WO2004002161A1 - Verfahren und vorrichtung zur vorbereitung der ubertragung von bildfolgen über einen zeitlich änderlichen kanal - Google Patents

Verfahren und vorrichtung zur vorbereitung der ubertragung von bildfolgen über einen zeitlich änderlichen kanal Download PDF

Info

Publication number
WO2004002161A1
WO2004002161A1 PCT/EP2002/006807 EP0206807W WO2004002161A1 WO 2004002161 A1 WO2004002161 A1 WO 2004002161A1 EP 0206807 W EP0206807 W EP 0206807W WO 2004002161 A1 WO2004002161 A1 WO 2004002161A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantization
image
quantized
sequence data
image sequence
Prior art date
Application number
PCT/EP2002/006807
Other languages
English (en)
French (fr)
Inventor
Klaus Illgner-Fehns
Juergen Pandel
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2002/006807 priority Critical patent/WO2004002161A1/de
Priority to AU2002368039A priority patent/AU2002368039A1/en
Publication of WO2004002161A1 publication Critical patent/WO2004002161A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/152Data rate or code amount at the encoder output by measuring the fullness of the transmission buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/154Measured or subjectively estimated visual quality after decoding, e.g. measurement of distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/40Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/48Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using compressed domain processing techniques other than decoding, e.g. modification of transform coefficients, variable length coding [VLC] data or run-length data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the invention relates to a method and. a device for the preparation of the transmission of image sequences' representing the image sequence data through a channel with time-varying channel characteristics.
  • DE 10145376 AI shows a method for coding video sequences.
  • Video streams can only be transported over packet-oriented data networks if the data rate required for this is below the bandwidth available in the packet-oriented data networks.
  • Standardized methods such as MPEG-1, MPEG-2 and H.26Lr, have therefore been developed with which video sequences can be effectively compressed.
  • the standardized methods work with motion-compensating hybrid coding, a combination of lossless redundancy reduction and lossy irrelevance reduction.
  • the so-called motion-compensating prediction contributes the most to compression.
  • the motion-compensating prediction or prediction takes advantage of the similarity of successive pictures by predicting the picture currently to be coded from pictures already coded. Since usually only certain parts of consecutive images move, the image currently to be encoded is broken down into rectangular macro blocks during encoding. When coding, suitable ones are made for each of these Mak from the already transmitted images . Macroblocks are selected and their shift to the macroblocks of the image currently to be coded is calculated. The encryption 'thrusts the macro blocks will be described by motion vectors can be coded by the code tables based located.
  • the prediction error or prediction error Since the image currently to be encoded is not in everyone. Case due to the shifting of macro blocks of already encoded images can be constructed, for example in the case of new objects, the prediction error or prediction error must also be transmitted. This prediction error results from the difference between the actual image currently to be encoded and the prediction image constructed by shifting the macroblocks from images already encoded.
  • a transformation of the prediction errors is carried out to further reduce the redundancy.
  • different transformation processes are used. For example, the discrete avelet transformation (D T), the discrete cosine transformation (DCT) or the discrete integer transformation are possible.
  • D T discrete avelet transformation
  • DCT discrete cosine transformation
  • This transformation transforms the macroblocks into prediction error matrices that are populated with a large number of spectral coefficients. These prediction error matrices together form the transformed prediction error data.
  • the transformed prediction error data are quantized before the further coding. After quantization, many spectral coefficients are zero. The transformed and quantized prediction error data can then be effectively compressed by entropy coding.
  • the finally coded video data stream is finally composed of the entropy-coded prediction error data and the entropy-coded movement information of the macroblocks.
  • the video data stream can also contain information about various coding parameters.
  • the object of the invention is to develop effective methods for further reducing the data rate in a channel of coded video sequences.
  • the object is achieved according to the invention by the subject matter of the independent patent claims with regard to the method and the device.
  • the common inventive idea of the alternatives specified in the first two independent patent claims is to reduce the amount of data in a transcoder (7) upstream of the channel without transforming the data back into the local area by processing the transformation coefficients.
  • Developments of the invention are specified in the subclaims.
  • the preparation according to the invention for the transmission of image sequence data representing image sequence data over a channel with changing channel properties and the associated data reduction is achieved by a coarser quantization in a transcoder (7) according to the invention, which re-quantizes the data before transmission via a channel (15) or omits quantization coefficients.
  • Figure la shows an arrangement for coding and storing
  • FIG. 1b shows an arrangement for retrieving and transmitting coded image sequences from an image database
  • FIG. 2 Arrangement for transcoding coded image sequences according to the prior art
  • Figure 3 shows the device for quantization in one
  • FIG. 4 shows the division of the quantization levels
  • Figures la and b show how image data representing an image sequence (video sequence) are prepared for transmission over a time-changing channel.
  • Video data of the video sequence are, for example, discrete cosine transformed (1) and then quantized in a quantizer (2).
  • the quantized coefficients are then assigned so-called "coefficient levels"; these are entropy-coded according to their probability of occurrence and transmitted to the receiver (16). With higher quality, the quantization takes place in finer stages, with "higher levels” and thus a higher data rate.
  • the method uses a transcoding principle in a simplified form.
  • the image data to be coded are predicted block by block, the prediction error data is subjected to a transformation and the resulting transformation coefficients are quantized.
  • the image of the video sequence currently to be encoded is segmented into rectangular macroblocks, which are usually 8 x 8 or 16 x 16 pixels.
  • the motion estimation unit (13) looks for suitable macroblocks from already transmitted images and calculates their motion vectors.
  • the motion vectors are sent to the motion compensator (14), which then calculates the prediction image p n from the reference image in the image memory BS (12).
  • the motion ectors are entropy-coded according to their probability of occurrence in a variable length coder (5) and transmitted to the receiver (16) together with the coefficient levels.
  • the image data of image sequence data are converted via an inverse quantizer (10) and an inverse transformation (11) (e.g. an inverse discrete cosine transformation) and added to the prediction image p n calculated by the motion compensator (14).
  • an inverse quantizer 10
  • an inverse transformation (11) (e.g. an inverse discrete cosine transformation)
  • the prediction error matrix created during the prediction with the quantized spectral coefficients that form the prediction error data is subjected to a zigzag scan
  • the coding control (3) serves to adapt the quantization level of the quantizer (2) so that neither overflow nor underflow occurs in the buffer (6).
  • the image data are stored in a video server (8) with a video database (9). Because the data rate in the transmission channel
  • the scope of the data is further reduced by coarsely re-quantizing the finely quantized coefficients in a transcoder (7) in order to achieve lower levels and consequently a lower data rate.
  • This can be used particularly advantageously if the subsequent quantizer in the transcoder (7) is adapted to the previous one (2) in the encoder, i. H. if the quantization levels are embedded in each other. "Embedded C" in each other means that the coarser quantization levels are integer multiples of the finer quantization levels. In this way it is achieved that despite two-level quantization (ie fine quantization in the encoder, coarse quantization in the transcoder
  • the coefficients are assigned to the same levels as when the rough quantization is applied directly.
  • the coarser quantization in the transcoder (7) is continuously adapted to the fine quantization in the encoder so that the embedded property is retained.
  • the use of embedded quantizer stages means a relatively strong reduction in the data rate for the blocks in question and also a significant degradation in quality.
  • the property that the quantizer stages are embedded in one another also guarantees that the resulting data rate is lower than the original one.
  • the data reduced in this way are transmitted via a channel (15) to a buffer (17) in the receiver (16) and from there to a decoder (18).
  • a decoder (18) In order to carry out a fine-rate adjustment, it is advisable to coarsen the quantization for only a few image blocks. However, if the quantization for individual blocks is changed within a picture, this must be signaled to the decoder (18). This signaling information is to be added in the transcoder (7). In order to keep the additional signaling information low, it makes sense to use the
  • FIG. 2 shows a previously used method for transcoding (7), in which the image data are completely decoded in a decoder (18) and newly encoded in a downstream encoder (19) with the desired reduced data rate. Buffers (17) prevent overflow or underflow of the decoder (18) or encoder (19). It is known that this method is very complex and costly.
  • FIG. 3 shows how image sequence data quantized in a transcoder (7) are passed via an input (20) of a quantizer (21) for coarser re-quantization.
  • the image sequence data quantized in this way are forwarded to the output (22) and sent to the buffer (17) via the channel (15).
  • Figure 4 shows in a graph (23) the level (25) for the first quantization in the quantizer (2) and in the graph (24) the level (25) for the coarser quantization in Transcoder (7).
  • the transformation coefficients of an image file from image sequence data are assigned so-called levels (values), which are entropy-coded according to their probability of occurrence and transmitted to the receiver (16).
  • levels values
  • the quantization takes place in finer stages, which generally increases the data rate.
  • Transformation coefficients assigned to level 2 or -2 removed using the same procedure. Each time a coefficient is removed, the rate savings are determined and the process repeated until the required rate reduction is achieved.
  • Several algorithms for optimizing the rate distortion function of each block by “omitting certain coefficients” have already been published in the literature (K. Illgner, M. Braess: On optimized selection of DCT coefficients in H.261-like video codecs. Proceedings of the IEEE Intern. Workshop on Intelligent Signal Processing and Communication Systems, ISPACS'93, Tohoku University, Sendai, Japan, Oct. 1993)
  • the algorithm proposed here represents a suboptimal but very fast variant, which is particularly important for transcoders (7) in the network. Since no signaling information has to be forwarded to the decoder (18) when coefficients are omitted, it is possible to carry this out only for selected blocks. This selection can be made so that the resulting
  • the selection can be made based on the position of a block in the image, impairments in the edge blocks are less disturbing than in the middle of the image.
  • Further selection criteria are brightness (impairments are subjectively less noticeable with very dark and very bright picture content than with medium brightness), texture and speed of picture objects. While the speed can be derived from the size of the motion vectors, at least partial decoding in the transcoder (7) is required for the selection criteria brightness and texture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung für die Vorbereitung der Übertragung von Bildfolgen repräsentierenden Bildfolgedaten übe einen Kanal mit sich zeitlich ändernden Kanaleigenschaften. Die Verfahren ist angefasst zum Vorbereiten der Übertragung von Bildfolgen repräsentierenden Bildfolgedaten über einen Kanal mit sich zeitlich ändernden Kanaleigenschaften, und ist dadurch gekennzeichnet, dass quantisierte Transformationskoeffizienten in den Bildfolgedaten in einer Transcodereinrichtung (7) in Abhängigkeit von den aktuellen Kanaleigenschaften zur Datenreduktion gröber quantisiert werden, als sie vor dem Transcoder (7) quantisiert waren.

Description

VERFAHREN UND VORRICHTUNG ZUR VORBEREITUNG DER ÜBERTRAGUNG VON BILDFOLGEN ÜBER EINEN ZEITLICH ÄNDERLICHEN KANAL
Beschreibung
Die Erfindung betrifft ein Verfahren und . eine Vorrichtung für die Vorbereitung der Übertragung von Bildfolgen ' repräsentierenden Bildfolgedaten über einen Kanal mit sich zeitlich ändernden Kanaleigenschaften.
Die DE 10145376 AI zeigt ein Verfahren zum Codieren von Videosequenzen. Videoströme können nur dann über paketorientierte Datennetze transportiert werden, wenn die dazu notwendige Datenrate unterhalb der in den paketorientierten Datennetzen verfügbaren Bandbreite liegt. Es sind daher standardisierte Verfahren, wie beispielsweise MPEG- 1, MPEG-2 und H.26Lr, entwickelt worden, mit denen sich Videosequenzen effektiv komprimieren lassen. Die standardisierten Verfahren arbeiten mit der bewegungskompen- sierenden Hybrid-Codierung, einer Kombination aus verlustloser Redundanzreduktion und verlustbehafteter Irrelevanzreduktion..
Am meisten trägt zur Kompression die sogenannte bewegungskom- pensierende Prädiktio bei. Die bewegungskompensierende Vorhersage oder auch Prädiktion nutzt die Ähnlichkeit aufeinanderfolgender Bilder aus, indem sie das aktuell zu codierende Bild aus bereits codierten Bildern vorhersagt. Da- sich meist nur bestimmte Teile aufeinanderfolgender Bilder bewegen, wird beim Codieren das aktuell zu codierende Bild in rechteckige Mäkroblöcke zerlegt. Beim Codieren werden für jeden dieser Mak oblocke aus den bereits übertragenen Bildern passende. Makroblöcke herausgesucht und deren Verschiebung zu den Makro- blöcken des aktuell zu codierenden Bildes berechnet. Die Ver- ' Schiebungen der Makroblöcke werden durch Bewegungsvektoren beschrieben, die sich anhand von Codetabellen codieren lassen.
Da das aktuell zu codierende Bild nicht in jedem. Fall durch die Verschiebung von Makroblöcken bereits codierter Bilder konstruiert werden kann, beispielsweise bei neu ins Bild kommenden Objekten, muss auch der Vorhersagefehler oder Prädiktionsfehler übertragen werden. Dieser Prädiktionsfehler ergibt sich aus der Differenz zwischen dem tatsächlichen aktuell zu codierenden Bild und dem durch Verschieben der Makroblöcke aus bereits codierten Bildern konstruierten Prädiktionsbild.
Da die Prädiktionsfehler benachbarter Bildpunkte in nicht oder nur schlecht prädizierbaren Bereichen korrelieren, wird zur weiteren Redundanzreduktion eine Transformation der Prädiktionsfehler durchgeführt. Je nach Kompressionsverfahren kommen dabei verschiedene Transformationsverfahren zur Anwendung. Möglich sind beispielsweise die diskrete avelet-Transformation (D T) , die diskrete Cosinus-Transformation (DCT) oder die diskrete Integer-Transformation. Durch diese Transformation werden die Makroblöcke in Prädiktionsfehlermatrizen transformiert, die mit einer Vielzahl von Spektralkoeffizienten besetzt sind. Diese Prädiktionsfehlermatrizen bilden zusammen die transformierten Prädiktionsfehlerdaten.
Um die zur Übertragung der Videosequenz erforderliche Datenrate weiter zu verringern, werden die transformierten Prädiktionsfehlerdaten vor der weiteren Codierung quantisiert. Nach der Quantisierung sind viele Spektralkoeffizienten gleich Null. Die transformierten und quantisierten Prädiktionsfehlerdaten können dann durch Entropiecodieren effektiv komprimiert werden.
Der fertig codierte Videodatenstrom setzt sich schließlich aus den entropiecodierten Prädiktionsfehlerdaten und den entropiecodierten Bewegungsinformationen der Makroblöcke zusammen. Außerdem kann der Videodatenstrom noch Informationen über verschiedene Codierparameter enthalten. Durch Decodieren dieses Videodatenstroms in einem Decoder kann die ursprüngliche Videosequenz rekonstruiert werden.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, effektive Verfahren zum weiteren Reduzieren der Datenrate in einem Kanal von codierten Videosequenzen zu entwickeln.
Die Aufgabe wird erfindungsgemäß durch die Gegenstände der unabhängigen Patentansprüche bezüglich des Verfahrens und der Vorrichtung gelöst . Die gemeinsame erfinderische Idee der in den beiden ersten unabhängigen Patentansprüchen angegebenen Alternativen besteht darin, in einem dem Kanal vorgeschalteten Transcoder (7) ohne Rücktransformation der Daten in den Ortsbereich durch Bearbeitung der Transformationskoeffizienten die Datenmenge zu verringern. Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. Die erfindungsgemäße Vorbereitung der Übertragung von Bildfolgen repräsentierenden Bildfolgedaten über einen Kanal mit sich zeitlich ändernden Kanaleigenschaften und die damit verbundene Datenreduktion wird durch eine gröbere Quantisierung in einem erfindungsgemäßen Transcoder (7) erreicht, der die Daten vor der Übermittlung über einen Kanal (15) neu quantisiert oder Quantisierungskoeffizienten weglässt .
Die Erfindung wird anhand eines in den Figuren dargestellten Ausführungsbeispiels näher erläutert. Im einzelnen zeigen
Figur la eine Anordnung zum Codieren und Abspeichern von
Bildfolgen in einer Bilddatenbank, Figur lb eine Anordnung zum Abrufen und Übertragen von codierten Bildfolgen aus einer Bilddatenbank, Figur 2 Anordnung zur Transcodierung von kodierten Bildfolgen nach Stand der Technik, Figur 3 die Einrichtung für die Quantisierung in einem
Transcoder,
Figur 4 die Einteilung der Quantisierungsstufen und
Figur la und b zeigen, wie eine Bildfolge (Videosequenz) repräsentierende Bilddaten zur Übertragung über einen zeitlich sich ändernden Kanal vorbereitet werden. Videodaten der Videosequenz werden zum Beispiel diskret Cosinus-transformiert (1) und anschließend in einem Quantisierer (2) quantisiert. Die quantisierten Koeffizienten werden anschließend sogenannten „Koeffizienten-Leveln" zugeordnet; diese werden • entsprechend ihrer Auftrittswahrscheinlichkeit entropiecodiert und zum Empfänger (16) übertragen. Bei höherer Qualität erfolgt die Quantisierung in feineren Stufen, mit „höheren Leveln" und somit höherer Datenrate .
Das Verfahren benutzt ein Transcodierungsprinzip in einer vereinfachten Form. Bei den derzeit existierenden Videocodierungsverfahren werden die zu codierenden Bilddaten blockweise prädiziert, die Prädiktionsfehlerdaten einer Transformation unterzogen und die daraus resultierenden Transformationskoeffizienten quantisiert . Das aktuell zu codierendes Bild der Videosequenz wird in rechteckige Makroblöcke, die meist 8 x 8 oder 16 x 16 Bildpunkte groß sind, segmentiert. Für jeden dieser Makroblöcke sucht die Bewegungsschätzeinheit (13) aus bereits übertragenen Bildern passende Makroblöcke heraus und berechnet deren Bewegungsvektoren. Die Bewegungsvektoren werden zum Bewegungskompensator (14) geleitet, der dann aus dem Referenzbild im Bildspeicher BS (12) das Prädiktionsbild pn berechne . Die Bewegungs ektoren werden entsprechend ihrer Auftrittswahrscheinlichkeit in einem Variable-Längen Coder (5) entropiecodiert und gemeinsam mit den Koeffizienten-Leveln zum Empfänger (16) übertragen.
Die Bilddaten von Bildfolgedaten werden über einen inversen Quantisierer (10) und eine inverse Transformation (11) (z. B. eine inverse diskrete Cosinustransformation) geführt und zu dem vom Bewegungskompensator (14) berechneten Prädiktionsbild pn addiert .
Die bei der Prädiktion entstandene Prädiktionsfehlermatrix mit den quantisierten Spektralkoeffizienten, die die Prädiktionsfehlerdaten bilden, wird über einen Zick Zack Scan
(4) ausgelesen und es entstehen Codewörter, deren Länge mit dem Variable-Längen Coder (5) reduziert wird. Die Koeffizienten werden in einem Puffer (6) zwischengespeichert. Die Codier Kontrolle (3) dient dazu, die Quantisierungsstufe des Quantisierers (2) so anzupassen, dass bei dem Puffer (6) weder Überlauf noch Unterlauf auftritt. Bei Videostreams werden die Bilddaten in einem Videoserver (8) mit einer Video- Datenbank (9) abgelegt. Da die Datenrate im Übertragungskanal
(15) sich zeitlich ändern kann, wird der Umfang der Daten nochmals reduziert, indem die fein quantisierten Koeffizienten in einem Transcoder (7) gröber nachquantisiert werden, um somit zu kleineren Leveln und in Folge zu geringerer Datenrate zu kommen. Dies kann insbesondere dann vorteilhaft genutzt werden, wenn der nachfolgende Quantisierer im Transcoder (7) an den vorhergehenden (2) im Encoder angepasst ist, d. h. wenn die Quantisierungsstufen ineinander eingebettet sind. Ineinander „eingebetteC" bedeutet, dass die gröberen Quantisierungsstufen ganzzahlige Vielfache der feineren Quantisierungsstufen sind. Auf diese Weise wird erreicht, dass trotz zweistufiger Quantisierung (also feiner Quantisierung im Encoder, grobe Quantisierung im Transcoder
(7) ) die Koeffizienten den gleichen Leveln zugeordnet werden, wie bei direkter Anwendung der groben Quantisierung. Die gröbere Quantisierung im Transcoder (7) wird laufend an die feine Quantisierung im Encoder angepasst, damit die Eingebettet-Eigenschaft erhalten bleibt. Die Anwendung von eingebetteten Quantisiererstufen bedeutet jedoch für die betreffenden Blöcke eine relativ starke Reduktion der Datenrate und auch eine deutliche Degradation der Qualität. Die Eigenschaft, dass die Quantisiererstufen ineinander eingebettet sind, garantiert auch, dass die resultierende Datenrate niedriger ist als die ursprüngliche.
Die so reduzierten Daten werden über einen Kanal (15) zu einem Puffer (17) in dem Empfänger (16) übertragen und von dort zu einem Decoder (18) weitergeleitet. Um nun eine feinstufige Ratenanpassung durchzuführen, bietet es sich an, die Quantisierung nur für einige Bildblöcke zu vergröbern. Wird jedoch innerhalb eines Bildes die Quantisierung für einzelne Blöcke geändert, so uss dies dem Decoder (18) signalisiert werden. Diese Signalisierungsinformation ist im Transcoder (7) hinzuzufügen. Um die zusätzliche Signalisierungsinformation gering zu halten, bietet es sich an, die
Quantisierungsänderung auf zusammenhängende Bildbereiche (Slices) anzuwenden.
Figur 2 zeigt ein bisher verwendetes Verfahren für die Transcodierung (7) , bei dem die Bilddaten in einem Decoder (18) vollständig decodiert werden und in einem nachgeschalteten Encoder (19) mit der gewünschten reduzierten Datenrate neu encodiert werden. Puffer (17) verhindern Überlauf bzw. Unterlauf des Decoders (18) oder Encoders (19) . Es ist bekannt, dass dieses Verfahren sehr rechenaufwendig und kostenintensiv ist .
Figur 3 zeigt, wie in einem Transcoder (7) quantisierte Bildfolgedaten über einen Eingang (20) eines Quantisierers (21) zum gröberen nachquantisieren geleitet werden. Die so nachquantsierten Bildfolgedaten werden an den Ausgang (22) weitergeleitet und über den Kanal (15) an den Puffer (17) gesandt .
Figur 4 zeigt in einem Schaubild (23) die Level (25) für die erste Quantisierung in dem Quantisierer (2) und in dem Schaubild (24) die Level (25) für die gröbere Quantisierung im Transcoder (7) . , Die Transformationskoeffizienten einer Bilddatei aus Bildfolgedaten werden nach ihrer Quantisierung sogenannten Leveln (Werte) zugeordnet, diese werden entsprechend ihrer Auftrittswahrscheinlichkeit entropiecodiert und zum Empfänger (16) übertragen. Bei höherer Qualität erfolgt die Quantisierung in feineren Stufen, was i. a. die Datenrate erhöht .
Eine weitere Möglichkeit zur feinstufigen Ratenanpassung ist das gezielte Weglassen von Koeffizienten eines transformierten Bildblockes. Um die Auswirkungen auf die Bildqualität möglichst klein zu halten, sind zuerst die Koeffizienten mit kleinem absoluten Level (Level 1 bzw. Level -1) beginnend bei der letzten Scanposition wegzulassen. Das heißt: im ersten Schritt werden nacheinander bei allen Blöcken alle Koeffizienten , die auf der letzten Scanposition dem Level 1 oder -1 zugeordnet sind, entfernt. Danach werden nacheinander bei allen Blöcken alle Koeffizienten, die auf der vorletzten Scanposition dem Level 1 oder -1 zugeordnet sind, entfernt. Falls die Datenreduktion es erfordert wird der Vorgang solange wiederholt bis alle Level-1-Koeffizienten entfernt worden sind. Falls es erforderlich ist werden im Anschluss daran alle Level-2-Koeffizienten, das sind die
Transformationskoeffizienten, die dem Level 2 oder -2 zugeordnet sind, nach dem gleichen Verfahren entfernt. Bei jedem Entfernen eines Koef izienten wird die Ratenersparnis ermittelt und der Vorgang so lange wiederholt, bis die erforderliche Ratenreduktion erreicht ist. In der Literatur wurden bereits mehrere Algorithmen zur Optimierung der Rate- Distortion-Funktion eines jeden Blockes durch „Weglassen bestimmter Koeffizienten" publiziert (K. Illgner, M. Braess: On optimized selection of DCT-coefficients in H.261-like videocodecs. Proceedings of the IEEE Intern. Workshop on Intelligent Signal Processing and Communication Systems, ISPACS'93, Tohoku University, Sendai, Japan, Oct . 1993). Der hier vorgeschlagene Algorithmus stellt eine zwar suboptimale aber sehr schnelle Variante dar, was gerade für Transcoder (7) im Netz bedeutsam ist. Da beim Weglassen von Koeffizienten keine Signalisierungsinformation an den Decoder (18) weitergeleitet werden muss, ist es möglich, dieses nur bei ausgewählten Blöcken durchzuführen. Diese Auswahl kann so erfolgen, dass die daraus resultierende
Bildqualitätsverschlechterung subjektiv möglichst wenig stört. So kann die Auswahl anhand der Position eines Blockes im Bild erfolgen, Beeinträchtigungen bei den Randblöcken sind weniger störend als in der Bildmitte. Weitere Auswahlkriterien sind Helligkeit (Beeinträchtigungen sind bei sehr dunklem der sehr hellem Bildinhalt subjektiv weniger stark wahrnehmbar als bei mittlerer Helligkeit) , Textur und Geschwindigkeit von Bildobjekten. Während die Geschwindigkeit aus der Größe der Bewegungsvektoren abgeleitet werden kann, ist für die Auswahlkriterien Helligkeit und Textur zumindest eine teilweise Decodierung im Transcoder (7) erforderlich.
Bei Anwendung dieser Maßnahmen (gröbere Quantisierung oder Weglassen von Koeffizienten) ist zwangsläufig die Rekonstruktion der Bilder im Decoder (18) nicht mehr identisch mit der für die zeitliche oder örtliche Prädiktion erforderliche Rekonstruktion der Bilder im Encoder. Dies hat zur Folge, dass die auf diesen Bildern beruhende Prädiktion in Encoder (19) und Decoder (18) unterschiedlich abläuft und sich auf diese Weise die Abweichungen über mehrere Bilder hinweg akkumulieren (Drifteffekt) . Es ist daher vorteilhaft, die oben beschriebenen Maßnahmen bevorzugt bei den Bildern oder Bildbereichen anzuwenden, die gar nicht (z. B. bidirektional prädizierte Bilder (B-Frames) ) oder voraussichtlich nur noch kurzzeitig (z. B. das letzte Prädiktionsbild in einer IntraFrame-Periode bei Verwendung von B-Frames) für eine Prädiktion herangezogen werden.

Claims

Patentansprüche
1. Verfahren zum Vorbereiten der Übertragung von Bildfolgen repräsentierenden Bildfolgedaten über einen Kanal mit sich zeitlich ändernden Kanaleigenschaften,
dadurch gekennzeichnet,
dass quantisierte Transformationskoeffizienten in den Bildfolgedaten in einer Transcodereinrichtung (7) in Abhängigkeit von den aktuellen Kanaleigenschaften zur Datenreduktion gröber quantisiert werden, als sie vor dem Transcoder (7) quantisiert waren.
2. Verfahren zum Vorbereiten der Übertragung von Bildfolgen repräsentierenden Bildfolgedaten über einen Kanal mit sich zeitlich ändernden Kanaleigenschaften, insbesondere nach Anspruch 1,
dadurch gekennzeichn t,
dass die Datenrate in einem Transcoder (7) durch Weglassen von Transformationskoeffizienten reduziert wird.
3. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Codelänge der quantisierten
Transformationskoeffizienten durch einen Variable-Längen-Coder (5) reduziert wird.
. Verfahren nach einem der vorhergehenden Ansprüche ,
d a d u r c h g e k e n n z e i c h n e t , dass die Transformationskoeffizienten in den Bildfolgedaten entropiecodiert sind.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Vergröberung der Quantisierung und das Weglassen von Transformationskoeffizienten in einzelnen Bereichen der Bildfolgedaten unterschiedlich ist.
6. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die grobe Quantisierung und das Weglassen von Transformationskoeffizienten auf solche Bildbereiche beschränkt wird, bei denen die resultierende Qualitätsdegradation visuell schwächer wahrgenommen wird.
7. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeich et,
dass eine grobe Quantisierung und das Weglassen von Transformationskoeffizienten nach einer Bildanalyse im Transcoder (7) durchgeführt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch geken zeichnet,
dass die Bildanalyse Helligkeit und Dunkelheit betrifft.
9. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass nur bidirektional prädizierte Bildfolgen repräsentierenden Bildfolgedaten (B-Frames) grob quantisiert werden.
10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
dass nur in diese Bildfolgen repräsentierenden Bildfolgedaten Transformationskoeffizienten weggelassen werden.
11. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass nur die Prädiktionsbildfolgen repräsentierenden Bildfolgedaten grob quantisiert werden.
12. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass für die gröbere Quantisierung eine neue
Quantisierungsstufe (25) , die mindestens jeweils zwei von dem Quantisierer (2) im Encoder verwendeten Quantisierungsstufen (25) repräsentiert, verwendet wird.
13. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet , dass bei der neuen gröberen Quantisierung die quantisierten Transformationskoeffizienten keine Rück-Transformation vor der Übertragung über den Kanal in einem Transcoder (7) erfahren.
14. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch geke nzeichnet,
dass die gröbere Quantisierung und das Weglassen von Transformationskoeffizienten auf zusammenhängende Bildbereiche (Slices) angewendet wird.
15. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeich et,
dass die gröberen Quantisierungsstufen (25) ein ganzzahliges Vielfaches der feineren Quantisierungsstufen (25) darstellen.
16. Vorrichtung (7) zum Vorbereiten der Übertragung von Bildfolgen repräsentierenden Bildfolgedaten über einen Kanal
(15) mit sich zeitlich ändernden Kanaleigenschaften,
dadurch gekennzeichnet,
dass sie folgendes umfasst : einen Eingang (20) für quantisierte Daten, eine Quantisierungseinheit (21) zum gröberen Quantisieren unter Berücksichtigung der aktuellen Kanaleigenschaften und einen Ausgang (22) zum Senden der in der Quantisierungseinheit (21) gröber quantisierten Daten über den Kanal .
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet,
dass der Transcoder (7) so ausgebildet ist, dass er Bildanalysen durchführt.
18. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Quantisierungseinheit (21) so ausgebildet ist, dass sie mindestens zwei Quantisierungsstufen (25) zum gröberen Quantisieren zusammenfasst .
19. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Transcoder (7) so ausgebildet ist, dass er abhängig von den aktuellen Kanaleigenschaften zu übertragende Transformationskoeffizienten aus verschiedenen Qualitätsstufen zur Datenverringerung weglässt.
20. Vorrichtung nach Anspruch 19,
dadurch gekennzeichnet,
dass er Transformationskoeffizienten nur in einzelnen Bildblöcken weglässt.
PCT/EP2002/006807 2002-06-19 2002-06-19 Verfahren und vorrichtung zur vorbereitung der ubertragung von bildfolgen über einen zeitlich änderlichen kanal WO2004002161A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2002/006807 WO2004002161A1 (de) 2002-06-19 2002-06-19 Verfahren und vorrichtung zur vorbereitung der ubertragung von bildfolgen über einen zeitlich änderlichen kanal
AU2002368039A AU2002368039A1 (en) 2002-06-19 2002-06-19 Method and device for preparing the transfer of image sequences by a channel which is modifiable within a given time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2002/006807 WO2004002161A1 (de) 2002-06-19 2002-06-19 Verfahren und vorrichtung zur vorbereitung der ubertragung von bildfolgen über einen zeitlich änderlichen kanal

Publications (1)

Publication Number Publication Date
WO2004002161A1 true WO2004002161A1 (de) 2003-12-31

Family

ID=29797086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/006807 WO2004002161A1 (de) 2002-06-19 2002-06-19 Verfahren und vorrichtung zur vorbereitung der ubertragung von bildfolgen über einen zeitlich änderlichen kanal

Country Status (2)

