WO2004010134A1 - ナノ/ミクロ液体クロマトグラフのグラジエント送液装置および送液方法 - Google Patents

ナノ/ミクロ液体クロマトグラフのグラジエント送液装置および送液方法 Download PDF

Info

Publication number
WO2004010134A1
WO2004010134A1 PCT/JP2003/009375 JP0309375W WO2004010134A1 WO 2004010134 A1 WO2004010134 A1 WO 2004010134A1 JP 0309375 W JP0309375 W JP 0309375W WO 2004010134 A1 WO2004010134 A1 WO 2004010134A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
liquid
flow path
initial
section
Prior art date
Application number
PCT/JP2003/009375
Other languages
English (en)
French (fr)
Inventor
Kenichi Kudo
Yoshio Yamauchi
Original Assignee
Kya Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kya Technologies Corporation filed Critical Kya Technologies Corporation
Priority to US10/509,440 priority Critical patent/US7402250B2/en
Priority to EP03765371A priority patent/EP1524520A4/en
Publication of WO2004010134A1 publication Critical patent/WO2004010134A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/20Injection using a sampling valve
    • G01N2030/207Injection using a sampling valve with metering cavity, e.g. sample loop
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/326Control of physical parameters of the fluid carrier of pressure or speed pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/32Control of physical parameters of the fluid carrier of pressure or speed
    • G01N2030/328Control of physical parameters of the fluid carrier of pressure or speed valves, e.g. check valves of pumps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize

Definitions

  • the present invention relates to a gradient liquid sending device and a liquid sending method for a nano / micro liquid chromatograph, and more particularly to an improvement in liquid sending performance when mixing a solvent.
  • Fig. 4 shows an example of the device configuration.
  • a solvent is sent from a mobile phase solvent tank 12 by a pump 14, and a small amount of sample is introduced from the injector 16 to the solvent in the flow path.
  • the trace sample is guided to the subsequent column 18 by the flow of the solvent, and separated into components under temperature control.
  • Each of the separated components is detected by the detection means 20 using, for example, absorbance detection.
  • the computer 22 processes and analyzes the AZD-converted detection signal, while controlling the device conditions.
  • Figure 5 shows a conventional liquid delivery system for performing gradient elution with this nano / micro liquid chromatograph.
  • this liquid sending system 30 after the initial solvent is supplied from the initial solvent tank 34 to the metering pump 36 in the initial solvent sending section 32, the pulp 38 is switched and the subsequent initial solvent flow is performed by the pump.
  • the initial solvent is sent via the passage 40.
  • the valve 48 is switched, and the second solvent flow path 5
  • the solvent is sent via 0.
  • the two kinds of solvents are mixed at a predetermined ratio in a three-way tee 52 (solvent mixing section) in which the initial solvent flow path 40 and the second solvent flow path 50 are connected. It is sent to the subsequent separation system via 4.
  • the mixing ratio of each solvent is determined by the ratio of the flow rates set by each metering pump, and is controlled by a control unit such as a computer. Thereafter, gradient elution was performed by sequentially changing the mixing ratio of the mixed solvent and sending the mixture to the subsequent separation system.
  • the liquid sending system reaches a high pressure of, for example, about several tens of kg Z cm 2 , and the high-pressure initial solvent flowing into the second solvent flow path 50 is discharged.
  • the second solvent stored under normal pressure is pushed in beforehand, and the second solvent is compressed.
  • a further amount of the initial solvent enters the flow path of the second solvent.
  • the pressure of the water compresses the acetonitrile, causing a considerable amount of volume shrinkage.
  • the channel diameter and the channel volume are extremely small, such a factor due to the compressibility of the solvent also greatly affects the flow of the initial solvent into the channel of the second solvent. I do.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to improve the liquid sending performance at the time of solvent mixing in gradient liquid sending of a nano / micro liquid chromatograph.
  • the Dalagent liquid sending device of the nano-Z micro liquid chromatograph comprises:
  • An initial solvent delivery section having a metering pump for delivering the initial solvent and a subsequent initial solvent flow path;
  • One or two or more liquid feeding sections provided with a metering pump for feeding another solvent and a solvent flow path following the pump;
  • a solvent mixing unit to which the respective flow paths are connected, and through which a mixed solvent in which the respective solvents from the respective flow paths are mixed at a predetermined ratio is passed, and a mixed liquid flow path to a subsequent separation system is connected;
  • a control unit for controlling a mixing ratio of the mixed solvent to be sent to a subsequent separation system
  • An opening / closing means capable of opening and closing the flow path is provided near the solvent mixing section of the solvent flow path for sending the other solvent.
  • the apparatus according to the present invention is characterized in that, in the above-mentioned apparatus, an initial solvent liquid supply section and a liquid junction section for liquid-liquid junction the liquid supply section are provided.
  • An initial solvent delivery section having a metering pump for delivering the initial solvent and a subsequent initial solvent flow path;
  • One or two or more liquid feeding sections provided with a metering pump for feeding another solvent and a solvent flow path following the pump;
  • a solvent mixing unit to which the respective flow paths are connected, and through which a mixed solvent in which the respective solvents from the respective flow paths are mixed at a predetermined ratio is passed, and a mixed liquid flow path to a subsequent separation system is connected;
  • a first storage means for filling the liquid which has a low compressibility, and is composed of a fixed-quantity pump in the liquid sending section and a part of the solvent flow path subsequent thereto;
  • a second storage means is provided, which is constituted by a part of the solvent flow path following the first storage means, and which is previously filled with a necessary amount of the other solvent after the liquid.
  • An initial solvent delivery section having a metering pump for delivering the initial solvent and a subsequent initial solvent flow path;
  • One or two or more liquid feeding sections provided with a metering pump for feeding another solvent and a solvent flow path following the pump;
  • a mixed solvent in which the respective flow paths are connected, and a mixed solvent in which the respective solvents from the respective flow paths are mixed at a predetermined ratio, and a mixed liquid flow path to a subsequent separation system is provided,
  • An opening / closing means for opening and closing the flow path near the solvent mixing section of the solvent flow path for sending the other solvent comprising the following steps:
  • a first step of closing the opening / closing means previously filling a flow path from the metering pump in the liquid sending section to the opening / closing means with the other solvent, and applying an appropriate pressure to the solvent;
  • the method according to the present invention in the above method, further comprising a liquid junction that liquid-juncts the initial solvent liquid supply part and the liquid supply part,
  • the pressure application to the solvent in the first step is performed by applying the pressure generated in the initial solvent liquid supply section in the second step to the liquid supply section through the liquid junction section.
  • the method according to the present invention comprises: An initial solvent delivery section having a metering pump for delivering the initial solvent and a subsequent initial solvent flow path;
  • One or two or more liquid feeding sections provided with a metering pump for feeding another solvent and a solvent flow path following the pump;
  • a mixed solvent in which the respective flow paths are connected, and a mixed solvent in which the respective solvents from the respective flow paths are mixed at a predetermined ratio, and a mixed liquid flow path to a subsequent separation system is provided,
  • the gradient ratio of the nano-Z micro liquid chromatograph in which the mixture ratio of the mixed solvent is sequentially changed and the mixture is sent to the subsequent separation system includes the following steps:
  • the first step in which the liquid with low compressibility is filled in advance from the metering pump in the liquid sending section to a part of the solvent flow path following it;
  • a second varnish for filling the solvent flow path with the required amount of the other solvent following the liquid
  • the other solvent is sent to the solvent mixing section at a third predetermined flow rate in which the initial solvent is sent from the initial solvent sending section to the subsequent separation system via the solvent mixing section, and a mixed solvent having a predetermined ratio with the initial solvent is sent.
  • the metering pump is a syringe-type metering pump that sends all the solvent by pushing off the syringe once.
  • FIG. 1 is an explanatory diagram of a liquid feeding system using a method according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram of a liquid feeding system using the method according to one embodiment of the present invention.
  • FIG. 3 is an explanatory diagram of a syringe pump used in the method of the present invention.
  • FIG. 4 is an explanatory diagram of a high-performance liquid chromatograph.
  • FIG. 5 is an explanatory diagram of a conventional liquid feeding system.
  • FIG. 6 is an explanatory diagram of a switching time from the supply of only the initial solvent to the supply of the mixed solvent.
  • FIG. 7 is an explanatory diagram of a pressure gauge.
  • FIG. 1 shows a schematic configuration of a liquid sending system using the method according to the first embodiment of the present invention.
  • the portions corresponding to the above-mentioned conventional technology are represented by adding 100 to the reference numerals.
  • this liquid sending system 130 after replenishing the initial solvent from the initial solvent tank 1 34 to the metering pump 1 36 in the initial solvent sending section 1 32, the pulp 1 38 is switched and the pump follows.
  • the initial solvent is sent via the initial solvent flow path 140.
  • the valve 148 is switched and the pump is used to feed the second solvent.
  • the solvent is sent via the solvent channel 150.
  • a capillary having a channel diameter of 250 ni or less is used.
  • the two solvents are mixed at a predetermined ratio in a three-way tee 152 (solvent mixing section) in which the initial solvent flow path 140 and the second solvent flow path 150 are connected.
  • the solution is sent to the subsequent separation system via channel 154.
  • the mixing ratio of each solvent is determined by the flow rate ratio set by each metering pump, and is controlled by a control unit such as a computer. Thereafter, gradient elution is performed by sequentially changing the mixture ratio of the mixed solvent and sending the mixture to the subsequent separation system.
  • an opening / closing means capable of opening and closing the second flow path is provided near the solvent mixing section 152 of the solvent flow path 150 for sending the second solvent.
  • pulp 160 is used as the opening / closing means.
  • the initial solvent is sent from the initial solvent feeding section 13 2 to the subsequent separation system via the solvent mixing section 15 2.
  • the liquid feed system gradually reaches a high pressure due to the resistance of the subsequent separation system.
  • a high pressure state for example, 20 kg / cm 2
  • the liquid is initially supplied at 500 ⁇ 1 / min, and after reaching the high pressure state, 500 n 1 in Send the solution with.
  • the valve 160 is opened, the second solvent is sent to the solvent mixing section 152 at a predetermined flow rate, and the mixed solvent in a predetermined ratio with the initial solvent is sent to the subsequent separation system.
  • the inflow of the initial solvent into the flow channel 150 is suppressed by a small volume up to the valve 160, and since the pressure is applied to the second solvent in advance, the compression of the second solvent is performed.
  • the intrusion of the initial solvent into the flow channel 150 due to this is also suppressed. Therefore, it is possible to reduce a delay from a predetermined time intended to switch from sending only the initial solvent to sending the mixed solvent.
  • a feature of the present embodiment is that a liquid junction part 170 is provided for liquid-junction between the initial solvent liquid supply part 132 and the liquid supply part 142.
  • the pump 146 it is necessary to drive the pump 146 in order to apply pressure to the second solvent, but by providing the liquid junction 170 in this way, after the start of the initial solvent feeding, The pressure of the initial solvent supply section 1332 is transmitted to the second solvent supply section 142 as it is, and the pressure is filled from the pump 1 46 to the valve 160. Since the same pressure is applied to the two solvents, no special operation is required to balance the pressure.
  • the capillaries 172, 174 for storing the respective solvents in the liquid junction 170, the pulp 176, and the pressure gauges 178, 180 are provided.
  • the initial solvent is stored in the capillaries 172, and the second solvent is stored in the capillaries 174.
  • the initial solvent is sent from the initial solvent sending section 132 to the subsequent separation system via the solvent mixing section 152, and the pressure of the initial solvent sending section 132 gradually increases, and the high pressure (for example, 20 kg / cm 2 ).
  • the interface between the initial solvent and the second solvent may reach the pump 1 46 and the subsequent flow path. No, these solvents do not mix. Further, since the pulp 166 is opened after the start of the third step, the valve 176 may be closed thereafter to shut off the flow path if necessary. It is also preferable to provide a drain 184 from the valve 176 via a stop valve 182.
  • each liquid sending section for sending another solvent may be connected to the solvent mixing section 152 in the same manner.
  • a liquid junction can be formed between a plurality of liquid sending sections.
  • Fig. 7 shows the schematic structure of the pressure gauges 178 and 180 used in Fig. 1.
  • resistance to the flow of the solution is generated by the wall surface 406 at the joint between the solvent flow path 402 and the cavities 404.
  • the pressure on the flow path wall surface near the connection part due to the pressure feed in the solvent flow direction 408 increases.
  • the increased pressure on the wall surface is detected by a pressure gauge 410.
  • FIG. 2 shows a schematic configuration of a liquid sending system using the method according to the second embodiment of the present invention. Note that parts corresponding to those in the first embodiment are denoted by 200 instead of 100, and description thereof is omitted.
  • the liquid having a small shrinkage ratio with respect to pressure is filled in advance from the quantitative pump 2246 of the second solvent sending section 242 to a part of the subsequent solvent flow path 250. That is. Thereby, the influence of the volume contraction of the second solvent due to the application of the pressure can be significantly suppressed.
  • the steps of the liquid sending method according to the present embodiment are as follows. '' First step
  • the liquid is sent in advance from the tank 290 of the second solvent by the pump 292 to supply the second solvent. Fill it up.
  • the volume of the flow path 2996 may be sufficient to fill the amount of the second solvent necessary for the measurement.
  • the six-way valve 294 is switched to the path shown by the broken line in the same figure, so that the flow path 250 is filled with the second solvent following the liquid having a low compressibility.
  • the initial solvent is sent from the initial solvent sending section 2 32 to the subsequent separation system via the solvent mixing section 2 52.
  • the liquid sending system gradually reaches a high pressure due to the resistance of the subsequent separation system, and the initial solvent that has flowed into the channel 250 compresses the previously filled second solvent.
  • the flow path from the pump 246 to the subsequent 6-way valve 294 is filled with a liquid having a low compression ratio V and liquid, the capacity is relatively large, and the volume shrinkage in the part is suppressed. be able to. That is, in the prior art of FIG. 5, the entire area from the pump to the subsequent flow path is filled with the second solvent, which undergoes volume shrinkage due to compression, whereas in the present embodiment of FIG.
  • the second solvent is compressed, it can be suppressed to that extent, and the inflow of the initial solvent into the flow channel 250 due to the volume shrinkage can be greatly suppressed.
  • the liquid having a low compressibility it is preferable to appropriately select a liquid having a lower compressibility than the second solvent according to other measurement conditions and the like. Fourth.
  • the second solvent is sent at a predetermined flow rate to the solvent mixing section 252, and a mixed solvent having a predetermined ratio with the initial solvent is sent to the subsequent separation system.
  • a mixed solvent having a predetermined ratio with the initial solvent is sent to the subsequent separation system.
  • each liquid sending section for sending another solvent is connected to the solvent mixing section 252 in the same manner and used. be able to.
  • a syringe pump suitably used as a metering pump in the present invention will be described with reference to FIG.
  • the solvent previously introduced into the head 304 is driven into the syringe 302 to be discharged into the flow path 303.
  • the amount of solvent used for separation is very small, so the entire solvent is sent by pushing off the syringe once by rotating the screw 310 with the motor 308 . Therefore, liquid can be sent without generating pulsation due to repetition of suction and discharge.
  • changes in pump temperature can cause changes in flow rate. Therefore, it is preferable to apply means for keeping the temperature of the pump uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本発明の目的はナノ/ミクロ液体クロマトグラフのグラジエント送液において、溶媒混合時における送液性能を改良することにある。本発明の第一の態様に係る装置および方法によれば、送液系130の溶媒混合部152近傍に第二溶媒流路l50を開閉可能な開閉手段160を備え、あらかじめ送液部142の定量ポンプ146から開閉手段160に至る流路を第二溶媒で満たし、且つ該溶媒に適当な圧力を付与しておくこととしたので、初期溶媒の第二溶媒流路への流入を抑えることができる。また、本発明の第二の態様に係る装置および方法によれば、あらかじめ送液部の定量ポンプからそれに続く溶媒流路の一部に渡り圧縮率の小さい液体を満たしておき、該液体に続いて第二溶媒を必要量だけ満たしておくこととしたので、初期溶媒の第二溶媒流路への流入を抑えることができ、送液性能が向上する。

Description

明 細 書 ナノ/ミクロ液体クロマトグラフのグラジェント送液装置およぴ送液方法 本出願は、 2 0 0 2年 7月 2 4日付け出願の日本国特許出願 2 0 0 2— 2 1 5 4 1 5号の優先権を主張しており、 ここに折り込まれるものである。
[技術分野]
本発明はナノ/ミクロ液体クロマトグラフのグラジェント送液装置および送液方 法、 特に溶媒混合時における送液性能の改良に関する。
[背景技術]
近年、高速液体クロマトグラフは微量成分の分離、 分析のための代表的な手段とな つている。 図 4にその装置構成の一例を示す。 この高速液体クロマトグラフ装置 1 0 は、移動相溶媒タンク 1 2からポンプ 1 4で溶媒を送液し、 インジェクタ 1 6から流 路中の溶媒へ微量試料を導入する。そして溶媒の流れにより微量試料は後続のカラム 1 8へ導かれ、 温度制御下で各成分に分離される。 分離された各成分は、 例えば吸光 度検出等による検出手段 2 0で検出される。そしてコンピュータ 2 2では AZD変換 された検出信号の処理、 解析を行い、 一方で装置条件の制御を行う。
そして最近では、 極微量成分を高分離能で分離するために低流量、低容量ィ匕が進み、 流量数十 μ 1 / i nから n 1 /m i nのレベルでのナノ Zミクロ液体クロマトグ ラフの開発が行われている。
このナノ/ミクロ液体クロマトグラフでグラジェント溶離を行うための、従来の送 液系を図 5に示す。 この送液系 3 0では、初期溶媒送液部 3 2において初期溶媒タン ク 3 4から定量ポンプ 3 6へ初期溶媒を補給した後、パルプ 3 8を切り替えて該ポン プによりそれに続く初期溶媒流路 4 0を経由して初期溶媒を送液する。
—方、第二溶媒の送液部 4 2において該溶媒のタンク 4 4から定量ポンプ 4 6へ該 溶媒を捕給した後、バルブ 4 8を切り替えて該ポンプによりそれに続く第二溶媒流路 5 0を経由して該溶媒を送液する。 そして、初期溶媒流路 4 0と第二溶媒流路 5 0が接続された三方ティ 5 2 (溶媒混 合部) で二種の溶媒が所定比率で混合され、 混合溶媒は混合溶媒流路 5 4を経由して 後続する分離系へ送液される。各溶媒の混合比率は各定量ポンプで設定された流量の 比率で決定され、 コンピュータ等の制御部により制御される。 以降、 混合溶媒の混合 比率を順次変化させて後続する分離系へ送液することにより、 グラジェント溶離を行 5。
しかしながら、 最初に初期溶媒のみを送液する際に、 次の二つの理由により、 相当 量の初期溶媒が第二溶媒の流路 5 0へ入り込んでしまう。
第一に、該流路中で最初に第二溶媒で満たされる部分は一部に過ぎず (例えば図 5 ではポンプ 4 6からバルブ 4 8に至る流路内) 、 相当量の容積をもつ空の部分 (例え ば図 5ではパルプ 4 8から三方ティ 5 2に至る流路内)へ初期溶媒が入り込んでしま Ό ο
さらに第二に、 送液系に後続する分離系の抵抗により、 送液系は例えば数十 k g Z c m 2程度の高圧に達し、 第二溶媒の流路 5 0へ流入した高圧の初期溶媒が、 あらか じめ常圧下で貯槽されている第二溶媒を押し込み、 第二溶媒が圧縮されてしまう。 そ の結果、 第二溶媒の流路内へさらなる量の初期溶媒が入り込んでしまう。 例えば、 初 期溶媒に水、 第二溶媒にァセトニトリルを使用した場合、 水の圧力でァセトュトリル が圧縮されてしまい相当量の体積収縮が起こる。ナノ/ミクロ液体クロマトグラフで は、 流路径およぴ流路容積が極めて小さいために、 このような溶媒の圧縮率による要 因も、 初期溶媒の第二溶媒の流路への流入に大きく影響する。
そして、 このように相当量の初期溶媒が第二溶媒の流路内へ入り込んでしまうと、 図 6のグラフに例示したように、所定の時間に初期溶媒のみの送液から混合溶媒の送 液へ切り替えるように定量ポンプの操作を制御したにもかかわらず、実際の切り替え が該所定の時間よりも遅延してしまうという問題が生じていた。 すなわち、 第二溶媒 の流路 5 0内へ入り込んだ初期溶媒をポンプ 4 6で押し出すのに時間を要し、 この間 は第二溶媒を混合することができず、 このような遅延が生じてしまっていた。 したが つて、分離カラムへの混合溶媒の送液が送れて分離が遅くなつたり、 或いは測定結果 の正確な解析に支障を生じてしまうこともあった。 [発明の開示]
本発明は前記従来技術の課題に鑑み為されたものであり、その目的はナノ/ミクロ 液体クロマトグラフのグラジェント送液において、溶媒混合時における送液性能を改 良することにある。
前記目的を達成するために、本発明に係るナノ Zミクロ液体クロマトグラフのダラ ジェント送液装置は、
初期溶媒を送液する定量ポンプ及びそれに続く初期溶媒流路を備えた初期溶媒送 液部と、
他の溶媒を送液する定量ポンプ及びそれに続く溶媒流路を備えた一又は二以上の 送液部と、
前記各流路が接続され、且つ該各流路からの各溶媒が所定比率で混合した混合溶媒 が通る、 後続する分離系への混合液流路が接続された溶媒混合部と、
後続する分離系へ送液する前記混合溶媒の混合比率を制御する制御部を備えたナ ノ /ミク口液体クロマトグラフのグラジェント送液装置において、
前記他の溶媒を送液する溶媒流路の溶媒混合部近傍に、該流路を開閉可能な開閉手 段を備えたことを特徴とする。
さらに、本発明に係る装置は前記装置において、 初期溶媒送液部と送液部を液絡す る液絡部を備えたことを特徴とする。
さらに、 本発明に係る装置は、
初期溶媒を送液する定量ポンプ及びそれに続く初期溶媒流路を備えた初期溶媒送 液部と、
他の溶媒を送液する定量ポンプ及びそれに続く溶媒流路を備えた一又は二以上の 送液部と、
前記各流路が接続され、且つ該各流路からの各溶媒が所定比率で混合した混合溶媒 が通る、 後続する分離系への混合液流路が接続された溶媒混合部と、
後続する分離系へ送液する前記混合溶媒の混合比率を制御する制御部を備えたナ ノ ミク口液体ク口マトグラフのグラジェント送液装置において、
送液部の定量ポンプ及ぴそれに続く前記溶媒流路の一部で構成される、あら力 じめ 圧縮率の小さレ、液体を満たすための第一貯槽手段と、 第一貯槽手段に続く前記溶媒流路の一部で構成される、あらかじめ前記液体に続い て前記他の溶媒を必要量だけ満たしておくための第二貯槽手段を備えたことを特徴 とする。
また、 前記目的を達成するために、本発明に係るナノノミクロ液体クロマトグラフ のグラジェント送液方法は、
初期溶媒を送液する定量ポンプ及びそれに続く初期溶媒流路を備えた初期溶媒送 液部と、
他の溶媒を送液する定量ポンプ及びそれに続く溶媒流路を備えた一又は二以上の 送液部と、
前記各流路が接続され、且つ該各流路からの各溶媒が所定比率で混合した混合溶媒 が通る、 後続する分離系への混合液流路が接続された溶媒混合部を備え、
グラジェント溶離を行うため前記混合溶媒の混合比率を順次変化させて後続する 分離系へ送液するナノ/ミクロ液体クロマトグラフのグラジェント送液方法におい て、
前記他の溶媒を送液する溶媒流路の、溶媒混合部近傍に該流路を開閉可能な開閉手 段を備え、 以下のステップ:
開閉手段を閉じ、 あらかじめ送液部の定量ポンプから開閉手段に至る流路を前記他 の溶媒で満たし、 且つ該溶媒に適当な圧力を付与しておく第一ステップ;
初期溶媒を初期溶媒送液部から溶媒混合部を経て後続する分離系へ送液する第二 開閉手段を開放し、 所定流量で前記他の溶媒を溶媒混合部へ送液し、初期溶媒との 所定比率の混合溶媒を後続する分離系へ送液する第三ステップ;を含むことを特徴と する。
さらに、本発明に係る方法は前記方法において、初期溶媒送液部と送液部とを液絡 する液絡部を備え、
第一ステップにおける溶媒への圧力付与を、第ニステップにおいて初期溶媒送液部 に生じた圧力を該液絡部を介して送液部へ付与することにより行うことを特徴とす る。
さらに、 本発明に係る方法は、 初期溶媒を送液する定量ポンプ及びそれに続く初期溶媒流路を備えた初期溶媒送 液部と、
他の溶媒を送液する定量ポンプ及びそれに続く溶媒流路を備えた一又は二以上の 送液部と、
前記各流路が接続され、且つ該各流路からの各溶媒が所定比率で混合した混合溶媒 が通る、 後続する分離系への混合液流路が接続された溶媒混合部を備え、
グラジェント溶離を行うため前記混合溶媒の混合比率を順次変化させて後続する 分離系へ送液するナノ Zミクロ液体クロマトグラフのグラジェント送液方法におい て、 以下のステップ:
あらかじめ送液部の定量ポンプからそれに続く溶媒流路の一部に渡り圧縮率の小 さい液体を満たしておく第一ステツプ;
前記溶媒流路に、前記液体に続いて前記他の溶媒を必要量だけ満たしておく第ニス テツプ;
初期溶媒を初期溶媒送液部から溶媒混合部を経て後続する分離系へ送液する第三 所定流量で前記他の溶媒を溶媒混合部へ送液し、初期溶媒との所定比率の混合溶媒 を後続する分離系へ送液する第四ステップ;を含むことを特徴とする。
また、 これらの本発明に係る装置おょぴ方法において、 前記定量ポンプはシリンジ を一回押し切ることにより全溶媒を送液するシリンジ型定量ポンプであることが好 適である。
[図面の簡単な説明]
図 1は、 本発明の一実施形態に係る方法を使用する送液系の説明図である。
図 2は、 本発明の一実施形態に係る方法を使用する送液系の説明図である。
図 3は、 本発明の方法に使用されるシリンジポンプの説明図である。
図 4は、 高速液体クロマトグラフ装置の説明図である。
図 5は、 従来の送液系の説明図である。
図 6は、初期溶媒のみの送液から混合溶媒の送液への切り替え時間についての説明 図である。 図 7は、 圧力計の説明図である。
[発明を実施するための最良の形態]
以下、 図面に基づき本発明について説明する。
第一実施形態
図 1に本発明の第一実施形態に係る方法を使用する送液系の概略構成を示す。 なお、 前記従来技術に対応する部分については符号に 1 0 0を付して表す。 この送液系 1 3 0では、初期溶媒送液部 1 3 2において初期溶媒タンク 1 3 4から定量ポンプ 1 3 6 へ初期溶媒を補給した後、パルプ 1 3 8を切り替えて該ポンプによりそれに続く初期 溶媒流路 1 4 0を経由して初期溶媒を送液する。
一方、第二溶媒の送液部 1 4 2において該溶媒のタンク 1 4 4から定量ポンプ 1 4 6へ該溶媒を捕給した後、バルブ 1 4 8を切り替えて該ポンプによりそれに続く第二 溶媒溶媒流路 1 5 0を経由して該溶媒を送液する。
なお、本実施形態では初期溶媒流路 1 4 0および第二溶媒流路 1 5 0を得るために、 流路径 2 5 0 ni以下のキヤビラリを使用している。
そして、 初期溶媒流路 1 4 0と第二溶媒流路 1 5 0が接続された三方ティ 1 5 2 (溶媒混合部) で二種の溶媒が所定比率で混合され、 混合溶媒は混合溶媒流路 1 5 4 を経由して後続する分離系へ送液される。各溶媒の混合比率は各定量ポンプで設定さ れた流量の比率で決定され、 コンピュータ等の制御部により制御される。 以降、 混合 溶媒の混合比率を順次変化させて後続する分離系へ送液することにより、 グラジェン ト溶離を行う。
本実施形態において特徴的なことは、 第二溶媒を送液する溶媒流路 1 5 0の、溶媒 混合部 1 5 2近傍に該流路を開閉可能な開閉手段を設けたことである。本実施形態で は、 開閉手段としてパルプ 1 6 0を使用している。 このように溶媒混合部 1 5 2近傍 に開閉手段を設けたことにより、前記した課題である初期溶媒の第二溶媒流路 1 5 0 への流入を大幅に抑制できる。 すなわち、 初期溶媒の流入はバルブ 1 6 0の手前まで の小容量の領域に抑えることができ、パルプ 1 6 0から定量ポンプ 1 4 6間の比較的 大きな容量を占める流路部分へ初期溶媒が流入することはない。 この開閉手段を使用 した本発明の方法の各ステップは以下の通りである。 第一ステップ
パルプ 1 6 0を閉じて流路を遮断した状態で、あらかじめ定量ポンプ 1 4 6力ゝらノ ルブ 1 6 0に至る流路を第二溶媒で満たしておく。 そして、 第二溶媒に、 定量ポンプ 1 4 6の駆動により適当な圧力を付与しておく。 このように圧力をあらかじめ付与し ておくことで、バルブ 1 6 0を開放した際の初期溶媒からの圧力により第二溶媒が体 積収縮するのを抑制することができる。 したがって、 それだけ初期溶媒の流路 1 5 0 への流入量は低減される。 あらかじめ第二溶媒に付与しておく圧力は、使用する溶媒 その他の条件により適宜決定される。 第二ステップ
初期溶媒を初期溶媒送液部 1 3 2から溶媒混合部 1 5 2を経て後続する分離系へ 送液する。 このとき、 送液系は後続する分離系の抵抗により、 徐々に高圧に達する。 本実施形態では、 速く高圧状態 (例えば 2 0 k g / c m 2) に到達させるために、 最 初は 5 0 0 ^ 1 /m i nで送液し、高圧状態へ到達後は 5 0 0 n 1 i nで送液す る。 第三ステップ
バルブ 1 6 0を開放し、所定流量で第二溶媒を溶媒混合部 1 5 2へ送液し、初期溶 媒との所定比率の混合溶媒を後続する分離系へ送液する。 本実施形態では、 流路 1 5 0への初期溶媒の流入がバルブ 1 6 0までの小容量で抑えられ、 さらに、 あらかじめ 第二溶媒へ圧力が付与されているので、第二溶媒の圧縮に起因する流路 1 5 0への初 期溶媒の進入も同時に抑えられる。 したがって、初期溶媒のみの送液から混合溶媒の 送液へ切り替えるように意図した所定の時間からの遅延を低減することができる。 さらに本実施形態において特徴的なことは、初期溶媒送液部 1 3 2と送液部 1 4 2 を液絡する液絡部 1 7 0を設けたことである。 前述の第一ステップでは、第二溶媒へ 圧力を付与するためにポンプ 1 4 6を駆動する必要があるが、 このように液絡部 1 7 0を設けたことにより、初期溶媒送液開始後の初期溶媒送液部 1 3 2の圧力がそのま ま第二溶媒送液部 1 4 2へ伝わり、ポンプ 1 4 6からバルブ 1 6 0まで満たされる第 二溶媒へ同じ圧力が付与されるので、圧力バランスをとるために特別な操作を行う必 要は全くない。
本実施形態では、液絡部 1 7 0に各溶媒を貯めておくキヤビラリ 1 7 2, 1 7 4と、 パルプ 1 7 6と、 圧力計 1 7 8, 1 8 0を設けている。 あらかじめ、 キヤビラリ 1 7 2には初期溶媒を、 そしてキヤビラリ 1 7 4には第二溶媒を貯めておく。 そして、 初 期溶媒を初期溶媒送液部 1 3 2から溶媒混合部 1 5 2を経て後続する分離系へ送液 すると共に初期溶媒送液部 1 3 2の圧力は次第に増加し、 高圧 (例えば 2 0 k g / c m 2) に達する。 すると、 バルブ 1 7 6を開放した状態では液絡部 1 7 0において初 期溶媒と第二溶媒が接するので、 この高圧がそのまま第二溶媒送液部 1 4 2へ伝わり、 閉じているパルプ 1 6 0までの間に満たされている第二溶媒は同じ圧力を付与され る。 したがって、 前述の第一ステップと同等の効果を得ることができる。
なお、 キヤビラリ 1 7 2, 1 7 4には十分な容量のものを使用しているので、 初期 溶媒と第二溶媒が接する境界面が、ポンプ 1 4 6やそれに続く流路へ達してしまうこ とはなく、 これらの溶媒が混ざってしまうことはない。 また、 第三ステップ開始後は パルプ 1 6 0を開放するので、必要であればバルブ 1 7 6はその後閉じて流路を遮断 してもよい。 また、 バルブ 1 7 6から、 ストップバルブ 1 8 2を介してドレイン 1 8 4を設けることも好適である。
なお、 三種以上の溶媒を使用する場合には、送液部 1 4 2に加えて他の溶媒を送液 する各送液部を同じ態様で溶媒混合部 1 5 2に接続して用いることができ、 この場合、 複数の各送液部間を液絡することもできる。 圧力計
図 1で使用する圧力計 1 7 8, 1 8 0の概略構造を図 7に示す。 同図において、 移 動相溶媒が定流量で送液されている条件下では、溶媒流路 4 0 2とキヤビラリ 4 0 4 の結合部では、 壁面 4 0 6により送液流れに対する抵抗が生じる。 これにより、 溶媒 の流れの方向 4 0 8への圧送による、前記結合部付近の流路壁面への圧力が增大する。 この増大した壁面への圧力を圧力計 4 1 0で検知する。
ナノ/ミクロ液体クロマトグラフでは使用溶媒量が極めて少ないため、溶媒の漏れ がないかどうか、 或いは、 つまりによる異常な高圧が生じていないかどうか等、 測定 時に正常に送液がされているかどうかの確認をすることが困難である。 そこで、 この ような圧力計を流路に設置して液圧をモニターすることにより、正常に送液されてい るかどうかを確認することができる。 すなわち、 正常に定流量で送液されている場合 には一定圧が検知され、例えば溶媒の漏れが生じている場合には圧力の減少によりそ れを確認でき、 また、 つまりによる異常な高圧が生じている場合には圧力の増加によ りそれを確認できる。 第二実施形態
図 2に本発明の第二実施形態に係る方法を使用した送液系の概略構成を示す。 なお、 前記第一実施形態と対応する部分には符号 1 0 0に変えて 2 0 0を付し、説明を省略 する。
本実施形態において特徴的なことは、あらかじめ第二溶媒送液部 2 4 2の定量ボン プ 2 4 6からそれに続く溶媒流路 2 5 0の一部に渡り圧力に対する収縮率の小さい 液体を満たしたことである。 これにより、圧力付与による第二溶媒の体積収縮の影響 を大幅に抑えることができる。本実施形態に係る送液方法の各ステップは以下の通り である。 ' 第一ステップ
あらかじめ定量ポンプ 2 4 6からそれに続く溶媒流路の一部に渡り圧縮率の小さ い液体を満たしておく。 例えば図 2では、 このような溶媒を入れたタンク 2 4 4から ポンプ 2 4 6で六方バルブ 2 9 4までの流路 (第一貯槽手段) を満たしておく。 第二ステップ
六方バルブ 2 9 4のポート aからポート bに渡る流路 2 9 6 (第二貯槽手段) には、 あらかじめ第二溶媒のタンク 2 9 0からポンプ 2 9 2により送液して第二溶媒を満 たしておく。 この流路 2 9 6の容量は、 測定に必要な量の第二溶媒を満たすだけの量 があればよい。 そして、 六方バルブ 2 9 4を同図の破線で示す経路に切り替え、 流路 2 5 0に、 前述の圧縮率の小さい液体に続いて第二溶媒が満たされるようにする。 第三ステップ
初期溶媒を初期溶媒送液部 2 3 2から溶媒混合部 2 5 2を経て後続する分離系へ 送液する。 このとき、 送液系は後続する分離系の抵抗により、 徐々に高圧に達し、 流 路 2 5 0へ流入した初期溶媒はあらかじめ満たされている第二溶媒を圧縮する。 しか しながら、ポンプ 2 4 6からそれに続く六方バルブ 2 9 4までの流路は圧縮率の小さ V、液体で満たされているため、 この比較的容量が大きレ、部分での体積収縮を抑えるこ とができる。 すなわち、 図 5の従来技術では、 ポンプからそれに続く流路にわたり全 て第二溶媒で満たされ、 これが圧縮による体積収縮を受けるのに対し、 図 2の本実施 形態では、 測定に必要な量の第二溶媒は圧縮されるものの、 それだけに抑えることが でき、 体積収縮に起因する流路 2 5 0への初期溶媒の流入を大幅に抑えられる。 なお、圧縮率の小さい液体としては、 第二溶媒より圧縮率が小さいものをその他の 測定条件等により適宜選択することが好ましい。 第四.
所定流量で第二溶媒を溶媒混合部 2 5 2へ送液し、初期溶媒との所定比率の混合溶 媒を後続する分離系へ送液する。 以上のように本実施形態では、測定に必要な量の第 二溶媒のみ使用したので、初期溶媒のみの送液から混合溶媒の送液へ切り替えるよう に意図した所定の時間からの遅延を低減することができる。
なお、 三種以上の移動相溶媒を使用する場合には、 送液部 2 4 2に加えて他の溶媒 を送液する各送液部を同じ態様で溶媒混合部 2 5 2に接続して用いることができる。 定量ポンプ
以下、本発明に定量ポンプとして好適に使用されるシリンジポンプを図 3に基づき 説明する。 図 3に示すシリンジポンプ 3 0 0では、ヘッド 3 0 4にあらかじめ導入し た溶媒をシリンジ 3 0 2を駆動して流路 3 0 6へ吐出する。ナノ/ミクロ液体クロマ トグラフでは分離のために使用する溶媒が微量であるととから、モータ 3 0 8による ネジ 3 1 0の回転駆動によりシリンジを一回押し切ることにより全溶媒の送液を行 う。 したがって、 吸引、 吐出の繰り返しによる脈動を生じることなく送液することが 可能である。 このようなシリンジポンプを使用する場合、ポンプの温度変化が流量の変化を生じ ることがある。 したがってポンプの温度を均一に保つ手段を適用することが好ましい。 しかしながら、適当な温度調整手段を用いてもこの温度変化による流量の変化が無 視できない場合もある。 この点を検討した結果、 全送液中にへッド 3 0 4内に導入さ れるシリンジ部分の容量を小さくすることが流量変化の抑制に有効であることを見 出した。
ポンプの温度変化が流量の変化を生じるのは、温度変化に起因する溶媒体積の変動 と、 シリンジ体積の変動、 或いはその両方によると考えられる。 例えば溶媒の密度は 温度 1 °Cの増加に対し概ね 0. 1 %増加する。 また、 シリンジの体積も温度膨張する 場合があると考えられる。 したがって、 前記シリンジ部分の容量を小さくすることで これらの変動を抑えることができるものと考えられる。 特に、該容量を 1 0 0 0 1 以下とすることが好適である。 以上説明したように、 本発明の装置おょぴ方法によれば、
①溶媒混合部近傍に第二溶媒流路を開閉可能な開閉手段を備え、あらかじめ送液部の 定量ポンプから開閉手段に至る流路を第二溶媒で満たし、且つ該溶媒に適当な圧力を 付与しておくこととしたので、初期溶媒の第二溶媒流路への流入を抑えることができ る。 この場合、 初期溶媒送液部と送液部を液絡する液絡部を備えることで、 初期溶媒 からの圧力がそのまま第二溶媒へ付与されるので、適当な圧力付与操作を省くことが できる。
②あらかじめ送液部の定量ポンプからそれに続く溶媒流路の一部に渡り圧縮率の小 さい液体を満たしておき、該液体に続いて第二溶媒を必要量だけ満たしておくことと したので、 初期溶媒の第二溶媒流路への流入を抑えることができる。

Claims

請求の範囲
1 .初期溶媒を送液する定量ポンプ及びそれに続く初期溶媒流路を備えた初期溶媒送 液部と、
他の溶媒を送液する定量ポンプ及びそれに続く溶媒流路を備えた一又は二以上の 送液部と、
前記各流路が接続され、且つ該各流路からの各溶媒が所定比率で混合した混合溶媒 が通る、 後続する分離系への混合液流路が接続された溶媒混合部と、
後続する分離系へ送液する前記混合溶媒の混合比率を制御する制御部を備えたナ ノノミクロ液体クロマトグラフのグラジェント送液装置にぉレ、て、
前記他の溶媒を送液する溶媒流路の溶媒混合部近傍に、該流路を開閉可能な開閉手 段を備えたことを特徴とするナノ Zミク口液体クロマトグラフのグラジェント送液
2 . 請求項 1記載の装置において、 さらに初期溶媒送液部と送液部とを液絡する液絡 部を備えたことを特徴とするナノ zミク口液体クロマトグラフのグラジェント送液
3 . 初期溶媒を送液する定量ポンプ及びそれに続く初期溶媒流路を備えた初期溶媒送 液部と、
他の溶媒を送液する定量ポンプ及びそれに続く溶媒流路を備えた一又は二以上の 送液部と、
前記各流路が接続され、且つ該各流路からの各溶媒が所定比率で混合した混合溶媒 が通る、 後続する分離系への混合液流路が接続された溶媒混合部と、
後続する分離系へ送液する前記混合溶媒の混合比率を制御する制御部を備えたナ ノ/ミクロ液体ク口マトグラフのグラジェント送液装置において、
送液部の定量ポンプ及ぴそれに続く前記溶媒流路の一部で構成される、あらかじめ 圧縮率の小さ 、液体を満たすための第一貯槽手段と、
第一貯槽手段に続く前記溶媒流路の一部で構成される、 あらかじめ前記液体に続い て前記他の溶媒を必要量だけ満たしておくための第二貯槽手段を備えたことを特徴 とするナノ/ミクロ液体クロマトグラフのグラジェント
4 . 請求項 1〜3のいずれかに記載の装置において、前記定量ポンプはシリンジを一 回押し切ることにより全溶媒を送液するシリンジ型定量ポンプであることを特徴と するナノ/ミク口液体クロマトグラフのグラジェント送液装置。
5 .初期溶媒を送液する定量ポンプ及びそれに続く初期溶媒流路を備えた初期溶媒送 液部と、
他の溶媒を送液する定量ポンプ及びそれに続く溶媒流路を備えた一又は二以上の 送液部と、
前記各流路が接続され、且つ該各流路からの各溶媒が所定比率で混合した混合溶媒 が通る、 後続する分離系への混合液流路が接続された溶媒混合部を備え、
グラジェント溶離を行うため前記混合溶媒の混合比率を順次変化させて後続する 分離系へ送液するナノ/ミクロ液体クロマトグラフのグラジェント送液方法におい て、
前記他の溶媒を送液する溶媒流路の、溶媒混合部近傍に該流路を開閉可能な開閉手 段を備え、 以下のステップ:
開閉手段を閉じ、あらかじめ送液部の定量ポンプから開閉手段に至る流路を前記他 の溶媒で満たし、 且つ該溶媒に適当な圧力を付与しておく第一ステップ;
初期溶媒を初期溶媒送液部から溶媒混合部を経て後続する分離系へ送液する第二 開閉手段を開放し、所定流量で前記他の溶媒を溶媒混合部へ送液し、初期溶媒との 所定比率の混合溶媒を後続する分離系へ送液する第三ステップ;を含むことを特徴と するナノ Zミクロ液体クロマトグラフのグラジェント送液方法。
6 . 請求項 5記載の方法において、 初期溶媒送液部と送液部とを液絡する液絡部を備 え、
第一ステップにおける溶媒への圧力付与を、第二ステップにおいて初期溶媒送液部 に生じた圧力を該液絡部を介して送液部へ付与することにより行うことを特徴とす るナノノミクロ液体クロマトグラフのグラジェント送液方法。
7 .初期溶媒を送液する定量ポンプ及びそれに続く初期溶媒流路を備えた初期溶媒送 液部と、
他の溶媒を送液する定量ポンプ及びそれに続く溶媒流路を備えた一又は二以上の 送液部と、
前記各流路が接続され、且つ該各流路からの各溶媒が所定比率で混合した混合溶媒 が通る、 後続する分離系への混合液流路が接続された溶媒混合部を備え、
グラジェント溶離を行うため前記混合溶媒の混合比率を順次変化させて後続する 分離系へ送液するナノ Zミク口液体クロマトグラフのグラジェント送液方法におい て、 以下のステップ:
あらかじめ送液部の定量ポンプからそれに続く溶媒流路の一部に渡り圧縮率の小 さい液体を満たしておく第一ステップ;
前記溶媒流路に、前記液体に続いて前記他の溶媒を必要量だけ満たしておく第ニス テツプ;
初期溶媒を初期溶媒送液部から溶媒混合部を経て後続する分離系へ送液する第三 所定流量で前記他の溶媒を溶媒混合部へ送液し、初期溶媒との所定比率の混合溶媒 を後続する分離系へ送液する第四ステップ;を含むことを特徴とするナノ Zミクロ液 体クロマトグラフのグラジェント送液方法。
8 . 請求項 5〜 7のいずれかに記載の方法において、 前記定量ポンプはシリンジを一 回押し切ることにより全溶媒を送液するシリンジ型定量ポンプであることを特徴と するナノ/ミクロ液体クロマトグラフのグラジェント送液方法。
PCT/JP2003/009375 2002-07-24 2003-07-24 ナノ/ミクロ液体クロマトグラフのグラジエント送液装置および送液方法 WO2004010134A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/509,440 US7402250B2 (en) 2002-07-24 2003-07-24 Equipment and method for feeding liquid gradient in nano/micro liquid chromatography
EP03765371A EP1524520A4 (en) 2002-07-24 2003-07-24 EQUIPMENT AND METHOD FOR PROVIDING A LIQUID GRADIENT IN NANO / MICRO-LIQUID CHROMATOGRAPHY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-215415 2002-07-24
JP2002215415A JP4077674B2 (ja) 2002-07-24 2002-07-24 ナノ/ミクロ液体クロマトグラフのグラジエント送液装置および送液方法

Publications (1)

Publication Number Publication Date
WO2004010134A1 true WO2004010134A1 (ja) 2004-01-29

Family

ID=30767922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009375 WO2004010134A1 (ja) 2002-07-24 2003-07-24 ナノ/ミクロ液体クロマトグラフのグラジエント送液装置および送液方法

Country Status (4)

Country Link
US (1) US7402250B2 (ja)
EP (1) EP1524520A4 (ja)
JP (1) JP4077674B2 (ja)
WO (1) WO2004010134A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8151629B2 (en) 2004-03-05 2012-04-10 Waters Technologies Corporation Pressure monitor optimization of fluid path utilization
JP2006184120A (ja) * 2004-12-27 2006-07-13 Kenichi Kudo 微少流量送液装置
JP4645437B2 (ja) * 2005-12-22 2011-03-09 株式会社島津製作所 グラジエント送液装置
CN100384500C (zh) * 2006-03-23 2008-04-30 上海交通大学 四元低压梯度混合装置
JP4732961B2 (ja) * 2006-06-07 2011-07-27 ジーエルサイエンス株式会社 グラジェント送液方法及び装置
JP4732960B2 (ja) * 2006-06-07 2011-07-27 ジーエルサイエンス株式会社 グラジェント送液方法及び装置
JP4812524B2 (ja) * 2006-06-07 2011-11-09 ジーエルサイエンス株式会社 液体供給方法及び装置
WO2010083147A1 (en) 2009-01-14 2010-07-22 Waters Technologies Corporation Rotating valve
WO2012099763A1 (en) * 2011-01-19 2012-07-26 Waters Technologies Corporation Gradient systems and methods
CH706929A1 (de) * 2012-09-11 2014-03-14 Werner Doebelin Ultra-Hochdruck-Spritzenpumpensystem für den Gradienten Betrieb im Bereich der HPLC.
CH709709A1 (de) * 2014-05-30 2015-11-30 Werner Döbelin Systemkonfiguration für die Injektion von Proben mit automatischer Festphasenextraktion mit nur einem binären Pumpensystem für den Betrieb im Bereich der HPLC, ultra-, mikro- und nano- HPLC.
CN108445120B (zh) * 2018-02-05 2020-04-07 大连依利特分析仪器有限公司 色谱仪用二元梯度溶剂输送系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071389A (ja) * 1973-10-24 1975-06-13
JPS5278498A (en) * 1975-11-10 1977-07-01 Varian Associates Pumping apparatus for liquid chromatography having compensation means for liquid compression
JPS5344085A (en) * 1976-10-04 1978-04-20 Hitachi Ltd Liquid chromatograph
JPH11502931A (ja) * 1995-03-31 1999-03-09 ザ パーキン−エルマー コーポレーション 高圧微量体積シリンジポンプ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003679A (en) * 1975-04-02 1977-01-18 Hewlett-Packard Company High pressure pump with metering
US4133767A (en) * 1977-06-14 1979-01-09 Spectra-Physics, Inc. Chromatographic apparatus and method
US4311586A (en) * 1980-04-22 1982-01-19 Tracor, Inc. Solvent mixing in HPLC using low pressure solvent metering pumps
DE3139925A1 (de) * 1981-10-08 1983-07-14 Hewlett-Packard GmbH, 7030 Böblingen Hochdruck-dosierpumpe
US4446105A (en) * 1982-10-29 1984-05-01 The United States Of America As Represented By The United States Department Of Energy System for analyzing coal liquefaction products
US4534659A (en) * 1984-01-27 1985-08-13 Millipore Corporation Passive fluid mixing system
US4840730A (en) * 1986-07-25 1989-06-20 Sepragen Corporation Chromatography system using horizontal flow columns
US4942018A (en) * 1987-02-10 1990-07-17 Ldc Analytical Inc. Packed bed gradient generator for high performance liquid chromatography
US5080785A (en) * 1987-07-13 1992-01-14 Isco, Inc. Chromatographic system
US5360320A (en) 1992-02-27 1994-11-01 Isco, Inc. Multiple solvent delivery system
JP3823092B2 (ja) * 2003-03-11 2006-09-20 株式会社日立ハイテクノロジーズ 分離分析装置
JP3898688B2 (ja) * 2003-11-07 2007-03-28 株式会社日立ハイテクノロジーズ グラジエント送液装置
US7332087B2 (en) * 2003-11-26 2008-02-19 Waters Investments Limited Flow sensing apparatus used to monitor/provide feedback to a split flow pumping system
US7186336B2 (en) * 2003-11-26 2007-03-06 Waters Investments Limited Flow sensing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5071389A (ja) * 1973-10-24 1975-06-13
JPS5278498A (en) * 1975-11-10 1977-07-01 Varian Associates Pumping apparatus for liquid chromatography having compensation means for liquid compression
JPS5344085A (en) * 1976-10-04 1978-04-20 Hitachi Ltd Liquid chromatograph
JPH11502931A (ja) * 1995-03-31 1999-03-09 ザ パーキン−エルマー コーポレーション 高圧微量体積シリンジポンプ

Also Published As

Publication number Publication date
JP2004061119A (ja) 2004-02-26
US7402250B2 (en) 2008-07-22
US20050129539A1 (en) 2005-06-16
EP1524520A1 (en) 2005-04-20
JP4077674B2 (ja) 2008-04-16
EP1524520A4 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
US20230135114A1 (en) Sample Injector With Metering Device Balancing Pressure Differences In An Intermediate Valve State
US7921696B2 (en) Liquid chromatograph device
US7980119B2 (en) Auto-sampler cleaning mechanism
US7992429B2 (en) Chromatography system with fluid intake management
JP5152406B2 (ja) 液体クロマトグラフ
CN109154291B (zh) 切换阀、二元泵以及具备该二元泵的液相色谱仪
WO2004010134A1 (ja) ナノ/ミクロ液体クロマトグラフのグラジエント送液装置および送液方法
US10005006B2 (en) Method for adjusting a gradient delay volume
JP4457135B2 (ja) 液体クロマトグラフ分析装置及び試料導入装置
US20200400623A1 (en) Fluid mixing by fluid supply lines with line-specific fluid pumps for liquid chromatography
US20140318224A1 (en) High-pressure constant flow rate pump and high-pressure constant flow rate liquid transfer method
US20240011957A1 (en) Testing a sampling unit fluidically coupled to a source
JP2005351717A (ja) グラジエント送液システム
JP2002014084A (ja) 液体クロマトグラフ
WO2022243833A1 (en) Determining a restriction in a liquid network
WO2020109838A1 (en) Removing portions of undefined composition from the mobile phase

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10509440

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003765371

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003765371

Country of ref document: EP