WO2003100304A1 - Valve for safety tire, tube for safety tire with double structure, and assembled body of safety tire and rim - Google Patents

Valve for safety tire, tube for safety tire with double structure, and assembled body of safety tire and rim Download PDF

Info

Publication number
WO2003100304A1
WO2003100304A1 PCT/JP2003/006459 JP0306459W WO03100304A1 WO 2003100304 A1 WO2003100304 A1 WO 2003100304A1 JP 0306459 W JP0306459 W JP 0306459W WO 03100304 A1 WO03100304 A1 WO 03100304A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
gas chamber
valve
safety tire
hollow stem
Prior art date
Application number
PCT/JP2003/006459
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Saitou
Kazutaka Matsuzawa
Hisashi Kayukawa
Masahiko Yamamoto
Original Assignee
Bridgestone Corporation
Pacific Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation, Pacific Industrial Co., Ltd. filed Critical Bridgestone Corporation
Publication of WO2003100304A1 publication Critical patent/WO2003100304A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/02Inflatable pneumatic tyres or inner tubes having separate inflatable inserts, e.g. with inner tubes; Means for lubricating, venting, preventing relative movement between tyre and inner tube
    • B60C5/04Shape or construction of inflatable inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/01Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional inflatable supports which become load-supporting in emergency
    • B60C17/02Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor utilising additional inflatable supports which become load-supporting in emergency inflated or expanded in emergency only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C29/00Arrangements of tyre-inflating valves to tyres or rims; Accessories for tyre-inflating valves, not otherwise provided for
    • B60C29/007Arrangements of tyre-inflating valves to tyres or rims; Accessories for tyre-inflating valves, not otherwise provided for for tyres with segmental sections or for multi-chamber tyres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/20Check valves specially designed for inflatable bodies, e.g. tyres