Country Link
AU (1) AU2002368039A1 (de)
WO (1) WO2004002161A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006539A1 (fr) * 2013-05-31 2014-12-05 Aviwest Procede de transfert d'au moins deux flux de donnees audiovisuelles.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0711080A2 (de) * 1994-11-01 1996-05-08 AT&T Corp. Bildkomposition mit kodierten Bilddatenströmen für multimediale Kommunikationssysteme
WO1997039584A1 (en) * 1996-04-12 1997-10-23 Imedia Corporation Video transcoder
EP1148733A2 (de) * 2000-01-28 2001-10-24 Thomson Licensing S.A. Verfahren zur Logoeinfügung in einen MPEG-bitstrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0711080A2 (de) * 1994-11-01 1996-05-08 AT&T Corp. Bildkomposition mit kodierten Bilddatenströmen für multimediale Kommunikationssysteme
WO1997039584A1 (en) * 1996-04-12 1997-10-23 Imedia Corporation Video transcoder
EP1148733A2 (de) * 2000-01-28 2001-10-24 Thomson Licensing S.A. Verfahren zur Logoeinfügung in einen MPEG-bitstrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TONG H H Y ET AL: "A perceptual model for JPEG applications based on block classification, texture masking, and luminance masking", IMAGE PROCESSING, 1998. ICIP 98. PROCEEDINGS. 1998 INTERNATIONAL CONFERENCE ON CHICAGO, IL, USA 4-7 OCT. 1998, LOS ALAMITOS, CA, USA,IEEE COMPUT. SOC, US, 4 October 1998 (1998-10-04), pages 428 - 432, XP010586898, ISBN: 0-8186-8821-1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006539A1 (fr) * 2013-05-31 2014-12-05 Aviwest Procede de transfert d'au moins deux flux de donnees audiovisuelles.

Also Published As

Publication number Publication date
AU2002368039A1 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
DE60109423T2 (de) Videokodierung mit prädiktiver bitebenenkodierung und progressiver fein-granularitätsskalierung (pfgs)
DE10300048B4 (de) Verfahren und Vorrichtung zur Bildcodierung und -decodierung
DE60031230T2 (de) Skalierbares videokodierungssystem und verfahren
DE60125301T2 (de) Videosignaltranskodierung
DE69434271T2 (de) Adaptives variables Längenkodierungsverfahren für Videodaten
DE4343211B4 (de) Adaptives Bildkompressionsverfahren und adaptive Bildkompressionsvorrichtung
EP1635578B1 (de) Verfahren und Anordnung zur Videocodierung, wobei die Videocodierung Texturanalyse und Textursynthese sowie Texturverzerrung umfasst, sowie ein entsprechendes Computerprogramm und ein entsprechendes computerlesbares Speichermedium
DE69233411T2 (de) Verfahren und Einrichtung zur Kompression von sich bewegenden Videobildern mit adaptiver Bitzuordnung und Quantisierung
DE60023576T2 (de) Verfahren und Vorrichtung zur Bewegtbilddatentranscodierung
DE60027495T2 (de) Video-codierverfahren und video-codiervorrichtung
DE69635369T2 (de) Videokodierungsvorrichtung
DE69813349T2 (de) Vorrichtung zur Kontrolle der Datenmenge und Kodierer dieselbige anwendend
DE10392268T5 (de) Auf einem Strom basierender Bitraten-Codeumsetzer für MPEG-codiertes Video
DE69837497T2 (de) Verfahren und vorrichtung zum kodieren eines videosignals
DE10204617B4 (de) Verfahren und Vorrichtungen zur Kompression und Dekompression eines Videodatenstroms
DE602004001993T2 (de) Transformations basiertes restbewegungsrahmen kodierungsverfahren mit übervollständiger basis und zugehörige vorrichtung zur videokompression
DE60211171T2 (de) Verarbeitung von einem komprimierten mediensignal
DE10343220B3 (de) Verfahren und Vorrichtung zur Transcodierung eines Datenstroms, der ein oder mehrere codierte digitalisierte Bilder umfasst
DE60309039T2 (de) Verfahren und vorrichtung zur optimierung der bildschärfe während der kodierung
DE10296787B4 (de) Selektive Prädikation für ein Intra-Codieren eines Videodatenblocks
DE60214835T2 (de) Videokodierungsverfahren und -vorrichtung
DE3926154A1 (de) Signalverarbeitungssystem
EP1285537B1 (de) Verfahren und eine anordnung zur codierung bzw. decodierung einer folge von bildern
WO2004002161A1 (de) Verfahren und vorrichtung zur vorbereitung der ubertragung von bildfolgen über einen zeitlich änderlichen kanal
DE10219640B4 (de) Verfahren zum Codieren und Decodieren von Videosequenzen und Computerprogrammprodukt

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP