this step is not particularly limited, and it can be carried out in either a batch reaction or a continuous flow reaction. However, the continuous flow reaction format is industrially preferable. The type of the reactor is not particularly limited, and a general reactor such as a reactor having one or more continuous stirring tanks or a tubular reactor can be used.
本工程では、 酸無水物、 または酸無水物に由来する酸、 酸無水物に由来する酸 のアルカリ塩を再生する別の酸を使用するので、 反応器材質は耐腐食性材質のも のを用いるのが好ましく、 例えばステンレス鋼、 ハステロイ、 モネル、 インコネ ル、 チタン、 チタン合金、 ジノレコニゥム、 ジノレコニゥム合金、 ニッケル、 -ッケ ル合金、 タンタル、 又はフッ素樹脂、 各種ガラスを内側にコーティングした材料 などが例示できる。  In this step, an acid anhydride, an acid derived from an acid anhydride, or another acid that regenerates an alkali salt of an acid derived from an acid anhydride is used. It is preferable to use, for example, stainless steel, Hastelloy, Monel, Inconel, titanium, titanium alloy, dinoreconium, dinoreconium alloy, nickel, -nickel alloy, tantalum, or fluororesin, or a material coated with various types of glass on the inside. Can be illustrated.
再生された酸は、 前記の触媒系でベックマン転位反応にそのまま使用すること ができるし、 また、 再生された酸は、 後述の方法で酸無水物に転換することもで さる。  The regenerated acid can be used as it is in the Beckmann rearrangement reaction with the above-mentioned catalyst system, and the regenerated acid can be converted to an acid anhydride by a method described later.
( 3 ) 再生した酸を脱水縮合して酸無水物を再生する工程  (3) Step of dehydrating and condensing the regenerated acid to regenerate the acid anhydride
上記 (2 ) の工程で再生された酸、 もしくは上記中和工程を経ずにアミ ド化合 物及び原料ォキシム化合物から分離された酸は、 次に、 脱水縮合して酸無水物に 変換される。 脱水縮合反応は、 通常脱水剤と反応させることにより行われ、 脱水 剤として好ましくは、 カルボン酸無水物、 発煙硫酸、 五酸化二燐、 縮合リン酸、 より好ましくはカルボン酸無水物、 五酸化燐が用いられる。  The acid regenerated in the above step (2) or the acid separated from the amide compound and the starting oxime compound without passing through the neutralization step is then converted to an acid anhydride by dehydration condensation. . The dehydration-condensation reaction is usually performed by reacting with a dehydrating agent. As the dehydrating agent, carboxylic acid anhydride, fuming sulfuric acid, diphosphorus pentoxide, condensed phosphoric acid, more preferably carboxylic acid anhydride, phosphorus pentoxide Is used.
以下、 カルボン酸無水物を用いてスルホン酸をスルホン酸無水物に変換する場 合について、 詳細に述べる。  Hereinafter, the case where sulfonic acid is converted to sulfonic anhydride using carboxylic anhydride will be described in detail.
一般的に行われているスルホン酸無水物の製造方法としては、 対応するスルホ ン酸をジシクロへキシルカルポジイミドゃ塩化チォニル、 五酸化二燐等で脱水す る方法、 -トルェンスルホン酸とジフェニル水銀およびトリブチルホスフィン をベンゼン中で混合 ·加熱し、 水銀やトリプチルホスフィンォキサイドとともに p—トルエンスルホン酸無水物を得る方法 (T. Mu k a i y a m a , I . Kuwa j i ma, Z. S u z u k i , J . O r g. C h e m. , 2 8, 2024 ( 1 963))、 メ トキシアセチレンと p— トルエンスルホン酸 とを塩化メチレン中において反応させ、 酢酸メチルとともに p—トルエンスルホ ン酸無水物を得る方法 (G, E g l i n t o n, E. R. H. J o n e s, B. L. S h a w, M. C. Wh i t i n g, J . C h em. S o c., 1 860 (1 954))、 p— トノレエンスノレホン酸をコハク 酸ジクロライ ドと反応させ、 p— トルエン無水物をコハク酸無水物、 塩化水素と ともに得る方法 (M. H. K a r g e r , Y. M a z u r , J. O r g. C h e m. , 36, 528 ( 1 971 ))、 ベンゼンスルホン酸銀を ァセチルクロライ ド中で加熱還流して濾過後 100°C— 0. lmmHgにて蒸留 することにより合成する方法(W. F 1 a V e 1 1 , N. C. R o s s, J. Ch em. S o c . , 5474 ( 1 964 ) )、 さらにメタンスノレホン 酸とァセチルクロライ ドとを混合して加熱還流し、 過剰のァセチルクロライドを 蒸留により取り除くことでメタンスルホン酸無水物を得る方法 (M. H. K a r g e r , Y. Ma z u r, J . O r g. Ch em., 36,' 5 28 (1 9 71)) 等が提案されているが、 これらは経済的な問題、操作性等に 難があり、 工業的な製造方法としては必ずしも満足し得るものではない。 Commonly used methods for producing sulfonic anhydride include a method in which the corresponding sulfonic acid is dehydrated with dicyclohexylcarbodiimide チ thionyl chloride, diphosphorus pentoxide, or the like.- Toluenesulfonic acid and diphenyl Mercury and tributylphosphine Is mixed with benzene in benzene and heated to obtain p -toluenesulfonic anhydride together with mercury and triptylphosphine oxide (T. Mukaiyama, I. Kuwajima, Z. Suzuki, J. Org Chem., 28, 2024 (1963)), a method in which methoxyacetylene and p-toluenesulfonic acid are reacted in methylene chloride to obtain p-toluenesulfonic anhydride together with methyl acetate (G , E glinton, ERH Jones, BL Shaw, MC Whiting, J. Chem. Soc., 1860 (1954)), p-tonoreensnolefonic acid reacts with succinic acid dichloride. , P-Toluene anhydride together with succinic anhydride and hydrogen chloride (MH Karger, Y. Mazur, J. Org. Chem., 36, 528 (1971)), benzenesulfone A method of synthesizing silver acetate by heating to reflux in acetyl chloride, filtering and distilling at 100 ° C-0.1 mmHg (W. F 1 a V e 11, NC Ross, J. Chem. Soc., 5474 (1964)), and methanesulfonate and acetyl chloride are mixed and heated to reflux, and excess acetyl chloride is removed by distillation to remove methanesulfonic anhydride. Methods for obtaining goods (MH K arger, Y. Mazur, J. Org. Chem., 36, '5 28 (1 9 71)) have been proposed, but these are economical problems. It has difficulty in operability, etc., and is not always satisfactory as an industrial production method.
また、 p— トルエンスルホン酸と無水酢酸とから合成可能である混合酸無水物 のァセチル p—トルエンスルホネートが、 微量のジメチルエーテル存在下で比較 的容易に (3.0°C 1 2 h) 分解し、 ほぼ完全に p—トルエンスルホン酸無水物 と無水酢酸に不均化したという報告と、 同様にメタンスルホン酸と無水酢酸から も合成可能であるァセチルメタンスルホネートをァセチルク口ライ ドとメタンス ルホン酸から合成する過程において、 還流時間を短縮してそのまま 1 20°C— 1 0-3mmHgで蒸留することによりメタンスルホン酸無水物を収率約 50%で得 ることに成功したという報告 (ともに M. H. Ka r g e r, Y. Ma z u r , J. O r g. Ch em., 36, 528 ( 1971)) はあ るが、 いずれも非常に長時間の反応時間や高温 ·高真空での蒸留過程を要してい る等の問題点を抱えている他、 反応時における酢酸の影響ないしはその除去の必 要性について全く言及しておらず、 反応の全行程にわたる理解の不足と反応の最 適化の未実施のために、 上記微量のジメチルエーテル存在したにおけるァセチル パラトルエンスルホネートがほぼ完全に不均化したという非定量的な記載以外に おいてはいずれも収率が低い。 In addition, acetyl p-toluenesulfonate, a mixed acid anhydride that can be synthesized from p-toluenesulfonic acid and acetic anhydride, is relatively easily decomposed (3.0 ° C 12 h) in the presence of a small amount of dimethyl ether, and almost Reported that it was completely disproportionated to p-toluenesulfonic anhydride and acetic anhydride.Similarly, acetyl methanesulfonate, which can also be synthesized from methanesulfonic acid and acetic anhydride, was synthesized from acetoyl sulfide and methanesulfonic acid. In this process, methanesulfonic anhydride was successfully obtained in a yield of about 50% by shortening the reflux time and distilling as it was at 120 ° C-10-3 mmHg (both by MH Karger). , Y. Mazur, J. Org.Chem., 36, 528 (1971)) However, all of them have problems such as a very long reaction time, a distillation process at high temperature and high vacuum, and the influence of acetic acid during the reaction or the necessity of removing it. No reference was made, and non-quantification that acetyl paratoluenesulfonate was almost completely disproportionated in the presence of the above-mentioned traces of dimethyl ether due to a lack of understanding over the whole process of the reaction and a lack of optimization of the reaction. In all cases, the yields are low except where noted.
さらに、 当該文献中における後者の反応についてはァセチルメタンスルホネー トのメタンスルホン酸無水物と無水酢酸への不均化がメタンスルホン酸という酸 によって触媒された反応としてのみ捉え、 混合酸無水物とスルホン酸との 1 : 1 対応の反応については何も述べられていないし、 蒸留時に高温に晒すことによつ て生ずる発色性不純物の軽減化についても何ら言及されていない。  Furthermore, regarding the latter reaction in the literature, the disproportionation of acetyl methanesulfonate to methanesulfonic anhydride and acetic anhydride is considered only as a reaction catalyzed by the acid methanesulfonic acid, Nothing is said about the 1: 1 correspondence reaction between sulfonic acid and sulfonic acid, nor is there any mention of reducing the chromogenic impurities caused by exposure to high temperatures during distillation.
また、 粗スルホン酸無水物の精製方法としては、 一般的には、 不純物を含む粗 スルホン酸無水物を氷水ないしは冷水にあけて水に難溶なスルホン酸無水物を回 収するという方法や、 種々の溶媒から再結晶させて回収する方法 ' (W.. F 1 a V e l 1 , N. C. R o s s , J C h e m. S o c . , 5 4 74 (1 9 6 4), N . H. C h r i s t e n s e n, A c t a C h e m. S c a n d . , 1 5, 2 1 9 In addition, as a method for purifying the crude sulfonic anhydride, generally, a method in which a crude sulfonic anhydride containing impurities is poured into ice water or cold water to recover a sulfonic anhydride which is hardly soluble in water, Method of Recrystallization and Recovery from Various Solvents' (W..F1a Vel1, NC Ross, JChem.Soc., 5474 (1964), N.H.C hristensen, A cta C he m. S cand., 1 5, 2 1 9
(1 9 6 1))、 蒸留精製、 溶媒による洗浄 (N. H. C h r i s't e n s e n, Ac t a C h e m. S c a n d . , 1 5, 1 5 0 7 (1 9 6 1), N. H. C h r i s t e n s e n, A c t a C h e m. S c. a n d., 1 5, 2 1 9 ( 1 9 6(1 96 1)), distillation purification, washing with solvent (NHChrisstensen, ActaChem. Scand., 15, 1507 (19661), NHChristensen) , A cta C he m. S c. An d., 1 5, 2 1 9 (1 9 6
1)) 等が提案されている。 1)) etc. have been proposed.
しかしながら、 従来提案された水中での回収、 再結晶、 溶媒による洗浄は、 作 業性、 安全性、 経済性の観点から、 有効な精製方法とは言い難かった。 また、 一 般的に、 未反応のスルホン酸や混合酸無水物の他、 副生物である有機酸や有機酸 無水物、 また微量の発色性やポリマー状物質等が不純物として含有されているこ とが多い。  However, the conventionally proposed recovery, recrystallization, and solvent washing in water were not effective purification methods from the viewpoints of workability, safety, and economy. Generally, in addition to unreacted sulfonic acids and mixed acid anhydrides, by-products such as organic acids and organic acid anhydrides, and trace amounts of color-forming properties and polymeric substances are contained as impurities. And many.
本工程に於いては、 以上に述べたような従来技術の問題点に鑑み、 高価な脱水 剤や反応試剤を使用しなくても、 スルホン酸と安価な力ルボン酸無水物とを混合 して、 副生ないし残留するカルボン酸およびカルボン酸無水物を系外に除きなが ら反応を行うことで、 従来よりも容易にかつ経済的にスルホン酸無水物が得られ ることを見出した。 In this step, in view of the above-mentioned problems of the prior art, sulfonic acid and inexpensive carboxylic acid anhydride can be mixed without using an expensive dehydrating agent or reaction reagent. Remove by-products or residual carboxylic acids and carboxylic anhydrides from the system It has been found that the sulfonic anhydride can be obtained easily and economically by performing the above reaction.
また、 合成したスルホン酸無水物の精製法について、 再結晶という非効率的な 操作や、 数種類の溶媒で連続的に洗浄するという煩雑な手順を踏まなくとも、 た とえ多量の不純物を含む粗スルホン酸無水物であっても、 安価な非プロトン性の 洗浄溶媒で濯ぎ洗いするこ 2とで、 従来よりも容易にかつ安全に経済的に高純度の スルホン酸無水物が回収出来ることを見出した。  In addition, the purification method of the synthesized sulfonic anhydride does not involve the inefficient operation of recrystallization or the complicated procedure of continuous washing with several types of solvents. Even with sulfonic anhydride, it was found that high-purity sulfonic anhydride can be recovered more easily, safely, and economically by rinsing with an inexpensive aprotic washing solvent2. Was.
本工程において、 スルホン酸からスルホン酸無水物が生成する反応は下記式 In this step, the reaction for producing sulfonic anhydride from sulfonic acid is represented by the following formula
( 1 ) の通りである。 なお、 この例では原料のスルホン酸として p—トルエンス ルホン酸、 カルボン酸無水物として無水酢酸を用いており、 目的のスルホン酸無 水物は!)一 トルエンスルホン酸無水物である。 It is as (1). In this example, p-toluenesulfonic acid is used as the raw material sulfonic acid and acetic anhydride is used as the carboxylic acid anhydride. Ii) Toluenesulfonic anhydride.
Figure imgf000025_0001
Figure imgf000025_0001
(P)  (P)
Figure imgf000025_0002
Figure imgf000025_0002
( 1 ) まず、 p— トルエンスルホン酸 (A) と無水酢酸 (B) が反応して中間生成物 として混合酸無水物 (C) が生成する。 このとき、 無水酢酸に由来する酢酸 (D) が副生物として生成する。 混合酸無水物 (C) が生成した後、 p—トルエンスル ホン酸無水物 (E) を得るためには、 以下に示す (1)、 (2) の 2種類のいずれ かの方法を採用できる。 (1) First, p-toluenesulfonic acid (A) and acetic anhydride (B) react to form a mixed acid anhydride (C) as an intermediate product. At this time, acetic acid (D) derived from acetic anhydride is produced as a by-product. After the mixed anhydride (C) is formed, either of the following two methods (1) and (2) can be used to obtain p-toluenesulfonic anhydride (E) .
(1) 混合酸無水物 (C) を不均化反応 (後段一 1) により p— トルエンスルホ ン酸無水物 (E) に変換する方法。  (1) A method in which a mixed acid anhydride (C) is converted to p-toluenesulfonic anhydride (E) by a disproportionation reaction (1).
(2) 混合酸無水物 (C) をさらに; p—トルエンスルホン酸 (A) と反応させ、 (後段 _2) の反応により、 p— トルエンスルホン酸無水物 (E) を得る方法。 この場合、 p—トルエンスルホン酸 (A) そのものには、 中間体であるァセチル p—トルエンスルホネート (C) の不均化反応 (後段一 1) に対する触媒活性が あるため無水酢酸 (B) を系外に取り除きながら後段一 1の反応をも十分に進行 させることができる。  (2) A method in which the mixed acid anhydride (C) is further reacted with p-toluenesulfonic acid (A) to obtain p-toluenesulfonic anhydride (E) by the reaction of (second stage _2). In this case, p-toluenesulfonic acid (A) itself has catalytic activity for the disproportionation reaction of acetyl p-toluenesulfonate (C), which is an intermediate (11), so acetic anhydride (B) is used. The reaction in the latter stage 11 can be allowed to proceed sufficiently while removing it outside.
無水酢酸の使用量を制御することにより (1) または (2) の反応方法を採択 することができる。  By controlling the amount of acetic anhydride used, the reaction method (1) or (2) can be adopted.
仕込みの無水酢酸 (B) が十分に多い場合には、 仕込みの p— トルエンスルホ ン酸 (A) のほぼすべてが 25°Cでの混合後まもなぐ中間体 (C) となる。 その 場合には中間体 (C) を不均化させて目的生成物である!)一 トルエンスルホン酸 無水物 (E) を得ることとなる (後段一 1)。 ( (1) の方法)  If the charged acetic anhydride (B) is sufficiently high, almost all of the charged p-toluenesulphonic acid (A) will be an intermediate (C) after mixing at 25 ° C. In that case the intermediate (C) is disproportionated and is the desired product! 1) Toluenesulfonic anhydride (E) is obtained (1). (Method (1))
仕込みの無水酢酸 (B) が p— トルエンスルホン酸 (A) 量に比べて比較的少 なければ、 中間体生成後に系中に余分な p—トルエンスルホン酸 (A) が残るこ ととなる。 従って中間体である混合酸無水物 (C) は、 更にもう一分子の p—ト ノレエンスルホン酸 (A) と反応することにより、 ρ— トルエンスルホン酸無水物 (E) と酢酸 (D) を生成する (後段一 2)。 この場合、 p—トルエンスルホン酸 (A) が触媒して (後段一 1) の反応も併発する。 ( (2) の方法)  If the amount of acetic anhydride (B) charged is relatively small compared to the amount of p-toluenesulfonic acid (A), extra p-toluenesulfonic acid (A) will remain in the system after the intermediate is formed. Therefore, the mixed acid anhydride (C), which is an intermediate, reacts with another molecule of p-toluenesulfonic acid (A) to form ρ-toluenesulfonic anhydride (E) and acetic acid (D). (2). In this case, p-toluenesulfonic acid (A) catalyzes the reaction (11). (Method (2))
仕込みの無水酢酸 (B) の量が多い (1) の場合には非常に高収率,高純度で p— トルエンスルホン酸無水物 (E) が得られるが、 通常 85°C〜 120°Cの高 温と減圧とが必要になるために高温故の不純物が生成し、 通常生成物は黒色を呈 する。 In the case of (1), where the amount of acetic anhydride (B) charged is large, p-toluenesulfonic anhydride (E) can be obtained with very high yield and high purity, but it is usually 85 ° C to 120 ° C. Since high temperature and reduced pressure are required, impurities due to high temperature are generated, and the product usually appears black. I do.
仕込みの無水酢酸 (B ) 量を抑えた (2 ) の場合には、 例えば 6 0 °Cといった 低温であっても減圧にすることによって副生する酢酸 (D ) を系外に取り除きな がら (後段一 2 ) の反応を進行させて収率は低いながらも発色性の不純物の生成 を抑制しながら目的生成物である p—トルエンスルホン酸無水物 (E ) を合成す ることができる。.  In the case of (2), in which the amount of acetic anhydride (B) in the preparation was reduced, the acetic acid (D) produced as a by-product was removed out of the system by reducing the pressure even at a low temperature of, for example, 60 ° C. By proceeding with the reaction of the latter stage 1), the desired product p-toluenesulfonic anhydride (E) can be synthesized while suppressing the generation of chromogenic impurities, although the yield is low. .
本工程において、 高収率でスルホン酸無水物を合成できる理由、 また、 低温で の製造方法がスルホン酸無水物中の不純物を軽減させる上で優れた効果を発揮す る理由はいずれも必ずしも明確ではないが、 以下のように推定している。  The reasons why the sulfonic anhydride can be synthesized in high yield in this step and the reason why the low-temperature production method is effective in reducing impurities in the sulfonic anhydride are not necessarily clear. However, it is estimated as follows.
