WO2003100245A1 - Circuit d'injection de fluide a haute pression - Google Patents

Circuit d'injection de fluide a haute pression Download PDF

Info

Publication number
WO2003100245A1
WO2003100245A1 PCT/EP2003/005482 EP0305482W WO03100245A1 WO 2003100245 A1 WO2003100245 A1 WO 2003100245A1 EP 0305482 W EP0305482 W EP 0305482W WO 03100245 A1 WO03100245 A1 WO 03100245A1
Authority
WO
WIPO (PCT)
Prior art keywords
perimeter
circuit
cylinder
fluid
pump
Prior art date
Application number
PCT/EP2003/005482
Other languages
English (en)
Inventor
Leonardo Cadeddu
Original Assignee
Vhit S.P.A. Vacuum & Hydraulic Products Italy.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vhit S.P.A. Vacuum & Hydraulic Products Italy. filed Critical Vhit S.P.A. Vacuum & Hydraulic Products Italy.
Priority to DE60311987T priority Critical patent/DE60311987T2/de
Priority to US10/516,226 priority patent/US20050224052A1/en
Priority to BR0305021-1A priority patent/BR0305021A/pt
Priority to KR1020047019348A priority patent/KR100973177B1/ko
Priority to AU2003237680A priority patent/AU2003237680A1/en
Priority to EP03735460A priority patent/EP1511931B1/fr
Priority to JP2004507674A priority patent/JP2005527738A/ja
Publication of WO2003100245A1 publication Critical patent/WO2003100245A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0041Means for damping pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements

Definitions

  • the present invention relates to a high pressure fluid injection circuit
  • the invention aims to increase the performance of the high pressure fluid injection circuit
  • the invention is more particularly intended for the automotive field but can also applicable in other fields In the automobile field, this circuit makes it possible to inject a high pressure fluid inside at least one cylinder of an engine
  • the fluid is a fuel
  • a fluid injection circuit comprises a fluid reservoir, a hydraulic pump for injecting fluid at low pressure (approximately 10 bars or approximately 1,000,000 of Pascals) and at least one injector-pump
  • the reservoir, the pump injection and the injector-pump are connected by conduits allowing the fluid to circulate from the reservoir via the injection pump to the injector-pump to then circulate again and return, for its surplus, in the reservoir
  • La pump removed a fluid coming from the reservoir and increases the pressure of this fluid to a low pressure
  • this low pressure is under a pressure of 10 bars
  • This fluid under low pressure is then expelled from the injection pump through the conduits
  • a distributor distributes this fluid under low
  • This pressure wave can also cause pressure peaks to form. When these pressure peaks are too high, it can happen that these peaks damage elements contained in the injection circuit, reducing the performance of the high pressure injection circuit. For example, pressure peaks of 60 bars can be obtained for pressures delivered at 2,000 bars and damage the elements contained in the injection circuit.
  • the fluid injection circuits were not affected by this pressure wave because the pressurization of the fluid was carried out at low pressure and because the elements contained in these circuits were strong enough not to be damaged by these pressure waves.
  • This solution would have made the use of such a fluid injection circuit in a vehicle cumbersome. It would not have solved the pump problem anyway.
  • the invention therefore provides a pressure wave damper interposed in the conduits of the high pressure fluid injection circuit.
  • this damper is produced in such a way that it forces the fluid to follow paths of different length in several ways.
  • the direction of the fluid is such that the fluid must pass through narrow passage sections for the movement of the fluid to accelerate. By accelerating this movement of fluid creates turbulence. These turbulences break the regular movement of the fluid, thus attenuating the pressure wave and the resulting pressure peaks.
  • the shock absorber comprises a cylinder, inside of which a rod is arranged.
  • This rod is provided with plates, which plates define open compartments
  • the fluid circulates through these compartments by means of narrow passage sections L ' invention therefore relates to a high pressure fluid injection circuit comprising a low pressure fluid injection pump connected by conduits to a reservoir on the one hand, and to at least one injector-pump intended to deliver the high pressure fluid on the other hand, characterized in that it comprises a pressure wave damper interposed between an outlet of the pump in the direction of the pump injector and the pump injector
  • FIG. 1 a schematic representation of a high pressure fluid injection circuit according to the invention
  • FIG. 2 a graphical representation of at least one order for controlling a solenoid valve as a function of time, according to the invention
  • FIG. 5 a three-dimensional representation of a wave damper according to the invention
  • FIG. 6 a schematic representation of a pressure wave as a function of the distance traveled, according to the invention
  • FIG. 7 a graphical representation of a pressure wave as a function of time
  • FIG. 1 shows a high pressure fluid injection circuit 1 comprising a low pressure fluid injection pump 2 connected by conduits 3 1 and 3 to a reservoir 6 of fluid 5 and to at least one injector- pump 8 respectively, according to the invention
  • the pump 2 is incorporated in a body 4 A fluid supply in such a circuit is carried out in the following manner
  • the pump 2 sucks the fluid 5 contained in the reservoir 6 by the conduit 3 1
  • it may be of a fuel tank such as diesel
  • the fluid 5 is sent through conduits 3.
  • the low pressure pump 2 increases the pressure of the fluid by approximately 10 bars.
  • the conduits 3 HERE have a distributor 7 connected to at least one pump injector 8.
  • the distributor 7 is connected to four pump injectors 8
  • the pump injector 8 is connected to a cylinder 9 of an engine (not shown) inside which a piston slides 9 1
  • the injector-pump is intended to expel a volume of fluid at high pressure through an orifice (not shown) closed at rest by an injector needle (not shown)
  • the fluid pressure at the time of its expulsion from the pump injector is 2050 bars
  • the pump injector 8 is also provided with a solenoid valve 10, the opening 11 and closing 12 of which are controlled by an order Oi, Figure 2
  • the opening 11 and the closing 12 of the solenoid valve 10 of each of the pump injectors 8 are controlled by a control order O1 to O4, Figures 1 and 2
  • the solenoid valve thus allows to authorize an intermittent supply of fluid to each injector-pump.
  • the solenoid valve 10 may be in the opening 11 or closing 12 phase.
  • the opening may be predetermined for a transient period 13 so as to allow a pre-injection of fluid into the injector- pump
  • the fluid is then compressed inside the pump injector up to 300 bars.