Definitions

  • the present invention relates to a pulp for a safety tire, a tube for a safety tire having a double structure, and a tire / rim assembly for safety tires.
  • a valve for a safety tire for charging a gas to an outer gas chamber and an inner gas chamber provided in a tire of a double structure a tube for a safety tire of a double structure equipped with the valve for a safety tire
  • the present invention relates to a safety tire / rim assembly provided with the double-structured safety tire tube.
  • the tire valve 15 has a structure in which a stem member 35 is inserted into a tubular valve body 16 and fixed with a nut 45.
  • the air charged from the end of the valve passes through the passage 39 in the stem member 35 and passes through the distal end of the stem member 35.
  • the gas chamber (chamber 49) is charged through the opening 38 opened to the side of the tire and the entrance 48 opened to the side of the valve body 16.
  • the entrance 48 is closed, and the tire is passed through the opening 38 at the distal end of the stem member 35 and the hole 27 formed at the distal end of the pulp body 16. Air is charged into the gas chamber (chamber 50) inside the chamber.
  • the pressure in the inner gas chamber is It is desirable that the pressure be set higher than the pressure.
  • the nut 45 In addition, in order to charge air to the outer gas chamber (chamber 49) and the inner gas chamber (chamber 50), the nut 45 must be screwed every time, and workability is poor. .
  • the present invention solves the above problems, and supplies a gas to the inner gas chamber of a dual structure tire so as to have a higher pressure than that of the outer gas chamber, and furthermore, for a safety tire capable of easily performing a charging operation. It is an object to provide a valve, a tube for a safety tire having a double structure, and a safety tire / rim assembly. DISCLOSURE OF THE INVENTIONIn order to achieve the above object, the invention described in claim 1 is for a safety tire having a charging port for charging gas to an outer gas chamber and an inner gas chamber provided in a dual structure tire.
  • a valve attached to the rim, one end facing the atmosphere, and the other end facing the inner gas chamber and the outer gas chamber; and a main supply provided in the housing and communicating with the atmosphere.
  • a differential pressure setting means for setting higher than the pressure of, is characterized by having a communication blocking means capable blocking the communication between the outer air supply path and the inner air supply passage.
  • the gas is discharged from the charging port.
  • the charged gas is guided to the inner gas chamber through the main air supply space and the inner air supply passage, and then to the outer gas chamber through the main air supply space and the outer air supply passage. It is led.
  • the differential pressure setting means automatically sets the pressure of the inner gas chamber higher than the pressure of the outer gas chamber at the same time.
  • the charged gas can be prevented from leaking to the atmosphere side by a sealing means such as a valve core.
  • the communication between the atmosphere side and the outside gas chamber and the inside gas chamber can be sealed or released by the inside air supply path sealing means.
  • the communication between the atmosphere side and the outside gas chamber and the inside gas chamber is sealed by the inside air supply path sealing means, and the inside gas chamber is completely closed independently.
  • the tube is inflated to enable run-flat running.
  • the safety tire valve according to claim 1 supplies gas to the inner gas chamber so as to have a higher pressure than the outer gas chamber when used in a tire / rim assembly having a double structure, and It has an excellent effect that charging work can be performed easily.
  • the invention according to claim 2 is the valve for a safety tire according to claim 1, wherein the differential pressure means includes an air supply hole formed between the main air supply space and the outer air supply passage.
  • a first position provided on the outer air supply path side of the air supply hole to close the air supply hole from the outer air supply path side to prevent communication between the main air supply space and the outer gas chamber;
  • a sealing member movable between a second position for communicating the main air supply space and the outer gas chamber without closing the air supply chamber, and a biasing member for urging the sealing member to the first position.
  • a biasing means wherein the pressure difference is set by the biasing force of the biasing means.
  • the sealing member is urged by the urging means to the first position where the air supply hole is closed from the outer air supply path side to prevent communication between the main air supply space and the outer gas chamber. Have been.
  • the charged gas is guided to the inner gas chamber through the inner air supply passage.
  • the air supply to the inner gas chamber can be increased to the same pressure as the main air supply space by continuing to charge.
  • the air supply to the outer gas chamber can be automatically completed, and the pressure in the inner gas chamber can be automatically made higher than the pressure in the outer gas chamber. High pressure can be achieved.
  • the pressure difference between the inner gas chamber and the outer gas chamber can be adjusted by the urging force of the urging means.
  • the safety tire valve according to claim 2 can automatically complete the supply of the air to the outer gas chamber, and the pressure in the inner gas chamber is automatically higher than the pressure in the outer gas chamber. It has an excellent effect that pressure can be applied.
  • the invention according to claim 3 is the safety tire valve according to claim 2, wherein the housing has one end exposed to the outside of the rim and the other end exposed to the inside of the rim.
  • a pressing portion is provided at an end of the core housing on the side of the main air supply space, and the pressing portion is inserted through the air supply hole with the axial movement toward the air supply hole side of the core housing, so that the sealing member is provided. Pressing the sealing member to the
  • the air supply hole is moved to the position 2 to open the air supply hole, and the main air supply space and the outside air supply passage are communicated with each other.
  • the pressing portion provided at the end of the core housing presses the sealing member as the core housing moves in the axial direction, and the sealing member is moved to the second position.
  • the air supply hole can be opened by moving to the position. In this way, by moving the core housing, the communication between the tire outside the tire and the outside gas chamber can be released. By closing the communication between the side and outer gas chambers and the inner gas chamber, the pressure in the outer gas chamber of the tire can be easily measured.
  • the gas can be charged only in the gas chamber outside the tire.
  • the safety tire valve according to claim 3 it is possible to easily measure the pressure in the gas chamber outside the tire by moving the core housing, and to charge the gas only to the gas chamber outside the tire. It has an excellent effect that it can be performed.
  • the invention according to claim 4 is the pulp for a safety tire according to any one of claims 1 to 3, wherein the inner air supply passage sealing means is a seal provided on an outer peripheral surface of the core housing.
  • a sealing position wherein the sealing means is in close contact with the inner peripheral surface of the hollow stem with movement of the core housing to prevent communication between the outer air supply passage and the inner air supply passage;
  • an open position for communicating the outer air supply path and the inner air supply path apart from the inner peripheral surface of the stem, and reciprocating between the open position and the open air supply path.
  • the movement of the core housing causes the sealing means provided on the outer peripheral surface of the core housing to adhere or separate from the inner peripheral surface of the hollow stem.
  • the safety tire valve according to claim 4 has a simple structure.
  • the core housing and the hollow stem restrict movement of the core housing in the axial direction and the opposite rim side with respect to the hollow stem.
  • second positioning means for positioning the sealing means at the open position; and restricting axial movement of the core housing with respect to the hollow stem on the rim side, and positioning the sealing means at the closed position.
  • the first positioning means and the second positioning means allow the operator to easily and reliably confirm the open / close position of the sealing means.
  • the core housing can be prevented from falling out of the hollow stem.
  • the safety tire valve according to claim 5 allows the operator to easily and reliably confirm the open / close position of the sealing means, and to reliably release and shut off the communication from the charge port to the inner gas chamber. It has an excellent effect that it can be Further, it is possible to prevent the core housing from coming out of the hollow stem.
  • the invention according to claim 6 is the valve for a safety tire according to claim 5, wherein the core housing is located at a position where the movement to the rim side in the axial direction with respect to the hollow stem is regulated by the second positioning means. At one time, the pressing portion presses the hermetically closed member to open the air supply hole.
  • the pressing portion presses the sealing member to open the air supply hole.
  • the operator can measure the independent pressure (so-called air pressure) of the outer gas chamber from outside the tire. (although the sealing means is located at the closed position, the communication between the outside of the tire and the inside gas chamber is cut off.) The air supply hole is opened and the communication between the outside of the tire and the outside gas chamber is released. Become.
  • the safety tire valve according to claim 6 has an excellent effect that the independent pressure (so-called air pressure) of the outer gas chamber can be measured.
  • the invention according to claim 7 is the valve for a safety tire according to any one of claims 4 to 6, wherein when the sealing means is at the open position, the internal pressure charging nozzle and the charge port are connected to each other. And an internal pressure charging restricting means for preventing the internal pressure charging nozzle from engaging with the charge port when the sealing means is in the closed position.
  • the internal pressure charging nozzle When the sealing means is at the open position, the internal pressure charging nozzle can engage with the internal pressure charging nozzle and the charging port so that charging can be performed, and when the sealing means is at the closed position, the internal pressure charging nozzle is connected to the internal pressure charging nozzle. Since the engagement with the charging port is prevented, charging becomes impossible.
  • the safety tire valve according to claim 7 has an excellent effect that the charge of only the outer gas chamber can be prevented.
  • the invention according to claim 8 is the valve for a safety tire according to any one of claims 1 to 3, characterized in that the valve has a lock means for regulating the operation of the communication blocking means. .
  • the operation of the communication blocking means is regulated by using the hook means while the communication between the inside air supply path and the outside air supply path is blocked.
  • the safety tire valve according to claim 8 can regulate the operation of the communication blocking means in a state suitable for traveling, that is, in a state where communication between the inner air supply path and the outer air supply path is blocked. It has an excellent effect.
  • the sealing member and the biasing unit are configured by a valve core. It is characterized by:
  • the sealing means and the urging means are constituted by the valve core, it is possible to supply air to the outer gas chamber with a simple structure.
  • the safety tire valve according to claim 9 has an excellent effect that air can be supplied to the outer gas chamber with a simple structure.
  • a commercially available valve core can also be used.
  • a safety tire tube having a double structure according to claim 10 includes the safety tire valve according to any one of claims 1 to 9. Next, claim 10. The operation of the double-layered safety tire tube described in (1) will be described.
  • the double-layered safety tire tube according to claim 10 is the same as the claim 1 or claim 2. As it has the safety tire valve described in any one of Item 9, when it is installed together with the tire on the rim wheel, only the gas is supplied from the safety tire pulp as usual, and the inner gas chamber and the outer Gas can be supplied to the gas chamber and the internal pressure of the inner gas chamber can be automatically set higher than the internal pressure of the outer gas chamber.
  • the safety tire tube according to claim 10 when the safety tire tube according to claim 10 is mounted together with the tire on the rim wheel, the safety tire tube according to claim 10 only supplies gas from the safety tire pulp as usual, and the inner gas chamber and the outer gas chamber are not connected to each other. And the internal pressure of the inner gas chamber can be automatically set higher than the internal pressure of the outer gas chamber.
  • the rim assembly for a safety tire according to claim 11 is characterized in that a tire and a tube for a safety tire having a double structure according to claim 10 are mounted on a rim wheel.
  • the safety tire according to claim 11 is a valve for a safety tire.
  • the gas can be supplied to the inner gas chamber and the outer gas chamber only by supplying gas as usual from, and the internal pressure of the inner gas chamber can be automatically set to be higher than that of the outer gas chamber. .
  • FIG. 1 is a cross-sectional view of a tire / rim assembly having a double structure according to a first embodiment.
  • FIG. 2 is a top view as seen from the charge port side of the valve.
  • FIG. 3 is a sectional view of the valve in the traveling position.
  • FIG. 4 is an enlarged sectional view of the vicinity of a sealing member of the valve.
  • FIG. 5 is a sectional view taken along line 5-5 in FIG.
  • FIG. 6 is a cross-sectional view showing a state where the valve core is closed.
  • FIG. 7 is a sectional view showing a state where the valve core is open.
  • FIG. 8A is a perspective view near the lower end of the core housing.
  • FIG. 8B is a partial cross-sectional view near the lower end of the core housing.
  • FIG. 9 is a cross-sectional view of the valve at the filling position.
  • FIG. 10 is a bottom view of the pulp.
  • FIG. 11 is a cross-sectional view of the valve during charging.
  • FIG. 12 is a perspective view of a modification of the sealing member.
  • FIG. 13 is a perspective view of another modification of the sealing member.
  • FIG. 14 is a cross-sectional view of the valve according to the second embodiment at the filling position.
  • FIG. 15 is a cross-sectional view of the valve according to the second embodiment at the running position.
  • FIG. 17 is an enlarged sectional view of the vicinity of a sealing member of the valve according to the third embodiment.
  • FIG. 17 is a top view of the sealing member and a leaf spring.
  • FIG. 18 is a cross-sectional view of the valve according to the fourth embodiment at the filling position.
  • FIG. 19 is a cross-sectional view of the valve according to the fourth embodiment at the running position.
  • FIG. 21 is a cross-sectional view of the valve according to the fifth embodiment at a traveling position.
  • FIG. 21 is a perspective view of a stop.
  • FIG. 22 is a cross-sectional view at a pulp filling position according to the fifth embodiment.
  • FIG. 23 is a cross-sectional view at a pulp running position according to the sixth embodiment.
  • FIG. 24 is a cross-sectional view of the wrap shown in FIG. 23 taken along line 24-24.
  • FIG. 25 is a cross-sectional view at a pulp filling position according to the seventh embodiment.
  • FIG. 26 is a developed view of a groove.
  • FIG. 27 is a cross-sectional view of the valve according to the seventh embodiment in a traveling position.
  • FIG. 28 is a cross-sectional view of a conventional valve.
  • FIG. 1 shows a cross section of a double-structure tire to which the safety tire valve of the present embodiment is attached.
  • the tire rim assembly 8 having the double structure has a space between the tube 11 fitted on the outer peripheral surface of the wheel rim 10 and the tire 12 covering the outer periphery of the tube 11.
  • the tire 12 has a structure in which a pair of inner peripheral edges of the tire 12 are brought into close contact with the rim 10.
  • an inner gas chamber 14 closed by the tube 11 is formed inside the outer gas chamber 13 closed by the rim 10 and the tire 12.
  • pulp 20 for a safety tire according to the present invention (hereinafter, referred to as “pulp 20” at the end) is attached to the formed through hole 10b.
  • FIG. 2 is a view taken in the direction of arrow A in FIG. 1
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • the housing 21 forming the body of the valve 20 is composed of a metal hollow stem 24 extending vertically in FIG. 3 and a metal core housing 25 passed through the hollow stem 24. I have.
  • the hollow stem 24 of the present embodiment is composed of a first hollow stem 22 and a second hollow stem 23.
  • the external thread 27 of the second hollow stem 23 is screwed into the female screw 26 formed in the first hollow stem 22 to form the first hollow stem 22 and the second hollow stem 23.
  • the airtightness between the first hollow stem 22 and the second hollow stem 23 is ensured by the ring 30 disposed between the first hollow stem 22 and the second hollow stem 23. Is maintained.
  • the first hollow stem 22 is inserted into the through hole 10 b of the rim 10 from the inner side, that is, from the outer gas chamber 13.
  • the step surface 22 a formed in the first hollow stem 22 abuts near the periphery of the through hole 10 b of the rim 10, and from the outside (atmosphere side) of the rim 10,
  • the hollow stem 21 is fixed to the rim 10 by screwing the nut 29 with the male screw 22 c formed on the outer peripheral surface of the first hollow stem 22 through the nut 29 together with the nut 8. ing.
  • An O-ring 22 b is provided on the step surface 22 a of the first hollow stem 22 to ensure airtightness between the first hollow stem 22 and the rim 10.
  • the first hollow stem 22 has a metal ring 33 screwed to the outer peripheral surface on the base end side.
  • the airtightness between the first hollow stem 22 and the metal ring 33 is ensured by the O-ring 33a disposed between the first hollow stem 22 and the metal ring 33.
  • Spats (rubber seats) 32 projecting radially outward are fixed to the outer periphery of the metal ring 33.
  • the spats 32 have a circular shape, and become thinner from the center toward the outside.
  • the spats 32 are fixed to the periphery of the hole 11 a formed in the tube 11 with an adhesive.
  • the base end of the first hollow stem 22 faces the inside of the inner gas chamber 14.
  • a main air supply passage 35 a extending in the axial direction of the first hollow stem 22 is formed in an axial core portion.
  • a projecting wall 36 projecting inward from the inner wall of the main air supply passage 35a is formed below the main air supply passage 35a in the drawing.
  • An air supply hole 37 is formed in the center.
  • a cylindrical abutting portion 36a is formed at the periphery of the air supply hole 37 so as to protrude downward in the drawing.
  • a cylindrical main air supply chamber 35b communicating with the main air supply passage 35a through an air supply hole 37 is formed below the protruding wall 36 in the drawing.
  • a screw 34 coated with a sealant or an adhesive is screwed to the lower end side to close the main air supply chamber 35b.
  • a metal sealing member 38 is provided inside the main air supply chamber 35b.
  • the lower main air supply chamber 35b is a moving space in which the sealing member 38 according to the present invention moves.
  • a circular concave portion 38c is formed on one end side of the sealing member 38, that is, on the air supply hole 37 side.
  • the rubber member 38a is fixed.
  • the sealing member 38 has a hexagonal column shape, and a plurality of gaps 39 are formed between the sealing member 38 and the cylindrical main air supply chamber 35.
  • the other end of the sealing member 38 has a stepped shape, and a metal compression coil spring (between the stepped portion 38b formed here and the screw 34) is formed.
  • An urging means of the present invention) 40 is provided.
  • the compression coil spring 40 constantly urges the sealing member 38 in the direction of the contacted portion 36a, that is, in the direction of closing the air supply hole 37.
  • the hollow stem 22 has an outer air supply passage 35c having one end opening to the main air supply chamber 35b and the other end opening to the outer gas chamber 13 to form the main air supply chamber 35b. Two are formed symmetrically radially outward at the center (see Fig. 5; only one side is shown in Figs. 3 and 4).
  • the core housing 25 is provided on the inner peripheral surface of the second hollow stem 23.
  • a male screw 25 a formed on the outer peripheral surface of the core housing 25 is screwed into the formed female screw 23 a to be mounted in the second hollow stem 23.
  • the core housing 25 itself rotates, the engagement between the male screw 25 a and the female screw 23 a advances or retreats, and the core housing 25 moves in the axial direction with respect to the second hollow stem 23.
  • a charge space 42 is formed in the core housing 25 so as to extend in the axial direction.
  • the charge space 42 is formed inside the core housing 25, and the upper end (the upper end in FIG. 3) is outside (atmosphere).
  • the charging port 56 communicating with the port is open.
  • a valve core 57 is provided on the charge port 56 side.
  • the valve core 57 seals the communication between the charge space 42 and the outside of the tire 12 so that it can be opened and closed.
  • valve core 57 The details of the valve core 57 will be described below.
  • the valve core 57 of the present embodiment has a general structure specified in JIS (Japanese Industrial Standards) (D4211), that is, as shown in FIG.
  • JIS Japanese Industrial Standards
  • D4211 Japanese Industrial Standards
  • a flange-shaped valve packing 60 is fixedly provided at one end of the shaft 59, and the shaft 59 is urged to one side by a coil spring 61 housed in a sleeve 58.
  • the valve packing 60 is pressed against one end opening of the sleeve 58.
  • the compressed gas from the valve packing 60 presses the valve packing 60 against one end opening of the sleeve 58 and cannot pass through the inside of the sleeve 58.
  • this valve core 57 has a check valve structure, and the movement of gas into the tire is Allowed, but can regulate gas movement out of the tire.
  • a male screw 53 is formed on the outer peripheral surface on the upper end side of the core housing 25, and a valve cap (not shown) is screwed with a female screw formed on the inner peripheral surface. Is covered.
  • the valve cap can seal the charge space 42 formed in the core housing 25.
  • a discharge port 47 for opening the charge space 42 is formed at the lower end (the lower end in FIG. 8) of the core housing 25, a discharge port 47 for opening the charge space 42 is formed.
  • a U-shaped base portion 44 is provided upright from the periphery of the discharge port 47, and a pressing rod 4 3 (the pressing member of the present invention) is provided at the tip of the base portion 44. Pressure portion) is formed to protrude.
  • the outer diameter of the pressing rod 43 is smaller than the inner diameter of the above-described air supply hole 37, and when the pressing rod 43 is inserted into the outer air supply hole 37, the pressing rod 43 A gap through which gas passes is formed between the air supply hole 37 and the air supply hole 37.
  • a grip portion 52 is formed below the male screw 53 on the outer peripheral surface of the upper part of the core housing 25 in FIG.
  • the grip portion 52 has a knurling process (a thin groove extending in the axial direction; not shown) formed on the surface so that an operator can easily rotate the core housing 25.
  • the core housing 25 contacts the upper end surface 23 b of the second hollow stem 23, and moves the core housing 25 toward the first hollow stem 22 side. (Downward movement in Fig. 3) is regulated.
  • the lower end surface 52a of the grip portion 52 and the upper end surface 23b of the second hollow stem 23 constitute second positioning means of the present invention.
  • the core housing 25 moves toward the first hollow stem 22 and the lower end surface 52 a contacts the upper end surface 23 b, the core housing 25 is disposed in the core housing 25.
  • the sealing member 48 is tightly connected to the inner peripheral surface of the first hollow stem 22 forming the raw air supply passage 35 a without any gap, and the main air supply passage 35 a and the main air supply space 35 d Communication between the power supply and the pressure supply 43 as shown in FIG.
  • the rubber member 38 a of the sealing member 38 is pressed through the pores 37, and the rubber member 38 a is separated from the contacted part 36 a and the main air supply passage 35 a and the main air supply passage 35 It releases the communication with b.
  • a seal member holding groove 45, a stopper holding groove 46, and a 0 ring holding groove 50 are formed on the outer peripheral surface of the core housing 25 above the base 44. ing.
  • a seal member 48 (seal means of the present invention) is provided in the seal member holding groove 45.
  • a C-shaped metal stopper 49 is fitted in the stopper holding groove 46.
  • a O-ring 51 is provided in the O-ring holding groove 50 so that the core housing 25 and the The two hollow stems 2 and 3 ensure airtightness.
  • the O-ring holding groove 50 always comes into sliding contact with the inner surface of the second hollow stem 23 even if the core housing 25 is rotated and moves axially with respect to the second hollow stem 23, so that the airtightness is always maintained. Is located to secure.
  • a main air supply space 35 d is located above the main air supply passage 35 a in the drawing.
  • the inner peripheral surface of the first hollow stem 22 has a stepped shape, and the main air supply space 35 d has a larger diameter than the main air supply passage 35 a.
  • the space between the step formed on the inner peripheral surface of the first hollow stem 22 (hereinafter referred to as the first step 54) and the lower end surface 55 of the second hollow stem 23 is as described above.
  • the main air supply space 35d also serves as this space.
  • the stopper 49 moves in the main air supply space 35d by the axial movement of the core housing 25, and contacts the lower end surface 55 as shown in FIG. Direction) is restricted.
  • the stopper 49 and the lower end face 55 constitute a first positioning means of the present invention.
  • the seal member 48 is separated from the inner peripheral surface of the first hollow stem 22 that forms the main air supply passage 35 a and is located in the main air supply space 35 d. The communication between the main air supply space 3 5 d and is released.
  • the first hollow stem 22 has an inner air supply extending radially outward of the main air supply passage 35 a and the main air supply chamber 35 b.
  • Two roads 35e are formed symmetrically (only one is shown in Fig. 3).
  • One end of the inner air supply passage 35 e is open to the first step portion 54 and communicates with the main air supply space 35 d, and the other end is open to the lower end 22 d of the first hollow stem 22. And communicates with the inner gas chamber 14.
  • the valve 20 of the present embodiment has a filling position shown in FIG. 9 and a running position shown in FIG. 3, and each has a different operation.
  • the core housing 25 is brought into the filling position state shown in FIG.
  • the seal member 48 is separated from the inner peripheral surface of the first hollow stem 22 that forms the main air supply passage 35 a and is located in the main air supply space 35 d, and the main air supply passage 35
  • the communication from the main air supply space 35 d to the inner gas chamber 14 through the inner air supply passage 35 e is released from a, and the pressure member 43 retreats from the air supply hole 37 to remove the sealing member 38. It will not be pressed.
  • the air pressure causes the valve core 57 to open, and the air enters the charging space 42.
  • the air is charged.
  • the compressor that supplies compressed air to the air supply nozzle is set so that the internal pressure of the outer gas chamber 13 can be set to 9.5 kg / cm 2 .
  • the air supply hole 37 is opened by the movement of the sealing member 38, and the outer gas chamber 13 is charged through the main air supply chamber 35b (and the gap 39) and the outer air supply passage 35c.
  • both the inner gas chamber 14 and the outer gas chamber 13 are charged.
  • the pressure inside the outer gas chamber 13 gradually increases, and the sealing member 3 8 is connected to the main air supply passage 3 5a side.
  • the rubber member 38a is brought into close contact with the contacted part 36a, and the air supply hole 37 is closed. Then, the charging of the outer gas chamber 13 is automatically completed (for example, when used for truck and bus tires, the filling is completed at 900 kPa).
  • the pressure in the inner gas chamber 14 rises to a certain value (for example, 950 kPa when used for truck and bus tires), the pressure is supplied by the operator.
  • the air nozzle is separated from the pulp 20.
  • the switching of the valve is It is possible to charge the air to the outer gas chamber 13 and the inner gas chamber 14 without performing the above operation, and to provide a predetermined pressure difference between the outer gas chamber 13 and the inner gas chamber 14. it can.
  • the pressure difference between the outer gas chamber 13 and the inner gas chamber 14 can be adjusted by the urging force of the compression coil spring 40.
  • the urging force of the compression coil spring 40 can be adjusted according to the position of the adjusting screw 34.
  • both the outer gas chamber 13 and the inner gas chamber 14 are set so that a predetermined pressure difference is provided between the outer gas chamber 13 and the inner gas chamber 14. Is charged.
  • the core housing 25 is rotated until the lower end surface 52 a of the holding portion 52 of the core housing 25 comes into contact with the upper end surface 23 b of the second hollow stem 23. 5 is pushed in (the lower end surface 52 a of the gripper 52 is brought into contact with the upper end surface 23 b of the second hollow stem 23), so that the traveling position is as shown in FIG.
  • the pressing member 4 3 moves the core housing 2 5, and the pressing rod 4 3 at the end pushes the rubber member 3 8 a of the sealing member 3 8 through the air supply hole 37 to release the air supply hole 37. Then, the outer gas chamber 13 and the charge space 42 are communicated.
  • the seal member 48 of the core housing 25 is in close contact with the inner peripheral surface of the first hollow stem 22 forming the main air supply passage 35 a without any gap, and the main air supply passage 35 a
  • the communication between the air supply and the main air supply space 35 d is completely interrupted, that is, The communication between the body chamber 13 and the inner gas chamber 14 is completely shut off.
  • the internal pressure of the inner gas chamber 14 can be maintained, and the tube 11 can hold the tire 12 from the inside and run flat.
  • Gas in chamber 14 is outside air supply passage 35 c, main air supply room 35 b, air supply hole 37, main air supply passage 35 a, main air supply space 35 d, and inside air supply passage 3 It may flow to the outer gas chamber 13 via 5e, and the pressure of the inner gas chamber 14 may decrease. Therefore, after filling the internal pressure, it is necessary to be in the traveling position.
  • the pressure is measured by a traveling position in which only the pressure of the outer gas chamber 13 can be transmitted to the charge space 42.
  • the air supply hole 37 is closed by the sealing member 38, so that only the pressure of the inner gas chamber 14 can be transmitted to the charge space 42. Measure pressure in position.
  • a hexagonal column-shaped sealing member 38 is disposed in the columnar main air supply chamber 35b so that gas can pass between the main air supply chamber 35b and the sealing member 38.
  • the cylindrical sealing member 38 was formed.
  • a plurality of grooves 62 extending in the axial direction may be formed on the outer peripheral surface to allow gas to pass therethrough.
  • a small sealing member 38 extends through a cylindrical sealing member 38 in the axial direction.
  • a plurality of holes 63 may be formed to allow gas to pass through.
  • FIG. 14 Note that the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the air supply hole 37 is opened and closed using the hexagonal column-shaped sealing member 38.
  • the air supply hole 37 is opened and closed using the spherical sealing member 64. ing.
  • the outer diameter of the spherical sealing member 64 is set smaller than the inner diameter of the main air supply chamber 35b, and gas can pass between the main air supply chamber 35b and the sealing member 64. A gap is provided.
  • the spherical sealing member 64 can be brought into close contact with the contacted part 36 a, and as shown in FIG. 15, in the running position, the spherical sealing member 6 4 is pressed by the pressing rod 43 to be separated from the abutted portion 36a.
  • the sealing member 64 is preferably formed of an elastic material such as rubber or synthetic resin in order to enhance the sealing performance.
  • the center of the sealing member 64 may be metal if the outer peripheral surface is formed of an elastic body.
  • valve 20 Next, a third embodiment of the valve 20 will be described with reference to FIG. 16 and FIG.
  • the same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • a cylindrical sealing member 65 having one end in a hemispherical shape is used instead of the hexagonal column-shaped sealing member 38, and a metal made of metal is used instead of the compression coil spring 40.
  • a leaf spring 66 is used.
  • a ring-shaped inner peripheral portion 66a is embedded in a sealing member 65 to be integrated, and the ring-shaped outer peripheral portion 66b of the leaf spring 66 is provided in the main air supply chamber 35. of b It is fitted in a holding groove 67 formed on the peripheral surface.
  • the hemispherical portion of the sealing member 65 can be brought into close contact with the abutted portion 36 a by the urging force of the leaf spring 66.
  • the sealing member 65 is pressed by the pressing rod 43 and is separated from the abutted portion 36a.
  • valve 20 Next, a fourth embodiment of the valve 20 will be described with reference to FIG. 18 and FIG.
  • the same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • valve core 57 is used instead of the protruding wall 36, the air supply hole 37, the hexagonal column-shaped sealing member 38, and the compression coil spring 40.
  • the pressing member 43 presses the shaft 59 of the valve core 57 to connect the main air supply passage 35a with the main air supply chamber 35. .
  • valve 20 Next, a fifth embodiment of the valve 20 will be described with reference to FIGS.
  • the same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • a ring-shaped stopper 69 having a pair of projections 68 as shown in FIG. 21 is attached to the upper part of the second hollow stem 23.
  • the charging air nozzle 70 in the traveling position shown in FIG. 20, the charging air nozzle 70 abuts on the projection 68, and the air nozzle 70 does not contact the charging port 56, so that charging cannot be performed (air The valve of the nozzle 70 is not opened), and the air nozzle 70 can contact the charging port 56 in the filling position shown in FIG. Therefore, in the present embodiment, it is possible to prevent the operator from erroneously charging the air in the traveling position.
  • FIG. 23 The same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • the present embodiment is an example for fixing the core housing 25 in the traveling position.
  • the second hollow stem 23 is provided with a groove 71 for cutting in the radial direction
  • the core housing 25 is provided with an annular groove 72. It is formed.
  • a lock member 73 formed of a metal wire having elasticity is detachably fitted in the grooves 71 and 72.
  • the core housing 25 of the present embodiment is inserted into the second hollow stem 23 so as to rotate and move linearly in the axial direction.
  • the core housing 25 is urged in the direction in which the core housing 25 protrudes (upward in the drawing) by a coil spring 74 arranged in the main air supply space 35d, and the charging position shown in FIG.
  • the stopper 49 is in contact with the lower end surface 55 of the second hollow stem 23.
  • a bent groove 75 as shown in FIG. 26 is formed on the outer peripheral surface of the core housing 25.
  • the second hollow stem 23 has a pin 76 inserted into the groove 75. Have been.
  • the pin 76 is located near the rim-side end 75a of the crank-shaped groove 75, as shown in FIGS. 25 and 26.
  • the core housing 25 in order to switch the core housing 25 from the filling position to the running position, the core housing 25 is pressed against the urging force of the coil spring 74, and the core housing 25 is rotated while being pressed. Release core housing 25.
  • the sealing member is urged by using a metal coil spring or a plate spring.
  • the sealing member may be urged by using an elastic body such as rubber or the like.
  • the sealing member is not limited to the shape, and the sealing member may be urged using a diaphragm made of an elastic body.
  • the sealing member is not limited to a columnar shape and a spherical shape, but may have another shape such as a plate shape or a conical shape.
  • the configuration is such that the operator manually operates the core housing 25.
  • the configuration may be such that the core housing 25 is operated using driving means such as a motor and a solenoid. .
  • the present invention mainly describes a double-structured tire
  • the present invention is of course applicable to a double or more multi-layer structure or a structure in which the inner gas chamber and the outer gas chamber are divided in the tire width direction or the like. is there.

Abstract

In a tire with a double structure, gas is supplied to an inner gas chamber so that the pressure in the inner gas chamber is higher than that in an outer gas chamber, and gas charging work is facilitated. Air that is charged from a charging port (56) is introduced into an inner gas chamber (14) through charging space (42), main gas supply space (35d), and an inner gas supply passage (35e). Into an outer gas chamber (13), air is introduced through the main gas supply chamber (35d), a main gas supply passage (35a), a gas supply hole (37), a main gas supply chamber (35b), and an outer gas passage (35c). When pressure in the outer gas chamber (13) is increased and the resultant of force (F3) that moves a closure member (38) to the main gas supply passage (35a) side and urging force (F2) of a compression coil spring (40) is greater than force (F1) in a direction of pushing the closure member (38), the closure member (38) closes the gas supply hole (37) and gas charging in the outer gas chamber (13) is completed automatically. After that, when pressure in the inner gas chamber (14) is increased to a predetermined value, a gas supply nozzle is removed from a valve (20) and the charging is finished.

Description

明細書 安全タイヤ用バルブ、 二重構造の安全タイヤ用チューブ、 及び安全タイヤ リム組立体 技術分野 本発明は、 安全タイヤ用パルプ、 二重構造の安全タイヤ用チューブ、 及ぴ安 全タイヤ · リム組立体に係り、 二重構造のタイヤ内に設けた外側気体室と内側 気体室とに気体をチャージするための安全タイヤ用バルブ、 この安全タイヤ用 バルブを備えた二重構造の安全タイヤ用チューブ、 及ぴこの二重構造の安全タ ィャ用チューブを備えた安全タイヤ · リム組立体に関するものである。  TECHNICAL FIELD The present invention relates to a pulp for a safety tire, a tube for a safety tire having a double structure, and a tire / rim assembly for safety tires. Regarding the three-dimensional structure, a valve for a safety tire for charging a gas to an outer gas chamber and an inner gas chamber provided in a tire of a double structure, a tube for a safety tire of a double structure equipped with the valve for a safety tire, Further, the present invention relates to a safety tire / rim assembly provided with the double-structured safety tire tube.
景技術 従来の二重構造の安全タイヤ用バルブとして、 特公昭 4 7— 1 0 9 2 6号公 報に掲載されたものが知られている。 Scenic technology As a conventional double-structured safety tire valve, the one disclosed in the official gazette of Japanese Patent Publication No. 47-10926 is known.
図 2 8に示すように、 このタイヤ用のバルブ 1 5は、 管状のバルブ体 1 6の 内側に、 ステム部材 3 5を揷入してナツト 4 5で固定した構造をなす。  As shown in FIG. 28, the tire valve 15 has a structure in which a stem member 35 is inserted into a tubular valve body 16 and fixed with a nut 45.
そして、 図 2 8に示した状態では、 バルブの端部 (図 2 8の上端部) からチ ヤージした空気が、 ステム部材 3 5内の通路 3 9を通り、 ステム部材 3 5の先 端側の側面に解放した開口 3 8と、 バルブ体 1 6の側面に解放した出入口 4 8 とを介して、'タイヤの外側気体室 (室 4 9 ) にチャージされる。  In the state shown in FIG. 28, the air charged from the end of the valve (the upper end in FIG. 28) passes through the passage 39 in the stem member 35 and passes through the distal end of the stem member 35. The gas chamber (chamber 49) is charged through the opening 38 opened to the side of the tire and the entrance 48 opened to the side of the valve body 16.
また、 この状態から、 ナット 4 5をねじ締め操作すると、 ステム部材 3 5が バルブ体 1 6の奥側 (図 2 8にて下方) に移動し、 同時に Oリング 4 1が奥側 In this state, when the nut 45 is tightened with the screw, the stem member 35 moves to the back of the valve body 16 (downward in FIG. 28), and at the same time, the O-ring 41 moves to the back.
(下方) に移動して前記出入口 4 8が閉塞され、 かつ、 ステム部材 3 5の先端 側の開口 3 8と、 パルプ体 1 6の先端に形成した孔部分 2 7とを介して、 タイ ャの内側気体室 (室 5 0 ) に空気がチャージされる。 (Downward), the entrance 48 is closed, and the tire is passed through the opening 38 at the distal end of the stem member 35 and the hole 27 formed at the distal end of the pulp body 16. Air is charged into the gas chamber (chamber 50) inside the chamber.
一般に二重構造のタイヤにおいては、 内側気体室内の圧力は外側気体室内の 圧力よりも高く設定してあることが望ましい。 In general, in a dual-structure tire, the pressure in the inner gas chamber is It is desirable that the pressure be set higher than the pressure.
しかしながら、 上述した従来の安全タイヤ用バルブの構成では、 手動で外側 気体室 (室 4 9 ) と内側気体室 (室 5 0 ) へのチャージを行っているため、 作 業者によって両気体室 (室 4 9 , 5 0 ) へのチャージ量の配分がバラツキ、 理 想的に空気をチャージすることが難しかった。  However, in the conventional configuration of the valve for a safety tire described above, since the outer gas chamber (chamber 49) and the inner gas chamber (chamber 50) are manually charged, the operator needs to charge both gas chambers (chambers). The distribution of the charge amount to 49, 50) was uneven, and it was difficult to charge the air ideally.
また、 外側気体室 (室 4 9 ) と内側気体室 (室 5 0 ) のそれぞれに空気をチ ヤージするには、 逐一、 ナット 4 5をねじ締め操作しなければならず、 作業性 が悪かった。  In addition, in order to charge air to the outer gas chamber (chamber 49) and the inner gas chamber (chamber 50), the nut 45 must be screwed every time, and workability is poor. .
本発明は、 上記課題を解決し、 二重構造のタイヤの内側気体室に外側気体室 よりも高い圧力となるよう気体を供給し、 且つ、 チャージ作業を容易に行うこ とのできる安全タイヤ用バルブ、 二重構造の安全タイヤ用チューブ、 及び安全 タイヤ · リム組立体を提供することが目的である。 発明の開示 上記目的を達成するために請求項 1に記載の発明は、 二重構造のタイヤに備 えた外側気体室と内側気体室とに気体をチャージするためのチャージ口を供え た安全タイヤ用バルブであって、 前記リムに取り付けられ、 一端側が大気側に 臨み、 他端側が前記内側気体室及び前記外側気体室に臨んだハウジングと、 前 記ハウジングに設けられ、 大気側と連通する主給気空間と、 前記ハウジングに 設けられ、 大気側と前記主給気空間との連通を阻止可能な密閉手段と、 前記ハ ゥジングに設けられ、 前記主給気空間と前記内側気体室とを連通させる内側給 気路と、 前記ハウジングに設けられ、 前記主給気空間と前記外側気体室とを連 通させる外側給気路と、 前記ハウジングに設けられ、 前記内側気体室の圧力を 前記外側気体室の圧力よりも高く設定する差圧設定手段と、 前記内側給気路と 前記外側給気路との連通を阻止可能な連通阻止手段と、 を有することを特徴と している。  The present invention solves the above problems, and supplies a gas to the inner gas chamber of a dual structure tire so as to have a higher pressure than that of the outer gas chamber, and furthermore, for a safety tire capable of easily performing a charging operation. It is an object to provide a valve, a tube for a safety tire having a double structure, and a safety tire / rim assembly. DISCLOSURE OF THE INVENTIONIn order to achieve the above object, the invention described in claim 1 is for a safety tire having a charging port for charging gas to an outer gas chamber and an inner gas chamber provided in a dual structure tire. A valve attached to the rim, one end facing the atmosphere, and the other end facing the inner gas chamber and the outer gas chamber; and a main supply provided in the housing and communicating with the atmosphere. An air space, a sealing means provided in the housing, which can prevent communication between the atmosphere side and the main air supply space, and a sealing means provided in the housing to communicate the main air supply space with the inner gas chamber. An inner air supply path, an outer air supply path provided in the housing, for communicating the main air supply space with the outer gas chamber, and an outer air supply path provided in the housing, for increasing the pressure of the inner gas chamber to the outer gas. A differential pressure setting means for setting higher than the pressure of, is characterized by having a communication blocking means capable blocking the communication between the outer air supply path and the inner air supply passage.
次に、 請求項 1に記載の安全タイヤ用パルプの作用を説明する。  Next, the operation of the pulp for safety tires according to claim 1 will be described.
請求項 1記載の安全タイヤ用バルブによれば、 チャージ口より気体のチヤ一 ジが行われると、 チャージされた気体は、 主給気空間、 内側給気路を介して内 側気体室へと導かれ、 主給気空間、 外側給気路を介して外側気体室へと導かれ る。 According to the valve for a safety tire according to claim 1, the gas is discharged from the charging port. When the charging is performed, the charged gas is guided to the inner gas chamber through the main air supply space and the inner air supply passage, and then to the outer gas chamber through the main air supply space and the outer air supply passage. It is led.
ここで、 差圧設定手段は、 同時に内側気体室の圧力を前記外側気体室の圧力 よりも自動的に高く設定する。  Here, the differential pressure setting means automatically sets the pressure of the inner gas chamber higher than the pressure of the outer gas chamber at the same time.
したがって、 従来のように各気体室への給気の切り替えをする必要がないた め、 作業能率が向上する。  Therefore, there is no need to switch the supply of air to each gas chamber as in the past, so that the work efficiency is improved.
なお、 チャージした気体は、 バルブコア等の密閉手段により大気側へ漏れる ことを防止できる。  In addition, the charged gas can be prevented from leaking to the atmosphere side by a sealing means such as a valve core.
また、 請求項 1に記載の安全タイヤ用バルブによれば、 内側給気路密閉手段 によって、 大気側及び外側気体室と、 内側気体室との連通を密閉あるいは解放 することができる。  According to the safety tire valve of the first aspect, the communication between the atmosphere side and the outside gas chamber and the inside gas chamber can be sealed or released by the inside air supply path sealing means.
走行に供する場合には、 内側給気路密閉手段によって、 大気側及ぴ外側気体 室と、 内側気体室との連通を密閉し、 内側気体室を完全に独立密閉させる。 これにより、 タイヤがパンク等して外側気体室の気体が抜けた場合に、 チュ ープを膨張させて、 ランフラット走行を可能とする。  When the vehicle is used for traveling, the communication between the atmosphere side and the outside gas chamber and the inside gas chamber is sealed by the inside air supply path sealing means, and the inside gas chamber is completely closed independently. In this way, when the gas in the outer gas chamber escapes due to a puncture of the tire or the like, the tube is inflated to enable run-flat running.
したがって、 請求項 1に記載の安全タイヤ用バルブは、 二重構造のタイヤ · リム組立体に用いた際に、 内側気体室に外側気体室よりも高い圧力となるよう 気体を供給し、 且つ、 チャージ作業を容易に行うことができる、 という優れた 効果を有する。  Therefore, the safety tire valve according to claim 1 supplies gas to the inner gas chamber so as to have a higher pressure than the outer gas chamber when used in a tire / rim assembly having a double structure, and It has an excellent effect that charging work can be performed easily.
請求項 2に記載の発明は、 請求項 1に記載の安全タイヤ用バルブにおいて、 前記差圧手段は、 前記主給気空間と前記外側給気路との間に形成される給気孔 と、 前記給気孔の外側給気路側に設けられ、 前記給気孔を外側給気路側から閉 塞して前記主給気空間と前記外側気体室との連通を阻止する第 1の位置と、 前 記給気孔を閉塞せず前記主給気空間と前記外側気体室とを連通させる第 2の位 置との間を移動可能とされる密閉部材と、 前記密閉部材を前記第 1の位置に付 勢する付勢手段と、 を備え、 前記付勢手段の付勢力により前記圧力差が設定さ れる、 ことを特徴としている。  The invention according to claim 2 is the valve for a safety tire according to claim 1, wherein the differential pressure means includes an air supply hole formed between the main air supply space and the outer air supply passage. A first position provided on the outer air supply path side of the air supply hole to close the air supply hole from the outer air supply path side to prevent communication between the main air supply space and the outer gas chamber; A sealing member movable between a second position for communicating the main air supply space and the outer gas chamber without closing the air supply chamber, and a biasing member for urging the sealing member to the first position. And a biasing means, wherein the pressure difference is set by the biasing force of the biasing means.
次に、 請求項 2に記載の安全タイヤ用バルブの作用を説明する。 先ず、 気体チャージ t!の状態では、 密閉部材は付勢手段によって、 給気孔を 外側給気路側から閉塞して主給気空間と外側気体室との連通を阻止する第 1の 位置に付勢されている。 Next, the operation of the safety tire valve according to claim 2 will be described. First, in the state of the gas charge t !, the sealing member is urged by the urging means to the first position where the air supply hole is closed from the outer air supply path side to prevent communication between the main air supply space and the outer gas chamber. Have been.
そして、 チャージ口より気体のチャージが行われると、 先ず最初、 チャージ された気体は、 内側給気路を介して内側気体室へと導かれる。  When the gas is charged from the charging port, first, the charged gas is guided to the inner gas chamber through the inner air supply passage.
その後、 主給気空間の圧力により密閉部材に作用する付勢手段の付勢力とは 反対方向の力 (F 1) と、 付勢手段の付勢力 (F 2) と外側気体室の圧力によ り密閉部材を給気孔へ移動させようとする力 (F 3) とを合わせた合力 (F 2 + F 3) とのバランスが崩れ、 力 (F 1 ) が合力 (F 2 + F 3) よりも大きく なると、 密閉部材は第 2の位置に移動し、 主給気空間と外側気体室との連通が 解放され、 外側給気室へも給気が行われる。  Then, the force (F1) in the opposite direction to the urging force of the urging means acting on the sealing member by the pressure of the main air supply space, and the urging force (F2) of the urging means and the pressure of the outer gas chamber are generated. The balance between the combined force (F 2 + F 3) and the combined force (F 2 + F 3) that attempts to move the sealing member to the air supply hole is lost, and the force (F 1) is greater than the combined force (F 2 + F 3) When the height increases, the sealing member moves to the second position, communication between the main air supply space and the outer gas chamber is released, and air is also supplied to the outer air supply chamber.
チャージを続けると徐々に、 外側給気路内の圧力が上がり、 力 (F 3) も徐 々に高くなる。 そして合力 (F 2 +F 3) が力 (F 1) よりも大きくなると、 密閉部材は第 2の位置から第 1の位置へと移動し、 付勢手段の付勢力の作用に よって主給気空間よりも低い圧力で外側気体室へのチャージが自動的に完了す る。  As the charging continues, the pressure in the outer air supply passage gradually increases, and the force (F3) gradually increases. When the resultant force (F 2 + F 3) becomes larger than the force (F 1), the sealing member moves from the second position to the first position, and the main air supply is performed by the action of the urging force of the urging means. The charging of the outer gas chamber is completed automatically at a pressure lower than the space.
一方、 内側気体室への給気は、 さらにチャージを続けることにより主給気空 間と同じ圧力まで高めることができる。  On the other hand, the air supply to the inner gas chamber can be increased to the same pressure as the main air supply space by continuing to charge.
このようにして請求項 2に記載の安全タイヤ用バルブば、 外側気体室への給 気を自動的に完了させることができると共に、 内側気体室内の圧力を外側気体 室内の圧力よりも自動的に高い圧力にすることができる。  In this way, with the valve for a safety tire according to claim 2, the air supply to the outer gas chamber can be automatically completed, and the pressure in the inner gas chamber can be automatically made higher than the pressure in the outer gas chamber. High pressure can be achieved.
なお、 内側気体室と外側気体室内の圧力差は、 付勢手段の付勢力により調整 することができる。  The pressure difference between the inner gas chamber and the outer gas chamber can be adjusted by the urging force of the urging means.
したがって、 請求項 2に記載の安全タイヤ用バルブは、 外側気体室への給気 を自動的に完了させることができると共に、 内側気体室内の圧力を外側気体室 内の圧力よりも自動的に高い圧力にすることができる、 という優れた効果を有 する。  Therefore, the safety tire valve according to claim 2 can automatically complete the supply of the air to the outer gas chamber, and the pressure in the inner gas chamber is automatically higher than the pressure in the outer gas chamber. It has an excellent effect that pressure can be applied.
請求項 3に記載の発明は、 請求項 2に記載の安全タイヤ用バルブにおいて、 前記ハウジングは、 一端がリム外側に露出し、 他端がリム内側に露出する中空 ステムと、 前記中空ステム内に軸方向にスライ ド可能に配置され、 一端が大気 側に連通可能とされ他端が前記主給気空間に連通するチャージ空間を有するコ ァハウジングと、 を備え、 前記コアハウジングの主給気空間側の端部には押圧 部が設けられ、 前記押圧部は、 前記コアハウジングの給気孔側への軸方向移動 に伴い、 前記給気孔を挿通して前記密閉部材を押圧し、 前記密閉部材を前記第The invention according to claim 3 is the safety tire valve according to claim 2, wherein the housing has one end exposed to the outside of the rim and the other end exposed to the inside of the rim. A stem, and a core housing having a charge space which is disposed in the hollow stem so as to be capable of sliding in the axial direction, one end of which is capable of communicating with the atmosphere side, and the other end of which has a charge space which communicates with the main air supply space. A pressing portion is provided at an end of the core housing on the side of the main air supply space, and the pressing portion is inserted through the air supply hole with the axial movement toward the air supply hole side of the core housing, so that the sealing member is provided. Pressing the sealing member to the
2の位置へ移動させて前記給気孔を開口させ、 前記主給気空間と前記外側給気 路とを連通させる、 ことを特徴としている。 2. The air supply hole is moved to the position 2 to open the air supply hole, and the main air supply space and the outside air supply passage are communicated with each other.
次に、 請求項 3に記載の安全タイヤ用バルブの作用を説明する。  Next, the operation of the safety tire valve according to claim 3 will be described.
請求項 3に記載の安全タィャ用バルブによれば、 コアハウジングの端部に設 けられた押圧部が、 コアハウジングの軸方向の移動に伴って密閉部材を押圧し 、 密閉部材を第 2の位置に移動させて給気孔を開口させることができる。 このように、 コアハウジングを移動させることによって、 タイヤ外側のチヤ ージロと外側気体室との連通を解放させることができるので、 請求項 1で説明 したように、 内側給気路密閉手段によって、 大気側及び外側気体室と、 内側気 体室との連通を密閉させると、 タイャの外側気体室内の圧力を容易に計測する ことが可能となる。  According to the safety tyre valve of the third aspect, the pressing portion provided at the end of the core housing presses the sealing member as the core housing moves in the axial direction, and the sealing member is moved to the second position. The air supply hole can be opened by moving to the position. In this way, by moving the core housing, the communication between the tire outside the tire and the outside gas chamber can be released. By closing the communication between the side and outer gas chambers and the inner gas chamber, the pressure in the outer gas chamber of the tire can be easily measured.
また、 この状態では、 タイヤの外側気体室内のみに気体をチャージすること もできる。  In this state, the gas can be charged only in the gas chamber outside the tire.
したがって、 請求項 3に記載の安全タイヤ用バルブは、 コアハウジングの移 動によって、 タイヤの外側気体室内の圧力を容易に計測することが可能となり 、 また、 タイヤの外側気体室内のみに気体をチャージすることもできる、 とい う優れた効果を有する。  Therefore, in the safety tire valve according to claim 3, it is possible to easily measure the pressure in the gas chamber outside the tire by moving the core housing, and to charge the gas only to the gas chamber outside the tire. It has an excellent effect that it can be performed.
請求項 4に記載の発明は、 請求項 1乃至請求項 3の何れか 1項に記載の安全 タイヤ用パルプにおいて、 前記内側給気路密閉手段は、 前記コアハウジングの 外周面に設けられたシール手段を有し、 前記シール手段は、 前記コアハウジン グの移動と共に前記中空ステムの内周面に密着して前記外側給気路と前記内側 給気路との連通を阻止する閉位置と、 前記中空ステムの内周面から離間して前 記外側給気路と前記内側給気路とを連通させる開位置と、 の間を往復移動可能 とする、 ことを特徴としている。 次に、 請求項 4に記載の安全タイヤ用バルブの作用を説明する。 請求項 4に記載の安全タイヤ用バルブによれば、 コアハウジングの移動によ り、 コアハウジングの外周面に設けたシール手段と中空ステムの内周面とが密 着あるいは離脱し、 このような簡易な構造によって、 外側給気路と内側給気路 との連通が遮断あるいは開放される。 The invention according to claim 4 is the pulp for a safety tire according to any one of claims 1 to 3, wherein the inner air supply passage sealing means is a seal provided on an outer peripheral surface of the core housing. A sealing position, wherein the sealing means is in close contact with the inner peripheral surface of the hollow stem with movement of the core housing to prevent communication between the outer air supply passage and the inner air supply passage; And an open position for communicating the outer air supply path and the inner air supply path apart from the inner peripheral surface of the stem, and reciprocating between the open position and the open air supply path. Next, the operation of the safety tire valve according to claim 4 will be described. According to the valve for a safety tire according to the fourth aspect, the movement of the core housing causes the sealing means provided on the outer peripheral surface of the core housing to adhere or separate from the inner peripheral surface of the hollow stem. With a simple structure, communication between the outer air supply passage and the inner air supply passage is cut off or opened.
したがって、 請求項 4に記載の安全タイヤ用バルブは、 簡易な構造によって Therefore, the safety tire valve according to claim 4 has a simple structure.
、 外側給気路と内側給気路との連通を遮断あるいは開放できる、 という優れた 効果を有する。 However, it has an excellent effect that the communication between the outer air supply passage and the inner air supply passage can be blocked or opened.
請求項 5に記載の発明は、 請求項 4に記載の安全タイヤ用バルブにおいて、 前記コアハウジングと前記中空ステムは、 前記コアハウジングの前記中空ステ ムに対する軸方向で且つ反リム側の移動を規制すると共に、 前記シール手段を 前記開位置に位置させる第 1位置決め手段と、 前記コアハウジングの前記中空 ステムに対する軸方向で且つリム側の移動を規制すると共に、 前記シール手段 を前記閉位置に位置させる第 2位置決め手段と、 を有することを特徴としてい る。  According to a fifth aspect of the present invention, in the safety tire valve according to the fourth aspect, the core housing and the hollow stem restrict movement of the core housing in the axial direction and the opposite rim side with respect to the hollow stem. First positioning means for positioning the sealing means at the open position; and restricting axial movement of the core housing with respect to the hollow stem on the rim side, and positioning the sealing means at the closed position. And second positioning means.
次に、 請求項 5に記載の安全タイヤ用バルブの作用を説明する。  Next, the operation of the safety tire valve according to claim 5 will be described.
請求項 5に記載の安全タイヤ用パルプによれば、 第 1位置決め手段及ぴ第 2 位置決め手段により、 作業者はシール手段の開閉位置を容易に且つ確実に確認 することができる。  According to the pulp for a safety tire according to the fifth aspect, the first positioning means and the second positioning means allow the operator to easily and reliably confirm the open / close position of the sealing means.
これによつて、 チャージ口から内側気体室への連通の解放及び遮断を確実な ものとすることができる。  Thus, release and cutoff of communication from the charge port to the inner gas chamber can be ensured.
また、 コアハウジングが中空ステムに対する軸方向で且つ反リム側への移動 を規制されているため、 コアハウジングが中空ステムより抜け出ることを防止 することができる。  In addition, since the movement of the core housing in the axial direction with respect to the hollow stem and on the side opposite to the rim is restricted, the core housing can be prevented from falling out of the hollow stem.
したがって、 請求項 5に記載の安全タイヤ用バルブは、 作業者がシール手段 の開閉位置を容易に且つ確実に確認することができ、 チャージ口から内側気体 室への連通の解放及び遮断を確実なものとすることができる、 という優れた効 果を有する。 また、 コアハウジングが中空ステムより抜け出ることを防止する ことができる。 請求項 6に記載の発明は、 請求項 5に記載の安全タイャ用バルブにおいて、 前記コアハウジングが前記第 2位置決め手段により前記中空ステムに対する軸 方向で且つリム側への移動を規制された位置にあるとき、 前記押圧部が前記密 閉部材を押圧して前記給気孔を開口させている、 ことを特徴としている。 Therefore, the safety tire valve according to claim 5 allows the operator to easily and reliably confirm the open / close position of the sealing means, and to reliably release and shut off the communication from the charge port to the inner gas chamber. It has an excellent effect that it can be Further, it is possible to prevent the core housing from coming out of the hollow stem. The invention according to claim 6 is the valve for a safety tire according to claim 5, wherein the core housing is located at a position where the movement to the rim side in the axial direction with respect to the hollow stem is regulated by the second positioning means. At one time, the pressing portion presses the hermetically closed member to open the air supply hole.
次に、 請求項 6に記載の安全タイヤ用バルブの作用を説明する。  Next, the operation of the safety tire valve according to claim 6 will be described.
コアハウジングが第 2位置決め手段により中空ステムに対する軸方向で且つ リム側への移動を規制された位置にあるとき、 押圧部は密閉部材を押圧して給 気孔を開口させる。  When the core housing is at the position where the movement to the rim side in the axial direction with respect to the hollow stem is restricted by the second positioning means, the pressing portion presses the sealing member to open the air supply hole.
したがって、 作業者はタイヤの外側から外側気体室の独立した圧力 (所謂空 気圧) を測定することが可能となる。 (シール手段が閉位置に位置してタイヤの 外側と内側気体室との連通が遮断されると共に、) 給気穴は開口されてタイヤの 外側と外側気体室との連通は解放された状態となる。  Therefore, the operator can measure the independent pressure (so-called air pressure) of the outer gas chamber from outside the tire. (While the sealing means is located at the closed position, the communication between the outside of the tire and the inside gas chamber is cut off.) The air supply hole is opened and the communication between the outside of the tire and the outside gas chamber is released. Become.
したがって、 請求項 6に記載の安全タイヤ用バルブは、 外側気体室の独立し た圧力 (所謂空気圧) を測定することが可能となる、 という優れた効果を有す る。  Therefore, the safety tire valve according to claim 6 has an excellent effect that the independent pressure (so-called air pressure) of the outer gas chamber can be measured.
請求項 7に記載の発明は、 請求項 4乃至請求項 6の何れか 1項に記載の安全 タイヤ用バルブにおいて、 前記シール手段が開位置にあるときには内圧チヤ一 ジ用ノズルと前記チャージ口との係合を可能とし、 前記シール手段が閉位置に あるときには内圧チャージ用ノズルと前記チヤージ口との係合を阻止する内圧 充填規制手段を、 有することを特徴としている。  The invention according to claim 7 is the valve for a safety tire according to any one of claims 4 to 6, wherein when the sealing means is at the open position, the internal pressure charging nozzle and the charge port are connected to each other. And an internal pressure charging restricting means for preventing the internal pressure charging nozzle from engaging with the charge port when the sealing means is in the closed position.
次に、 請求項 7に記載の安全タイヤ用バルブの作用を説明する。  Next, the operation of the safety tire valve according to claim 7 will be described.
内圧充填規制手段は、 シール手段が開位置にあるときには内圧チャージ用ノ ズルとチャージ口との係合が可能となるのでチャージが可能となり、 シール手 段が閉位置にあるときには内圧チャージ用ノズルと前記チャージ口との係合が 阻止されるのでチャージが不可能となる。  When the sealing means is at the open position, the internal pressure charging nozzle can engage with the internal pressure charging nozzle and the charging port so that charging can be performed, and when the sealing means is at the closed position, the internal pressure charging nozzle is connected to the internal pressure charging nozzle. Since the engagement with the charging port is prevented, charging becomes impossible.
通常は、 内側気体室と外側気体室とに気体が充填され、 且つ内側気体室の圧 力を外側気体室の圧力よりも所定の値だけ高く設定して使用するため、 外側気 体室のみのチャージが可能とするシール手段が閉位置では、 内圧充填規制手段 は、 内圧チャージ用ノズルとチャージ口との係合を阻止する。 したがって、 請求項 7に記載の安全タイヤ用バルブは、 外側気体室のみのチ ヤージを阻止できる、 という優れた効果を有する。 Normally, gas is filled in the inner gas chamber and the outer gas chamber, and the pressure of the inner gas chamber is set at a predetermined value higher than the pressure of the outer gas chamber. When the sealing means capable of charging is in the closed position, the internal pressure charging restricting means prevents engagement between the internal pressure charging nozzle and the charging port. Therefore, the safety tire valve according to claim 7 has an excellent effect that the charge of only the outer gas chamber can be prevented.
請求項 8に記載の発明は、 請求項 1乃至請求項 Ίの何れか 1項に記載の安全 タイヤ用バルブにおいて、 前記連通阻止手段の作動を規制するロック手段を有 する、 ことを特徴としている。  The invention according to claim 8 is the valve for a safety tire according to any one of claims 1 to 3, characterized in that the valve has a lock means for regulating the operation of the communication blocking means. .
次に、 請求項 8に記載の安全タイヤ用バルブの作用を説明する。  Next, the operation of the safety tire valve according to claim 8 will be described.
走行時には、 内側給気路と外側給気路との連通を阻止し、 パンク等により外 側気体室の内圧が低下したときにチューブを膨張可能としなければならない。  During traveling, it is necessary to prevent communication between the inner air supply passage and the outer air supply passage, and to make the tube expandable when the internal pressure of the outer gas chamber decreases due to puncture or the like.
したがって、 走行に供する場合には、 内側給気路と外側給気路との連通を阻 止した状態で、 口ック手段を用いて連通阻止手段の作動を規制する。  Therefore, when the vehicle is used for traveling, the operation of the communication blocking means is regulated by using the hook means while the communication between the inside air supply path and the outside air supply path is blocked.
したがって、 請求項 8に記載の安全タイヤ用バルブは、 走行に適した状態、 即ち、 内側給気路と外側給気路との連通を阻止した状態で連通阻止手段の作動 を規制することができる、 という優れた効果を有する。  Therefore, the safety tire valve according to claim 8 can regulate the operation of the communication blocking means in a state suitable for traveling, that is, in a state where communication between the inner air supply path and the outer air supply path is blocked. It has an excellent effect.
請求項 9に記載の発明は、 請求項 2乃至請求項 8の何れか 1項に記載の安全 タイヤ用バルブにおいて、 前記密閉部材と前記付勢手段は、 バルブコアによつ て構成されている、 ことを特徴としている。  According to a ninth aspect of the present invention, in the safety tire valve according to any one of the second to eighth aspects, the sealing member and the biasing unit are configured by a valve core. It is characterized by:
次に、 請求項 9に記載の安全タイヤ用バルブの作用を説明する。  Next, the operation of the safety tire valve according to claim 9 will be described.
請求項 9に記載の安全タイヤ用バルブによれば、 密閉手段及び付勢手段がバ ルブコアによつて構成されているため、 簡易な構造にて外側気体室への給気を 行うことができる。  According to the safety tire valve of claim 9, since the sealing means and the urging means are constituted by the valve core, it is possible to supply air to the outer gas chamber with a simple structure.
したがって、 請求項 9に記載の安全タイヤ用バルブは、 簡易な構造にて外側 気体室への給気を行うことができる、 という優れた効果を有する。 また、 バル ブコアは、 市販品を用いることもできる。  Therefore, the safety tire valve according to claim 9 has an excellent effect that air can be supplied to the outer gas chamber with a simple structure. A commercially available valve core can also be used.
請求項 1 0に記載の二重構造の安全タイヤ用チューブは、 請求項 1乃至請求 項 9の何れか 1項に記載の安全タイヤ用バルブを有することを特徴としている 次に、 請求項 1 0に記載の二重構造の安全タイヤ用チューブの作用を説明す る。  A safety tire tube having a double structure according to claim 10 includes the safety tire valve according to any one of claims 1 to 9. Next, claim 10. The operation of the double-layered safety tire tube described in (1) will be described.
請求項 1 0に記載の二重構造の安全タイヤ用チューブは、 請求項 1乃至請求 項 9の何れか 1項に記載の安全タイヤ用バルブを有しているので、 リムホイ一 ルにタイヤと共に装着した場合、 安全タイャ用パルプから通常通り気体を供給 するのみで、 内側気体室と外側気体室とに気体を供給することができ、 内側気 体室の内圧を外側気体室の内圧を自動的に高く設定することができる。 The double-layered safety tire tube according to claim 10 is the same as the claim 1 or claim 2. As it has the safety tire valve described in any one of Item 9, when it is installed together with the tire on the rim wheel, only the gas is supplied from the safety tire pulp as usual, and the inner gas chamber and the outer Gas can be supplied to the gas chamber and the internal pressure of the inner gas chamber can be automatically set higher than the internal pressure of the outer gas chamber.
したがって、 請求項 1 0に記載の二重構造の安全タイヤ用チューブは、 リム ホイールにタイヤと共に装着した場合、 安全タイャ用パルプから通常通り気体 を供給するのみで、 内側気体室と外側気体室とに気体を供給することができ、 内側気体室の内圧を外側気体室の内圧を自動的に高く設定することができる、 という優れた効果を有する。  Therefore, when the safety tire tube according to claim 10 is mounted together with the tire on the rim wheel, the safety tire tube according to claim 10 only supplies gas from the safety tire pulp as usual, and the inner gas chamber and the outer gas chamber are not connected to each other. And the internal pressure of the inner gas chamber can be automatically set higher than the internal pressure of the outer gas chamber.
請求項 1 1に記載の安全タイヤ ' リム組立体は、 リムホイールに、 タイヤと 、 請求項 1 0に記載の二重構造の安全タイヤ用チューブとが装着されている、 ことを特徴としている。  The rim assembly for a safety tire according to claim 11 is characterized in that a tire and a tube for a safety tire having a double structure according to claim 10 are mounted on a rim wheel.
次に、 請求項 1 1に記載の安全タイヤ · リム組立体の作用を説明する。 請求項 1 1に記載の安全タイヤ ' リム組立体は、 リムホイールに、 タイヤと 、 請求項 1 0に記載の二重構造の安全タイヤ用チューブとが装着されているの で、 安全タイヤ用バルブから通常通り気体を供給するのみで、 内側気体室と外 側気体室とに気体を供給することができ、 内側気体室の内圧を外側気体室の内 圧を自動的に高く設定することができる。  Next, the operation of the safety tire / rim assembly according to claim 11 will be described. Since the tire and the double-layered safety tire tube according to claim 10 are mounted on the rim wheel, the safety tire according to claim 11 is a valve for a safety tire. The gas can be supplied to the inner gas chamber and the outer gas chamber only by supplying gas as usual from, and the internal pressure of the inner gas chamber can be automatically set to be higher than that of the outer gas chamber. .
したがって、 請求項 1 1に記載の安全タイヤ · リム組立体は、 安全タイヤ用 バルブから通常通り気体を供給するのみで、 内側気体室と外側気体室とに気体 を供給することができ、 内側気体室の内圧を外側気体室の内圧を自動的に高く 設定することができる、 という優れた効果を有する。 図面の簡単な説明 図 1は、 第 1の実施形態に係る二重構造のタイヤ ' リム組立体の断面図であ る。  Therefore, the safety tire / rim assembly according to claim 11 can supply gas to the inner gas chamber and the outer gas chamber only by supplying gas from the valve for the safety tire as usual, and It has the excellent effect that the internal pressure of the outer gas chamber can be automatically set higher than the internal pressure of the chamber. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a tire / rim assembly having a double structure according to a first embodiment.
図 2は、 バルブのチャージ口側からみた上面図である。  FIG. 2 is a top view as seen from the charge port side of the valve.
図 3は、 バルブの走行ポジションでの断面図である。 図 4は、 バルブの密閉部材付近の拡大断面図である。 FIG. 3 is a sectional view of the valve in the traveling position. FIG. 4 is an enlarged sectional view of the vicinity of a sealing member of the valve.
図 5は、 図 4の 5— 5線断面図である。 FIG. 5 is a sectional view taken along line 5-5 in FIG.
図 6は、 バルブコアが閉じた状態の断面図である。 FIG. 6 is a cross-sectional view showing a state where the valve core is closed.
図 7は、 バルブコアが開いた状態の断面図である。 FIG. 7 is a sectional view showing a state where the valve core is open.
図 8 (A) は、 コアハウジングの下端付近の斜視図である。 FIG. 8A is a perspective view near the lower end of the core housing.
図 8 ( B ) は、 コアハウジングの下端付近の一部断面図である。 FIG. 8B is a partial cross-sectional view near the lower end of the core housing.
図 9は、 バルブの充填ポジションでの断面図である。 FIG. 9 is a cross-sectional view of the valve at the filling position.
図 1 0は、 パルプの底面図である。 FIG. 10 is a bottom view of the pulp.
図 1 1は、 バルブのチャージ中での断面図である。 FIG. 11 is a cross-sectional view of the valve during charging.
図 1 2は、 密閉部材の変形例の斜視図である。 FIG. 12 is a perspective view of a modification of the sealing member.
図 1 3は、 密閉部材の他の変形例の斜視図である。 FIG. 13 is a perspective view of another modification of the sealing member.
図 1 4は、 第 2の実施形態に係るバルブの充填ポジションでの断面図である 図 1 5は、 第 2の実施形態に係るバルブの走行ポジションでの断面図である 図 1 6は、 第 3の実施形態に係るバルブの密閉部材付近の拡大断面図である 図 1 7は、 密閉部材及び板ばねの上面図である。 FIG. 14 is a cross-sectional view of the valve according to the second embodiment at the filling position. FIG. 15 is a cross-sectional view of the valve according to the second embodiment at the running position. FIG. FIG. 17 is an enlarged sectional view of the vicinity of a sealing member of the valve according to the third embodiment. FIG. 17 is a top view of the sealing member and a leaf spring.
図 1 8は、 第 4の実施形態に係るバルブの充填ポジションでの断面図である 図 1 9は、 第 4の実施形態に係るバルブの走行ポジションでの断面図である 図 2 0は、 第 5の実施形態に係るバルブの走行ポジションでの断面図である 図 2 1は、 ス トツバの斜視図である。 FIG. 18 is a cross-sectional view of the valve according to the fourth embodiment at the filling position. FIG. 19 is a cross-sectional view of the valve according to the fourth embodiment at the running position. FIG. 21 is a cross-sectional view of the valve according to the fifth embodiment at a traveling position. FIG. 21 is a perspective view of a stop.
図 2 2は、 第 5の実施形態に係るパルプの充填ポジションでの断面図である 図 2 3は、 第 6の実施形態に係るパルプの走行ポジションでの断面図である 図 2 4は、 図 2 3に示すバ プの 2 4— 2 4線断面図である。 FIG. 22 is a cross-sectional view at a pulp filling position according to the fifth embodiment. FIG. 23 is a cross-sectional view at a pulp running position according to the sixth embodiment. FIG. 24 is a cross-sectional view of the wrap shown in FIG. 23 taken along line 24-24.
図 2 5は、 第 7の実施形態に係るパルプの充填ポジションでの断面図である 図 2 6は、 溝の展開図である。  FIG. 25 is a cross-sectional view at a pulp filling position according to the seventh embodiment. FIG. 26 is a developed view of a groove.
図 2 7は、 第 7の実施形態に係るバルブの走行ポジションでの断面図である 図 2 8は、 従来のバルブの断面図である。 発明を実施するための最良の形態 [第 1の実施形態]  FIG. 27 is a cross-sectional view of the valve according to the seventh embodiment in a traveling position. FIG. 28 is a cross-sectional view of a conventional valve. BEST MODE FOR CARRYING OUT THE INVENTION [First Embodiment]
以下、 本発明の第 1の実施形態を図 1乃至図 1 2に基づいて説明する。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
図 1は、 本実施例の安全タイヤ用バルブを取り付けた二重構造のタイヤの断 面を示す。  FIG. 1 shows a cross section of a double-structure tire to which the safety tire valve of the present embodiment is attached.
この二重構造のタイヤ ' リム組立体 8は、 車輪用のリム 1 0の外周面に嵌合 したチューブ 1 1と、 そのチューブ 1 1の外周を覆うタイヤ 1 2との間に空間 を設けて、 そのタイヤ 1 2の一対の内周縁を、 リム 1 0に密着させた構造をな す。  The tire rim assembly 8 having the double structure has a space between the tube 11 fitted on the outer peripheral surface of the wheel rim 10 and the tire 12 covering the outer periphery of the tube 11. The tire 12 has a structure in which a pair of inner peripheral edges of the tire 12 are brought into close contact with the rim 10.
これにより、 リム 1 0とタイヤ 1 2とによって閉塞された外側気体室 1 3の 内側に、 チューブ 1 1にて閉塞された内側気体室 1 4が形成されている。  Thus, an inner gas chamber 14 closed by the tube 11 is formed inside the outer gas chamber 13 closed by the rim 10 and the tire 12.
リム 1 0の外周面の幅方向 (図 1の左右方向) のうち、 チューブ 1 1が嵌合 された中間部分は段付き状に陥没しており、 そのリム 1 0の段差部 1 0 aに形 成された貫通穴 1 0 bに本発明に係る安全タイヤ用パルプ 2 0 (以下、 端に、 Γ パルプ 2 0」 という) が取付けられている。  In the width direction of the outer peripheral surface of the rim 10 (the left-right direction in FIG. 1), an intermediate portion where the tube 11 is fitted is depressed in a stepped shape, and the rim 10 has a stepped portion 10a. The pulp 20 for a safety tire according to the present invention (hereinafter, referred to as “pulp 20” at the end) is attached to the formed through hole 10b.
図 2に図 1の A方向矢視図、 図 3に図 2の B— B線断面図を示す。  FIG. 2 is a view taken in the direction of arrow A in FIG. 1, and FIG. 3 is a sectional view taken along line BB in FIG.
バルブ 2 0の本体を形成するハゥジング 2 1は、 図 3の上下方向に伸びる金 属製の中空ステム 2 4と、 中空ステム 2 4に揷通される金属製のコアハウジン グ 2 5より構成されている。  The housing 21 forming the body of the valve 20 is composed of a metal hollow stem 24 extending vertically in FIG. 3 and a metal core housing 25 passed through the hollow stem 24. I have.
本実施例の中空ステム 2 4は、 第 1中空ステム 2 2と第 2中空ステム 2 3に よって構成され、 第 1中空ステム 2 2に形成された雌螺子 2 6に第 2中空ステ ム 2 3の雄螺子 2 7が螺合して第 1中空ステム 2 2と第 2中空ステム 2 3とが 一体化されている。 The hollow stem 24 of the present embodiment is composed of a first hollow stem 22 and a second hollow stem 23. The external thread 27 of the second hollow stem 23 is screwed into the female screw 26 formed in the first hollow stem 22 to form the first hollow stem 22 and the second hollow stem 23. Are integrated.
なお、 第 1中空ステム 2 2と第 2中空ステム 2 3との間に配置された〇リン グ 3 0により、 第 1中空ステム 2 2と第 2中空ステム 2 3 との間の気密性が確 保されている。  The airtightness between the first hollow stem 22 and the second hollow stem 23 is ensured by the ring 30 disposed between the first hollow stem 22 and the second hollow stem 23. Is maintained.
第 1中空ステム 2 2は、 リム 1 0の貫通孔 1 0 bに内側の方、 即ち外側気体 室 1 3の方より揷入されている。  The first hollow stem 22 is inserted into the through hole 10 b of the rim 10 from the inner side, that is, from the outer gas chamber 13.
そして、 第 1中空ステム 2 2に形成された段差面 2 2 aが、 リム 1 0の貫通 孔 1 0 bの周縁付近に突き当てられ、 リム 1 0の外側 (大気側) から、 ヮッシ ャ 2 8と共にナツト 2 9を揷通して第 1中空ステム 2 2の外周面に形成された 雄螺子 2 2 cにナット 2 9を螺合することで、 中空ステム 2 1がリム 1 0に固 定されている。  Then, the step surface 22 a formed in the first hollow stem 22 abuts near the periphery of the through hole 10 b of the rim 10, and from the outside (atmosphere side) of the rim 10, The hollow stem 21 is fixed to the rim 10 by screwing the nut 29 with the male screw 22 c formed on the outer peripheral surface of the first hollow stem 22 through the nut 29 together with the nut 8. ing.
なお、 第 1中空ステム 2 2の段差面 2 2 aには Oリング 2 2 bが配設されて おり、 第 1中空ステム 2 2とリム 1 0との間の気密性が確保されている。 第 1中空ステム 2 2には、 基端部側の外周面に金属リング 3 3が螺着されて いる。  An O-ring 22 b is provided on the step surface 22 a of the first hollow stem 22 to ensure airtightness between the first hollow stem 22 and the rim 10. The first hollow stem 22 has a metal ring 33 screwed to the outer peripheral surface on the base end side.
なお、 第 1中空ステム 2 2と金属リング 3 3との間に配置された Oリング 3 3 aにより、 第 1中空ステム 2 2と金属リング 3 3との間の気密性が確保され ている。  The airtightness between the first hollow stem 22 and the metal ring 33 is ensured by the O-ring 33a disposed between the first hollow stem 22 and the metal ring 33.
金属リング 3 3の外周には、 径方向外側に向けて張り出したスパッツ (ゴム 座) 3 2が固着されている。  Spats (rubber seats) 32 projecting radially outward are fixed to the outer periphery of the metal ring 33.
スパッツ 3 2は円形をなし、 中心部から外側に向けて肉薄になっている。 そして、 スパッツ 3 2は、 チューブ 1 1に形成した孔部 1 1 aの周縁部に接 着剤で固着されている。  The spats 32 have a circular shape, and become thinner from the center toward the outside. The spats 32 are fixed to the periphery of the hole 11 a formed in the tube 11 with an adhesive.
これにより、 第 1中空ステム 2 2の基端部が内側気体室 1 4内に臨んだ状態 になっている。  As a result, the base end of the first hollow stem 22 faces the inside of the inner gas chamber 14.
第 1中空ステム 2 2内には、 第 1中空ステム 2 2の軸方向に延びた主給気路 3 5 aが軸芯部分に形成されている。 図 4に示すように、 主給気路 3 5 aの図面にて下方側には、 主給気路 3 5 a の内壁より内側に突出した突出壁 3 6が形成され、 突出壁 3 6の中央には給気 孔 3 7が形成されている。 In the first hollow stem 22, a main air supply passage 35 a extending in the axial direction of the first hollow stem 22 is formed in an axial core portion. As shown in FIG. 4, a projecting wall 36 projecting inward from the inner wall of the main air supply passage 35a is formed below the main air supply passage 35a in the drawing. An air supply hole 37 is formed in the center.
また、 突出壁 3 6において、 給気孔 3 7の周縁部には図面にて下方側に突出 する円筒状の被当接部 3 6 aが形成されている。  In the protruding wall 36, a cylindrical abutting portion 36a is formed at the periphery of the air supply hole 37 so as to protrude downward in the drawing.
さらに突出壁 3 6の図面にて下方側には、 主給気路 3 5 aとは給気孔 3 7を 介して連通する円柱状の主給気室 3 5 bが形成されている。  Further, a cylindrical main air supply chamber 35b communicating with the main air supply passage 35a through an air supply hole 37 is formed below the protruding wall 36 in the drawing.
主給気室 3 5 bの図面にて下端部側には、 シール剤または接着剤等を塗布し た螺子 3 4が螺合されており、 主給気室 3 5 bを閉塞している。  In the drawing of the main air supply chamber 35b, a screw 34 coated with a sealant or an adhesive is screwed to the lower end side to close the main air supply chamber 35b.
主給気室 3 5 bの内部には、 金属製の密閉部材 3 8が配設されている。 本実施例では、 この下方側の主給気室 3 5 bが、 本発明のいうところの密閉 部材 3 8の移動する移動空間となっている。  Inside the main air supply chamber 35b, a metal sealing member 38 is provided. In the present embodiment, the lower main air supply chamber 35b is a moving space in which the sealing member 38 according to the present invention moves.
図 4、 及び図 5に示すように、 密閉部材 3 8の一端側、 即ち、 給気孔 3 7側 には、 円形の凹部 3 8 cが形成されており、 この凹部 3 8 cに円板状のゴム部 材 3 8 aが固着されている。  As shown in FIGS. 4 and 5, on one end side of the sealing member 38, that is, on the air supply hole 37 side, a circular concave portion 38c is formed. The rubber member 38a is fixed.
密閉部材 3 8は六角柱状をなし、 円柱状の主給気室 3 5 との間に複数の隙 間 3 9が形成されるようになっている。  The sealing member 38 has a hexagonal column shape, and a plurality of gaps 39 are formed between the sealing member 38 and the cylindrical main air supply chamber 35.
図 4に示すように、 密閉部材 3 8の他端側は段付き形状になっていて、 ここ に形成される段部 3 8 bと螺子 3 4との間には金属製の圧縮コイルスプリング (本発明の付勢手段) 4 0が配設されている。  As shown in FIG. 4, the other end of the sealing member 38 has a stepped shape, and a metal compression coil spring (between the stepped portion 38b formed here and the screw 34) is formed. An urging means of the present invention) 40 is provided.
圧縮コイルスプリング 4 0は、 密閉部材 3 8を被当接部 3 6 aの方向、 即ち 、 給気孔 3 7を閉じる方向に常に付勢している。  The compression coil spring 40 constantly urges the sealing member 38 in the direction of the contacted portion 36a, that is, in the direction of closing the air supply hole 37.
第ェ中空ステム 2 2には、 一端が主給気室 3 5 bに開口し、 他端が外側気体 室 1 3に開口する外側給気路 3 5 cが、 主給気室 3 5 bを中心に半径方向外側 に左右対称に二本形成されている (図 5参照。 なお、 図 3、 図 4では片側のみ 図示)。  The hollow stem 22 has an outer air supply passage 35c having one end opening to the main air supply chamber 35b and the other end opening to the outer gas chamber 13 to form the main air supply chamber 35b. Two are formed symmetrically radially outward at the center (see Fig. 5; only one side is shown in Figs. 3 and 4).
(コアハウジング)  (Core housing)
次に、 コアハウジング 2 5の構成について説明する。  Next, the configuration of the core housing 25 will be described.
図 3に示すように、 コアハウジング 2 5は、 第 2中空ステム 2 3の内周面に 形成された雌螺子 2 3 aに、 コアハウジング 2 5の外周面に形成された雄螺子 2 5 aが螺合することによって、 第 2中空ステム 2 3内に装着されている。 コアハウジング 2 5は、 コアハウジング 2 5自身が回転することによって、 雄螺子 2 5 aと雌螺子 2 3 aとの螺合が前進あるいは後退し、 第 2中空ステム 2 3に対して軸方向 (図 3において上下方向) に移動できるようになつている コアハウジング 2 5の内部にはチャージ空間 4 2が軸方向に延びて形成され 、 上端 (図 3において上方の先端) には外部 (大気) と連通するチャージ口 5 6が開口している。 As shown in FIG. 3, the core housing 25 is provided on the inner peripheral surface of the second hollow stem 23. A male screw 25 a formed on the outer peripheral surface of the core housing 25 is screwed into the formed female screw 23 a to be mounted in the second hollow stem 23. When the core housing 25 itself rotates, the engagement between the male screw 25 a and the female screw 23 a advances or retreats, and the core housing 25 moves in the axial direction with respect to the second hollow stem 23. A charge space 42 is formed in the core housing 25 so as to extend in the axial direction. The charge space 42 is formed inside the core housing 25, and the upper end (the upper end in FIG. 3) is outside (atmosphere). The charging port 56 communicating with the port is open.
チヤ一ジ空間 4 2内には、 チャージ口 5 6側にバルブコア 5 7が配設されて いる。  In the charge space 42, a valve core 57 is provided on the charge port 56 side.
(パルプコア)  (Pulp core)
バルブコア 5 7はチャージ空間 4 2とタイヤ 1 2外との連通を、 開閉可能に 密閉している。  The valve core 57 seals the communication between the charge space 42 and the outside of the tire 12 so that it can be opened and closed.
以下にバルブコア 5 7の詳細を説明する。  The details of the valve core 57 will be described below.
本実施形態のバルブコア 5 7は、 J I S (日本工業規格) に規定 (D 4 2 1 1 ) された一般的な構造をなす、 即ち、 図 6に示すように、 スリーブ (胴) 5 8に挿通したシャフト 5 9の一端側にフランジ状の弁パッキン 6 0を固定し て備え、 スリーブ 5 8内に収容したコイルスプリング 6 1にてシャフト 5 9を 一方側に付勢することで、 常には、 弁パッキン 6 0がスリーブ 5 8の一端開口 に押し付けられている。  The valve core 57 of the present embodiment has a general structure specified in JIS (Japanese Industrial Standards) (D4211), that is, as shown in FIG. A flange-shaped valve packing 60 is fixedly provided at one end of the shaft 59, and the shaft 59 is urged to one side by a coil spring 61 housed in a sleeve 58. The valve packing 60 is pressed against one end opening of the sleeve 58.
そして、 シャフト 5 9のうち、 弁パッキン 6 0と反対側から気体がチャージ されたときには、 シャフ ト 5 9の端面に受けた気圧により、 シャフ ト 5 9がコ ィルスプリング 6 1に抗して移動し、 図 7に示すように、 弁パッキン 6 0がス リーブ 5 8から離れ、 気体が図 7の二点鎖線の矢印で示すようにスリーブ 5 8 内を通過する。  When the gas is charged from the shaft 59 on the side opposite to the valve packing 60, the pressure received on the end face of the shaft 59 causes the shaft 59 to oppose the coil spring 61. The valve packing 60 moves away from the sleeve 58 as shown in FIG. 7, and the gas passes through the sleeve 58 as shown by the two-dot chain line arrow in FIG.
一方、 弁パッキン 6 0側からの圧縮気体は、 弁パッキン 6 0をスリーブ 5 8 の一端開口に押し付けるから、 スリーブ 5 8内を通過できない。  On the other hand, the compressed gas from the valve packing 60 presses the valve packing 60 against one end opening of the sleeve 58 and cannot pass through the inside of the sleeve 58.
即ち、 このバルブコア 5 7は逆止弁構造をなし、 タイヤ内への気体の移動は 許容するが、 タイヤ外への気体の移動を規制することができる。 That is, this valve core 57 has a check valve structure, and the movement of gas into the tire is Allowed, but can regulate gas movement out of the tire.
図 3に示すように、 コアハウジング 2 5の上端側外周面には雄螺子 5 3が形 成され、 バルブキャップ (図示せず) がその内周面に形成された雌螺子を螺合 させて被せられている。  As shown in FIG. 3, a male screw 53 is formed on the outer peripheral surface on the upper end side of the core housing 25, and a valve cap (not shown) is screwed with a female screw formed on the inner peripheral surface. Is covered.
バルブキヤップは、 コアハウジング 2 5内に形成されるチャージ空間 4 2を 密閉することができる。  The valve cap can seal the charge space 42 formed in the core housing 25.
図 8に示すように、 コアハウジング 2 5の下端 (図 8にて下方の端部) には 、 チャージ空間 4 2を開放する排出口 4 7が形成されている。  As shown in FIG. 8, at the lower end (the lower end in FIG. 8) of the core housing 25, a discharge port 47 for opening the charge space 42 is formed.
コアハウジング 2 5の下端には、 この排出口 4 7の周縁からコの字型の基部 4 4が起立して設けられており、 基部 4 4の先端には押圧棒 4 3 (本発明の押 圧部) が突出して形成されている。  At the lower end of the core housing 25, a U-shaped base portion 44 is provided upright from the periphery of the discharge port 47, and a pressing rod 4 3 (the pressing member of the present invention) is provided at the tip of the base portion 44. Pressure portion) is formed to protrude.
図 4に示すように、 押圧棒 4 3の外径は、 前述の給気孔 3 7の内径よりも小 さく、 押圧棒 4 3が外給気孔 3 7に揷入されると、 押圧棒 4 3と給気孔 3 7と の間に気体の通る隙間が形成されるようになつている。  As shown in FIG. 4, the outer diameter of the pressing rod 43 is smaller than the inner diameter of the above-described air supply hole 37, and when the pressing rod 43 is inserted into the outer air supply hole 37, the pressing rod 43 A gap through which gas passes is formed between the air supply hole 37 and the air supply hole 37.
図 3に示すように、 コアハウジング 2 5の図 3にて上方の外周面には、 雄螺 子 5 3の下側に把持部 5 2が形成されている。  As shown in FIG. 3, a grip portion 52 is formed below the male screw 53 on the outer peripheral surface of the upper part of the core housing 25 in FIG.
把持部 5 2は、 筋目のローレット加工 (軸方向に伸びた細い溝。 図示せず) が表面に形成され、 作業者がコアハウジング 2 5を回転させやすいようになつ ている。  The grip portion 52 has a knurling process (a thin groove extending in the axial direction; not shown) formed on the surface so that an operator can easily rotate the core housing 25.
コアハウジング 2 5は、 把持部 5 2の下端面 5 2 a力 第 2中空ステム 2 3 の上端面 2 3 bに当接して、 コアハウジング 2 5の第 1中空ステム 2 2側への 移動 (図 3にて下方への移動) が規制されるようになっている。  The core housing 25 contacts the upper end surface 23 b of the second hollow stem 23, and moves the core housing 25 toward the first hollow stem 22 side. (Downward movement in Fig. 3) is regulated.
把持部 5 2の下端面 5 2 aと第 2中空ステム 2 3の上端面 2 3 bとで、 本発 明の第 2位置決め手段を構成している。  The lower end surface 52a of the grip portion 52 and the upper end surface 23b of the second hollow stem 23 constitute second positioning means of the present invention.
そして、 図 3に示すように、 コアハウジング 2 5が第 1中空ステム 2 2側に 移動して下端面 5 2 aが上端面 2 3 bに当接しているときには、 コアハウジン グ 2 5に配設されるシール部材 4 8は、 生給気路 3 5 aを形成する第 1中空ス テム 2 2の内周面に隙間なく密接し、 主給気路 3 5 aと主給気空間 3 5 dとの 間の連通を完全に遮断すると共に、 図 4にも示すように押圧捧 4 3が前述の給 気孔 3 7を通って密閉部材 3 8のゴム部材 3 8 aを押圧し、 ゴム部材 3 8 aが 被当接部 3 6 aから離れて主給気路 3 5 aと主給気路 3 5 b との連通を解放す るようになっている。 Then, as shown in FIG. 3, when the core housing 25 moves toward the first hollow stem 22 and the lower end surface 52 a contacts the upper end surface 23 b, the core housing 25 is disposed in the core housing 25. The sealing member 48 is tightly connected to the inner peripheral surface of the first hollow stem 22 forming the raw air supply passage 35 a without any gap, and the main air supply passage 35 a and the main air supply space 35 d Communication between the power supply and the pressure supply 43 as shown in FIG. The rubber member 38 a of the sealing member 38 is pressed through the pores 37, and the rubber member 38 a is separated from the contacted part 36 a and the main air supply passage 35 a and the main air supply passage 35 It releases the communication with b.
図 3、 及び図 8に示すように、 コアハウジング 2 5の外周面には、 基部 4 4 の上側に、 シール部材保持溝 4 5、 ストッパ保持溝 4 6、 0リング保持溝 5 0 が形成されている。  As shown in FIGS. 3 and 8, a seal member holding groove 45, a stopper holding groove 46, and a 0 ring holding groove 50 are formed on the outer peripheral surface of the core housing 25 above the base 44. ing.
シール部材保持溝 4 5にはシール部材 4 8 (本発明のシール手段) が配設さ れている。  A seal member 48 (seal means of the present invention) is provided in the seal member holding groove 45.
ストッパ保持溝 4 6には C字形状の金属製のストッパ 4 9が嵌合されている また、 Oリング保持溝 5 0には〇リング 5 1が配設されており、 コアハウジ ング 2 5と第 2中空ステム 2 3との間の気密性を確保するようになつている。  A C-shaped metal stopper 49 is fitted in the stopper holding groove 46.A O-ring 51 is provided in the O-ring holding groove 50 so that the core housing 25 and the The two hollow stems 2 and 3 ensure airtightness.
Oリング保持溝 5 0は、 コアハウジング 2 5が回されて第 2中空ステム 2 3 に対して軸方向に移動をしても、 必ず第 2中空ステム 2 3内面と摺接し、 常に 気密性を確保するよう位置している。  The O-ring holding groove 50 always comes into sliding contact with the inner surface of the second hollow stem 23 even if the core housing 25 is rotated and moves axially with respect to the second hollow stem 23, so that the airtightness is always maintained. Is located to secure.
図 3、 及ぴ図 4に示すように、 第 1中空ステム 2 2の内周面において、 主給 気路 3 5 aの図面上方には、 主給気空間 3 5 dが位置している。  As shown in FIGS. 3 and 4, on the inner peripheral surface of the first hollow stem 22, a main air supply space 35 d is located above the main air supply passage 35 a in the drawing.
第 1中空ステム 2 2の内周面は段付き形状となっており、 主給気空間 3 5 d は主給気路 3 5 aよりもさらに径の大きな空間となっている。  The inner peripheral surface of the first hollow stem 22 has a stepped shape, and the main air supply space 35 d has a larger diameter than the main air supply passage 35 a.
この第 1中空ステム 2 2の内周面に形成される段部 (以下、 第 1段部 5 4と 称する) と、 第 2中空ステム 2 3の下端面 5 5との間の空間は、 前述のストツ パ 4 9が移動する空間であり、 本実施例では、 主給気空間 3 5 dが、 この空間 を兼ねた構成となっている。  The space between the step formed on the inner peripheral surface of the first hollow stem 22 (hereinafter referred to as the first step 54) and the lower end surface 55 of the second hollow stem 23 is as described above. In the present embodiment, the main air supply space 35d also serves as this space.
ストッパ 4 9はコアハウジング 2 5の軸方向の移動によって主給気空間 3 5 d内を移動して、 図 9に示すように、 下端面 5 5に当接して外側方向 (図 9に て上方向) への移動が規制されるようになっている。  The stopper 49 moves in the main air supply space 35d by the axial movement of the core housing 25, and contacts the lower end surface 55 as shown in FIG. Direction) is restricted.
なお、 ストッパ 4 9及ぴ下端面 5 5は、 本発明の第 1位置決め手段を構成す るものである。  The stopper 49 and the lower end face 55 constitute a first positioning means of the present invention.
図 9に示すように、 ストッパ 4 9が下端面 5 5に当接した位置においては、 シール部材 4 8は、 主給気路 3 5 aを形成する第 1中空ステム 2 2の内周面よ り離脱して主給気空間 3 5 dに位置し、 主給気路 3 5 aと主給気空間 3 5 dと の間の連通を解放する。 As shown in FIG. 9, at the position where the stopper 49 contacts the lower end face 55, The seal member 48 is separated from the inner peripheral surface of the first hollow stem 22 that forms the main air supply passage 35 a and is located in the main air supply space 35 d. The communication between the main air supply space 3 5 d and is released.
また、 押圧捧 4 3が給気孔 3 7より退き、 密閉部材 3 8のゴム部材 3 8 aを 押圧しないので、 ゴム部材 3 8 aが被当接部 3 6 aに密着して給気孔 3 7を閉 止する。  In addition, since the pressing member 4 3 retreats from the air supply hole 37 and does not press the rubber member 38 a of the sealing member 38, the rubber member 38 a is in close contact with the abutted portion 36 a and the air supply hole 37. Close.
図 3、 及び図 1 0に示すように、 第 1中空ステム 2 2には、 主給気路 3 5 a 及ぴ主給気室 3 5 bの径方向外側に、 軸方向に伸びる内側給気路 3 5 eが左右 対称に二本形成されている (図 3には一方のみ図示)。  As shown in FIGS. 3 and 10, the first hollow stem 22 has an inner air supply extending radially outward of the main air supply passage 35 a and the main air supply chamber 35 b. Two roads 35e are formed symmetrically (only one is shown in Fig. 3).
内側給気路 3 5 eは、 一端が第 1段部 5 4に開口して主給気空間 3 5 dに連 通しており、 他端が第 1中空ステム 2 2の下端 2 2 dに開口し、 内側気体室 1 4と連通している。  One end of the inner air supply passage 35 e is open to the first step portion 54 and communicates with the main air supply space 35 d, and the other end is open to the lower end 22 d of the first hollow stem 22. And communicates with the inner gas chamber 14.
(作用)  (Action)
本実施形態のバルブ 2 0は、 図 9に示す充填ポジシヨンと、 図 3に示す走行 ポジションとがあり、 各々作用が異なる。  The valve 20 of the present embodiment has a filling position shown in FIG. 9 and a running position shown in FIG. 3, and each has a different operation.
先ず最初に、 タイヤ, リム組立体 8に気体、 例えば空気をチャージする場合 の作用を説明する。  First, the operation of charging the tire / rim assembly 8 with gas, for example, air, will be described.
タイヤ ' リム組立体 8に空気をチャージする場合、 図示しないバルブキヤッ プをはずし、 なお且つコアハウジング 2 5を回転させて、 ストッパ 4 9が下端 面 5 5に当接する位置まで持ち上げる。  To charge the tire / rim assembly 8 with air, remove the valve cap (not shown), rotate the core housing 25, and lift the stopper 49 to a position where the stopper 49 abuts the lower end surface 55.
こうして、 コアハウジング 2 5を図 9に示す充填ポジション状態とする。 このとき、 シール部材 4 8は、 主給気路 3 5 aを形成する第 1中空ステム 2 2の内周面より離脱して主給気空間 3 5 dに位置し、 主給気路 3 5 aから主給 気空間 3 5 d、 内側給気路 3 5 eを介して内側気体室 1 4への連通を解放する また、 押圧捧 4 3が給気孔 3 7より退き、 密閉部材 3 8を押圧しない状態に なる。  Thus, the core housing 25 is brought into the filling position state shown in FIG. At this time, the seal member 48 is separated from the inner peripheral surface of the first hollow stem 22 that forms the main air supply passage 35 a and is located in the main air supply space 35 d, and the main air supply passage 35 The communication from the main air supply space 35 d to the inner gas chamber 14 through the inner air supply passage 35 e is released from a, and the pressure member 43 retreats from the air supply hole 37 to remove the sealing member 38. It will not be pressed.
次に、 図示しない給気ノズルをチャージ口 5 6に接続して空気をチャージし 始めると、 その空気圧によってバルブコア 5 7が開き、 チヤ一ジ空間 4 2内に 空気がチャージされる。 なお、 給気ノズルに圧縮空気を供給するコンプレッサ は、 本実施形態では外側気体室 1 3の内圧を 9. 5 k g/cm2にできるように 設定しておく。 Next, when an air supply nozzle (not shown) is connected to the charging port 56 to start charging air, the air pressure causes the valve core 57 to open, and the air enters the charging space 42. The air is charged. In the present embodiment, the compressor that supplies compressed air to the air supply nozzle is set so that the internal pressure of the outer gas chamber 13 can be set to 9.5 kg / cm 2 .
そして、 チャージ空間 42より、 排出口 47、 主給気路 35 a、 主給気空間 35 d、 内側給気路 35 eを介して内側気体室 14へとチャージが行われる。 なお、 主給気路 35 aの圧力が高まって、 主給気路 3 5 aの圧力により密閉 部材 38を主給気室 35 bへ押し込む方向 (図 9の下方向) の力 (F 1 :主給 気路 3 5 aの圧力 X給気孔 3 7の気体通路断面積) 力 圧縮コイルスプリング 4 0による主給気路 3 5 a側 (図 9の上方向) への付勢力 (F 2) と外側気体室 1 3の圧力により密閉部材 38を主給気路 3 5 a側 (図 9の上方向) へ移動さ せようとする力 (F 3 :外側気体室 1 3内の圧力 X給気孔 3 7の気体通路断面積 ) とを合わせた合力 (F 2 + F 3) とのバランスが崩れ、 力 (F 1 ) が合力 ( F 2 + F 3) よりも大きくなると、 密閉部材 38が図 9にて下方に移動し、 図 1 1に示す状態となる。  Then, charging is performed from the charging space 42 to the inner gas chamber 14 through the discharge port 47, the main air supply passage 35a, the main air supply space 35d, and the inner air supply passage 35e. Note that the pressure in the main air supply passage 35a increases, and the force (F1: in the downward direction in FIG. 9) in which the sealing member 38 is pushed into the main air supply chamber 35b by the pressure in the main air supply passage 35a. Pressure of main air supply line 35a X Cross-sectional area of gas passage of air supply hole 37) Force Energizing force of compression coil spring 40 on main air supply line 35a side (upward in Fig. 9) (F2) Force to move the sealing member 38 to the main air supply passage 35a side (upward in FIG. 9) by the pressure in the outer gas chamber 13 and the pressure in the outer gas chamber 13 (F3: pressure in the outer gas chamber 13 X When the force (F 1) becomes larger than the resultant force (F 2 + F 3), the sealing member 38 is closed. It moves downward in FIG. 9 and becomes the state shown in FIG.
密閉部材 38が移動することによって給気孔 3 7が開口し、 主給気室 35 b (及び隙間 3 9)、 外側給気路 35 cを介して外側気体室 1 3へとチャージが行 われる。  The air supply hole 37 is opened by the movement of the sealing member 38, and the outer gas chamber 13 is charged through the main air supply chamber 35b (and the gap 39) and the outer air supply passage 35c.
こうして、 内側気体室 14と外側気体室 1 3の両方にチャージが行われる。 徐々に外側気体室 1 3内の圧力が上昇し、 密閉部材 3 8を主給気路 3 5 a側 In this way, both the inner gas chamber 14 and the outer gas chamber 13 are charged. The pressure inside the outer gas chamber 13 gradually increases, and the sealing member 3 8 is connected to the main air supply passage 3 5a side.
(図 9の上方向) へ移動させようとする力 (F 3) と圧縮コイルスプリング 4(F3 in Fig. 9) and compression coil spring 4
0の付勢力 (F 2) との合力 (F 2 + F 3) 力 密閉部材 3 8を押し込む方向 の力 (F 1) よりも大きくなると、 密閉部材 38が被当接部 36 a側に押され(F 2 + F 3) force with the urging force (F 2) of 0 When the force (F 1) in the direction of pushing in the sealing member 3 8 becomes larger, the sealing member 38 is pushed toward the contacted portion 36 a. Is
、 ゴム部材 38 aが被当接部 3 6 aに密着して給気孔 3 7を閉じる。 そして、 外側気体室 1 3へのチャージが自動的に完了する (例えば、 トラック、 バス用 のタイヤに用いる場合は、 900 k P aで充填完了)。 The rubber member 38a is brought into close contact with the contacted part 36a, and the air supply hole 37 is closed. Then, the charging of the outer gas chamber 13 is automatically completed (for example, when used for truck and bus tires, the filling is completed at 900 kPa).
引き続き内側気体室 1 4へのチャージが続けられ、 内側気体室 14の圧力が 一定値 (例えば、 トラック、 バス用のタイヤに用いる場合は、 9 50 k P a) まで上がると、 作業者によって給気ノズルがパルプ 20から離される。  When the inner gas chamber 14 continues to be charged and the pressure in the inner gas chamber 14 rises to a certain value (for example, 950 kPa when used for truck and bus tires), the pressure is supplied by the operator. The air nozzle is separated from the pulp 20.
このように、 本実施形態のバルブ 20を用いれば、 従来のように弁の切替え を行うことなく、 外側気体室 1 3と内側気体室 1 4とに空気をチャージするこ とができ、 且つ外側気体室 1 3と内側気体室 1 4とに所定の圧力差を設けるこ とができる。 Thus, by using the valve 20 of the present embodiment, the switching of the valve is It is possible to charge the air to the outer gas chamber 13 and the inner gas chamber 14 without performing the above operation, and to provide a predetermined pressure difference between the outer gas chamber 13 and the inner gas chamber 14. it can.
ここで、 外側気体室 1 3と内側気体室 1 4と圧力差は、 圧縮コイルスプリン グ 4 0の付勢力により調整することができる。 例えば、 圧縮コイルスプリング 4 0を交換して付勢力を調整することもで、 調整螺子 3 4の位置によって圧縮 コイルスプリング 4 0の付勢力を調整することもできる。  Here, the pressure difference between the outer gas chamber 13 and the inner gas chamber 14 can be adjusted by the urging force of the compression coil spring 40. For example, by changing the compression coil spring 40 and adjusting the urging force, the urging force of the compression coil spring 40 can be adjusted according to the position of the adjusting screw 34.
なお、 さらに高い圧力でチャージを行うと、 外側気体室 1 3と内側気体室 1 4との間に所定の圧力差が設けられるように、 外側気体室 1 3と内側気体室 1 4との両方にチャージが行われる。  When charging is performed at a higher pressure, both the outer gas chamber 13 and the inner gas chamber 14 are set so that a predetermined pressure difference is provided between the outer gas chamber 13 and the inner gas chamber 14. Is charged.
なお、 チャージした空気は、 バルブコア 5 7によってタイヤ 1 2外に漏れる ことが防止される。  Note that the charged air is prevented from leaking out of the tire 12 by the valve core 57.
次に、 コアハウジング 2 5の把持部 5 2における下端面 5 2 aが第 2中空ス テム 2 3の上端面 2 3 bに当接する位置まで、 コアハウジング 2 5を回転させ て、 コアハウジング 2 5を押し込み (把持部 5 2の下端面 5 2 aを第 2中空ス テム 2 3の上端面 2 3 bに当接させる。)、 図 3に示すような走行ポジションと する。  Next, the core housing 25 is rotated until the lower end surface 52 a of the holding portion 52 of the core housing 25 comes into contact with the upper end surface 23 b of the second hollow stem 23. 5 is pushed in (the lower end surface 52 a of the gripper 52 is brought into contact with the upper end surface 23 b of the second hollow stem 23), so that the traveling position is as shown in FIG.
これにより、 押圧捧 4 3は、 コアハウジング 2 5の移動と共に、 先端の押圧 棒 4 3が給気孔 3 7を通って密閉部材 3 8のゴム部材 3 8 aを押し、 給気孔 3 7を解放し、 外側気体室 1 3とチャージ空間 4 2とを連通させる。  As a result, the pressing member 4 3 moves the core housing 2 5, and the pressing rod 4 3 at the end pushes the rubber member 3 8 a of the sealing member 3 8 through the air supply hole 37 to release the air supply hole 37. Then, the outer gas chamber 13 and the charge space 42 are communicated.
最後にバルブキヤップを付けてチャージ口 5 6を閉じて、 全てのチャージが 完了する。  Finally, attach the valve cap and close the charge port 56 to complete the charging.
このように、 本実施例によれば、 外側気体室 1 3へのチャージが完了しても 、 給気ノズルが接続されている限りは内側気体室 1 4へのチャージは行われる ため、 内側気体室 1 4の方を外側気体室 1 3よりも高い圧力に自動的にチヤ一 ジすることができる。  As described above, according to this embodiment, even if the charging of the outer gas chamber 13 is completed, the charging of the inner gas chamber 14 is performed as long as the air supply nozzle is connected. Chamber 14 can be automatically charged to a higher pressure than outer gas chamber 13.
なお、 走行ポジションでは、 コアハウジング 2 5のシール部材 4 8が、 主給 気路 3 5 aを形成する第 1中空ステム 2 2の内周面に隙間なく密接し、 主給気 路 3 5 aと主給気空間 3 5 dとの間の連通が完全に遮断される、 即ち、 外側気 体室 1 3と内側気体室 1 4との連通が完全に遮断される。 In the running position, the seal member 48 of the core housing 25 is in close contact with the inner peripheral surface of the first hollow stem 22 forming the main air supply passage 35 a without any gap, and the main air supply passage 35 a The communication between the air supply and the main air supply space 35 d is completely interrupted, that is, The communication between the body chamber 13 and the inner gas chamber 14 is completely shut off.
このため、 例えば、 タイヤ 1 2がパンク等した場合でも、 内側気体室 1 4の 内圧を保持でき、 チューブ 1 1が内側からタイヤ 1 2を保持してランフラット 走行が可能となる。  For this reason, for example, even when the tire 12 is punctured, the internal pressure of the inner gas chamber 14 can be maintained, and the tube 11 can hold the tire 12 from the inside and run flat.
ここで、 充填ポジションのまま走行すると、 振動、 衝撃等によって密閉部材 3 8が動く可能性があり、 密閉部材 3 8のゴム部材 3 8 aが被当接部 3 6 aか ら離れて内側気体室 1 4の気体が外側給気路 3 5 c、 主給気室 3 5 b、 給気孔 3 7、 主給気路 3 5 a、 主給気空間 3 5 d、 及ぴ内側給気路 3 5 eを介して外 側気体室 1 3へ流れてしまい、 内側気体室 1 4の圧力が低下する場合がある。 したがって、 内圧充填後には、 必ず走行ポジションにする必要がある。  Here, if the vehicle travels in the filling position, the sealing member 38 may move due to vibration, impact, or the like, and the rubber member 38a of the sealing member 38 is separated from the contacted part 36a and the inside gas is removed. Gas in chamber 14 is outside air supply passage 35 c, main air supply room 35 b, air supply hole 37, main air supply passage 35 a, main air supply space 35 d, and inside air supply passage 3 It may flow to the outer gas chamber 13 via 5e, and the pressure of the inner gas chamber 14 may decrease. Therefore, after filling the internal pressure, it is necessary to be in the traveling position.
なお、 外側気体室 1 3の内圧 (所謂タイヤの空気圧) をチェックする場合に は、 外側気体室 1 3の圧力のみがチャージ空間 4 2に伝達可能とされる走行ポ ジシヨンで圧力を計る。  When the internal pressure of the outer gas chamber 13 (so-called tire air pressure) is checked, the pressure is measured by a traveling position in which only the pressure of the outer gas chamber 13 can be transmitted to the charge space 42.
また、 内側気体室 1 4の内圧をチヱックしたい場合には、 密閉部材 3 8で給 気孔 3 7が閉止され、 内側気体室 1 4の圧力のみがチャージ空間 4 2に伝達可 能とされる充填ポジションで圧力を計る。  When it is desired to check the internal pressure of the inner gas chamber 14, the air supply hole 37 is closed by the sealing member 38, so that only the pressure of the inner gas chamber 14 can be transmitted to the charge space 42. Measure pressure in position.
ここで、 内圧を補充する場合には、 通常は、 必ず充填ポジションで内圧の補 充を行う。 仮に、 走行ポジションで内圧の補充を行うと、 外側気体室 1 3のみ の内圧補充となってしまい、 外側気体室 1 3と内側気体室 1 4との所定の差圧 確保が困難となる。  Here, when replenishing the internal pressure, normally, always replenish the internal pressure at the filling position. If the internal pressure is replenished at the traveling position, the internal pressure is replenished only in the outer gas chamber 13, and it becomes difficult to secure a predetermined pressure difference between the outer gas chamber 13 and the inner gas chamber 14.
次に、 内圧を抜く場合を説明する。  Next, a case where the internal pressure is released will be described.
なお、 充填ポジションでバルブコア 5 7のシャフト 5 9を押すと、 内側気体 室 1 4の空気のみが抜かれ、 外側気体室 1 3の空気は抜かれない。  When the shaft 59 of the valve core 57 is pushed at the filling position, only the air in the inner gas chamber 14 is evacuated, and the air in the outer gas chamber 13 is not evacuated.
一方、 走行ポジションでパルプコア 5 7のシャフト 5 9を押すと、 外側気体 室 1 3の空気のみが抜かれ、 内側気体室 1 4の空気が抜かれないため、 チュー ブ 1 1が膨張してしまう。  On the other hand, when the shaft 59 of the pulp core 57 is pushed in the running position, only the air in the outer gas chamber 13 is evacuated, and the air in the inner gas chamber 14 is not evacuated, so that the tube 11 expands.
なお、 本実施形態では、 円柱状の主給気室 3 5 bに六角柱状の密閉部材 3 8 を配置して、 主給気室 3 5 bと密閉部材 3 8との間に気体を通過可能とする複 数の隙間 3 9を形成したが、 図 1 2に示すように、 円柱形状の密閉部材 3 8の 外周面に軸方向に延びる溝 6 2を複数形成して気体を通過可能としても良く、 図 1 3に示すように、 円柱形状の密閉部材 3 8に密閉部材 3 8を軸方向に貫通 する小孔 6 3を複数形成して気体を通過可能としても良い。 In the present embodiment, a hexagonal column-shaped sealing member 38 is disposed in the columnar main air supply chamber 35b so that gas can pass between the main air supply chamber 35b and the sealing member 38. Were formed, but as shown in FIG. 12, the cylindrical sealing member 38 was formed. A plurality of grooves 62 extending in the axial direction may be formed on the outer peripheral surface to allow gas to pass therethrough. As shown in FIG. 13, a small sealing member 38 extends through a cylindrical sealing member 38 in the axial direction. A plurality of holes 63 may be formed to allow gas to pass through.
[第 2の実施形態]  [Second embodiment]
次に、 バルブ 2 0の第 2の実施形態を図 1 4、 及び図 1 5にしたがって説明 する。 なお、 第 1の実施形態と同一構成には同一符号を付し、 その説明は省略 する。  Next, a second embodiment of the valve 20 will be described with reference to FIGS. 14 and 15. FIG. Note that the same components as those of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
第 1の実施形態では、 六角柱状の密閉部材 3 8を用いて給気孔 3 7の開閉を 行ったが、 本実施形態では、 球形の密閉部材 6 4を用いて給気孔 3 7の開閉を 行っている。  In the first embodiment, the air supply hole 37 is opened and closed using the hexagonal column-shaped sealing member 38.In the present embodiment, the air supply hole 37 is opened and closed using the spherical sealing member 64. ing.
球形の密閉部材 6 4の外径寸法は、 主給気室 3 5 bの内径寸法よりも小さく 設定されており、 主給気室 3 5 bと密閉部材 6 4との間に気体を通過可能とす る隙間を設けている。  The outer diameter of the spherical sealing member 64 is set smaller than the inner diameter of the main air supply chamber 35b, and gas can pass between the main air supply chamber 35b and the sealing member 64. A gap is provided.
図 1 4に示すように、 充填ポジションでは、 球形の密閉部材 6 4を被当接部 3 6 aに密着させることができ、 図 1 5に示すように、 走行ポジションでは、 球形の密閉部材 6 4は押圧棒 4 3に押されて被当接部 3 6 aから離される。 密閉部材 6 4は、 密閉性を高めるために、 ゴム、 合成樹脂等の弾性体で形成 することが好ましい。  As shown in FIG. 14, in the filling position, the spherical sealing member 64 can be brought into close contact with the contacted part 36 a, and as shown in FIG. 15, in the running position, the spherical sealing member 6 4 is pressed by the pressing rod 43 to be separated from the abutted portion 36a. The sealing member 64 is preferably formed of an elastic material such as rubber or synthetic resin in order to enhance the sealing performance.
なお、 密閉部材 6 4は、 外周面が弾性体で形成されていれば、 中心部が金属 でめっても良い。、  The center of the sealing member 64 may be metal if the outer peripheral surface is formed of an elastic body. ,
[第 3の実施形態]  [Third embodiment]
次に、 バルブ 2 0の第 3の実施形態を図 1 6、 及び図 1 7にしたがって説明 する。 なお、 前述した実施形態と同一構成には同一符号を付し、 その説明は省 略する。  Next, a third embodiment of the valve 20 will be described with reference to FIG. 16 and FIG. The same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
本実施形態のバルブ 2 0には、 六角柱状の密閉部材 3 8の代りに一端が半球 形とされた円柱状の密閉部材 6 5が用いられ、 圧縮コイルスプリング 4 0の代 りに金属製の板ばね 6 6が用いられている。  In the valve 20 of the present embodiment, a cylindrical sealing member 65 having one end in a hemispherical shape is used instead of the hexagonal column-shaped sealing member 38, and a metal made of metal is used instead of the compression coil spring 40. A leaf spring 66 is used.
板ばね 6 6は、 リング状の内周部分 6 6 aが密閉部材 6 5に埋設されて一体 化しており、 板ばね 6 6のリング状の外周部分 6 6 bは、 主給気室 3 5 bの内 周面に形成された保持溝 6 7に嵌め込まれている。 In the leaf spring 66, a ring-shaped inner peripheral portion 66a is embedded in a sealing member 65 to be integrated, and the ring-shaped outer peripheral portion 66b of the leaf spring 66 is provided in the main air supply chamber 35. of b It is fitted in a holding groove 67 formed on the peripheral surface.
図 1 6に示すように、 充填ポジションでは、 板ばね 6 6の付勢力で密閉部材 6 5の半球部分を被当接部 3 6 aに密着させることができ、 図示はしないが、 走行ポジションでは、 密閉部材 6 5は押圧棒 4 3で押されて被当接部 3 6 aか ら離さ る。  As shown in FIG. 16, in the filling position, the hemispherical portion of the sealing member 65 can be brought into close contact with the abutted portion 36 a by the urging force of the leaf spring 66. The sealing member 65 is pressed by the pressing rod 43 and is separated from the abutted portion 36a.
[第 4の実施形態]  [Fourth embodiment]
次に、 バルブ 2 0の第 4の実施形態を図 1 8、 及び図 1 9にしたがって説明 する。 なお、 前述した実施形態と同一構成には同一符号を付し、 その説明は省 略する。  Next, a fourth embodiment of the valve 20 will be described with reference to FIG. 18 and FIG. The same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
本実施形態のバルブ 2 0には、 突出壁 3 6、 給気孔 3 7、 六角柱状の密閉部 材 3 8、 及び圧縮コイルスプリ ング 4 0の代りに、 バルブコア 5 7が用いられ ている。  In the valve 20 of this embodiment, a valve core 57 is used instead of the protruding wall 36, the air supply hole 37, the hexagonal column-shaped sealing member 38, and the compression coil spring 40.
充填ポジションでは、 図 1 8に示すように押圧捧 4 3がバルブコア 5 7のシ ャフト 5 9から離れている。  In the filling position, the pressure pad 43 is separated from the shaft 59 of the valve core 57 as shown in FIG.
一方、 走行ポジションでは、 図 1 9に示すように押圧捧 4 3がバルブコア 5 7のシャフ ト 5 9を押圧しており、 主給気路 3 5 aと主給気室 3 5 とを連通 させる。  On the other hand, in the traveling position, as shown in FIG. 19, the pressing member 43 presses the shaft 59 of the valve core 57 to connect the main air supply passage 35a with the main air supply chamber 35. .
[第 5の実施形態] [ Fifth Embodiment]
次に、 バルブ 2 0の第 5の実施形態を図 2 0乃至図 2 2にしたがって説明す る。 なお、 前述した実施形態と同一構成には同一符号を付し、 その説明は省略 する。  Next, a fifth embodiment of the valve 20 will be described with reference to FIGS. The same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
本実施形態のバルブ 2 0には、 図 2 1に示すような一対の突起 6 8を形成し たリング状のストッパ 6 9が、 第 2中空ステム 2 3の上部分に取り付けられて いる。  In the valve 20 of the present embodiment, a ring-shaped stopper 69 having a pair of projections 68 as shown in FIG. 21 is attached to the upper part of the second hollow stem 23.
本実施形態では、 図 2 0に示す走行ポジションでは、 チャージ用の空気ノズ ル 7 0が突起 6 8に当接して 空気ノズル 7 0がチャージ口 5 6に接触せず、 チャージが出来ない (空気ノズル 7 0のバルブが開かない) ようになり、 図 2 2に示す充填ポジションでは、 空気ノズル 7 0がチャージ口 5 6に接触可能と なる。 したがって、 本実施形態では、 作業者が誤って走行ポジションで空気のチヤ ージを行うことを防止できる。 In the present embodiment, in the traveling position shown in FIG. 20, the charging air nozzle 70 abuts on the projection 68, and the air nozzle 70 does not contact the charging port 56, so that charging cannot be performed (air The valve of the nozzle 70 is not opened), and the air nozzle 70 can contact the charging port 56 in the filling position shown in FIG. Therefore, in the present embodiment, it is possible to prevent the operator from erroneously charging the air in the traveling position.
[第 6の実施形態]  [Sixth embodiment]
次に、 バルブ 2 0の第 6の実施形態を図 2 3、 及ぴ図 2 4にしたがって説明 する。 なお、 前述した実施形態と同一構成には同一符号を付し、 その説明は省 略する。  Next, a sixth embodiment of the valve 20 will be described with reference to FIGS. 23 and 24. FIG. The same components as those of the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
本実施形態は、 コアハウジング 2 5を走行ポジションで固定しておくための 例である。  The present embodiment is an example for fixing the core housing 25 in the traveling position.
図 2 3、 及び図 2 4に示すように、 第 2中空ステム 2 3には、 半径方向に切 り込む溝 7 1が形成されており、 コアハウジング 2 5には、 環状の溝 7 2が形 成されている。  As shown in FIGS. 23 and 24, the second hollow stem 23 is provided with a groove 71 for cutting in the radial direction, and the core housing 25 is provided with an annular groove 72. It is formed.
溝 7 1、 及び溝 7 2には、 弾性を有する金属線材から形成されたロック部材 7 3が着脱可能に嵌め込まれている。  A lock member 73 formed of a metal wire having elasticity is detachably fitted in the grooves 71 and 72.
このように、 口ック部材 7 3にてコアハウジング 2 5を走行ポジションに固 定することで、 使用中 (走行中) にコアハウジング 2 5が充填ポジションとな ることを防止できる。  In this manner, by fixing the core housing 25 to the traveling position by the hook member 73, it is possible to prevent the core housing 25 from being in the filling position during use (during traveling).
[第 7の実施形態]  [Seventh embodiment]
次に、 バルブ 2 0の第 7の実施形態を図 2 5乃至図 2 7にしたがって説明す る。 なお、 前述した実施形態と同一構成には同一符号を付し、 その説明は省略 する。  Next, a seventh embodiment of the valve 20 will be described with reference to FIGS. The same components as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted.
図 2 5に示すように、 本実施形態のコアハウジング 2 5は、 第 2中空ステム 2 3に対して回転、 及び軸方向に直線的に移動可能に挿入されている。  As shown in FIG. 25, the core housing 25 of the present embodiment is inserted into the second hollow stem 23 so as to rotate and move linearly in the axial direction.
コアハウジング 2 5は、 主給気空間 3 5 dに配置されたコイルスプリング 7 4によって、 コアハウジング 2 5が突出する方向 (図面において上方) に付勢 されており、 図 2 5に示す充填ポジションでは、 第 2中空ステム 2 3の下端面 5 5にス トッパ 4 9が当接している。  The core housing 25 is urged in the direction in which the core housing 25 protrudes (upward in the drawing) by a coil spring 74 arranged in the main air supply space 35d, and the charging position shown in FIG. In the example, the stopper 49 is in contact with the lower end surface 55 of the second hollow stem 23.
図 2 5乃至図 2 7に示すように、 コアハウジング 2 5の外周面には、 図 2 6 に示すような折れ曲った溝 7 5が形成されている。  As shown in FIGS. 25 to 27, a bent groove 75 as shown in FIG. 26 is formed on the outer peripheral surface of the core housing 25.
—方、 第 2中空ステム 2 3には、 溝 7 5に挿入されるピン 7 6が取り付けら れている。 On the other hand, the second hollow stem 23 has a pin 76 inserted into the groove 75. Have been.
充填ポジションでは、 ピン 7 6は、 図 2 5及ぴ図 2 6に示すように、 クラン ク状の溝 7 5のリム側の端部 7 5 a付近に位置している。  In the filling position, the pin 76 is located near the rim-side end 75a of the crank-shaped groove 75, as shown in FIGS. 25 and 26.
本実施形態では、 コアハウジング 2 5を充填ポジションから走行ポジション に切替えるには、 コイルスプリング 7 4の付勢力に抗してコアハウジング 2 5 をー且押し込み、 押し込みながらコアハウジング 2 5を回転させ、 コアハウジ ング 2 5を離す。  In the present embodiment, in order to switch the core housing 25 from the filling position to the running position, the core housing 25 is pressed against the urging force of the coil spring 74, and the core housing 25 is rotated while being pressed. Release core housing 25.
これにより、 ピン 7 6は、 クランク状の溝 7 5の反リム側の端部 7 5 bに押 し付けられ、 コアハウジング 2 5が走行ポジションに保持される。  As a result, the pin 76 is pressed against the end 75b on the side opposite to the rim of the crank-shaped groove 75, and the core housing 25 is held in the traveling position.
[その他の実施形態]  [Other embodiments]
上記実施形態では、 金属製のコイルスプリングや板ばねを用いて密閉部材を 付勢していたが、 ゴム等の弾性体等を用いて密閉部材を付勢しても良く、 コィ ル状、 板状に限らず、 弾性体からなるダイヤフラムを用いて密閉部材を付勢し ても良い。  In the above-described embodiment, the sealing member is urged by using a metal coil spring or a plate spring. However, the sealing member may be urged by using an elastic body such as rubber or the like. The sealing member is not limited to the shape, and the sealing member may be urged using a diaphragm made of an elastic body.
また、 密閉部材は、 円柱状、 球状に限らず、 板状、 円錐状等の他の形状であ っ飞ち良レヽ。  In addition, the sealing member is not limited to a columnar shape and a spherical shape, but may have another shape such as a plate shape or a conical shape.
また、 上記実施形態では、 作業者がコアハウジング 2 5を手操作する構成で あつたが、 モータ、 ソレノイ ド等の駆動手段を用いてコアハウジング 2 5を操 作するように構成しても良い。  Further, in the above-described embodiment, the configuration is such that the operator manually operates the core housing 25. However, the configuration may be such that the core housing 25 is operated using driving means such as a motor and a solenoid. .
なお、 本発明.は二重構造のタイヤを主体に記載したが、 二重以上の多重構造 や、 内側気体室や外側気体室をタイヤ幅方向等に分割したような構造にも無論 適用可能である。 産業上の利用可能性  Although the present invention mainly describes a double-structured tire, the present invention is of course applicable to a double or more multi-layer structure or a structure in which the inner gas chamber and the outer gas chamber are divided in the tire width direction or the like. is there. Industrial applicability
以上のように、 本発明にかかる安全タイヤ用バルブ、 二重構造の安全タイヤ 用チューブ、 及び安全タイヤ · リム組立体は、 パンクしても安全に走行可能な 車両に用いて好適であり、 例えば、 トラック等の車両に適している。  As described above, the safety tire valve, the double-layer safety tire tube, and the safety tire / rim assembly according to the present invention are suitable for use in vehicles that can safely run even when punctured. Suitable for vehicles such as trucks.

Claims

請求の範囲 The scope of the claims
1 . 二重構造のタイヤに備えた外側気体室と内側気体室とに気体をチャージ するためのチャージ口を供えた安全タイヤ用バルブであって、 1. A safety tire valve provided with a charging port for charging a gas into an outer gas chamber and an inner gas chamber provided in a dual structure tire,
前記リムに取り付けられ、 一端側が大気側に臨み、 他端側が前記内側気体室 及び前記外側気体室に臨んだハウジングと、  A housing attached to the rim, one end facing the atmosphere, and the other end facing the inner gas chamber and the outer gas chamber;
前記ハウジングに設けられ、 大気側と連通する主給気空間と、  A main air supply space provided in the housing and communicating with an atmosphere side;
前記ハゥジングに設けられ、 大気側と前記主給気空間との連通を阻止可能な 密閉手段と、  Sealing means provided in the housing and capable of preventing communication between the atmosphere side and the main air supply space;
前記ハゥジングに設けられ、 前記主給気空間と前記内側気体室とを連通させ る内側給気路と、  An inner air supply passage provided in the housing, and communicating the main air supply space with the inner gas chamber;
前記ハウジングに設けられ、 前記主給気空間と前記外側気体室とを連通させ る外側給気路と、  An outer air supply passage provided in the housing, for communicating the main air supply space with the outer gas chamber;
前記ハウジングに設けられ、 前記内側気体室の圧力を前記外側気体室の圧力 よりも高く設定する差圧設定手段と、  A differential pressure setting means provided in the housing, for setting the pressure of the inner gas chamber higher than the pressure of the outer gas chamber;
大気側及び前記外側給気路と、 前記内側給気路との連通を密閉あるいは開放 する内側給気路密閉手段と、  An air supply side sealing means for sealing or opening communication between the atmosphere side and the outer air supply path, and communication with the inner air supply path;
を有することを特徴とする安全タイヤ用バルブ。  A valve for a safety tire, comprising:
2 . 前記差圧手段は、 前記主給気空間と前記外側給気路との間に形成される 給気孔と、  2. The differential pressure means includes: an air supply hole formed between the main air supply space and the outer air supply passage;
前記給気孔の外側給気路側に設けられ、 前記給気孔を外側給気路側から閉塞 して前記主給気空間と前記外側気体室との連通を阻止する第 1の位置と、 前記 給気孔を閉塞せず前記主給気空間と前記外側気体室とを連通させる第 2の位置 との間を移動可能とされる密閉部材と、  A first position provided on an outer air supply path side of the air supply hole, the first position blocking the air supply hole from the outer air supply path side to prevent communication between the main air supply space and the outer gas chamber; A sealing member that is movable between a main position and a second position that communicates the outer gas chamber with the outer gas chamber without being closed;
前記密閉部材を前記第 1の位置に付勢する付勢手段と '、  Urging means for urging the sealing member to the first position;
を備え、  With
前記付勢手段の付勢力により前記圧力差が設定される、 ことを特徴とする請 求項 1に記載の安全タイヤ用バルブ。  The safety tire valve according to claim 1, wherein the pressure difference is set by an urging force of the urging means.
3 . 前記ハウジングは、 一端がリム外側に露出し、 他端がリム内側に露出す る中空ステムと、 前記中空ステム内に軸方向にスライ ド可能に配置され、 一端 が大気側に連通可能とされ他端が前記主給気空間に連通するチャージ空間を有 するコアハウジングと、 を備え、 3. The housing has one end exposed outside the rim and the other end exposed inside the rim. A hollow stem, and a core housing having a charge space disposed so as to be able to slide in the axial direction in the hollow stem, one end of which can communicate with the atmosphere, and the other end of which communicates with the main air supply space. Prepared,
前記コアハウジングの主給気空間側の端部には押圧部が設けられ、 前記押圧部は、 前記コアハウジングの給気孔側への軸方向移動に伴い、 前記 給気孔を揷通して前記密閉部材を押圧し、 前記密閉部材を前記第 2の位置へ移 動させて前記給気孔を開口させ、 前記主給気空間と前記外側給気路とを連通さ せる、 ことを特徴とする請求項 2に記載の安全タイャ用パルプ。  A pressing portion is provided at an end of the core housing on the side of the main air supply space, and the pressing portion penetrates through the air supply hole as the core housing moves in the axial direction toward the air supply hole side. The air supply hole is opened by moving the sealing member to the second position, and the main air supply space and the outer air supply passage are communicated with each other. A pulp for safety tires according to the above.
4 . 前記內側給気路密閉手段は、 前記コアハウジングの外周面に設けられた シール手段を有し、  4. The 內 side air supply path sealing means has a sealing means provided on an outer peripheral surface of the core housing,
前記シール手段は、 前記コアハウジングの移動と共に前記中空ステムの内周 面に密着して前記外側給気路と前記内側給気路との連通を阻止する閉位置と、 前記中空ステムの内周面から離間して前記外側給気路と前記内側給気路とを連 通させる開位置と、 の間を往復移動可能とする、 ことを特徴とする請求項 3に 記載の安全タイヤ用バルブ。  A closing position where the sealing means is in close contact with an inner peripheral surface of the hollow stem to prevent communication between the outer air supply passage and the inner air supply passage with movement of the core housing; and an inner peripheral surface of the hollow stem. The safety tire valve according to claim 3, wherein the valve is reciprocally movable between an open position where the air supply path and the inner air supply path are separated from each other and communicate with each other.
5 . 前記コアハウジングと前記中空ステムは、  5. The core housing and the hollow stem are
前記コアハウジングの前記中空ステムに対する軸方向で且つ反リム側の移動 を規制すると共に、 前記シール手段を前記開位置に位置させる第 1位置決め手 段と、  A first positioning means for restricting movement of the core housing in the axial direction and on the side opposite to the rim with respect to the hollow stem, and for positioning the sealing means at the open position;
前記コアハウジングの前記中空ステムに対する軸方向で且つリム側の移動を 規制すると共に、 前記シール手段を前記閉位置に位置させる第 2位置決め手段 と、 を有することを特徴とする請求項 4に記載の安全タイヤ用バルブ。  The second positioning means for restricting the movement of the core housing in the axial direction and the rim side with respect to the hollow stem and for positioning the sealing means in the closed position. Safety tire valve.
6 . 前記コアハウジングが前記第 2位置決め手段により前記中空ステムに対 する軸方向で且つリム側への移動を規制された位置にあるとき、 前記押圧部が 前記密閉部材を押圧して前記給気孔を開口させている、 ことを特徴とする請求 項 5に記載の安全タイヤ用バルブ。  6. When the core housing is at a position where movement to the rim side in the axial direction with respect to the hollow stem is restricted by the second positioning means, the pressing portion presses the sealing member to press the air supply hole. The safety tire valve according to claim 5, wherein the valve is opened.
7 . 前記シール手段が開位置にあるときには内圧チャージ用ノズルと前記チ ヤージ口との係合を可能とし、 前記シール手段が閉位置にあるときには内圧チ ヤージ用ノズルと前記チャージ口との係合を阻止する内圧充填規制手段を、 有 することを特徴とする請求項 4乃至請求項 6の何れか 1項に記載の安全タイャ 用バルブ。 7. When the sealing means is in the open position, the internal pressure charging nozzle can be engaged with the charge port, and when the sealing means is in the closed position, the internal pressure charging nozzle can be engaged with the charge port. Internal pressure filling regulation means to prevent The valve for a safety tire according to any one of claims 4 to 6, characterized in that:
8 . 前記連通阻止手段の作動を規制するロック手段を有する、 ことを特徴と する請求項 1乃至請求項 7の何れか 1項に記載の安全タイャ用バルブ。  8. The safety tire valve according to any one of claims 1 to 7, further comprising a lock means for restricting an operation of the communication blocking means.
9 . 前記密閉部材と前記付勢手段は、 バルブコアによって構成されている、 ことを特徴とする請求項 2乃至請求項 8の何れか 1項に記載の安全タィャ用バ ルブ。  9. The safety tyre valve according to any one of claims 2 to 8, wherein the sealing member and the urging means are constituted by a valve core.
1 0 . 請求項 1乃至請求項 9の何れか 1項に記載の安全タイヤ用バルブを有 することを特徴とする二重構造の安全タイヤ用チューブ。  10. A safety tire tube having a double structure, comprising the safety tire valve according to any one of claims 1 to 9.
1 1 . リムホイールに、 タイヤと、 請求項 1 0に記載の二重構造の安全タイ ャ用チューブとが装着されている、 ことを特徴とする安全タイヤ ' リム組立体  11. A safety tire and a rim assembly, wherein a tire and a double-layered safety tire tube according to claim 10 are mounted on a rim wheel.
PCT/JP2003/006459 2002-05-23 2003-05-23 Valve for safety tire, tube for safety tire with double structure, and assembled body of safety tire and rim WO2003100304A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002149441 2002-05-23
JP2002-149441 2002-05-23

Publications (1)

Publication Number Publication Date
WO2003100304A1 true WO2003100304A1 (en) 2003-12-04

Family

ID=29561209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006459 WO2003100304A1 (en) 2002-05-23 2003-05-23 Valve for safety tire, tube for safety tire with double structure, and assembled body of safety tire and rim

Country Status (1)

Country Link
WO (1) WO2003100304A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113320338A (en) * 2021-07-05 2021-08-31 张杰平 Rear driving wheel of new energy electric automobile
CN113370253A (en) * 2021-07-05 2021-09-10 秦振风 Air flow point control type object suction claw

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4021041B1 (en) * 1962-05-31 1965-09-18
JPS411961B1 (en) * 1962-10-24 1966-02-11
JPS4632081B1 (en) * 1967-05-23 1971-09-18
JPS4979901U (en) * 1972-11-02 1974-07-11

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4021041B1 (en) * 1962-05-31 1965-09-18
JPS411961B1 (en) * 1962-10-24 1966-02-11
JPS4632081B1 (en) * 1967-05-23 1971-09-18
JPS4979901U (en) * 1972-11-02 1974-07-11

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113320338A (en) * 2021-07-05 2021-08-31 张杰平 Rear driving wheel of new energy electric automobile
CN113370253A (en) * 2021-07-05 2021-09-10 秦振风 Air flow point control type object suction claw

Similar Documents

Publication Publication Date Title
US8307869B2 (en) Central tire inflation wheel assembly and valve
US11052621B2 (en) Combination structure for a hose connected between an air compressor and a tire
US4445527A (en) Valve extension
US5460076A (en) Fluid-operated brake actuator with internal check valve
WO2005014312A1 (en) Tire valve
JP4010454B2 (en) Tire pressure retention system, tire wheel, vehicle and tire valve unit
JPH08282208A (en) Trilocular type tire
WO2003100304A1 (en) Valve for safety tire, tube for safety tire with double structure, and assembled body of safety tire and rim
JP4340477B2 (en) Safety tire valve, filling adapter with coupler, pressure relief adapter, and pressure relief method
US2969824A (en) Safety pneumatic tire
US3422836A (en) Valve for dual chambered tires
JP2007510104A (en) Pressure relief device for pneumatic tires
US3185960A (en) Tire pressure alarm
JP4006485B2 (en) Tire air valve
CN110027364B (en) Bicycle and tire structure
US5325808A (en) Filler and pressure indicator valve
US4151863A (en) Deflation device
KR101140526B1 (en) Wheel for vehicle with air valve
US2934127A (en) Dual-valved safety pneumatic tire
JP2002340206A (en) Valve for tire
US3318325A (en) Dual chambered tire valve
US4601254A (en) Tire pressure warning device
US3060990A (en) Inflation valve arrangements for pneumatic tires
JP4755943B2 (en) Air injection valve and vehicle wheel assembly
JP2007008467A (en) Foam insert to be installed in assembly for running in decompressed condition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP