SUPERCONDUCTING MATERIAL AND METHOD OF SYNTHESIS
Field of the Invention
The present invention relates to a superconducting compound and to a method of synthesising a superconducting compound, and, particularly, but not exclusively, a superconducting compound based on magnesium diboride and a method of synthesis thereof.
Background of the Invention
Significant progress has been made in improving the critical current density (Jc) in various forms of MgB2 since superconductivity in this compound was discovered
[1] . MgB2 exhibits the superconducting characteristics and physics of BCS-type LTS (low-temperature superconductor) materials, as evidenced for example by a significant isotope effect [2] ; however, its critical temperature (Tc) is more than twice those of the presently used superconductors Nb3Sn and Nb3Al , and more than four times that of the present LTS workhorse, NbTi . The importance of MgB2 lies in its simple crystal structure, high critical temperature Tc, high critical current density (Jc) , and large coherence length (hence transparency of grain boundaries to current flow) . These properties of MgB2 offer the promise of important large-scale and electronic device applications. High Jc at a level of 105 A/cm2 to 10s A/cm2 at 20 K to 30 K for MgB2 wires have been reported by several groups [3-8] . However, Jc drops rapidly with increasing magnetic field. In all the studies on wires and bulk made from MgB2, Jc decreased more than 90% of its zero field value at 3 T within this temperature range due to the poor pinning ability of this material. If MgB2 is to be useful in high fields, the flux pinning strength must be improved. Attempts to enhance flux pinning have resulted in an encouraging improvement in irreversibility fields
(Hirr) and Jc (H) performance in high fields by oxygen alloying in MgB2 thin films [9,10] and by proton irradiation of MgB2 powder [11] .
However, there has been some conjecture as to whether effective pinning centres can be introduced into MgB2 bulk or wires by a normal process such as chemical doping. Several attempts have been made to improve flux pinning using chemical doping, but the results remain controversial. Furthermore, the results for doping into MgB2 are largely limited to addition rather than substitution. Zhao et al , have doped MgB2 with Ti and Zr, showing improvement of Jc in self field [12] . However, there is evidence for improved pinning as the Jc drops off rapidly with increasing field (Hirr = 4T at 2 OK) . Recently, Wang et al doped MgB2 using nanoparticles [13] . The results showed an improvement of irreversibility field (Hirr) at 4.2K for the doped sample. However, Hιrr for the doped samples is not as good as the undoped ones at 20K. Cimerle et al . , found that doping with a small amount of Li, Al and Si showed some increase in Jc, but there is no improvement in Hirr [14] .
Summary of the Invention
In accordance with a first aspect, the present invention provides a superconducting material of formula MgBxSiyCz where X is a number in the range between 0 to 2 , Y is a number in the range between 0 to 1 and Z is a number in the range 0 to 1, and where the sum of X, Y and Z is greater than or equal to 2.
Preferably, X = 1 to 2, Y = 0.05 to 0.5 and Z = 0.05 to 0.5.
More preferably, X = 1.2 to 1.8, Y = 0.1 to 0.3 and Z = 0.1 to 0.3. Advantageously, the factors of critical current density, irreversibility field and flux pinning properties of MgB2 are significantly improved by chemical doping with
SiC, potentially paving the way for MgB2 to replace the current market leaders NbTi and Ag/Bi2223.
It will be understood that a superconducting material in accordance with the present invention may preferably be made into superconducting bulk, wires, thin films and various articles and devices for any superconducting application.
In accordance with a second aspect, the present invention provides a superconductor incorporating the superconducting material of the first aspect of the inven ion.
In accordance with a third aspect the present invention provides a method of synthesising the superconducting material of the first aspect of the present invention, comprising the step of utilising starting materials Mg, B, Si and C. Preferably, these are in powder form. Preferably, the powders consist of nanoparticles .
In accordance with a fourth aspect, the present invention provides a method of synthesising the superconducting material of the first aspect of the invention comprising the steps of utilising starting materials Mg, B and SiC. Preferably, these are in powder form. Preferably, the powders consist of nanoparticles. In accordance with a fifth aspect, the present invention provides a method of synthesising a superconducting material in accordance with the first aspect of the invention comprising the step of utilising starting materials MgB2 and SiC or Si and C. Preferably, these are in powder form. Preferably the powders consist of nanoparticles.
More broadly, in accordance with a sixth aspect, the present invention provides a method of producing a superconducting material, comprising the step of adding silicon carbide to a superconducting material.
Preferably, the silicon carbide is added by way of addition.
Preferably, the silicon carbide is added by way of substitution .
The silicon carbide may be added both by substitution and addition to the superconducting material. In accordance with a seventh aspect, the present invention comprises a superconducting material including a silicon carbide codopant .
In an eighth aspect, the present invention provides a method of manufacturing a material capable of functioning as a superconductor, comprising the steps of, mixing elemental magnesium and elemental boron with an amount of one or more of the group comprising silicon carbide and titanium carbide, and - heating the powders to sinter the powders into a material capable of functioning as a superconductor . In a ninth aspect, the present invention provides a method of manufacturing a material capable of operating as a superconductor, comprising the steps of, mixing elemental magnesium and elemental boron with an amount of one or more of the group comprising elemental silicon, elemental titanium and elemental carbon, and - heating the mixture to sinter the mixture into a material capable of functioning as a superconductor . Preferably, the mixture is heated to a temperature in the range from 650° to 2000°C. More preferably, the temperature is in the range 750°-900°C.
Preferably, the elements are provided in a powder form.
Preferably, the powders consist of nanoparticles.
Preferably, the powders are groove-rolled into a tube manufactured from a material of one or more of the group comprising iron (Fe) , copper (Cu) , nickel (Ni) and stainless steel tube prior to heating the mixture.
Preferably, the method comprises the further step of cooling the resultant material to the temperature of liquid nitrogen, to render the material capable of superconducting . In a tenth aspect, the present invention provides a superconducting material of the formula of formula MgBxTiyCz where X is a number in the range between 0 to 2 , Y is a number in the range between 0 to 1 and Z is a number in the range 0 to 1 , where the sum of X, Y and Z is greater than or equal to 2, and X is greater than 0.
Brief Description of the Drawings
Preferred features and advantages of the present invention will become apparent from the following description of examples thereof, by way of example only, with reference to the accompanying figures, in which;
Figure 1 is a graph depicting the Critical transition temperature (Tc) measured using magnetic susceptibility versus temperature for MgB2(SiC)x where x =0, 0.055, 0.11, 0.22 and 0.33.
Figure 2 is an image of X-ray diffraction patterns for the undoped and SiC-doped samples of a superconducting material in accordance with an embodiment of the present invention.
Figure 3 is a graph depicting the lattice parameters 'a' and c' plotted as a function of the SiC content x of a superconducting material in accordance with an embodiment of the present invention. Figure 4 is a graph depicting the effect of SiC doping on the critical current density as a function of applied magnetic field (i.e. the Jc - H dependence) at a temperature of 5 K (graph a) , 10 K (graph b) 20 K (graph c) and 30 K (graph d) for five samples at doping level ranging from x=0 to x=0.33.
Figure 5 is a graph which depicts the comparative values of critical current density (Jc (H) ) as a function of
applied magnetic field for SiC doped samples of a superconducting material in accordance with an embodiment of the present invention at a doping value of x=0.115 at 20K with those for Ti doped [12] , Y203 doped [13] , thin film with strong pinning [11] and Fe-sheathed tape [15] , which represent the state-the-art performance of MgB2 in various forms .
Figure 6 is a graph depicting the transport critical current density as a function of applied magnetic field for an SiC doped sample of a superconductor in accordance with an embodiment of the present invention, for a value of x=0.11 measured at a temperature of T=5K, compared to prior art MgB2 superconductors measured at a temperature of T=4.2K Figure 7a and 7b are a transmission electron microscope (TEM) images depicting the high density dislocations within the grains and Figure 7c is an energy dispersive X-ray (EDX) analysis map showing the incorporation of C and Si into the grains of MgB2.
Description of Examples and Preferred Embodiments
The superconducting composition and the processes for synthesis of the materials of the present invention can significantly enhance Jc and flux pinning. The results which are described hereinbelow demonstrate that the claimed formula can be used for fabrication of superconductors for high-field applications, as chemical doping is a readily achievable and economically viable route to introduce effective flux pinning.
MgB2 pellet samples were prepared by a reaction in- situ method which has been previously described [16] . Powders of magnesium (99% purity) and amorphous boron (99% purity) were well mixed with a SiC additive with the weight ratio of (Mg+2B) (SiC)x where x = 0, 0.055, 0.11, 0.22 and 0.33 for samples 1 to 5 respectively (Table 1) . The mixed powders were loaded into Fe tubes. The composite
tubes were groove-rolled, sealed in a Fe tube and then directly heated at preset temperatures to 950°C for 3 hours, in the presence of flowing high purity Ar. This was followed by quenching with liquid nitrogen. Table 1 gives the samples parameters and selected results of Tc and Hrr. The magnetization of samples was measured over a temperature range of 5 to 30 K using Magnetic Property Measurement System (MPMS) and a Physical Property Measurement System (PPMS, Quantum Design) in a time- varying magnetic field of sweep rate 50 Oe/s and amplitude 5T and 9T, respectively. A magnetic Jc can be derived from this measurement.
Figure 1 depicts the transition temperature (Tc) and transition width ΔTC for the doped and undoped samples determined by AC susceptibility measurements. The Tc onset for the undoped sample (38.6 K) is the same as reported by a number of groups. For the doped samples, the Tc decreases with increasing doping level. It is striking to note that despite the large amount of non-superconducting phases present, the Tc only drops 2.6K at an SiC doping level of x=0.33 (33at%of B) . In contrast, the T0 was depressed for almost 10K by 7% C substitution for B in MgB2 [17] and 0.5at% Si substitution reduced Tc for about 0.5K [14] These results suggest that the higher tolerance of Tc of MgB2 to SiC doping is attributable to the co-doping of C and Si because the average size of C (0.077nm) and Si (0.117nm) is similar to that of B (0.097nm) . It is evident that the co-doping with SiC counterbalanced the negative effect on Tc of the single element doping. Figure 2 depicts x-ray diffraction patterns for SiC doped and undoped samples of an MgB2 superconductor. The X- ray scans were recorded using CuK=l ■ 5418A, and indexed within the space group P6/mmm. For the in-phase reflection which occurs in Figure 1 between 2θ=33° and 20=34° (indexed as (100) ) , the centroid of the peak clearly shifts to higher 2 Θ values with increasing x, while simultaneously the centroid of the peak occurs between
20=51° and 20=52°, (indexed as (002)), and the shift is marginal to higher 20 values with increasing x. The lattice parameters, a and c of the hexagonal AlB2-type structure of MgB2 were calculated using these peak shifts as shown in Figure 3. Note that the MgB4, MgO and MgB407 peaks increased significantly with increasing SiC. The continuous decrease of λa' with increasing SiC doping level indicates that B was substituted by C and Si. C substitution for B reached saturation at 7at% of B [19] while the co-doping of Si and C for B raised the saturation level. At x=0.055, the sample consists of a major phase with MgB2 structure and minority phases: MgB4, MgBO and MgO. The appearance of MgB4 may be attributable to the substitution of SiC for B position, resulting in an excess of B. Some extra B was incorporated into MgO to form MgBO. It is also noted that all three non- superconducting phases increased with increasing SiC dopant. At x=0.22, the amount of non-superconducting phases exceeded MgB2. The extra oxygen may be brought in by the SiC dopant which absorbed moisture or oxygen during storage. There are no SiC peaks indexed up to a value of x=0.33.
Note that in figure 3 the axis decreases with increasing SiC dopant and did not reach saturation at x=0.33. The total variation of the axis from x=0 to x=0.33 is 0.012A. In comparison, with single element doping with C, the axis reached a plateau at a C content of 7at% of B where the variation of the axis is 0.016A. This indicates that co-doping of Si and C into MgB2 substantially reduced the variation of axis due to the counterbalance effect of
Si and C. This also explains why the Tc drops very slow with increasing SiC dopant.
Figure 5 shows the Jc (H) curves for doped and undoped samples at temperatures of 5 K (graph a) and 10 K (graph b) . These results show the following striking features.
The Jc (H) curves for undoped samples shows a crossover with those for all the doped sample at higher fields. Although
SiC doping at x values of greater than 0.22 caused a reduction of Jc at low fields, it is important to note that the Jc for all doped samples drops with increasing field much more slowly than for the undoped sample. In particular, Jc curves for doped samples with x values of 0.22 and 0.33 show an exponential relationship with the applied magnetic field up to the measurement field limit, while the Jc curve for the undoped sample shows a rapid downward bend. The Jc for the doped sample at a value of x=0.11 reached 1.3xl05A/cm2 at 4T and increased to a value more than 30 times that of the undoped sample at a field strength of 6T and a temperature of 5K. It is also interesting to note that at temperatures of 5K and 10K, Jc (H) for higher doping level samples (4 and 5) declined faster than those of low doping samples (2 and 3) .
However, at 20K all doped samples showed nearly parallel Jc (H) curves while at 30K, the x=0.33 doped sample showed an even slower Jc drop with field relative to the other samples, indicating the presence of a stronger pinning enhancement effect at higher temperatures.
Figure 4 depicts a comparison of the Jc- H behaviour for an x=0.11 SiC doped sample with data reported from literature at various temperatures. It is evident that despite the low density and unoptimised composition, the Jc for the SiC doped sample drops slower than other element doped samples [12, 13], the best Fe/MgB2 tape [15] and even close to the thin film with strong pinning [11] . At 2OK, the sample with x=0.11 has a Jc value of 18,000A/cm2 at 4T, 100 times the control sample which was made at the same batch, 8 times that of the state-the-art Fe/MgB2 tape [15] .
These are the best Jc values ever reported for bulk and wires made under normal conditions. The Hιrr for x=0.11 doped sample is 6T at 2OK and 8T at 10K, compared to 4T and 6T of the undoped one, respectively. A further comparison is shown in Figure 6, where the results of transport current measurements are shown for one of the most optimal SiC-doping levels and the best MgB2 samples
found in the literature. As can be seen, there is a striking difference between the two curves. Moreover, the SiC-doped sample is measured at a temperature of 5K, whereas the other samples are measured at a temperature of 4.2K. In other words, the actual enhancement induced by
SiC-doping is even larger than the best MgB2 samples found in the literature.
Regarding the mechanism of the enhancement of Jc at higher fields, it is necessary to recognize the special features of SiC doping.
Firstly, in contrast to previous work on doping for improving Jc [12-14] , SiC doping has no densification effect, as evidenced by the fact that the density of doped samples is 1.2G/cm2, independent of doping level. This is understandable because SiC has a very high melting point and would not act as a sintering aid at temperatures in the range of 800°C to 950°C.
Secondly, SiC doping takes place in the form of substitution and/or addition while in the prior art [14- 16] the element doping is in the form of additives, which are not incorporated into the lattice structure. Doping MgB2 with Ti and Zr showed an improvement of Jc in self field and 4K [12] . However, there is evidence for improved pinning as the Jc drops off rapidly with increasing field (Hirr = 4T at 20K) . Doping MgB2 using Y203 nanoparticles showed an improvement of irreversibility field (EL_.rr) at 4.2K, but Hirr for the doped samples is not as good as the undoped ones at 20K [13] . Cimerle et al . , found that doping with a small amount of Li, Al and Si showed some increase in Jc, but there is no improvement in Hirr [14] . It is evident that the additive pinning is more effective at low temperatures while the additives at the grain boundaries decouple the grains at high temperatures .
The applicant postulates that there are two potential pinning mechanisms in the SiC doped samples. The first is intrinsic pinning due to substitution and impurity pinning (or a combination thereof) . The high fraction of
substitution by both Si and C can result in lattice defects, which are capable of acting as effective pinning sites which are intrinsic in nature and independent of temperature . The high content of MgO and other impurity phases in the SiC doped samples could also be potential pinning centers, consistent with the results obtained from a thin film with strong pinning where the ratio of Mg;B:0 reached 1.0:0.9:07 [11]. the applicant has attempted to dope fine particle MgO into MgB2. However, the results did not show any improvement in Jc. From this result, it is theorised that the manner in which the impurities are introduced may be critical. When SiC reacts with liquid Mg and amorphous B at the sintering temperatures, the nanoparticles may act as nucleation sites to form MgB2 and other phases. Some nanoparticles may be included within the grains as inclusions. Thus, the reaction induced products are highly dispersed in the bulk matrix. These arguments are supported by the study of microstructures . TEM examination revealed that the grain size is smaller than lOOnm. The EDX analysis results showed that the Mg:Si ratio is identical across the entire sample area, indicating that the phase distribution is homogeneous. The results of the present work suggest that a combination of substitution and highly dispersed additives induced through the substitution is responsible for the enhanced flux pinning in SiC-doped MgB2. The substitution induced defects and order parameter fluctuation may play a more important role than the impurity pinning.
It should be noted that the density of the samples is only about 1.2 g/cm3. Thus, the Jc values for both the doped and undoped samples are far from optimum. The applicant anticipates that a higher Jc and better flux pinning enhancement can be achieved if the density of the samples is further improved. From the study of effect of the purity of the precursor materials, it is noted that even 95% pure B degraded the Jc appreciably. Therefore, it is necessary to
use high purity B (98% or above) . The cost for B increases significantly with increasing purity. The main cost for making MgB2 conductors will be the high purity B. Since C and Si are abundant, inexpensive and readily available materials, then if a portion of B can be replaced by co-doping with C and Si or SiC, the overall cost for making MgB2 conductors will preferably be reduced. Furthermore, the SiC doping has already shown a significant benefit in enhancing flux pinning. It is evident that it is advantageous for MgB2 conductors to be made using a formula of MgBxSiyCz where x+y+z>2, instead of pure MgB2.
In summary, the applicant contends that the critical current density, irreversibility field and flux pinning properties of MgB2 in bulk form can be significantly improved by a readily achievable and economically viable chemical doping with SiC, which may allow MgB2 to potentially replace NB-Ti, the current market leader in superconducting materials.
Table 1
Example 1: Synthesis of (Mg+2B) ___ (SiC) x through nanoparticle SiC doping into MgB2
(Mg+2B) ι_x (SiC) x samples were prepared by a reaction in-situ method. Powders of magnesium (99% purity) and amorphous boron (99% purity) were well mixed with SiC additive with the atomic ratio of (Mg+2B) x_x (SiC) x where x = 0, 0.057, 0.117, 0.23 and 0.34 for samples 1 to 5 respectively
(Table 1) . The mixed powders were loaded into Fe tubes. The composite tubes were groove-rolled, sealed in a Fe tube and then directly heated at preset temperatures to 950°C for 3 hours, in the presence of flowing high purity Ar. This was followed by quenching to liquid nitrogen temperature. Table 1 provides information, with samples 1, 2, and 3 being the undoped and doped with 5wt% and 10wt% MgO respectively.
The magnetization of 1.0 x 1.0 x 0.8 mm3 samples was measured over a temperature range of 5 to 30 K using a Physical Property Measurement System (PPMS, Quantum Design) in a time-varying magnetic field of sweep rate 50 Oe/s and amplitude 9T. A magnetic Jc can be derived from the height of the magnetization loop ΔM using a suitable variant of the "semi-Bean" relationship ΔM = k Jcd, where k is a constant and d is the thickness that the sample presents to the applied field. Based on the full sample size, the magnetic current density Jc is calculated using the relationship for a plate in a perpendicular field: Jc = 20ΔM/ (a-a2/3_b) . Jc versus magnetic field up to 9 T for the samples at 5 K, 10 K, 20 K, and 30 K has been measured. Due to flux jumping, the low field Jc at values below 10 K cannot be measured. The results are displayed in table 1.
Example 2: Synthesis of MgB2_x (SiC) x using nanoparticle SiC to react with Mg and B
MgB2-x(SiC)x samples were prepared by a reaction in-situ method. Powders of magnesium (99% purity) and amorphous boron (99% purity) were thoroughlymixed with SiC additive, to prepare various samples with the following ratios of MgB2.x(SiC)x: X = 0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5, 1.0, 1.5 and 2.0. The mixed powders were loaded into Fe tubes. The composite tubes were groove-rolled, sealed in a Fe tube and then directly heated at preset temperatures to
900°C, for 3 hours in the presence of flowing high purity Ar. This was followed by quenching to liquid nitrogen
temperature .
Example 3: Synthesis of MgB2-x-ySixCy using Mg, B, Si and C powders
MgB2 pellet samples were prepared by a reaction in-situ method. Powders of magnesium (99% purity) and amorphous boron (99% purity) were well mixed with SiC additive with the ratio of Mg+B2_x (SiC) x where x = 0, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5, 1.0, 1.5 and 2.0. The mixed powders were loaded into Fe tubes. The composite tubes were groove- rolled, sealed in a Fe tube and then directly heated at preset temperatures to 900°C, for 3 hours in flowing high purity Ar. This was followed by quenching to liquid nitrogen temperature.
Example 4: Synthesis of MgB2_x_.yTixCy using Mg, B, TiC powders
MgB2 pellet samples were prepared by a reaction in-situ method. Powders of magnesium (99% purity) and amorphous boron (99% purity) were well mixed with TiC additive with the ratio of Mg+B2.x (TiC) x where x = 0, 0.05, 0.1, 0.15, 0.2, 0.5, 1.0. The mixed powders were loaded into Fe tubes. The composite tubes were groove-rolled, sealed in a Fe tube and then directly heated at preset temperatures to 950°C, for 3 hours in the presence of flowing high purity Ar. This was followed by furnace cooling to room temperature .
Example 5: Synthesis of MgB2_.xCj,
Polycrystalline samples of MgB2_xCx were prepared through a reaction in-situ method. High purity powders of magnesium (99% purity) , amorphous boron (99% purity) and carbon nano-particles (with a particle size of about 20nm) were weighed out according to the nominal atomic ratio of MgB2.
xCx with x = 0, 0.05, 0.1, 0.2, 0.3, 0.4 and well-mixed through grinding. The powders were pressed into pellets of 10 mm in diameter and 3 mm in thickness using a hydraulic press. The pellets were sealed in Fe tubes, then heat treated at 770 °C for 30min in flowing high purity Ar. This was followed by a furnace cooling to room temperature. An un-doped sample was also made under the same conditions for use as a reference sample. The phase and crystal structure of all the samples was obtained from X-ray diffraction (XRD) patterns using a Philips (P 1730) diffractometer with C K radiation. Si powder was used as a standard reference to calculate the lattice parameters. The results show that both the a-axis lattice parameter and the Tc decreased monotonically with increasing doping level. For the sample doped with the highest nominal composition of x=0.4 the Tc dropped only 2.7K. The nano-C- doped samples showed an improved field dependence of the Jc compared with the undoped sample over a wide temperature range. The enhancement by C-doping is similar to that of Si-doping but not as strong as for nano-SiC doped MgB2. X- ray diffraction results indicate that C reacted with Mg to form nano-size Mg2C3 and MgB2C2 particles. Nano-particle inclusions and substitution, both observed by transmission electron microscopy, are proposed to be responsible for the enhancement of flux pinning in high fields.
Example 6 : Synthesis of MgB2.xSix
Polycrystalline samples of MgB2_xSix were prepared through a reaction in-situ method. High purity powders of magnesium
(99% purity) , amorphous boron (99% purity) and silicon nano-particles (with a particle size of about 20-40nm) were weighed out according to the nominal atomic ratio of MgB2-xSix with x = 0, 0.05, 0.1, 0.2, 0.3, 0.4 and well- mixed through grinding. The powders were pressed into pellets of 10 mm in diameter and 3 mm in thickness using a hydraulic press. The pellets were sealed in Fe tubes, then
heat treated at 800-900°C for 30min in flowing high purity Ar. This was followed by a furnace cooling to room temperature. An un-doped sample was also made under the same conditions for use as a reference sample.
Although the above embodiments specifically relates to magnesium diboride superconducting material it is possible that silicon carbide codopant could be useful for other superconducting materials. A suitable process for utilising the superconducting material of the present invention would be as follows :
• Mixing powders of precursor materials as discussed above .
• Ball milling the mixture to achieve homogeneity. • Loading the mixture in to metal or alloy dies, containers, tubes for forming and shaping, the metals including iron, stainless steel, nickel and various alloys.
• Making the mixtures or the composites in to bulk, wires, tapes and various shaped articles and devices through mechanical deformation including pressing, drawing, rolling, swaging and casting etc.
• Sintering the composites at temperatures of 650°C to 1000°C for 10 minutes to 10 hours, preferably at 800 to 950°C for 10 minutes to 3hours .
Modifications and variations as would be apparent to a skilled addressee are deemed to be within the scope of the present invention.
References
1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu. Nature, 410 (2001) 63.
2. S.L. Bud'ko et al . , Phys . Rev. Lett., 86 (2001) 1877. 3. D. C. Larbalestier et al . Nature 410 (2001) 186.
4. Y. Boguslavsky et al . , Nature 410 (2001) 563.
5. S.X. Dou et al . , Physica C, 361 (2001) 79.
6. W. Goldache et al . , Supercond. Sci . Technol . , 14
(2001) 787
7. R. Flϋkiger et al . , Physica C, 385 (2002) 286.
8. S. Jin et al, Nature, 411 (2001) 563. 9. W.N. Kang et al . , Science 292 (2001) 1521-3.
10. C.B. Eom et al . , Nature, 411 (2001) 558.
11. Y. Bugoslavsky et al . , Nature 411 (2001) 561.
12. Y. Zhao et al , Appl . Phys . Lett., 79 (2001) 1155.
13. J. Wang et al . , Appl. Phys. Lett., 81 (2002) 2026. 14. M.R. Cimberle et al . , Supercond. Sci. Tech. 15 (2002) 34.
15. C. Beneduce, H.L. Suo, P. Toulemonde, N. Musolino, and R. Flukiger, Cond-mat/0203551
16. X .L. Wang, S. Soltanian et al . , Physica C, 361 (2001) 149.
17. W. Mickelson, J. Cumings, W.Q. Han and A. Zettl, Phys. Rev. B 65 (2002) 052505-1
18. T. Prikhna, W. Gawalek, N. Novikov et al . , Cond-mat
19. S.H. Zhou, A. Pan, J. Horvat, X.L.Wang, H.K. Liu and S.X. Dou, "Effect of precursor purity on critical current density of MgB2. , under preparation.