WO2004003407A1 - Diaphragm - Google Patents

Diaphragm Download PDF

Info

Publication number
WO2004003407A1
WO2004003407A1 PCT/JP2003/008313 JP0308313W WO2004003407A1 WO 2004003407 A1 WO2004003407 A1 WO 2004003407A1 JP 0308313 W JP0308313 W JP 0308313W WO 2004003407 A1 WO2004003407 A1 WO 2004003407A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
waveform
stress
load
receiving surface
Prior art date
Application number
PCT/JP2003/008313
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Taira
Original Assignee
Mitsuo Taira
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuo Taira filed Critical Mitsuo Taira
Priority to AU2003244016A priority Critical patent/AU2003244016A1/en
Priority to JP2004517336A priority patent/JPWO2004003407A1/en
Publication of WO2004003407A1 publication Critical patent/WO2004003407A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/02Diaphragms

Definitions

  • the present invention is a matter of course in the fields of pressure sensor elements, diaphragm pumps, switches, regulators, pressure transmitters, diaphragms, etc., and can respond to new fields used at high temperature and high pressure.
  • the stress caused by the load made of elastic materials such as rubber, resin, metal, etc. that can achieve a long service life is only due to the elasticity of the material
  • the present invention relates to a diaphragm having a wavy shape that deforms in proportion to a pressure mainly composed of bending without being able to effectively reduce stress caused by a load. Background art
  • the diaphragm used a plate-shaped diaphragm, and the diaphragm was bent by utilizing the elastic deformation of the diaphragm due to the difference in pressure acting on both sides of the diaphragm by sealing the periphery of the diaphragm. Met.
  • the peripherally constrained diaphragm is such that the pressure receiving surface bends due to the pressure difference acting on both surfaces, and the deflection is used to detect the pressure, and to control the pressure and operate the pressure-related equipment. Often used.
  • this diaphragm is used to apply a proportional relationship between differential pressure and displacement, for example, to measure pressure or to control the opening of a valve.
  • the thickness of the diaphragm itself must be reduced or its diameter must be increased so that a predetermined elastic deformation can be expected.
  • reducing the wall thickness in this way can reduce the pressure resistance performance.
  • the diameter is increased, the size of the device itself is increased.
  • increasing the withstand pressure of the diaphragm inevitably results in high rigidity and sacrificing displacement, while increasing the displacement requires lowering the rigidity. It is difficult to reduce rigidity from the viewpoint of rigidity, and high rigidity must be achieved despite low rigidity. Was preventing the realization of Noh.
  • the present inventor investigated where (where) the above-mentioned conventional technical common sense that “the amplitude of the waveform is uniform” originated.
  • ⁇ r is the normal stress acting in the radial direction
  • ⁇ ⁇ is the normal stress acting in the circumferential direction
  • ⁇ rz is the shear stress along the thickness direction
  • FIG. 13 described above shows the angular corrugated plate 1.
  • 2 is a waveform represented by the side surface of the corrugated plate
  • 3 is a waveform represented by a cross section when the plate 1 is cut in the AA ′ direction.
  • These 2 and 3 have similar waveforms, but have a high degree of freedom in expansion and contraction in the Y-Y 'direction, but also expand and contract in the A-A' direction, which is formed in a relationship that does not move in the X-X 'direction. Cannot be expected.
  • the waveform seen as Y-Y, side view in Fig. 13 is a side view. Behind this waveform, the direction perpendicular to the side view, that is, no matter where the background is cut (side view) (Positions parallel to the figure) Represent waveforms of the same dimensions.
  • This is a rectangular corrugated plate, whose shape is "The deformation mainly consists of bending as a result of the waveform," so it is possible to expand and contract in the Y_Y 'direction, but this is only This is a two-dimensional deformation, which is completely different from the three-dimensional deformation described later.
  • the A-A 'cross-sectional waveform in Fig. 13 is a waveform that appears as a cross-sectional view. In the background of this waveform, the corrugated sheet is hidden at a certain angle in the A-A' cross-section. I have. In this case, no matter how much the cross section shows a waveform, it cannot be expected to expand or contract in the A–A direction.
  • the cross-sectional waveform in Fig. 12 can also expand and contract in the left-right direction of the cross-section in Fig. 12 because a plurality of arc waves in the background exert resistance. I don't.
  • the present invention effectively relieves the stress caused by the load, which simultaneously reduces the radial stress, the circumferential stress, and the thickness stress as shown in Fig. 11
  • the purpose is to provide a diaphragm that can be used. Disclosure of the invention
  • FIG. 1a shows the “normal stress ⁇ rj acting in the radial direction” introduced in FIG. 11 described above.
  • a concentric circular stress is used as a means of relaxing the stress in the radial direction.
  • Figure lb shows the “normal stress ⁇ ⁇ acting in the circumferential direction”.
  • the mitigation measures for these two directions are equivalent to the corrugated square plate of Fig. 13 in which X--X 'is rounded in the circumferential direction on the plane and Y--Y' is rounded in the circumferential direction on the plane.
  • Fig. 13 shows the corrugated square plate of Fig. 13 in which X--X 'is rounded in the circumferential direction on the plane and Y--Y' is rounded in the circumferential direction on the plane.
  • Fig. 13 shows the corrugated square plate of Fig. 13 in which X--X 'is rounded in the circumferential direction on the plane and Y--Y' is rounded in the circumfer
  • FIG. 1c is a mixed stress diagram in the radial and circumferential directions, and the means for stress relaxation corresponding to the stress in Fig. 1c is as shown in Fig. 2c.
  • a three-dimensional waveform is formed for the first time by combining a concentric waveform and a waveform having an outward spread on the circumference. With the generation of the load, three-dimensional deformation is possible at each part of the three-dimensional waveform urged on the diaphragm pressure receiving surface. .
  • the stress relaxation in the plate thickness direction is secondaryly achieved by normal functioning of the stress relaxation ability in the radial direction and the circumferential direction, and the stress relaxation is completed here.
  • a three-dimensional waveform is formed on the pressure receiving surface by applying a gentle waveform surface in the radial direction and the circumferential direction of the diaphragm pressure receiving surface.
  • the present invention according to claim 2 provides a diaphragm having a single annular groove, by dividing and providing different concave shapes and applying a gentle wavy surface in the circumferential direction, so that the entire annular groove has a three-dimensional waveform. did. '
  • the present invention according to claim 3 provides a diaphragm in which concentric waveforms are formed, in which a concentric corrugated peak and a bottom are divided and a deformed peak and a bottom are divided and provided.
  • Three-dimensional waveforms on the pressure-receiving surface by applying a gentle wavy surface in the circumferential direction over the entire area of the wavy shape in the radial direction by arranging the bottom part equally and occlusally.
  • the uneven protrusions having a stress relaxation function are gradually increased in diameter toward the fixed end of the outer periphery of the diaphragm, are uniformly arranged, and have a three-dimensional waveform on the receiving surface.
  • the diameter of the convex protrusion having the stress relaxing function is gradually increased toward the fixed end of the outer periphery of the diaphragm, the convex and convex are arranged uniformly, and a three-dimensional waveform is formed on the pressure receiving surface.
  • the present invention according to claim 6 is characterized in that, in a portion composed of uneven protrusions having a stress relaxation function and surrounded by a locus in which the unevenness and the convexity change near the diaphragm reference plane, a curved pleat is formed on a base circumference thereof. Then, the pressure receiving surface was made into a three-dimensional waveform.
  • a gentle waveform in the radial direction and a gentle waveform in the circumferential direction corresponding to all the stresses in the stress field generated by the load in the diaphragm pressure receiving surface.
  • Each part of the three-dimensional waveform that appears at the time has its own independence and uniqueness, but also functions as a harmonious aggregate as a whole, enabling three-dimensional deformation at each part of the pressure receiving surface, Demonstrates high pressure resistance.
  • 1a to 1c are explanatory diagrams of the direction of the stress acting on the diaphragm pressure receiving surface.
  • FIGS. 1a to 1c are explanatory diagrams showing the basic principle of the present invention described in claim 1 in which the stress relaxation means shown in FIGS. 1a to 1c is applied.
  • FIG. 3A and 3B are plan views of the diaphragm according to the present invention described in Claim 2.
  • FIG. 3A is a cross-sectional composite view taken along line A—A and line B_B in FIG.
  • FIGS. 3a and 3b are overhead views showing the diaphragm of the present invention corresponding to FIGS. 3a and 3b.
  • FIG. 5 ab is a plan view of the diaphragm of the present invention described in claim 3.
  • FIG. 5 a is a cross-sectional view taken along line AA, line BB, and line C-C in the figure.
  • FIG. 6 ab is a perspective view of the diaphragm of the present invention corresponding to FIGS. 5 a and 5 b.
  • FIG. 7 is a plan view of the diaphragm of the present invention described in claim 4 c .
  • FIG. 8 is a plan view of the diaphragm of the present invention described in claim 5
  • FIG. 9 is a plan view of the diaphragm of claim 6 c
  • Figure 1 0 is a plan view of Daiaburamu of the invention described is a different embodiment illustrating the FIG. 7, 8.
  • Figure 11 is an explanatory diagram of the section "Modern Material Mechanics" P203, 10.4 "Axisymmetric bending of a disk”.
  • FIG. 12 is a drawing of FIG. 202 of P380, “Theory of Plate and Shell”.
  • Figure 1 3 is a side waveform with angular corrugated plate
  • Figure 1 4 a to c is an explanatory view of the sectional waveforms, dimensions view of a sample for 'comparison test between the present invention benefits a conventional means
  • c shows a diaphragm to which the present invention is applied.
  • FIG. 15 is a graph showing the relationship between the sample pressure and the radius shown in FIGS. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 2c shows the invention as set forth in claim 1. '
  • a three-dimensional waveform 4 ′ is performed.
  • Each part of the three-dimensional waveform 4 ' which has a stress relaxation function, responds to all stresses generated by the load, and has its own independence and uniqueness, and harmonizes as a whole.
  • the entire annular groove composed of different concave shapes 9, 10 was made into a three-dimensional waveform.
  • the irregularly shaped peaks 1 2 ′ and the bottom 13 ′ are equally bitingly arranged at the peaks 12 and the bottom 13 of the concentric waveform.
  • a three-dimensional waveform was formed on the pressure receiving surface by applying a smooth waveform surface in the circumferential direction over the entire area of the waveform in the radial direction.
  • FIG. 7 shows the invention as set forth in claim '4.
  • the solid line pattern in the drawing is a changing locus of the concave protrusion a and the convex protrusion b near the diaphragm reference plane, and c indicates a portion surrounded by the locus.
  • the concave projections a and the convex projections b having the stress relaxation function were gradually enlarged toward the outer peripheral fixed end of the diaphragm, and the concave a and the convex b were uniformly arranged and shaped, and the pressure receiving surface was formed into a three-dimensional waveform.
  • FIG. 8 illustrates the invention as set forth in claim 5.
  • the solid line pattern in the figure is a locus where the convex protrusions b and b change near the diaphragm reference plane, and c indicates a portion surrounded by the locus.
  • the convex protrusions b and b having the stress relaxation function were gradually enlarged toward the outer peripheral fixed end of the partition plate, and the convex protrusions b and b were uniformly arranged and shaped, and the pressure receiving surface was formed into a three-dimensional waveform.
  • FIG. 9 illustrates the invention as set forth in claim 6.
  • a curved fold is formed on the base circumference of the part c, which is surrounded by the locus where the concave protrusions a and the convex protrusions b and the convex protrusions b and b change in the vicinity of the diaphragm reference plane in FIGS. 7 and 8. In this way, the stress relaxation ability was improved.
  • the solid line pattern consists of curves passing through the center
  • FIG. 10 shows an example in which the pattern consists of curves that do not pass through the center.
  • the central unshaped part 14 in the center moves up and down, albeit with some deformation at the center, so even if it is fully attached to the center, it will be judged by the relationship between investment and effect Whichever choice is made, it has no effect on the overall picture.
  • the waveform arranged on the diaphragm pressure receiving surface has no stress concentration due to the waveform urging. Obviously, a smooth three-dimensional waveform is required.
  • FIGS. 14a to 14c are dimensional diagrams of a flat plate as a basic shape, a conventional concentric wave, and a three-dimensional waveform of the present invention. Same at 6 mm.
  • the material used was an inappropriate PC / ABS resin. This material is not a diaphragm resin. Because, in this case, by applying a three-dimensional wave shape to the diaphragm pressure receiving surface, it is possible to perform shape deformation and three-dimensional deformation. The idea is to create Note that there must be no stress concentration due to the shape on the three-dimensional shape surface urged against the pressure receiving surface.
  • FIG. 15 shows the pressure-deflection relationship of these samples a , b, and c.
  • the pressure-receiving surface Since the flat diaphragm has not been modified in any way on the pressure-receiving surface, the pressure-receiving surface is subjected to a tensile force in the radial direction and the circumferential direction together with the load, and the plate thickness decreases with the displacement. Naturally, both the displacement and the pressure resistance are the lowest among these three types of diaphragms.
  • the concentric corrugated diaphragm has a wave pattern in the radial direction, but no work in the circumferential direction. On the pressure-receiving surface, it tends to bend in the radial direction as a wavy deformation with the load, but the radius A pulling force acts on the entire circumference passing through the throat point, which hinders displacement. So there is a pressure resistance, but the displacement is much less than you might imagine.
  • the diaphragm of the present invention includes a content which can easily understand the vertical stress (ar) acting in the radial direction, the vertical stress ( ⁇ 0) acting in the circumferential direction, and the shear stress (te) in the thickness direction. .
  • Fig. 2-a The concentric corrugations in Fig. 2-a are used as radial stress relaxation means.
  • Circumferentially corrugated means shown in Fig. 2-b will be used as circumferential stress relaxation means.
  • Figure 2-c which is a combination of Fig. 2-a concentrically corrugated and Fig. 2-b corrugated on the circumference, is used as a means for mitigating two stresses. Let's consider the process by which such a modified diaphragm behaves with the load.
  • the invention has the mitigation ability in both the radial and circumferential directions.
  • This difference is the B-graph represented by the concentric waveform diaphragm, which has no mitigation ability in the circumferential direction. Since only one side has the mitigation ability, the load starts to be applied, and at the same time, the other side that does not have the mitigation ability displaces.
  • the brake is applied to the deformation, and this brake increases with the load, and both have the mitigation ability
  • the pressure and the displacement are displaced in a correct proportional relationship.
  • the diaphragm according to the present invention can effectively alleviate the stress caused by the load, not only by the properties of the material, but by the deformation that increases in proportion to the pressure mainly caused by bending. So, to secure the radius allowance Needless to say, the fields of pressure sensor elements, diaphragm pumps, switches, regulators, pressure transmitters, diaphragms, etc., with waveforms in the radial and circumferential directions of the pressure surface.
  • the diaphragm according to the present invention is made of a flexible material such as rubber, resin, and metal, and realizes large displacement and high withstand pressure regardless of the material, thereby realizing high accuracy and long life.

Abstract

A diaphragm having a gentle wave shape formed on a pressure receiving face of a partition plate of the diaphragm, where the wave shape is formed in the radial and circumferential directions of the diaphragm. Stress caused by load can be effectively relieved not only through elasticity of material, but also through deformation that is increased in proportion to pressure induced mainly by bending.

Description

 Light
ダイアフラム 技術分野. Diaphragm technical field.
この発明は、 圧力センサー素子、 ダイアフラムポンプ、 開閉器、 調整 器、 圧力伝 器、 振動板等の分野は田無論のことであり、 高温 ' 高圧で使 用される新たな分野へも対応でき、 復元力を有しつつも橈み変形量を大 きく確保すると共-に、 長寿命を実現することのできるゴム、 樹脂、 金属、 等の弾性材からなる負荷に伴う応力を素材の弾性のみによることなく、 主に曲げからなる圧力に比例して変形する波状形でもって負荷に伴う応 力を効果的に緩和し得るダイァフラムに関する。 背景技術  The present invention is a matter of course in the fields of pressure sensor elements, diaphragm pumps, switches, regulators, pressure transmitters, diaphragms, etc., and can respond to new fields used at high temperature and high pressure. Along with securing a large amount of radial deformation while having a restoring force, the stress caused by the load made of elastic materials such as rubber, resin, metal, etc. that can achieve a long service life is only due to the elasticity of the material The present invention relates to a diaphragm having a wavy shape that deforms in proportion to a pressure mainly composed of bending without being able to effectively reduce stress caused by a load. Background art
ダイァフラムは、 当初、 平板状の隔板を用い、 この隔板の周辺を密閉 して取り付けることによって、 隔板の両面に作用する圧力の差による隔 板の弾性変形を利用して撓むとしたものであった。  Initially, the diaphragm used a plate-shaped diaphragm, and the diaphragm was bent by utilizing the elastic deformation of the diaphragm due to the difference in pressure acting on both sides of the diaphragm by sealing the periphery of the diaphragm. Met.
すなわち、 周辺拘束のダイアフラムは、 その両面に働く圧力差によつ て受圧面が撓むものであり、 その撓みでもって圧力の検出を行い、 圧力 の制御、 圧力による操作等の圧力に係る機器に多用される。  In other words, the peripherally constrained diaphragm is such that the pressure receiving surface bends due to the pressure difference acting on both surfaces, and the deflection is used to detect the pressure, and to control the pressure and operate the pressure-related equipment. Often used.
つまり、 このダイアフラムは差圧と変位との比例関係を応用して、 例 えば圧力を測定したり、 弁の開度を操作するために利用されている。 この橈み変形量を大きく確保するためには、 所定の弾性変形が期し得 るようにダイアフラム自体の肉厚を薄くするか、 その径を大きく しない といけない。 しかし、 このように肉厚を薄くすれば、 耐圧性能の低下を 招く。 また径を大きくすれば、 装置そのものの大型化を招いてしまう。 しかして、 ダイァフラムの耐圧を高めよう とするとどう しても高剛性 にならざるを得ず、 変位が犠牲になり、 他方、 変位を大きく しょう とす ると剛性を低くする必要があるが、 耐圧の面から剛性を低くすることが 困難で、 低剛性で良いにもかかわらず高剛性とならざるを得ないという ように、'耐圧との関係で剛性が相反し高変位 ·低剛性のダイアフラム機 能の実現を妨げていた。 In other words, this diaphragm is used to apply a proportional relationship between differential pressure and displacement, for example, to measure pressure or to control the opening of a valve. In order to secure a large amount of this radial deformation, the thickness of the diaphragm itself must be reduced or its diameter must be increased so that a predetermined elastic deformation can be expected. However, reducing the wall thickness in this way can reduce the pressure resistance performance. Invite. In addition, if the diameter is increased, the size of the device itself is increased. However, increasing the withstand pressure of the diaphragm inevitably results in high rigidity and sacrificing displacement, while increasing the displacement requires lowering the rigidity. It is difficult to reduce rigidity from the viewpoint of rigidity, and high rigidity must be achieved despite low rigidity. Was preventing the realization of Noh.
このように隔板の弾' I"生変形能にのみ頼る対応では限界があるので、 従 来より隔板断面に同心円状の波形 付して撓み量の向上を図るとした提 案 (特開昭 5 4 -1 6 0 9 4 9号、 特開昭 5 9— 2 0 0 8 6 7号、 特開 平 2— 5 1 6 6 4号、 特開平 9一 2 8 6 6 5 9号) が数多くなされてい る。 '- 上記の諸提案はいずれも、 それ以前の技術である 「波形の振幅が一様 であった」 又 「波形が等しいピッ 、 等しい山の高さで構成されたダイ ァフラム」 とある、 実際には何ら負荷に伴う応力を効果的に緩和し得る ことのない同心円状の波に囚われてなされている。  As described above, there is a limit in responding only to the raw deformability of the diaphragm “I”, and a proposal has been made to improve the amount of deflection by concentrically applying a corrugated waveform to the cross section of the diaphragm. (Japanese Patent Application Laid-Open No. 54-160949, Japanese Patent Application Laid-Open No. 59-20967, Japanese Patent Application Laid-Open No. 2-51664, Japanese Patent Application Laid-Open No. 91-28659) '-All of the above proposals were based on earlier technologies such as “waveforms with uniform amplitude” and “die with equal waveform peaks and equal peak heights. It is trapped in a concentric wave that does not effectively relieve any stress associated with the load.
本発明者は、 前記の 「波形の振幅が一様」 とある従前の技術的常識は 何処から (何処で) 生じたのかを調査した。  The present inventor investigated where (where) the above-mentioned conventional technical common sense that “the amplitude of the waveform is uniform” originated.
真相の解明は、 下記の年次順に列挙の論文、 出版物に求めることが出 来た。  The elucidation of the truth has been sought from papers and publications listed in the following chronological order.
1 ) 測定機器中に用いられる隔板の参考文献としての 「NACA Rept.16 5,1923中の M.D.Hersey」 の論文。  1) M.D. Hersey in NACA Rept. 165, 1923 as a reference for diaphragms used in measuring instruments.
2) このような膜の撓み理論が K.Stangeによって論じられた  2) The theory of such membrane deflection was discussed by K. Stange.
「Ingr.— Arch.,Vol.2,R47,1931J  "Ingr.—Arch., Vol.2, R47, 1931J
3 ) 「THEORY OF PLATES AND SHELLSj 1959  3) `` THEORY OF PLATES AND SHELLSj 1959
4) 「板とシヱルの理論 <下 >」 1 9 7 3年 7月 2 7 日 第 1版発行 5) 「非線形連続体の有限要素法 2」 昭和 5 5年 1月 2 0 日 初版発行4) Theory of Plates and Seals <Lower> 1st edition published on July 27, 1973 5) "Finite Element Method for Nonlinear Continuum 2" January 20, 1980 First edition issued
6) 「現代材料力学」 1 9 8 6年 8月 2 0 日 初版第 1刷 6) `` Modern Material Mechanics '' 1 Aug. 20, 2016 First Edition 1st Edition
以上の中で 「波形の振幅が一様」 とある技術紹介は、  In the above, the technology introduction with "Waveform amplitude is uniform"
「THEORY OF PLATES AND SHELLS 」, P 4 0 4及ぴ 「板とシ エルの理論く下〉」, P 3 8 0に図 2 0 2 (本願図 1 2) として、 断 面波形のダイァフラムが提示されてあり、 2論文を引用した文として "種々の測定機器でしばしば要求されるように、 圧力に比例する撓み を得るために、 図 20 2 (図 1 ) に示されたような波形膜3を採用し なければならぬ。 波状の結果と して、 変形は主に曲げからなっており 、 そこで変形は圧力に比例して増す。4 もし波形が正弦法則に従って おり、 直径に沿っての波の数が十分大きい (11 > 5) ならば、 そのと きは図 1 8 6の記法を用いると、 "■ · · と記されている。 “THEORY OF PLATES AND SHELLS”, p. 404 and “plate and shell theory”, p. 380, a cross-sectional waveform diagram is presented as Figure 202 (Figure 12 of the present application). The text quoted in the article 2 states, "As often required in various measuring instruments, to obtain a deflection proportional to pressure, a corrugated membrane 3 as shown in Fig. 202 (Fig. 1) As a wavy result, the deformation mainly consists of bending, where the deformation increases in proportion to the pressure 4 If the waveform follows the sine law, the wave along the diameter If the number of is large enough (11> 5), then using the notation in Figure 186, it is written as "■ · ·."
—方、 「現代材料力学」 P 2 0 3 , 1 0. 4 「円板の軸対象曲げ」 で は、 "したがって、 変形の対称性より τ χ^ = τ ζ θ = 0および 1 0. 1節 の仮定 (iii) より σ z= 0である力、ら、 円板内の微小要素 a b c dに作 用する応力は σ Γ, σ θ , て rzの 3個である。 " · · · と明確に記されてい る。 と共に、 本願の図 1 1に示されている。 —On the other hand, in “Modern Material Mechanics”, P 2 0 3, 10.4 “Axisymmetric Bending of a Disk”, “Therefore, τ χ ^ = τ ζ θ = 0 and 1 0.1 According to the assumption (iii) in the section, there are three forces acting on the small element abcd in the disk, including σ z = 0, and σ ,, σ θ, and rz . It is written in. In addition, it is shown in FIG. 11 of the present application.
ちなみに σ rは半径方向に働く垂直応力  Σ r is the normal stress acting in the radial direction
σ θは円周方向に働く垂直応力  σ θ is the normal stress acting in the circumferential direction
τ rzは板厚方向に沿った剪断応力 τ rz is the shear stress along the thickness direction
を意味するものであり、 以後は半径方向の応力 · 円周方向の応力 ·板厚 方向の応力と云う。 又、 『非線形連続体の有限要素法 2』 の P . 1 3 5 には、 「種々の圧力値に対する円板の有限要素モデルの変形形状」 と題 する、 負荷によって円板が変位していく過程をモデル化している図があ り、 負荷増大に伴い変位が大きくなるにつれ、 半径の伸びと、 円周の増 大、 それと共に板厚が減少していく さまが示されている。 この両方の本には、 以上述べた如く半径方向 · 円周方向 ·板厚方向の 変化が明確に示されているので、 整合性を感じるものの、 最初に紹介の 「板とシェルの理論く下 >」 で論じていることには整合性を感じられな い o Hereafter, these are referred to as radial stress, circumferential stress, and plate thickness stress. In addition, in P.135 of “Finite element method of nonlinear continuum 2”, the disk is displaced by the load, which is called “Deformed shape of finite element model of disk for various pressure values”. A diagram modeling the process shows that as the displacement increases with increasing load, the radius increases, the circumference increases, and the plate thickness decreases. Both books clearly show the changes in the radial direction, circumferential direction, and thickness direction as described above. >'' Does not seem to be consistent o
そこで、 本発明者は、 「波形」 について検討した。 Therefore, the present inventors have studied “waveform”.
1 ) 図 1 2の 「板とシェルの理論く下〉」 P 3 8 0の図 2 0 2 として紹 介されている、 同心円状波形ダイァフラムの断面図として表われる波 形。 ·  1) “Theory of Plates and Shells Below” in Fig. 12 The waveform shown as a cross-sectional view of a concentric waveform diaphragm introduced as Fig. 202 in P380. ·
2 ) 図 1 3の Y— Y '側面図として見える波形。 2) Waveform seen as Y-Y 'side view in Fig.13.
3 ) 図 1 3の A— A'断面図として表われる波形。  3) Waveforms shown as A-A 'cross section in Fig. 13.
なお、 上記の図 1 3は、 角状の波付板 1を表現している。  It should be noted that FIG. 13 described above shows the angular corrugated plate 1.
2は波付板の側面が表す波形であり、 3は板 1を A— A ' 方向で切断 したときの断面が表現する波形である。 この 2、 3は同じような波形に 見えるものの、 Y— Y ' 方向には伸縮の自由度は高いものの、 X— X ' 方向には動かない関係の中で作られる A— A ' 方向も伸縮の期待はでき ない。  2 is a waveform represented by the side surface of the corrugated plate, and 3 is a waveform represented by a cross section when the plate 1 is cut in the AA ′ direction. These 2 and 3 have similar waveforms, but have a high degree of freedom in expansion and contraction in the Y-Y 'direction, but also expand and contract in the A-A' direction, which is formed in a relationship that does not move in the X-X 'direction. Cannot be expected.
これら三種の波形は同一寸法ではないものの、 波形を呈している、 と 云う点では同じであ,るが、 「板とシヱルの理論 <下 >」 で述べられてい る。 波形の結果として、 変形は主に曲げからなっており、 そこで変形は 圧力に比例して増す。 の主張を、 そのままに受け入れてしまう と、 上記 三種の波形は皆同じ機能を果たすことになる。 ところが側面図として見 える波形と、 断面図として表われてくる波形とでは、 意味も機能も違つ てく るので、 上記三種の断面図、 側面図に示される波形は皆同じだから 、 同じ表現 . 同じ機能を持つのだ、 との論を受入れる訳にはいかない。 すなわち波形の背後 ·波形の向う側にあって見えない部分の状態を含 め考察してみると、 1 ) 図 1 2の 「板とシェルの理論く下〉」 P 3 8 0の図 2 0 2として紹 介されている波形の背景は、 ダイアブラム理論を引用している以上、 "直径に沿っての波の数が十分に大きい (n > 5 ) ならば" との記述 とあわせ考えても、 同心円状にある波形のダイァフラムを連想するこ . とは当然のことであり、 間違いとは思えない。 Although these three types of waveforms are not the same size, they are the same in that they exhibit waveforms, but are described in "Theory of Plates and Seals <below>". As a result of the waveform, the deformation mainly consists of bending, where the deformation increases in proportion to the pressure. If we accept this claim as it is, all three waveforms will perform the same function. However, the waveforms that can be seen as side views and the waveforms that appear as cross-sections have different meanings and functions, so the waveforms shown in the three types of cross-sections and side views are the same, so the same expression is used. We cannot accept the argument that they have the same function. In other words, considering the state of the part behind the waveform and on the opposite side of the waveform and invisible, 1) “Theory of plate and shell below” in Fig. 12 The background of the waveform introduced as Fig. 202 in P380 is based on the description of Diabram theory. If the number of waves is large enough (n> 5), it is natural that it is not mistaken to associate a diaphragm with a concentric waveform. .
2 ) 図 1 3の Y— Y,側面図と して見える波形は、 側面図である以上こ の波形の背後には、 側面図に直角の方向、 すなわち背景のどこを切り 取っても (側面図に平行な位置) 同一寸法の波形を表わす。 これは角 板の波板であり、 形状が "波形の結果として、 変形は主に曲げからな つており、" とあるので、 Y _ Y '方向への伸縮は可能であるが、 これ はあくまでも二次元的な変形であり、 後に説明する三次元的変形とは 全たく別のものである。  2) The waveform seen as Y-Y, side view in Fig. 13 is a side view. Behind this waveform, the direction perpendicular to the side view, that is, no matter where the background is cut (side view) (Positions parallel to the figure) Represent waveforms of the same dimensions. This is a rectangular corrugated plate, whose shape is "The deformation mainly consists of bending as a result of the waveform," so it is possible to expand and contract in the Y_Y 'direction, but this is only This is a two-dimensional deformation, which is completely different from the three-dimensional deformation described later.
3 ) 図 1 3の A— A '断面波形については、 断面図と して表われる波形 であり、 この波形の背景には、 この A— A '断面に或る角度をもって 波板が隠されている。 これではいく ら断面が波形を呈しているからと 云っても、 A— A,方向への伸縮を望むことは出来ない。  3) The A-A 'cross-sectional waveform in Fig. 13 is a waveform that appears as a cross-sectional view. In the background of this waveform, the corrugated sheet is hidden at a certain angle in the A-A' cross-section. I have. In this case, no matter how much the cross section shows a waveform, it cannot be expected to expand or contract in the A–A direction.
これと同様ではないものの、 図 1 2の断面波形についても、 背景に ある複数の円弧波が抗カを発揮するので、 図 1 2の断面左右の方向に 伸縮自在である……と云う訳にはいかない。  Although not the same, the cross-sectional waveform in Fig. 12 can also expand and contract in the left-right direction of the cross-section in Fig. 12 because a plurality of arc waves in the background exert resistance. I don't.
ついでに、 半径方向と円周方向の合成方向に波を付けることで、 半 径方向の応力と円周方向の応力に、 共に対応出来るかの如くに想定し た渦巻き状ダイアフラムもあるが、 これは 「柱」 と 「梁」'の捕強材と して用いる 「筋交い」 の如くに、 かえって半径方向、 円周方向の 2つ の応力に対し、 何等の機能をも発揮することが出来ない。  In addition, there is a spiral diaphragm that assumes that it is possible to cope with both radial stress and circumferential stress by applying waves in the combined direction of the radial direction and the circumferential direction. It cannot exert any function against two stresses in the radial and circumferential directions, such as “brace” used as a reinforcing material for “columns” and “beams”.
以上三種の断面図ないし側面図が呈する波形と、 その背景を考察した 訳だが、 いく ら波形が同じだからと云っても、 その背景がそれぞれ違う 以上、 常識的に考えてもこの 3種が同じ表現 · 同じ機能を発揮し得るな どとは誰も思わない。 The above three types of cross-sectional views or side views show the waveforms and their backgrounds.However, even though the waveforms are the same, their backgrounds are different. As mentioned above, no one thinks that these three types can exert the same expression and the same function even if they are considered common sense.
ましてや、 引用文中にある "そのときは図 1 8 6の記法を用いると、 " ……とあるが、 図 1 8 6は、 章 1 1、 異方性板の曲げ、 の項にあり 、 角板を論じているのであり、 図 1 3 と同じ角形の波付板である。 この 角板の側面図として見える波形が、 図 1 2 と同じである……と、 波形の 同一性のみを捕らえて、 角板の理論を円板に押し付けるが如きの手法は 、 少し乱暴に過ぎるし、 誰も適正な論法とは理解しない。  Furthermore, in the quoted text, "In that case, using the notation shown in Fig. 186, there is" ......, but in Fig. 186, there is a section in Chapter 11, Bending of Anisotropic Plate, It discusses a board, the same square corrugated board as in Figure 13. The waveform seen as a side view of this square plate is the same as that in Fig. 12.… The method of capturing only the identity of the waveform and pressing the theory of the square plate onto the disk is a bit too violent. And nobody understands it as proper reasoning.
ここに、 同心円状の波形を想定しておきながら、 その断面が波形を示 すからと云って、 事情の異なる角板の波形理論を適用すると云う致命的 な誤りの不自覚が解明された。  Here, while assuming a concentric waveform, the fact that the cross-section shows a waveform, the unawareness of the fatal error of applying the waveform theory of a square plate with different circumstances was clarified.
本発明は叙上の知得に基づき、 図 1 1に示されるところの半径方向の 応力、 円周方向の応力、 板厚方向の応力の全てを同時に緩和する負荷に 伴う応力を効果的に緩和し得るダイアブラムを提供することを目的とし ている。 発明の開示  Based on the above-mentioned knowledge, the present invention effectively relieves the stress caused by the load, which simultaneously reduces the radial stress, the circumferential stress, and the thickness stress as shown in Fig. 11 The purpose is to provide a diaphragm that can be used. Disclosure of the invention
上記目的を達成するため.の本発明の基本的な考え方を、 図 1, 2をも つて説明する。  The basic concept of the present invention for achieving the above object will be described with reference to FIGS.
図 1 aは、 既述した図 1 1で紹介の 「半径方向に働く垂直応力 σ rj を示している。 この半径方向に対する応力緩和の手段と して図 2 aで示 す如くに、 同心円状に波形を付した。 図 l bは、 「円周方向に働く垂直 応力 σ θ」 を示している。 この円周方向に対する応力緩和の手段として 図 2 bで示す如くに、 円周上に外方広がりの波形を付した。 この二方向 に対する緩和手段は図 1 3の波付け角板の X— X 'を平面上で円周方向 にまるめたものと、 Y— Y 'を平面上で円周方向にまるめたものに相当 し、 共に二次元的波形であるが、 図 1 cは半径方向と円周方向の混合し た応力図であり、 この図 1 cの応力に対応する応力緩和の手段は図 2 c の如くに、 同心円状の波形と円周上に外方広がりを持った波形を合成し た波形とすることで、 はじめて三次元波形となる。 負荷の発生と共に、 このダイアブラム受圧面上に付勢された三次元波形の各部で、 三次元的 変形が可能となる。 . FIG. 1a shows the “normal stress σ rj acting in the radial direction” introduced in FIG. 11 described above. As shown in FIG. 2a, a concentric circular stress is used as a means of relaxing the stress in the radial direction. Figure lb shows the “normal stress σ θ acting in the circumferential direction”. As a means of relaxing the stress in the circumferential direction, as shown in FIG. The mitigation measures for these two directions are equivalent to the corrugated square plate of Fig. 13 in which X--X 'is rounded in the circumferential direction on the plane and Y--Y' is rounded in the circumferential direction on the plane. However, Fig. 1c is a mixed stress diagram in the radial and circumferential directions, and the means for stress relaxation corresponding to the stress in Fig. 1c is as shown in Fig. 2c. However, a three-dimensional waveform is formed for the first time by combining a concentric waveform and a waveform having an outward spread on the circumference. With the generation of the load, three-dimensional deformation is possible at each part of the three-dimensional waveform urged on the diaphragm pressure receiving surface. .
又、 形状的な応力集中を起こさずに済むならば、 図 1 1で紹介の 「板 厚方向に沿った剪断応力 τ r Z」 に対し、 負荷応力を最少にすることで 、 大きな変位を実現すると共に高い耐圧力を発揮する。 If the shape does not cause stress concentration, a large displacement can be realized by minimizing the applied stress against the "shear stress τ r Z along the thickness direction" introduced in Fig. 11. And high withstand pressure.
すなわち、 この板厚方向の応力緩和は、 半径方向と円周方向の応力緩 和能力が正常に機能することにより副次的に達成されるものであり、 こ こで応力緩和は完結される。  That is, the stress relaxation in the plate thickness direction is secondaryly achieved by normal functioning of the stress relaxation ability in the radial direction and the circumferential direction, and the stress relaxation is completed here.
表現の大小に惑わされることなく、 すべての弾性材料に等しく起こる 基本的な応力を材料力学的な視点で捉え、 本来あるべきダイアフラムと は……という命題を解き明かそう としているのであるから、 材質を特定 するものではない。  Without being confused by the size of the expression, the basic stress that occurs equally in all elastic materials is grasped from the viewpoint of material mechanics, and we are trying to clarify the proposition that the original diaphragm should be… It does not specify
以上をもって半径方向と円周方向と板厚方向の 3つの応力にはすべて 対応するものである。  As described above, all three stresses in the radial, circumferential, and thickness directions can be handled.
すなわち、 請求の範囲 1の本発明は、 ダイアフラム受圧面の半径方向 と円周方向に、 なだらかな波形面を施すことにより、 受圧面上を三次元 波形とした。  That is, in the present invention of claim 1, a three-dimensional waveform is formed on the pressure receiving surface by applying a gentle waveform surface in the radial direction and the circumferential direction of the diaphragm pressure receiving surface.
請求の範囲 2の本発明は、 一つの環状凹溝をもつダイァフラムにおい て、 異なる凹形を分割付設し、 円周方向になだらかな波形面を施すこと により、 環状凹溝全体を三次元波形とした。'  The present invention according to claim 2 provides a diaphragm having a single annular groove, by dividing and providing different concave shapes and applying a gentle wavy surface in the circumferential direction, so that the entire annular groove has a three-dimensional waveform. did. '
請求の範囲 3の本発明は、 同心円状に波形を形成したダイァフラムに おいて、 同心円状波形の山部 ·底部に違形山部 ·底部を分割付設し、 か つ違形山部 ·底部が等分咬合配設することで、 半径方向にある波形の全 域で、 円周方向になだらかな波形面を施すことにより、 受圧面上を三次 元波形とした。 The present invention according to claim 3 provides a diaphragm in which concentric waveforms are formed, in which a concentric corrugated peak and a bottom are divided and a deformed peak and a bottom are divided and provided. Three-dimensional waveforms on the pressure-receiving surface by applying a gentle wavy surface in the circumferential direction over the entire area of the wavy shape in the radial direction by arranging the bottom part equally and occlusally.
請求の範囲 4の本発明は、 応力緩和機能を有する凹凸状突起を、 ダイ ァフラム外周固定端に向け漸次径大化させ、 凹凸均等配置付形し、 受压 面上を三次元波形とした。  According to the fourth aspect of the present invention, the uneven protrusions having a stress relaxation function are gradually increased in diameter toward the fixed end of the outer periphery of the diaphragm, are uniformly arranged, and have a three-dimensional waveform on the receiving surface.
請求の範囲 5の本発明は、 応力緩和機能を有する凸状突起を、 ダイァ フラム外周固定端に向け漸次径大化させ、 凸凸均等配置付形し、 受圧面 上を三次元波形とした。  According to the fifth aspect of the present invention, the diameter of the convex protrusion having the stress relaxing function is gradually increased toward the fixed end of the outer periphery of the diaphragm, the convex and convex are arranged uniformly, and a three-dimensional waveform is formed on the pressure receiving surface.
請求の範囲 6の本発明は、 応力緩和機能を有する凹凸状突起からなる 、 凹凸及ぴ凸凸がダイアフラム基準面近傍で変化する軌跡で囲繞される 部分において、 その基周に湾曲ひだを付形し、 受圧面を三次元波形とし た。  The present invention according to claim 6 is characterized in that, in a portion composed of uneven protrusions having a stress relaxation function and surrounded by a locus in which the unevenness and the convexity change near the diaphragm reference plane, a curved pleat is formed on a base circumference thereof. Then, the pressure receiving surface was made into a three-dimensional waveform.
しかして、 本発明にあっては、 ダイアブラム受圧面内の負荷により発 生する、 応力場にあるすベての応力に対応する、 半径方向のなだらかな 波形と円周方向にあるなだらかな波形とで発現する、 三次元波形の各部 が自立性 ·独自性を持ちつつも、 全体と して調和のある集合体として機 能し、 受圧面の各部で三次元的変形を可能とし、 大きな変位と高い耐圧 力を発揮する。 図面の簡単な説明  Thus, in the present invention, a gentle waveform in the radial direction and a gentle waveform in the circumferential direction corresponding to all the stresses in the stress field generated by the load in the diaphragm pressure receiving surface. Each part of the three-dimensional waveform that appears at the time has its own independence and uniqueness, but also functions as a harmonious aggregate as a whole, enabling three-dimensional deformation at each part of the pressure receiving surface, Demonstrates high pressure resistance. BRIEF DESCRIPTION OF THE FIGURES
図 1 a〜 cは、 ダイアフラム受圧面に働く応力の方向についての解説 図である。  1a to 1c are explanatory diagrams of the direction of the stress acting on the diaphragm pressure receiving surface.
図 2 a〜 cは、 図 l a〜 cに示される応力の緩和手段を施す請求の範 囲 1に記載の本発明の基本要領説明図である。  2a to 2c are explanatory diagrams showing the basic principle of the present invention described in claim 1 in which the stress relaxation means shown in FIGS. 1a to 1c is applied.
図 3 a, bは、 請求の範囲 2に記載の本発明のダイァフラムの平面図. a図中 A— A線、 B _ B線断面合成図である。 3A and 3B are plan views of the diaphragm according to the present invention described in Claim 2. FIG. 3A is a cross-sectional composite view taken along line A—A and line B_B in FIG.
図 4 a, bは図 3 a, bに対応して本発明のダイアフラムを示す俯瞰 図である。  4a and 4b are overhead views showing the diaphragm of the present invention corresponding to FIGS. 3a and 3b.
図 5 a bは、 請求の範囲 3に記載の本発明のダイァフラムの平面図. a図中 A A線、 B—B線、 C一 C線断面合成図である。  FIG. 5 ab is a plan view of the diaphragm of the present invention described in claim 3. FIG. 5 a is a cross-sectional view taken along line AA, line BB, and line C-C in the figure.
図 6 a bは、 図 5 a, bに対応して本発明のダイアブラム俯瞰図で ある。  FIG. 6 ab is a perspective view of the diaphragm of the present invention corresponding to FIGS. 5 a and 5 b.
図 7は、 請求の範囲 4に記載の本発明のダイァフラムの平面図である c 図 8は、 請求の範囲 5に記載の本発明のダイァフラムの平面図である 図 9は、 請求の範囲 6に記載の本発明のダイアブラムの平面図である c 図 1 0は、 図 7, 8の異なる実施態様説明図である。 FIG. 7 is a plan view of the diaphragm of the present invention described in claim 4 c . FIG. 8 is a plan view of the diaphragm of the present invention described in claim 5 FIG. 9 is a plan view of the diaphragm of claim 6 c Figure 1 0 is a plan view of Daiaburamu of the invention described is a different embodiment illustrating the FIG. 7, 8.
図 1 1 は、 「現代材料力学」 P 2 0 3 , 1 0 . 4 "円板の軸対称曲 げ" の項の説明図である。  Figure 11 is an explanatory diagram of the section "Modern Material Mechanics" P203, 10.4 "Axisymmetric bending of a disk".
図 1 2は、 「板とシェルの理論く下〉」 P 3 8 0の図 2 0 2の図面で ある。  FIG. 12 is a drawing of FIG. 202 of P380, “Theory of Plate and Shell”.
図 1 3は、 角状波付板の側面波形、 断面波形についての説明図である c 図 1 4 a〜 cは、 本発明手当てと従来手段との'対比試験用試料の寸法 図で、 aは、 平板状ダイァフラム、 bは、 従来の同心円状波形ダイァフ ラム、 cは、 本発明要領を施したダイアフラムを夫々示す。 Figure 1 3 is a side waveform with angular corrugated plate, c Figure 1 4 a to c is an explanatory view of the sectional waveforms, dimensions view of a sample for 'comparison test between the present invention benefits a conventional means, a Shows a plate-like diaphragm, b shows a conventional concentric waveform diaphragm, and c shows a diaphragm to which the present invention is applied.
図 1 5は、 図 l a〜cに示した試料の圧力と橈み量の関係グラフであ る。 発明を実施するための最良の形態  FIG. 15 is a graph showing the relationship between the sample pressure and the radius shown in FIGS. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明 する。  The present invention will be described in more detail with reference to the accompanying drawings.
図 2 cは、 請求の範囲 1記載の本発明を示す。 ' ダイアフラム受圧面 5の半径方向波形 4及び円周方向波形 4を合成す ることで、 三次元波形 4 'が施される。 FIG. 2c shows the invention as set forth in claim 1. ' By combining the radial waveform 4 and the circumferential waveform 4 of the diaphragm pressure receiving surface 5, a three-dimensional waveform 4 ′ is performed.
負荷により発生するすべての応力に対応し、 応力緩和機能を有する三 次元波形 4 'の各部がそれぞれに自立性 · 独自性を持ち、 全体と して調 和する。  Each part of the three-dimensional waveform 4 ', which has a stress relaxation function, responds to all stresses generated by the load, and has its own independence and uniqueness, and harmonizes as a whole.
すなわち、 負荷に伴う半径方向に働く垂直応力 σ r, 円周方向に働く 垂直応力 σ θ, 板厚方向に沿った剪断応力 τ rzを、 効果的に緩和するこ とにより、 大きな変位と高い耐圧力を発揮するにとどまらず、 精度を高 め耐久力を増すことで、 信頼度と安全度を高めるものである。 In other words, by effectively relaxing the vertical stress σ r acting in the radial direction due to the load, the vertical stress σ θ acting in the circumferential direction, and the shear stress τ rz along the thickness direction, large displacement and high withstand It not only exerts pressure but also increases reliability and safety by increasing accuracy and durability.
図 3, 4は、 請求の範囲 2に記載の本発明を示す。  3 and 4 show the invention as set forth in claim 2.
このものは、 振動板用、 圧力応動用等に用いられる。 振動部 7、 セン タープレート固定部 7と、 外周固定部 8 との間に、 一つの環状凹溝 9を もつ隔板であり、 異なる凹形 1 0を分割付設し、 円周方向になだらかな 波形面を施すことにより、 異なる凹形 9, 1 0よりなる環状凹溝全体を 三次元波形とした。  This is used for diaphragms, pressure response, etc. A diaphragm with one annular groove 9 between the vibrating part 7, the center plate fixing part 7 and the outer peripheral fixing part 8, with different concave shapes 10 divided and provided in a smooth manner in the circumferential direction. By applying a corrugated surface, the entire annular groove composed of different concave shapes 9, 10 was made into a three-dimensional waveform.
図 5, 6は、 請求の範囲 3に記載の本発明を示す。  5 and 6 show the invention as set forth in claim 3.
c - c断面でなる同心円状に波形 1 1を形成したダイアフラムにおい て、 同心円状波形の山部 1 2、 底部 1 3に違形山部 1 2 ' ·底部 1 3 'が 等分咬合配設することで、 半径方向にある波形の全域で円周方向になだ らかな波形面を施すことにより、 受圧面上を三次元波形とした。  In the diaphragm with the concentric waveform 11 formed in the c-c cross section, the irregularly shaped peaks 1 2 ′ and the bottom 13 ′ are equally bitingly arranged at the peaks 12 and the bottom 13 of the concentric waveform. Thus, a three-dimensional waveform was formed on the pressure receiving surface by applying a smooth waveform surface in the circumferential direction over the entire area of the waveform in the radial direction.
図 7は、 請求の範囲' 4に記載の本発明を示す。  FIG. 7 shows the invention as set forth in claim '4.
図中の実線模様は、 ダイアフラム基準面近傍で凹状突起 a と凸状突起 bの変化する軌跡であり、 cは前記軌跡で囲繞される部分を示す。 応力 緩和機能を有する凹状突起 a及び凸状突起 bを、 隔板外周固定端に向け 漸次経大化させ、 凹 a、 凸 bを均等配置付形し、 受圧面を三次元波形と した。 図 8は、 請求の範囲 5に記載の本発明を示す。 The solid line pattern in the drawing is a changing locus of the concave protrusion a and the convex protrusion b near the diaphragm reference plane, and c indicates a portion surrounded by the locus. The concave projections a and the convex projections b having the stress relaxation function were gradually enlarged toward the outer peripheral fixed end of the diaphragm, and the concave a and the convex b were uniformly arranged and shaped, and the pressure receiving surface was formed into a three-dimensional waveform. FIG. 8 illustrates the invention as set forth in claim 5.
図中の実線模様は、 ダイアフラム基準面近傍で凸状突起 b · bの変化 する軌跡であり、 cは前記軌跡で囲繞される部分を示す。 応力緩和機能 を有する凸状突起 b · bを、 隔板外周固定端に向け漸次経大化させ、 凸 b · bを均等配置付形し、 受圧面を三次元波形とした。  The solid line pattern in the figure is a locus where the convex protrusions b and b change near the diaphragm reference plane, and c indicates a portion surrounded by the locus. The convex protrusions b and b having the stress relaxation function were gradually enlarged toward the outer peripheral fixed end of the partition plate, and the convex protrusions b and b were uniformly arranged and shaped, and the pressure receiving surface was formed into a three-dimensional waveform.
図 9は、 請求の範囲 6に記載の本発明を示す。  FIG. 9 illustrates the invention as set forth in claim 6.
図 7、 図 8にある、 ダイアフラム基準面近傍で凹状突起 a と凸状突起 b及ぴ凸状突起 b · bが変化する軌跡で囲繞される c部の基周に、 湾曲 ひだを付形することで、 応力緩和能力の向上を計ったものである。  A curved fold is formed on the base circumference of the part c, which is surrounded by the locus where the concave protrusions a and the convex protrusions b and the convex protrusions b and b change in the vicinity of the diaphragm reference plane in FIGS. 7 and 8. In this way, the stress relaxation ability was improved.
図 7、 図 8における実線模様が中心を通る曲線から成ることに対し、 図 1 0は中心を通らない曲線から成る場合の例を示したものであり、 図 5 a、 図 7〜図 1 0中にある中央無付形部 1 4は、 中央部では多少の変 形こそあれ、 上下に移動するだけなので、 中心まで全付形をしても、 投 資と効果の関係で判断される部分であり、 どちらを選択しよう とも大局 には影響のない部分である。  7 and 8, the solid line pattern consists of curves passing through the center, while FIG. 10 shows an example in which the pattern consists of curves that do not pass through the center. The central unshaped part 14 in the center moves up and down, albeit with some deformation at the center, so even if it is fully attached to the center, it will be judged by the relationship between investment and effect Whichever choice is made, it has no effect on the overall picture.
また、 凹 a と凸 bまたは凸 b · の変化域にあっては、 適宜な Rをも つて形成し、 ダイアフラム受圧面に配設された波形が、 波形付勢のゆえ に応力集中のない、 なだらかな三次元波形とすることは無論のことであ る。  Also, in the change region of the concave a and the convex b or the convex b, it is formed with an appropriate R, and the waveform arranged on the diaphragm pressure receiving surface has no stress concentration due to the waveform urging. Obviously, a smooth three-dimensional waveform is required.
以上本実施例について詳述してきたが、 本発明はこの特定の実施例に 限定されるものでもなく、 本発明の精神を逸脱しない、 いろいろな変化 をなし得ることはもちろんであり、 ダイァフラムの形にとらわれるべき ものでもない。  Although the present embodiment has been described in detail, the present invention is not limited to this specific embodiment, and various changes can be made without departing from the spirit of the present invention. It is not something that should be taken into account.
従来技術と本発明との対比試験を以下の如く行った。  A comparison test between the prior art and the present invention was performed as follows.
図 1 4 a〜 cは、 基本形としての平板状のもの、 従来の同心円状波の もの、 本発明の三次元波形のものの寸法図であり、 受圧面板厚は皆 0 . 6 m mで同一である。 FIGS. 14a to 14c are dimensional diagrams of a flat plate as a basic shape, a conventional concentric wave, and a three-dimensional waveform of the present invention. Same at 6 mm.
材質は、 あえて不適切な P C / A B S樹脂を採用した。 この材質はダ ィァフラム用樹脂ではない。 何故ならば、 本件はダイアフラム受圧面に 三次元的波形状を付勢することで、 形状的変形、 しかも三次元的変形を 可能にすることで、 「負荷に伴う応力を効果的に緩和できるダイアフラ ム」 を創造することにある。 なお、 この受圧面に付勢した三次元的形状 面に、 形状が故の応力集中の箇所があってはならない。  The material used was an inappropriate PC / ABS resin. This material is not a diaphragm resin. Because, in this case, by applying a three-dimensional wave shape to the diaphragm pressure receiving surface, it is possible to perform shape deformation and three-dimensional deformation. The idea is to create Note that there must be no stress concentration due to the shape on the three-dimensional shape surface urged against the pressure receiving surface.
このような意味で、 強く、 しかも柔らかい芯のない A B Sに流動性が あり、 しかも芯がある (少し硬い) P Cが配合されている樹脂を使うこ とで、 初期目的とする形状的欠点を捜し出すことができる · · ' という 意味があるので、 ダイァフラムには不適であるという指摘こそが本件に あっては意味を持たないものである。  In this sense, the use of a resin that is strong and has no soft core but has fluidity and a core (somewhat hard) contains a PC to find the initial target shape defects. The point that it is unsuitable for diaphragms has no meaning in this case because it means that it is possible.
これ等の試料 a、 b、 cの圧力ー撓み関係を図 1 5に示す。 FIG. 15 shows the pressure-deflection relationship of these samples a , b, and c.
結果は、 aについては弾性のみに頼る故の圧力に比例するも撓みに限 界を呈すること、 bについては、 応力対応不全で比例し得ずに撓みも頭 打ちになることが如実に示された。  The results clearly show that a is proportional to the pressure due to relying solely on elasticity but has a limit on deflection, and b is a failure to cope with stress due to failure to cope with the stress and that the deflection flattens out. Was.
これに比し、 cについては、 比例関係を持続しながらの撓みの増大を 継続する様子が確認された。  In contrast, for c, it was confirmed that the deflection continued to increase while maintaining the proportional relationship.
更に、 叙上の結果を詳しく解説する。  In addition, the results described above are explained in detail.
平板のダイアフラムは、 受圧面に何等の工夫 ' 工作がなされていない ので、 受圧面は負荷と共に半径方向、 円周方向には引っ張り力が働き、 変位と共に板厚は減少していく。 当然のことながら、 変位 ·耐圧共に、 この三種のダイァフラムにあっては、 一番低いものになる。  Since the flat diaphragm has not been modified in any way on the pressure-receiving surface, the pressure-receiving surface is subjected to a tensile force in the radial direction and the circumferential direction together with the load, and the plate thickness decreases with the displacement. Naturally, both the displacement and the pressure resistance are the lowest among these three types of diaphragms.
同心円状の波形ダイァフラムは、 半径方向には波形が工作 ·工夫され ているが、 円周方向には何等の工夫 . 工作はされていない。 受圧面では 負荷と共に、 波状の変形として半径方向では撓もう とするものの、 半径 のどの点を通る総べての円周上で引っ張り力が働き、 変位を阻害する。 よって耐圧力はあるが、 変位は想像するより もはるかに少ない。 The concentric corrugated diaphragm has a wave pattern in the radial direction, but no work in the circumferential direction. On the pressure-receiving surface, it tends to bend in the radial direction as a wavy deformation with the load, but the radius A pulling force acts on the entire circumference passing through the throat point, which hinders displacement. So there is a pressure resistance, but the displacement is much less than you might imagine.
本発明のダイアフラムは、 半径方向に働く垂直応力 ( a r)、 円周方向 に働く垂直応力 ( σ 0 ) そして板厚方向に沿った剪断応力 ( て を容 易に理解出来る内容が含まれている。  The diaphragm of the present invention includes a content which can easily understand the vertical stress (ar) acting in the radial direction, the vertical stress (σ 0) acting in the circumferential direction, and the shear stress (te) in the thickness direction. .
a ) 半径方向に働く垂直応力 (図 1 一 a ) の対応策としては、 a) As a countermeasure for the normal stress acting in the radial direction (Fig.
同心円状に波付けされた図.2 - aの工夫をもって半径方向の応力緩 和手段とする。  The concentric corrugations in Fig. 2-a are used as radial stress relaxation means.
b ) 円周方向に働く垂直応力 (図 1一 b ) の対応策としては、 b) As a countermeasure against the vertical stress acting in the circumferential direction (Fig. 11-b),
円周状に波付けされた図 2— bの工夫をもって円周方向の応力緩和 手段とする。  Circumferentially corrugated means shown in Fig. 2-b will be used as circumferential stress relaxation means.
c ) 受圧面上にある 3ケの応力の内、 以上の二応力 σ Γ、 σ θ (図 1 一 c ) の対応策と しては、 c) Among the three stresses on the pressure receiving surface, the two stresses σ Γ and σ θ (Fig.
同心円状に波付けされた図 2— a と円周上に波付けされた図 2 — b を合成したところの、 図 2— cをもって二応力の緩和手段とする。 このような工夫 · 工作をされたダイァフラムが負荷と共に挙動してい く過程を考察してみよう。  Figure 2-c, which is a combination of Fig. 2-a concentrically corrugated and Fig. 2-b corrugated on the circumference, is used as a means for mitigating two stresses. Let's consider the process by which such a modified diaphragm behaves with the load.
a ) 負荷が掛ると同時に、 半径方向と円周方向の緩和能力が発揮され、 「板とシェルの理論く下 >」 P 3 8 0にある "波状の結果として、 変 形は主に曲げからなっており、 そこで変形は圧力に比例して増す" と の引用文そのままの変位をする。  a) At the same time as the load is applied, the radial and circumferential relaxation capacity is exerted, and the deformation is mainly caused by bending, Therefore, the deformation increases in proportion to the pressure. "
伹し、 引用文中で意味するところと、 本件発明品の意味すると ころ の、 最大の相違点は、  The biggest difference between what is meant in the quoted text and what is meant by the invention is
半径方向のみの緩和能力しか提案していない引用文に対し、 本件発 明品は半径方向と円周方向の両方に対して緩和能力を持っている こと である。 この違いが、 円周方向には何等の緩和能力を持たない、 同心円状の 波形ダイ ァフラムが表現する Bグラフである。 一方にしか緩和能力を 持たないが故に、 負荷が掛り始めると同時に、 緩和能力を持たない他 方で変位 .変形にブレーキを掛け、 負荷と共にこのブレーキは増大し ていく 、 両方に緩和能力を持つ本件発明品では、 グラフの示す如く に圧力と変位は正しく比例の関係をもって変位していく。 In contrast to the quote that only proposes the mitigation ability in the radial direction, the invention has the mitigation ability in both the radial and circumferential directions. This difference is the B-graph represented by the concentric waveform diaphragm, which has no mitigation ability in the circumferential direction. Since only one side has the mitigation ability, the load starts to be applied, and at the same time, the other side that does not have the mitigation ability displaces.The brake is applied to the deformation, and this brake increases with the load, and both have the mitigation ability In the present invention, as shown in the graph, the pressure and the displacement are displaced in a correct proportional relationship.
b ) 半径方向と円周方向の双方に緩和能力を持つと云っても、 その能力 は全つ く等しいと云うことでは無く、 負荷が高まり変位が進んで行 く と、 ついにはどちらか一方の緩和能力は使い切られてしまう。 この 状態になるともはや波状の変形よりは、 引っ張り変形へと処理形態が 移行してゆき、 ブレーキはどんどんと強くなり、 'グラフはもはや比例 の関係を示さなくなる。 b) Even if it has the relaxation ability in both the radial direction and the circumferential direction, it does not mean that the ability is completely equal, but when the load increases and the displacement progresses, one of the The mitigation ability is used up. In this state, the processing form shifts to a tensile deformation rather than a wavy deformation, the brakes become stronger, and the graph no longer shows a proportional relationship.
c ) 変位と共にブレーキは強く働くが、 形状的工夫による応力集中が無 い間は、 耐圧力を発揮するもののついには破壌へと至る。 c) The brakes work strongly with the displacement, but as long as there is no stress concentration due to the shape of the device, they will withstand the pressure but eventually break down.
d ) ここで大事なことは、 "波状の結果として、 変形は主に曲げからな つており " ……と云う部分であり、 半径方向と円周方向の応力緩和の 能力が適切であれば、 受圧面内での変形は、 半径方向と円周方向にあ る波状変形によつて可能となっており、 板厚方向でのダメージは最小 に押えることが出来る、 すなわち、 受圧面上の各所で三次元的変形を もって変位可能にすることが、 副次的に板厚減少を押え、 結果として 高変位 · 高耐圧を可能とする。 産業上の禾 lj用の可能性 d) What is important here is that the "deformation mainly consists of bending as a result of the wavy shape". This is the part where the ability to relieve stress in the radial and circumferential directions is appropriate. The deformation in the pressure receiving surface is made possible by the wavy deformation in the radial and circumferential directions, and the damage in the thickness direction can be minimized. Making the displacement possible with three-dimensional deformation suppresses the reduction in the thickness of the sheet, and as a result enables high displacement and high withstand voltage. Industrial potential for lj
以上のように、 本発明にかかるダイアブラムは、 負荷に伴う応力を素 材の弹性にのみよることなく、 主に曲げからなる圧力に比例して増す変 形でもって効果的に緩和し得るとしたので、 橈み代を確保するために受 圧面の半径方向と円周方向に波形を施した圧力センサー素子、 ダイァフ ラムポンプ、 開閉器、 調整器、 圧力伝送器、 振動板等の分野は無論のこ と。 As described above, the diaphragm according to the present invention can effectively alleviate the stress caused by the load, not only by the properties of the material, but by the deformation that increases in proportion to the pressure mainly caused by bending. So, to secure the radius allowance Needless to say, the fields of pressure sensor elements, diaphragm pumps, switches, regulators, pressure transmitters, diaphragms, etc., with waveforms in the radial and circumferential directions of the pressure surface.
本発明にかかる隔板はゴム、 樹脂、 金属等の弹性材から成るものであ り、 材質に拘ることなく、 大きな変位と高い耐圧力を発揮することで、 精度を高め長寿命を実現し、 高温 ' 高圧 '耐蝕……と、 いまだ到達し得 ていない時限を目指すことで、 未踏分野の産業機器出現に技術関与の出 来ることを願うものである。  The diaphragm according to the present invention is made of a flexible material such as rubber, resin, and metal, and realizes large displacement and high withstand pressure regardless of the material, thereby realizing high accuracy and long life. By aiming for a high-temperature, high-pressure, corrosion-resistant time limit that has not yet been reached, we hope that technology will be involved in the emergence of unexplored industrial equipment.

Claims

請 求 の 範 囲 . 隔板受圧面の半径方向と円周方向に、 なだらかな波形面を施すこと により、 受圧面上を三次元波形と し、 負荷に伴う応力を効果的に緩和 し得るダイァフラム。 Scope of request A diaphragm that can form a three-dimensional waveform on the pressure receiving surface by applying a gentle corrugated surface in the radial direction and the circumferential direction of the pressure receiving surface of the partition plate, and effectively reduce the stress caused by the load .
. —つの環状凹溝をもつ隔板において、 異なる凹形を分割付設し、 円 周方向になだらかな波形面を施すことにより、 環状凹溝全体を三次元 波形とした請求の範囲第 1項記載の負荷に伴う応力を効果的に緩和し 得るダイアフラム。 -The diaphragm having one annular groove, wherein different concave shapes are separately provided and a gentle wavy surface is provided in a circumferential direction so that the entire annular groove has a three-dimensional waveform. Diaphragm that can effectively relieve the stress associated with the load of the vehicle.
. 同心円状に波形を形成した隔板において、 同心円状波形の山部 ·底 部に違形山部 ·底部を分割付設し、 かつ違形山部 ·底部が等分咬号配 設することで、 半径方向にある波形の全域で、 円周方向になだらかな 波形面を施すことにより、 受圧面上を三次元波形とした請求の範囲第 1項記載の負荷に伴う応力を効果的に緩和し得るダイアブラム。 In a concentrically corrugated diaphragm, the concentric corrugated peaks and bottoms are divided into irregularly shaped peaks and bottoms, and the irregularly shaped peaks and bottoms are equally divided and the radius is increased. A diaphragm capable of effectively relieving the stress caused by the load according to claim 1 by forming a three-dimensional waveform on the pressure receiving surface by applying a gentle waveform surface in the circumferential direction over the entire area of the waveform in the direction. .
. 応力緩和機能を有する 1H状突起及び凸状突起を、 隔板外周固定端に 向け漸次経大化させ、 凹凸均等配置付形し、 受圧面を三次元波形とし た請求の範囲第 1項記載の負荷に伴う応力を効果的に緩和し得るダイ ァフラム。  The claim 1 wherein the 1H-shaped protrusions and the convex protrusions having a stress relaxation function are gradually enlarged toward the outer peripheral fixed end of the partition plate, and are arranged so as to be evenly uneven, so that the pressure receiving surface has a three-dimensional waveform. A diaphragm that can effectively relieve the stress associated with the load on the vehicle.
5 . 応力緩和機能を有する凸状突起と凸状突起を、 隔板外周固定端に向 け漸次経大化させ、 凸凸均等配置付形し、 受圧面を三次元波形とした 請求の範囲第 1項記載の負荷に伴う応力を効果的に緩和し得るダイァ フラム。 5. The convex protrusions having a stress relaxation function and the convex protrusions are gradually enlarged toward the outer peripheral fixed end of the partition plate, and are uniformly arranged and formed to have a three-dimensional waveform on the pressure receiving surface. A diaphragm capable of effectively relieving the stress associated with the load described in paragraph 1.
6 . 応力緩和機能を有する凹状突起と ώ状突起及び、 凸状突起と凸状突 起が隔板基準面近傍で変化する軌跡で囲繞される部分において、 その 基周に湾曲ひだを付形した請求の範囲第 1, 4, 5項記載の負荷に伴 う応力を効果的に緩和し得るダイァフラム, 6. Curved folds are formed on the base circumference of the part surrounded by the locus where the concave projection and the vertical projection having the stress relaxation function and the convex projection and the convex projection change near the reference plane of the diaphragm. According to the load described in claims 1, 4 and 5, Diaphragm that can effectively reduce stress
PCT/JP2003/008313 2002-06-28 2003-06-30 Diaphragm WO2004003407A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003244016A AU2003244016A1 (en) 2002-06-28 2003-06-30 Diaphragm
JP2004517336A JPWO2004003407A1 (en) 2002-06-28 2003-06-30 Diaphragm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-190066 2002-06-28
JP2002190066 2002-06-28

Publications (1)

Publication Number Publication Date
WO2004003407A1 true WO2004003407A1 (en) 2004-01-08

Family

ID=29996873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008313 WO2004003407A1 (en) 2002-06-28 2003-06-30 Diaphragm

Country Status (3)

Country Link
JP (1) JPWO2004003407A1 (en)
AU (1) AU2003244016A1 (en)
WO (1) WO2004003407A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020120448A1 (en) 2020-08-03 2022-02-03 Carl Freudenberg Kg Membrane and separating piston comprising such a membrane

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914909Y1 (en) * 1968-06-29 1974-04-13
US4375182A (en) * 1980-10-31 1983-03-01 Z John R Ultra-sensitive diaphragm with dual stress-relief structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914909Y1 (en) * 1968-06-29 1974-04-13
US4375182A (en) * 1980-10-31 1983-03-01 Z John R Ultra-sensitive diaphragm with dual stress-relief structures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020120448A1 (en) 2020-08-03 2022-02-03 Carl Freudenberg Kg Membrane and separating piston comprising such a membrane

Also Published As

Publication number Publication date
AU2003244016A1 (en) 2004-01-19
JPWO2004003407A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US4375182A (en) Ultra-sensitive diaphragm with dual stress-relief structures
JP4208957B2 (en) gasket
CN101122338B (en) Non-asbestos seal gasket
EP0528698A1 (en) Metallic gasket and method of manufacturing the same
JPH09105463A (en) Gasket made of metal
JP2006090549A (en) Gasket including at least one rib incorporating compression limit member
KR20160145026A (en) Ultra-seal gasket for joining high purity fluid pathways
WO2008128778A1 (en) Three-dimensional flat gasket
JP6916347B2 (en) Port hole gasket and heat exchanger assembly
JPH06510843A (en) Flat gaskets especially for internal combustion engines and methods of manufacturing such gaskets
EP1031774A2 (en) Metal gasket
Abe et al. Non-linear vibration characteristics of clamped laminated shallow shells
WO2004003407A1 (en) Diaphragm
JP2001173790A (en) Metal gasket
Adams Elastic Wrinkling of a Tensioned Circular Plate Using von Ka´ rma´ n Plate Theory
JPH09292027A (en) Metal gasket
JP4090027B2 (en) Bead plate for metal gasket and manufacturing method thereof
JP2018167279A (en) Molded material and manufacturing method for the same
Luah et al. General free vibration analysis of shells of revolution using the spline finite element method
Xiang et al. Vibration of circular and annular Mindlin plates with internal ring stiffeners
JP2536682Y2 (en) Metal-coated gasket
JP2011017434A (en) Metal gasket
JPH10339372A (en) Metal gasket
JP4238202B2 (en) Gasket containing a steel plate with a thick part
WO1989009355A1 (en) Sealing member for sealing magnetic fluid and method of producing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004517336

Country of ref document: JP

122 Ep: pct application non-entry in european phase