  • the needle of the injector is dislodged from the orifice of the pump injector.
  • the fluid is then expelled into the cylinder of the engine at a pressure of approximately 2050 bars since the arrival of fuel in the injector-pump is greater than the quantity that can escape through the orifice of the injector-pump
  • a return of fluid towards the reservoir takes place in the following manner
  • the fluid circulates in the opposite direction to the direction followed by the fluid during the supply of the circuit when the solenoid valve opens again
  • the excess of fluid required for an effective pressure rise inside the injector-pump then returns to the tank by other conduits (not shown) different from the conduits 3
  • the high-pressure fluid injection circuit 1 comprises a pressure wave damper 14
  • the damper 14 is interposed between an outlet of the pump 2 in the direction of the injector-pump 8 and the pump injector 8, FIG. 1 More precisely and preferably, the damper 14 is located inside the body 4 of the pump 2, at the place where the outlet of the pump is located in the direction of the injector-pump 8 It could however be placed at another place along conduits 3, preferably upstream of the distributor 7
  • This shock absorber 14, in one example comprises a cylinder 15, FIG. 4 with an external portion 16 full and a central portion 17 hollow
  • a cross section of the shock absorber makes it possible to view a cross section 18 of the central part 17 of the cylinder 15, FIG. 4 On this cross section 18, it is possible to distinguish a perimeter 19, a surface 20, and a center 21
  • the cylinder 15 is circular, FIG. 4, but this cylinder 15 can also be rectangular
  • FIGS. 3, 5 This rod 22 comprises at least one plate 23
  • the cross section of the damper 14 also makes it possible to view a cross section 24 of the plate 23, FIG. 4
  • This cross section 24 makes it possible to distinguish a perimeter 25 and a surface 26
  • the rod 22 comprises several plates 23, FIGS. 3, 4 and 5. In FIG.
  • the rod 22 comprises six plates 23 and has a length of sixty millimeters, Figures 3 and 5
  • the plates 23 are arranged on the rod 22 one after the other in a same distance 27 inside of the central portion 17 of the cylinder 15, the plates 23 delimit compartments 28 in the preferred example, the trays 23 have the form of a disc cut along a chord and define five compartments 28, figures 3 4 and 5
  • the plates 23 are identical and the normal ones to their strings are oriented at an angle 29 different from one plate to another with respect to an axis 30 defined by the rod 22 and passing through the center 21
  • the plates 23 are oriented , alternately, with respect to each other at an angle of 180 ° with respect to the axis 30 of the rod 22, FIGS. 4 and 5
  • the plates 23 are arranged perpendicular to the axis 30, FIG. 3
  • the surface 26 of the plate 23 corresponds to at least half of the surface 20 oe the section 18 of the central part 17 of the cylinder 15.
  • the perimeter 25 of the plate 23 also partially matches the perimeter 19 of the central part 17 of the section 18 of the cylinder 15, FIG. 4.
  • the perimeter 25 of the plate 23 has a portion 31 and a portion
  • the portion 31 follows the perimeter 19 of the cylinder 15 while the portion 32 does not match it, FIG. 4.
  • the perimeter 19 of the cylinder 15 also has a portion 33 matching the plate 23 and a portion 34 not matching it.
  • the portion 32 of the plate 23 and the portion 34 of the cylinder 15 delimit a lateral orifice 35 with respect to the axis 30 defined by the rod 22, FIG. 4. Due to the presence of this lateral orifice 35 on each plate 23, the compartments 28 are open inside the cylinder 15, FIG. 3.
  • the plate 23 is made in such a way that, along an axis 38 perpendicular to the axis 30 defined by the rod 22, a point of the portion 31 of the perimeter 25 of the plate 23 is separated from another point of the portion 32 of the perimeter 25 of a distance 36.
  • a point of the portion 32 is separated from a point of the portion
  • the distance 36 is 4.5 millimeters and the distance
  • This pressure wave 40 moves in space and in time, FIGS. 6 and 7.
  • This pressure wave 40 emits at least one pressure peak 41 following the closing of the solenoid valve 10, FIG. 7.
  • FIG. 7 shows four pressure peaks 41 of a pressure wave 40 resulting from the successive opening 11 and closing 12 of the solenoid valve 10 of each of the four fluid injector pumps 8. These pressure peaks 41 can reach up to a pressure of 60 bars.
  • the lateral openings 35 and the arrangement of the plates 23 one above the other create narrowing and widening of sections inside the cylinder 15 of the shock absorber 14. These narrowing and these widening of sections force the fluid to rupture its straight path.
  • the reverse wave must pass through the same places.
  • the fluid 5 leaving the pump 2 penetrates inside the damper
  • the path 42 of the fluid inside the cylinder 15 has a sinusoidal shape, FIG. 3.
  • the pressure wave 40 penetrates inside the cylinder 15 and describes a same trajectory 43 visible in dotted lines in FIG. 3.
  • the fluid 5 under pressure creates turbulence inside the compartments 28 after it passes through the lateral orifices 35 substantially reducing the pressure peaks of the pressure wave up to 50% of their maximum value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Pens And Brushes (AREA)
  • Gas Separation By Absorption (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Safety Valves (AREA)

Abstract

A l'intérieur d'un circuit de fluide à haute pression circule un fluide pouvant générer des ondes de pressions. Ces ondes de pressions peuvent elles-mêmes générer des pics de pressions pouvant endommager le circuit de fluide haute pression. Pour diminuer ces ondes de pression ainsi que les pics de pression, l'invention prévoit un amortisseur d'onde de pression (14) muni d'un cylindre, d'une tige (22) et de plusieurs plateaux (23). Les plateaux (23) sont disposés et sont réalisés de telle manière qu'ils admettent un passage étroit à l'intérieur du cylindre. Le passage étroit modifie le mouvement régulier du fluide en un mouvement irrégulier diminuant les pics de pressions de 50% de leur valeur initiale.

Description

Circuit d'injection de fluide à haute pression
La présente invention concerne un circuit d'injection de fluide à haute pression L'invention a pour but d'augmenter la performance du circuit d'injection de fluide à haute pression L'invention est plus particulièrement destinée au domaine de l'automobile mais peut également s'appliquer dans d'autres domaines Dans le domaine de l'automobile, ce circuit permet d injecter un fluide a haute pression a l'intérieur d'au moins un cylindre d'un moteur Dans ce cas, le fluide est un carburant Un circuit d'injection de fluide comporte un réservoir de fluide, une pompe hydraulique d'injection de fluide à basse pression (environ 10 bars soit environ 1 000 000 de Pascals) et au moins un injecteur-pompe Le réservoir, la pompe d'injection et l'injecteur-pompe sont reliés par des conduits permettant au fluide de circuler depuis le réservoir via la pompe d'injection jusqu'à l'injecteur-pompe pour ensuite circuler de nouveau et revenir, pour son surplus, dans le réservoir La pompe prélevé un fluide provenant du réservoir et augmente la pression de ce fluide jusqu'à une basse pression Dans un exemple, cette basse pression est sous une pression de 10 bars Ce fluide sous basse pression est ensuite expulsé de la pompe d'injection à travers les conduits Parmi les conduits du circuit, un distributeur répartit ce fluide sous basse pression à différents injecteurs- pompes Puis chaque injecteur-pompe augmente la pression jusqu'à 300 bars maximum et l'injecte dans son propre cylindre à la pression de 2050 bars maximum après ouverture d'une electrovanne Un circuit d'injection comportant de tels injecteurs-pompes pouvant délivrer un fluide à haute pression présente l'avantage d'être plus performant qu'un circuit comportant une pompe d'injection délivrant une pression d'injection plus faible Dans un exemple, une haute pression d'injection peut correspondre à environ 2000 bars Cependant, à haute pression, la pompe ou les conduits du circuit peuvent s'abîmer, et la performance d'un tel circuit diminue sensiblement
Dans l'invention, on a recherche la cause de ces αetenorations et on a cherche en particulier a renforcer les divers éléments du circuit Ceci a ete en vain ou, autrement, a grand frais On a alors eu l'idée de détecter l'allure temporelle transitoire de la pression régnant dans le circuit lors de son fonctionnement.
Il est apparu alors que la délivrance d'un fluide à haute pression pouvait entraîner la formation d'une onde de pression. Cette onde de pression est la conséquence d'une ouverture et d'une fermeture rapide de l'électrovanne de l'injecteur-pompe. Suite à la fermeture rapide de l'électrovanne, une onde de pression peut naître et se propager le long du fluide, et dans le sens inverse de l'écoulement du fluide.
Cette onde de pression peut également entraîner la formation de pics de pression. Lorsque ces pics de pression sont trop élevés, il peut arriver que ces pics endommagent des éléments contenus dans le circuit d'injection, diminuant les performances du circuit d'injection à haute pression. Par exemple, des pics de pressions de 60 bars peuvent être obtenus pour des pressions délivrées à 2 000 bars et endommager les éléments contenus dans le circuit d'injection. Dans l'état de la technique, les circuits d'injection de fluide n'étaient pas affectés par cette onde de pression du fait que la mise sous pression du fluide était réalisée à basse pression et du fait que les éléments contenus dans ces circuits étaient suffisamment solides pour ne pas être abîmés par ces ondes de pressions. Pour limiter l'endommagement des éléments contenus dans un circuit d'injection de fluide sous pression et en particulier de fluide à haute pression, il aurait pu être possible de réaliser des conduits plus larges et plus épais. Cependant cette solution aurait rendu encombrante l'utilisation d'un tel circuit d'injection de fluide dans un véhicule. Elle n'aurait de toute façon pas résolu le problème de la pompe.
Pour atténuer ces ondes de pression potentiellement génératrices de pics de pression, l'invention prévoit en conséquence un amortisseur d'ondes de pression interposé dans les conduits du circuit d'injection de fluide à haute pression. Dans un exemple, cet amortisseur est réalisé de telle manière qu'il oblige le fluide à suivre en plusieurs voies des chemins de longueur différentes. La direction du fluide est telle que le fluide doit passer à travers des sections de passage étroites pour que le mouvement du fluide s'accélère. En s'accélérant ce mouvement de fluide crée des turbulences. Ces turbulences rompent le mouvement régulier du fluide, atténuant alors l'onde de pression et les pics de pression qui en résultent. Dans cet exemple, l'amortisseur comporte un cylindre, a l'intérieur duquel est disposée une tige Cette tige est munie de plateaux, lesquels plateaux délimitent des compartiments ouverts Le fluide circule à travers ces compartiments par I intermédiaire de sections de passage étroites L'invention a donc pour objet un circuit d'injection de fluide à haute pression comportant une pompe d'injection de fluide à basse pression reliée par des conduits à un réservoir d'une part, et à au moins un injecteur-pompe destine à délivrer le fluide à forte pression d'autre part, caractérisé en ce qu'il comporte un amortisseur d'ondes de pression interposé entre une sortie de la pompe en direction de l'injecteur-pompe et l'injecteur-pompe
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent Celles-ci ne sont présentées qu'à titre indicatif et nullement limitatif de l'invention Les figures montrent
- Figure 1 une représentation schématique d'un circuit d'injection de fluide à haute pression, selon I invention ,
- Figure 2 une représentation graphique d'au moins un ordre de commande d'une éiectrovanne en fonction du temps, selon l'invention ,
- Figure 3 une coupe longitudinale d'un amortisseur d'onde de pression, selon l'invention , - Figure 4 une coupe transversale d'un amortisseur d'onde de pression, selon l'invention ,
- Figure 5 une représentation tridimensionnelle d'un amortisseur d'onde, selon l'invention ,
- Figure 6 une représentation schématique d'une onde de pression en fonction de la distance parcourue, selon l'invention ,
- Figure 7 une représentation graphique d'une onde de pression en fonction du temps
La figure 1 montre un circuit d'injection de fluide a haute pression 1 comportant une pompe-d'injection 2 de fluide à basse pression reliée par des conduits 3 1 et 3 a un réservoir 6 de fluide 5 et à au moins un injecteur- pompe 8 respectivement, selon l'invention
La pompe 2 est incorporée dans un corps 4 Une alimentation en fluide dans un tel circuit s'effectue de la manière suivante La pompe 2 aspire le fluide 5 contenu dans le réservoir 6 par le conduit 3 1 Dans un exemple, il peut s'agir d'un réservoir de carburant tel que le gazole Une fois monte en pression à l'intérieur de la pompe 2, le fluide 5 est envoyé à travers des conduits 3. Dans un exemple, la pompe basse pression 2 augmente la pression du fluide de 10 bars environ. Les conduits 3 comportent ICI un distributeur 7 relié à au moins un injecteur-pompe 8. Dans un exemple, le distributeur 7 est relié à quatre injecteurs-pompes 8 L'injecteur-pompe 8 est relié à un cylindre 9 d'un moteur (non représenté) à l'intérieur duquel coulisse un piston 9 1 L'injecteur-pompe est destiné à expulser un volume de fluide à forte pression par un orifice (non représenté) obturé au repos par une aiguille d'injecteur (non représentée) Dans un exemple, la pression du fluide au moment de son expulsion de l'injecteur-pompe est de 2050 bars L'injecteur- pompe 8 est également muni d'une électrovanne 10 dont l'ouverture 11 et la fermeture 12 sont commandées par un ordre Oi, figure 2 Par exemple, l'ouverture 11 et la fermeture 12 de l'électrovanne 10 de chacun des injecteurs-pompes 8 sont commandées par un ordre de commande O1 à O4, figures 1 et 2 L'électrovanne permet ainsi d'autoriser une alimentation intermittente en fluide de chaque injecteur-pompe. En réponse à cet ordre, l'électrovanne 10 peut se trouver en phase d'ouverture 11 ou de fermeture 12. L'ouverture peut être prédéterminée pendant une période 13 transitoire de façon à permettre une pré-injection de fluide dans l'injecteur-pompe Le fluide est ensuite comprimé à l'intérieur de l'injecteur-pompe jusqu'à 300 bars. A 300 bars, l'aiguille de l'injecteur est délogée de l'orifice de l'injecteur- pompe Le fluide est alors expulsé dans le cylindre du moteur à une pression de 2050 bars environ étant donné que l'arrivée de carburant dans l'injecteur- pompe est supérieure à la quantité pouvant s'échapper par l'orifice de l'injecteur-pompe
Un retour de fluide en direction du réservoir s'effectue de la manière suivante Le fluide circule dans le sens contraire du sens suivi par le fluide lors de l'alimentation du circuit lorsque l'électrovanne s'ouvre à nouveau L'excès de fluide nécessaire pour une montée en pression efficace à l'intérieur de l'injecteur-pompe retourne alors dans le réservoir par d'autres conduits (non représentés) différents des conduits 3
Selon l'invention, le circuit d'injection de fluide a haute pression 1 comporte un amortisseur d'onde de pression 14 L'amortisseur 14 est interposé entre une sortie de la pompe 2 en direction de l'injecteur-pompe 8 et l'injecteur-pompe 8, figure 1 Plus précisément et de préférence, l'amortisseur 14 est situé a l'intérieur du corps 4 de la pompe 2, à l'endroit où se situe la sortie de la pompe en direction de l'injecteur-pompe 8 II pourrait toutefois être dispose à un autre endroit le long des conduits 3, de préférence en amont du distributeur 7 Cet amortisseur 14, comporte dans un exemple un cylindre 15, figure 4 avec une partie externe 16 pleine et une partie centrale 17 creuse Une coupe transversale de l'amortisseur permet de visualiser une section transversale 18 de la partie centrale 17 du cylindre 15, figure 4 Sur cette section transversale 18, il est possible de distinguer un périmètre 19, une surface 20, et un centre 21 Dans un exemple préfère, le cylindre 15 est circulaire, figure 4, mais ce cylindre 15 peut également être rectangulaire
A l'endroit où se situe le centre 21 de cette partie centrale 17 est insérée une tige 22, figures 3, 5 Cette tige 22 comporte au moins un plateau 23 La coupe transversale de l'amortisseur 14 permet également de visualiser une section transversale 24 du plateau 23, figure 4 Cette section transversale 24 permet de distinguer un périmètre 25 et une surface 26 La tige 22 comporte plusieurs plateaux 23, figures 3, 4 et 5. Sur la figure 3, on peut visualiser un plateau 23 en pointillé situé en dessous du plateau 23 présent dans le plan du dessin Dans l'exemple préféré, la tige 22 comporte six plateaux 23 et a une longueur de soixante millimètres, figures 3 et 5 Les plateaux 23 sont disposés sur la tige 22 les uns à la suite des autres selon une même distance 27 A l'intérieur de la partie centrale 17 du cylindre 15, les plateaux 23 délimitent des compartiments 28 Dans l'exemple préféré, les plateaux 23 ont la forme d'un disque coupé selon une corde et délimitent cinq compartiments 28, figures 3 4 et 5
Les plateaux 23 sont identiques et les normales à leurs cordes sont orientées selon un angle 29 différent d'un plateau a un autre par rapport à un axe 30 défini par la tige 22 et passant par le centre 21 De préférence, les plateaux 23 sont orientes, alternativement, les uns par rapport aux autres selon un angle de 180° par rapport a l'axe 30 de la tige 22, figures 4 et 5 Les plateaux 23 sont disposes perpendiculairement a l'axe 30, figure 3 Dans un autre exemple, il serait possible de prévoir une orientation d'un angle différent de 180° produisant une progression hélicoïdale de ces orientations
Selon I invention, la surface 26 du plateau 23 correspond au moins à la moitié de la surface 20 oe la section 18 de la partie centrale 17 du cylindre 15. Le périmètre 25 du plateau 23 épouse également partiellement le périmètre 19 de la partie centrale 17 de la section 18 du cylindre 15, figure 4.
Le périmètre 25 du plateau 23 possède une portion 31 et une portion
32. La portion 31 épouse le périmètre 19 du cylindre 15 alors que la portion 32 ne l'épouse pas, figure 4.
Le périmètre 19 du cylindre 15 possède également une portion 33 épousant le plateau 23 et une portion 34 ne l'épousant pas. Ainsi la portion 32 du plateau 23 et la portion 34 du cylindre 15 délimitent un orifice latéral 35 par rapport à l'axe 30 défini par la tige 22, figure 4. Du fait de la présence de cet orifice latéral 35 sur chaque plateau 23, les compartiments 28 sont ouverts à l'intérieur du cylindre 15, figure 3.
Le plateau 23 est réalisé de telle manière que, selon un axe 38 perpendiculaire à l'axe 30 défini par la tige 22, un point de la portion 31 du périmètre 25 du plateau 23 est séparé d'un autre point de la portion 32 du périmètre 25 d'une distance 36.
De plus, un point de la portion 32 est séparé d'un point de la portion
34 selon l'axe 38 perpendiculaire à l'axe 30 de la tige 22 d'une distance 37.
Dans l'exemple préféré, la distance 36 est de 4,5 millimètres et la distance
37 est de 1 ,5 millimètres, pour un diamètre de 6 millimètres à plus ou moins 20%. On obtient ainsi un bon compromis entre la taille et la robustesse.
Lorsque le fluide 5 sous basse pression est injecté à l'intérieur des conduits 3, le fluide 5 subit sur son parcours une légère dépression, figure 6. Cette légère dépression, ou perte de charge, est représentée par une courbe 39 linéaire décroissante en fonction de la distance parcourue à l'intérieur des conduits 3. Le fluide 5 en mouvement percute l'électrovanne 10 au moment de la fermeture de cette dernière. Le fluide 5 est injecté à l'intérieur du cylindre 9 par une ouverture et une fermeture rapide de l'électrovanne 10. La fermeture 12 rapide de l'électrovanne 10 commandée par l'ordre O provoque une onde de pression 40, figure 6. Cette onde 40 se déplace dans le sens contraire du déplacement du fluide 5 dans le cas de l'alimentation en fluide du circuit. Ce déplacement en sens contraire se produit depuis l'injecteur- pompe 8 jusqu'à l'endroit où se situe la pompe 2.
Cette onde de pression 40 se déplace dans l'espace et dans le temps, figures 6 et 7. Cette onde de pression 40 émet au moins un pic de pression 41 suite à la fermeture de l'électrovanne 10, figure 7. Par exemple, sur la figure 7 sont représentés quatre pics de pression 41 d'une onde de pression 40 résultant de l'ouverture 11 et de la fermeture 12 successives de l'électrovanne 10 de chacun des quatre injecteurs-pompes 8 de fluide. Ces pics de pression 41 peuvent atteindre jusqu'à une pression de 60 bars. Les orifices latéraux 35 et la disposition des plateaux 23 les uns au- dessus des autres créent des rétrécissements et des élargissements de sections à l'intérieur du cylindre 15 de l'amortisseur 14. Ces rétrécissements et ces élargissements de sections obligent le fluide à rompre sa trajectoire rectiligne. L'onde inverse doit passer par les mêmes endroits. Le fluide 5 sortant de la pompe 2 pénètre à l'intérieur de l'amortisseur
14. La trajectoire 42 du fluide à l'intérieur du cylindre 15 a une forme sinusoïdale, figure 3. A l'extrémité opposée où le fluide 5 entre, l'onde de pression 40 pénètre à l'intérieur du cylindre 15 et décrit une même trajectoire 43 visible en pointillés sur la figure 3. Le fluide 5 sous pression crée des turbulences à l'intérieur des compartiments 28 après son passage à travers les orifices latéraux 35 atténuant sensiblement les pics de pressions de l'onde de pression jusqu'à 50% de leur valeur maximale.

Claims

REVENDICATIONS
1 - Circuit d'injection de fluide à haute pression(1 ) comportant une pompe d'injection de fluide à basse pression (2) reliée par des conduits (3, 3.1 ) à un réservoir (6) d'une part, et à au moins un injecteur-pompe (8) destiné à délivrer le fluide à forte pression d'autre part, caractérisé en ce qu'il comporte un amortisseur d'ondes de pression (14) interposé entre une sortie de la pompe en direction de l'injecteur-pompe et l'injecteur-pompe.
2 - Circuit (1 ) selon la revendication 1 caractérisé en ce que l'amortisseur est placé dans un corps (4) de la pompe (2).
3 - Circuit (1 ) selon l'une des revendications 1 à 2 caractérisé en ce que l'amortisseur (14) comporte un cylindre (15) dans lequel est insérée une tige (22) portant au moins un plateau (23).
4 - Circuit (1 ) selon la revendication 3 caractérisé en ce qu'une surface (26) d'une section (24) du plateau (23) correspond au moins à la moitié d'une surface (20) d'une section (18) d'une partie centrale (17) du cylindre (15) et qu'un périmètre (25) du plateau (23) épouse partiellement un périmètre (19) de la section (18) du cylindre (15).
5 - Circuit (1 ) selon la revendication 4 caractérisé en ce qu'une distance (36) séparant un premier point d'une portion (31 ) du périmètre (25) du plateau (23) épousant le périmètre (19) du cylindre (15) d'une part, d'un deuxième point du périmètre (25) du plateau (23) n'épousant pas le périmètre (19) du cylindre (15) d'autre part, cette distance étant mesurée selon un axe (38) perpendiculaire à l'axe (30) de la tige (22) est de 4,5 millimètres.
6 - Circuit (1 ) selon l'une des revendications 4 à 5 caractérisé en ce qu'une distance (37) séparant un deuxième point d'une portion (32) du périmètre (25) du plateau (23) n'épousant pas le périmètre (19) du cylindre (15) d'une part, d'un troisième point d'une portion (31 ) du périmètre (19) du cylindre (15) n'épousant pas le périmètre (25) du plateau (23), cette distance étant mesurée selon un axe (38) perpendiculaire à l'axe (30) de la tige (22) est de 1 ,5 millimètres.
7 - Circuit (1 ) selon l'une des revendications 3 à 6 caractérisé en ce que la tige (22) comporte plusieurs plateaux (23) et que ces plateaux (23) sont disposés sur la tige (22) les uns à la suite des autres selon une même distance (27).
8 - Circuit (1 ) selon l'une des revendications 3 à 7 caractérisé en ce que les plateaux (23) sont identiques et sont orientés selon un angle (29) différent d'un plateau (23) à un autre par rapport à un axe (30) défini par la tige (22).
9 - Circuit (1 ) selon la revendication 8 caractérisé en ce que les plateaux (23) sont orientés les uns par rapport aux autres selon un angle de 180° par rapport à l'axe (30).
10 - Circuit (1 ) selon l'une des revendications 9 à 10 caractérisé en ce que le plateau (23) est disposé perpendiculairement à l'axe (30).
11 - Circuit (1 ) selon . la revendication . 4 et selon l'une des revendications 8 à 10 caractérisé en ce qu'une portion (32) du périmètre (25) du plateau (23) qui n'épouse pas le périmètre (19) du cylindre (15) ainsi qu'une portion (34) du périmètre (25) du cylindre (15) qui n'est pas épousé par le périmètre (25) du plateau (23) délimitent un orifice latéral (35) par rapport à l'axe (30).
12 - Circuit (1 ) selon les revendications 3 à 11 caractérisé en ce que la tige (22) comporte six plateaux (23) délimitant cinq compartiments (28) ouverts à l'intérieur du cylindre (15).
PCT/EP2003/005482 2002-05-29 2003-05-26 Circuit d'injection de fluide a haute pression WO2003100245A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE60311987T DE60311987T2 (de) 2002-05-29 2003-05-26 Hochdruckfluideneinspritzsystem
US10/516,226 US20050224052A1 (en) 2002-05-29 2003-05-26 High-pressure fluid injection circuit
BR0305021-1A BR0305021A (pt) 2002-05-29 2003-05-26 Circuito de injeção de fluido de alta pressão
KR1020047019348A KR100973177B1 (ko) 2002-05-29 2003-05-26 고압 유체 분사 회로
AU2003237680A AU2003237680A1 (en) 2002-05-29 2003-05-26 High-pressure fluid injection circuit
EP03735460A EP1511931B1 (fr) 2002-05-29 2003-05-26 Circuit d injection de fluide a haute pression
JP2004507674A JP2005527738A (ja) 2002-05-29 2003-05-26 高圧流体噴射回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT2002TO000453A ITTO20020453A1 (it) 2002-05-29 2002-05-29 Circuito di iniezione di fluido ad alta pressione.
ITTO2002A000453 2002-05-29

Publications (1)

Publication Number Publication Date
WO2003100245A1 true WO2003100245A1 (fr) 2003-12-04

Family

ID=27639121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/005482 WO2003100245A1 (fr) 2002-05-29 2003-05-26 Circuit d'injection de fluide a haute pression

Country Status (13)

Country Link
US (1) US20050224052A1 (fr)
EP (1) EP1511931B1 (fr)
JP (1) JP2005527738A (fr)
KR (1) KR100973177B1 (fr)
CN (1) CN100366887C (fr)
AT (1) ATE354727T1 (fr)
AU (1) AU2003237680A1 (fr)
BR (1) BR0305021A (fr)
DE (1) DE60311987T2 (fr)
ES (1) ES2280757T3 (fr)
IT (1) ITTO20020453A1 (fr)
RU (1) RU2004139023A (fr)
WO (1) WO2003100245A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271807A (en) * 1978-01-25 1981-06-09 Robert Bosch Gmbh Pump/nozzle for internal combustion engines
US5516266A (en) * 1993-09-07 1996-05-14 Walbro Corporation Fuel pump tubular pulse damper
US5540206A (en) * 1991-02-26 1996-07-30 Ficht Gmbh Fuel injection device for internal combustion engines
DE19516358C1 (de) * 1995-05-04 1996-08-22 Daimler Benz Ag Pulsationsdämpfer für Kraftstoff im Kraftstoffversorgungssystem einer Brennkraftmaschine
DE19854551A1 (de) * 1998-11-26 2000-05-31 Bosch Gmbh Robert Flachrohrdruckdämpfer zur Dämpfung von Flüssigkeits-Druckschwingungen in Flüssigkeitsleitungen
EP1052396A2 (fr) * 1999-05-14 2000-11-15 Siemens Automotive Corporation Amortisseur de pulsations intégré avec soupape de régulation de pression pendant la période d'accumulation de chaleur

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818258A (en) * 1928-06-18 1931-08-11 James D Isaacks Gauge stabilizer
DE2823734A1 (de) * 1978-05-31 1979-12-06 Bosch Gmbh Robert Kraftstoff-foerderaggregat
JPS57177485A (en) * 1981-04-22 1982-11-01 Sharp Kk Ripple removing device in liquid feeder
DE3146454A1 (de) * 1981-11-24 1983-06-01 Robert Bosch Gmbh, 7000 Stuttgart Element zum daempfen von druckschwingungen in hydraulischen systemen
US5619969A (en) * 1995-06-12 1997-04-15 Cummins Engine Company, Inc. Fuel injection rate shaping control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271807A (en) * 1978-01-25 1981-06-09 Robert Bosch Gmbh Pump/nozzle for internal combustion engines
US5540206A (en) * 1991-02-26 1996-07-30 Ficht Gmbh Fuel injection device for internal combustion engines
US5516266A (en) * 1993-09-07 1996-05-14 Walbro Corporation Fuel pump tubular pulse damper
DE19516358C1 (de) * 1995-05-04 1996-08-22 Daimler Benz Ag Pulsationsdämpfer für Kraftstoff im Kraftstoffversorgungssystem einer Brennkraftmaschine
DE19854551A1 (de) * 1998-11-26 2000-05-31 Bosch Gmbh Robert Flachrohrdruckdämpfer zur Dämpfung von Flüssigkeits-Druckschwingungen in Flüssigkeitsleitungen
EP1052396A2 (fr) * 1999-05-14 2000-11-15 Siemens Automotive Corporation Amortisseur de pulsations intégré avec soupape de régulation de pression pendant la période d'accumulation de chaleur

Also Published As

Publication number Publication date
ITTO20020453A0 (it) 2002-05-29
RU2004139023A (ru) 2006-02-20
JP2005527738A (ja) 2005-09-15
ES2280757T3 (es) 2007-09-16
CN100366887C (zh) 2008-02-06
KR100973177B1 (ko) 2010-07-30
DE60311987T2 (de) 2007-10-31
BR0305021A (pt) 2004-11-09
US20050224052A1 (en) 2005-10-13
KR20050020966A (ko) 2005-03-04
EP1511931A1 (fr) 2005-03-09
DE60311987D1 (de) 2007-04-05
AU2003237680A1 (en) 2003-12-12
ITTO20020453A1 (it) 2003-12-01
EP1511931B1 (fr) 2007-02-21
CN1666019A (zh) 2005-09-07
ATE354727T1 (de) 2007-03-15

Similar Documents

Publication Publication Date Title
FR2560644A1 (fr) Soupape d'injection electromagnetique
FR2541379A1 (fr) Perfectionnement aux systemes d'injection a commande electromagnetique pour moteur diesel de type pression-temps ou l'aiguille de l'injecteur est pilotee par la decharge puis la charge d'une capacite
FR2786225A1 (fr) Systeme d'injection de carburant sous haute pression dans un moteur a combustion interne a injection directe
FR2819020A1 (fr) Installation d'injection de carburant
FR2486158A1 (fr) Dispositif d'alimentation en combustible d'un moteur a allumage par compression
FR2818323A1 (fr) Installation d'injection de carburant
EP1375889A3 (fr) Dispositif d'injection de combustible pour moteur à combustion interne
FR2790287A1 (fr) Absorbeur de pulsations du type a diaphragme metallique pour pompe a carburant a haute pression
FR2818701A1 (fr) Dispositif d'alimentation en carburant de type a debit variable
EP2738366B1 (fr) Système SCR et méthode pour sa purge
KR100326625B1 (ko) 내연기관용연료분사장치
FR2873755A1 (fr) Procede de gestion d'un dispositif d'injection de carburant notamment d'un vehicule automobile
FR2881185A1 (fr) Injecteur de carburant et moteur comprenant un tel injecteur
FR2815085A1 (fr) Structure perfectionnee d'injecteur de carburant destinee a eviter l'injection d'une quantite excessive de carburant
EP1511931A1 (fr) Circuit d injection de fluide a haute pression
FR2569239A1 (fr) Procede pour commander une soupape d'injection electromagnetique
EP1923566A1 (fr) Injecteur de carburant muni d'une aiguille creuse
JPH04292568A (ja) 空気圧縮式の内燃機関に用いられる噴射装置
FR2973076A1 (fr) Regulateur de pression, dispositif d'injection diesel comportant un tel regulateur, moteur diesel comportant un tel dispositif d'injection et vehicule comportant un tel moteur
FR2478205A1 (fr) Dispositif d'injection de carburant pour un moteur a combustion interne
FR2792370A1 (fr) Dispositif d'injection pour moteurs a combustion interne
FR2889260A3 (fr) Rampe commune d'alimentation en carburant pour moteur, comprenant deux chambres
WO2003058053A1 (fr) Systeme de demarrage pour moteur a combustion interne
FR2490736A1 (fr) Injecteur de carburant pour moteur a combustion interne
FR2903458A1 (fr) Injecteur de carburant pour moteur a combustion interne.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10516226

Country of ref document: US

Ref document number: 2004507674

Country of ref document: JP

Ref document number: 1020047019348

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003735460

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004139023

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20038154161

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047019348

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003735460

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003735460

Country of ref document: EP