WO2003100938A1 - Fehlerstromschutzschalter - Google Patents

Fehlerstromschutzschalter Download PDF

Info

Publication number
WO2003100938A1
WO2003100938A1 PCT/AT2003/000147 AT0300147W WO03100938A1 WO 2003100938 A1 WO2003100938 A1 WO 2003100938A1 AT 0300147 W AT0300147 W AT 0300147W WO 03100938 A1 WO03100938 A1 WO 03100938A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
signal
fault current
residual current
circuit breaker
Prior art date
Application number
PCT/AT2003/000147
Other languages
English (en)
French (fr)
Inventor
Michael Koch
Georg Ritzinger
Original Assignee
Moeller Gebäudeautomation KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moeller Gebäudeautomation KG filed Critical Moeller Gebäudeautomation KG
Priority to DE50301511T priority Critical patent/DE50301511D1/de
Priority to AT0912303A priority patent/AT414321B/de
Priority to AU2003229345A priority patent/AU2003229345B2/en
Priority to AT03722040T priority patent/ATE308149T1/de
Priority to JP2004508477A priority patent/JP2005536008A/ja
Priority to EP03722040A priority patent/EP1512207B1/de
Priority to CN03812407.6A priority patent/CN1656659B/zh
Publication of WO2003100938A1 publication Critical patent/WO2003100938A1/de
Priority to TNP2004000231A priority patent/TNSN04231A1/en
Priority to NO20045626A priority patent/NO334263B1/no
Priority to HK05107796A priority patent/HK1075751A1/xx

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/04Arrangements for preventing response to transient abnormal conditions, e.g. to lightning or to short duration over voltage or oscillations; Damping the influence of dc component by short circuits in ac networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/006Calibration or setting of parameters

Definitions

  • the invention relates to a residual current circuit breaker with a unit for detecting a residual current within an electrical power supply network and a network separation unit.
  • non-sinusoidal leakage currents can be expected to an increased extent. While pure sine signals in conventional residual current detection systems, such as Fl switches, which do not cause false triggers, lead to unwanted effects, such as rectification, demodulation, resonance and filter behavior, etc., of the signals which are subject to harmonics and non-harmonic superimposition of signals in the analog electronics currently used for fault current detection Electronic circuit arrangement provided for error detection negatively influence the switch-off behavior and can therefore lead to impairment of safety. Demodulation effects, coupling capacitances and resonance effects or the like are therefore the cause of an unpredictable switch-off behavior of conventional residual current circuit breakers.
  • the object of the invention is therefore to provide a residual current circuit breaker which shows a predictable tripping behavior even in the case of non-purely sinusoidal residual currents. Another object of the invention is to enable the detection of fault currents over a wide frequency range.
  • Another object of the invention is to be able to call up an ongoing assessment of the fault currents occurring in a network.
  • the unit for the detection of a fault current comprises a device for signal-correct recording of the fault current, which can be coupled to the power supply network, and a fault current analysis unit for spectral characterization of the fault current, which is connected to the mains disconnection unit.
  • the unit for detecting a fault current further comprises a unit for sampling and quantizing the fault current, preferably an analog-to-digital converter.
  • the point at which the signal processing path converts the analog signal into the digital signal can vary depending on the design of the signal processing.
  • Digital signal processors are particularly suitable for the implementation.
  • the unit for detecting a fault current can further comprise an anti-aliasing filter.
  • Another embodiment of the invention can consist in that the device for recording the fault current according to the signal is formed by a Förster probe, the output of which is connected to a controller unit which compensates for the output signal present at the output of the Förster probe to zero.
  • the output signal of the forester probe is used as a control variable for the controller unit, whose task is to compensate for the output signal to zero. In this way, a true-to-signal image of the fault current is created.
  • a modulator for premagnetizing the Förster probe can be provided in a further embodiment of the invention.
  • a fault current signal can now be recognized by the fact that it leads to a different modulation of the magnetic material than is specified by the premagnetization.
  • probes can be used as probes that are capable of displaying a fault current in accordance with the signal. Without restricting the generality, it can therefore be provided in a further development of the invention that the device for recording the fault current according to the signal is formed by shunts, Hall components or combinations of magnet and Hall components.
  • a further exemplary embodiment of the invention can therefore consist in the fault current analysis unit comprising at least one filter unit and one transformation unit, in which the device for signal-accurate recording of the fault current formed fault current signal from the time range into an image area, preferably in the frequency range, is transformable.
  • the filter unit enables the low frequency oscillations in the fault current to be taken into account when calculating the measured values.
  • the at least one filter unit is formed by a filter unit with a low-pass characteristic, the output of which is connected to a signal evaluation unit, preferably a unit for calculating the effective value of the filtered fault current signal, that the transformation unit is connected to a spectral evaluation unit, preferably a unit for calculating the effective value of the frequency spectrum, and that the output of the signal evaluation unit and the output of the spectral evaluation unit are connected to inputs of a summing unit and the output of the summing unit -Unit is connected to a maximum value monitoring device, which is connected to the network disconnection unit, which maximum value monitoring device actuates the network disconnection unit when a predetermined limit value is exceeded.
  • a Fourier transform in particular in the form of a Fast Fourier transform, is a transformation method that can often already be used with the support of integrated circuits.
  • a further embodiment of the invention can therefore consist in the transformation unit using a Fourier transform Unit, in particular a discrete Fourier transformation unit is formed.
  • other mathematical transformation methods can also be used expediently within the scope of the invention.
  • a preferred variant of the invention can consist in the fact that the transformation unit is formed by a Gabor transformation unit or a wavelet transformation unit, which enables statements about the time behavior of the frequency spectrum of the fault current signal.
  • a further embodiment of the invention can consist in that a correlation unit is connected between the output of the transformation unit and the input of the spectral evaluation unit, which is connected to a unit for storing at least one comparison spectrum.
  • a further embodiment of the invention can consist in that the output of the transformation unit can be switched to the input of a signal configuration unit, which has a memory input of the unit for storing at least one comparison spectrum as well as an input of the at least one filter unit Setting filter coefficients is connected.
  • the signal required for the comparison in the correlation unit is processed and analyzed in the signal configuration unit. Furthermore, it enables the filter coefficients of the filter unit to be influenced.
  • the at least one filter unit is formed by two or more filter units with bandpass characteristics connected in parallel, which have inputs for setting filter coefficients and whose outputs each have a signal evaluation unit with inputs of a summing filter. Unit are connected and the output of the summing unit is connected to a maximum value monitoring device which is connected to the network separation unit, which maximum value monitoring device actuates the network separation unit when a predetermined limit value is exceeded, and that the transformation unit with a Signal configuration unit is connected, the outputs of which can be connected to the inputs for setting filter coefficients.
  • the entire frequency range of interest for the fault current signal is covered.
  • the filter coefficients are determined with the help of the transformation unit. After setting the coefficients, the residual current is monitored using the filter units in the time domain.
  • the invention relates to a method for fault current monitoring of a power supply network, in which a mains disconnection unit is actuated as soon as a maximum value exceeding of a fault current measured value derived from a fault current measurement is determined.
  • the above-mentioned objects of the invention are achieved according to the invention in that the residual current is reproduced true to the signal, that the true-to-signal residual current signal is transformed from the time domain into the frequency domain and either a partial amount of the residual current measured value is calculated from the resulting spectrum and / or the setting of the filter coefficients at least one low-pass filter for filtering the signal-correct fault current signal is determined, the output signal of the at least one low-pass filter, the residual current measured value or a partial amount thereof is calculated.
  • FIG. 1 shows a block diagram of an embodiment of the residual current circuit breaker according to the invention
  • FIG. 2 shows a simplified block diagram of the residual current circuit breaker according to Fig.l; 3 shows a simplified block diagram of a further variant of the invention; 4 shows a schematic representation of the configuration operation of the residual current circuit breaker according to FIG. 1;
  • FIG. 5 shows a schematic representation of the normal operation of the residual current circuit breaker according to Fig.l and
  • FIG. 6 shows a part of a block diagram of a further embodiment of the residual current circuit breaker according to the invention.
  • a general electrical power supply network 40 is shown schematically, the access for a consumer, not shown, can be interrupted by a network separation unit 20.
  • the mains disconnection unit 20 is actuated, thereby preventing persons from being endangered.
  • the occurrence of such a fault current is monitored by a unit for detecting a fault current 42.
  • the unit for detecting a fault current 42 comprises a device for recording the fault current 1, 41 according to the signal, which device can be coupled to the power supply network 40 and which can be designed in different ways within the scope of the invention.
  • the device for recording the fault current according to the signal is formed by a Förster probe 41, the output of which is connected to a controller unit 1, which compensates for the output signal present at the output of the Förster probe 41 to zero.
  • the controller unit 1 comprises a PID controller 43, the controlled variable of which is formed by the output signal of the forester probe 41. By compensating the output signal of the Förster probe 41 is at the output of the PID controller 43 generates a true-to-signal image of the fault current, which is further processed as a fault current signal.
  • a modulator 44 is provided, the task of which is to mutually saturate the magnetic material of the forester probe 41.
  • This can be done by a suitable signal generator which is connected to a coil of the forester probe 41.
  • a spectrum arises which, because e.g. is derived from a square wave signal and contains only odd harmonics.
  • a fault current signal now leads to a different modulation of the magnetic material, which then leads to the occurrence of even harmonics.
  • the forester probe 41 e.g. the second harmonic (even harmonic) is used to assess the error signal.
  • the second harmonic is then compensated to zero with the aid of the PID controller 43 in order to obtain a true-to-the-signal image of the fault current signal.
  • a correction unit 45 connected to the PID controller 43 is connected to a temperature measuring probe 46 arranged in the area of the forester probe 41 and measures its temperature. In this way, the temperature response of the forester probe 41 can be compensated.
  • the unit for detecting a fault current 42 further comprises, according to the invention, a fault current analysis unit 100 for spectral characterization of the fault current, which is connected to the mains disconnection unit 20.
  • the residual current is not determined solely from a simple threshold value exceeding, but is treated as a time-dependent signal taking into account the different frequency components from which this signal is composed.
  • a suitable reaction can take place as a result of the evaluation.
  • the fault current signal derived from the unit for the detection of a fault current 42 can be further processed either analog or digital.
  • the conversion of the initially analog fault current signal into a digital fault current signal is preferably carried out in order to keep the effort for the evaluation of the fault current signal as low as possible, whereby a miniaturization of the fault current circuit breaker according to the invention is possible.
  • the signal-correct residual current signal obtained from the PID controller 43 is fed in FIG. 1 to an amplifier 2 connected to the output of the PID controller 43 with a variable gain factor, which can be influenced, for example, by the correction unit 45 in order to compensate for the temperature To allow Förster probe 41 via the gain factor.
  • a unit for sampling and quantizing the fault current in the form of an analog-digital converter 3 is connected to the output of the amplifier 2 and converts the analog fault current signal into digital information. Depending on the design of the residual current circuit breaker according to the invention, this conversion can also take place at another point in the signal path.
  • an anti-aliasing filter known from the prior art is further provided in the analog-digital converter 3.
  • the amplifier 2 can optionally be provided as an analog signal amplification unit at the point shown in FIG. 1, but it can also be implemented in software by multiplying the fault current signal digitized in the analog / digital converter 3 by coefficients, in which coefficients e.g. the temperature response of the forester probe 41 is taken into account.
  • the digitized fault current signal is fed on the one hand to a filter path 50 and on the other hand to a transformation path 51, roughly speaking the low-frequency component of the fault current signal in the filter path 50, for example in the range less than 400 Hz, and the high-frequency part in the transformation path 51 Proportion of the fault current signal, for example in the range greater than 400 Hz, are processed.
  • the fault current analysis unit comprises at least one filter unit 15 and a transformation unit 5, in which the fault current signal formed in the device for recording the fault current in accordance with the signal can be transformed from the time range into an image range, preferably into the frequency range.
  • 2 shows a simplified block diagram of the residual current circuit breaker shown in FIG.
  • the filter or filters used in the filter path 50 can be adapted to the conditions of the measured fault current signal by determination in a configuration operation which will be described below.
  • the higher signal frequencies of the measured fault current signal are processed in the transformation path 51 by mathematical transformation.
  • the filter unit is formed by a filter unit with a low-pass characteristic 15, the output of which is connected to a signal evaluation unit, which is implemented in FIG. 1 as a unit for calculating the effective value 16 of the filtered fault current signal ,
  • the passband can e.g. 0 Hz to 400 Hz, the input of the filter unit with low-pass characteristic 15 being connected to the output of the analog converter 3.
  • the filter unit 15 is preferably implemented as a digital filter; the sampling and quantization of the fault current signal can also be carried out in this, and the analog converter 3 can be omitted for this purpose.
  • An analog design of the filter unit 15 is also possible, but automatic tuning of the same, as described below, is then associated with difficulties. In Fig. 1, this automatic tuning of the filter unit 15 takes place via a tuning input which is connected to a signal configuration unit 7.
  • the unit for calculating the effective value 16 connected to the output of the filter unit 15 calculates the effective value of the digitized and filtered fault current signal and outputs it at its output, which is connected to an input of a summing unit 14.
  • the filter path ends and opens into the summing unit 14, the output of which is connected to a maximum value monitoring device 17, which is connected via a logic OR gate 18 to the network separation unit 20, which M-maximum value monitoring device 17 when a predeterminable limit value is exceeded, the network separation unit 20 is actuated. This disconnects the consumer from the energy supply network 40.
  • the signal evaluation unit 16 can be designed as a unit for calculating the peak value or as a unit for calculating the mean value or the like.
  • the signal evaluation unit is implemented as a unit for calculating the effective value.
  • An amplifier 4 is initially arranged in the transformation path 51, the input of which is connected to the output of the analog-digital converter 3 and the output of which is connected to the input of the transformation unit 5, which transforms the fault current signal from the time domain into the frequency domain.
  • the amplifier 4 in FIG. 1 has a control input via which its gain factor - and also in the case of amplifier 2 - can be adjusted by the correction unit 45.
  • the transformation unit is formed by a Fourier transformation unit 5, in particular a discrete Fourier transformation unit, which can preferably be implemented using the Fast Fourier Transformation (FFT).
  • FFT Fast Fourier Transformation
  • the time signal is transformed into a frequency spectrum.
  • other transformation methods can also be used, so that the transformation unit could equally well be formed by a Laplace transformation unit, in particular a discrete Laplace transformation unit.
  • the Laplace transform represents a generalization of the Fourier transform, the discrete version of which represents the z transform.
  • Further possibilities are offered by the Gabor transformation and the wavelet transformation, which make it possible to make statements about the time behavior of the frequency spectrum of the fault current signal. With the Fourier transformation, no statement can be made about the temporal behavior of a signal spectrum.
  • a changeover switch 60 is provided at the output of the Fourier transformation unit 5, which is shown in its normal position, which corresponds to the normal operation of the residual current circuit breaker according to the invention.
  • a correlation unit 8 is connected between the output of the transformation unit 5 and the input of a spectral evaluation unit 11 and is connected to a unit for storing at least one comparison spectrum 12.
  • the signal formed in the Fourier transformation unit 5 is fed to the correlation unit 8 connected to it, in which a comparison of the frequency spectrum of the current fault current signal with one or more stored frequency spectra is carried out.
  • the transformation unit 5 is connected to the spectral evaluation unit, which in FIG. 1 is designed as a unit for calculating the effective value of the frequency spectrum 11, the output of which is connected to a further input of the summing unit 14 ,
  • the second position of the switch 60 corresponds to the configuration operation of the residual current circuit breaker according to the invention.
  • the output of the transformation unit 5 is connected to the input of a signal configuration unit 7, which is connected to a memory input of the unit for storing at least one comparison spectrum 12.
  • the configuration operation serves to calibrate the residual current circuit breaker according to the invention and to record the signal spectra that are operationally possible. For this purpose, load fluctuations are carried out in the energy supply network 40, for example by activating and deactivating various consumers connected to the energy supply network.
  • load fluctuations are carried out in the energy supply network 40, for example by activating and deactivating various consumers connected to the energy supply network.
  • the spectrum of the fault current occurring during normal operation is measured and, taking into account the applicable standards, is stored in an actual signal memory 9, which is connected between the signal configuration unit 7 and the unit for storing the comparison spectrum 12.
  • the maximum value table 10 stores the maximum tolerable standard values, which can be used to determine the actual comparison values, which are used in the comparison memory unit 12 as the basis for the comparison.
  • the actual signal memory 9 and the maximum value table 10 can be contained in the comparison memory unit 12.
  • the valid comparison values which are used for the comparison are stored in the comparison memory unit 12. These are formed by limiting the spectrum stored in the actual signal memory 9 by the standard-dependent values from the maximum value table 10.
  • the values stored in the comparison memory unit 12 are used in normal operation for comparison with the spectrum determined from the transformation path 51 and also for setting the digital filter 15 with low-pass characteristic in the filter path 50, the general can also be composed of several filters connected in parallel with bandpass behavior (FIG. 3).
  • the setting is made via the signal configuration unit 7, in which the signal transformed in the Fourier transformation unit 5 is processed and analyzed, and the parameters for the modification of the filter coefficients of the digital filter 15 are determined with the tie characteristic.
  • the comparison memory unit 12 carries out an emergency triggering of the mains disconnection unit 20.
  • an emergency release output of the comparison memory unit 12 is connected to the logic OR gate 18. This prevents that on the one hand non-standard values are used for comparison, and on the other hand that a defective system is still in operation.
  • a message is sent to a control unit 19, which then terminates the configuration operation.
  • the control unit 19 also outputs correction factors and control commands from the values of the PID controller 43, the signal configuration unit 7, external operating elements 26 and an external PC 25 which accesses the system via a graphical user interface (GUI).
  • GUI graphical user interface
  • control unit 19 Another function of the control unit 19 is to control the switch 60, via which it is possible to switch between configuration mode and normal mode. Because of the frequency resolution and the achievable bandwidth, the sampler rates and measuring duration of the different operating modes are also adapted when the switch 60 is switched.
  • the fault current signal is continuously measured and fed to the filter path 50 and the transformation path 51.
  • Signal components with low frequencies are let through by filter 15 or attenuated according to the set filter coefficients.
  • Signal components with high frequencies are converted in the transformation path 51 via the Fourier transformation unit 5 into a frequency spectrum which is compared in the correlation unit 8 with the values measured in the configuration mode and stored in the comparison memory unit 12.
  • the difference between the frequency spectrum of the currently measured residual current signal and the The comparison spectrum is output at the output of the correlation unit 8, the effective value of this output signal is calculated in the spectral evaluation unit 11 and added in the summation unit 14 to the low-pass signal evaluated by the unit for calculating the effective value 16.
  • the maximum value monitoring device 17 connected to the output of the summing unit 14 decides whether to trip and, if necessary, actuates the mains disconnection unit 20.
  • All filter tasks - apart from the anti-aliasing filter function, RMS calculations, mathematical transformations, spectral comparison and maximum value monitoring, as implemented in function block 100, can be carried out in an integrated digital signal processor (DSP), ASIC or micro-controller ( ⁇ C).
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • ⁇ C micro-controller
  • a communication unit 13 connected to the maximum value monitoring device 17 enables monitoring of the configuration and normal operation as well as the values determined in normal operation and general system parameters, e.g. via a modem and other interfaces, e.g. Ethernet connection, radio module or the like. Finds e.g. If the maximum value is exceeded, the consumer is disconnected from the energy supply network 40 by actuating the switch 20 and a corresponding message is passed on to the communication unit 13, which in the simplest case can be an LED or a buzzer.
  • the value which has led to the maximum value being exceeded can be continuously output to the communication unit 13 in order to be able to continuously monitor the system from the outside.
  • an optional correction function unit 6 is arranged between the output of the Fourier transformation unit 5 and the input of the correlation unit 8, which can perform operations via a system function h (x), such as, for example, forming an absolute amount, squaring a spectrum or splitting off the imaginary part.
  • the correlation unit 8 the currently measured spectrum is compared with the values measured in configuration mode and stored in the comparison memory unit 12.
  • the comparison consists of a simple subtraction, but could also be done by another correlation function.
  • a measure of the difference between the two signals compared in the correlation unit is determined.
  • the entire frequency range is covered by filter units 101, 102,...
  • the transformation part only serves to determine filter coefficients.
  • the inputs for setting these filter coefficients of the filter units 101, 102, ..., 10n are connected to corresponding outputs of the signal configuration unit 7, which is connected to the transformation unit 5.
  • the outputs of the filter units 101, 102, ..., 10n are each connected via a signal evaluation unit 116 to inputs of a summing unit 114 and the output of the summing unit 114 is connected to the maximum value monitoring device 17 which is on the mains disconnection unit 20 is connected.
  • the maximum value monitoring device actuates the mains disconnection unit 20 when a predeterminable limit value is exceeded. In normal operation, the embodiment shown in FIG. 6 thus only works in the time domain.
  • the invention also relates to a method for fault current monitoring of a power supply network 40, in which a mains disconnection unit 20 is actuated as soon as a maximum value exceeding of a fault current measurement value derived from a fault current measurement is determined.
  • the fault current is mapped true to the signal
  • the true-to-signal fault current signal is transformed from the time domain into the frequency domain and either a partial amount of the fault current measured value is calculated from the resulting spectrum and / or the setting of the filter coefficient of at least one low-pass filter for filtering the signal-true fault current signal is determined, wherein the residual current measured value or a partial amount of the same is calculated from the output signal of the at least one low-pass filter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Keying Circuit Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Breakers (AREA)

Abstract

Fehlerstromschutzschalter mit einer Einheit zur Detektion eines Fehlerstromes innerhalb eines elektrischen Energieversorgungsnetzes (40) und einer Netztrenn-Einheit (20), wobei die Einheit zur Detektion eines Fehlerstromes eine Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes (1, 41), welche mit dem Energieversorgungsnetz (40) koppelbar ist, und eine Fehlerstromanalyse-Einheit (100) zur spektralen Charakterisierung des Fehlerstromes umfasst, die mit der Netztrenn-Einheit (20) verbunden ist.

Description

Fehlerstromschutzschalter
Die Erfindung betrifft einen Fehlerstromschutzschalter mit einer Einheit zur Detektion eines Fehlerstromes innerhalb eines elektrischen Energieversorgungsnetzes und einer Netztrenn- Einheit.
Durch die zunehmende Verwendung von Umrichtern, Schaltnetzteilen, Leistungselektronik- Einheiten od. dgl. in Energieversorgungsnetzen ist im verstärkten Ausmaß mit nicht sinusförmigen Ableitströmen zu rechnen. Während reine Sinussignale bei herkömmlichen Fehlerstromdetektions-Systemen, wie z.B. Fl-Schaltern, keine Fehlauslösungen verursachen, fuhren die mit Oberwellen behafteten Signale und nicht-harmonische Überlagerungen von Signalen bei der derzeit zur Fehlerstromdetektion verwendeten Analogelektronik zu ungewollten Effekten, wie Gleichrichtung, Demodulation, Resonanz- und Filterverhalten usw., die ab einer bestimmten Komplexität der für die Fehlerdetektion vorgesehenen elektronischen Schaltungsanordnung das Abschaltverhalten negativ beeinflussen und daher zur Beeinträchtigung der Sicherheit fuhren können. Demodulationseffekte, Koppelkapazitäten und Resonanzeffekte od. dgl. sind somit die Ursache für ein nicht vorhersagbares Abschaltverhalten konventioneller Fehlerstromschutzschalter.
Aufgabe der Erfindung ist es daher, einen Fehlerstrom-Schutzschalter anzugeben, der auch bei nicht rein sinusförmigen Fehlerströmen ein vorhersagbares Auslöseverhalten zeigt. Weitere Aufgabe der Erfindung ist es, die Detektion von Fehlerströmen über einen weiten Frequenzbereich zu ermöglichen.
Aufgabe der Erfindung ist es weiters, eine laufende Beurteilung der in einem Netz auftretenden Fehlerströme abrufen zu können.
Erfindungsgemäß wird dies dadurch erreicht, daß die Einheit zur Detektion eines Fehlerstromes eine Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes, welche mit dem Energieversorgungsnetz koppelbar ist, und eine Fehlerstromanalyse-Einheit zur spektralen Charakterisierung des Fehlerstromes umfaßt, die mit der Netztrenn-Einheit verbunden ist.
Auf diese Weise wird der Fehlerstrom nicht nur mehr nach seinem Effektivwert beurteilt, sondern als Signal betrachtet, dessen Frequenzanteile mit Hilfe von mathematischen Methoden einer Signalanalyse zugeführt werden. Aufgrund der dadurch erzielten Ergebnisse kann eine präzise Überwachung des zulässigen Maximalwerts durchgeführt und damit eine vorhersagbare Auslösung des Fehlerstrom-Schutzschalters bewirkt werden. Mit sinnvollem Aufwand wird diese Betrachtungsweise des Fehlerstromes durch digitale Signalverarbeitung ermöglicht. In weiterer Ausbildung der Erfindung kann vorgesehen sein, daß die Einheit zur Detektion eines Fehlerstromes weiters eine Einheit zur Abtastung und Quantisierung des Fehlerstromes, vorzugsweise einen Analog-Digital- Wandler umfaßt. An welcher Stelle des Signalverarbeitungspfades eine Umwandlung von -Analogsignal in Digitalsignal erfolgt, kann je nach Gestaltung der Signalverarbeitung unterschiedlich sein, für die Realisierung sind insbesondere digitale Signalprozessoren geeignet. Um eine Verfälschung des im Analog-Digitalwandler abgetasteten Signals zu vermeiden, kann gemäß einer weiteren Ausf hrungsform der Erfindung die Einheit zur Detektion eines Fehlerstromes weiters ein Anti-Aliasing-Filter umfassen.
Eine weitere Ausführungsform der Erfindung kann darin bestehen, daß die Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes durch eine Förster-Sonde gebildet ist, deren Ausgang mit einer Regler-Einheit verbunden ist, welche das am Ausgang der Förster-Sonde anliegende Ausgangssignal auf Null kompensiert.
Das Ausgangssignal der Förstersonde wird dabei als Regelgröße für die Regler-Einheit verwendet, dessen Aufgabe es ist, das Ausgangssignal auf Null zu kompensieren. Auf diese Weise entsteht ein signalgetreues Abbild des Fehlerstromes.
Um den Magnetwerkstoff der Förster-Sonde wechselseitig in Sättigung zu bringen, kann in weiterer Ausbildung der Erfindung ein Modulator zur Vormagnetisierung der Förster-Sonde vorgesehen sein. Ein Fehlerstromsignal kann nun daran erkannt werden, daß es zu einer abweichenden Aussteuerung des Magnetwerkstoffes führt, als es durch die Vormagnetisierung vorgegeben ist.
Als Sonde können auch andere Sondentypen verwendet werden, die in der Lage sind, einen Fehlerstrom signalgetreu darzustellen. Ohne Einschränkung der Allgemeinheit kann daher in Weiterbildung der Erfindung vorgesehen sein, daß die Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes durch Shunts, Hall-Bauelemente oder aus Kombinationen aus Magnet- und Hallbauelementen gebildet ist.
Zur -Analyse der Frequenzanteile des Fehlerstromes ist eine Transformation aus dem Zeitbereich in einen Bildbereich erforderlich. Daher kann ein weiteres Ausführungsbeispiel der Erfindung darin bestehen, daß die Fehlerstromanalyse-Einheit zumindest eine Filter- Einheit und eine Transformations-Einheit umfaßt, in welcher das in der Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes gebildete Fehlerstromsignal aus dem Zeitbereich in einen Bildbereich, vorzugsweise in den Frequenzbereich, transformierbar ist. Durch die Filter-Einheit können vor allem der -Anteil der niederfrequenten Schwingungen am Fehlerstrom bei der Meßwertberechnung berücksichtigt werden.
Gemäß einer weiteren Ausbildung der Erfindung kann vorgesehen sein, daß die zumindest eine Filter-Einheit durch eine Filter-Einheit mit Tiefpaßcharakteristik gebildet ist, deren Ausgang mit einer Signalbewertungs-Einheit, vorzugsweise einer Einheit zur Berechnung des Effektivwertes des gefilterten Fehlerstromsignals, verbunden ist, daß die Transformations- Einheit mit einer Spektralbewertungs-Einheit, vorzugsweise einer Einheit zur Berechnung des Effektivwertes des Frequenzspektrums verbunden ist, und daß der Ausgang der Signalbewertungs-Einheit und der Ausgang der Spektralbewertungs-Einheit mit Eingängen einer Summier-Einheit verbunden sind und der Ausgang der Summier-Einheit mit einer Maximalwertüberwachungs- Vorrichtung verbunden ist, die an die Netztrenn-Einheit angeschlossen ist, welche Maximalwertüberwachungs- Vorrichtung bei Überschreitung eines vorbestimmbaren Grenzwertes die Netztrenn-Einheit betätigt.
Eine vielfach bereits mit Unterstützung integrierter Schaltkreise anwendbare Transformationsmethode stellt die Fourier-Transformation, insbesondere in Form von Fast- Fourier-Transformation dar. Eine weitere Aus-f-ührungsform der Erfindung kann daher darin bestehen, daß die Transformations-Einheit durch eine Fourier-Transformations-Einheit, insbesondere eine diskrete Fourier-Transformations-Einheit gebildet ist. Es können aber auch andere mathematische Transformationsmethoden im Rahmen der Erfindung sinnvoll angewendet werden. Eine bevorzugte Variante der Erfindung kann darin bestehen, daß die Transformations-Einheit durch eine Gabor-Transformations-Einheit oder eine Wavelet-Transformations-Einheit gebildet ist, die Aussagen über das Zeitverhalten des Frequenzspektrums des Fehlerstromsignals ermöglichen.
Eine weitere Ausgestaltung der Erfindung kann darin bestehen, daß zwischen den Ausgang der Transformations-Einheit und den Eingang der Spektralbewertungs-Einheit eine Korrelations-Einheit geschaltet ist, welche mit einer Einheit zur Speicherung zumindest eines Vergleichsspektrums verbunden ist.
Durch den Vergleich mit einem den Normalzustand charakterisierenden Vergleichsspektrum kann die Schwelle für eine Maximalwert-Überschreitung auf einen bestimmten Frequenzbereich bezogen werden. Eine weitere Ausführungsform der Erfindung kann darin bestehen, daß der Ausgang der Transformations-Einheit an den Eingang einer Signalkonfigurations-Einheit schaltbar ist, die mit einem Speicher-Eingang der Einheit zur Speicherung zumindest eines Vergleichsspektrums sowie mit einem Eingang der zumindest einen Filter-Einheit zur Einstellung von Filterkoeffizienten verbunden ist.
In der Signalkonfigurations-Einheit wird das für den Vergleich in der Korrelations-Einheit erforderliche Signal bearbeitet und analysiert. Weiters ermöglicht sie die Beeinflussung der Filterkoeffizienten der Filter-Einheit.
Eine andere Variante der Erfindung kann darin bestehen, daß die zumindest eine Filter- Einheit durch zwei oder mehrere parallelgeschaltete Filter-Einheiten mit Bandpaßcharakteristik gebildet ist, die Eingänge zur Einstellung von Filterkoeffizienten aufweisen und deren Ausgänge jeweils über eine Signalbewertungs-Einheit mit Eingängen einer Summier-Einheit verbunden sind und der Ausgang der Summier-Einheit mit einer Maximalwertüberwachungs-Vorrichtung verbunden ist, die an die Netztrenn-Einheit angeschlossen ist, welche Maximalwertüberwachungs-Vorrichtung bei Überschreitung eines vorbestimmbaren Grenzwertes die Netztrenn-Einheit betätigt, und daß die Transformations- Einheit mit einer Signal-Konfigurations-Einheit verbunden ist, deren Ausgänge mit den Eingängen zur Einstellung von Filterkoeffizienten verbindbar sind.
Mit Hilfe der zwei oder mehreren Filter-Einheiten mit Bandpaß-Charakteristik wird der gesamte interessierende Frequenzbereich für die Fehlerstromsignal abgedeckt. Die Filter- Koeffizienten werden mit Hilfe der Transformations-Einheit bestimmt. Nach Einstellung der Koeffizienten geschieht die Fehlerstrom-Überwachung mit Hilfe der Filter-Einheiten im Zeitbereich.
Weiters betrifft die Erfindung ein Verfahren zur Fehlerstrom-Überwachung eines Energieversorgungsnetzes, bei dem eine Netztrenn-Einheit betätigt wird, sobald eine Maximalwertüberschreitung eines aus einer Fehlerstrommessung abgeleiteten Fehlerstrom- Meßwertes festgestellt wird.
Die eingangs genannten Aufgaben der Erfindung werden erfindungsgemäß dadurch gelöst, daß der Fehlerstrom signalgetreu abgebildet wird, daß das signalgetreue Fehlerstromsignal aus dem Zeitbereich in den Frequenzbereich transformiert und aus dem sich ergebenden Spektrum entweder ein Teilbetrag des Fehlerstrom-Meßwerts berechnet und/oder die Einstellung der Filterkoeffizienten zumindest eines Tiefpaß-Filters zur Filterung des signalgetreuen Fehlerstromsignals bestimmt wird, wobei aus dem Ausgangssignal des zumindest einen Tiefpaß-Filters der Fehlerstrom-Meßwert oder ein Teilbetrag desselben berechnet wird.
Durch die Bewertung des Fehlerstromes als Signal mit einem Frequenzspektrum wird eine Fehlauslösung des Fehlerstromschutzschalters vermieden.
Nachfolgend wird die Erfindung anhand der in den Zeichnungen dargestellten Ausführungsbeispielen eingehend erläutert. Es zeigt dabei
Fig. 1 ein Blockschaltbild einer Aus-fü-hrungsform des erfindungsgemäßen Fehlerstromschutzschalters;
Fig.2 ein vereinfachtes Blockschaltbild des Fehlerstromschutzschalters gemäß Fig.l; Fig.3 ein vereinfachtes Blockschaltbild einer weiteren Variante der Erfindung; Fig.4 eine schematische Darstellung des Konfigurations-Betriebs des Fehlerstromschutzschalters nach Fig.l;
Fig.5 eine schematische Darstellung des Normal-Betriebs des Fehlerstromschutzschalters nach Fig.l und
Fig.6 ein Teil eines Blockschaltbildes einer weiteren Ausführungsform des erfindungsgemäßen Fehlerstromschutzschalters.
In Fig.l ist ein allgemeines elektrisches Energieversorgungsnetz 40 schematisch gezeigt, dessen Zugang für einen nicht dargestellten Verbraucher durch eine Netztrenn-Einheit 20 unterbrochen werden kann. Sobald im Energieversorgungsnetz 40 ein Fehlerstrom zu fließen beginnt, der einen vorbestimmbaren Fehlerstrom-Meßwert übersteigt, wird die Netztrenn- Einheit 20 betätigt und dadurch eine Gefährdung von Personen verhindert. Das Auftreten eines solchen Fehlerstromes wird durch eine Einheit zur Detektion eines Fehlerstromes 42 überwacht.
Erfindungsgemäß umfaßt die Einheit zur Detektion eines Fehlerstromes 42 eine Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes 1, 41, welche mit dem Energieversorgungsnetz 40 koppelbar ist und die im Rahmen der Erfindung in unterschiedlicher Weise ausgebildet sein kann.
Im Ausführungsbeispiel gemäß Fig. 1 ist die Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes durch eine Förster-Sonde 41 gebildet ist, deren Ausgang mit einer Regler- Einheit 1 verbunden ist, welche das am Ausgang der Förster-Sonde 41 anliegende Ausgangssignal auf Null kompensiert. Die Regler-Einheit 1 umfaßt einen PID-Regler 43, dessen Regelgröße durch das Ausgangssignal der Förstersonde 41 gebildet ist. Durch das Kompensieren des Ausgangssignals der Förster-Sonde 41 wird am Ausgang des PID-Reglers 43 ein signalgetreues Abbild des Fehlerstromes generiert, welches als Fehlerstromsignal weiterverarbeitet wird.
Als Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes können aber auch andere Vorrichtungen Verwendung finden, so z.B. Sh-unts, Hallbauelemente oder Kombinationen aus Magnet- und Hallbauelementen. Die dabei verwendeten Regler-Typen unterliegen wie im vorgenannten Anwendungsfall für die Förstersonde 41 ebenfalls keinerlei Einschränkungen. Die auf diese Weise realisierte signalgetreue Abbildung des Fehlerstromes erlaubt die Detektion von Fehlerströmen innerhalb eines sehr weiten Frequenzbereiches, z.B. von 0 Hz, also Gleichstrom, bis ungefähr 20 kHz.
Zur Vormagnetisierung der Förstersonde 41 ist ein Modulator 44 vorgesehen, dessen Aufgabe darin besteht, den Magnetstoff der Förstersonde 41 wechselseitig in Sättigung zu bringen. Dies kann durch einen geeigneten Signalgenerator geschehen, der mit einer Spule der Förstersonde 41 verbunden ist. Es entsteht ein Spektrum, welches, da es z.B. von einem Rechtecksignal abgeleitet ist, nur ungeradzahlige Oberwellen enthält. Ein Fehlerstromsignal führt nun zu einer anderen Aussteuerung des Magnetwerkstoffes, was dann zum Auftreten von geradzahligen Oberwellen führt. Bei der Förstersonde 41 wird z.B. die zweite Harmonische (geradzahlige Oberwelle) zur Beurteilung des Fehlersignals herangezogen. Hier wird dann die zweite Oberwelle mit Hilfe des PID-Reglers 43 auf Null kompensiert, um so ein signalgetreues Abbild des Fehlerstromsignals zu erhalten.
Eine mit dem PID-Regler 43 verbundene Korrektur-Einheit 45 ist mit einer im Bereich der Förstersonde 41 angeordneten Temperaturmeßsonde 46 verbunden und mißt deren Temperatur. Auf diese Weise kann eine Kompensation des Temperaturganges der Förstersonde 41 vorgenommen werden.
Zur Beurteilung des Fehlerstromsignals umfaßt die Einheit zur Detektion eines Fehlerstromes 42 erfindungs gemäß weiters eine Fehlerstromanalyse-Einheit 100 zur spektralen Charakterisierung des Fehlerstromes, die mit der Netztrenn-Einheit 20 verbunden ist. Um die Schwierigkeiten, die bei den bisher bekannten Fehlerstromschutzschaltern auftreten, zu vermeiden, wird der Fehlerstrom nicht allein aus einer einfachen Schwellwertüberschreirung bestimmt, sondern als ein von der Zeit abhängiges Signal unter Berücksichtigung der verschiedenen Frequenzanteile behandelt, aus dem sich dieses Signal zusammensetzt. Nach durchgeführter mathematischer -Analyse des Fehlerstromsignals kann eine geeignete Reaktion als Ergebnis der Auswertung erfolgen. Grundsätzlich kann das aus der Einheit zur Detektion eines Fehlerstromes 42 abgeleitete Fehlerstromsignal entweder analog oder digital weiterverarbeitet werden. In der Praxis wird bevorzugt die Umwandlung des zunächst analogen Fehlerstromsignals in ein digitales Fehlerstromsignal durchgeführt, um den Aufwand für die Bewertung des Fehlerstromsignals möglichst gering zu halten, wodurch eine Miniaturisierung des erfindungsgemäßen Fehlerstromschutzschalters möglich ist.
Das aus dem PID-Regler 43 gewonnene, signalgetreue Fehlerstromsignal wird in Fig. 1 einem mit dem Ausgang des PID-Reglers 43 verbundenen Verstärker 2 mit einem variablen Verstärkungsfaktor zugeführt, der beispielsweise über die Korrektur-Einheit 45 beeinflußt werden kann, um eine Temperaturkompensation der Förster-Sonde 41 über den Verstärkungsfaktor zu ermöglichen.
Am Ausgang des Verstärkers 2 ist eine Einheit zur Abtastung und Quantisierung des Fehlerstromes in Form eines Analog-Digital- Wandlers 3 angeschlossen, der das analoge Fehlerstromsignal in digitale Information umwandelt. Diese Umwandlung kann je nach Aufbau des erfindungsgemäßen Fehlerstromschutzschalters auch an einer anderen Stelle des Signalpfades geschehen.
Zur Vermeidung von Abtastfehlern ist im Analog-Digital-Wandler 3 weiters ein aus dem Stand der Technik bekannter Anti-Aliasing-Filter vorgesehen.
Der Verstärker 2 kann wahlweise als analoge Signalverstärkungseinheit an der in Fig.l gezeigten Stelle vorgesehen sein, er kann aber auch softwaremäßig durch Multiplikation des im Analog-Digital-Wandler 3 digitalisierten Fehlerstromsignals mit Koeffizienten realisiert sein, in welchen Koeffizienten z.B. der Temperaturgang der Förstersonde 41 berücksichtigt ist.
Nach dem -Analog-Digital-Wandler 3 wird das digitalisierte Fehlerstromsignal einerseits einem Filterpfad 50 und andererseits einem Transformationspfad 51 zugeführt, wobei grob gesprochen im Filterpfad 50 der niederfrequente Anteil des Fehlerstromsignals, z.B. im Bereich kleiner als 400 Hz, und im Transformationspfad 51 der hochfrequente Anteil des Fehlerstromsignals, z.B. im Bereich größer als 400 Hz, verarbeitet werden. Zu diesem Zweck umfaßt die Fehlerstromanalyse-Einheit zumindest eine Filter-Einheit 15 und eine Transformations-Einheit 5, in welcher das in der Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes gebildete Fehlerstromsignal aus dem Zeitbereich in einen Bildbereich, vorzugsweise in den Frequenzbereich, transformierbar ist. Fig.2 zeigt ein vereinfachtes Blockschaltbild des in Fig.l gezeigten Fehlerstromschutzschalters. Das oder die im Filterpfad 50 verwendeten Filter kann bzw. können durch Ermittlung in einem nachfolgend noch beschriebenen Konfigurations-Betrieb an die Gegebenheiten des gemessenen Fehlerstromsignals angepaßt werden. Im Transformationspfad 51 werden die höheren Signalfrequenzen des gemessenen Fehlerstromsignals durch mathematische Transformation verarbeitet.
Alternativ können auch mehrere parallele Filterpfade 151, 152, .... 15n zum Einsatz kommen, wie in Fig.3 dargestellt, welche zusammen einen bestimmten Frequenzbereich überdecken. Im Ausführungsbeispiel gemäß Fig.l ist die Filter-Einheit durch eine Filter-Einheit mit Tiefpaßcharakteristik 15 gebildet ist, deren Ausgang mit einer Signalbewertungs-Einheit, die in Fig.l als Einheit zur Berechnung des Effektivwertes 16 des gefilterten Fehlerstromsignals realisiert ist, verbunden ist. Als Durchlaßbereich kann z.B. 0 Hz bis 400 Hz ausgeführt sein, wobei der Eingang der Filter-Einheit mit Tiefpaßcharakteristik 15 mit dem Ausgang des Analog-Wandlers 3 verbunden ist. Bevorzugt ist die Filter-Einheit 15 als digitaler Filter implementiert, es kann in diesem wahlweise auch das Abtasten und Quantisieren des Fehlerstromsignals vorgenommen und dafür auf den Analog- Wandler 3 verzichtet werden. Eine analoge Auslegung der Filter-Einheit 15 ist auch möglich, eine automatische Abstimmung desselben, wie sie nachfolgend beschrieben ist, ist aber dann mit Schwierigkeiten verbunden. In Fig. 1 erfolgt diese automatische Abstimmung der Filter- Einheit 15 über einen Abstimmungs-Eingang, welcher mit einer Signalkonfigurations-Einheit 7 verbunden ist.
Die mit dem Ausgang der Filter-Einheit 15 verbundene Einheit zur Berechnung des Effektivwertes 16 berechnet den Effektivwert des digitalisierten und gefilterten Fehlerstromsignals und gibt diesen an ihrem Ausgang aus, der mit einem Eingang einer Summier-Einheit 14 verbunden ist. An dieser Stelle endet der Filterpfad und mündet in die Summier-Einheit 14, deren Ausgang mit einer Maximalwertüberwachungs- Vorrichtung 17 verbunden ist, die über ein logisches ODER-Glied 18 an die Netztrenn-Einheit 20 angeschlossen ist, welche M-aximalwertüberwachungs-Vorrichtung 17 bei Überschreitung eines vorbestimmbaren Grenzwertes die Netztrenn-Einheit 20 betätigt. Dadurch wird der Verbraucher vom Energieversorgungsnetz 40 getrennt.
Die Signalbewertungs-Einheit 16 kann in anderen erfindungsgemäßen Varianten als Einheit zur Berechnung des Spitzenwertes oder als Einheit zur Berechnung des Mittelwertes od. dgl. ausgebildet sein. Da es aber derzeit üblich ist, Fehlerstromgrenzwerte als Effektivwerte festzulegen, ist im Ausführungsbeispiel gemäß Fig.l die Signalbewertungs-Einheit als Einheit zur Berechnung des Effektivwertes verwirklicht.
Im Transformationspfad 51 ist zunächst ein Verstärker 4 angeordnet, dessen Eingang mit dem Ausgang des Analog-Digital- Wandlers 3 und dessen Ausgang mit dem Eingang der Transformations-Einheit 5 verbunden ist, die das Fehlerstromsignal aus dem Zeitbereich in den Frequenzbereich transformiert.
Der Verstärker 4 verfügt in Fig. 1 über einen Steuereingang, über den sein Verstärkungsfaktor - sowie bei Verstärker 2 - durch die Korrektur-Einheit 45 angepaßt werden kann. Diese Beeinflussungsmöglichkeit kann weggelassen oder an einer anderen Stelle vorgesehen sein. Im Ausführungsbeispiel gemäß Fig.l ist die Transformations-Einheit durch eine Fourier- Transformations-Einheit 5, insbesondere eine diskrete Fourier-Transformations-Einheit gebildet, welche vorzugsweise mit Hilfe der Fast Fourier-Transformation (FFT) verwirklicht werden kann. Das Zeitsignal wird dabei in ein Frequenzspektrum transformiert. Es können aber auch andere Transformationsmethoden angewandt werden, sodaß die Transformations-Einheit ebenso gut durch eine Laplace-Transformations-Einheit, insbesondere eine diskrete Laplace-Transformations-Einheit gebildet sein könnte. Die Laplace-Transformation stellt ja eine Verallgemeinerung der Fourier-Transformation dar, deren diskrete Version die z-Transformation darstellt. Weiterführende Möglichkeiten bieten die Gabortransformation, sowie die Wavelet-Transformation, die es ermöglichen, Aussagen über das Zeitverhalten des Frequenzspektrums des Fehlerstromsignals zu machen. Bei der Fourier-Transformation kann ja keine Aussage über das zeitliche Verhalten eines Signalspektrums getroffen werden.
Im Ausführungsbeispiel gemäß Fig.l ist ein Umschalter 60 am Ausgang der Fourier- Transformations-Einheit 5 vorgesehen, der in seiner Normalstellung eingezeichnet ist, die dem Normalbetrieb des erfindungsgemäßen Fehlerstromschutzschalters entspricht. Zwischen den Ausgang der Transformations-Einheit 5 und den Eingang einer Spektralbewertungs- Einheit 11 ist eine Korrelations-Einheit 8 geschaltet, welche mit einer Einheit zur Speicherung zumindest eines Vergleichsspektrums ,12 verbunden ist.
Das in der Fourier-Transformations-Einheit 5 gebildete Signal wird der mit dieser verbundenen Korrelations-Einheit 8 zugeführt, in welcher ein Vergleich des Frequenzspektrums des aktuellen Fehlerstromsignals mit einem oder mehreren gespeicherten Frequenzspektren durchgeführt wird. Über die Korrelations-Einheit 8 ist die Transformations-Einheit 5 mit der Spektralbewertungs-Einheit, die in Fig.l als Einheit zur Berechnung des Effektivwertes des Frequenzspektrums 11 ausgebildet ist, verbunden, deren Ausgang mit einem weiteren Eingang der Summier-Einheit 14 verbunden ist.
Der zweiten Stellung des Umschalters 60 entspricht der Konfigurations-Betrieb des erfindungsgemäßen Fehlerstromschutzschalters. Während des Konfigurations-Betriebs ist der Ausgang der Transformations-Einheit 5 an den Eingang einer Signalkonfigurations-Einheit 7 geschaltet, der mit einem Speicher-Eingang der Einheit zur Speicherung zumindest eines Vergleichsspektrums 12 verbunden ist.
Konfigurations-Betriebsstellung (nicht in Fig.l gezeigt) des Umschalters 60: Der Konfigurations-Betrieb (Fig.4) dient der Kalibrierung des erfindungsgemäßen Fehlerstromschutzschalters und der Erfassung der betriebsmäßig möglichen Signalspektren. Dazu werden im Energieversorgungsnetz 40 Lastschwankungen vorgenommen, indem beispielsweise verschiedene an dem Energieversorgungsnetz angeschlossene Verbraucher aktiviert und deaktiviert werden. Während des Konfigurations-Betriebs wird das Spektrum des während des Normalbetriebs auftretenden Fehlerstroms gemessen und unter Berücksichtigung der geltenden Normen in einem Ist-Signalspeicher 9 gespeichert, der zwischen die Signal-Konfigurations-Einheit 7 und der Einheit zur Speicherung des Vergleichsspektrums 12 geschaltet ist.
Da es bei der Messung des Vergleichsspektrums zu Fehlern kommen kann, durch deren Auftreten es zu einer Überschreitung der zulässigen Maximalwerte, die z.B. in einer Norm festgelegt sein können, kommen kann, sind in der Maximalwert-Tabelle 10 die maximal tolerierbaren Normenwerte abgespeichert, welche zur Ermittlung der tatsächlichen Vergleichswerte herangezogen werden, die in der Vergleichsspeicher-Einheit 12 als Grundlage für den Vergleich dienen. Der Ist-Signalspeicher 9 und die Maximalwert-Tabelle 10 können in der Vergleichsspeicher-Einheit 12 beinhaltet sein.
In der Vergleichsspeicher-Einheit 12 sind jedenfalls die gültigen Vergleichswerte gespeichert, die für den Vergleich herangezogen werden. Diese werden durch Begrenzung des im Ist- Signalspeicher 9 gespeicherten Spektrums durch die normenabhängigen Werte aus der Maximalwert-Tabelle 10 gebildet.
Die in der Vergleichsspeicher-Einheit 12 abgelegten Werte dienen im Normal-Betrieb dem Vergleich mit dem aus dem Transformationspfad 51 ermittelten Spektrum und zudem der Einstellung des digitalen Filters 15 mit Tiefpaßcharakteristik im Filterpfad 50, der allgemein auch aus mehreren parallel geschalteten Filtern mit Bandpaßverhalten zusammengesetzt sein kann (Fig. 3). Die Einstellung erfolgt über die Signalkonfigurations-Einheit 7, in der das in der Fourier-Transformations-Einheit 5 transformierte Signal bearbeitet und analysiert wird sowie die Parameter für die Modifikation der Filterkoeffizienten des digitalen Filters 15 mit der Tie aßcharakteristik festgelegt werden.
Kommt es im Konfigurations-Betrieb zu einer Überschreitung der maximal zulässigen Werte des Signalspektrums, so führt die Vergleichsspeicher-Einheit 12 eine Notauslösung der Netztrenn-Einheit 20 durch. Zu diesem Zweck ist ein Notauslöse-Ausgang der Vergleichsspeicher-Einheit 12 mit dem logischen ODER-Glied 18 verbunden. Damit wird verhindert, daß einerseits normenwidrige Werte zum Vergleich herangezogen werden, andererseits, daß eine defekte Anlage weiter in Betrieb ist. Es wird eine Meldung an eine Steuereinheit 19 abgegeben, die dann den Konfigurations-Betrieb abbricht. Die Steuereinheit 19 gibt weiters Korrekturfaktoren und Steuerbefehle aus den Werten des PID-Reglers 43, der Signalkonfigurations-Einheit 7, externen Bedienelementen 26 und eines externen PC 25, welcher über eine graphische Bedieneroberfläche (GUI) auf das System zugreift, aus. Es besteht auch für den Benutzer die Möglichkeit einer manuellen Modifikation der Vergleichswerte im Rahmen der zulässigen Grenzwerte aus den entsprechenden Normen und der Filterparameter des Tiefpaß-Filters 15.
Eine weitere Funktion der Steuereinheit 19 besteht in der Ansteuerung des Umschalters 60, über den zwischen Konfigurations-Betrieb und Normal-Betrieb umgeschaltet werden kann. Wegen der Frequenzauflösung und der erreichbaren Bandbreite werden die Samplerraten und Meßdauer der verschiedenen Betriebsarten mit dem Umschalten des Umschalters 60 ebenfalls angepaßt.
Normal-Betriebsstellung (in Fig.l gezeigt) des Umschalters 60:
Im Normal-Betrieb (Fig.5) wird das Fehlerstromsignal laufend gemessen und dem Filterpfad 50 und dem Transformationspfad 51 zugeführt. Signalanteile mit niedrigen Frequenzen werden vom Filter 15 durchgelassen bzw. entsprechend den eingestellten Filterkoeffizienten gedämpft. Signalanteile mit hohen Frequenzen werden im Transformationspfad 51 über die Fourier-Transformations-Einheit 5 in ein Frequenzspektrum umgesetzt, welches in der Korrelations-Einheit 8 mit den im Konfigurations-Betrieb gemessenen und in der Vergleichsspeicher-Einheit 12 gespeicherten Werten verglichen wird. Der Unterschied zwischen dem Frequenzspektrum des aktuell gemessenen Fehlerstromsignals und dem Vergleichsspektrum wird am Ausgang der Korrelations-Einheit 8 ausgegeben, der Effektivwert dieses Ausgangssignals in der Spektralbewertungs-Einheit 11 berechnet und in der Summations-Einheit 14 zu dem durch die Einheit zur Berechnung des Effektivwertes 16 bewerteten Tiefpaß-Signals addiert. Die am Ausgang der Summier-Einheit 14 angeschlossene Maximalwertüberwachungs-Vorrichtung 17 entscheidet über eine Auslösung und betätigt gegebenenfalls die Netztrenn-Einheit 20.
Alle Filteraufgaben - außer die Anti-Aliasing-Filterfunktion-, Berechnungen des Effektivwertes (RMS), mathematische Transformationen, Spektrenvergleich und Maximalwertüberwachung, wie sie im Funktionsblock 100 verwirklicht sind, können in einem integrierten digitalen Signalprozessor (DSP), ASIC oder Mikro-Controller (μC) vorgenommen werden.
Eine mit der Maximalwertüberwachungs- Vorrichtung 17 verbundene Kommunikations- Einheit 13 ermöglicht eine Überwachung des Konfigurations- und Normal-Betriebs sowie der im Normal-Betrieb ermittelten Werte und allgemeiner Systemparameter z.B. über ein Modem und weitere Schnittstellen, z.B. Ethernet-Anschluß, Funkmodul od. dgl.. Findet z.B. eine Maximalwert-Überschreitung statt, wird der Verbraucher vom Energieversorgungsnetz 40 durch Betätigung des Schalters 20 getrennt und es wird eine entsprechende Meldung an die Kommunikations-Einheit 13 weitergegeben, die im einfachsten Fall eine LED oder ein Summer sein kann.
Weiters kann ständig der Wert, welcher zur Maximalwertüberschreitung geführt hat, an die Kommunikations-Einheit 13 ausgegeben werden, um ein laufendes Überwachen der Anlage von außen durchführen zu können.
Zwischen dem Ausgang der Fourier-Transformations-Einheit 5 und dem Eingang der Korrelations-Einheit 8 ist in Fig.l eine optionale Korrekturfunktions-Einheit 6 angeordnet, die Operationen über eine Systemfunktion h(x) ausführen kann, wie z.B. das Bilden eines Absolutbetrages, das Quadrieren eines Spektrums oder das Abspalten des Imaginärteils. In der Korrelations-Einheit 8 wird das aktuell gemessene Spektrum mit dem in Konfigurations-Betrieb gemessenen und in der Vergleichsspeicher-Einheit 12 gespeicherten Werten verglichen. Der Vergleich besteht im gezeigten Ausführungsbeispiel gemäß Fig.l aus einer einfachen Subtraktion, könnte aber auch durch eine andere Korrelationsfunktion geschehen. Es wird ein Maß der Verschiedenheit der beiden in der Korrelations-Einheit verglichenen Signale ermittelt. In einer weiteren Variante der Erfindung, die in Fig.6 gezeigt ist, wird der gesamte Frequenzbereich durch parallel geschaltete Filter-Einheiten 101,102 ...,10n mit Bandpaßcharakteristik abgedeckt, sodaß die Fehlerstrom-Information aus der Summe der Ausgänge der Filter-Einheiten 101, 102, ..., lOn gewonnen werden kann. Der Transformationsteil dient nur mehr der Ermittlung von Filterkoeffizienten. Die Eingänge zur Einstellung dieser Filterkoeffizienten der Filter-Einheiten 101, 102, ..., lOn sind mit entsprechenden Ausgängen der Signal-Konfigurations-Einheit 7 verbunden, welche mit der Transformations-Einheit 5 in Verbindung steht. Die Ausgänge der Filter-Einheiten 101, 102, ..., lOn sind jeweils über eine Signalbewertungs-Einheit 116 mit Eingängen einer Summier- Einheit 114 verbunden und der Ausgang der Summier-Einheit 114 ist mit der Maximalwertüberwachungs-Vorrichtung 17 verbunden, die an die Netztrenn-Einheit 20 angeschlossen ist. Die Maximalwertüberwachungs- Vorrichtung betätigt bei Überschreitung eines vorbestimmbaren Grenzwertes die Netztrenn-Einheit 20. Im Normalbetrieb arbeitet die in Fig.6 gezeigte Ausführungsform somit nur im Zeitbereich.
Gegenstand der Erfindung ist auch ein Verfahren zur Fehlerstrom-Überwachung eines Energieversorgungsnetzes 40, bei dem eine Netztrenn-Einheit 20 betätigt wird, sobald eine Maximalwertüberschreitung eines aus einer Fehlerstrommessung abgeleiteten Fehlerstrom- Meßwertes festgestellt wird.
Zunächst wird der Fehlerstrom signalgetreu abgebildet, das signalgetreue Fehlerstromsignal aus dem Zeitbereich in den Frequenzbereich transformiert und aus dem sich ergebenden Spektrum entweder ein Teilbetrag des Fehlerstrom-Meßwerts berechnet und/oder die Einstellung der Filterkoeffizienten zumindest eines Tiefpaß-Filters zur Filterung des signalgetreuen Fehlerstromsignals bestimmt, wobei aus dem Ausgangssignal des zumindest einen Tiefpaß-Filters der Fehlerstrom-Meßwert oder ein Teilbetrag desselben berechnet wird.

Claims

P AT E N T AN S P RÜ C H E
1. Fehlerstromschutzschalter mit einer Einheit zur Detektion eines Fehlerstromes innerhalb eines elektrischen Energieversorgungsnetzes und einer Netztrenn-Einheit, dadurch gekennzeichnet, daß die Einheit zur Detektion eines Fehlerstromes eine Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes (1, 41), welche mit dem Energieversorgungsnetz
(40) koppelbar ist, und eine Fehlerstromanalyse-Einheit (100) zur spektralen Charakterisierung des Fehlerstromes umfaßt, die mit der Netztrenn-Einheit (20) verbunden ist.
2. Fehlerstromschutzschalter nach Anspruch 1, dadurch gekennzeichnet, daß die Einheit zur Detektion eines Fehlerstromes weiters eine Einheit zur Abtastung und Quantisierung des Fehlerstromes, vorzugsweise einen Analog-Digital-Wandler (3) umfaßt.
3. Fehlerstromschutzschalter nach Anspruch 2, dadurch gekennzeichnet, daß die Einheit zur Detektion eines Fehlerstromes weiters ein Anti-Aliasing-Filter umfaßt.
4. Fehlerstromschutzschalter nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes durch eine Förster-Sonde
(41) gebildet ist, deren Ausgang mit einer Regler-Einheit (43) verbunden ist, welche das am Ausgang der Förster-Sonde (41) anliegende Ausgangssignal auf Null kompensiert.
5. Fehlerstromschutzschalter nach Anspruch 4, dadurch gekennzeichnet, daß ein Modulator (44) zur Vormagnetisierung der Förster-Sonde (41) vorgesehen ist.
6. Fehlerstromschutzschalter nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes durch Shunts, Hall- Bauelemente oder aus Kombinationen aus Magnet- und Hallbauelementen gebildet ist.
7. Fehlerstromschutzschalter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Fehlerstromanalyse-Einheit (100) zumindest eine Filter-Einheit (15, 101, 102,..., lOn; 151, 152,...15n) und eine Transformations-Einheit (5) umfaßt, in welcher das in der Vorrichtung zur signalgetreuen Aufnahme des Fehlerstromes (1, 41) gebildete Fehlerstromsignal aus dem Zeitbereich in einen Bildbereich, vorzugsweise in den Frequenzbereich, transformierbar ist.
8. Fehlerstromschutzschalter nach Anspruch 7, dadurch gekennzeichnet, daß die zumindest eine Filter-Einheit durch eine Filter-Einheit (15) mit Tiefpaßcharakteristik gebildet ist, deren Ausgang mit einer Signalbewertungs-Einheit (16), vorzugsweise einer Einheit zur Berechnung des Effektivwertes des gefilterten Fehlerstromsignals, verbunden ist, daß die Transformations-Einheit (5) mit einer Spektralbewertungs-Einheit (11), vorzugsweise einer Einheit zur Berechnung des Effektivwertes des Frequenzspektrums verbunden ist, und daß der Ausgang der Signalbewertungs-Einheit (16) und der Ausgang der Spektralbewertungs-Einheit (11) mit Eingängen einer Summier-Einheit (14) verbunden sind und der Ausgang der Summier-Einheit (14) mit einer Maximalwertüberwachungs- Vorrichtung (17) verbunden ist, die an die Netztrenn-Einheit (20) angeschlossen ist, welche Maximalwertüberwachungs (17)- Vorrichtung bei Überschreitung eines vorbestimmbaren Grenzwertes die Netztrenn-Einheit (20) betätigt.
9. Fehlerstromschutzschalter nach Anspruch 8, dadurch gekennzeichnet, daß die
Transformations-Einheit durch eine Fourier-Transformations-Einheit (5), insbesondere eine diskrete Fourier-Transformations-Einheit gebildet ist.
10. Fehlerstromschutzschalter nach Anspruch 8, dadurch gekennzeichnet, daß die
Transformations-Einheit durch eine Laplace-Transformations-Einheit, insbesondere eine diskrete Laplace-Transformations-Einheit gebildet ist.
11. Fehlerstromschutzschalter nach Anspruch 8, daduch gekennzeichnet, daß die Transformations-Einheit durch eine Gabor-Transformations-Einheit oder eine Wavelet- Transformations-Einheit gebildet ist, die Aussagen über das Zeitverhalten des Frequenzspektrums des Fehlerstromsignals ermöglichen.
12. Fehlerstromschutzschalter nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß zwischen den Ausgang der Transformations-Einheit (5) und den Eingang der Spektralbewertungs-Einheit (11) eine Korrelations-Einheit (8) geschaltet ist, welche mit einer Einheit zur Speicherung zumindest eines Vergleichsspektrums (12) verbunden ist.
13. Fehlerstromschutzschalter nach Anspruch 2, dadurch gekennzeichnet, daß der Ausgang der Transformations-Einheit (5) an den Eingang einer Signalkonfigurations-Einheit (7) schaltbar ist, die mit einem Speicher-Eingang der Einheit zur Speicherung zumindest eines Vergleichsspektrums (12) sowie mit einem Eingang der zumindest einen Filter-Einheit (15) zur Einstellung von Filterkoeffizienten verbunden ist.
14. Fehlerstromschutzschalter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die zumindest eine Filter-Einheit durch zwei oder mehrere parallelgeschaltete Filter-Einheiten (101, 102,....,10n) mit Bandpaßcharakteristik gebildet ist, die Eingänge zur Einstellung von Filterkoeffizienten aufweisen und deren Ausgänge jeweils über eine Signalbewertungs-Einheit (116) mit Eingängen einer Summier-Einheit (114) verbunden sind und der Ausgang der Summier-Einheit (114) mit einer Maximalwertüberwachungs-Vorrichtung (17) verbunden ist, die an die Netztrenn-Einheit (20) angeschlossen ist, welche Maximalwertüberwachungs- Vorrichtung bei Überschreitung eines vorbestimmbaren Grenzwertes die Netztrenn-Einheit (20) betätigt, und daß die Transformations-Einheit (5) mit einer Signal-Konfigurations-Einheit (7) verbunden ist, deren Ausgänge mit den Eingängen zur Einstellung von Filterkoeffizienten verbindbar sind.
15. Verfahren zur Fehlerstrom-Überwachung eines Energieversorgungsnetzes, bei dem eine Netztrenn-Einheit betätigt wird, sobald eine Maximalwertüberschreitung eines aus einer Fehlerstrommessung abgeleiteten Fehlerstrom-Meßwertes festgestellt wird, dadurch gekennzeichnet, daß der Fehlerstrom signalgetreu abgebildet wird, daß das signalgetreue Fehlerstromsignal aus dem Zeitbereich in den Frequenzbereich transformiert und aus dem sich ergebenden Spektrum entweder ein Teilbetrag des Fehlerstrom-Meßwerts berechnet und/oder die Einstellung der Filterkoeffizienten zumindest eines Tiefpaß-Filters (15, 101, 102,..., lOn; 151, 152,...15n) zur Filterung des signalgetreuen Fehlerstromsignals bestimmt wird, wobei aus dem Ausgangssignal des zumindest einen Tiefpaß-Filters (15, 101, 102,..., lOn; 151, 152,...15n) der Fehlerstrom-Meßwert oder ein Teilbetrag desselben berechnet wird.
PCT/AT2003/000147 2002-05-27 2003-05-20 Fehlerstromschutzschalter WO2003100938A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE50301511T DE50301511D1 (de) 2002-05-27 2003-05-20 Fehlerstromschutzschalter
AT0912303A AT414321B (de) 2002-05-27 2003-05-20 Fehlerstromschutzschalter
AU2003229345A AU2003229345B2 (en) 2002-05-27 2003-05-20 Residual current circuit breaker
AT03722040T ATE308149T1 (de) 2002-05-27 2003-05-20 Fehlerstromschutzschalter
JP2004508477A JP2005536008A (ja) 2002-05-27 2003-05-20 障害電流遮断器
EP03722040A EP1512207B1 (de) 2002-05-27 2003-05-20 Fehlerstromschutzschalter
CN03812407.6A CN1656659B (zh) 2002-05-27 2003-05-20 故障电流保护开关
TNP2004000231A TNSN04231A1 (en) 2002-05-27 2004-11-23 Residual current circuit breaker
NO20045626A NO334263B1 (no) 2002-05-27 2004-12-23 Feilstrømbeskyttelsesbryter
HK05107796A HK1075751A1 (en) 2002-05-27 2005-09-05 Residual current circuit breaker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA801/2002 2002-05-27
AT8012002A AT412047B (de) 2002-05-27 2002-05-27 Fehlerstromschutzschalter

Publications (1)

Publication Number Publication Date
WO2003100938A1 true WO2003100938A1 (de) 2003-12-04

Family

ID=29554777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2003/000147 WO2003100938A1 (de) 2002-05-27 2003-05-20 Fehlerstromschutzschalter

Country Status (10)

Country Link
EP (1) EP1512207B1 (de)
JP (1) JP2005536008A (de)
CN (1) CN1656659B (de)
AT (1) AT412047B (de)
AU (1) AU2003229345B2 (de)
DE (1) DE50301511D1 (de)
HK (1) HK1075751A1 (de)
NO (1) NO334263B1 (de)
TN (1) TNSN04231A1 (de)
WO (1) WO2003100938A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017483A1 (de) * 2002-08-14 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Verfahren und vorrichtung zur fehlerstromüberwachung in einem elektrischen wechselstromnetz
EP2230739A2 (de) 2009-03-18 2010-09-22 Hamilton Sundstrand Corporation Präzise Detektion von Fehlerstromschutz zum Schutz menschlicher Körper in einem Luftfahrzeug
CN103219703A (zh) * 2013-04-07 2013-07-24 国家电网公司 防低压倒送电漏电保护器
EP2963752A3 (de) * 2014-07-04 2016-01-13 Siemens Aktiengesellschaft Fehlerstromschutzvorrichtung zur ableitstromerfassung
EP3206040A3 (de) * 2016-02-10 2017-11-01 Bender GmbH & Co. KG Verfahren und vorrichtungen zur erkennung einer unterbrechung einer schutzleiterverbindung
CN113363951A (zh) * 2021-05-21 2021-09-07 珠海格力电器股份有限公司 直流剩余电流保护器、保护方法和直流供电系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2568557B1 (de) 2011-09-07 2014-02-26 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Fehlerstromschutzschalters sowie Fehlerstromschutzschalter für einen Frequenzumrichter
DE102014100068B4 (de) * 2013-10-06 2020-06-18 Bajog Electronic Gmbh Verfahren und Vorrichtung, nämlich Netzanalysehandgerät, zur schnellen und einfachen Erfassung von leitungsgebundenen Störungen im unteren Frequenzbereich auf Energieversorgungsnetzleitungen
DE102015218911A1 (de) * 2015-06-30 2017-01-05 Siemens Aktiengesellschaft Fehlerstromschutzschalter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095451A2 (en) * 2000-06-09 2001-12-13 Siemens Aktiengesellschaft Software-controlled evaluation of fault currents for protection and monitoring systems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512832A (en) * 1993-10-15 1996-04-30 The Texas A & M University System Energy analysis fault detection system
DE4430246C2 (de) * 1994-08-25 1997-08-28 Siemens Ag Verfahren und Anordnung zum Überwachen von Stromversorgungsnetzen
US6088205A (en) * 1997-12-19 2000-07-11 Leviton Manufacturing Co., Inc. Arc fault detector with circuit interrupter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095451A2 (en) * 2000-06-09 2001-12-13 Siemens Aktiengesellschaft Software-controlled evaluation of fault currents for protection and monitoring systems

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017483A1 (de) * 2002-08-14 2004-02-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Verfahren und vorrichtung zur fehlerstromüberwachung in einem elektrischen wechselstromnetz
EP2230739A2 (de) 2009-03-18 2010-09-22 Hamilton Sundstrand Corporation Präzise Detektion von Fehlerstromschutz zum Schutz menschlicher Körper in einem Luftfahrzeug
EP2230739A3 (de) * 2009-03-18 2011-02-02 Hamilton Sundstrand Corporation Präzise Detektion von Fehlerstromschutz zum Schutz menschlicher Körper in einem Luftfahrzeug
US8023236B2 (en) 2009-03-18 2011-09-20 Hamilton Sundstrand Corporation Precision ground fault detection for aircraft human body protection
CN103219703A (zh) * 2013-04-07 2013-07-24 国家电网公司 防低压倒送电漏电保护器
EP2963752A3 (de) * 2014-07-04 2016-01-13 Siemens Aktiengesellschaft Fehlerstromschutzvorrichtung zur ableitstromerfassung
EP3206040A3 (de) * 2016-02-10 2017-11-01 Bender GmbH & Co. KG Verfahren und vorrichtungen zur erkennung einer unterbrechung einer schutzleiterverbindung
EP3351951A1 (de) 2016-02-10 2018-07-25 Bender GmbH & Co. KG Verfahren und vorrichtungen zur erkennung einer unterbrechung einer schutzleiterverbindung mittels eines ableitstromspektrums
US10288664B2 (en) 2016-02-10 2019-05-14 Bender Gmbh & Co. Kg Methods and devices for detecting a disconnection of a protective conductor connection
CN113363951A (zh) * 2021-05-21 2021-09-07 珠海格力电器股份有限公司 直流剩余电流保护器、保护方法和直流供电系统
CN113363951B (zh) * 2021-05-21 2023-10-31 珠海格力电器股份有限公司 直流剩余电流保护器、保护方法和直流供电系统

Also Published As

Publication number Publication date
AU2003229345A1 (en) 2003-12-12
DE50301511D1 (de) 2005-12-01
NO334263B1 (no) 2014-01-20
TNSN04231A1 (en) 2007-03-12
ATA8012002A (de) 2004-01-15
CN1656659B (zh) 2011-10-05
EP1512207B1 (de) 2005-10-26
HK1075751A1 (en) 2005-12-23
AT412047B (de) 2004-08-26
AU2003229345B2 (en) 2007-11-01
JP2005536008A (ja) 2005-11-24
NO20045626L (no) 2004-12-23
EP1512207A1 (de) 2005-03-09
CN1656659A (zh) 2005-08-17

Similar Documents

Publication Publication Date Title
DE102005028881B4 (de) Fehlerstromanalysator zur Erfassung eines Fehlerstroms und Einrichtung mit Fehlerstromerfassungsfunktion
EP2372857A1 (de) Bestimmung des Fehlerstromanteils eines Differenzstroms
EP0654673A1 (de) Verfahren und Einrichtung zur Isolationsüberwachung von ungeerdeten Gleich- und Wechselstromnetzen
DE102016216401A1 (de) Verfahren zum Laden eines elektrisch betriebenen Fahrzeuges mit Hilfe eines Ladekabels, Ladekabel und Fehlerstrom-Schutzschaltung zur Detektion eines Gleichstroms
AT507202B1 (de) Fehlerstromschutzschalter
WO2010076002A1 (de) Vorrichtung und verfahren zum bestimmen von teilentladungen an einer elektrischen komponente
AT412047B (de) Fehlerstromschutzschalter
EP3870983B1 (de) Zustandsanalyse eines elektrischen betriebsmittels
EP2963752B1 (de) Fehlerstromschutzvorrichtung zur ableitstromerfassung
EP0520193B1 (de) Verfahren zum Messen von Teilentladungen
EP3080885B1 (de) Verfahren und einrichtung zum erzeugen eines das vorliegen einer ferroresonanzschwingung in einer elektrischen anlage angebenden resonanzsignals
DE102005035416A1 (de) Verfahren zur Rekonstruktion eines elektrischen Signals
DE102013018294A1 (de) Einrichtung und Verfahren zur Erfassung der elektrischen Energie von ein- oder mehrphasigen elektrischen Verbrauchern
AT414321B (de) Fehlerstromschutzschalter
EP4045922B1 (de) Verfahren und vorrichtung zum bestimmen des resistiven anteils der ableitstromimpedanz im wechselstromnetz
DE3928083C2 (de)
DE19538754C2 (de) Verfahren zur Überwachung von Primärleitungen
DE102007007167B4 (de) Kurzschlussanzeiger für elektrische Mittelspannungsanlagen sowie Verfahren zum Identifizieren eines Messwertgebers
DE69731180T2 (de) Verfahren und Gerät zur Erkennung von Kurzschlusszuständen
DE10237342A1 (de) Verfahren und Vorrichtung zur Fehlerstromüberwachung in einem elektrischen Wechselstromnetz
DE2527933C2 (de) Verfahren und Schaltungsanordnung zum störwechselspannungsunabhängigen Ermitteln von Fremd-Gteichspannungen in Fernmelde-, insbesondere Fernsprechanlagen
EP3680673A1 (de) Schutzanordnung zur überwachung eines elektrischen energieversorgungsnetzes, insbesondere eines niederspannungsnetzes
DE10330286B4 (de) Verfahren und Vorrichtung zum Übertragen von Sprachsignalen über ein Datenübertragungsnetzwerk
DE2531203C3 (de) Verfahren und Einrichtung zur Detektion von Kurzschlüssen auf Leitungen
AT507929A1 (de) Detektoreinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003722040

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004508477

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003229345

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 091232003

Country of ref document: AT

Date of ref document: 20031204

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 91232003

Country of ref document: AT

Ref document number: 20038124076

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003722040

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003722040

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2003229345

Country of ref document: AU

Date of ref document: 20030520

Kind code of ref document: B