まず、 前段の反応も後段の反応 ((1 ) および (2 ) ) もいずれもそれぞれ平衡 反応と考えられる。 そこで、 反応系中で副生する酢酸 (D ) (ないしは無水酢酸 First, both the first and second reactions ((1) and (2)) are considered to be equilibrium reactions. Therefore, acetic acid (D) (or acetic anhydride) by-produced in the reaction system
( B ) )、 目的物である p _ トルエンスルホン酸無水物 (E ) を系中から取り除く ことで反応をより一層進行させることが可能となる。 この例の場合に.は具体的に は、 酢酸ないしは無水酢酸は減圧により、 また p _ トルエンスルボン酸無水物は 晶析によって系中から取り除くことができる。 (B)), removing p-toluenesulfonic anhydride (E), which is the target substance, from the system allows the reaction to proceed further. In this case, specifically, acetic acid or acetic anhydride can be removed from the system by reduced pressure, and p_toluenesulfonic anhydride can be removed from the system by crystallization.
また、 高温反応における発色性不純物については、 中間体である混合酸無水物 As for the color-forming impurities in the high-temperature reaction, the mixed acid anhydride as an intermediate
( C ) が高温に晒されると p—トルエンスルホン酸 (A) とケテンに分解するの で、 その際に出来る微量のケテン重合物由来の物質等と思われる。 そこで、 反応 の平衡特性を駆使して極力低温にて反応することによって、 不純物の生成を抑え て色の薄い p— トルエンスルホン酸無水物 (E ) を得ることが出来る。 When (C) is exposed to high temperatures, it decomposes into p-toluenesulfonic acid (A) and ketene, which is considered to be a small amount of ketene polymer-derived substances produced at that time. Therefore, by making use of the equilibrium characteristics of the reaction and performing the reaction at the lowest possible temperature, it is possible to obtain a light-colored p -toluenesulfonic anhydride (E) while suppressing the generation of impurities.
(スルホン酸)  (Sulfonic acid)
本工程で用いられるスルホン酸は、 本発明のベックマン転位反応で用いられる スルホン酸無水物に由来するスルホン酸であれば特に制限されるものではない。 スルホン酸として 2種類以上のスルホン酸を、 用いることもできる。 また、 スル ホン酸とカルボン酸の混合酸無水物を生成させたのちに別の種類のスルホン酸を 作用させて、 非対称のスルホン酸無水物を得ることもできる。  The sulfonic acid used in this step is not particularly limited as long as it is derived from the sulfonic anhydride used in the Beckmann rearrangement reaction of the present invention. Two or more sulfonic acids can be used as the sulfonic acid. In addition, an asymmetric sulfonic anhydride can be obtained by producing a mixed anhydride of sulfonic acid and carboxylic acid and then reacting with another type of sulfonic acid.
(カルボン酸無水物)  (Carboxylic anhydride)
本工程で用いられるカルボン酸無水物とは特に限定されるものではなく、 具体 的には無水酢酸、 無水プロピオン酸、 無水ブチル酸、 無水イソプチル酸、 シクロ へキシル酢酸無水物等の直鎖状脂肪族カルボン酸のほか、 無水マレイン酸、 無水 コハク酸、 シク口へキサンジカルボン酸無水物等の分子内脱水により環状となつ た脂肪族カルボン酸無水物、 その他無水フタル酸、 無水安息香酸等の各種芳香族 カルボン酸無水物等が挙げられる。 また、 これらのカルボン酸無水物は全てその 分子内の炭素上の水素原子がハロゲン原子やァシル基、 アルコキシ基等によって 置換されていても良い。 The carboxylic anhydride used in this step is not particularly limited, Specifically, in addition to linear aliphatic carboxylic acids such as acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, and cyclohexylacetic anhydride, maleic anhydride, succinic anhydride, and hexahexanedicarboxylic acid Examples thereof include aliphatic carboxylic anhydrides which have become cyclic by intramolecular dehydration of anhydrides and the like, and various aromatic carboxylic anhydrides such as phthalic anhydride and benzoic anhydride. Further, in all of these carboxylic anhydrides, a hydrogen atom on carbon in the molecule may be substituted by a halogen atom, an acyl group, an alkoxy group or the like.
本工程では、 副生するカルボン酸、 カルボン酸無水物、 目的物のスルホン酸無 水物を、 系外に除去する事で、 効果的に酸無水物を得る事ができる。 このため、 カルボン酸無水物に由来するカルボン酸や、 カルボン酸無水物、 目的物のスルホ ン酸無水物の少なくとも一種類を反応過程で系外に除くことができるように、 ま たスルホン酸無水物とカルボン酸、 カルボン酸無水物が分離可能なように、 スル ホン酸ゃ目的のスルホン酸無水物との組み合わせを考慮して適宜選択することが 肝要である。 なかでも力ルポン酸無水物と力ルポン酸無水物が加水分解して生成 するカルボン酸の沸点が常圧で 3 0 0 °C以下のものが好ましく適用され、 特に無 水酢酸が好適である。 ·  In this step, an acid anhydride can be effectively obtained by removing the by-produced carboxylic acid, carboxylic anhydride and target sulfonic anhydride from the system. For this reason, the sulfonic acid anhydride and the sulfonic acid anhydride should be removed so that at least one of the carboxylic acid derived from the carboxylic acid anhydride, the carboxylic acid anhydride, and the target sulfonic anhydride can be removed out of the system in the reaction process. Therefore, it is important to appropriately select the sulfonic acid and the desired sulfonic anhydride in consideration of the combination so that the product and the carboxylic acid and the carboxylic anhydride can be separated. Among them, those having a boiling point of 300 ° C. or less at normal pressure, preferably hydrated acetic acid, are preferably used, and the carboxylic acid formed by hydrolyzing the sulfonic acid anhydride and the carboxylic acid anhydride is preferably used. ·
本工程における力ルポン酸無水物の使用量は、 特に制限ざれる物ではないが、 '· スルホン酸に対して 0 . 1〜5 0当量使用される。 前述したように採用される方 法により、使用するカルボン酸無水物の量が変わる。 上記(1 ) の方法で高収率 · 高純度のスルホン酸無水物を合成する場合には、 カルボン酸無水物の量は 1〜 2 5当量、好ましくは 1〜1 0当量の範囲で使用される。また、 (2 )の方法により、 低温の操作によって選択性良く反応を進行させたい場合には、 0 . 1〜3当量、 好ましくは 0 . 2 5〜1 . 5当量、 更に好ましくは 0 . 2 5〜1当量の範囲で用 いられる。  The amount of the sulfonic acid anhydride used in this step is not particularly limited, but is 0.1 to 50 equivalents to the sulfonic acid. The amount of carboxylic anhydride used varies depending on the method employed as described above. In the case of synthesizing sulfonic anhydride with high yield and high purity by the method (1), the amount of carboxylic anhydride is used in the range of 1 to 25 equivalents, preferably 1 to 10 equivalents. You. When it is desired to proceed the reaction with low selectivity by the method (2) at a low temperature, 0.1 to 3 equivalents, preferably 0.25 to 1.5 equivalents, more preferably 0.2. It is used in the range of 5 to 1 equivalent.
これらの範囲を超えて少な過ぎると十分なスルホン酸無水物収量が得られず、 他方、過多に過ぎると反応器内のホールド量が多くなって経済的効果が減少する。 さらに、 (2 ) の方法において、カルボン酸無水物を上記量より過多に過ぎると仕 込みのスルホン酸のほとんどが反応初期に容易にスルホン酸とカルボン酸との混 合酸無水物になり、 (後段一 2 ) の反応、 及びスルホン酸が触媒する (後段一 1 ) の反応が進行せず、 (1 ) の混合酸無水物からの不均化反応が進行する。 If the amount is less than these ranges, a sufficient yield of sulfonic anhydride cannot be obtained. On the other hand, if the amount is too large, the holding amount in the reactor increases and the economic effect decreases. Further, in the method (2), if the amount of the carboxylic acid anhydride is excessively larger than the above amount, most of the charged sulfonic acid easily mixes with the sulfonic acid and the carboxylic acid at the beginning of the reaction. It becomes a mixed acid anhydride, and the reaction of (second stage 1) and the reaction of (second stage 1) catalyzed by sulfonic acid do not proceed, and the disproportionation reaction from the mixed acid anhydride of (1) proceeds .
(溶媒または添加物)  (Solvent or additive)
本工程のスルホン酸無水物合成反応においては、 経済的観点からも反応剤とし ての機能を持つ当該カルボン酸無水物以外には特に反応溶媒や添加物なるものを 使用しない方が好ましいが、 使用可能な添加物ないしは溶媒として、 例えば、 n 一へキサン、 n—ヘプタン、 n—オクタン、 n—ドデカン等の脂肪族炭化水素化 合物、 ベンゼン、 トルエン、 キシレン、 メシチレン、 モノクロ口ベンゼン、 メ ト キシベンゼン等の芳香族炭化水素化合物、 ァセトニトリル、 プロパンエトリル、 力プロエトリノレ、 アジポユトリ^/、 ベンゾニトリノレ、 トノレニトリノレ等の-トリノレ 化合物、 フタル酸ジメチル、 フタル酸ジブチル、 マロン酸ジメチル、 コハク酸ジ メチル、 酢酸ェチル、 酢酸メチル等のエステル化合物、 ジメチルエーテル、 ジェ チルエーテル、 ジグライム、 テトラヒドロフラン等のエーテル化合物、 塩化メチ レン、 クロ口ホルム、 ジクロロエタン等のハロゲン化アルキル化合物、 ジメチノレ ホルムアミ ド、 1, 3—ジメチルー 2—ィミダゾリジノン等のアミド化合物等を 挙げることが出来る。 なかでも、 テトラヒ ドロフラン等のエーテル類、 ァセトニ トリル等の二トリル類、. 'ハロゲン化アルキル類等が反応上好ましい。 ま'た、 これ らは単独でも混合しても使用することが出来る。  In the sulfonic anhydride synthesis reaction in this step, it is preferable not to use any reaction solvent or additive other than the carboxylic anhydride having the function as a reactant from an economical viewpoint. Possible additives or solvents include, for example, aliphatic hydrocarbon compounds such as n-hexane, n-heptane, n-octane, n-dodecane, benzene, toluene, xylene, mesitylene, monochrome benzene, methacrylate Aromatic hydrocarbon compounds such as xylene, acetonitrile, propane etrile, force proethanole, adipole ^ /, benzonitrile, tonole nitrile, etc. Ester compounds such as methyl acetate, dimethyl ether Jefferies Chirueteru, diglyme, ether compounds such as tetrahydrofuran, methylcarbamoyl Ren chloride, black hole Holm, halogenated alkyl compound of dichloroethane, Jimechinore formamide, 1, 3-dimethyl-2-amide compounds such Imidazorijinon the like. Among them, ethers such as tetrahydrofuran, nitriles such as acetonitrile, and alkyl halides are preferable in terms of reaction. These may be used alone or in combination.
(反応条件)  (Reaction conditions)
本工程において、 副生物のカルボン酸を除く方法は特に限定されないが、 具体 的には、 1 ) 減圧下に留去する方法、 2 ) 当該反応に対して不活性ないしはなん ら悪影響を及ぼさないガスを流通させ、 同伴留去する方法、 3 ) 晶析する方法等 が挙げられる。  In this step, the method for removing by-product carboxylic acid is not particularly limited, and specifically, 1) a method of distilling off under reduced pressure, 2) a gas that is inert or has no adverse effect on the reaction. And 3) crystallization.
これらの除去方法は単独で用いても組み合わせて用いても良い。 また、 カルボ ン酸と共に、 残留ないしは後段で生成するカルボン酸無水物又は目的物であるス ルホン酸無水物を必要に応じて除去することも好ましい。  These removal methods may be used alone or in combination. It is also preferable to remove the residual carboxylic acid anhydride or the target product, sulfonic anhydride together with the carboxylic acid, if necessary.
反応後の系中のカルボン酸濃度は一定値以下にすることが好ましく、 具体的に は反応生成物中における重量百分率として 1 0 %、 さらに好ましくは 5 %以下が 好ましい。 The concentration of the carboxylic acid in the system after the reaction is preferably not more than a certain value, specifically, 10%, more preferably 5% or less as a weight percentage in the reaction product. preferable.
カルボン酸やカルボン酸無水物を減圧下に留去する場合の圧力としては、 大気 圧より低ければ良いが、 好ましくは 0. 0 1 P a〜99000 P aであり、 より 好ましくは 0.05 P a〜50000 P a、更には 10〜50000 P aである。 減圧下に留去することによって、 カルボン酸を除く場合、 反応物であるスルホン 酸や中間体である混合酸無水物、 また出来れば目的のスルホン酸無水物よりも除 くべきカルボン酸の沸点が低い必要があるので、 これら単独のまた混合物の沸点 を勘案して基質のカルボン酸無水物を選定する。  The pressure at which carboxylic acid or carboxylic anhydride is distilled off under reduced pressure may be lower than atmospheric pressure, but is preferably 0.01 Pa to 99000 Pa, more preferably 0.05 Pa to It is 50000 Pa, and furthermore, 10 to 50000 Pa. When the carboxylic acid is removed by distillation under reduced pressure, the boiling point of the sulfonic acid as a reactant, the mixed acid anhydride as an intermediate, and, if possible, the carboxylic acid to be removed from the target sulfonic acid anhydride is reduced. Since it needs to be low, the carboxylic anhydride of the substrate is selected in consideration of the boiling point of these alone or in the mixture.
カルボン酸を当該反応に対して不活性ないしはなんら悪影響を及ぼさないガス を流通させ、 同伴留去する場合に用いられる不活性なガスとしては、 例えば、 ァ ルゴン、 ヘリウム、 ネオン、 窒素、 メタン、 ェタン、 プロパン、 あるいはこれら の混合ガスを挙げることができる。  Inert gases used when carboxylic acid is passed through a gas that is inert or has no adverse effect on the reaction and is entrained in the reaction are, for example, argon, helium, neon, nitrogen, methane, and ethane. , Propane, or a mixed gas thereof.
ガスに同伴留去する場合、 反応物であるスルホン酸ゃ中間体である混合酸無水 物、 また出来れば目的のスルホン酸無水物よりも除くべき.カルボン酸の揮発性が 高い必要があるので、 これら単独のまた混合物の揮発性を勘案して基質のカルボ ン酸無水物を選定する。 - カルボン酸を晶析して取り除く場合には、 反応の中途で晶析のために温度を下 げたり、 貧溶媒を加える等の方法がある。 晶析により系外に除く場合、 反応物で あるスルホン酸ゃ中間体である混合酸無水物、 また出来れば目的のスルホン酸無 水物よりも除くべきカルボン酸の融点が高い必要があるので、 これら単独のまた 混合物の融点を勘案して基質のカルボン酸無水物を選定する。 また、 貧溶媒を用 いる場合には、 用いる溶媒に対して、 反応物であるスルホン酸や中間体である混 合酸無水物、 また出来れば目的のスルホン酸無水物よりも除くべきカルボン酸の 溶解度が低くなるように基質のカルボン酸無水物を選定する。  In the case of co-evaporation with gas, the sulfonic acid as a reactant and the mixed anhydride as an intermediate and, if possible, the target sulfonic anhydride should be removed, since the volatility of the carboxylic acid needs to be high. The carboxylic anhydride of the substrate is selected taking into account the volatility of these alone or of the mixture. -When carboxylic acid is removed by crystallization, there are methods such as lowering the temperature for crystallization in the middle of the reaction and adding a poor solvent. In the case of removal from the system by crystallization, it is necessary that the melting point of the sulfonic acid, which is the reactant, and the mixed acid anhydride, which is the intermediate, and, if possible, the melting point of the carboxylic acid to be removed is higher than that of the target sulfonic anhydride, The carboxylic anhydride of the substrate is selected in consideration of the melting point of these alone or the mixture. When a poor solvent is used, the sulfonic acid as a reactant, the mixed acid anhydride as an intermediate, and the carboxylic acid to be removed from the target sulfonic acid anhydride, if possible, are added to the solvent to be used. The carboxylic anhydride of the substrate is selected so that the solubility is low.
なお、 本工程において、 「副生するカルボン酸を除きながら反応を行う」 とは、 反応中途のいずれかの時点でカルボン酸を除く操作を加えることを意味しており、 反応中連続的にカルボン酸を除く操作を加えるのみならず、 断続的にカルボン酸 を除く操作を行っても良い。 本工程の好ましい一実施態様としては、 反応途上で中間生成物として得られる 混合酸無水物を単離することなく目的のスルホン酸無水物を得るものである。 力 ルボン酸やカルボン酸無水物を系外に除くことにより、 混合酸無水物は最終的に は消費されるので、単離しないほう力 操作上簡便となり、また、本反応の場合、 単離しなくとも良い収率,高い選択性が達成可能である。 In this step, "reaction is performed while removing by-produced carboxylic acid" means that an operation for removing carboxylic acid is added at any point during the reaction. In addition to the operation for removing the acid, the operation for removing the carboxylic acid may be performed intermittently. In a preferred embodiment of this step, the desired sulfonic anhydride is obtained without isolating the mixed acid anhydride obtained as an intermediate product during the reaction. By removing sulfonic acid and carboxylic acid anhydride out of the system, the mixed acid anhydride is finally consumed, so that it is easier to operate without isolation. Good yield and high selectivity can be achieved.
本工程の別の好ましい一実施態様としては、 実質的に無溶媒で反応を行うもの である。 実質的に無溶媒とは、 反応系中に、 反応に何ら悪影響を及ぼさず、 且つ 基質の濃度を実質的に下げない範囲で、 不活性なガスや固体を存在させることを 妨げるものではなく、 具体的には反応混合物中の基質と反応生成物以外の溶媒物 質が重量百分率で 1 0 %以下、 好ましくは 5 %以下であることを意味する。 溶媒を用いないことにより基質濃度を高くすることが出来、 反応速度が速くな る他、 反応後の処理が簡便となる。 また、 本反応の場合、 溶媒を用いなくとも良 い収率と選択性が達成可能である。  In another preferred embodiment of this step, the reaction is carried out substantially without a solvent. Substantially solvent-free does not prevent the presence of an inert gas or solid in the reaction system as long as it has no adverse effect on the reaction and does not substantially reduce the concentration of the substrate. Specifically, it means that the solvent substance other than the substrate and the reaction product in the reaction mixture is 10% or less, preferably 5% or less by weight percentage. By eliminating the use of a solvent, the substrate concentration can be increased, the reaction speed is increased, and the post-reaction treatment is simplified. In the case of this reaction, good yield and selectivity can be achieved without using a solvent.
本工程を実施する条件.としては特に規定されないが、 反応温度は通常 0 °Gから 2 5 0 °C、 好ましくは 1 0 °Cから 1 3 0 °C、 更に好ましくは 1 5でから 1 2 0 °C の範囲で実施される。 反応圧力も特に制限されるものでなく、 減圧〜加圧条件下 で実施される。 好ましくは減圧〜常圧下で実施される。 さらに好ましくは、 5 0 0 0 0 P a以下の減圧下で実施される。 また、 上記反応圧力に関わらず、 不活性 ガス等を流通しながら反応を行うのも好ましい。 さらに、 反応時間については、 昇温過程■減圧過程も含めて通常 5分〜 3 0時間であり、 好ましくは 1 0分〜 1 5時間である。  The conditions for carrying out this step are not particularly limited, but the reaction temperature is usually 0 ° G to 250 ° C., preferably 10 ° C. to 130 ° C., more preferably 15 ° C. to 12 ° C. It is performed in the range of 0 ° C. The reaction pressure is not particularly limited, and the reaction is carried out under reduced pressure to increased pressure. It is preferably carried out under reduced pressure to normal pressure. More preferably, it is carried out under reduced pressure of 500 Pa or less. It is also preferable to carry out the reaction while passing an inert gas or the like irrespective of the reaction pressure. Further, the reaction time is usually 5 minutes to 30 hours, preferably 10 minutes to 15 hours, including the temperature raising step and the pressure reducing step.
本工程ではスルホン酸とカルボン酸無水物のいずれを先に反応器に投入しても 反応は進行する。 また、 いずれかを先に所定の温度に加熱し、 次いで他方を添加 するという順序であっても反応は進行する。 さらに、 加熱 ·減圧 'ガス流通を組 み合わせて反応を行う場合においては、 それぞれどのような組み合わせ方を選択 しても反応は進行するし、 どれを先に行っても、 また二者ないし三者を同時に開 始しても反応を進行させることが出来る。  In this step, the reaction proceeds regardless of whether sulfonic acid or carboxylic anhydride is charged into the reactor first. In addition, the reaction proceeds even when one of them is heated to a predetermined temperature first, and then the other is added. Furthermore, when the reaction is carried out by a combination of heating and depressurization and gas flow, the reaction proceeds regardless of which combination is selected. The reaction can proceed even if the persons are started simultaneously.
本工程に於ける反応形式は特に規定されるものではなく、 回分反応、 連続流通 反応のいずれでも実施することができる。 反応器の形式についても特に制約はな く、 1槽あるいは 2槽以上の連続した攪拌槽からなる反応器や、 チューブラー型 反応器等、 一般的な反応器を使用することができる。 The type of reaction in this step is not particularly limited, and may be a batch reaction or a continuous flow. Any of the reactions can be performed. The type of the reactor is not particularly limited, and a general reactor such as a reactor having one or two or more continuous stirring tanks or a tubular reactor can be used.
本発明では酸無水物または、 酸無水物に由来する酸、 酸無水物に由来する酸を 再生する別の酸、 カルボン酸無水物及びカルボン酸を使用するので、 反応器材質 は耐腐食性材質のものを用いるのが好ましく、例えばステンレス鋼、ハステロィ、 モネル、 インコネル、 チタン、 チタン合金、 ジルコニウム、.ジノレコ -ゥム合金、 ニッケル、 ニッケル合金、 タンタル、 又はフッ素樹脂、 各種ガラスを内側にコー ティングした材料などが例示できる。 · 本反応で使用されるスルホン酸、 カルボン酸無水物、 反応溶媒は予め充分な水 分除去を施した後に反応に供するほうが好ましい。' また工程中の操作は乾燥雰囲 気下でおこなうことが望ましい。  In the present invention, an acid anhydride or an acid derived from an acid anhydride, another acid for regenerating an acid derived from the acid anhydride, a carboxylic anhydride and a carboxylic acid are used. For example, stainless steel, Hastelloy, Monel, Inconel, Titanium, Titanium alloy, Zirconium, Zinoleco-Pem alloy, Nickel, Nickel alloy, Tantalum, or fluororesin, or various kinds of glass are coated inside. Examples of such materials include: · The sulfonic acid, carboxylic anhydride and reaction solvent used in this reaction are preferably subjected to sufficient water removal in advance before the reaction. 'It is desirable that the operation during the process be performed in a dry atmosphere.
本工程の反応形式につき、 以下、 回分反応の例を挙げて述べる。  The reaction format of this step will be described below with reference to an example of a batch reaction.
ノスルホン酸とカルボン酸無水物を必要に応じ溶媒とともに反応器に供給し、 所 定の温度、 所定の圧力にて所望の時間反応させ、 生成したスルホン酸無水物、 力 ルボン酸および未反応スルホン酸とカルボン酸無水物を含む反応混合物を取り出 す。スルホン酸無水物をこれらの反応混合物の中から固体で分離できる場合には、 濾過により、 スルホン酸無水物を濾別することができる。 この場合、 濾液にスル ホン酸、 スルホン酸無水物、 スルホン酸とカルボン酸の混合酸無水物が含まれる 場合には、 スルホン酸無水物、 スルホン酸とカル.ボン酸の混合酸無水物を濾液か ら分離したのち、 再び酸無水物化の工程に再利用することもできる。  The sulfonic anhydride and carboxylic anhydride are supplied to the reactor together with a solvent as required, and the reaction is carried out at a predetermined temperature and a predetermined pressure for a desired time. And the reaction mixture containing carboxylic anhydride. If the sulfonic anhydride can be separated as a solid from these reaction mixtures, the sulfonic anhydride can be filtered off by filtration. In this case, if the filtrate contains sulfonic acid, sulfonic anhydride, or a mixed acid anhydride of sulfonic acid and carboxylic acid, the sulfonic acid anhydride or the mixed acid anhydride of sulfonic acid and carboxylic acid is filtrated. After separation from the acid anhydride, it can be reused again in the acid anhydride process.
当該反応生成物は反応条件を好適に選定することにより相当高純度なスルホン 酸無水物として回収することが出来る。 スルホン酸無水物に未反応のスルホン酸 や混合酸無水物の他、 カルボン酸、 カルボン酸無水物、 また微量の発色性物質、 ポリマー状物質が不純物とて含有される場合には、 必要に応じて蒸留■晶析 ·洗 浄 -抽出等を行って精製することも可能である。  The reaction product can be recovered as a sulfonic anhydride having considerably high purity by suitably selecting the reaction conditions. If carboxylic acid, carboxylic anhydride, or trace amounts of color-forming or polymeric substances are present as impurities in addition to unreacted sulfonic acids and mixed acid anhydrides in sulfonic acid anhydride, if necessary It is also possible to purify by distillation, crystallization, washing and extraction.
かかる酸の無水物化の反応においても、 酸にアミド化合物または、 未反応のォ キシム化合物が含有されると、 再生反応の収率が低下するため、 上記精製方法に より、 酸 1モルに対してアミド化合物または未反応のォキシム化合物のモル数を 0. 2以下、 より好ましくは 0. 1以下、 さらに好ましくは 0. 05以下に低減 させることが好ましい。 Even in such an acid anhydride reaction, if the acid contains an amide compound or an unreacted oxime compound, the yield of the regeneration reaction is reduced. Therefore, it is preferable to reduce the number of moles of the amide compound or unreacted oxime compound to 0.2 or less, more preferably 0.1 or less, and further preferably 0.05 or less per mole of the acid.
また、 得られた酸無水物は、 ベックマン転位反応工程に再循環することができ る。  Further, the obtained acid anhydride can be recycled to the Beckmann rearrangement reaction step.
(再生された酸無水物の精製方法)  (Purification method of regenerated acid anhydride)
得られたスルホン酸無水物が、 前述したように不純物を含有する場合には、 非 プロトン製溶媒により洗浄し精製を行うことが好ましい。  When the obtained sulfonic anhydride contains impurities as described above, it is preferable to carry out purification by washing with an aprotic solvent.
本工程の好適な態様としては、 上記粗スルホン酸無水物の精製方法において、 スルホン酸無水物が上記ベックマン転位反応において用いられるスルホン酸無水 物であり、 洗浄溶媒がカルボン酸無水物、 カーボネート類、 二トリル化合物、 ェ 一テル類、 カルボン酸エステル類、 ニトロ化合物類、 ハロゲン化炭化水素類等に 代表される非プロトン性でかつ比較的低沸点の有機溶媒であること、 さらに好ま しくは無水酢酸であることを挙げることができる。 . ·  As a preferred embodiment of this step, in the method for purifying the crude sulfonic anhydride, the sulfonic anhydride is a sulfonic anhydride used in the Beckmann rearrangement reaction, and the washing solvent is a carboxylic anhydride, a carbonate, It is an aprotic and relatively low-boiling organic solvent represented by nitrile compounds, ethers, carboxylate esters, nitro compounds, halogenated hydrocarbons, etc., and more preferably acetic anhydride. It can be mentioned that. ·
又、 その他本工程の好適な態様としては、 上記粗スルホン酸無水物の精製方法 において、 1 gの洗浄溶媒に溶解する目的とするスルホン酸無水物の量が、 洗浄 操作を行う温度において大気圧下 0. 0001 g〜1 0 gであること、 洗浄溶媒 が粗スルホン酸無水物中におけるスルホン酸無水物量に対して 0. 5〜200当 量の範囲で使用されること、 また、 洗浄操作温度が 200°C以下であることが挙 げられる。  In another preferred embodiment of the present step, in the method for purifying the crude sulfonic anhydride, the amount of the target sulfonic anhydride dissolved in 1 g of the washing solvent is adjusted to the atmospheric pressure at the temperature at which the washing operation is performed. Below 0.0001 g to 10 g, the washing solvent used in the range of 0.5 to 200 equivalents to the amount of sulfonic anhydride in the crude sulfonic anhydride, and the washing operation temperature Is below 200 ° C.
さらに、粗スルホン酸無水物中におけるスルホン酸無水物の重量百分率(純度) が 3%〜99. 9 9 9%であることが好ましく、 また、 最終的に得られたスルホ ン酸無水物中の不純物が重量濃度で合計◦. 00 1%〜5%含有され、 かつ重量 あたりのスルホン酸無水物純度が 95%〜99. 9 9 9%であることを特徴とし ている。  Further, the weight percentage (purity) of the sulfonic anhydride in the crude sulfonic anhydride is preferably 3% to 99.999%, and the sulfonic anhydride in the finally obtained sulfonic anhydride is preferably used. It is characterized in that impurities are contained in a total concentration of 1% to 5% by weight, and the purity of sulfonic anhydride per weight is 95% to 99.999%.
(スルホン酸無水物)  (Sulfonic anhydride)
本工程で用いられるスルホン酸無水物は、 本発明のべックマン転位反応で用る ことのできるスルホン酸無水物であれば特に制限されるものではない。 濯ぎ洗い操作の効率を考慮すると、 濯ぎ洗い操作を行う温度においてスルホン 酸無水物が固体であることが好ましい。 従って、 スルホン酸無水物の融点は一 5 0 °C以上が好ましく、 0 °C〜 3 0 0 °Cが更に好ましい。 The sulfonic anhydride used in this step is not particularly limited as long as it can be used in the Beckmann rearrangement reaction of the present invention. Considering the efficiency of the rinsing operation, the sulfonic anhydride is preferably solid at the temperature at which the rinsing operation is performed. Therefore, the melting point of the sulfonic anhydride is preferably 150 ° C. or more, more preferably 0 ° C. to 300 ° C.
(洗浄溶媒)  (Wash solvent)
本工程において用いられる洗浄溶媒としては、 カルボン酸無水物、 カーボネー ト、 二トリル化合物、 エーテル、 カルボン酸エステル、 二トロイ匕合物、 ハロゲン 化炭化水素等の非プロトン性でかつ比較的低沸点の有機溶媒が好ましく適用され る。 また、 これらの有機溶媒は、 全て分子内の炭素上の水素原子が、 ハロゲン原 子その他の置換基により置換されていてもよい。 また、 これらの溶媒を組み合わ せた混合溶媒も好適に用いることができる。  The washing solvent used in this step includes aprotic and relatively low boiling points such as carboxylic acid anhydride, carbonate, nitrile compound, ether, carboxylic acid ester, nitroylide compound, and halogenated hydrocarbon. Organic solvents are preferably applied. In these organic solvents, all hydrogen atoms on carbon in the molecule may be substituted by halogen atoms or other substituents. Also, a mixed solvent obtained by combining these solvents can be suitably used.
これらの洗浄溶媒を本発明に適用する場合、 まず、 各操作温度において液体で あることが必須である。  When these washing solvents are applied to the present invention, they must be liquid at each operating temperature.
また、 洗浄後に微量残留する当該洗浄溶媒を事後に目的のスルホン酸無水物か ら容易に除くことが出来るように、 スルホン酸無水物との組み合わせを考慮して 適宜選択することも肝要である。  It is also important to select an appropriate solvent in consideration of the combination with the sulfonic anhydride so that the trace solvent remaining after the washing can be easily removed from the target sulfonic anhydride after the fact.
洗浄後に残留溶媒を留去にて除去する場合には、 通常沸点が 2 5 0 °C'以下の溶 媒が好ましい。 更に好ましくは沸点 2 0 0 °C以下の溶媒が、 より好ましくは沸点 1 5 0 °C以下の溶媒が選定される。例えば無水酢酸(沸点 1 4 0 °C)、 プロピレン カーボネート (沸点 2 4 0 °C)、 ァセトュトリル (沸点 8 1 °C〜 8 2 °C)、 ベンゾ 二トリル (沸点 1 9 1 °C)、 T H F (沸点 6 5 °C〜6 7 °C)、 ギ酸メチル (沸点 3 4 °C) 等が好適である。 また、 操作上の容易さの観点からは沸点 1 0 °C以上の溶 媒が好ましく、 更には沸点 3 0 °C以上の溶媒が好ましい。  When the residual solvent is removed by distillation after washing, a solvent having a boiling point of usually 250 ° C. or lower is preferable. More preferably, a solvent having a boiling point of 200 ° C. or lower is selected, and more preferably, a solvent having a boiling point of 150 ° C. or lower is selected. For example, acetic anhydride (boiling point 140 ° C), propylene carbonate (boiling point 240 ° C), acetutrile (boiling point 81 ° C to 82 ° C), benzonitrile (boiling point 191 ° C), THF (Boiling point 65 ° C to 67 ° C), methyl formate (boiling point 34 ° C) and the like are preferred. Further, from the viewpoint of ease of operation, a solvent having a boiling point of 10 ° C or more is preferable, and a solvent having a boiling point of 30 ° C or more is more preferable.
本工程における洗净溶媒の使用量は、 特に制限されるものではないが、 一般に は、 粗スルホン酸無水物中におけるスルホン酸無水物量に対して約 0 . 5 ~ 2 0 0当量、 好ましくは 0 . 8〜1 0 0当量、 更に好ましくは 1〜8 0当量の範囲で 用いられる。 この範囲を超えて少な過ぎると十分な洗浄が出来ず、 他方、 過多に すぎると精製系内のホールド量も多くなり、 経済的効果が減少するとともに、 多 くの場合一部溶媒中へ溶解してしまうためにスルホン酸無水物の収量が低下する。 (溶媒の混合ないし添加物等) The amount of the washing solvent used in this step is not particularly limited, but is generally about 0.5 to 200 equivalents, preferably 0 to 200 equivalents to the amount of sulfonic anhydride in the crude sulfonic anhydride. It is used in the range of 8 to 100 equivalents, more preferably 1 to 80 equivalents. If the amount is less than this range, sufficient washing cannot be performed.On the other hand, if the amount is too large, the amount of hold in the purification system increases, which reduces the economic effect and often dissolves in some solvents. Therefore, the yield of sulfonic anhydride is reduced. (Mixing of solvents or additives)
本工程の粗スルホン酸無水物精製工程においては、 経済的観点からも添加物な るものを使用しない方が好ましいし、 洗浄溶媒として混合溶媒を使用する必要性 も特には存しないが、カルボン酸無水物類、カーボネート類、二トリル化合物類、 エーテル類、 カルボン酸エステル類、 ニトロ化合物類、 ハロゲン化炭化水素類等 であれば各々混合して使用することが可能である。 また、 これらの混合方法 -順 序 -割合は特に限定されるものではない。  In the crude sulfonic anhydride purification step of this step, it is preferable not to use an additive from an economic viewpoint, and it is not particularly necessary to use a mixed solvent as a washing solvent. Anhydrides, carbonates, nitrile compounds, ethers, carboxylate esters, nitro compounds, halogenated hydrocarbons and the like can be used in combination. The mixing method-order-ratio is not particularly limited.
(精製条件)  (Purification conditions)
本工程の精製方法においては、粗スルホン酸無水物を溶媒により濯ぎ洗いする。 濯ぎ洗いとは、 粗スルホン酸無水物に溶媒を一旦接触させてその後溶媒をスルホ ン酸無水物から取り除く操作であって、その方法については特に限定されないが、 具体的には例えば、 粗スルホン酸無水物を濾過機に置きこれに直接溶媒をふりか ける操作、 また、 粗スルホン酸無水物と溶媒を容器中で混合し、 濾過によりスル ホン酸無水物を取り出す操作等が挙げられる。 また、 工業的に実施する場合にも 特に洗浄方法については限定されないが、 例えば粗スルホン酸無水物を固定床的 に擁した容器に洗浄溶媒を下部から入れて続いて単に濾過によって抜き出すとい う方法や、 上からシャワー状にふりかけて濾過する方法、 溶媒と粗スルホン酸無 水物とを同一の容器内に仕込んで撹拌翼によりスラリ一撹拌洗浄してから濾過す るといった方法等が採用され得る。  In the purification method of this step, the crude sulfonic anhydride is rinsed with a solvent. Rinsing is an operation in which a solvent is once brought into contact with a crude sulfonic anhydride and then the solvent is removed from the sulfonic anhydride, and the method is not particularly limited. An operation in which the anhydride is placed in a filter and the solvent is directly sprinkled thereon, or an operation in which the crude sulfonic anhydride and the solvent are mixed in a vessel and the sulfonic anhydride is removed by filtration, is exemplified. In the case of industrial implementation, the washing method is not particularly limited.For example, a method in which a washing solvent is put into a container having crude sulfonic anhydride in a fixed bed form from the bottom, and then the solution is simply removed by filtration. Or a method of sprinkling in the form of a shower from above and filtering, a method of charging the solvent and the crude sulfonic anhydride in the same container, stirring and washing the slurry with stirring blades, and then filtering. .
また、 粗スルホン酸無水物から不純物を効率的に除去するために、 溶媒による 濯ぎ洗いに先だつて不純物を含む粗スルホン酸無水物をまず細かい粒子状に粉砕 しておくことが好ましい。 その手法としては、 特に限定されることないが、 ひと つの好適な手法としては、 洗浄に使用する溶媒を予め少量添加し、 ついで物理的 に混合粉砕することが挙げられる。 この場合、 容器に溶媒と粗スルホン酸無水物 とのどちらを先に投入しても構わない。 粉砕後濾過し、 濾残として回収されるス ルホン酸無水物に直接溶媒をふりかけること等により、精製を行うことができる。 本工程の精製方法によれば、 スルホン酸無水物種および採択される手法にも多 少依存はするものの、 粗スルホン酸無水物中における該スルホン酸無水物の重量 2003/009749 百分率 (純度) が 1 0 %や 2 0 %といった極めて低い値であっても高純度のスル ホン酸無水物へと精製可能である。 Further, in order to efficiently remove impurities from the crude sulfonic anhydride, it is preferable to first grind the crude sulfonic anhydride containing impurities into fine particles before rinsing with a solvent. The technique is not particularly limited, but one suitable technique is to add a small amount of a solvent to be used for washing in advance, and then physically mix and pulverize. In this case, either the solvent or the crude sulfonic anhydride may be charged into the container first. Purification can be performed, for example, by pulverizing and filtering, and then sprinkling a solvent directly on the sulfonic anhydride recovered as a filtration residue. According to the purification method of this step, the weight of the sulfonic anhydride in the crude sulfonic anhydride depends on the type of the sulfonic anhydride and the method adopted. Even if the percentage (purity) is extremely low, such as 10% or 20%, it is possible to purify into high-purity sulfonic anhydride.
精製条件によっては精製直後のスルホン酸無水物に使用した洗浄溶媒が少量付 着ないしは混在していることがあるが、 この残留溶媒は、 常温 '常圧下で乾燥さ せることにより取り除いてもよいし、 使用薬品に対して不活性な乾燥ガスの流通 下に置くことや、 加温または減圧により強制的に蒸発 ·留去させてもよい。 減圧 下に留去する場合の圧力としては、 大気圧より低ければ良いが、 スルホン酸無水 物の沸点を勘案して減圧度を設定する必要がある。 減圧下に留去することによつ て残留洗浄溶媒を除く場合、 目的のスルホン酸無水物よりも除くべき洗浄溶媒の 沸点が低い必要があるので、 目的のスルホン酸無水物の沸点を勘案して洗浄溶媒 を選定する。 逆に、 スルホン酸無水物の沸点よりも高沸点の洗浄溶媒の使用が好 ましい場合にはスルホン酸無水物のほうを蒸留分離させることも可能である。 また、 加温して溶媒を留去する場合は、 目的とするスルホン酸無水物が分解し ない程度の温度で十分留去できるような沸点を有する洗浄溶媒を選定する。  Depending on the purification conditions, a small amount of the washing solvent used for the sulfonic anhydride immediately after the purification may be attached or mixed, but this residual solvent may be removed by drying at normal temperature and normal pressure. Alternatively, it may be placed under a flow of a dry gas inert to the chemicals used, or may be forcibly evaporated or distilled off by heating or reducing the pressure. The pressure for the distillation under reduced pressure may be lower than the atmospheric pressure, but it is necessary to set the degree of reduced pressure in consideration of the boiling point of the sulfonic anhydride. When removing the residual washing solvent by distilling off under reduced pressure, the boiling point of the target sulfonic anhydride must be taken into consideration, since the boiling point of the cleaning solvent to be removed must be lower than that of the target sulfonic anhydride. To select a washing solvent. Conversely, when it is preferable to use a washing solvent having a boiling point higher than the boiling point of the sulfonic anhydride, the sulfonic anhydride can be separated by distillation. When the solvent is distilled off by heating, a washing solvent having a boiling point that allows sufficient distillation at a temperature at which the target sulfonic anhydride is not decomposed should be selected.
さらに、 当該精製工程に対して何ら悪影響を及ぼさない不活性ガスを流通させ 同伴留去する場合に用いられるガスとしては、 例えば、 アルゴン、 ベリゥム、 ネ 'オン、 窒素、 メタン、 ェタン、 プロパン、 あるいはこれらの混合ガスを挙げるこ とができる。  Further, as a gas used in the case of passing an inert gas having no adverse effect on the purification step and performing co-evaporation, for example, argon, beryde, neon, nitrogen, methane, ethane, propane, or These mixed gases can be mentioned.
この場合も、 目的のスルホン酸無水物と除くべき残留洗浄溶媒の揮発性に差が ある必要があるので、 目的のスルホン酸無水物の揮発性を勘案して洗浄溶媒を選 定する。  In this case, too, it is necessary that there is a difference between the volatility of the target sulfonic anhydride and the residual cleaning solvent to be removed. Therefore, the cleaning solvent is selected in consideration of the volatility of the target sulfonic anhydride.
洗浄後の溶媒にスルホン酸もしくはスルホン酸とカルボン酸の混合酸無水物が 含有される場合には、 必要に応じ溶媒と分離した後、 スルホン酸もしくはスルホ ン酸とカルボン酸の混合酸無水物を酸無水物化の工程に再利用することができる。 本工程の精製方法の別の好ましい一実施態様としては、精製工程全てについて、 何ら悪影響を及ぼすことのない乾燥した不活性ガス存在下で実施することである。 ただし、 スルホン酸無水物と洗浄溶媒の組み合わせ上、 酸素 '水分等が目的スル ホン酸無水物を変質させる等悪影響を及ぼす恐れがない場合は、 開放系での操作 も可能である。 If the solvent after washing contains a sulfonic acid or a mixed anhydride of a sulfonic acid and a carboxylic acid, separate the solvent from the solvent as necessary, and then remove the mixed anhydride of the sulfonic acid or the mixed anhydride of the sulfonic acid and the carboxylic acid. It can be reused in the acid anhydride conversion step. In another preferred embodiment of the purification method of the present step, all the purification steps are carried out in the presence of a dry inert gas having no adverse effect. However, if the combination of sulfonic anhydride and the washing solvent does not cause any adverse effects such as oxygen and moisture, etc., that will alter the target sulfonic anhydride, operate in an open system. Is also possible.
また、 精製工程全体を通して不活性な固体を系中に共存させることも可能であ る。  In addition, an inert solid can coexist in the system throughout the purification process.
本精製工程を実施する条件としては特に規定されないが、 温度は通常 2 0 0 °C 以下、 好ましくは一 1 0 0 °Cから 1 0 0 °C、 更に好ましくは 0 °Cから 5 0 °Cの範 囲で実施される。 トリフルォロメタンスルホン酸無水物のように融点の低いもの を扱う場合には、 固体となるように精製時の温度を十分低く設定するのが好まし い。また、この際、用いる洗浄溶媒が精製温度で液体であるものを適宜選択する。 精製工程における圧力も特に制限されるものでなく、 スルホン酸無水物や使用 する洗浄溶媒の種類、 又採用される手法に応じて、 減圧〜加圧条件下で実施され る。 残留洗浄溶媒と精製スルホン酸無水物との最終的な分離工程以外の工程にお いては、 好ましくは常圧〜微加圧下で実施される。  The conditions for carrying out the present purification step are not particularly limited, but the temperature is usually 200 ° C or lower, preferably 100 ° C to 100 ° C, more preferably 0 ° C to 50 ° C. It is implemented in the range of. When dealing with a substance having a low melting point, such as trifluoromethanesulfonic anhydride, it is preferable to set the temperature at the time of purification sufficiently low so as to be a solid. In this case, a solvent used as a washing solvent at the purification temperature is appropriately selected. The pressure in the purification step is not particularly limited, either, and it is carried out under reduced pressure to increased pressure depending on the type of the sulfonic anhydride and the washing solvent used, and the method employed. Steps other than the final separation step between the residual washing solvent and the purified sulfonic anhydride are preferably carried out under normal pressure to slight pressure.
本工程の精製を実施する精製形式は特に規定されるものではなく、 回分式、 連 続流通式のいずれでも実施することができる。 固体粗スルホン酸無水物を粉砕す る際の器の形式についても特に制約はなく、 ごく一般的な器を使用することがで きる。 本発明では酸を用いるため、 器の材質は耐腐食性材質のものを用いるのが 好ましく、 例えばガラス、 ステンレス鋼、 ハステロイ、.モネル、 インコネル、 チ タン、チタン合金、 ジルコニウム、 ジルコニウム合金、ニッケル、エッケル合金、 タンタル、 又はフッ素樹脂、 各種ガラスを内側にコーティングした材料などが例 示できる。  The purification format for carrying out the purification in this step is not particularly limited, and it can be carried out by either a batch system or a continuous flow system. There is no particular limitation on the type of vessel used to grind the solid crude sulfonic anhydride, and an ordinary vessel can be used. Since an acid is used in the present invention, it is preferable to use a corrosion-resistant material for the vessel, for example, glass, stainless steel, Hastelloy, Monel, Inconel, titanium, titanium alloy, zirconium, zirconium alloy, nickel, Examples include Eckel alloys, tantalum, or fluororesins, and materials coated with various types of glass on the inside.
(ォキシム塩酸塩をォキシム原料として用いた場合のアミド化^^物と触媒成分の 分離、 触媒成分の再生方法)  (Separation of amidated ^^ compounds and catalyst components when oxime hydrochloride is used as oxime raw material, regeneration method of catalyst components)
また、 ォキシム塩酸塩をォキシム原料として用いた場合には、 例えば次のよう な方法により目的アミド化合物と触媒成分をそれぞれ分離、 精製もしくは再生す ることができる。  When oxime hydrochloride is used as a raw material for oxime, the target amide compound and the catalyst component can be separated, purified, or regenerated respectively by the following method, for example.
すなわち、 必要に応じて溶媒を一部留去する、 貧溶媒を添加するなどしてアミ ド化合物の塩酸塩を晶析分離し、 濾液に触媒成分を回収する。 濾液にアミド化合 物の塩酸塩が一部含有される場合には、 触媒成分またはアミド化合物の塩酸塩の いずれか一方を、 抽出、 晶析、 蒸留等の公知の操作により除き、 触媒成分とアミ ド化合物の塩酸塩を分離する。 例えば、 濾液から溶媒を留去したのち、 触媒成分 のみを選択的に溶解する溶媒 (例えば、 P—トルエンスルホン酸の場合にはトル ェン) を加えて触媒成分を抽出する方法等が採用できる。 That is, the hydrochloride of the amide compound is crystallized and separated by, for example, partially distilling off the solvent or adding a poor solvent as necessary, and recovering the catalyst component in the filtrate. When the hydrochloride of the amide compound is partially contained in the filtrate, the catalyst component or the hydrochloride of the amide compound is used. Either one is removed by a known operation such as extraction, crystallization, or distillation, and the catalyst component and the hydrochloride of the amide compound are separated. For example, a method of extracting the catalyst component by distilling off the solvent from the filtrate and then adding a solvent that selectively dissolves only the catalyst component (for example, toluene in the case of P-toluenesulfonic acid) can be adopted. .
分離されたアミ ド化合物の塩酸塩は晶析したアミ ド化合物の塩酸塩とともに公 知の分離精製工程 (例えば熱分解工程、 若しくは、 水添加による分解工程等) に 運ばれ、 アミド化合物と塩酸に分解されたのち精製される。 回収された塩酸は、 ォキシム塩酸塩を製造する工程に再循環されるか、 シクロアルカノンの光二ト口 ソ化工程に循環できる。  The separated hydrochloride of the amide compound is transported together with the hydrochloride of the crystallized amide compound to a known separation and purification step (for example, a thermal decomposition step or a decomposition step by adding water) to form the amide compound and hydrochloric acid. It is purified after being decomposed. The recovered hydrochloric acid can be recycled to the process for producing oxime hydrochloride, or can be recycled to the cycloalkanone photolithography process.
回収された触媒成分は、 上記 (再生した酸を脱水縮合して酸無水物を再生する 工程) で酸無水物に転換することができる。  The recovered catalyst component can be converted to an acid anhydride in the above (step of dehydrating and condensing the regenerated acid to regenerate the acid anhydride).
一方、 ォキシム塩酸塩をォキシム原料として用い、 酸無水物を用いずにベック マン転位反応をおこなった場合には、 触媒成分の分離の必要がない。 この場合に は、 必要に応じて溶媒を一部留去して、 アミ ド化合物の塩酸塩を晶析濾別し、 濾 液に溶媒と軽沸副生成物を回収する。 分離されたアミド化合物の塩酸塩は、 公知 の分離精製工程 (例えば熱分解工程若しくは、 水添加による分解工程等)'に運ば れ、 アミ ド化合物と塩酸に分解される。 アミ ド化合物は必要があれば公知の精製 方法により精製される。 回収された塩酸は、 ォキシム塩酸塩を製造する工程に再 循環される力 シクロアルカノンの光-トロソ化工程に循環できる。 回収された 溶媒は、 適宜蒸留で軽沸を除いた後、 蒸留され、 ベックマン転位工程に循環され る。  On the other hand, in the case where the Beckmann rearrangement reaction is carried out using oxime hydrochloride as an oxime raw material without using an acid anhydride, there is no need to separate the catalyst components. In this case, if necessary, the solvent is partially distilled off, the hydrochloride of the amide compound is separated by crystallization filtration, and the solvent and light-boiling by-products are recovered in the filtrate. The separated hydrochloride of the amide compound is carried to a known separation / purification step (for example, a thermal decomposition step or a decomposition step by adding water) ′, and is decomposed into an amide compound and hydrochloric acid. The amide compound is purified, if necessary, by a known purification method. The recovered hydrochloric acid can be recycled to the process of photo-trosation of cycloalkanone, which is recycled to the process for producing oxime hydrochloride. The recovered solvent is distilled appropriately after removing light boiling by distillation, and is then circulated to the Beckmann rearrangement step.
なお、 本発明の方法でこれらのォキシム塩酸塩をォキシム化合物として-トリ ル溶媒中でベックマン転位させた場合には、 従来、 溶媒が変質することが知られ ている (特公昭 5 2— 1 7 0 3 4、 特公昭 5 2— 1 7 0 3 5、 特公昭 4 4一 7 9 3 8 )。 また、溶媒の変質に由来する不純物が製品アミド化合物に混入し、製品品 質を悪化させることが懸念されてきた。 本発明においては、 ォキシム塩酸塩、 二 トリル溶媒での反応で生成するとされてきた、 溶媒由来の副生成物であるアミド (ァセト-トリル溶媒であれば、ァセトアミド) (C h e m. P r u rn. , 3 1 ( 1 98 1) 250.,特公昭 49- 8 7687) の生成量を大幅に減少させることが できる。 It has been known that when these oxime hydrochlorides are subjected to Beckmann rearrangement in a toluene solvent as an oxime compound in the method of the present invention, the solvent is conventionally altered (Japanese Patent Publication No. 52-17). 0 34, Japanese Patent Publication No. 52-170,35, Japanese Patent Publication No. 44-79,338). In addition, there has been concern that impurities derived from deterioration of the solvent may be mixed into the amide compound of the product, thereby deteriorating the product quality. In the present invention, amide (acetamide in the case of aceto-tolyl solvent) which is a by-product derived from the solvent, which has been supposed to be formed by the reaction with oxime hydrochloride and a nitrile solvent (Chem. Purrun) , 3 1 (1 98 1) 250., The production of Tokubiko 49-8 7687) can be greatly reduced.
また、 このようにォキシム塩酸塩を用いる場合にも、 上記に挙げたような、 耐 腐食性の反応器を使用することが望ましい。 ぐ実施例 >  Also when using oxime hydrochloride in this way, it is desirable to use a corrosion-resistant reactor as mentioned above. Examples>
以下に実施例により本発明をさらに具体的に説明するが、 本発明はその要旨を 越えない限りこれらの実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples unless it exceeds the gist thereof.
なお、 以下の例においてアミド化合物 (ラタタム) 収率は、 仕込みォキシムに 対するモル0 /0で表し、 TON値 (Turn Over Number) は仕込みのスルホン酸 無水物に対する生成ラクタムのモル数で表した。 The following amide compounds in the examples (Ratatamu) yield in mole 0/0 against the charging Okishimu, TON values (Turn Over Number) are expressed in moles of the product lactam against sulfonic anhydride charged.
また、 ラタタム収率及び TONは特に記述がない限り iH—NMRにより求め た。 不溶の触媒が存在する場合は内部標準としてジクロロメタンを用い、 ラクタ ムの N— Hまたは C = 0に隣接したメチレン (CH2 ) の積分比 (2H分) との ジクロロメタンのプロ-トンとの積分比 (2H) から換算して求めた。 Ratatam yield and TON were determined by iH-NMR unless otherwise specified. When insoluble catalyst is present, dichloromethane is used as the internal standard, and the integral ratio of methylene (CH 2 ) adjacent to L-H or C = 0 of the lactam (2H) and the integral of dichloromethane with pro-ton It was calculated from the ratio (2H).
触媒が全て溶解し 'ている場合には、 p_トルエンスルホン酸のベンゼン核の水 素 (2H) を基準にラタタムの生成量を求めた。  When all of the catalyst was dissolved, the amount of ratatum produced was determined based on hydrogen (2H) in the benzene nucleus of p_toluenesulfonic acid.
また、 ォキシム化合物の転化率は、 残存するォキシム化合物及び全生成物の和 に対する全生成物のモル%、 ラクタム及びケトンの選択率は、 全生成物に対する 各生成物のモル%により求めた。 参考例 1 (シクロドデカノンォキシムの合成)  The conversion of the oxime compound was determined by the mole% of all the products based on the sum of the remaining oxime compound and all the products, and the selectivity of lactam and ketone was determined by the mole% of each product relative to the total products. Reference Example 1 (Synthesis of cyclododecanone oxime)
シクロドデカノンォキシムは市販品がないので、 合成した。 合成法の一例を下 記に示す。  Cyclododecanone oxime was synthesized because there is no commercial product. An example of the synthesis method is shown below.
メ力二カルスターラーと温度計を備えた 4つ口にフラスコにシクロドデカノン 1 9. 04 g (0. 1 04mo 1 ) を仕込み、 ェタノール 1 64 gを加えて室温 で攪拌し、 溶解させた。 酢酸ナトリウム 1 8. 07 g (0. 220mo l )、 ヒド ロキシルァミン硫酸塩 10. 67 g (0. 065 Omo 1 ) を 5 2m lの水に溶 解させた水溶液を、 シク口ドデカノンォキシムのェタノール溶液に十分な攪拌下 室温で滴下した。 滴下中 3 3°Cまで反応液の温度が上昇した。 室温でさらに 3時 間充分に攪拌を行ったのち、 —丽 R分析でシクロドデカノンの残留がないこ とを確認後、 ェタノール'を 40 °Cで減圧下留去した。 1 9 5m lの水を添加し、 白色固体を洗浄、 濾過したのち、 さらに 40 Om 1の水で水洗した。 この白色固 体に脱塩水を加え、 90°C加熱攪拌後濾過し、さらに 90°Cの脱塩水で洗浄した。 洗浄された白色固体にエタノールを加え加熱溶解後、 熱濾過したのちに、 ェタノ ール (300 g) —水 (1 1 2 g) の混合溶媒から再結晶し、 減圧濾過して結晶 を得た。 減圧濾過器の濾過鐘上でエタノール (74 g) —水 (28 g) の 0°Cの 混合溶媒で結晶を洗浄し減圧濾過を行い、 さらに 1. 5時間風乾してシクロドデ カノンォキシムを得た。 このときのシクロドデカノンォキシムの水分量は 1 1.· 3w t。 /。であった。 ' Cyclododecanone (19.04 g, 0.104mo1) was charged into a flask having four ports equipped with a mechanical stirrer and a thermometer, and ethanol (164 g) was added, and the mixture was stirred at room temperature and dissolved. . Dissolve 18.07 g (0.220 mol) of sodium acetate and 10.67 g (0.065 Omo 1) of hydroxylamine sulfate in 52 ml of water. The dissociated aqueous solution was added dropwise to a solution of dodecanonone oxime in ethanol with sufficient stirring at room temperature. During the dropwise addition, the temperature of the reaction solution rose to 33 ° C. After sufficiently stirring for 3 hours at room temperature, after confirming that no cyclododecanone remained by — 丽 R analysis, ethanol ′ was distilled off at 40 ° C. under reduced pressure. 195 ml of water was added, the white solid was washed, filtered, and then washed with 40 Om1 of water. Demineralized water was added to the white solid, and the mixture was heated and stirred at 90 ° C, filtered, and washed with 90 ° C demineralized water. Ethanol was added to the washed white solid, and the mixture was dissolved by heating. After hot filtration, the crystals were recrystallized from a mixed solvent of ethanol (300 g) and water (112 g) and filtered under reduced pressure to obtain crystals. . The crystals were washed with a mixed solvent of ethanol (74 g) and water (28 g) at 0 ° C on a filtration bell of a reduced pressure filter, filtered under reduced pressure, and further air-dried for 1.5 hours to obtain cyclododecanone oxime. At this time, the water content of cyclododecanone oxime was 11.3 wt. /. Met. '
以下の本実施例、 比較例のシク口ドデカノンォキシムはこのような方法で得た 結晶を適宜、 減圧乾燥したものを用いた。 尚、 この方法によれば、 仕込みのシク 口ドデカノンに対し、 9 Omo 1 %前後の収率でシク口ドデカノンォキシムが得 られる。  For the following dodecanonone oximes in Examples and Comparative Examples, crystals obtained by such a method were appropriately dried under reduced pressure. According to this method, dodecanonone oxime can be obtained at a yield of about 9 Omo 1% based on the charged dodecanone.
また、 以下の実施例に於ける仕込みの水分量の分析は、 シクロドデカノンォキ シム及び反応溶媒に含まれる水分量から算出した。 また、 反応後の水分量は、 反 応液そのままを分析した。水分量の分析にはカールフィッシャー法(電量滴定法) を用い、陽極液はアクアミクロン AX (三菱化学社製)、陰極液はアクアミクロン CXU (三菱化学社製) を用いた。 シクロドデカノンォキシムの水分量は、 乾燥 雰囲気下、 固体のまま水分測定装置内の陽極液に投入し、 陽極液内に溶解した状 態で分析を行った。 実施例 1  In addition, the analysis of the water content of the preparation in the following Examples was calculated from the water content of cyclododecanone oxime and the reaction solvent. The water content after the reaction was analyzed for the reaction solution as it was. The water content was analyzed by the Karl Fischer method (coulometric titration method), and the anolyte was Aquamicron AX (manufactured by Mitsubishi Chemical) and the catholyte was Aquamicron CXU (manufactured by Mitsubishi Chemical). The water content of cyclododecanone oxime was analyzed as a solid in a dry atmosphere, poured into an anolyte in a moisture measurement device, and dissolved in the anolyte. Example 1
70°Cの乾燥機で乾燥した 50mlの丸底フラスコに、 減圧乾燥により水分含有量 71 5 p pmに低下させた、シク口ドデカノンォキシム 10. 0755 g (5 1. 06 mmo 1 ) 及び予めモレキュラーシーブ 3 Aで乾燥したトルエン 40. 1 g (水分含量 8 p pm)をアルゴン雰囲気下で仕込んだ。アルゴン雰囲気下、 95°C に加熱してシクロドデカノンォキシムが溶解した後、 p—トルエンスルホン酸無 水物 0. 2185 g (0. 6695 mm o 1 ) とトルエン 2. 5 gを混合したも の (大部分の p— トルエンスルホン酸無水物はトルエンに溶解していない) を加 え、 引き続き 95 °Cに加熱攪拌しベックマン転位反応を行った。 In a 50 ml round-bottomed flask dried in a dryer at 70 ° C., there was added 10.0755 g (5.06 mmo 1) of dodecanonone oxime having reduced water content to 715 ppm by vacuum drying, and 40.1 g of toluene previously dried with molecular sieve 3A (Water content 8 ppm) was charged under an argon atmosphere. After heating to 95 ° C in an argon atmosphere to dissolve cyclododecanone oxime, 0.2185 g (0.6695 mmo1) of p-toluenesulfonic acid anhydride and 2.5 g of toluene were mixed. The mixture was added (most of p-toluenesulfonic anhydride was not dissolved in toluene), and the mixture was heated and stirred at 95 ° C to perform a Beckmann rearrangement reaction.
反応条件下でも、 大部分の!)一トルエンスルホン酸無水物は溶媒に溶解せずに 溶媒中に分散していた。  Even under reaction conditions, most of! ) The monotoluenesulfonic anhydride was not dissolved in the solvent but was dispersed in the solvent.
反応液を熱溶液のままサンプリングし、 iH-NMR で分析した。 その結果、 0. 5時間後の ω—ラウリンラクタムの収率は 12.7°/0、ΤΟΝ値は 9.7であった。 The reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, the yield of ω-laurin lactam after 0.5 hour was 12.7 ° / 0 , and the ΤΟΝ value was 9.7.
1. 0時間、 1. 5時間、 2. 0時間、 2. 5時間後の TONはそれぞれ 25. 8、 32. 5、 33. 2、 34. 6であり、 除々に增加する傾向が観察された。 また、 反応開始前のシクロドデカノンォキシムおよびトルエンに含まれる水の 合計量の、 P— トルエンスルホン酸無水物に対するモル比は、 0. 63であった。 比較例 1 '  The TONs after 1.0 hour, 1.5 hours, 2.0 hours, and 2.5 hours were 25.8, 32.5, 33.2, and 34.6, respectively, and a tendency to gradually increase was observed. Was. The molar ratio of the total amount of water contained in cyclododecanone oxime and toluene before the start of the reaction to P-toluenesulfonic anhydride was 0.63. Comparative Example 1 '
参考例と同様の方法で合成したシクロドデカノンォキシムを、 減圧濾過の後、 さらさらになるまで風乾した。 このとき、 水分含量は 1. 89wt% 'であった。 このシクロドデカノンォキシムと、 純正化学社製のトルエン (水分量 1 18 p p m) を用い、 反応雰囲気の置換をおこなわない以外は実施例 1と同じ方法でシク ロドデカノンォキシムのベックマン転位を行った。 この場合も、 大部分の!)ート ルエンスルホン酸無水物はトルエン 2. 5 gに溶解しなかった。  Cyclododecanone oxime synthesized in the same manner as in the Reference Example was filtered under reduced pressure and air-dried until further. At this time, the water content was 1.89 wt% '. Beckmann rearrangement of cyclododecanone oxime was performed in the same manner as in Example 1 except that the reaction atmosphere was not replaced with this cyclododecanone oxime and toluene manufactured by Junsei Chemical Co., Ltd. (water content: 118 ppm). went. Again, most of the! ) Toluenesulfonic anhydride did not dissolve in 2.5 g of toluene.
反応液を同様に iH-NMRで分析した結果、 ω—ラウリンラクタムの収率は 0. 5時間で 0. 5%、 TON値は 0. 4であった。 また、 1. 0時間後の TON値は 0. 7であり、 顕著に増加していく様子もみられなかった。  The reaction solution was similarly analyzed by iH-NMR. As a result, the yield of ω-laurinlactam was 0.5% in 0.5 hours, and the TON value was 0.4. The TON value after 1.0 hour was 0.7, and no remarkable increase was observed.
反応開始前のシク口ドデカノンォキシムおよびトルエンに含まれる水の合計量 の、 p— トルエンスルホン酸無水物に対するモル比は、 15. 9であった。 実施例 2 雰囲気下で、 70°Cの乾燥機で乾燥した 50mlの丸底フラスコに、 減圧 乾燥により水分含有量 0. 128 w t %に低下させた、 シクロドデカノンォキシ ム 10. 0585 g (50. 98 mm o 1 ) 及び予めモレキュラーシープ 3 Aで 乾燥したァセトニトリル 40. 0 g (水分含量 O p (検出限界以下)) を仕込 んだ。 アルゴン雰囲気下、 55°Cに加熱した後、 p— トルエンスルホン酸無水物 0. 2206 g (0. 6759 mm o 1 ) をァセトエトリル 2. 5 gに溶角 させ た溶液を加え、 攪拌しながら反応温度を 3時間かけて除々に 80°Cまで上昇させ ベックマン転位反応を行った。 反応条件下でも、 p— トルエンスルホン酸無水物 は溶媒に溶解していた。 シクロドデカノンォキシムは、 反応開始時に溶媒に完全 には溶解していなかつたが、 最終的には全て溶解した。 Before the start of the reaction, the molar ratio of the total amount of water contained in dodecanonone oxime and toluene to p-toluenesulfonic anhydride was 15.9. Example 2 Under an atmosphere, cyclododecanone oxime 10.050 g (50.98 g) was dried in a 50 ml round bottom flask dried at 70 ° C. under reduced pressure to a water content of 0.128 wt% by vacuum drying. mmo 1) and 40.0 g of acetonitrile (water content Op (below detection limit)) previously dried with molecular sieve 3A were charged. After heating to 55 ° C under an argon atmosphere, a solution prepared by dissolving 0.2206 g (0.6759 mmo 1) of p-toluenesulfonic anhydride in 2.5 g of acetoethrile was added, and the reaction was carried out with stirring. The temperature was gradually increased to 80 ° C over 3 hours to perform the Beckmann rearrangement reaction. Even under the reaction conditions, p-toluenesulfonic anhydride was dissolved in the solvent. Cyclododecanone oxime was not completely dissolved in the solvent at the start of the reaction, but was eventually completely dissolved.
反応液を熱溶液のままサンプリングし、 iH-NMRで分析した。 その結果、 3時 間後の ω—ラウリンラクタムの収率は 100%、 TON値は 76であり、全てのシ ク口ドデカノンォキシムは消失した。  The reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, after 3 hours, the yield of ω-laurinlactam was 100%, the TON value was 76, and all dodecanonone oximes had disappeared.
反応開始前のシク口ドデカノンォキシムおよびァセトニトリルに含まれる水の 合計量の、 p—トルエンスルホン酸無水物に対するモル比は、 1. 1であった。 実施例 3 ·  Before the start of the reaction, the molar ratio of the total amount of water contained in the dodecanonone oxime and acetonitrile to p-toluenesulfonic anhydride was 1.1. Example 3
アルゴン雰囲気下で、 70°Cの乾燥機で乾燥した 50mlの丸底フラスコに、 減圧 乾燥により水分含有量を 0. 249 w t %に低下させた、 シクロドデカノンォキ シム 8. 0231 g (40. 66 mmo 1 ) 及ぴ純正化学製のァセトニトリル 3 2. 15 g (水分含量 133 p p m) を仕込んだ。 アルゴン雰囲気下、 80°Cに 加熱した後、 p—トルエンスルホン酸無水物 0. 1772 g (0. 5429 mm o 1 ) をモレキュラーシーブス 3 Aで予め乾燥したァセトニトリル 2. 5 g (水 分含量 0 p p m) に溶解させた溶液を加え、 攪拌しながらベックマン転位反応を 行った。反応条件下でも、 P— トルエンスルホン酸無水物は溶媒に溶解していた。 反応液を熱溶液のままサンプリングし、 iH-NMR で分析した。 その結果、 0. 5時間後の ω—ラウリンラクタムの収率は 96%、 TON値は 72であった。 反応開始前のシク口ドデカノンォキシムおよびァセトニトリルに含まれる水の 合計量の、 p—トルエンスルホン酸無水物に対するモル比は、 2. 5であり、 反 応後の水分量は 0. 04 w t % (H20/仕込み!)一トルエンスルホン酸無水物 = 2 (モル比) 相当、 H2O/「酸無水物に対応する酸および酸成分の合計」 =1 (モ ル比)) であった。 実施例 4 In an argon atmosphere, cyclododecanone oxam 8.00231 g (40%) was placed in a 50 ml round bottom flask dried with a dryer at 70 ° C and dried under reduced pressure to reduce the water content to 0.249 wt%. 66 mmo 1) 32.15 g (133 ppm water content) of acetonitrile manufactured by Junsei Chemical Co., Ltd. were charged. After heating to 80 ° C under an argon atmosphere, 0.1772 g (0.5429 mmo 1) of p-toluenesulfonic anhydride was dried with 2.5 g of acetonitrile (water content 0 ppm), and a Beckmann rearrangement reaction was performed with stirring. Even under the reaction conditions, P-toluenesulfonic anhydride was dissolved in the solvent. The reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, the yield of ω-laurin lactam after 0.5 hour was 96%, and the TON value was 72. Water contained in dodecanoxoxime and acetonitrile before the start of the reaction Of the total amount, the molar ratio p- toluenesulfonic anhydride, 2 is 5, the water content of the anti応後is 0. 04 wt% (H 2 0 / charge!) Single-toluenesulfonic anhydride = 2 (Molar ratio) H 2 O / “total of acid and acid component corresponding to acid anhydride” = 1 (molar ratio). Example 4
シクロドデカノンォキシムの水分量が 0. 536 w t %のものを用いた以外は 実施例 3と同様の方法でベックマン転位反応を行った。  A Beckmann rearrangement reaction was performed in the same manner as in Example 3 except that cyclododecanone oxime having a water content of 0.536 wt% was used.
反応液を熱溶液のままサンプリングし、 iH-NMR で分析した。 その結果、 0. 5時間後の ω—ラウリンラクタムの収率は 77%、ΤΟΝ値は 57であった。また、 1時間後の TON値は 58であった。  The reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, the yield of ω-laurinlactam after 0.5 hours was 77%, and the Δ value was 57. The TON value after one hour was 58.
反応開始前のシクロドデカノンォキシムおよびァセトェトリルに含まれる水の 合計量の、 p—トルエンスルホン酸無水物に対するモル比は、 4. 7であり、 反 応後の水分量は 0. 1 w t% (H2OZ仕込み p—トルエンスルホン酸無水物 = 5 (モル比) 相当、 Η2Ο/ 「酸無水物に対応する酸および酸成分の合計」 =2. 5 (モル比)) であった。 実施例 5 The molar ratio of the total amount of water contained in cyclododecanone oxime and acetone before the start of reaction to p-toluenesulfonic anhydride was 4.7, and the water content after the reaction was 0.1 wt%. (H 2 OZ charged p-toluenesulfonic anhydride = 5 (molar ratio) equivalent, { 2 } / “total of acid and acid component corresponding to acid anhydride” = 2.5 (molar ratio)) . Example 5
水分量が 1. 1 1 w t %のシクロドデカノンォキシムと、 予めモレキュラーシ 一ブス 3 Aで乾燥したァセト ^トリル(水分量 0 p pm (検出限界以下)) を用い た以外は実施例 3と同様の方法でベックマン転位反応を行った。  Example 3 except that cyclododecanone oxime having a water content of 1.1 wt% and aceto ^ tolyl (water content 0 ppm (below the detection limit)) previously dried with Molecular Sieves 3 A were used. A Beckmann rearrangement reaction was performed in the same manner as in Example 1.
反応液を熱溶液のままサンプリングし、 1H-NMR で分析した。 その結果、 0. 5時間後の ω—ラウリンラタタムの収率は 58 %、ΤΟΝ値は 43であった。また、 1時間後の TON値は 46であった。 The reaction solution was sampled as a hot solution and analyzed by 1 H-NMR. As a result, the yield of ω-laurinlatatam after 0.5 hours was 58%, and the Δ value was 43. The TON value after one hour was 46.
反応開始前のシク口ドデカノンォキシムおよびァセトェトリルに含まれる水の 合計量の、 p—トルエンスルホン酸無水物に対するモル比は、 9. 0であり、 反 応後の水分量は 0. lw t% (H2O/仕込み p—トルエンスルホン酸無水物 = 6 (モル比) 相当、 H20/ 「酸無水物に対応する酸および酸成分の合計」 =3 (モ 2003/009749 ル比)) であった。 比較例 2 Before the start of the reaction, the molar ratio of the total amount of water contained in the dodecanonone oxime and acetone to the p-toluenesulfonic anhydride was 9.0, and the amount of water after the reaction was 0.1 lwt. % (Equivalent to H 2 O / p-toluenesulfonic anhydride = 6 (molar ratio), H 20 / “Total of acid and acid components corresponding to acid anhydride” = 3 2003/009749 ratio)). Comparative Example 2
参考例と同様の方法で合成したシクロドデカノンォキシムを、 減圧濾過の後、 さらさらになるまで風乾した。 このとき、 水分含量は 1. 7 1 w t°/0であった。 このシクロドデカノンォキシム 8. 0 500 g (40. 8 Ommol) と、 純正化 学社製のァセトュトリル 32. 1 3 g (水分含量 395 p pm) を、 大気中で 5 Om 1の丸底フラスコに仕込んだ。 80°Cに加熱した後、 p— トルエンスルホン 酸無水物 0. 1 699 g (0. 5 206mm o 1 ) を上述のァセトュトリノレ 2. 7 g (水分含量 395 p pm) に溶解させた溶液を加え、 .攪拌しながらベックマ ン転位反応を行った。 反応条件下でも、 p—トルエンスルホン酸無水物は溶媒に 溶解していた。 Cyclododecanone oxime synthesized in the same manner as in the Reference Example was filtered under reduced pressure and air-dried until further. At this time, the water content was 1.71 wt ° / 0 . 8.0 500 g (40.8 Ommol) of this cyclododecanone oxime and 32.13 g of acetotrile (purity of water: 395 ppm) manufactured by Junsei Kagaku Co., Ltd. were added to a 5 Om1 round bottom flask in air. Was charged. After heating to 80 ° C, a solution prepared by dissolving 0.1699 g (0.5206 mmo 1) of p-toluenesulfonic anhydride in 2.7 g (water content of 395 ppm) of the above-mentioned acetate was added. The Beckmann rearrangement reaction was performed with stirring. Even under the reaction conditions, p-toluenesulfonic anhydride was dissolved in the solvent.
. 反応液を熱溶液のままサンプリングし、 iH-NMIl で分析しだ。 その結果、 0. 5時間後の co—ラウリンラクタムの収率は 38%、TON値は 30であった。また、 1時間後の ω—ラウリンヲクタムの収率は 40%、 TON値は 31であり、顕著に 増加していく様子もみられなかった。  The reaction solution was sampled as a hot solution and analyzed with iH-NMIl. As a result, the yield of co-laurin lactam after 0.5 hour was 38%, and the TON value was 30. One hour later, the yield of ω-laurin pectam was 40% and the TON value was 31, indicating no significant increase.
反応開始前のシク口ドデカノンォキシムおよびァセト-トリルに含まれる水の 合計量の、 ρ— トルエンスルホン酸無水物に対するモル比は、 16. 1であり、 反応後の水分量は 0. 3w t% (H20/仕込み p— トルエンスルホン酸無水物 = 14 (モル比) 相当、 H2O/ 「酸無水物に対応する酸および酸成分の合計」 = 7 (モル比)) であった。 実施例 6 Before the reaction was started, the molar ratio of the total amount of water contained in the dodecanonone oxime and aceto-tolyl to ρ-toluenesulfonic anhydride was 16.1, and the water content after the reaction was 0.3 w. t% (H 2 0 / charge p- toluenesulfonic anhydride = 14 (molar ratio) corresponds, "the sum of the corresponding acids and acid components in the acid anhydride" H 2 O / = 7 (molar ratio)) met Was. Example 6
アルゴン雰囲気下で、 70°Cの乾燥機で乾燥した 50mlの丸底フラスコに、 減圧 乾燥により水分含有量を 0. 1 28 w t °/0に低下させた、 シクロドデカノンォキ シム 2. 5353 g (1 2. 8 5mmo 1 ) 及び純正化学製のァセトエトリル 1 0. 01 g (水分含量 0 p pm (検出限界以下))を仕込んだ。アルゴン雰囲気下、 フラスコ内を 77。Cに加熱した後、 p—トルエンスルホン酸無水物 0. 0560 g (0. 1 72mmo 1 ) をモレキュラーシーブス 3 Aで予め乾燥したァセトニ トリル 1. 1 5 g (水分含量 0 p pm (検出限界以下))に溶解させた溶液を加え、 攪拌しながらベックマン転位反応を行った。 In a 50-ml round-bottomed flask dried with a dryer at 70 ° C under an argon atmosphere, cyclododecanone oxime 2.5 5353 in which the water content was reduced to 0.128 wt ° / 0 by vacuum drying. g (1 2.85 mmo 1) and 10.0 g of acetoethryl manufactured by Junsei Kagaku (water content 0 ppm (below the detection limit)) were charged. Under argon atmosphere, 77 in the flask. After heating to C, p-toluenesulfonic anhydride 0.0560 g (0.172 mmo 1) dissolved in 1.15 g of acetonitrile (water content: 0 ppm (below detection limit)) previously dried with Molecular Sieves 3 A, and the mixture is stirred with Beckmann rearrangement reaction. Was done.
2分後から徐々に反応液温度が上昇し、 1 2分後に 80 °Cになつた。 35分後 には 78°Cになり、 1時間 7分後までその温度を保持した。 反応液を冷却し、 減 圧濾過により白色結晶を濾取し、 冷ァセトニトリルで白色結晶を洗浄した。 得ら れた白色結晶及ぴ濾液と洗浄液とを混合したものをそれぞれガスク口マトグラフ ィ一にて分析した。  The reaction solution temperature gradually increased from 2 minutes later, and reached 80 ° C after 12 minutes. After 35 minutes, the temperature reached 78 ° C, and the temperature was maintained until 1 hour and 7 minutes. The reaction solution was cooled, white crystals were collected by filtration under reduced pressure, and the white crystals were washed with cold acetonitrile. Each of the obtained white crystals and the mixture of the filtrate and the washing solution was analyzed by gas chromatography.
その結果白色結晶には、 ω—ラウリンラタタムが 1 2. 2mmo l、 未反応の シクロドデカノンォキシムが 0. O 5mmo 1含有されており、 溶液には ω—ラ ゥリンラタタムが 1. 04mmo l、 未反応のシクロドデカノンォキシムが 0. 0 1 mmo 1、シクロドデカノンが 0.04 mm o 1含有ざれることがわかった。 シク口ドデカノンォキシムの転化率は 99. 5 %、 ω—ラウリンラクタム選択率 9 9. 7 %、 シク口ドデカノン選択率 0. 3 %であった。 ,  As a result, the white crystal contained 12.2 mmol of ω-laurinlatatam and 5 mmol of unreacted cyclododecanone oxime, and 1.04 mmol of ω-laurinlatatam in the solution. It was found that the reaction contained 0.01 mmo 1 of cyclododecanone oxime and 0.04 mmo 1 of cyclododecanone. The conversion of dodecanone oxime at the mouth was 99.5%, the selectivity of ω-laurinlactam was 99.7%, and the selectivity of dodecanone at the mouth was 0.3%. ,
(ω—ラウリンラタタムの TON値としては、 77であった。) - また、 溶媒のァセト-トリルが水と反応すると生成するァセトアミ ドは、 検出 されなかった。 (検出限界は、溶媒に対して 0. 00 lmo 1 %、生成ラタタムに 対して 0. 02mo 1 %)。  (The TON value of ω-laurin ratatum was 77.)-In addition, acetoamide formed when the solvent aceto-tolyl reacted with water was not detected. (The detection limit is 0.00 lmo 1% for the solvent and 0.02mo 1% for the produced ratatum).
反応開始前のシク口ドデカノンォキシムおよぴァセトニトリルに含まれる水の 合計量の、 ρ— トルエンスルホン酸無水物に対するモル比は、 1. 1であった。 Before the start of the reaction, the molar ratio of the total amount of water contained in the dodecanonone oxime and acetonitrile to ρ-toluenesulfonic anhydride was 1.1.
表 1 table 1
Figure imgf000046_0001
Figure imgf000046_0001
氺 r>― 酸無水物基準, 反応時間 0. 5時間 ** 反応時間 3時間  氺 r>-Based on acid anhydride, reaction time 0.5 hours ** Reaction time 3 hours
***反応時間 1時間 5分 表 1に示した通り、 通常の手法により得られたォキシムを、 特別な水分除去の 操作をしなレ、溶媒中で反応させた比較例 1および 2に対して、 ォキシム中の水分 量を減少させ、 かつ乾燥させた溶媒中で反応させた実施例 1〜 6は反応成績が優 れることは明ら力.である。 参考例 2  *** Reaction time 1 hour 5 minutes As shown in Table 1, Oxime obtained by the usual method was used in Comparative Examples 1 and 2 where the reaction was performed in a solvent without special water removal operation. In Examples 1 to 6 in which the amount of water in the oxime was reduced and the reaction was carried out in a dried solvent, it is clear that the reaction results are superior. Reference example 2
参考例 1の方法で合成し、 減圧乾燥により水分含有量を 0. 2 4 9 w t %に低 下させたシクロドデカノンォキシム 2 0. 2 1 g (0. 1 0 2 m o l ) を、 丸底 フラスコ内で 1 Lのエタノールに溶解させた。 丸底フラスコ内の温度を 2 6°C付 近に保ちながら、 濃塩酸 (3 6 w t %) 1 6. 7m l (塩酸として 0. 2mo l ) 及びエタノール 5 Om 1を混合した溶液 (3m o 1 Z L塩酸一エタノール含水溶 液) を上記溶液中に滴下した。 2 6°Cでさらに 3 0分攪拌を続けたのち、 ェタノ ール及び水を室温で真空下留去し、 さらに室温下 4 0 0Ρ¾で減圧乾燥させ、 白色 固体を得た。  A cyclododecanone oxime 20.21 g (0.102 mol), synthesized by the method of Reference Example 1 and reduced in water content to 0.249 wt% by drying under reduced pressure, was Dissolved in 1 L ethanol in the bottom flask. While maintaining the temperature in the round bottom flask at around 26 ° C, a solution of concentrated hydrochloric acid (36 wt%) mixed with 16.7 ml (0.2 mol as hydrochloric acid) and ethanol 5 Om1 (3 mol 1 ZL hydrochloric acid / ethanol aqueous solution) was added dropwise to the above solution. After stirring was further continued at 26 ° C. for 30 minutes, ethanol and water were distilled off under vacuum at room temperature, and further dried under reduced pressure at 400 ° C. at room temperature to obtain a white solid.
この白色固体は1 H— NMR、 元素分析により、 シクロドデカノンォキシム : HC1= 1 : 1 (モル比) のシクロドデカノンォキシム塩酸塩であることがわかつ た。 また、含水量をカールフィッシヤー法で測定したところ、 1 76ppmの水を 含有していることがわかった。 実施例 7 According to 1 H-NMR and elemental analysis, this white solid was found to be cyclododecanone oxime hydrochloride of cyclododecanone oxime: HC1 = 1: 1 (molar ratio). Was. The water content was measured by the Karl Fischer method and found to contain 176 ppm of water. Example 7
アルゴン雰囲気下で、 70°Cの乾燥機で乾燥した 50mlの丸底フラスコに、 上 記シク口ドデカノンォキシム塩酸塩を 3. 00 1 7 g ( 1 2. 8 3 99 mm o 1 ) 及び純正化学社製のァセトニトリル 10. 1 3 g (水分含量 0 p pm (検出限界 以下)) を仕込んだ。 攪拌しながら、 80°Cのオイルバスで加熱した。 フラスコ内 の温度が 77 °Cで安定後、 p—トルエンスルホン酸無水物 0. 0556 g (0. 1 704mmo 1 ) をァセトエトリル 1. 23 gに溶解させた溶液を加えた。 徐 徐に温度が上昇し、 1 1分後に 8 1°Cになった。 その後徐徐に温度が低下し、 4 6分後に 77. 2°Cから変化しなくなつたため、 室温まで冷却した。  In an argon atmosphere, in a 50-ml round-bottomed flask dried with a dryer at 70 ° C, 3.001 g (12.88399 mmo1) of the above-mentioned dodecanonone oxime hydrochloride was added. 10.13 g of acetonitrile manufactured by Junsei Chemical Co., Ltd. (water content: 0 ppm (lower than detection limit)) was charged. While stirring, the mixture was heated in an oil bath at 80 ° C. After the temperature in the flask was stabilized at 77 ° C., a solution prepared by dissolving 0.0556 g (0.1704 mmo 1) of p-toluenesulfonic anhydride in 1.23 g of acetoethrile was added. The temperature gradually increased to 81 ° C after 11 minutes. Thereafter, the temperature gradually decreased, and after 46 minutes, the temperature did not change from 77.2 ° C., and thus the temperature was cooled to room temperature.
反応液を一部取り出して、 28 w t %NH3水で中和した。 生成した結晶を濾 別洗浄し、 結晶と濾液のそれぞれについて含有される成分をガスクロマトグラフ ィ一で分析した。 A part of the reaction solution was taken out and neutralized with 28 wt% NH 3 water. The generated crystals were separated by filtration and washed, and the components contained in each of the crystals and the filtrate were analyzed by gas chromatography.
その結果、 シクロドデカノンォキシム塩酸塩の転化率は 100%·、 ω—ラウリ- ンラクタムの選択率は 99. 9 %、 シクロドデカノンの選択率は 0. 1 %である ことがわかった。 ρ— トルエンスルホン酸無水物基準の TONは、 74であった。 また、ァセトニトリルと水との反応により生成するァセトアミドの生成量は、 0. 1 9mmo 1であり、 溶媒に対し 0. 07 m o 1 %、 ラタタムに対して 1. 5 m o 1 %であった。  As a result, it was found that the conversion of cyclododecanone oxime hydrochloride was 100% ·, the selectivity of ω-laurin lactam was 99.9%, and the selectivity of cyclododecanone was 0.1%. The TON based on ρ-toluenesulfonic anhydride was 74. The amount of acetamide produced by the reaction of acetonitrile with water was 0.19 mmo1, 0.07 mol 1% for the solvent, and 1.5 mol 1% for ratatam.
反応開始前のシク口ドデカノンォキシム塩酸塩およびァセトュトリルに含まれ る水の合計量の、 J)一トルエンスルホン酸無水物に対するモル比は、 0. 2であ つた。 参考例 3  Before the start of the reaction, the molar ratio of the total amount of water contained in dodecanonone oxime hydrochloride and acetate in the mouth to J) monotoluenesulfonic anhydride was 0.2. Reference example 3
アルゴン雰固気下で、 70°Cの乾燥機で乾燥した 50mlの丸底フラスコに、 上 記シクロドデカノンォキシム塩酸塩を 2. 0023 g (8. 5 65mmo l ) 及 ぴ純正化学社製のァセトエトリル 8. 06 g (水分含量 0 p pm (検出限界以下)) を仕込んだ。 アルゴン雰囲気下、 攪拌しながら 80°Cのオイルバスで加熱した。 フラスコ内の温度は、徐々に上昇し 30分後には 79. 5°Cになった。ついで徐々 に温度が低下し、 40分経過した時点で温度が一定となったので、 45分後にフ ラスコをオイルバスから取り出して、 加熱を停止し、 室温まで冷却した。 室温に 冷却した際には均一な溶液であった。 2.0023 g (8.5 65 mmol) of the above cyclododecanone oxime hydrochloride was placed in a 50 ml round bottom flask dried in a dryer at 70 ° C under an atmosphere of argon. 8. 8.06 g (water content: 0 ppm (below detection limit)) of acetoethryl manufactured by Junsei Chemical Co., Ltd. was charged. The mixture was heated in an 80 ° C oil bath with stirring under an argon atmosphere. The temperature in the flask gradually increased to 79.5 ° C after 30 minutes. Then, the temperature gradually decreased, and after 40 minutes had passed, the temperature became constant. After 45 minutes, the flask was removed from the oil bath, heating was stopped, and the flask was cooled to room temperature. It was a homogeneous solution when cooled to room temperature.
反応液を一部取り出して、 28 w t °/oNH3水で中和した。 生成した結晶を濾 別洗浄し、 結晶と濾液のそれぞれについて含有される成分をガスクロマトグラフ ィ一で分析した。その結果、シクロドデカノンォキシム塩酸塩の転化率は 100%、 ω—ラウリンラタタムの選択率は 99. 6%、 シクロドデカノンの選択率は 0. 4%であることがわかったまた、 ァセトニトリルと水との反応により生成するァ セトアミ ドの生成量は、 0. 24mm ο 1であり、溶媒に対し 0. 1 2mo 1 %、 ラクタムに対して 2. 7mo l %であった。 A part of the reaction solution was taken out and neutralized with 28 wt ° / oNH 3 water. The generated crystals were separated by filtration and washed, and the components contained in each of the crystals and the filtrate were analyzed by gas chromatography. As a result, it was found that the conversion of cyclododecanone oxime hydrochloride was 100%, the selectivity of ω-laurin ratatam was 99.6%, and the selectivity of cyclododecanone was 0.4%. The amount of acetamide produced by the reaction with water was 0.24 mmο1, 0.12 mol% for the solvent, and 2.7 mol% for the lactam.
反応開始前のシク口ドデカノンォキシム塩酸塩おょぴァセト二トリルに含まれ る水の合計量の、 ォキシム塩酸塩に対するモル比は、 0. 002であった。 参考例 4  Before the start of the reaction, the molar ratio of the total amount of water contained in the dodecanonone oxime hydrochloride oxacetonitrile to the oxime hydrochloride was 0.002. Reference example 4
水分含有量 5. 4 %のシク口ドデカノンォキシム塩酸塩 (シク口ドデカノンォ キシム: HC 1 = 1 : 1 (モル比) を用いた他は参考例 3と同様の方法でシク口 ドデカノンォキシム塩酸塩のベックマン転位反応を行った。 フラスコ内の温度は 加熱開始後 1 2分で 77 °Cに到達したが、 その後 77°Cから変化はなかった。 4 2分後に加熱を停止し、 反応液を冷却した。 反応終了時点で既に結晶の析出があ つたため、 室温まで冷却の後、 固体と濾液とを分離してそれぞれを中和し、 ガス クロマトグラフィーで分析した。  The same method as in Reference Example 3 was used, except that the dodecanonone oxime hydrochloride having a water content of 5.4% (dodecanonone oxime: HC 1 = 1: 1 (molar ratio)) was used. The temperature in the flask reached 77 ° C. in 12 minutes after the start of heating, but did not change from 77 ° C. After 42 minutes, the heating was stopped. At the end of the reaction, crystals had already precipitated, so after cooling to room temperature, the solid and the filtrate were separated, neutralized, and analyzed by gas chromatography.
その結果、 シクロドデカノンォキシム塩酸塩の転化率は 20. 2%、 ω—ラウ リンラタタムの選択率は 37. 3 %、 シク口ドデカノンの選択率は 6 2. 7 %で あることがわかった。 また、 ァセトニトリルと水との反応により生成するァセト アミ ドの生成量は、 0. 28 mm ο 1であり、 溶媒に対し 0. 1 5mo l %、 生 成ラクタムに対して 47. 7mo 1 %であった。 As a result, it was found that the conversion of cyclododecanone oxime hydrochloride was 20.2%, the selectivity of ω-laurinlatatam was 37.3%, and the selectivity of cyclododecanone was 62.7%. . The amount of acetoamide generated by the reaction of acetonitrile with water was 0.28 mm ο1, which was 0.15 mol% based on the solvent. It was 47.7mo 1% based on the formed lactam.
反応開始前のシク口ドデカノンォキシム塩酸塩およびァセトニトリルに含まれ る水の合計量の、 ォキシム塩酸塩に対するモル比は、 0. 7であった。 実施例 8  Before the start of the reaction, the molar ratio of the total amount of water contained in dodecanonone oxime hydrochloride and acetonitrile to oxime hydrochloride was 0.7. Example 8
アルゴン雰囲気下で、 70°Cの乾燥機で乾燥した 5 Omlの丸底フラスコに、減 圧乾燥により水分含有量を 0. 07 w t %に低下させたシクロドデカノンォキシ ム 10. 0290 g (50. 82mmo 1 ) 及び予めモレキュラーシーブ 3 Aで 乾燥したトルエン 40. 1 g (水分含量 O p pm (検出限界以下)) を仕込んだ。 95。Cに加熱してシク口ドデカノンォキシムが溶解した後、 ρ— トルエンスルホ ン酸無水物 0. 2219 g (0. 680 Ommo 1 ) と上記トノレェン 4. 2 gを 混合したもの (大部分の p—トルエンスルホン酸無水物はトルエンに溶解してい ない) を加え、 引き続き 95°Cに加熱しベックマン転位反応を行った。  Under an argon atmosphere, cyclododecanone oxime whose water content was reduced to 0.07 wt% by reduced pressure drying in a 5 Oml round-bottom flask dried with a dryer at 70 ° C 10.0290 g ( 50.82 mmo1) and 40.1 g of toluene (water content Op pm (below the detection limit)) previously dried with molecular sieve 3 A were charged. 95. After heating to C, the dodecanonone oxime was dissolved, and 0.222 g (0.680 Ommo 1) of ρ-toluenesulphonic anhydride and 4.2 g of the above tonolenene were mixed (most of them). p-Toluenesulfonic anhydride was not dissolved in toluene), and the mixture was heated to 95 ° C and Beckmann rearrangement reaction was performed.
反応条件下でも、 大部分の P— トルエンスルホン酸無水物は溶媒に溶解せずに 溶媒中に分散していた。 p—トルエンスルホン酸無水物を添加後、 6分後から緩 やかな発熱が観測され、 16分〜 5 ·5分までは 97°Cを保ち、 その後 96でまで 低下した。  Even under the reaction conditions, most of the P-toluenesulfonic anhydride was not dissolved in the solvent but was dispersed in the solvent. After 6 minutes from the addition of p-toluenesulfonic anhydride, a mild exotherm was observed. The temperature was maintained at 97 ° C from 16 minutes to 5.5 minutes, and then decreased to 96 ° C.
反応液を熱溶液のままサンプリングし、 iH-NMilで分析した。 その結果、 3時 間 45分後の TONは 41であり、 6時間後の TON.は 39であった。  The reaction solution was sampled as a hot solution, and analyzed by iH-NMil. As a result, the TON after 3 hours and 45 minutes was 41, and the TON after 6 hours was 39.
反応前の、 仕込みのォキシムと溶媒に含有される水分の、 p—トルエンスルホ ン酸無水物に対する水のモル比は 0. 6であった。  Before the reaction, the molar ratio of the water contained in the charged oxime and the solvent to p-toluenesulfonic anhydride was 0.6.
この反応液を室温まで冷却後、 密封保存した。 保存した反応液は仕込みの反応 液の 99. 3 %に相当し、 1H-NMRの分析結果によれば、未反応のシク口ドデカ ノンォキシムを 23. 9mm o 1、 ω—ラウリンラタタムを 26. 6 mm o 1、 p— トルエンスルホン酸を 1. 4mmo 1含有していた。 室温で 2週間保存した 後、 反応液を、 減圧濾過して結晶と濾液を分離し、 少量の 0°Cに冷却したトルェ ンで結晶を洗浄し、 洗浄液は濾液と合体させた。 結晶は 6. 65 gであり、 濾液 は、 50. l gであった。 この濾液を冷蔵庫にいれて 2日間 0°Cに放置した。 析 出した結晶を同様に減圧濾過して濾液と分離した。 結晶 1. 5 5 5 gと、 濾液 4 6. 3 1 gとが得られた。 The reaction solution was cooled to room temperature and stored tightly. The stored reaction solution was equivalent to 99.3% of the charged reaction solution, and 1H-NMR analysis showed that unreacted dodecanononoxime was 23.9 mm o 1 and ω-laurin ratatam was 26.6 mm. o 1, p- Contains 1.4 mmo 1 of toluenesulfonic acid. After storage at room temperature for 2 weeks, the reaction solution was filtered under reduced pressure to separate the crystals and the filtrate, and the crystals were washed with a small amount of toluene cooled to 0 ° C, and the washed solution was combined with the filtrate. The crystals weighed 6.65 g and the filtrate weighed 50.lg. The filtrate was kept in a refrigerator at 0 ° C. for 2 days. Analysis The resulting crystals were similarly filtered under reduced pressure to separate from the filtrate. 1.555 g of crystals and 46.31 g of filtrate were obtained.
これらの結晶及び濾液を分析したところ、 得られた結晶中に ω—ラウリンラタ タムが 2 1. 8mmo 1、 未反応のシクロドデカノンォキシムが 1 7. 3 mm o 1、 p—トノレエンスルホン酸は 0. 08mnio 1検出された。  When these crystals and the filtrate were analyzed, it was found that in the obtained crystals, ω-laurinratham was 21.8 mmo1, unreacted cyclododecanone oxime was 17.3 mmo1, p-tonolenesulfonic acid 0.08mnio 1 was detected.
また、 濾液中には、 ω—ラウリンラタタムが 3. 9mmo 1、 未反応のシクロド デカノンォキシムが 4. 3mmo 1 s p— トルエンスルホン酸が 1. 4mmo l 含まれることがわかった。 Further, in the filtrate, .omega. Raurinratatamu is 3. 9mmo 1, Shikurodo Dekanonokishimu unreacted 4. 3Mmo is 1 s p-toluenesulfonic acid was found to contain 1. 4mmo l.
この段階で、 晶析仕込みに対して、 ω—ラウリンラタタムが結晶中に 82m o 1 %回収され、 未反応のシクロドデカノンォキシムが 72 m o 1 %回収された。 さらに、 この濾液をトルエンが 10 gになるまで濃縮し、 再度 0°Cで晶析をお こなったところ、 得られた結晶中には ω.—ラウリンラタタム 1. 5mmo 1、 未 反応のシク口ドデカノンォキシムが 2. 2 mm o 1、 一トルエンスルホン酸が 0. 0 lmm o 1含まれていた。 これらの一連の晶析操作により、 晶析仕込みに 対して ω—ラウリンラクタムが 88mo 1 %、 未反応のシク口ドデカノンォキシ ムが 82mo 1 %回収された。 結晶中への; —トルエンスルホン酸の混入は晶析 仕込みの 6. 4mo l %であった。 - 実施例 9  At this stage, with respect to the crystallization charge, 82 mol 1% of ω-laurinlatatam was recovered in the crystal, and 72 mol 1% of unreacted cyclododecanone oxime was recovered. Further, the filtrate was concentrated until the amount of toluene became 10 g, and crystallization was performed again at 0 ° C. In the obtained crystals, ω.-laurin ratatam 1.5 mmo 1 Dodecanone oxime contained 2.2 mmo 1 and monotoluenesulfonic acid at 0.01 mmo 1. As a result of these series of crystallization operations, ω-laurinlactam was recovered in an amount of 88 mol% and unreacted neck-mouth dodecanone oxime was recovered in an amount of 82 mol%. -Toluenesulfonic acid was mixed in the crystals in an amount of 6.4 mol% of the crystallization charge. -Example 9
トルエンのかわりに、 同様に脱水した、 水分量 0. 004 1: °/0の;^, N—ジ メチルホルムアミド (DMF) を用いた以外は実施例 2と同様の方法で、 シクロ ドデカノンォキシムのベックマン転位反応を行った。 P— トルエンスルホン酸無 水物は DMFに溶解してシクロドデカノンォキシムの DMF溶液に添加した。 添 加直後に反応液の温度が 1 20°Cまで上昇し、 その後除々に低下し、 40分経過 以降は 96 °C—定の温度となった。 Cyclododecanone was prepared in the same manner as in Example 2 except that instead of toluene, dehydrated water of 0.0004 1: ° / 0 ; ^, N-dimethylformamide (DMF) was used. A Beckmann rearrangement reaction of Kissim was performed. P-toluenesulfonic anhydride was dissolved in DMF and added to a DMF solution of cyclododecanone oxime. Immediately after the addition, the temperature of the reaction solution rose to 120 ° C, then gradually decreased, and after 40 minutes had passed, the temperature reached 96 ° C—a constant temperature.
反応液を熱溶液のままサンプリングし、 iH-NMRで分析した。 その結果、 30 分後の ω—ラウリンラタタムの収率は 80. 2 %、 TON値は 5 9であった。 2時 間 45分、 3時間 50分にもサンプリングしたが、 TONは 57であり殆ど変化し 2003/009749 なかった。 The reaction solution was sampled as a hot solution and analyzed by iH-NMR. As a result, the yield of ω-laurin ratatam after 30 minutes was 80.2%, and the TON value was 59. Sampling was performed at 45 minutes for 2 hours and 50 minutes for 3 hours. 2003/009749 There was not.
反応前の、 仕込みのォキシムと溶媒に含有される水分の、 P—トルエンスルホ ン酸無水物に対する水のモル比は 0. 6であった。  Before the reaction, the molar ratio of the water contained in the charged oxime and the solvent to the water of P-toluenesulfonic anhydride was 0.6.
反応終了後に得られた反応液は仕込みの 98.3 w t %に相当する量であった。 この反応液は、 H-NMIlの分析結果によれば、未反応のシクロドデカノンォキシ ムを 1 1. 3mmo l、 ω—ラウリンラタタムを 38. 8 mm o 1 s p—トスレエ ンスルホン酸を 1. 4mmo l含有していた。 この反応液を室温まで冷却して結 晶を析出させた。 減圧濾過して結晶と濾液を分離した後、 少量の 0°Cに冷却した DMFで結晶を洗浄した。 このとき、得られた結晶の重量は 1. 59 g、濾液は、 50. 66 gであった。 この濾液を冷蔵庫にいれて 2日間 0°Cに放置した。 析出 した結晶を同様に減圧濾過して濾液と分離した。 この時の結晶は 3. l g、 濾液 は 45. 05 gであった。 The reaction solution obtained after the completion of the reaction was in an amount corresponding to 98.3 wt% of the preparation. The reaction solution according to the analysis results of the H-NMIL, cyclododecanone O carboxymethyl arm of 1 1. 3mmo l unreacted an ω- Raurinratatamu 38. The 8 mm o 1 s p-Tosuree Nsuruhon acid 1. It contained 4 mmol. The reaction solution was cooled to room temperature to precipitate crystals. After filtration under reduced pressure to separate the crystals and the filtrate, the crystals were washed with a small amount of DMF cooled to 0 ° C. At this time, the weight of the obtained crystal was 1.59 g, and the filtrate was 50.66 g. The filtrate was kept in a refrigerator at 0 ° C. for 2 days. The precipitated crystals were similarly filtered under reduced pressure to separate from the filtrate. The crystals at this time were 3.lg and the filtrate was 45.05 g.
これらの結晶及び濾液を分析したところ、 得られた結晶中に ω—ラウリンラタ タムが 1 7. 3 mm ο .1、.未反応のシクロドデカノンォキシムが 4. 2 mm o 1、 p _トノレエンスノレホン酸が 0. 02mmo 1含まれることがわかった。 また、 濾 液中には、 ω—ラウリンラタタムが 9. 6mmo l、 未反応のシクロドデカノン ォキシムが 1 5. lmmo l、 p— トルエンスルホン酸が 1. 4 mm o l含まれ ることがわかった。 When these crystals and the filtrate were analyzed, it was found that ω-laurin ratamone contained 17.3 mm ο .1 and unreacted cyclododecanone oxime contained 4.2 mm o 1, p _ It was found that ensnolefonic acid contained 0.02 mmo1. In addition, it was found that the filtrate contained 9.6 mmol of ω-laurin ratatam, 15.5 lmmol of unreacted cyclododecanone oxime, and 1.4 mmol of p-toluenesulfonic acid.
この段階で、 晶析仕込みに対して、 ω—ラウリンラタタムが結晶中に約 45m o 1 %回収され、 未反応のシク口ドデカノンォキシムが約 37mo 1 %回収され た。  At this stage, about 45 mol 1% of ω-laurinlatatam was recovered in the crystal, and about 37 mol 1% of unreacted dodecanonone oxime was recovered in the crystal.
さらに、 この濾液を DMFが 5. 7 gになるまで濃縮し、 トルエンを 4. 0 g 添加したのち再度 0 °Cで晶析をおこなったところ、 得られた結晶中に ω—ラウリ ンラクタム 6. 7 mm o 1 N 未反応のシクロドデカノンォキシムが 4. 2 mm o 1検出され、 : p—トルエンスルホン酸は検出されなかった。 この一連の晶析操作 により、 晶析仕込みに対して ω—ラウリンラクタムが 62m ο 1 %、 未反応のシ ク口ドデカノンォキシムが 74 m o 1 %回収された。 結晶中への ρ—トルエンス ルホン酸の混入は晶析仕込みの 1. 5 mo 1。/。であった。 実施例 10 Further, the filtrate was concentrated until the DMF was reduced to 5.7 g, and 4.0 g of toluene was added. Then, crystallization was performed again at 0 ° C., and ω-laurin lactam 6. 7 mm o 1 N unreacted cyclododecanone oxime was detected at 4.2 mm o 1, and p-toluenesulfonic acid was not detected. As a result of this series of crystallization operations, ω-laurinlactam was recovered in an amount of 62 mol 1%, and unreacted dodecanonone oxime was recovered in an amount of 74 mol 1%. The mixing of ρ-toluenesulphonic acid into the crystal was 1.5 mo 1 of the crystallization preparation. /. Met. Example 10
アルゴン雰囲気下で、 70°Cの乾燥機で乾燥した 5 Omlの丸底フラスコ (反応 器 1) に、 減圧乾燥により水分含有量を◦. 07w t%に低下させた、 シクロド デカノンォキシム 5. 0486 g (25. 59 mm o 1 ) 及び予めモレキュラー シープ 3 Aで乾燥した DMF 42. 7 g (水分含量 0. ひ 04 w t %) を仕込ん だ。 アルゴン雰囲気下、 95°Cに加熱してシクロドデカノンォキシムが溶解した 後、 P一 トルエンスノレホン酸無水物 0. 227 g (0. 6955 mm o 1 ) を上 記 DMF 2. 6 gに溶解した溶液を加え、 30分加熱攪拌しべックマン転位反応 を行った。 p—トルエンスルホン酸無水物添加直後に 122°Cまで反応温度が上 昇し、 その後徐々に反応温度は低下し、 1 2分後には 96. 5°Cに低下しそのま 30分後までその温度を保持した。  In a 5 Oml round-bottom flask (reactor 1) dried in a dryer at 70 ° C under an argon atmosphere, cyclododecanone oxime 5.0486 g whose water content was reduced to ◦ 07 wt% by drying under reduced pressure (25.59 mmo 1) and 42.7 g (water content: 0.4 wt%, 0.4 wt%) of DMF previously dried with Molecular Sheep 3A. After the cyclododecanone oxime was dissolved by heating to 95 ° C under an argon atmosphere, 0.227 g (0.6955 mmo1) of P-toluenesnorenoic anhydride was added to 2.6 g of the above DMF. The dissolved solution was added, and the mixture was heated and stirred for 30 minutes to perform a Beckmann rearrangement reaction. Immediately after the addition of p-toluenesulfonic anhydride, the reaction temperature rose to 122 ° C, and then gradually decreased.After 12 minutes, it dropped to 96.5 ° C and remained there for 30 minutes. The temperature was maintained.
この反応液を氷浴につけ、 結晶を析出させたのち、 70°Cの乾燥機で乾燥した シリンジを用いて大部分の溶液成分を取り出した。 . アルゴン雰囲気下で、 別の 70°Cの乾燥機で乾燥した 5 Oml の丸底フラスコ (反応器 2) に、 減圧乾燥により水分含有量を 0. 07w t%に低下させた、 シ クロドデカノンォキシム 5. 0549 g (25. 62 mm o 1 ) を仕込み、 シリ ンジで反応器 1から採取した溶液成分を反応器 2に仕込んだ。 このとき、 反応器 1から反応器 2へ移送された溶液は、 33. 35 gであり、 シリンジ内に残留し た溶液は 2. 20 gであった。  The reaction solution was placed in an ice bath to precipitate crystals, and then most of the solution components were taken out using a syringe dried in a drier at 70 ° C. In a 5 Oml round bottom flask (Reactor 2) dried in a separate 70 ° C dryer under an argon atmosphere, the cyclododeca water content was reduced to 0.07 wt% by vacuum drying. 5.0549 g (25.62 mmo 1) of nonoxime was charged, and the solution component collected from the reactor 1 by a syringe was charged to the reactor 2. At this time, the amount of the solution transferred from the reactor 1 to the reactor 2 was 33.35 g, and the amount of the solution remaining in the syringe was 2.20 g.
反応器 2を引き続きアルゴン雰囲気下で、 95°Cに加熱攪拌し、 ベックマン転 位反応を行った。各反応器の成分を 1H-NMRで分析した結果、反応器 1で生成し た ω—ラウリンラタタムは、 25. 59mmol (ΤΟΝ= 39)、 反応器 2で新た に生成した ω—ラウリンラタタムは、 2. 4難 ol (TON= 5) であり、 トー タノレの ω—ラウリンラクタムの ΤΟΝ=44であった。  The reactor 2 was heated and stirred at 95 ° C. under an argon atmosphere to carry out a Beckmann rearrangement reaction. The components of each reactor were analyzed by 1H-NMR.As a result, ω-laurin ratatam produced in reactor 1 was 25.59 mmol (ΤΟΝ = 39), and ω-laurin ratatam newly produced in reactor 2 was 2. It was 4 ol (TON = 5), and ω = Laulinlactam of Totanore was ΤΟΝ = 44.
また、 反応器 1に残留した結晶中に含まれる、 ω—ラウリンラクタムは 11. 6mmo 1であり、 生成した ω—ラウリンラクタムのうち 45 mo 1 %が結晶中 に回収された。また、触媒成分である p—トルエンスルホン酸は同じ結晶中に 0. 2 lmmol (仕込みの 1 5mo 1 %の成分) が結晶中に含有されており、 大部分 の触媒成分は反応器 2に移送され、 反応器 2でもベックマン転位反応が進行した ことがわかった。 Further, the amount of ω-laurin lactam contained in the crystals remaining in the reactor 1 was 11.6 mmo1, and 45 mol% of the generated ω-laurin lactam was recovered in the crystals. Also, p-toluenesulfonic acid, which is a catalyst component, is contained in the same crystal at a concentration of 0. 2 lmmol (15mo 1% of the charged component) was contained in the crystals, and most of the catalyst components were transferred to the reactor 2, and it was found that the Beckmann rearrangement reaction also proceeded in the reactor 2.
なお、 反応前の、 仕込みのォキシムと溶媒に含有される水分の、 p—トルエン スルホン酸無水物に対する水のモル比は 0. 6であった。 実施例 1 1  Before the reaction, the molar ratio of the water contained in the charged oxime and the solvent to p-toluenesulfonic anhydride was 0.6. Example 11
(ベックマン反応工程)  (Beckmann reaction process)
予め 70°Cの乾燥機で乾燥させた 3 O Om lの 4つ口フラスコに、 乾燥窒素下 で水分含有量 0. 249 w t %のシクロドデカノンォキシム 43. 99 g (0. 2229mo 1 ) 及び、 予め 300 °C加熱処理したモレキュラシ一ブス 3 Aで乾 燥処理したァセトニトリル 1 78. 55 g (水分含量 0 p pm (検出限界以下)) を仕込んだ。 上記 4つ口フラスコに、 アルゴン気流下で冷却管、 温度計を接続さ せ攪拌しながら反応器内部の温度を 77°Cに昇温させた。  In a 3 O Oml four-necked flask previously dried in a dryer at 70 ° C, cyclododecanone oxime with a moisture content of 0.249 wt% under dry nitrogen was 43.99 g (0.2229 mol 1) In addition, 178.55 g of acetonitrile (moisture content: 0 ppm (below detection limit)), which had been dried with molecular sieves 3 A previously heat-treated at 300 ° C., was charged. A cooling tube and a thermometer were connected to the four-necked flask under an argon stream, and the temperature inside the reactor was raised to 77 ° C while stirring.
予め 70°Cの乾燥機で乾燥させた 1 Om 1のサンプル瓶に p— トルエンスルホ ン酸無水物 1. 01 2.2 g (3. 10 lmmo 1 ) をはかり取り、 予め 300°C 加熱処理したモレキュラシ一ブス 3 Aで乾燥処理したァセトニトリル 1 1. 94 gで溶解せしめたのち、 上記反応器に添加した。  In a 1 Om 1 sample bottle previously dried with a dryer at 70 ° C, weigh p-toluenesulfonic anhydride 1.01 2.2 g (3.10 lmmo 1), and heat-treat the molecular weight at 300 ° C in advance. After dissolving with 1.94 g of acetonitrile dried with 1 A bus 3A, it was added to the above reactor.
4分後に 79 °Cへ反応器内部の温度は上昇し、 9分後 84 °Cに到達後 25分ま で 84°Cを保った後、 除々に温度が低下し、 46分後には 77. 5°Cとなった。 1時間経過後、 反応液を熱溶液のままサンプリングして、 — NMRで分析し たところ、 ω—ラウリンラクタム 0. 21 9mo 1、 シクロドデカノンォキシム 4. 3 mm o 1が検出された。 ω—ラウリンラタタムの収率は 98 %、 TON值は 70であった。  After 4 minutes, the temperature inside the reactor rose to 79 ° C, 9 minutes later, reached 84 ° C, kept at 84 ° C for 25 minutes, gradually decreased, and after 46 minutes 77. It was 5 ° C. After 1 hour, the reaction solution was sampled as a hot solution, and analyzed by NMR. As a result, it was found that ω-laurinlactam 0.219mo1 and cyclododecanone oxime 4.3mmo1 were detected. The yield of ω-laurin ratatam was 98% and TON 值 was 70.
1時間 40分経過後加熱を停止し、 反応器を室温まで冷却した。  After 1 hour and 40 minutes, heating was stopped and the reactor was cooled to room temperature.
なお、 反応前の仕込みのォキシムと溶媒に含有される水分の、 p—  The amount of water contained in the oxime and solvent used before the reaction was p-
ルホン酸無水物に対する水のモル比は、 2. 0であった。 (ω—ラウリンラクタムの晶析過程) The molar ratio of water to sulfonic anhydride was 2.0. (ω-crystallization process of laurin lactam)
反応液を室温まで冷却させたのち、 氷冷して白色結晶を析出させた。 減圧濾過 により結晶を濾別し、 氷冷したァセトニトリルで結晶を洗浄した。 結晶 3 5. 6 5 g、 濾液及び洗液を併せて 3 0 3. 7 5 gを得た。 結晶を1 H— NMRで分析 したところ、 ω—ラウリンラタタムが検出され、 ρ—トルエンスルホン酸は検出 されなかった。 After cooling the reaction solution to room temperature, it was cooled on ice to precipitate white crystals. The crystals were separated by filtration under reduced pressure and washed with ice-cooled acetonitrile. 35.65 g of the crystals, the filtrate and the washings were combined to give 30.375 g. When the crystals were analyzed by 1 H-NMR, ω-laurin latatum was detected and ρ-toluenesulfonic acid was not detected.
(晶析後触媒成分の中和工程)  (Neutralization process of catalyst component after crystallization)
室温で、 濾液及ぴ洗液を 4. 7 w t %アンモニア水 4. 8 gで中和した。 結晶 が析出するが、 そのまま蒸発乾固させた。 ついで固体に水を加え、 濾過洗浄して 固体 7. 3 6 gと濾液 1 1 2. 1 3 gを得た。  At room temperature, the filtrate and the washings were neutralized with 4.8 g of 4.7 wt% aqueous ammonia. Crystals precipitated, but were evaporated to dryness. Then, water was added to the solid, and the solid was filtered and washed to obtain 7.36 g of the solid and 11.12.13 g of the filtrate.
ifi— NMR分析により固体には、 3 5. 8 mm o 1の ω—ラウリンラタタム、 3. 5 mm o 1 のシク口ドデカノンォキシム、 0. 1 2 mm o 1 の ρ— トノレェン スルホン酸構造の成分が含有されることがわかった。 濾液には、 ·5. 9mm o 1 の p—トルエンスルホン酸構造の成分が含有されることがわかった。  Ifi— NMR analysis revealed that the solids contained 35.8 mm o 1 of ω-laurin ratatam, 3.5 mm o 1 of dodecanonone oxime, and 0.12 mm o 1 of ρ-tonolene sulfonic acid structure. The components were found to be contained. The filtrate was found to contain a component having a p-toluenesulfonic acid structure of 5.9 mm o 1.
この p—トルエンスルホン酸構造の成分は NH 3水で中和されたため、 p—ト ルエンスルホン酸アンモニゥムであるが、 回収率は反応仕込みに対して 9 5. 2 mo 1 %となる。 また、 ここで回収された ω—ラウリンラタタムは生成したラタ タムの 1 6 mo 1 %であり、 固体成分として回収された ω—ラウリンラタタムは 晶析分と併せて 9 9. 6 m o l %となる。  Since the component of this p-toluenesulfonic acid structure was neutralized with NH 3 water, it was ammonium p-toluenesulfonic acid, but the recovery was 95.2 mol% based on the charged reaction. The recovered ω-laurin ratatum is 16 mo 1% of the generated ratatum, and the ω-laurin ratatum recovered as a solid component is 99.6 mol% together with the crystallized component.
この濾液から、 水を蒸発乾固させ、 4 0 0 P aで室温下乾燥させ、 p— トルェ ンスルホン酸アンモユウムを主成分とする固体成分 1.. 2 3 gを得た。  From this filtrate, water was evaporated to dryness and dried at 400 Pa at room temperature to obtain 1.23 g of a solid component mainly composed of ammonium p-toluenesulfonate.
上記反応及ぴ後処理操作を 2回繰り返し、 p—トルエンスルホン酸アンモェゥ ムを主成分とする固体成分 2. 4 6 gを得た。  The above reaction and post-treatment operations were repeated twice to obtain 2.46 g of a solid component mainly composed of ammonium p-toluenesulfonic acid.
固体成分には、 少量の ω—ラウリンラタタムが含有されていたので、 1 1. 0 9 gの水で固体成分を溶解させ、 0. 5 μ mのメンプランフィルターで固体を濾 別したあと水を蒸発乾固し、 2. 3 gの p—トルエンスルホン酸アンモユウムを 主成分とする固体成分を得た。 Since the solid component contained a small amount of ω-laurin ratatam, dissolve the solid component in 11.9 g of water, filter the solid with a 0.5 μm membrane filter, and then remove the water. After evaporation to dryness, 2.3 g of a solid component mainly composed of ammonium p-toluenesulfonate was obtained.
H— NMR分析により、 得られた固体成分には、 p— トルエンスルホン酸ァ 3009749 ンモ-ゥムのほかに、 ω—ラウリンラクタム及び未反応のシクロドデカノンォキ シムが微量含有されており、 p_トルエンスルホン酸アンモニゥムに対する ω— ラウリンラクタム及び未反応のシクロドデカノンォキシムの合計モル比は 0. 0 8であった。 また、 重量基準で換算すると、 ρ—トルエンスルホン酸アンモニゥ ムの純度は、 9 1. 7 w t %となった。 According to H-NMR analysis, the solid component obtained was p-toluenesulfonic acid 3009749 Nmo - besides © beam, omega - Lau cyclododecanone O key shim lactam and unreacted are contained trace amounts, cyclododecanone O oxime of ω- laurolactam and unreacted against p_-toluenesulfonic acid Anmoniumu Was 0.08. Also, when converted on a weight basis, the purity of ammonium ρ-toluenesulfonic acid was 91.7 wt%.
(p -トルエンスルホン酸への再生工程)  (Regeneration process to p-toluenesulfonic acid)
得られた p—トルエンスルホン酸アンモェゥム塩を主成分とする結晶 2. 2 9 g (p— トルエンスルホン酸アンモニゥム塩 1 1. lmmo l相当)、 トルエン 8 Om l、 95 %硫酸1. 75 g (1 7. Ommo 1 ) を反応器に仕込んだ。 大気圧下、 攪袢しながらオイルバス温を 1 30°Cに加熱し、 発生した蒸気を凝縮 させ、 凝縮後は相分離器で水を除き、 トルエンのみを反応器に戻した。 この還流 処理を 60分行った。 処理後、 静置すると反応器内は 2層分離しており、 上層の トルエン相のみを取り出した。 このトルエン相を環流し上記相分離器で水をのぞ いた後、得られた!) 一トルエンスルホン酸のトルエン溶液をエバポレーターにて、. トルエンを留去させ、 p—,トルエンスルホン酸の結晶を得た。 この時の: — トル エンスルホン酸の手取り収率は p—トルエンスルホン酸への再生工程の仕込みの p - トルエンスルホン酸アンモ-ゥムを基準として 93mo 1 %であり、 p—ト ルエンスルホン酸の純度は 90 w t %であった。 p—一トルエンスルホン酸に対す る ω—ラウリンラクタム及び未反応のシク口ドデカノンォキシム合計モル比は 0. 03であった。  2.29 g of the obtained crystal mainly composed of ammonium p-toluenesulfonate (equivalent to 1.1 lmmol of ammonium p-toluenesulfonate), 8 Oml of toluene, 1.75 g of 95% sulfuric acid ( 1 7. Ommo 1) was charged to the reactor. The temperature of the oil bath was heated to 130 ° C with stirring under atmospheric pressure to condense the generated steam. After the condensation, water was removed by a phase separator and only toluene was returned to the reactor. This reflux treatment was performed for 60 minutes. After the treatment, the reactor was allowed to stand, and the reactor was separated into two layers. This toluene phase was refluxed, and water was obtained with the above phase separator. The toluene solution of monotoluenesulfonic acid was removed by an evaporator to remove toluene, and p-toluenesulfonic acid crystals were obtained. At this time: — The yield of toluene sulfonic acid was 93 mol% based on the amount of p-toluenesulfonic acid used in the regeneration process of p-toluenesulfonic acid. Was 90 wt%. The total molar ratio of ω-laurinlactam and unreacted dodecanonone oxime to p-toluenesulfonic acid was 0.03.
(ρ— トノレエンスノレホン酸無水物への再生工程)  (ρ—Regeneration process of tonorenensnorephonic anhydride)
窒素雰囲気下、 上記操作で得た、 Ρ— トルエンスルホン酸を 90 w t %含有す る固体 1. 94 g、 無水酢酸 1. 38 (1 3. 5 1 mm o 1 ) gをフラスコに仕 込み、 30分攪拌し、 固体成分を溶解させた。 オイルバス温を 60°Cに昇温させ て、 さらに 20分攪拌した。 60°Cになってからさらに 80分後に 400 P aま で減圧し、 30分攪拌を続けた。 さらに減圧条件を保持したままオイルバス温を 95°Cに上昇させ、 攪拌しながら 1. 5時間保持した。 5分経過後からはほぼ固 化し、 攪拌できなくなった。 次に反応器をオイルバスから取りだし、 冷却した。 ー且大気圧に戻した後、 反応器に無水酢酸 0. 991 9 g (9. 72mmo 1 ) を加え、 Under a nitrogen atmosphere, 1.94 g of a solid containing 90 wt% of Ρ-toluenesulfonic acid and 1.38 g (13.5 1 mmo1) g of acetic anhydride obtained by the above operation were charged into a flask. The mixture was stirred for 30 minutes to dissolve the solid components. The oil bath temperature was raised to 60 ° C, and the mixture was further stirred for 20 minutes. 80 minutes after the temperature reached 60 ° C, the pressure was reduced to 400 Pa, and stirring was continued for 30 minutes. Further, the oil bath temperature was raised to 95 ° C while maintaining the reduced pressure condition, and the temperature was maintained for 1.5 hours with stirring. After 5 minutes had passed, it was almost solidified and could not be stirred. Next, the reactor was taken out of the oil bath and cooled. -After returning to atmospheric pressure, 0.991 g of acetic anhydride (0.972 mmo 1) was added to the reactor,
同様に室温で 20分攪拌し、 続いて 60°Cで 20分間攪拌した。 続いて真空ボン プで 400 P aの減圧条件とし、 60°Cで、 30分攪拌させた。 続いて減圧条件 を維持しながら、 95°Cで 1時間 30分攪拌した。 フラスコを冷却し、 乾燥窒素 気流下で大気圧に戻した。 フラスコから粗 p _トルエンスルホン酸無水物を 1. 8 992 g得た。 Similarly, the mixture was stirred at room temperature for 20 minutes and subsequently at 60 ° C for 20 minutes. Subsequently, the pressure was reduced to 400 Pa with a vacuum pump, and the mixture was stirred at 60 ° C. for 30 minutes. Subsequently, the mixture was stirred at 95 ° C for 1 hour and 30 minutes while maintaining the reduced pressure condition. The flask was cooled and returned to atmospheric pressure under a stream of dry nitrogen. 1.8992 g of crude p_toluenesulfonic anhydride was obtained from the flask.
(p -トルエンスルホン酸無水物の精製工程)  (Purification process of p-toluenesulfonic anhydride)
得られた粗 P—トルエンスルホン酸無水物 1. 8 992 gに無水酢酸 1. 6 7 gを加え、 室温で 20分間攪拌した。 無水酢酸に溶解する成分と溶解しない成分 があった。 かかる混合物を、 充分に乾燥した雰囲気下で濾過操作を行った。 得ら れた固体に合計 2.9 1 gの無水酢酸を振りかけて洗浄した。得られたケーキを、 400 P aの減圧下、 室温で乾燥させた。 得られた結晶は 1. 2026 g (全量 p — トノレエンスノレホン酸無水物とすると、 3. 6846 mm o 1 ) であり、 1 H 一 NMRで分析した所、 純度が 9 9mo 1 %の p—トルエンスルホン酸無水物で ある事がわかった。 得られた p— トルエンスルホン酸無水物は、 酸無水物の再生 反応に用いた P—小ルエンスルホン酸に対して収率 73mo 1 %であった。 1.67 g of acetic anhydride was added to 1.892 g of the obtained crude P-toluenesulfonic anhydride, followed by stirring at room temperature for 20 minutes. Some components dissolved in acetic anhydride and others did not. This mixture was filtered under a sufficiently dry atmosphere. The obtained solid was washed by sprinkling a total of 2.91 g of acetic anhydride. The obtained cake was dried at room temperature under a reduced pressure of 400 Pa. The obtained crystals weighed 1.2026 g (total p- 3.6846 mm o 1, assuming tonnoreensnorephonic anhydride), and were analyzed by 1 H-NMR. —It was found to be toluenesulfonic anhydride. The yield of the obtained p-toluenesulfonic anhydride was 73 mol% based on the P-small ruenesulfonic acid used in the regeneration reaction of the acid anhydride.
(再生した p— トルエンスルホン酸無水物を用いたベックマン転位反応工程) 上記 P—トノレエンスノレホン酸無水物を、 上記ベックマン転位反応の 1 8 m o 1 °/0のスケールで行った以外は同様にベックマン転位反応を行った。 その結果、 TON= 72が得られた。 (Beckmann rearrangement reaction step using regenerated p-toluenesulfonic anhydride) Same as above except that the above-mentioned P-tonolene snolefonic anhydride was performed on a scale of 18 mo 1 ° / 0 of the above Beckmann rearrangement reaction. Was subjected to a Beckmann rearrangement reaction. As a result, TON = 72 was obtained.
再生させた!)一トルエンスルホン酸無水物を用いても、 同様の反応成績が得ら れた。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。  Played! ) Similar reaction results were obtained using monotoluenesulfonic anhydride. Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
本出願は、 2002年 7月 31日出願の日本特許出願(特願 2002— 224011)、 2002 3 009749 年 7月 31日出願の日本特許出願 (特願 2002— 224012) に基づくものであり、 そ の内容はここに参照として取り込まれる。 ぐ産業上の利用可能性 > This application is a Japanese patent application filed on July 31, 2002 (Japanese Patent Application No. 2002-224011). 3 This is based on a Japanese patent application filed on July 31, 2007 (Japanese Patent Application No. 2002-224012), the contents of which are incorporated herein by reference. Industrial applicability>
本発明方法によれば、 ォキシム化合物から温和な反応条件下で高収率でアミ ド 化合物を製造でき、 容易にアミ ド化合物と触媒成分を分離し触媒成分を再生でき るため、 工業的に有利な方法である。  According to the method of the present invention, an amide compound can be produced at a high yield from an oxime compound under mild reaction conditions, and the amide compound and the catalyst component can be easily separated to regenerate the catalyst component, which is industrially advantageous. It is a way.

Claims

請 求 の 範 囲 The scope of the claims
1 . 炭素数が 8以上のォキシム化合物を、 有機溶媒中で、 酸無水物を含む 触媒成分の存在下、 ベックマン転位反応させてアミド化合物を製造する方法にお いて、 ォキシム化合物及び溶媒に含まれる水の合計のモル比を、 添加した酸無水 物に対して 1 5以下にして転位反応を行うことを特徴とするアミド化合物の製造 方法。 1. In a method for producing an amide compound by subjecting an oxime compound having 8 or more carbon atoms to a Beckmann rearrangement reaction in an organic solvent in the presence of a catalyst component containing an acid anhydride, the oxime compound is included in the oxime compound and the solvent. A process for producing an amide compound, wherein the rearrangement reaction is carried out by setting the total molar ratio of water to 15 or less with respect to the added acid anhydride.
2 . 酸無水物を含む触媒成分が強酸無水物であることを特徴とする請求の 範囲第 1項に記載の方法。 2. The method according to claim 1, wherein the catalyst component containing an acid anhydride is a strong acid anhydride.
3 . 酸無水物を含む触媒成分がカルボン酸無水物並びに強酸及び/又は強 酸無水物であることを特徴とする請求の範囲第 1項に記載の方法。 3. The method according to claim 1, wherein the catalyst component containing an acid anhydride is a carboxylic acid anhydride and a strong acid and / or a strong acid anhydride.
4 . 転位反応後、 反応液から直接触媒成分とアミド化合物とを分離するこ とを特徴とする請求の範囲第 1項〜第 3項のいずれかに記載の方法。 4. The method according to any one of claims 1 to 3, wherein the catalyst component and the amide compound are directly separated from the reaction solution after the rearrangement reaction.
5 . 触媒が失活していない状態で触媒成分とアミド化合物とを分離するこ とを特徴とする請求の範囲第 4項に記載の方法。 5. The method according to claim 4, wherein the catalyst component and the amide compound are separated in a state where the catalyst has not been deactivated.
6 . 分離が晶析分離であることを特徴とする請求の範囲第 4項又は第 5項 に記載の方法。 6. The method according to claim 4 or 5, wherein the separation is a crystallization separation.
7 . 晶析分離後、 分離された触媒成分を転位反応に循環することを特徴と する請求の範囲第 6項に記載の方法。 7. The method according to claim 6, wherein, after the crystallization separation, the separated catalyst component is recycled to a rearrangement reaction.
8 . 転位反応後に分離した触媒成分を酸無水物に脱水縮合して再生し、 再 生された酸無水物を再び転位反応に用いることを特徴とする請求の範囲第 4項〜 第 7項のいずれかに記載の方法。 8. The catalyst component separated after the rearrangement reaction is dehydrated and condensed into an acid anhydride to be regenerated, and the regenerated acid anhydride is used again for the rearrangement reaction. A method according to any of paragraphs 7.
9 . ォキシム化合物が環状ォキシム化合物であることを特徴とする請求の 範囲第 1項〜第 8項のいずれかに記載の方法。 9. The method according to any one of claims 1 to 8, wherein the oxime compound is a cyclic oxime compound.
1 0 . ォキシム化合物がシク口 ドデカノンォキシムであり、 アミ ド化合物 が ω—ラウリンラタタムであることを特徴とする請求の範囲第 1項〜第 9項のい ずれかに記載の方法。 10. The method according to any one of claims 1 to 9, wherein the oxime compound is dodecanonone oxime, and the amide compound is ω-laurinlatatam.
1 1 . ォキシム化合物を、 有機溶媒中で、 酸無水物を含む触媒成分の存在 下、 ベックマン転位反応させてアミド化合物を製造する方法において、 転位反応 後、 反応液から直接触媒成分とアミド化合物とを分離することを特徴とするアミ- ド化合物の製造方法。 11. A method for producing an amide compound by subjecting an oxime compound to an amide compound in the presence of a catalyst component containing an acid anhydride in an organic solvent, wherein the catalyst component and the amide compound are directly reacted from the reaction solution after the rearrangement reaction. And a method for producing an amide compound.
PCT/JP2003/009749 2002-07-31 2003-07-31 Process for production of amides WO2004011428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003254791A AU2003254791A1 (en) 2002-07-31 2003-07-31 Process for production of amides

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002/224011 2002-07-31
JP2002/224012 2002-07-31
JP2002224011A JP2004059553A (en) 2002-07-31 2002-07-31 Method for producing amide compound
JP2002224012A JP4218277B2 (en) 2002-07-31 2002-07-31 Method for producing amide compound

Publications (1)

Publication Number Publication Date
WO2004011428A1 true WO2004011428A1 (en) 2004-02-05

Family

ID=31190348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009749 WO2004011428A1 (en) 2002-07-31 2003-07-31 Process for production of amides

Country Status (2)

Country Link
AU (1) AU2003254791A1 (en)
WO (1) WO2004011428A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112407A1 (en) * 2019-12-06 2021-06-10 한화솔루션 주식회사 Method for producing laurolactam, device for synthesizing same, laurolactam composition produced thereby, and method for producing polylaurolactam using same
WO2022124861A1 (en) * 2020-12-11 2022-06-16 한화솔루션 주식회사 Laurolactam preparation method, synthesizing device therefor, laurolactam composition prepared thereby, and polylaurolactam preparation method using same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3624069B1 (en) * 1958-03-13 1961-12-23
JPS4625387B1 (en) * 1967-11-15 1971-07-22
US3609142A (en) * 1966-10-14 1971-09-28 Phillips Petroleum Co Beckmann rearrangement of cyclic ketoximes to lactams
JPS4744232B1 (en) * 1970-05-06 1972-11-08
JPS4835271B1 (en) * 1970-12-26 1973-10-26
JPS4843749B1 (en) * 1968-11-09 1973-12-20
JPS4843750B1 (en) * 1968-11-11 1973-12-20
EP0225974A2 (en) * 1985-11-02 1987-06-24 Hüls Aktiengesellschaft Process for producing lactams with 8 to 15 carbon atoms from their corresponding oximes
EP0515063A1 (en) * 1991-05-21 1992-11-25 Sumitomo Chemical Company Limited Process for producing amide by liquid phase rearrangement of oxime
JP2001302603A (en) * 2000-04-21 2001-10-31 Mitsubishi Chemicals Corp Method for producing amide compound
JP2001302602A (en) * 2000-04-21 2001-10-31 Mitsubishi Chemicals Corp Method for producing amide compound

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3624069B1 (en) * 1958-03-13 1961-12-23
US3609142A (en) * 1966-10-14 1971-09-28 Phillips Petroleum Co Beckmann rearrangement of cyclic ketoximes to lactams
JPS4625387B1 (en) * 1967-11-15 1971-07-22
JPS4843749B1 (en) * 1968-11-09 1973-12-20
JPS4843750B1 (en) * 1968-11-11 1973-12-20
JPS4744232B1 (en) * 1970-05-06 1972-11-08
JPS4835271B1 (en) * 1970-12-26 1973-10-26
EP0225974A2 (en) * 1985-11-02 1987-06-24 Hüls Aktiengesellschaft Process for producing lactams with 8 to 15 carbon atoms from their corresponding oximes
EP0515063A1 (en) * 1991-05-21 1992-11-25 Sumitomo Chemical Company Limited Process for producing amide by liquid phase rearrangement of oxime
JP2001302603A (en) * 2000-04-21 2001-10-31 Mitsubishi Chemicals Corp Method for producing amide compound
JP2001302602A (en) * 2000-04-21 2001-10-31 Mitsubishi Chemicals Corp Method for producing amide compound

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021112407A1 (en) * 2019-12-06 2021-06-10 한화솔루션 주식회사 Method for producing laurolactam, device for synthesizing same, laurolactam composition produced thereby, and method for producing polylaurolactam using same
KR20210071537A (en) * 2019-12-06 2021-06-16 한화솔루션 주식회사 Method for preparing of laurolactam, synthesis apparatus thereof, composition of laurolactam from the same and method for preparing of polylaurolactam from the same
CN114787128A (en) * 2019-12-06 2022-07-22 韩华思路信(株) Method for producing laurolactam, synthesis device therefor, laurolactam composition produced using same, and method for producing polydodecalactam using laurolactam composition
KR102560093B1 (en) * 2019-12-06 2023-07-27 한화솔루션 주식회사 Method for preparing of laurolactam, synthesis apparatus thereof, composition of laurolactam from the same and method for preparing of polylaurolactam from the same
WO2022124861A1 (en) * 2020-12-11 2022-06-16 한화솔루션 주식회사 Laurolactam preparation method, synthesizing device therefor, laurolactam composition prepared thereby, and polylaurolactam preparation method using same
KR20220083244A (en) * 2020-12-11 2022-06-20 한화솔루션 주식회사 Method for preparing of laurolactam, synthesis apparatus thereof, composition of laurolactam from the same and method for preparing of polylaurolactam from the same
KR102609701B1 (en) * 2020-12-11 2023-12-06 한화솔루션 주식회사 Method for preparing of laurolactam, synthesis apparatus thereof, composition of laurolactam from the same and method for preparing of polylaurolactam from the same

Also Published As

Publication number Publication date
AU2003254791A1 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
Sharghi et al. Titanium oxide (TiO2) catalysed one-Step Beckmann rearrangement of aldehydes and ketones in solvent free conditions
JP7141303B2 (en) Method for producing 5,5&#39;-methylenedisalicylic acid
Takemoto et al. Solid-supported reagents for the oxidation of aldehydes to carboxylic acids
UA79640C2 (en) A method for making adipinic acid
US5905175A (en) Synthesis and purification of 3,3-dimethylbutyraldehyde via oxidation of 1-chloro-3,3-dimethylbutane with dimethyl sulfoxide
WO2004011428A1 (en) Process for production of amides
JP5585445B2 (en) Method for producing laurolactam
JP2004059553A (en) Method for producing amide compound
JPH08500360A (en) Method for producing phenyl terephthalic acid
JP4218277B2 (en) Method for producing amide compound
WO2005110962A1 (en) Process for producing adipic acid
JP4038657B2 (en) Method for producing adamantanone
JP2003238520A (en) Production of sulfonic acid and method for producing amide using the same
JP4493805B2 (en) Method for producing high-purity benzoic acid derivative
JP2003104968A (en) Method for producing amide compound
JP5640985B2 (en) Novel compound and method for producing amide compound using the same
JP5574327B2 (en) Method for producing amide compound
JP2002348269A (en) Method for producing amide compound
JPH09169688A (en) Production of isophorone
JP4668393B2 (en) Method for producing 4-aminourazole
JP2003321453A (en) Method for producing amide compound
JP2003104969A (en) Method for producing amide compound
JP2003128648A (en) Method for producing amide compound
JP4697578B2 (en) Process for producing alkoxynaphthol derivative
WO2004046075A1 (en) Solvent for crystallization containing cycloalkyl ether compound and method of crystallization with the solvent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase