WO2004005749A1 - Foundation with damping fuction - Google Patents

Foundation with damping fuction Download PDF

Info

Publication number
WO2004005749A1
WO2004005749A1 PCT/JP2003/008513 JP0308513W WO2004005749A1 WO 2004005749 A1 WO2004005749 A1 WO 2004005749A1 JP 0308513 W JP0308513 W JP 0308513W WO 2004005749 A1 WO2004005749 A1 WO 2004005749A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
movable
foundation
damping
restraining
Prior art date
Application number
PCT/JP2003/008513
Other languages
French (fr)
Japanese (ja)
Inventor
Eisaku Hino
Original Assignee
Eisaku Hino
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002197491A external-priority patent/JP4294919B2/en
Priority claimed from JP2002245622A external-priority patent/JP2004084255A/en
Application filed by Eisaku Hino filed Critical Eisaku Hino
Priority to AU2003281308A priority Critical patent/AU2003281308A1/en
Publication of WO2004005749A1 publication Critical patent/WO2004005749A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/34Foundations for sinking or earthquake territories

Definitions

  • This invention is interposed between an upper structure such as a structure, machine or floor structure and a lower structure such as a foundation or floor to support the load of the upper structure and to prevent an upper portion against forced vibration such as earthquake motion. Attenuating foundations to reduce structural sway.
  • the invention further relates to an attenuating foundation suitable to be applied to low rise buildings or homes.
  • a laminated rubber body consisting of alternately laminated rubber plates and steel thin plates is mainly used, and a laminated rubber bearing in which a lead plug is enclosed in the laminated rubber body is adopted as appropriate.
  • this has an advantage of exhibiting a relatively large loading capacity and having an elastic return action, since it undergoes shear deformation integrally following the displacement of the upper structure, the bearing area changes. Inevitability is inevitable. Also, because it depends on rubber elasticity, it is not possible to obtain a sensitive response to earthquake motion.
  • sliding bearings with sliding or rolling functions provide sensitive response to earthquake motions, have relatively small changes in the supporting area, and have stable loading capacity.
  • sensitivity with movement causes instability in the structure and is susceptible to the overturn moment of the superstructure.
  • the present invention aims to provide a damping foundation with a sliding function of a novel structure which overcomes the disadvantages of the structural instability.
  • the present invention enables the movable system interlocking with the upper structure to slide horizontally movably within a certain range with respect to the base system interlocking with the lower structure, and the movable beam is generated by the restraint beam arranged in the base system.
  • the damping foundation of the present invention comprises a base system linked to a foundation or a lower structure such as the ground, and a movable base system installed on the base system to allow horizontal movement, and the building, machine or floor
  • a base having a damping function in which an upper structure such as a structure is mounted and fixed to the movable base system, the base system comprising: a base of a rigid body having a sliding surface on the upper surface; It comprises: a plurality of column members which are erected and a constraint beam which is bridged between the column members at the upper part of the column members with rigidity maintained, and the movable base system is a sliding surface on the upper surface of the base.
  • a movable base of rigid body is mounted on the movable base through a gap, a restriction hole is opened in the movable base for receiving the column member with a movement gap in the sliding direction, and the movable base of the movable base Only the movement in the sliding direction is permitted and restrained by the abutment with the restraining beam.
  • Return mechanism consisting mainly of root material if between the Kibashira member and the movable table as a basic structure that is formed by interposed.
  • the specific constitution of the present invention is shown in the following "Best Mode for Carrying Out the Invention".
  • the present invention can take the following aspects in addition to this basic configuration.
  • the restraining beam is disposed with a movement gap in a restraining groove formed in the movable table
  • the movable base is composed of a combination of precast concrete plates
  • a buffer mechanism is interposed between the column member and the movable base
  • a lock mechanism is interposed between the restraint beam and the movable base
  • a support is installed on the movable support via a plurality of legs, and the upper structure is joined via the support;
  • the rolling and moving means is composed of a plurality of steel balls and is interposed between the base and the movable base,
  • the support surface of the damping foundation is a sliding surface, which has a broad support surface, and It consists of a rigid body and has a large loading capacity. At all times, even if wind load is applied to the superstructure, the pre-compression force prevents movement when pre-compression is introduced to the return mechanism.
  • the foundation When a forced vibration force such as an earthquake acts, the foundation is disconnected at the top and bottom surfaces of the base and the movable base, and earthquake motion occurring in the lower structure and base is hardly transmitted to the upper structure. .
  • the relative displacement between the upper structure and the lower structure allows the load of the upper structure to be absorbed by the predetermined clearance between the column member and the restraining hole while being supported by the base over a wide area via the movable table.
  • this relative displacement occurs in all directions in the horizontal plane, this foundation allows this horizontal displacement and does not constrain it.
  • FIG. 1 is a partial side vertical cross-sectional view showing a whole configuration of an embodiment (first embodiment) of a damping foundation of the present invention (a side view taken along a line 11-a cross-sectional view of FIG. 2).
  • Fig. 2 is a partial plan view and a partial horizontal cross-sectional view of Fig. 2 (2-line plane ⁇ cross-sectional view of Fig. 1).
  • FIG. 3 is a cross-sectional view taken along line 3-3 in FIG.
  • Fig. 4 is a schematic diagram of the lock mechanism.
  • FIG. 5 is an illustration of the installation and placement of the damping foundation.
  • FIG. 6 is a partial side vertical cross-sectional view showing the entire configuration of another embodiment (the second embodiment) of the damping foundation of the present invention (the side view along line 11 in FIG. 7 ⁇ cross-sectional view).
  • Fig. 7 is a plan view thereof (a view on arrow 7-7 in Fig. 6).
  • FIG. 8 is a sectional view taken along line 8-8 of FIG.
  • FIG. 9 is a plan view showing another aspect of this embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • the damping foundation S is a base system 1 interlocked with the foundation B or the lower structure B of the ground and a predetermined horizontal movement of the base system 1 to allow restraint.
  • a movable base system 2 and a support base system 3 mounted on and fixed to the movable base system 2 and interlocked with the upper structure G, the return being interposed between the base base system 1 and the movable base system 2
  • the mechanism 4 and the buffer mechanism 5 are included.
  • the base system 1 has a substantially rectangular plate-like base 6 whose upper surface has a smooth surface, four pillar members 7 erected on the base 6, and the pillar members 7. And a restraining beam 8 bridged over the column members 7 while maintaining rigidity.
  • Movable system 2 mainly comprises movable table 9 slidably mounted on the upper surface of base 1, and has column members and restraint beam 8 with holes and grooves formed in movable table 9. Allow and accept movement.
  • the support system 3 mainly has a rectangular flat plate-like support 10, and is mounted and fixed on a movable stand 9 via a plurality of legs 11.
  • the lower anchor 12 is fixed to the base 6 and the upper anchor 13 is fixed to the support 10, and interlocked with the upper structure G and the lower structure B.
  • the base 6 is formed of a rigid material made of steel or concrete, and the upper surface 6 a is a smooth surface to form a square plate (square or rectangle) having a predetermined thickness.
  • the column members 7 are formed of a rigid material made of steel or concrete, have a cylindrical shape of a predetermined length, and are erected at four locations on the upper surface of the base 6.
  • the four column members 7 are arranged at square corners.
  • the column member 7 is made of metal (for example, steel), it is welded and fixed directly to the base 6 or a screw 7 a is screwed on its base and drilled on the base 6. Screwed into screw hole 6 b.
  • the former is shown in the left part of FIG. 3 and the latter is shown in the right part of FIG. 3 c
  • Retaining beam 8 is made of a rigid body and is rigidly connected between the column members 7 at the top of the column members 7 It is bridged keeping the standard.
  • Fitting 15 consists of a steel cylinder, The height thereof is substantially equal to the height of the restraining beam 8 and tightly fitted to and fixed to the head of the cylindrical column member 7.
  • the base 6 ⁇ pillar member 7 ⁇ restraint beam 8 constituting the base system 1 is integrally formed with rigidity and functions integrally.
  • the movable stand 9 is formed of a rigid material made of steel or concrete and has the same shape in plan view as the base 6 and has the same height as the column member 7.
  • the lower surface 9 a of the movable table 9 is a smooth surface, and is mounted on the upper surface 6 a of the base 6 in a slidable manner. As a result, the movable base 9 and the base 6 contact with each other in a large area, so that a large load can be supported.
  • a circular restraint hole 18 is opened in the movable stand 9 at the corresponding position of the column member 7 vertically.
  • the diameter of the restraining hole 18 is sufficiently larger than the diameter of the column member 7, and the clearance thereof gives the allowable movement of the movable table 9, but the return mechanism 4 and the buffer mechanism which will be described later are substantially described. Because 5 is interposed, the amount of movement is smaller than ⁇ .
  • Constraint hole 18 consists of an upper part 18 ⁇ and a lower part 18 ⁇ , and the lower part 18 ⁇ is larger in diameter than the upper part 18 ⁇ and has an expanded diameter.
  • the lower part 18 B is equipped with a spring material and an elastic ring described later.
  • a restraining groove 20 is further formed in the upper surface of the movable table 9 in communication with the restraining hole 18.
  • the restraining grooves 20 each have a predetermined depth and width and receive the restraining beam 8.
  • the depth of the restraining groove 20 is the same height as the height of the restraining beam 8, and the bottom surface of the restraining groove 20 slidably abuts on the lower surface of the restraining beam 8.
  • the width of the restraining groove 20 is sufficiently larger than the width of the restraining beam 8 and the free space 13 thereof is substantially equal to the free space described above. As a result, the movable stand system 2 can move by a width twice that of the clearance / 3.
  • the return mechanism 4 and the buffer mechanism 5 are interposed between the column member 7 of the fixed base system 1 and the restraint hole 18 of the movable base system 2.
  • the return mechanism 4 has a plurality of coil springs 22 fixed at both ends at an intermediate position between the column member 7 and the restraint hole 18 and arranged radially (in the present embodiment, at 45 ° intervals) with a predetermined interval maintained.
  • the Be The spring coefficient of this coil spring 22 is adjusted appropriately and does not restrict the allowable movement amount of the movable base 9.
  • the coil springs 22 are radially arranged uniformly (in the present embodiment, 45 °), and adopt one mode in which 1 pre-compression force is introduced and 2 mode in which stress is 0.
  • the movable base system 2 receives a reaction force from the column member 7 through the coil spring 22 and the movable base system 2 until an external force having a magnitude corresponding to the compression force is applied. Remains stationary. In the mode in which the stress of 2 is 0, the stationary state is maintained until a predetermined external force by cooperating with the lock mechanism described later, but when the seismic force is detected, the lock mechanism is released, and the coil spring 2 Compression and tension are alternately introduced.
  • the coil spring 22 of the return mechanism 4 has not only a return function but also a damping function, but when a particularly large damping force is required, an even greater compressive force is introduced to the coil spring 22.
  • the buffer mechanism 5 is mounted around the column member 7 so that the annular rubber ring 25 faces the lower expanded diameter portion 18 B of the restraining hole 18 at the lower part of the column member 7.
  • the rubber ring 25 has sufficient strength and elasticity, and may be hollow or solid, and its cross section may be circular or square. Fixing of the rubber ring 25 to the column member 7 is made rigid so that the rubber ring 25 does not easily come off when it strikes against the hole wall of the restraint hole 18.
  • a lock mechanism 28 is interposed between the movable base 9 and the restraining beam 8 facing the restraining groove 20 between the fixed base system 1 and the movable base system 2.
  • the lock mechanism 28 has an inlet / outlet 29 recessed in the movable base 9, a lock pin 30 disposed in / out of the inlet / outlet 29, and a fluid (air) communicated with the inlet / outlet 29.
  • the lock pin 30 is housed in the inlet / outlet 29 in an airtight / liquid-tight manner so as to be able to enter or leave, and is restrained by the compressed working fluid (air, oil) supplied from the fluid passage 31 behind the inlet / outlet 29. It is pushed towards the beam 8.
  • lock mechanism 28 is led to the external lock control mechanism 33 via the fluid passage 31.
  • reference numeral 34 denotes an electromagnetic drive type three-way valve, and in response to the drive signal, the valve body 34 is rotated to conduct and open the working fluid.
  • the wind pressure system (3 3 A) consists of a wind pressure detector 35, an air compressor or hydraulic motor 36 and this three-way valve 34. When there is a wind speed above a predetermined level, the wind pressure detector 35 The air compressor ⁇ hydraulic motor 3 6 is detected, and the three-way valve 3 4 is turned on, and working fluid is sent to the port mechanism 2 8 through the fluid passage 3 1.
  • the earthquake system (3 3 B) consists of an earthquake detector 3 7 and the three-way valve 34. When an earthquake occurs, the earthquake detector 3 7 detects this earthquake and opens the three-way valve 34, Lock mechanism 2 Unlock the lock.
  • the support base 10 is in the form of a rectangular flat plate having a predetermined thickness, is formed of a rigid material, and is mounted on and fixed to the movable base 9 via the plurality of legs 11.
  • the legs 1 1 have a rigid short cylindrical shape and are fixed as evenly as possible on the movable base 9 and uniformly transmit the upper load G placed on the support 10 to the movable base 9 .
  • the leg 11 is a rigid body
  • the support mechanism 10 can be elastically supported by a spring mechanism interposed in the lower part of the leg 11 or by a spring member (compression coil spring) in an artificial manner. .
  • the seismic isolation foundation S is arranged and attached to the medium-scale reinforced concrete or steel frame structure G as follows.
  • Figure 5 shows its installation and arrangement.
  • An appropriate foundation pile P is placed on the ground E, and the head of the foundation pile P is rigidly connected with a concrete foundation B.
  • the base 6 of the reducing foundation S will be installed with the lower anchor 12 at the same level. After that, assemble the damping foundation S on the foundation 6.
  • Attenuating foundations S are evenly distributed on the foundation B with symmetry. Although four locations are minimized, in mid-scale structures, many more damping foundations S are placed. In the damping base S, the supporting capacity per unit is high, so it may be relatively small. Although not shown in FIG. 5, in some cases, the damping device D may be disposed side by side with these seismic isolation foundations S or independently.
  • the building G is mounted on the attenuating foundation S via an upper anchor 13 fixed to a support 10. Built.
  • the upper anchor 13 is unnecessary and is directly welded to the support 10.
  • the supporting surface of the damping foundation S is a sliding surface 6 a (9 a), which has a wide supporting surface and is made of a rigid body, and has a large loading capacity.
  • the input horizontal force generates a rocking force F on the upper structure G, and the upper structure G sways in its natural cycle, but the coil spring 22 of the return mechanism 4 quickly moves to the 0 point (initial) position It is returned.
  • the coil springs 22 are equally distributed radially, the compressive force and the tensile force act equally, and both coil springs 22 exert an effect of returning to the initial position.
  • the relative displacement between the upper structure G and the lower structure B is as follows: The load of the upper structure G is supported by the base 6 over a wide area through the movable platform 9, and between the column member 7 and the restraining hole 18 and It is absorbed at a given clearance ⁇ , 0 between the beam 8 and the restraining groove 20.
  • the displacement difference between the upper structure G and the lower structure ⁇ ⁇ ⁇ caused by the slip is close to the allowance.
  • the rubber ring 25 of the shock absorbing mechanism 5 comes into contact with the lower restraint hole 18 B, but is absorbed by the elasticity of the rubber ring 25.
  • the movable table 9 interlocked with the upper structure G is press-restrained on its upper surface by the constraining beam 8 evenly by the four sides, sealing the upper lift of the movable table 9 and preventing the overturning moment generated in the upper structure G .
  • the displacement of the earthquake motion can be dealt with in all directions in the horizontal plane by maintaining a predetermined moving space in the damping foundation S.
  • the movable base 9 linked to the upper structure G is pressed and restrained equally by the constraining beams 8 (four sides) even in the displacement of the earthquake motion, and the movable base 9
  • the upper lifting force is sealed, the overturning moment generated in the upper structure G is prevented, and the damping function is very useful because it shares the upper lifting prevention function.
  • the damping function is exhibited, and even in the earthquake displacement, the initial position can be promptly returned. By installing it, it is possible to easily have a trigger function.
  • the movable base 9 can be easily and accurately set to the initial position by operating the locking mechanism 28 in the initial positioning when installing the damping foundation S. It can be installed on
  • the lock mechanism 2 8 is operated to reliably move the movable stand 9 into an immobile state and to prevent the upper structure G from shaking.
  • the lock mechanism 28 is operated at all times or wind pressure is applied. You may take any of the following modes: In addition, when a ground motion acts in this state, the earthquake is detected and the lock is released, and the seismic isolation function is exerted with the action of a reed.
  • the present invention is not limited to the above embodiments.
  • the movable base 9 has the restraining beam 8 disposed in the restraining groove 20 recessed in the upper surface thereof, but the restraining beam 8 is directly attached without restraining the restraining groove.
  • the upper surface of the movable table 9 may be in contact.
  • This seismic isolation support apparatus S 2 is suitably applied to the base portion of a large structure or a high-rise building, and comprises a base system 1, a movable platform system 2 and a support platform system 3, the support platform System 3 is fixed to column H of the high-rise building.
  • a spread damping base K for a house is shown, and an example of application to a low-rise floor foundation by cast-in-place concrete construction is shown.
  • the same reference numerals are attached to the same members as in the previous embodiment.
  • This damping foundation K is installed between the ground E and the house as the superstructure, that is, the low floor H, supports the load of the low floor H, and transmits it to the ground E, as well as forcing the earthquake etc. Attenuates the vibration of the lower deck H caused by the vibration force.
  • 1 is a base
  • 2 is a movable base
  • 3 is a support base
  • 4 is a return mechanism
  • 5 is a buffer mechanism.
  • the base portion 1 includes a concrete base 6 having a smooth surface and a substantially rectangular plate-like spread on the upper surface 6 a, and four columns provided on the base 6. It comprises a member 7 and a restraining beam 8 bridged over the column member 7 while maintaining rigidity at the upper part of the column member 7.
  • the movable base 2 is mainly composed of a concrete movable base 9 having a spread slidably mounted on the upper surface of the base 6, and a restriction hole 18 for receiving the column member 7 is formed in the housing. At the same time, the upper surface of the base 1 is kept in contact with the upper surface by the restraining beam 8. Ru.
  • the support portion 3 has legs 11 for establishing connection with the low story H on the movable support 9, that is, bases are disposed at a plurality of locations.
  • the return mechanism 4 is disposed at the upper part of the movable base 9 so as to surround the column member and the buffer mechanism 5 is disposed in the restraining hole 18 so as to surround the column member 7.
  • Reference numeral 28 denotes a lock mechanism, which is disposed on the movable stand 9 so as to face the restraining beam 8.
  • a feature of the second embodiment is that the restraining beam 8 directly abuts on the upper surface of the movable table 9.
  • damping base K of the second embodiment conform to the damping base S described above.
  • FIG. 9 shows another aspect of this embodiment, and shows an example of application by precast construction performed using a prefabricated plate.
  • the base part 1 is composed of a base 6, a column member 7, and a restraining beam 8, which is substantially the same as the above in terms of form and configuration.
  • the movable base 9 is assembled by combining several types of precast versions 9A, 9B, 9C.
  • precast version appropriate materials such as concrete and synthetic resin are selected.
  • the first precast version 9 A has a restraining hole 18 and is arranged at the position of the column member 7.
  • the second precast version 9B is interposed between the first precast version 9A.
  • the second precast version 9B can be taken with different dimensions in the version arranged in the mutually orthogonal directions (X, Y) in the horizontal direction.
  • the third precast version 9 C is placed in the center.
  • precast plates 9 A, 9 B, 9 C are provided with convex steps for joints overlapping each other on adjacent side faces, and a tensioning tool consisting of bolts and nuts up and down over these steps 7 is attached.
  • precast versions 9 A, 9 B, 9 C are manufactured at the factory, so Careful management is conducted, and the desired strength is expressed with a predetermined accuracy.
  • the buffer mechanism 5 is provided, but the buffer mechanism 5 may be omitted.
  • the base 6 and the movable base 9 are in the sliding form, but a rolling member such as a steel ball may be interposed between the base 6 and the movable base 9 to make the rolling form.
  • the upper structure is isolated from the vibration of the lower structure by the sliding surface between the base and the movable base against the earthquake motion, and the sliding surface is wide, Not only does it form a support surface, but because it is horizontal, even during displacement due to earthquake motion, the upper structure is not adversely affected (for example, longitudinal vibration) and effectively supported while holding a wide support surface.
  • this damping foundation is entirely made of a rigid body, it has a high loading capacity on the support surface, and can be miniaturized.
  • the displacement of the earthquake motion can be dealt with in all directions in the horizontal plane by holding a predetermined movement space on this damping foundation.
  • the upper surface of the movable table linked to the upper structure is uniformly pressed and restrained by the restraint beam even in the displacement of the earthquake motion, and the upper lift of the movable table is sealed to cause the overturn in the upper structure. It is a very useful thing that blocks the moment and shares the function of blocking the lift with the damping function.
  • the recovery mechanism in this damping foundation can exhibit the damping function and can quickly return to the initial position even during earthquake displacement, but it is easy by introducing a pre-compression force into the recovery mechanism 4.

Abstract

A damping foundation (S), comprising a base stand part (1) interlocked with a lower structure (B) and a movable stand part (2) interlocked with an upper structure (G), the base stand part (1) further comprising a rigid base stand (6) having a sliding surface on the upper surface thereof, columnar members (7) vertically installed on the base stand (6), and a restrained beam (8) installed across the upper parts of the columnar members (7), the movable stand part (2) further comprising restrained holes (18) for accepting the columnar members (7) formed above the upper surface of the base stand (6) with moving clearances (α) provided in a sliding direction so that the upper surface of a movable stand (9) can be uniformly press-restrained by the contact thereof with the restrained beam (8) to allow a movement only in the sliding direction, wherein a return mechanism formed of spring materials (22) is installed between the columnar members (7) and the movable stand (9), whereby when an earthquake motion acts on the damping foundation (S), the damping foundation (S) can cope with the movement on a horizontal plane in all directions, and can rapidly damp the earthquake motion.

Description

明糸田書 減衰機能を有する基礎 技術分野  Meishinda basic technical field with damping function
この発明は、 建造物、 機械又は床構造等の上部構造と基礎あるいは床体等の下部構 造との間に介装され、 上部構造の荷重を支持するとともに地震動等の強制振動に対し て上部構造の揺れを低減する減衰性基礎に関する。  This invention is interposed between an upper structure such as a structure, machine or floor structure and a lower structure such as a foundation or floor to support the load of the upper structure and to prevent an upper portion against forced vibration such as earthquake motion. Attenuating foundations to reduce structural sway.
本発明は更に、 低層建物すなわち住宅に適用されて好適な減衰性基礎に関する。 背景技術  The invention further relates to an attenuating foundation suitable to be applied to low rise buildings or homes. Background art
建造物用の減衰性基礎として、 現在一般に、 ゴム板と鋼薄板とを交互に積層してな る積層ゴム体を主体とし、 適宜該積層ゴム体に鉛プラグの封入される積層ゴム支承が 採用されているが、 このものは比較的大きな載荷能力を発揮し、 弾性復帰作用を有す る利点があるものの、 上部構造の変位に追従して一体的にせん断変形を受けるので、 支持面積が変化し、 不安定性を免れない。 また、 ゴム弾性に依存するので、 地震動に 対する敏感な応答性が得られない。  As a damping foundation for buildings, currently generally, a laminated rubber body consisting of alternately laminated rubber plates and steel thin plates is mainly used, and a laminated rubber bearing in which a lead plug is enclosed in the laminated rubber body is adopted as appropriate. Although this has an advantage of exhibiting a relatively large loading capacity and having an elastic return action, since it undergoes shear deformation integrally following the displacement of the upper structure, the bearing area changes. Inevitability is inevitable. Also, because it depends on rubber elasticity, it is not possible to obtain a sensitive response to earthquake motion.
一方、 すべり或いは転がり機能を有する減衰性支承 (以下 「すべり支承」 という) では、 地震動に対する敏感な応答性が得られるとともに比較的支持面積の変化が小さ く、 載荷能力は安定しているが、 その反面、 移動に伴う敏感性から構造物に不安定性 をもたらし、 上部構造の転倒モーメントを受け易いという欠点がある。  On the other hand, damped bearings (hereinafter referred to as "sliding bearings") with sliding or rolling functions provide sensitive response to earthquake motions, have relatively small changes in the supporting area, and have stable loading capacity. On the other hand, there is a disadvantage that the sensitivity with movement causes instability in the structure and is susceptible to the overturn moment of the superstructure.
本発明はこのすべり支承の利点に鑑み、 その欠点である構造物の不安定性を克服す る新規な構造のすべり機能を有する減衰性基礎を提供することを目的とする。  SUMMARY OF THE INVENTION In view of the advantages of this sliding bearing, the present invention aims to provide a damping foundation with a sliding function of a novel structure which overcomes the disadvantages of the structural instability.
本発明はこのため、 下部構造に連動する基台系に対し上部構造に連動する可動系を 一定範囲内で水平移動可能にすべり支持し、 基台系に配した拘束梁により可動系に生 じる上揚力を拘束することを基本的着想をもってこの課題を解決したものである。 発明の開示 Therefore, the present invention enables the movable system interlocking with the upper structure to slide horizontally movably within a certain range with respect to the base system interlocking with the lower structure, and the movable beam is generated by the restraint beam arranged in the base system. This problem was solved with the basic idea of restricting the Disclosure of the invention
本発明の減衰性基礎は、 基礎又は地盤等の下部構造に連動する基台系と、 該基台系 に水平移動を許容して設置される可動台系とからなり、 建造物、 機械又は床構造等の 上部構造が前記可動台系に載置固定される減衰機能を有する基礎であって、 前記基台 系は、 上面にすべり面を有する剛性体の基台と、 前記基台に対称を保って立設される 複数の柱部材と、 前記柱部材の上部において該柱部材間に剛性を保って架け渡される 拘束梁とからなり、 前記可動台系は、 前記基台の上面にすべり面を介してすベり可能 に剛性体の可動台が載置され、 該可動台には前記柱部材をすベり方向に移動間隙を存 して受け入れる拘束孔が開設され、 かつ該可動台の上面は前記拘束梁との当接によつ てすベり方向への移動のみが許容されて拘束され、 前記柱部材と可動台との間にはば ね材を主体とする復帰機構が介装されてなることを基本的構成とする。  The damping foundation of the present invention comprises a base system linked to a foundation or a lower structure such as the ground, and a movable base system installed on the base system to allow horizontal movement, and the building, machine or floor A base having a damping function in which an upper structure such as a structure is mounted and fixed to the movable base system, the base system comprising: a base of a rigid body having a sliding surface on the upper surface; It comprises: a plurality of column members which are erected and a constraint beam which is bridged between the column members at the upper part of the column members with rigidity maintained, and the movable base system is a sliding surface on the upper surface of the base. A movable base of rigid body is mounted on the movable base through a gap, a restriction hole is opened in the movable base for receiving the column member with a movement gap in the sliding direction, and the movable base of the movable base Only the movement in the sliding direction is permitted and restrained by the abutment with the restraining beam. Return mechanism consisting mainly of root material if between the Kibashira member and the movable table as a basic structure that is formed by interposed.
本発明の具体的構成は以下の 「発明を実施するための最良の形態」 で示される。 本発明はこの基本的構成に加え、 以下の態様を採ることができる。  The specific constitution of the present invention is shown in the following "Best Mode for Carrying Out the Invention". The present invention can take the following aspects in addition to this basic configuration.
①その拘束梁はその可動台に形成された拘束溝に移動間隙を存して配されること、 (1) The restraining beam is disposed with a movement gap in a restraining groove formed in the movable table,
②その可動台はプレキャストコンクリート版の組み合せよりなること、 (2) The movable base is composed of a combination of precast concrete plates,
③その復帰機構のばね材に予圧縮力が導入されること、  3 Pre-compression force is introduced to the spring material of its return mechanism,
④その柱部材とその可動台との間には緩衝機構が介装されること、  4) A buffer mechanism is interposed between the column member and the movable base,
⑤その拘束梁とその可動台との間にはロック機構が介装されること、  (5) A lock mechanism is interposed between the restraint beam and the movable base,
⑥その可動台上には複数の脚を介して支持台が設置され、 該支持台を介して上部構造 が接合されること、  (6) A support is installed on the movable support via a plurality of legs, and the upper structure is joined via the support;
⑦上記⑥に付き、 その支持台は弾性支持されること、  7 Attached to 6 above, the support is elastically supported,
⑧本減衰性基礎のすべり移動を転がり移動に替えてなること、  To replace the sliding movement of the 8 damping foundation with rolling movement,
⑨上記⑧に付き、 その転がり移動手段は複数の鋼球よりなり、 基台と可動台との間に 介装されてなること、  9) In the above item 8, the rolling and moving means is composed of a plurality of steel balls and is interposed between the base and the movable base,
は適宜採用される選択的事項である。 Are optional matters that are adopted as appropriate.
(作用) '  (Action) '
常時において、 上部構造の荷重は可動台、 基台を介して下部構造に伝達ざれ、 支持 される。 本減衰性基礎における支持面はすべり面であって、 広い支持面を有し、 かつ 剛性体よりなるものであり、 大きな載荷能力を有する。 常時において、 風荷重が上部 構造に作用したとしても、 復帰機構に予圧縮が導入されているときには予圧縮力によ り移動は阻止される。 At all times, the load of the upper structure is transmitted to and supported by the lower structure via the movable base and base. The support surface of the damping foundation is a sliding surface, which has a broad support surface, and It consists of a rigid body and has a large loading capacity. At all times, even if wind load is applied to the superstructure, the pre-compression force prevents movement when pre-compression is introduced to the return mechanism.
地震等の強制振動力が作用したとき、 本基礎は基台と可動台とのすベり面において 上下の接続が切れており、 下部構造及び基台に生起する地震動は上部構造に殆ど伝播 されない。 この間、 上部構造と下部構造との相対変位は、 上部構造の荷重は可動台を 介して基台に広い面積で支持されつつ、 柱部材と拘束孔との間の所定の遊隙で吸収さ れる。 また、 この相対変位は、 水平面の全方向に生じるが、 本基礎はこの水平変位を 許容し、 拘束することはない。  When a forced vibration force such as an earthquake acts, the foundation is disconnected at the top and bottom surfaces of the base and the movable base, and earthquake motion occurring in the lower structure and base is hardly transmitted to the upper structure. . During this time, the relative displacement between the upper structure and the lower structure allows the load of the upper structure to be absorbed by the predetermined clearance between the column member and the restraining hole while being supported by the base over a wide area via the movable table. . Also, although this relative displacement occurs in all directions in the horizontal plane, this foundation allows this horizontal displacement and does not constrain it.
そして、 各柱部材に配された復帰機構により 0点 (初期) 位置に速やかに復帰させ られる。  And it is made to return promptly to the 0 point (initial) position by the return mechanism arranged in each pillar member.
更にまた、 この変位において、 上部構造に連動する可動台はその上面が拘束梁によ り当接拘束され、 該可動台の上揚力を封じ、 上部構造に生じる転倒モーメントを阻止 する。 図面の簡単な説明  Furthermore, at this displacement, the upper surface of the movable table linked to the upper structure is abutted and restrained by the restraining beam to seal the upper lift of the movable table and to prevent the overturning moment generated in the upper structure. Brief description of the drawings
図 1は本発明の減衰性基礎の一実施形態 (第 1実施形態) の全体構成を示す一部側 面一部垂直断面図 (図 2の 1一 1線側面 ·断面図) 。  FIG. 1 is a partial side vertical cross-sectional view showing a whole configuration of an embodiment (first embodiment) of a damping foundation of the present invention (a side view taken along a line 11-a cross-sectional view of FIG. 2).
図 2はその一部平面一部水平断面図 (図 1の 2— 2線平面 ·断面図) 。  Fig. 2 is a partial plan view and a partial horizontal cross-sectional view of Fig. 2 (2-line plane · cross-sectional view of Fig. 1).
図 3は図 2の 3— 3線断面図。  3 is a cross-sectional view taken along line 3-3 in FIG.
図 4はロック機構の模式構成図。  Fig. 4 is a schematic diagram of the lock mechanism.
図 5は本減衰性基礎の設置及び配置の例示図。  FIG. 5 is an illustration of the installation and placement of the damping foundation.
図 6は本発明の減衰性基礎の他の実施形態 (第 2実施形態) の全体構成を示す一部 側面一部垂直断面図 (図 7の 1一 1線側面 ·断面図) 。  FIG. 6 is a partial side vertical cross-sectional view showing the entire configuration of another embodiment (the second embodiment) of the damping foundation of the present invention (the side view along line 11 in FIG. 7 · cross-sectional view).
図 7はその平面図 (図 6の 7— 7線矢視図) 。  Fig. 7 is a plan view thereof (a view on arrow 7-7 in Fig. 6).
図 8は図 7の 8— 8線断面図。  8 is a sectional view taken along line 8-8 of FIG.
図 9は本実施形態の他の態様を示す平面構成図。 発明を実施する ための最良の形態 FIG. 9 is a plan view showing another aspect of this embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の減衰性基礎の実施の形態を図面に基づいて説明する。  Embodiments of the damping foundation of the present invention will be described based on the drawings.
(第 1実施形態)  First Embodiment
図 1〜図 4はその一実施形態の減衰性基礎 Sを示し、 中層階建物への適用例を示す。 図 1〜図 3に示されるように、 本減衰性基礎 Sは、 基礎部又は地盤の下部構造 Bに 連動する基台系 1と、 該基台系 1に所定の水平移動を許容して拘束される可動台系 2 と、 該可動台系 2に載置固定され上部構造物 Gに連動する支持台系 3とを含み、 該基 台系 1と可動台系 2とに介装される復帰機構 4及び緩衝機構 5を含む。  1 to 4 show attenuating foundation S of one embodiment of the present invention, and show an example of application to a mid-story. As shown in FIGS. 1 to 3, the damping foundation S is a base system 1 interlocked with the foundation B or the lower structure B of the ground and a predetermined horizontal movement of the base system 1 to allow restraint. A movable base system 2 and a support base system 3 mounted on and fixed to the movable base system 2 and interlocked with the upper structure G, the return being interposed between the base base system 1 and the movable base system 2 The mechanism 4 and the buffer mechanism 5 are included.
更に詳細には、 基台系 1は、 上面が平滑面をなし実質的に矩形板状の基台 6と、 該 基台 6に立設される 4本の柱部材 7と、 該柱部材 7の上部において該柱部材 7間に剛 性を保って架け渡される拘束梁 8とからなる。 また、 可動台系 2は、 基台 1の上面に すべり可能に載置される可動台 9を主体とし、 柱部材 Ί及び拘束梁 8を該可動台 9内 に形成された孔及ぴ溝をもって移動を許容して受け入れる。 支持台系 3は、 矩形平板 状をなす支持台 1 0を主体とし、 複数の脚 1 1を介して可動台 9に載置固定される。 なお、 基台 6には下部アンカー 1 2が、 支持台 1 0には上部アンカ一 1 3が固設さ れ、 上部構造 G及び下部構造 Bに連動される。  More specifically, the base system 1 has a substantially rectangular plate-like base 6 whose upper surface has a smooth surface, four pillar members 7 erected on the base 6, and the pillar members 7. And a restraining beam 8 bridged over the column members 7 while maintaining rigidity. Movable system 2 mainly comprises movable table 9 slidably mounted on the upper surface of base 1, and has column members and restraint beam 8 with holes and grooves formed in movable table 9. Allow and accept movement. The support system 3 mainly has a rectangular flat plate-like support 10, and is mounted and fixed on a movable stand 9 via a plurality of legs 11. The lower anchor 12 is fixed to the base 6 and the upper anchor 13 is fixed to the support 10, and interlocked with the upper structure G and the lower structure B.
以下、 各部の細部の構造に付いて説明する。  The following describes the structure of each part in detail.
(基台系 1 )  (Base system 1)
基台 6は、 鋼製もしくはコンクリート製の剛性素材をもって形成され、 上面 6 aが 平滑面にされ、 所定厚さの方形板状 (正方形もしくは長方形) をなす。  The base 6 is formed of a rigid material made of steel or concrete, and the upper surface 6 a is a smooth surface to form a square plate (square or rectangle) having a predetermined thickness.
柱部材 7は、 鋼製もしくはコンクリート製の剛性素材をもって形成され、 所定長の 円柱状をなし、 基台 6の上面の 4か所に立設される。 4本の柱部材 7は互いに方形状 の角部に配される。 柱部材 7が金属製 (例えば鋼製) を採るとき、 基台 6に対して直 接的に溶接固定されるか、 その基部にねじ 7 aが螺設され、 基台 6に穿設されたねじ 孔 6 bに螺合される。 前者は図 3の左部分に示され、 後者は図 3の右部分に示される c 拘束梁 8は、 剛性体よりなり、 柱部材 7の上部において該柱部材 7間に剛結される とともに同一水準を保って架け渡される。 拘束梁 8の柱部材 7への結合は、 柱部材 7 の上部に被嵌される継手 1 5を介して固定される。 継手 1 5は鋼製の円筒体よりなり、 その高さは拘束梁 8の高さに実質的に等しく円柱状の柱部材 7の頭部に密着状に嵌合 され、 固定される。 The column members 7 are formed of a rigid material made of steel or concrete, have a cylindrical shape of a predetermined length, and are erected at four locations on the upper surface of the base 6. The four column members 7 are arranged at square corners. When the column member 7 is made of metal (for example, steel), it is welded and fixed directly to the base 6 or a screw 7 a is screwed on its base and drilled on the base 6. Screwed into screw hole 6 b. The former is shown in the left part of FIG. 3 and the latter is shown in the right part of FIG. 3 c Retaining beam 8 is made of a rigid body and is rigidly connected between the column members 7 at the top of the column members 7 It is bridged keeping the standard. The connection of the restraining beam 8 to the column member 7 is fixed via a joint 15 fitted onto the top of the column member 7. Fitting 15 consists of a steel cylinder, The height thereof is substantially equal to the height of the restraining beam 8 and tightly fitted to and fixed to the head of the cylindrical column member 7.
以上の基台系 1に付いて留意すべきは、 該基台系 1を構成する基台 6 ·柱部材 7 · 拘束梁 8は剛性をもって一体に形成されるとともに一体に機能することである。  It should be noted about the above-mentioned base system 1 that the base 6 · pillar member 7 · restraint beam 8 constituting the base system 1 is integrally formed with rigidity and functions integrally.
(可動台系 2 )  (Movable system 2)
可動台 9は、 鋼製もしくはコンクリート製の剛性素材より形成され、 平面形状にお いて基台 6と同一形状をなし、 その厚さは柱部材 7と同高をなす。 そして、 該可動台 9の下面 9 aは平滑面をなし、 基台 6の上面 6 aにすベり可能に載置される。 これに より、 可動台 9と基台 6とはともに大きな面積で当接することになるので、 大きな荷 重を支持することができる。  The movable stand 9 is formed of a rigid material made of steel or concrete and has the same shape in plan view as the base 6 and has the same height as the column member 7. The lower surface 9 a of the movable table 9 is a smooth surface, and is mounted on the upper surface 6 a of the base 6 in a slidable manner. As a result, the movable base 9 and the base 6 contact with each other in a large area, so that a large load can be supported.
可動台 9には、 柱部材 7の各対応位置に上下に貫通して円形の拘束孔 1 8が開設さ れる。 該拘束孔 1 8の径は、 柱部材 7の径よりも十分に大きく、 その遊隙量 は、 可 動台 9の許容移動量を与えるが、 実質的には後記する復帰機構 4及び緩衝機構 5が介 装されるので、 実質的移動量は αより小さくなる。  A circular restraint hole 18 is opened in the movable stand 9 at the corresponding position of the column member 7 vertically. The diameter of the restraining hole 18 is sufficiently larger than the diameter of the column member 7, and the clearance thereof gives the allowable movement of the movable table 9, but the return mechanism 4 and the buffer mechanism which will be described later are substantially described. Because 5 is interposed, the amount of movement is smaller than α.
拘束孔 1 8は上方部 1 8 Αと下方部 1 8 Βとからなり、 下方部 1 8 Βは上方部 1 8 Αよりも拡径され、 膨径状をなす。 下方部 1 8 Bは後記するばね材、 弾性輪が装着さ れる。  Constraint hole 18 consists of an upper part 18 Α and a lower part 18 下方, and the lower part 18 拡 is larger in diameter than the upper part 18 、 and has an expanded diameter. The lower part 18 B is equipped with a spring material and an elastic ring described later.
可動台 9には更に、 可動台 9の上面に拘束孔 1 8に連通して拘束溝 2 0が凹設され る。 拘束溝 2 0はそれぞれ所定の深さ並びに幅を有し、 拘束梁 8を受け入れる。 拘束溝 2 0の深さは、 拘束梁 8の高さと同高とされ、 拘束溝 2 0の底面は拘束梁 8 の下面にすべり自在に当接する。 拘束溝 2 0の幅は、 拘束梁 8の幅よりも十分に大き く、 その遊隙量 13は、 前記した遊隙量 と実質的に等しい。 これにより、 可動台系 2 はこの遊隙量 /3の 2倍の幅だけ移動可能となる。  In the movable table 9, a restraining groove 20 is further formed in the upper surface of the movable table 9 in communication with the restraining hole 18. The restraining grooves 20 each have a predetermined depth and width and receive the restraining beam 8. The depth of the restraining groove 20 is the same height as the height of the restraining beam 8, and the bottom surface of the restraining groove 20 slidably abuts on the lower surface of the restraining beam 8. The width of the restraining groove 20 is sufficiently larger than the width of the restraining beam 8 and the free space 13 thereof is substantially equal to the free space described above. As a result, the movable stand system 2 can move by a width twice that of the clearance / 3.
(復帰機構 4 ,緩衝機構 5 )  (Return mechanism 4, shock absorber 5)
復帰機構 4及び緩衝機構 5は固定台系 1の柱部材 7と可動台系 2の拘束孔 1 8との 間に介装される。  The return mechanism 4 and the buffer mechanism 5 are interposed between the column member 7 of the fixed base system 1 and the restraint hole 18 of the movable base system 2.
復帰機構 4は、 複数のコイルばね 2 2が柱部材 7及び拘束孔 1 8の中間位置におい て、 両端を固定して、 所定間隔を保って放射状 (本実施形態では 4 5 ° 間隔) に配さ れる。 このコイルばね 2 2のばね係数は適宜に調整され、 可動台 9の許容移動量を制 約しない。 The return mechanism 4 has a plurality of coil springs 22 fixed at both ends at an intermediate position between the column member 7 and the restraint hole 18 and arranged radially (in the present embodiment, at 45 ° intervals) with a predetermined interval maintained. The Be The spring coefficient of this coil spring 22 is adjusted appropriately and does not restrict the allowable movement amount of the movable base 9.
コイルばね 2 2は放射状に均等 (本実施形態では 4 5 ° ) に配され、 ①予圧縮力が 導入される態様、 ②応力が 0の態様、 の 2態様を採る。  The coil springs 22 are radially arranged uniformly (in the present embodiment, 45 °), and adopt one mode in which 1 pre-compression force is introduced and 2 mode in which stress is 0.
①の圧縮力が導入される態様においては、 可動台系 2はコイルばね 2 2を介して柱 部材 7から反力を受け、 圧縮力に見合う大きさの外力が作用するまでは可動台系 2は 静止状態を保つ。 ②の応力が 0の態様においては、 後記するロック機構と共働して所 定の外力までは静止状態を保つが、 地震力が検知されたときにはロック機構が解除さ れ、 当該コイルばね 2 2に圧縮力と引張り力が交互に導入される。  In the embodiment in which the compression force of 1 is introduced, the movable base system 2 receives a reaction force from the column member 7 through the coil spring 22 and the movable base system 2 until an external force having a magnitude corresponding to the compression force is applied. Remains stationary. In the mode in which the stress of 2 is 0, the stationary state is maintained until a predetermined external force by cooperating with the lock mechanism described later, but when the seismic force is detected, the lock mechanism is released, and the coil spring 2 Compression and tension are alternately introduced.
当該復帰機構 4のコイルばね 2 2は復帰機能のみならず、 減衰機能を有するが、 特 に大きな減衰力を必要とするときには、 該コイルばね 2 2に更に大きな圧縮力が導入 される。  The coil spring 22 of the return mechanism 4 has not only a return function but also a damping function, but when a particularly large damping force is required, an even greater compressive force is introduced to the coil spring 22.
緩衝機構 5は、 環状のゴム輪 2 5が柱部材 7の下方部において、 かつ拘束孔 1 8の 下方膨径部 1 8 Bに臨んで、 柱部材 7回りに取り付けられる。 ゴム輪 2 5は十分な強 度と弾性を有し、 中空、 中実、 いずれであってもよく、 また、 その断面も円形、 角形 を問わない。 ゴム輪 2 5の柱部材 7への固定は強固になされ、 ゴム輪 2 5が拘束孔 1 8の孔壁に衝接したとき容易に脱落しないようにされる。  The buffer mechanism 5 is mounted around the column member 7 so that the annular rubber ring 25 faces the lower expanded diameter portion 18 B of the restraining hole 18 at the lower part of the column member 7. The rubber ring 25 has sufficient strength and elasticity, and may be hollow or solid, and its cross section may be circular or square. Fixing of the rubber ring 25 to the column member 7 is made rigid so that the rubber ring 25 does not easily come off when it strikes against the hole wall of the restraint hole 18.
(ロック機構 2 8 )  (Lock mechanism 2 8)
固定台系 1と可動台系 2との間には更に、 拘束溝 2 0に臨んで可動台 9と拘束梁 8 との間にロック機構 2 8が介装される。  Further, a lock mechanism 28 is interposed between the movable base 9 and the restraining beam 8 facing the restraining groove 20 between the fixed base system 1 and the movable base system 2.
本ロック機構 2 8は、 可動台 9に凹設される出入孔 2 9、 該出入孔 2 9内に出入自 在に配されるロックピン 3 0、 該出入孔 2 9に連通する流体 (空気 ·油) 通路 3 1か らなる。 ロックピン 3 0は出入孔 2 9内に気密/液密を保って出入自在に収納され、 出入孔 2 9の奥方の流体通路 3 1から供給される圧縮作動流体 (空気、 油) により拘 束梁 8に向けて押し出される。  The lock mechanism 28 has an inlet / outlet 29 recessed in the movable base 9, a lock pin 30 disposed in / out of the inlet / outlet 29, and a fluid (air) communicated with the inlet / outlet 29. · Oil) Consists of three passages. The lock pin 30 is housed in the inlet / outlet 29 in an airtight / liquid-tight manner so as to be able to enter or leave, and is restrained by the compressed working fluid (air, oil) supplied from the fluid passage 31 behind the inlet / outlet 29. It is pushed towards the beam 8.
しかして、 このロック機構 2 8は、 流体通路 3 1を介して外部のロック制御機構 3 3に導かれる。  Thus, the lock mechanism 28 is led to the external lock control mechanism 33 via the fluid passage 31.
この制御機構 3 3の一構成例を図 4に示す。 図において、 3 4は電磁駆動式の三方弁であり、 駆動信号を受けて弁体 3 4が回動 され、 作動流体の導通並びに開放動作をなす。 先ず、 風圧系 (3 3 A) は、 風圧検出 器 3 5、 空気圧縮機もしくは油圧モータ 3 6及びこの三方弁 3 4よりなり、 所定以上 の風速があると、 風圧検出器 3 5はこの風圧を検知して空気圧縮器 ·油圧モータ 3 6 を駆動させ、 かつ三方弁 3 4を導通状態となし、 作動流体を流体通路 3 1を介して口 ック機構 2 8に送る。 地震系 (3 3 B) は、 地震検知器 3 7及び該三方弁 3 4よりな り、 地震が発生すると地震検知器 3 7はこの地震を検知し、 三方弁 3 4を開放状態に し、 ロック機構 2 8のロックを解除する。 One configuration example of this control mechanism 33 is shown in FIG. In the figure, reference numeral 34 denotes an electromagnetic drive type three-way valve, and in response to the drive signal, the valve body 34 is rotated to conduct and open the working fluid. First, the wind pressure system (3 3 A) consists of a wind pressure detector 35, an air compressor or hydraulic motor 36 and this three-way valve 34. When there is a wind speed above a predetermined level, the wind pressure detector 35 The air compressor · hydraulic motor 3 6 is detected, and the three-way valve 3 4 is turned on, and working fluid is sent to the port mechanism 2 8 through the fluid passage 3 1. The earthquake system (3 3 B) consists of an earthquake detector 3 7 and the three-way valve 34. When an earthquake occurs, the earthquake detector 3 7 detects this earthquake and opens the three-way valve 34, Lock mechanism 2 Unlock the lock.
(支持台系 3 )  (Support system 3)
支持台 1 0は、 所定厚の矩形平板状をなし、 剛性素材をもって形成されるとともに、 複数の脚 1 1を介して可動台 9に載置固定される。  The support base 10 is in the form of a rectangular flat plate having a predetermined thickness, is formed of a rigid material, and is mounted on and fixed to the movable base 9 via the plurality of legs 11.
脚 1 1は、 剛性の短円柱状をなし、 可動台 9上に可及的均等に配されて固定され、 支持台 1 0上の上載される上部荷重 Gを均等に可動台 9に伝達する。 本実施形態では、 脚 1 1は剛体よりなるが、 脚 1 1の下部に介装されたばね機構あるいは植設的にばね 部材 (圧縮コイルばね) をもって支持台 1 0を弾性支持する態様を採りうる。  The legs 1 1 have a rigid short cylindrical shape and are fixed as evenly as possible on the movable base 9 and uniformly transmit the upper load G placed on the support 10 to the movable base 9 . In the present embodiment, although the leg 11 is a rigid body, the support mechanism 10 can be elastically supported by a spring mechanism interposed in the lower part of the leg 11 or by a spring member (compression coil spring) in an artificial manner. .
(本免震基礎 Sの取付け,配置)  (Installation and placement of this seismic isolation foundation S)
本免震基礎 Sは、 中層規模の鉄筋コンクリートもしくは鉄骨造の建造物 Gに対して 次のように配され、 取り付けられる。  The seismic isolation foundation S is arranged and attached to the medium-scale reinforced concrete or steel frame structure G as follows.
図 5にその取付け ·配置を示す。 地盤 Eに対して適宜の基礎杭 Pが打設され、 該基 礎杭 Pの頭部をコンクリート基礎 Bをもって剛結する。 このコンクリート基礎 Bの打 設と同時に本減性基礎 Sの基台 6が下部アンカー 1 2とともに水準を保って設置され る。 しかる後、 基礎 6に本減衰性基礎 Sを組み立てる。  Figure 5 shows its installation and arrangement. An appropriate foundation pile P is placed on the ground E, and the head of the foundation pile P is rigidly connected with a concrete foundation B. At the same time as placing this concrete foundation B, the base 6 of the reducing foundation S will be installed with the lower anchor 12 at the same level. After that, assemble the damping foundation S on the foundation 6.
減衰性基礎 Sは、 基礎 Bに対称を保って均等に配される。 4箇所を最少とするが、 中層規模の建造物においては、 それ以上の多数の減衰性基礎 Sが配される。 本減衰性 基礎 Sにあっては 1基当たりの支持能力が高いので、 比較的少なくてもよい。 図 5に は示されていないが、 場合によっては減衰装置 Dがこれらの免震基礎 Sに併置して、 又は独立して配されることもある。  Attenuating foundations S are evenly distributed on the foundation B with symmetry. Although four locations are minimized, in mid-scale structures, many more damping foundations S are placed. In the damping base S, the supporting capacity per unit is high, so it may be relatively small. Although not shown in FIG. 5, in some cases, the damping device D may be disposed side by side with these seismic isolation foundations S or independently.
建造物 Gはこの減衰性基礎 S上に、 支持台 1 0に固設した上部アンカー 1 3を介し て構築される。 建造物 Gの骨組構造が鋼材であるとき、 上部アンカ一 1 3は不要であ り、 直接的に支持台 1 0に溶接固定される。 The building G is mounted on the attenuating foundation S via an upper anchor 13 fixed to a support 10. Built. When the frame structure of the structure G is steel, the upper anchor 13 is unnecessary and is directly welded to the support 10.
(本減衰性基礎 Sの作用)  (Effect of the damping base S)
(A) 常時  (A) Always
常時において、 上部構造 Gの荷重は、 支持台 1 0、 可動台 9、 基台 6を介して下部 構造 Bに伝達され、 支持される。 本減衰性基礎 Sにおける支持面はすべり面 6 a ( 9 a ) であって、 広い支持面を有し、 かつ剛性体よりなるものであり、 大きな載荷能力 を有する。  At all times, the load of the upper structure G is transmitted to and supported by the lower structure B via the support base 10, the movable base 9 and the base 6. The supporting surface of the damping foundation S is a sliding surface 6 a (9 a), which has a wide supporting surface and is made of a rigid body, and has a large loading capacity.
この状態で強風が作用したとき、 復帰機構 4のコィルばね 2 2には予圧力が導入さ れているので、 この予圧力の範囲内で風荷重に対抗し、 静止状態を保持する。  When a strong wind acts in this state, preload pressure is introduced to the coil spring 22 of the return mechanism 4, so it resists the wind load within this preload range and holds the static state.
また、 ロック機構 2 8が作動しているときは、 ロックピン 3 0が拘束梁 8に押し付 けられ、 可動台 9は不動状態を保ち、 風荷重に対抗する。  In addition, when the lock mechanism 28 is in operation, the lock pin 30 is pressed against the restraining beam 8 and the movable base 9 remains immobile to counter the wind load.
(B) 地震時  (B) Earthquake
地震時において、 地盤 Eが強制振動力を受けると、 コンクリート基礎 Bは一体に振 動するが、 上部構造 Gに生起する水平力はコイルばね 2 2の付勢力よりも大きいので 該付勢力に打ち勝ち、 かつ、 基台 6と可動台 9とのすベり面 6 a , 9 aにおいてすべ りが生じ、 換言すれば、 上部構造 Gと下部構造 Bとの間に相対変位が生じ、 地震動の 水平力は低減されて入力される。  When the ground E receives a forced vibrational force during an earthquake, the concrete foundation B vibrates integrally, but the horizontal force generated in the superstructure G is larger than the biasing force of the coil spring 22 and thus overcomes the biasing force. And, sliding occurs on the sliding surfaces 6a and 9a between the base 6 and the movable base 9. In other words, relative displacement occurs between the upper structure G and the lower structure B, and the horizontal movement of the earthquake motion occurs. The force is reduced and input.
入力された水平力により上部構造 Gに揺動力 Fを生じ、 上部構造 Gはその固有周期 で揺れることになるが、 復帰機構 4のコイルばね 2 2により 0点 (初期) 位置に速や かに復帰させられる。 このとき、 コイルばね 2 2は放射状に均等に配されているので、 圧縮力と引張り力とが均等に作用し、 いずれのコィルばね 2 2も初期位置に戻る作用 を発揮する。 上部構造 Gと下部構造 Bとの相対変位は、 上部構造 Gの荷重は可動台 9 を介して基台 6に広い面積で支持されつつ、 柱部材 7と拘束孔 1 8との間、 及び拘束 梁 8と拘束溝 2 0との間の所定の遊隙 α、 0で吸収される。  The input horizontal force generates a rocking force F on the upper structure G, and the upper structure G sways in its natural cycle, but the coil spring 22 of the return mechanism 4 quickly moves to the 0 point (initial) position It is returned. At this time, since the coil springs 22 are equally distributed radially, the compressive force and the tensile force act equally, and both coil springs 22 exert an effect of returning to the initial position. The relative displacement between the upper structure G and the lower structure B is as follows: The load of the upper structure G is supported by the base 6 over a wide area through the movable platform 9, and between the column member 7 and the restraining hole 18 and It is absorbed at a given clearance α, 0 between the beam 8 and the restraining groove 20.
また、 上部構造 Gと下部構造 Βとの相対変位は、 水平面の全方向に生じるが、 柱部 材 7及び拘束梁 8回りの遊隙はこの変位を許容し、 拘束することはない。  Also, relative displacement between the upper structure G and the lower structure 生 じ る occurs in all directions in the horizontal plane, but the clearance around the column member 7 and the restraining beam 8 allows this displacement and does not restrain it.
また、 すべりによって生じる上部構造 Gと下部構造 Βとの変位差は、 許容量に近く なったとき緩衝機構 5のゴム輪 2 5が下部拘束孔 1 8 Bに衝接することになるが、 該 ゴム輪 2 5の弾性により吸収される。 この変位において、 上部構造 Gに連動する可動 台 9はその上面が拘束梁 8により均等に 4辺で押圧拘束され、 該可動台 9の上揚力を 封じ、 上部構造 Gに生じる転倒モーメントを阻止する。 Also, the displacement difference between the upper structure G and the lower structure 生 じ る caused by the slip is close to the allowance. When this occurs, the rubber ring 25 of the shock absorbing mechanism 5 comes into contact with the lower restraint hole 18 B, but is absorbed by the elasticity of the rubber ring 25. In this displacement, the movable table 9 interlocked with the upper structure G is press-restrained on its upper surface by the constraining beam 8 evenly by the four sides, sealing the upper lift of the movable table 9 and preventing the overturning moment generated in the upper structure G .
(B-1) 地震時の強風 (B-1) Strong wind at the time of earthquake
ロック機構 2 8を有する減衰性基礎 Sの場合、 強風の際には、 ロック機構 2 8が作 動しているが、 この状態に地震動が生じたとき、 地震検知器 3 7より地震信号を検知 し、 この信号によりロック機構 2 8に作動流体を送る流体通路を開放し、 ロック機構 2 8は速やかに解除される。  In the case of strong winds, in the case of a damping foundation S having a locking mechanism 28, the locking mechanism 28 is operating, but when earthquake motion occurs in this state, an earthquake signal is detected from the earthquake detector 37. With this signal, the fluid passage for sending the working fluid to the lock mechanism 2 8 is opened, and the lock mechanism 2 8 is quickly released.
地震による強制振動力は風荷重より卓越するので、 以後は地震力によ 上記した本 減衰性基礎 Sの機能を発揮する。  Since the forced vibrational force caused by the earthquake is superior to the wind load, it exerts the function of the damping foundation S described above by the seismic force.
(本減衰性基礎 Sの効果)  (Effect of the damping base S)
本減衰性基礎 Sによれば、 地震動の変位は、 本減衰性基礎 Sにおいて所定の移動空 間を保持することにより水平面の全方向に対処できる。  According to the damping foundation S, the displacement of the earthquake motion can be dealt with in all directions in the horizontal plane by maintaining a predetermined moving space in the damping foundation S.
特に留意すべきは、 本減衰性基礎 Sでは、 地震動の変位においても、 上部構造 Gに 連動する可動台 9はその上面が拘束梁 8により均等 (4辺) に押圧拘束され、 該可動 台 9の上揚力を封じ、 上部構造 Gに生じる転倒モーメントを阻止し、 減衰機能ととも に上揚力の阻止機能を共有する極めて有用なものとなっている。  It should be particularly noted that in the damping foundation S, the movable base 9 linked to the upper structure G is pressed and restrained equally by the constraining beams 8 (four sides) even in the displacement of the earthquake motion, and the movable base 9 The upper lifting force is sealed, the overturning moment generated in the upper structure G is prevented, and the damping function is very useful because it shares the upper lifting prevention function.
また、 本減衰性基礎 S内の復帰機構 4によれば、 減衰機能を発揮し、 地震変位中に おいても速やかに初期位置に復帰することができるが、 該復帰機構 4に予圧縮力を導 入することにより、 容易にトリガ一機能を持たせることができる。  Moreover, according to the return mechanism 4 in the present damping foundation S, the damping function is exhibited, and even in the earthquake displacement, the initial position can be promptly returned. By installing it, it is possible to easily have a trigger function.
復帰機構 4のみでトリガー機能が不足する場合には、 他にトリガー式減衰装置 Dを 併置することにより、 より万全な免震機構を実現することができる。  If the trigger mechanism is insufficient with only the recovery mechanism 4, a more complete seismic isolation mechanism can be realized by additionally co-locating the trigger type damping device D.
また、 ロック機構 2 8を有する減衰性基礎 Sにおいては、 本減衰性基礎 Sの設置の 際の当初の位置決めにおいて該ロック機構 2 8を作動させることにより、 可動台 9は 容易かつ正確に初期位置に設置することができる。 また、 大きな風圧が作用するとき、 該ロック機構 2 8が作動し、 確実に可動台 9を不動状態となし、 上部構造 Gの揺れを 阻止する。 この場合、 ロック機構 2 8は常時作動される態様、 あるいは風圧が作用し たときのみに作動される態様、 のいずれの態様を採ってもよい。 また、 この状態で地 震動が作用したとき、 該地震を検知してロックが解除され、 叙上の作用をもって免震 機能を発揮する。 Further, in the damping foundation S having the locking mechanism 28, the movable base 9 can be easily and accurately set to the initial position by operating the locking mechanism 28 in the initial positioning when installing the damping foundation S. It can be installed on In addition, when a large wind pressure is applied, the lock mechanism 2 8 is operated to reliably move the movable stand 9 into an immobile state and to prevent the upper structure G from shaking. In this case, the lock mechanism 28 is operated at all times or wind pressure is applied. You may take any of the following modes: In addition, when a ground motion acts in this state, the earthquake is detected and the lock is released, and the seismic isolation function is exerted with the action of a reed.
(他の態様)  (Other aspects)
本発明は叙上の実施形態に限定されない。  The present invention is not limited to the above embodiments.
叙上の実施形態では、 可動台 9はその上面に凹設した拘束溝 2 0内に拘束梁 8を配 してなるが、 拘束溝を凹設することなく、 直接的に拘束梁 8を該可動台 9の上面に当 接してもよい。 この態様において更に、 可動台より上面が平滑な腕部材を延設し、 該 腕部材の上面を拘束梁 8にて押圧する態様も採り得る。  In the above embodiment, the movable base 9 has the restraining beam 8 disposed in the restraining groove 20 recessed in the upper surface thereof, but the restraining beam 8 is directly attached without restraining the restraining groove. The upper surface of the movable table 9 may be in contact. In this aspect, it is also possible to adopt an aspect in which an arm member whose upper surface is smoother than the movable base is extended and the upper surface of the arm member is pressed by the restraining beam 8.
この免震支持装置 S 2は、 大型構造物、 高層建築物の基礎部に適用されて好適なも のであり、 基台系 1と可動台系 2と支持台系 3とからなり、 該支持台系 3は高層建築 物の柱材 Hに固定される。  This seismic isolation support apparatus S 2 is suitably applied to the base portion of a large structure or a high-rise building, and comprises a base system 1, a movable platform system 2 and a support platform system 3, the support platform System 3 is fixed to column H of the high-rise building.
(第 2実施形態)  Second Embodiment
図 6〜図 8に本発明の減衰性基礎の他の実施形態を示す。  6 to 8 show other embodiments of the damping foundation of the present invention.
本実施形態では住宅用広がり減衰性基礎 Kを示し、 現場打ちコンクリート施工によ る低層階建物用基礎への適用例を示す。 図において、 先の実施形態と同一の部材に付 いては、 同一の符号が附されている。  In this embodiment, a spread damping base K for a house is shown, and an example of application to a low-rise floor foundation by cast-in-place concrete construction is shown. In the figure, the same reference numerals are attached to the same members as in the previous embodiment.
本減衰性基礎 Kは、 地盤 Eと上部構造としての住宅すなわち低層階建物 Hとの間に 介装設置され、 低層階建物 Hの荷重を支持し、 地盤 Eに伝達するとともに地震等の強 制振動力より生起される低層階建物 Hの揺れに対して減衰作用をなす。  This damping foundation K is installed between the ground E and the house as the superstructure, that is, the low floor H, supports the load of the low floor H, and transmits it to the ground E, as well as forcing the earthquake etc. Attenuates the vibration of the lower deck H caused by the vibration force.
図において、 1は基台部、 2は可動台部、 3は支持台部、 4は復帰機構、 5は緩衝 機構を示す。  In the figure, 1 is a base, 2 is a movable base, 3 is a support base, 4 is a return mechanism, and 5 is a buffer mechanism.
更に詳細には、 基台部 1は、 上面 6 aが平滑面をなし実質的に方形板状の広がりを 持つコンクリート造の基台 6と、 該基台 6に立設される 4本の柱部材 7と、 該柱部材 7の上部において該柱部材 7間に剛性を保って架け渡される拘束梁 8とからなる。 可動台部 2は、 基台 6の上面にすべり可能に載置される広がりを持つコンクリート 造の可動台 9を主体とし、 該躯体内に前記柱部材 7を受け入れる拘束孔 1 8が形成さ れるとともに、 前記基台部 1の拘束梁 8によりその上面を当接状態を保って拘束され る。 More specifically, the base portion 1 includes a concrete base 6 having a smooth surface and a substantially rectangular plate-like spread on the upper surface 6 a, and four columns provided on the base 6. It comprises a member 7 and a restraining beam 8 bridged over the column member 7 while maintaining rigidity at the upper part of the column member 7. The movable base 2 is mainly composed of a concrete movable base 9 having a spread slidably mounted on the upper surface of the base 6, and a restriction hole 18 for receiving the column member 7 is formed in the housing. At the same time, the upper surface of the base 1 is kept in contact with the upper surface by the restraining beam 8. Ru.
支持台部 3は可動台 9上に低層階建物 Hとの接続を図る脚 1 1すなわち土台が適所 に複数箇所に配される。  The support portion 3 has legs 11 for establishing connection with the low story H on the movable support 9, that is, bases are disposed at a plurality of locations.
復帰機構 4は柱部材 Ίを囲んで可動台 9の上部に配され、 緩衝機構 5は柱部材 7を 囲んで拘束孔 1 8内に配される。  The return mechanism 4 is disposed at the upper part of the movable base 9 so as to surround the column member and the buffer mechanism 5 is disposed in the restraining hole 18 so as to surround the column member 7.
また、 2 8はロック機構を示し、 該ロック機構 2 8は拘束梁 8に対向して可動台 9 上に配される。  Reference numeral 28 denotes a lock mechanism, which is disposed on the movable stand 9 so as to face the restraining beam 8.
本第 2形態に特徴的なことは、 拘束梁 8が可動台 9の上面に直接当接することであ る。  A feature of the second embodiment is that the restraining beam 8 directly abuts on the upper surface of the movable table 9.
本第 2形態の減衰性基礎 Kの作用並びに効果は先の減衰性基礎 Sに準じる。  The operation and effects of the damping base K of the second embodiment conform to the damping base S described above.
図 9は本実施形態の他の態様を示し、 既製版を使用してなされるプレキャスト施工 による適用例を示す。  FIG. 9 shows another aspect of this embodiment, and shows an example of application by precast construction performed using a prefabricated plate.
本減衰性基礎 K 1においては、 基台部 1は基台 6 ·柱部材 7 ·拘束梁 8よりなり、 先の形態と構成上実質的に変わりがない。  In this damping foundation K1, the base part 1 is composed of a base 6, a column member 7, and a restraining beam 8, which is substantially the same as the above in terms of form and configuration.
可動台 9は数種のプレキャスト版 9 A, 9 B, 9 Cの組合せをもって組み立てられ る。 なお、 プレキャスト版はコンクリート製、 合成樹脂製等の適宜の素材が選ばれる。 第 1のプレキャスト版 9 Aは拘束孔 1 8を有し、 柱部材 7の位置に配される。 第 2の プレキャスト版 9 Bは前記第 1のプレキャスト版 9 Aの間に介装される。 該第 2プレ キャスト版 9 Bは、 水平方向の互いに直交する方向 (X, Y) に配される版において は異なった寸法と採りうる。 第 3のプレキャスト版 9 Cは中央部に配される。  The movable base 9 is assembled by combining several types of precast versions 9A, 9B, 9C. For the precast version, appropriate materials such as concrete and synthetic resin are selected. The first precast version 9 A has a restraining hole 18 and is arranged at the position of the column member 7. The second precast version 9B is interposed between the first precast version 9A. The second precast version 9B can be taken with different dimensions in the version arranged in the mutually orthogonal directions (X, Y) in the horizontal direction. The third precast version 9 C is placed in the center.
これらのプレキャス ト版 9 A, 9 B, 9 Cは、 隣接する側面において互いに重なり 合う継手用の凸状の段部が形成され、 これらの段部にわたって上下にボルト 'ナット よりなる緊定具 4 7が装着される。  These precast plates 9 A, 9 B, 9 C are provided with convex steps for joints overlapping each other on adjacent side faces, and a tensioning tool consisting of bolts and nuts up and down over these steps 7 is attached.
これらのプレキャスト版 9 A, 9 B, 9 Cの下面は平滑に仕上げられ、 またその上 面も少なくとも拘束梁 8の当接する箇所は平滑に仕上げられる。  The lower surfaces of these precast plates 9A, 9B, 9C are smoothed, and the upper surfaces are also smoothed at least at the places where the constraining beams 8 abut.
そして、 プレキャスト版 9 A, 9 B, 9 Cの上面には建物 Hとの剛的接合を図る土 台が固設されることは先の形態の構成と変わるところはない。  And the fact that a foundation for achieving a firm joint with the building H is fixed on the upper surface of the precast version 9 A, 9 B, 9 C is the same as the configuration of the previous form.
これらのプレキャス ト版 9 A, 9 B, 9 Cは工場で製造されるものであるので、 充 分な養生管理がなされ、 所定の精度で、 所期の強度を発現するものである。 These precast versions 9 A, 9 B, 9 C are manufactured at the factory, so Careful management is conducted, and the desired strength is expressed with a predetermined accuracy.
本発明は上記実施の形態に限定されるものではなく、 本発明の基本的技術思想の範 囲内で種々設計変更が可能である。 すなわち、 以下の態様は本発明の技術的範囲内に 包含されるものである。  The present invention is not limited to the above embodiment, and various design changes can be made within the scope of the basic technical concept of the present invention. That is, the following embodiments are included in the technical scope of the present invention.
①叙上の各実施形態では緩衝機構 5を備えたが、 該緩衝機構 5を省略してもよい。 In each of the above embodiments, the buffer mechanism 5 is provided, but the buffer mechanism 5 may be omitted.
②叙上の各実施形態では、 基台 6と可動台 9とをすベり態様としたが、 両者の間に鋼 球などの転がり部材を介装させ、 転がり態様としてもよい。 発明の効果 In each of the above-described embodiments, the base 6 and the movable base 9 are in the sliding form, but a rolling member such as a steel ball may be interposed between the base 6 and the movable base 9 to make the rolling form. Effect of the invention
本発明の減衰機能を有する基礎すなわち減衰性基礎によれば、 地震動に対し基台と 可動台とのすべり面をもって上部構造を下部構造の振動から遮断し、 かつ、 そのすベ り面は広 、支持面をなすばかりでなく、 水平状をなすので地震動による変位中におい ても上部構造に何ら悪影響 (例えば縦振動) を与えることなく、 かつ広い支持面を保 持したまま有効に支持する。 また、 本減衰性基礎は全体が剛性体よりなるので、 支持 面においても高い載荷能力を有し、 小型化が図りうる。  According to the foundation having damping function of the present invention, that is, damping foundation, the upper structure is isolated from the vibration of the lower structure by the sliding surface between the base and the movable base against the earthquake motion, and the sliding surface is wide, Not only does it form a support surface, but because it is horizontal, even during displacement due to earthquake motion, the upper structure is not adversely affected (for example, longitudinal vibration) and effectively supported while holding a wide support surface. In addition, since this damping foundation is entirely made of a rigid body, it has a high loading capacity on the support surface, and can be miniaturized.
そして、 地震動の変位は、 本減衰性基礎において所定の移動空間を保持することに より水平面の全方向に対処できる。  And, the displacement of the earthquake motion can be dealt with in all directions in the horizontal plane by holding a predetermined movement space on this damping foundation.
特に本減衰性基礎では、 地震動の変位においても、 上部構造に連動する可動台はそ の上面が拘束梁により均等に押圧拘束され、 該可動台の上揚力を封じ、 上部構造に生 じる転倒モーメントを阻止し、 減衰機能とともに上揚力の阻止機能を共有する極めて 有用なものとなづている。  In particular, in the damping foundation of the present invention, the upper surface of the movable table linked to the upper structure is uniformly pressed and restrained by the restraint beam even in the displacement of the earthquake motion, and the upper lift of the movable table is sealed to cause the overturn in the upper structure. It is a very useful thing that blocks the moment and shares the function of blocking the lift with the damping function.
また、 本減衰性基礎内の復帰機構により、 減衰機能を発揮し、 地震変位中において も速やかに初期位置に復帰することができるが、 該復帰機構 4に予圧縮力を導入する ことにより、 容易にトリガ一機能を持たせることができる。  In addition, the recovery mechanism in this damping foundation can exhibit the damping function and can quickly return to the initial position even during earthquake displacement, but it is easy by introducing a pre-compression force into the recovery mechanism 4. Can have a trigger function.

Claims

請求の範囲 . 基礎又は地盤等の下部構造に連動する基台系と、 該基台系に水平移動を許容して 設置される可動台系とからなり、 建造物、 機械又は床構造等の上部構造が前記可動 台系に載置固定され減衰機能を有する基礎であって、  Scope of claim: A base system linked to a lower structure such as a foundation or ground, and a movable base system installed to allow horizontal movement to the base system, and an upper part of a building, machine or floor structure, etc. A foundation mounted and fixed on the movable base system and having a damping function;
前記基台系は、 上面にすべり面を有する剛性体の基台と、 前記基台に対称を保つ て立設される複数の柱部材と、 前記柱部材の上部において該柱部材間に剛性を保つ て架け渡される拘束梁とからなり、  The base system includes: a base of a rigid body having a sliding surface on the upper surface; a plurality of column members erected in symmetry with the base; and rigidity between the column members at the upper portion of the column members. It consists of a restraining beam that is bridged and maintained.
前記可動台系は、 前記基台の上面にすべり面を介してすベり可能に剛性体の可動 台が載置され、 該可動台には前記柱部材をすベり方向に移動間隙を存して受け入れ る拘束孔が開設され、 かつ該可動台の上面は前記拘束梁との当接によってすベり方 向への移動のみが許容されて拘束され、  In the movable stand system, a movable stand of a rigid body is mounted on the upper surface of the base via a sliding surface in a slidable manner, and the movable stand has a movement gap in the sliding direction of the column member. And the upper surface of the movable table is restricted only by movement in the sliding direction by being in contact with the restraining beam.
前記柱部材と可動台との間にはばね材を主体とする復帰機構が介装されてなる、 ことを特徴とする減衰性基礎。  A damping mechanism comprising a spring member-based return mechanism interposed between the column member and the movable base.
PCT/JP2003/008513 2002-07-05 2003-07-04 Foundation with damping fuction WO2004005749A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281308A AU2003281308A1 (en) 2002-07-05 2003-07-04 Foundation with damping fuction

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-197491 2002-07-05
JP2002197491A JP4294919B2 (en) 2002-07-05 2002-07-05 Seismic isolation support device and seismic isolation support method
JP2002245622A JP2004084255A (en) 2002-08-26 2002-08-26 Widened base isolation foundation and construction method therefor
JP2002-245622 2002-08-26

Publications (1)

Publication Number Publication Date
WO2004005749A1 true WO2004005749A1 (en) 2004-01-15

Family

ID=30117398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008513 WO2004005749A1 (en) 2002-07-05 2003-07-04 Foundation with damping fuction

Country Status (2)

Country Link
AU (1) AU2003281308A1 (en)
WO (1) WO2004005749A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104315077A (en) * 2014-08-26 2015-01-28 安徽蓝德仪表有限公司 Instrument mounting base with shockproof function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402483A (en) * 1979-11-12 1983-09-06 Mitsubishi Steel Mfg. Co., Ltd. Earthquake isolation floor
JPH0499442U (en) * 1991-01-25 1992-08-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402483A (en) * 1979-11-12 1983-09-06 Mitsubishi Steel Mfg. Co., Ltd. Earthquake isolation floor
JPH0499442U (en) * 1991-01-25 1992-08-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104315077A (en) * 2014-08-26 2015-01-28 安徽蓝德仪表有限公司 Instrument mounting base with shockproof function

Also Published As

Publication number Publication date
AU2003281308A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
KR100187527B1 (en) Horizontal and vertical seismic isolation bearing
US10948043B2 (en) Damping device for structure
JP3057164B2 (en) Seismic isolation foundation
JP2008050820A (en) Base isolation device
WO2004005749A1 (en) Foundation with damping fuction
JPH11200659A (en) Base isolation structure
JP7224101B2 (en) Displacement stopper and seismic isolation building
JP4593646B2 (en) Built-in type multi-story parking device in building void and its horizontal support device
JP4294919B2 (en) Seismic isolation support device and seismic isolation support method
US9074368B2 (en) Energy absorbing system for safeguarding structures from disruptive forces
JP3854321B2 (en) Base isolation
JP4893061B2 (en) Viscous vibration damping device and base-isolated building equipped with the same
JP2000045561A (en) Brace damper
JP2004278002A (en) Unit building with base-isolating device
JP4023547B2 (en) Damping structure
JP2004084255A (en) Widened base isolation foundation and construction method therefor
JP4029685B2 (en) Damping type seismic isolation building and vibration damping device used therefor
JP2002098188A (en) Vibration isolation structure with damping function
JPH0868233A (en) Earthquake-proof and reinforcing device for structure using ring spring
JP2003160991A (en) Uniaxial vibration absorbing unit
JP2011117280A (en) Seismic isolated foundation structure
JP3009650B1 (en) Trigger mechanism for seismic isolation device
JP2007070920A (en) Base isolated foundation structure, method of constructing base isolated foundation, and base isolator for use therein
JP2005273353A (en) Base isolating foundation structure with return mechanism
JP2002371569A (en) Foundation structure for reducing vibration of dwelling house

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN KR NZ US