WO2003100065A1 - Process for the mass production of silk protein and genetically modified silk-like protein having function imparted thereto - Google Patents

Process for the mass production of silk protein and genetically modified silk-like protein having function imparted thereto Download PDF

Info

Publication number
WO2003100065A1
WO2003100065A1 PCT/JP2002/005010 JP0205010W WO03100065A1 WO 2003100065 A1 WO2003100065 A1 WO 2003100065A1 JP 0205010 W JP0205010 W JP 0205010W WO 03100065 A1 WO03100065 A1 WO 03100065A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk
sample
protein
dna
medium
Prior art date
Application number
PCT/JP2002/005010
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Asakura
Original Assignee
Japan As Represented By President Of Tokyo University Of Agriculture And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By President Of Tokyo University Of Agriculture And Technology filed Critical Japan As Represented By President Of Tokyo University Of Agriculture And Technology
Priority to PCT/JP2002/005010 priority Critical patent/WO2003100065A1/en
Priority to JP2004508303A priority patent/JPWO2003100065A1/en
Publication of WO2003100065A1 publication Critical patent/WO2003100065A1/en
Priority to US11/197,315 priority patent/US20060019348A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43563Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
    • C07K14/43586Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects from silkworms

Definitions

  • the present invention relates to a method for mass-producing a silk protein and a genetically modified silk-like protein provided with a function, and more particularly to a method for mass-producing a genetically modified silk-like protein provided with cell adhesion or elasticity or strength.
  • Silk is a high-strength, high-elastic fiber that is composed of amino acids contained in living organisms and is biocompatible, so it is used not only in clothing but also in various fields such as food and cosmetics. I have.
  • the primary structure of silk is characterized by a block copolymer in which several types of amino acid sequences (motifs) are repeated a dozen times.
  • motifs amino acid sequences
  • vectors obtained by fusing a strong T7 promoter to an expression vector have been widely used.However, because of the strong expression, the target protein is a strong stress against Escherichia coli. In such a case, there is a drawback that the protein has an effect on the growth of cells and the expression efficiency is not improved.
  • the present inventors have designed four types of functional silk-like proteins by arbitrarily selecting functional site motifs of silkworm silk-in, wild silkworm silk-in, elastin and fibronectin. After selecting an expression vector, selecting a host E. coli, and optimizing expression conditions for a functional silk-like protein having a repeat sequence, mass production of the designed functional silk-like protein using E. coli was performed. And found that this method can be applied to general silk proteins, and arrived at the present invention.
  • an object of the present invention is to provide a method for mass-producing silk proteins and silk-like proteins to which functionality has been imparted. Disclosure of the invention
  • An object of the present invention is a combination of two or more proteins selected from among silkworm silk fiproin, wild silkworm fibrous mouth, elastin, and fibronectin, wherein at least one of the above silkworm silk fibroin or wild silkworm silk fibrin is required.
  • a silk-like polymer consisting of a combination is designed, the minimum unit of the silk or the designed polymer is synthesized, and the synthesized polymer of the minimum unit is extracted from an expression vector containing a T7 promoter.
  • Integrate into at least one selected expression vector and then transfer the expression vector to BL21 (DE3) pLysS or BLR (DE 3) p Lys S, which is achieved by a method for producing a silk-like protein, wherein the Escherichia coli is grown on a medium selected from a complex medium. Was done.
  • the temperature for growing Escherichia coli be lowered by 2 to 7 ° C. below the optimal temperature for growing Escherichia coli.
  • an expression vector containing a T71ac promoter as an expression vector containing a T7 promoter is preferably used. It is preferable to use them.
  • Figure 1 shows the results of SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) when SLP 2, 4, and 6 were expressed in E. coli strain BL 21 (DE 3) p Lys S. .
  • FIG. 2 shows the results of separation of SLPA4 by SDS-PAGE and detection by Western plot using a His-Tag antibody.
  • FIG. 3 shows the results of Western blot using His-Tag antibody after SELP8 was separated by SDS-PAGE.
  • FIG. 4 shows the results of separation of SLP F5 by SDS-PAGE followed by detection with a ⁇ ⁇ stamp mouth using a His-Tag antibody.
  • the term “silk 5” is a protein secreted from the posterior silk gland of the silkworm (Borabyx mori), and the term “silk 5” is a protein secreted from the posterior silk gland of the silkworm. .
  • Elastin is a type of elastin that exists in the tissues of various organisms.
  • elastin there is a high frequency of a five-residue amino acid sequence Val-Pro-Gly-Val-Gly (Sequence Table 1).
  • sequence Table 1 For example, for elastin in chicks, Bressan, G. k., Argos, P. and Stanley, KK Repeating structure of chick tropoelastin revealed by complementary DNA cloning, Biochemistry 26, 1497—1503 (1987), See Raju, K. and Anwar, RA Primary structures of bovine el astin a, b and c deduced from the sequences of cDNA clones, and J. Biol. Chern. 262, 5755-5762 (1987)). Therefore, the functional site motif of elastin in the present invention means the amino acid sequence of the above five residues.
  • fibronectin is a cell-adhesive protein that exists in the extracellular matrix of various organisms.
  • This cell-adhesive protein is composed of four residues of Arg_Gly—Asp—Ser (Sequence Table 2).
  • the amino acid sequence is expressed in association (Reference: Pierschbacher MD, Rouslahti E, Nature 309 30-33 (1984)). Therefore, the four amino acid sequence Arg-Gly-Asp-Ser contained in fibronectin is a functional site motif of fibronectin.
  • Thr-Gly-Arg_Gly_Asp-Ser-Pro-Ala (Toroki-Gly-Asp-Ser) is used in order to allow Arg-Gly-Asp-Ser to retain a secondary structure necessary for expressing cell adhesion.
  • System IJ Table 3 was used as the functional site motif. Therefore, the sequence of these eight residues is not necessarily required.However, considering the biocompatibility when used as artificial skin, etc., the extra sequence described above is the Arg contained in human fibronectin. — Gly — Asp — Serative amino acid sequence around the Ser sequence.
  • the silk proteins proposed by Lewis et al. Designing protein treasures based on the idea that the physical properties and functionality of silk will change by changing the types of motifs and how they are combined.
  • motifs contained in natural silk fibers, elastin, and functions specific to fipronectin they each exhibit heat responsiveness (the property of being insoluble in water by increasing the temperature) and cell adhesion).
  • Various motif sequences are combined.
  • SLP silk-like protein
  • SELP sirolimus and elastin-like protein
  • SLPF silk-like protein with fibronectin
  • SLP Abbreviation of Silk-like Protein: Amino acid sequence (Gly Ala Gly Ser Gly Ala) 3 (Sequence Table 4) contained in silkworm silk and amino acid sequence Gly in rich region of glycine contained in silkworm wild silk Gly Ala Gly Ser Gly Tyr Gly Gly Gly Tyr Gly His Gly Tyr Gly Ser Asp Gly Gly (Sequence Table 5) Combination
  • SLPA abbreviation for Silk-like Protein with poly-alanine: Amino acid sequence contained in silkworm silk Gly Val Gly Ala Gly Tyr (System U Table 6), Gly Ala Gly Ala Gly Tyr (SEQ ID NO: 7), Gly Val Gly Ala Gly Tyr and Gly Ala Gly Val Gly Tyr (SEQ ID NO: 8) and amino acid sequence (A) 18 (SEQ ID NO: 9) similar to the polyalanine region contained in wild silkworm silk combination
  • SELP Abbreviation for Silk and Elastin-like Protein: Amino acid sequence contained in silkworm silk (Gly Ala Gly Ser Gly Ala) 3 (Sequence Table 4) and amino acid sequence contained in elastin ( Gly Val Pro Gly Val) 2 (Sequence Table 10) Combinations
  • SLPF Silk-like Protein with Fibronectine: Amino acid sequence contained in silkworm silk (Gly Ala Gly Ser Gly Ala) 3 (sequence table 4) and amino acid contained in fipronectin Combination of IJThr Gly Arg Gly Asp Ser Pro Ala
  • Fibers must have crystalline and amorphous domains, and when designing new silk-like proteins, it is necessary to combine motifs to form these domains simultaneously.
  • motifs that form a crystalline region or an amorphous region in Eri silkworm silk, which is a type of domestic silk or wild silk, are respectively combined.
  • SELP and SLPF the functional stability motifs of elastin and fibronectin are combined with silk proteins for use as biomaterials, not just as fibers.
  • further new functions can be provided.
  • pET30a containing a T7 promoter as an expression vector, BL21 (DE3) pLysS or BLR (DE3) pL of an inducible expression type as a host E. coli for expression.
  • Select ys S. By combining these, until the addition of IPTG (isopropylthio-1 ⁇ -1D-galactoside) as an expression inducer, the target protein downstream of the ⁇ 7 promoter is expressed because ⁇ 7 RNA polymerase is not expressed. Therefore, stress on E. coli due to large overexpression is reduced.
  • IPTG isopropylthio-1 ⁇ -1D-galactoside
  • plasmid pLysS further expresses ⁇ 7 lysozyme and inactivates ⁇ 7 RNA polymerase, two-step suppression can be expected.
  • the expression of the target protein can be gently progressed by intentionally removing the optimal culture conditions for the growth of Escherichia coli. Can increase the yield. Therefore, in the present invention, it is preferable to set the culture temperature to 2 to 7 ° C. lower than the optimum temperature for the growth of E. coli.
  • the medium used in the present invention is particularly preferably a TB medium.
  • the concentration of I PTG added is preferably from 0.2 to 1.0 mM.
  • the pH is preferably 6.7 to 7.0.
  • the synthesized film-like oligonucleotide is defined as Tris (Tris) EDTA (10 mM Tris-HCl (pH 8.0), ImM EDTA (pH 8.0): hereinafter referred to as TE.
  • Tris Tris
  • EDTA 10 mM Tris-HCl (pH 8.0), ImM EDTA (pH 8.0): hereinafter referred to as TE.
  • the SLP monomer DNA and pUC118 vector sample were mixed at a ratio of 10: 1 (weight ratio), and the mixture was mixed with Takara Ligation Kit ver 2 slution I 16. C for 1 hour. After completion of the reaction, transformation was carried out using Combinent Cell DH5. The presence or absence of the inserted gene is confirmed by color selection using X—gal (5-promo 1—black 1—indolyl 1—j3—D—galactobyranoside), and DNA sheeting is performed on those containing the inserted gene. The sequence was confirmed, and a plasmid pUC-SLP (1) containing SLP monomer DNA was obtained. Construction of PUC-Link>
  • the cloning vector PUC118 used in this study does not contain a region digested by the restriction enzymes NheI and SpeI. Therefore, for the purpose of adding a recognition region for restriction enzymes Nhe I and Spe I to pUC118, an adapter was designed (Sequence Table 19), and pUC118-Link (a plasmid containing the designed adapter) was constructed. In addition, codons encoding methionine residues were arranged on both sides of the adapter in addition to the recognition regions for the restriction enzymes Nhe I and Spe I.
  • methionine residues are added to both sides of the inserted gene of the protein obtained by expression, and the methionine residue is specifically cleaved using cyanogen bromide, so that the sequence derived from plasmid is not included.
  • a sample was obtained.
  • the synthesized oligonucleotide was dissolved in TE (10 raM Tris-HCl (pH 8.0), ImM EDTA (pH 8.0)) at a concentration of 1 ⁇ g / ⁇ 1. After equimolar mixing of the respective complementary strands and heat treatment at 99 ° C for 30 seconds, the mixture was cooled to 37 ° C over 1 hour and left standing for 30 minutes to construct double-stranded DNA. After mixing equal amounts of each double-stranded DNA, the closing vector pUC118 (manufactured by Takara Shuzo Co., Ltd.) was digested with restriction enzyme Xba I at 37 ° C for 1 hour 30 minutes, and CIAP , And the treatment was performed at 37 for 30 minutes.
  • TE raM Tris-HCl (pH 8.0), ImM EDTA (pH 8.0)
  • the reaction solution was extracted and purified using a mixed solution of phenol: cloth-form: isoamyl alcohol (25: 24: 1) (weight ratio). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterile water to obtain a vector sample.
  • the adapter DNA and pUC118 vector sample were mixed at a ratio of 10: 1 (weight ratio), and ligated at 1 ° C. for 1 hour using Takara Ligation Kit ver. After the completion of the reaction, transformation was performed using the competent cell DH5a.
  • X The presence of the introduced gene by color selection using gal After confirming the absence, the DNA containing the introduced gene was subjected to DNA sequencing, and the sequence was confirmed to obtain a plasmid pUC-Link containing the adapter.
  • Both ends of the SLP monomer contain the Spe I and Nhe I restriction enzyme recognition regions.
  • the protruding ends of the fragments digested with the restriction enzymes Spe I and Nhe I are both synonymous and can bind to each other.
  • the newly combined sequence differs from both the Spe I and Nhe I restriction enzyme recognition regions and is not digested by Spe I and Nhe I. Utilizing this property, we constructed a plasmid pUC-Link SLP (n) containing DNA that encodes SLP n times by polymerizing SLP monomer in one direction.
  • Combinent cell DH5 ⁇ was transformed with pUC-SLP (1), and cultured at 37 ° C for 18 hours in a 2 ⁇ medium. Plasmid was extracted from the culture solution by the alkali-SDS method and dissolved in TE. The sample was simultaneously digested with Nhe I and Spe I (both from Takara Shuzo Co., Ltd.) for 1 hour and 30 minutes at 37 ° C., and SLP (1) was isolated from plasmid. The reaction solution was concentrated to 5 ⁇ l using MicroCon (Millipore), and subjected to electrophoresis using 1.5% agarose gel to cut out an insert DNA band. For extraction of Geno force, DNA of UltranoDA ( ⁇ Noretrafree DA) (manufactured by Millipore), the extract was concentrated to 51 using a regeneration microcon to obtain an imported gene sample.
  • UltranoDA ⁇ Noretrafree DA
  • pUC-Link was digested with NheI
  • CIAP was added and treated with alkaline phosphatase.
  • the reaction solution was extracted and purified using a mixed solution (25: 24: 1 in weight ratio) of phenol: cloth form: isoamyl alcohol. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterile water to obtain a vector sample.
  • the DNA concentration in the inserted gene sample and the vector sample was confirmed by electrophoresis using a 1.5% agarose gel, and the inserted gene sample and the vector sample were mixed so that the force became 10: 1. Takara Ligation kit ver2 solution I was added, and the cells were ligated with 16 for 1 hour.
  • a competent cell DH5 ⁇ was transformed.
  • the cells were inoculated on an LB plate containing ampicillin and screened.
  • the colonies generated were picked up, inoculated on a 2 ⁇ medium, and cultured at 37 ° C for 18 hours.
  • Plasmid was extracted from the culture medium by the alkali-SDS miniprep method and dissolved in TE to obtain a sample. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the inserted gene were confirmed by electrophoresis. Thereafter, DNA sequencing was performed, and the sequence was confirmed to obtain plasmid pUC-Link SLP (1).
  • pUC-Link SLP (1) was digested with NheI, CIAP was added thereto and treated with an alkaline phosphatase solution.
  • the reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterile water to obtain a vector sample.
  • the DNA concentrations of the inserted gene sample and the vector sample were confirmed by electrophoresis using a 1.5% agarose gel, and the inserted gene sample and the vector sample were mixed at a weight ratio of 10: 1.
  • An equivalent amount of Takara Ligation kit ver2 solution I was mixed with the mixed solution, and allowed to bind at 16 ° C for 1 hour. After completion of the reaction, it was transformed Konbiten Toseru DH5 ⁇ .
  • the cells were inoculated on LB plates containing ampicillin and screened. The colonies generated were picked up, inoculated into a 2 ⁇ medium, and cultured at 37 for 18 hours. Plasmid was extracted from the culture medium by the alkali-SDS muprep method, dissolved in ⁇ , and used as a sample.
  • the pUC-Link SLP (2, 4, 6) obtained as described above was digested with restriction enzymes BamHI and Hind III (both from Takara Shuzo). After concentrating the reaction solution to 5 ⁇ 1 using a microcon, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. UltrafreeDA was used to extract the DNA from the gel force, and the extract was again concentrated to 51 using a microcon to obtain an inserted gene sample. Use the expression vector pET30a (Novagen) with BamHI and HindIII? After shading, CIAP was added and treated with alkaline phosphatase.
  • reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (25: 24: 1 by weight). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
  • the ligation reaction mixture was transformed with the competent cell DH5cII, inoculated on an LB plate containing kanamycin, and screened. The generated colonies were picked up, inoculated on 2 XYT medium, and cultured. Extract the vector from the medium by alkaline SDS method, dissolve in TE And After digesting the sample simultaneously using Nhe I and Spe I, the presence and size of the insert DNA were confirmed by electrophoresis, and the rooster S row was confirmed by DNA sequencing, and the expression vector pET-SLP (2, 4, 6) were constructed.
  • Plasmid pET—SLP (2, 4, 6) obtained as described above, and host E. coli BL21 (DE3) pLysS (Novagen) having each were added to 1 ml of 2 X TY (25 ⁇ l). g / ml kanamycin, 25 ⁇ g / ml chloramphenicol) The cells were cultured at 37 ° C for 16 hours in a liquid medium. Next, 100 ⁇ l of the culture solution was added to an L-shaped tube containing 5 ml of the 2xTY (0.25 ⁇ g / ml kanamycin, 25 Ug / inl chloramphenicol), and the mixture was heated at 37 ° C. in 1 hour (0D 6 .. 0.
  • IPTG-dependent bands were observed at 19 kDa for SLP2, 29 kDa for SLP4, and 40 kDa for SLP6. This proved that the addition of IPTG induces the SLP gene and obtains a strain that overexpresses SLP.
  • host E. coli BL21 (DE3) pLysS with plasmid pET-SLP (2, 4, 6) was added to 2.5 ml of 2 x TY (25 ⁇ g / ml kanamycin, 25 ⁇ g / ml (Chloram-Fuecol)
  • 2 x TY 25 ⁇ g / ml kanamycin, 25 ⁇ g / ml (Chloram-Fuecol)
  • the cells were cultured in a liquid medium at 37 ° C for 16 hours.
  • the culture solution was added to 250 ml of 200 ml of 2xTY (25 ⁇ g / ml kanamycin, 25 ⁇ g / ml chloramphene-col) in 500 ml
  • IPTG final concentration lmM
  • the cells were further cultured for 2 hours and harvested (5000 rpm, 10 minutes, 4 ° C) to obtain cells.
  • the obtained cells were stored at 130 ° C.
  • Table 1 shows the yield of each protein with a molecular weight of 19 kDa, 29 kDa, and 40 kDa.
  • the amino acid sequence of the N-terminal several residues was determined by the N-terminal amino acid sequence.
  • Each protein was separated from the contaminating proteins by electrophoresis using a polyacrylamide gel, and transferred to a PVDF (polyvinylidene fluoride) membrane using Saltprot 2-S (manufactured by Sartorius). After the transfer, the cells were stained with a staining solution for 5 minutes, and the band of the target protein was cut out using scissors washed with methanol and washed.
  • the N-terminal amino acid sequence was determined using an ABI 473 gas-phase Edman sequencer. This result was consistent with the expected amino acid sequence, confirming that the expressed protein was a protein derived from plasmid.
  • methionine residues are arranged on both sides of the inserted gene by adapters. Since SLPs 2, 4, and 6 themselves do not contain methionine residues, proteins that do not contain plasmin-derived amino acid sequences such as tags can be obtained by chemically cleaving methionine residues. The methionine residue of the protein was cleaved, and the amino acid sequence of the N-terminal several residues was determined by the N-terminal amino acid sequence.
  • SLP 6 was taken in a 10 mg eppendorf tube and dissolved in 90% formic acid. After confirming complete dissolution, miliQ water (ultrapure water) was diluted to a final concentration of 70% formic acid. After adding 1 O mg of cyanogen bromide to the sample solution and dissolving it, it was completely shielded from light with aluminum foil and allowed to stand at room temperature for 12 to 48 hours. After adding 10 times the amount of miliQ water to the reaction solution and terminating the reaction, dialysis was performed using distilled water as an external solution, followed by freeze-drying to obtain a white powder. The obtained white powder was dissolved in 2 ⁇ sample buf fer, and the molecular weight was compared by SDS-PAGE.
  • the synthesized film-form oligonucleotides were dissolved in TE (1 OmM Tris-HCI (pH8.0), ImM EDTA (pH8.0)) to a concentration of 1 ⁇ g / ⁇ 1. . Equimolarly mix each of the complementary strands, heat treat them at 30 ° C for 30 seconds, cool them to 37 ° C over 1 hour, and let them stand for 30 minutes to be represented by Sequence Listing 24 and 25 Two double-stranded DNAs encoding the amino acid sequence were constructed.
  • the cloning vector pUC118 was digested with the restriction enzyme BamHI at 37 ° C for 1 hour and 30 minutes, added with CIAP, and treated at 37 ° C for 30 minutes.
  • the reaction solution was extracted and purified using a mixed solution (25: 24: 4 in weight ratio) of phenol / form / isoamyl alcohol. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterile water to obtain a vector sample.
  • Each double-stranded DNA was mixed with the pUC118 vector sample at 10: 1, and the mixture was mixed with TaKaRa Ligation Kit ver 2 solution I 16. 1 hour at C Ligation was performed to prepare a double-stranded DNA encoding the amino acid sequence represented by Sequence Listings 24 and 25. After the completion of the reaction, transformation was performed using the competent cell DH5a. The presence or absence of the inserted gene is confirmed by color selection using X-gal, DNA sequencing is performed on those containing the inserted gene, and the sequence is confirmed, whereby the DNA sequence encoding polyalanine (Sequence Table 24) can be identified.
  • a plasmid pUC-GX containing a ⁇ A sequence encoding an alternating copolymer of plasmid pUC-ALA and glycine GX (X Ala, Tyr, Val) (SEQ ID NO: 25) was obtained.
  • pUC-ALA was transformed with the competent cell DH5 ⁇ and cultured in 2xYT medium at 37 ° C for 18 hours. From the culture broth, the alkali was extracted by the SDS method and dissolved in TE. The sample was digested simultaneously with Nhe I and Spe I at 37 ° C. for 1 hour and 30 minutes, and ALA was isolated from plasmid. After concentrating the reaction solution to 5 ⁇ l using a microcon, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. UltrafreeDA was used to extract the DNA of the gel force and the like, and the solution extracted using a regenerative microcon was concentrated to 5 ⁇ l to obtain an imported gene sample.
  • CIAP was added and treated with alkaline phosphatase.
  • the reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
  • Combinent cell DH5 ⁇ was transformed using pUC-SLPA (1), and cultured in a 2C medium at 37 ° C. for 18 hours. Plasmid was extracted from the culture solution by the alkali-SDS method and dissolved in TE. The sample was digested simultaneously with Nhe I and Spe I at 37 for 1 hour and 30 minutes to isolate SLPA (1) from plasmid. After concentrating the reaction solution to 5 ⁇ l using a microcon, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. The gel force was extracted using Ultrafree DA, and the solution extracted using a microcon was again concentrated to 5 ⁇ l to obtain an inserted gene sample.
  • pUC-SLPA (1) was digested with NheI, CIAP was added thereto and treated with alkaline phosphatase.
  • the reaction solution was extracted and purified using a phenol: clog-form: isoamyl alcohol mixed solution (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a solid sample.
  • the inserted gene test was performed by electrophoresis using 1.5% agarose gel. Check the DNA concentration in the sample and the vector sample, mix the introduced gene sample and the vector sample so that the ratio becomes 10: 1, add an equal amount of Takara Ligation kit ver2 solution I to the mixture, and add 16 ° C. C for 1 hour.
  • a competent cell DH5 ⁇ was transformed.
  • the cells were inoculated on an LB plate supplemented with ampicillin and screened.
  • the colonies generated were picked up, inoculated on a 2 ⁇ medium, and cultured at 37 ° C. for 18 hours.
  • Plasmid was extracted from the culture medium by the alkali-SDS miniprep method and dissolved in TE to prepare a sample. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the introduced gene were confirmed by electrophoresis. Subsequently, DNA sequencing was performed, and the sequence was confirmed to obtain plasmid pUC-SLPA (2) (dimer).
  • pUC-SLPA (4) (tetramer) was constructed by inserting SLPA (2) into pUC-SLPA (2).
  • pUC-SLPA (4) was digested with BamHI. After concentrating the reaction solution to 5 ⁇ l using a microcon, the band of the insert DNA was cut out by electrophoresis using a 1.5% agarose gel. Ultrafree DA was used to extract DNA from the gel, and the solution extracted using a microcon was concentrated to 5 to obtain an inserted gene sample.
  • CIAP was added and treated with alkaline phosphatase.
  • the reaction solution was extracted and purified using a mixed solution (25: 24: 1 by weight ratio) of phenol: cloform form: isoamyl alcohol. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
  • the DNA concentration in the inserted gene sample and the vector sample was confirmed by electrophoresis using a 1.5% agarose gel.
  • the mixture was mixed so that the mixture became 10: 1, an equal amount of Takara Ligation kit ver2 solution I was added to the mixture, and the mixture was allowed to bind at 16 ° C for 1 hour.
  • the ligation reaction was transformed using DH5a, inoculated on an LB plate containing kanamycin, and screened. The generated colonies were picked up, inoculated on 2 XYT medium, and cultured.
  • the vector was extracted from the culture medium using the alkaline-SDS method and dissolved in TE to obtain a sample. After digesting the sample simultaneously with Nhe I and Spe I, the presence and size of the insert DNA were confirmed by electrophoresis. Next, the expression vector pET-SLPA (4) was constructed by confirming the sequence by DNA sequencing.
  • Plasmid pET_SLPA (4) Host E. coli BL21 (DE3) pLysS, each containing 1.5 ml of 2 x TY (25 g / ml kanamycin, 25 ⁇ g I ml chloramphenicol) liquid medium at 37 ° C For 16 hours. Next, add the culture medium ⁇ ⁇ ⁇ ⁇ ⁇ to a test tube containing 5 ml of 2 x TY (25 g / ml kanamycin, 25 g / ml chloramphenicol) at 37 ° C for 1 hour. (0D600 0.5 to 0.7 (Shimadzu UV-160)).
  • IPTG final concentration ImM
  • 100 ⁇ l of the medium was collected in an Eppendorf tube every hour and cultured for up to 4 hours.
  • the collected medium was separated by centrifugation (14,500 rpm, 5 minutes, 4 ° C), the supernatant was discarded, the pellet was dissolved in 2X sample buffer, and heat-treated at 100 ° C for 5 minutes to prepare a sample for SDS-PAGE. .
  • SLPA4 was detected by Western blot using His-Tag antibody (Fig. 2).
  • Plasmid pET—Host E. coli BL21 (DE3) pLysS with SLPA (4) was added to 1.5 ml of 2xYT (25 ⁇ g / ml kanamycin, 25 ⁇ g / ml chloramphenicol) liquid medium.
  • the cells were cultured at 37 ° C for 16 hours.
  • the culture solution was added to a test tube containing 12 ml of 2xYT (25 ⁇ g / ml kanamycin, 25 ⁇ g / ml chloramphenicol) and cultured at 37 ° C for 16 hours.
  • Buffer B To the resulting precipitate (lOOmM NaH 2 P0 4, 10mM Tris- Cl, 8M urea, pH 8.0) was added and subjected to sonication. The cell suspension obtained here was centrifuged (10,000 rpm, 40 minutes, 4 ° C), and the supernatant was recovered.
  • the obtained supernatant was used as an additional sample, and purification was performed by affinity monochromatography (flow rate: 15 to 2 Oml / h) using a column packed with Ni-agagarose beads previously equilibrated with the same buffer.
  • Each eluate was fractionated, and the fraction containing the target protein was confirmed by SDS-PAGE and collected.
  • the obtained fraction was dialyzed while appropriately exchanging the external solution with distilled water for 2448 hours, and then lyophilized to obtain a white powder.
  • the yield was 34.2 mg ZL.
  • the synthesized oligonucleotide in the form of a film was dissolved in TE (1 OmM Tris-HCI (pH 8.0) ImM EDTA (pH 8.0)) to 1 ⁇ g / ⁇ l. Equimolarly mix the respective complementary strands, heat-treat at 30 ° C for 30 seconds, cool to 37 ° C over 1 hour, allow to stand for 30 minutes, and represent the sequence listings 31 and 32. Two double-stranded DNAs encoding different amino acid sequences were constructed. After mixing equal amounts of each double-stranded DNA, use TaKaRa Ligation Kit ver 2 solution I to bind at 16 ° C for 1 hour, and prepare double-stranded DNA represented by coding SELP monomer.
  • the cloning vector pUC118 was digested with the restriction enzyme BamHI at 37 ° C for 1 hour and 30 minutes, and CIAP was purified and treated at 37 ° C for 30 minutes.
  • the reaction solution was extracted and purified using a phenol: cloth form: isoamyl alcohol mixed solution (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
  • SELP monomer DNA and pUC118 vector sample were mixed at a ratio of 10: 1 and ligated at 16 ° C for 1 hour using Ta KaRa Ligation Kit ver 2 solution I. After the completion of the reaction, transformation was performed using the competent cell DH5a. Confirm the presence of transgene by color selection using X gal Then, the DNA containing the inserted gene is subjected to DNA sequencing, and the sequence is confirmed to confirm that the plasmid containing the SELP monomer DNA pUC— SELP
  • the transformant cell DH5a was transformed and cultured in a 2xYT medium at 37 ° C for 18 hours. Plasmid was extracted from the culture solution by the alkaline SDS method and then dissolved in TE. Samples 37. C, digested simultaneously with Nhe I and Spe I for 1 hour and 30 minutes, and isolated SLP (1) from Plasmidoca. After concentrating the reaction solution to 5 il using a microcon, the insert DNA was cut out by electrophoresis using a 1.5% agarose gel. Ultrafree DA was used to extract the DNA of Ge / Reca, and the extracted solution was again concentrated using a microphone-mouth cone to 5 ⁇ l to obtain an inserted gene sample.
  • pUC-Link was digested with NheI
  • CIAP was added and treated with alkaline phosphatase.
  • the reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (25: 24: 1 by weight). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a sample of one vector.
  • the transformant cell DH5a was transformed.
  • the cells were inoculated on LB plates containing ampicillin and screened. The colonies generated were picked up, inoculated into 2xYT medium, and cultured at 37 ° C for 18 hours. Extract the plasmid from the culture medium using the alkaline SDS miniprep method. And dissolved in TE to obtain a sample. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the introduced gene were confirmed by electrophoresis. Subsequently, DNA sequencing was performed, and the sequence was confirmed to obtain plasmid pUC-Link SELP (1).
  • DH5 ⁇ was transformed and cultured in a 2 ⁇ medium at 37 ° C for 18 hours. Plasmid was extracted from the culture solution by the alkaline SDS method and dissolved in TE. The sample was digested simultaneously with Nhe I and Spe I at 37 for 1 hour and 30 minutes and SELP (1) was isolated from plasmid. After concentrating the reaction solution to 51 using a microcon, the insert DNA nodes were cut out by electrophoresis using a 1.5% agarose gel. Ultrafree DA was used to extract the DNA of the gel force and the like, and the extract was again concentrated to 5 ⁇ l using a microcon to obtain a transfected gene sample.
  • pUC-Link SELP (1) was digested with Nhe I, CIAP was treated with alkaline phosphatase.
  • the reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in bacterial water to obtain a vector sample.
  • the competent cell DH5 was transformed.
  • the cells were inoculated on LB plates containing ampicillin and screened.
  • the generated eggs were picked up, inoculated into 2xYT medium, and cultured at 37 ° C for 18 hours. Extract the plasmid from the culture medium using the alkaline SDS miniprep method.
  • pUC-SELP8 was digested with BamHI and HindIII. After concentrating the reaction solution to 5 ⁇ l using a microcontroller, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. UltrafreeDA was used to extract DNA from the gel, and the extract was again concentrated to 5 ⁇ using a microphone-mouth to obtain an inserted gene sample.
  • the ligation reaction was used to transform competent cell DH5a.
  • the cells were inoculated on an LB plate containing kanamycin and screened. The resulting colonies were picked, inoculated into 2XYT medium, and cultured.
  • the cells were cultured at 37 ° C for 16 hours.
  • add 100 ⁇ l of the culture solution to a test tube containing 5 ml of 2 X YT (25 g / ml kanamycin, 25 ⁇ g / ml chloramphenicol), and add 0D at 37 ° C. 6 . . 0.5-0.7.
  • IPTG final concentration ImM
  • SELP8 100 ⁇ ⁇ of the medium was collected every hour into an Eppendorf tube and cultured for up to 4 hours. The collected medium was centrifuged (14,500 rpm, 5 minutes, 4), and the supernatant was discarded. C for 5 minutes to give a sample for SDS-PAGE.
  • SELP 8 was detected by Western blot using His-Tag antibody (Fig. 3).
  • the cells were cultured at 7 ° C for 16 hours.
  • the culture solution was cultured at 37 ° C. for 16 hours in 12 ml of 2 ⁇ YT (25 g / ml kanamycin, 25 ⁇ g / ml chloramphenicol) liquid medium.
  • IPTG 0.2 mM final concentration
  • the temperature was lowered to 30 ° C, and the cells were cultured for another 4 hours, and the cells were collected (8500 rpm, 30 minutes, 4 ° C). Then, the cells were obtained.
  • the obtained cells were stored at 120 ° C.
  • the obtained fraction was dialyzed while appropriately exchanging the external solution with distilled water for 24 to 48 hours, and then lyophilized to obtain a white powder.
  • the yield for the 35 kDa protein was 38.8 mg.
  • the synthesized oligonucleotide in the form of a film is dissolved in TE (1 OmM Tris-HCI (pH 8.0), ImM EDTA (pH 8.0)) to a concentration of 1 ⁇ g / ⁇ 1.
  • TE 1 OmM Tris-HCI (pH 8.0), ImM EDTA (pH 8.0)
  • Equimolarly mix each of the complementary strands heat-treat at 30 ° C for 30 seconds, cool to 37 over 1 hour, allow to stand for 30 minutes, and represent the sequence listings 38 and 39. Two double-stranded DNAs encoding different amino acid sequences were constructed.
  • the cloning vector pUC118 was digested with the restriction enzyme BaraHI at 37 ° C. for 1 hour and 30 minutes, and then CIAP was added, followed by treatment with 37 at 30 minutes.
  • the reaction solution was extracted and purified using a mixed solution (25: 24: 1 in weight ratio) of phenol: chloroform: isoamyl alcohol. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
  • the SLPF monomer DNA and pUCl 18 vector sample were mixed at a ratio of 10: 1, and the mixture was mixed with TaKaRa Ligation Kit ver 2 solution I 16. C was used for 1 B gap. After the completion of the reaction, transformation was performed using the competent cell DH5a. The presence of the inserted gene is confirmed by color selection using X-gal, the DNA containing the inserted gene is subjected to DNA sequencing, and the sequence is confirmed to confirm that the plasmid containing the SLPF monomer DNA pUC-SLPF (1) I got
  • Both ends of the SLPF monomer contain the Spe I and Nhe I restriction enzyme recognition regions.
  • the protruding ends of the fragments digested by Spe I and Nhe I are both complementary and can bind to each other.
  • the newly joined sequence differs from both the Spe I and Nhe I restriction enzyme recognition regions. It is not digested by Spe I and Nhe I. Utilizing this property, pUC Link SLPF (n) was constructed by polymerizing the SLPF monomer in one direction.
  • pUC-SLPF (1) was transformed using the DH5 cell, and cultured in 2xYT medium at 37 ° C for 18 hours. Plasmid was extracted from the culture solution by the Alkali-rich SDS method and dissolved in TE. The sample was simultaneously digested with Nhe I and Spe I at 37 for 1 hour 30 minutes to isolate Plasmidoka, et al. SLPF (1). After concentrating the reaction solution to 51 using a microcon, the insert DNA zone was cut out by electrophoresis using a 1.5% agarose gel. For extraction of the DNA of Geno force, et al., UltrafreeDA was used, and the liquid extracted using a regenerative microcon was concentrated to 5 ⁇ l to obtain an imported gene sample.
  • reaction solution was extracted and purified using a mixed solution (25: 24: 1 in weight ratio) of phenol: cloth form: isoamyl alcohol. Purified reaction solution Ethanol was added, and the resulting precipitate was dissolved in sterilized water to make one vector sample.
  • the competent cell DH5 ⁇ was transformed.
  • the cells were inoculated on an LB plate containing ampicillin and screened.
  • the generated colony One was picked up, inoculated into 2xYT medium, and cultured at 37 ° C for 18 hours.
  • Plasmid was extracted from the culture medium by the alkali-SDS miniprep method and dissolved in TE to obtain a sample. After digesting the sample simultaneously with Nhe I and Spe I, the presence and size of the inserted gene were confirmed by electrophoresis. Next, DNA sequencing was performed and the sequence was confirmed to obtain plasmid pUC—Link SLPF (5).
  • pUC-SLPF (5) was digested with BamHI and HindIII. After concentrating the reaction solution to 5 t1 using a microcomputer, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. To extract the DNA of the gel force, et al., The extract was concentrated to 51 using UltrafreeDA and a reproduction microcon to obtain an imported gene sample.
  • reaction solution is a mixed solution of phenol: chloroform: isoamyl alcohol (25: 24: 1 by weight)
  • the cells were inoculated on an LB plate supplemented with kanamycin and screened. The generated colonies were picked up, inoculated on 2 X YT medium, and cultured.
  • the vector was extracted from the culture medium by the alkaline-SDS method, dissolved in TE, and used as a sample. After digesting the sample simultaneously with Nhe I and Spe I, electrophoresis The presence and size of the insert DNA were confirmed by DNA, and the sequence was confirmed by DNA sequencing to construct the expression vector pET-SLPF5.
  • the cells were cultured in the medium at 37 ° C for 16 hours.
  • add 100 ⁇ l of the culture solution to a test tube containing 5 ml of 2 X TY (25 ⁇ g / ml kanamycin, 25 g / ml chloramphenicol), and add 0D at 37 ° C. 60 . 0.5-0.7.
  • IPTG final concentration ImM
  • 100 ⁇ l of the medium was collected every other hour in an Eppendorf tube and cultured for up to 4 hours.
  • the collected medium was centrifuged (14,500 rpm, 5 minutes, 4 ° C), the supernatant was discarded, the pellet was dissolved in a 2X sample buffer, and then heat-treated at 100 ° C for 5 minutes for SDS'— PAGE sample.
  • the cells were cultured for 16 hours.
  • the culture solution was cultured at 37 ° C. for 16 hours in 5 ml of a 2 ⁇ YT (25 ⁇ g / ml kanamycin, 25 ⁇ g / ml mouth rampunicol) liquid medium.
  • the obtained fraction was dialyzed while appropriately exchanging the external solution with distilled water for 24 to 48 hours, and then lyophilized to obtain a white powder.
  • the yield was 38.8 mg ZL for the 23 kDa protein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Insects & Arthropods (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A process for producing a silk or silk-like protein by using Escherichia coli. A silk or silk-like polymer comprising at least one protein selected from among domesticated silkworm fibroin, wild silkworm fibroin, elastin and fibronectin and essentially comprising the above-described domesticated silkworm fibroin or wild silkworm fibroin is designed and the minimum unit of the silk or the thus designed polymer is synthesized. The polymer of the minimum unit thus synthesized is integrated into at least one expression vector selected from expression vectors containing T7 promoter. Then, the expression vector is integrated into E. coli BL21(DE3)pLysS or BLR(DE3)pLysS. Subsequently, the E. coli is grown in a medium selected from among composite media.

Description

明 細 書 絹タンパク質、 及び、 機能性を付与した遺伝子組換え絹様タンパク質の 大量生産方法 技術分野  Description Method for mass production of silk proteins and functionally modified recombinant silk-like proteins
本発明は、 絹タンパク質、 及び機能性を付与した遺伝子組み換え絹様 タンパク質の大量生産方法に関し、 特に細胞接着性又は弾性若しくは強 度を付与させた遺伝子組み換え絹様タンパク質の大量生産方法に関する  The present invention relates to a method for mass-producing a silk protein and a genetically modified silk-like protein provided with a function, and more particularly to a method for mass-producing a genetically modified silk-like protein provided with cell adhesion or elasticity or strength.
背景技術 Background art
絹は高強度 ·高弾性な繊維であり、 生体に含まれるアミノ酸を構成単 位としているため生体適合性があることから、 衣料品のみではなく、 食 品や化粧品等様々な分野で利用されている。  Silk is a high-strength, high-elastic fiber that is composed of amino acids contained in living organisms and is biocompatible, so it is used not only in clothing but also in various fields such as food and cosmetics. I have.
この優れた物性の起源を探るべく、 絹の詳細な構造解析が行われてき た。 絹の一次構造は、 数種類の、 ある決まったアミノ酸配列 (モチーフ ) が十数回繰り返すブロック共重合体であることが特徴である。 近年、 そのモチーフ単位での二次構造が明らかになるにつれて、 絹繊維の構造 と物性との相関についての成果が蓄積されつつある。  Detailed structural analysis of silk has been performed to find the origin of these excellent physical properties. The primary structure of silk is characterized by a block copolymer in which several types of amino acid sequences (motifs) are repeated a dozen times. In recent years, as the secondary structure of each motif has been revealed, results on the correlation between the structure and physical properties of silk fibers are accumulating.
近年では絹タンパク質をコードする合成 D N Aから人工的な絹様タン パク質を合成する研究が為されてきた。 絹タンパク質は同じァミノ酸配 列の繰り返し構造を有するため、 特定のァミノ酸の出現回数が多くなる 事が特徴である。 そのため数種のアミノアシル t R N Aの枯渴が原因と なり、 タンパク質合成の終結にエラーが生じることがある。 また、 D N A配列の繰り返しは大腸菌内で配列の組み換えを起こりやすくする原因 となるため、 繰り返し配列を持つ絹様タンパク質を大腸菌を用いて大量 に得る事は未だ困難であった。 In recent years, studies have been made to synthesize artificial silk-like proteins from synthetic DNAs encoding silk proteins. Since silk proteins have a repeating structure of the same amino acid sequence, the characteristic feature is that the number of occurrences of a specific amino acid increases. This can result in errors in terminating protein synthesis due to the depletion of several aminoacyl-tRNAs. Also, repetition of DNA sequence may cause sequence recombination in E. coli. Therefore, it was still difficult to obtain a large amount of silk-like protein having a repetitive sequence using E. coli.
そこで発現効率を上げるために、 発現ベクターに強力な T 7プロモー ターを融合させたベクターが広く利用されるようになったが、 強力であ るが故に、 目的とするタンパク質が大腸菌にとって強いス トレスになる 場合には、 該タンパク質が菌体の増殖に影響を与えて発現効率が上がら ないという欠点があった。  Therefore, in order to increase expression efficiency, vectors obtained by fusing a strong T7 promoter to an expression vector have been widely used.However, because of the strong expression, the target protein is a strong stress against Escherichia coli. In such a case, there is a drawback that the protein has an effect on the growth of cells and the expression efficiency is not improved.
そこで本発明者等は、 家蚕絹フイブ口イン、 野蚕絹フイブ口イン、 ェ ラスチン及びフイブロネクチンの機能部位モチーフを任意に選択して、 4種類の機能性絹様タンパク質を設計し、 これら 4種類の繰り返し配列 を有する機能性絹様タンパク質に関して、 発現ベクターの選択、 宿主大 腸菌の選択及び発現条件の最適化を行ったところ、 前記設計した機能性 絹様タンパク質を大腸菌を用いて大量生産することが可能となること、 及びこの方法を一般の絹タンパク質に対しても応用することが可能であ ることを見出し、 本発明に到達した。  Therefore, the present inventors have designed four types of functional silk-like proteins by arbitrarily selecting functional site motifs of silkworm silk-in, wild silkworm silk-in, elastin and fibronectin. After selecting an expression vector, selecting a host E. coli, and optimizing expression conditions for a functional silk-like protein having a repeat sequence, mass production of the designed functional silk-like protein using E. coli was performed. And found that this method can be applied to general silk proteins, and arrived at the present invention.
従って、 本発明の目的は、 絹タンパク質及び機能性を付与した絹様タ ンパク質の大量生産方法を提供することにある。 発明の開示  Accordingly, an object of the present invention is to provide a method for mass-producing silk proteins and silk-like proteins to which functionality has been imparted. Disclosure of the invention
本発明の目的は、 家蚕絹フィプロイン、 野蚕絹フイブ口イン、 エラス チン及ぴフイブロネクチンの中から選択され、 前記家蚕絹フイブロイン 又は野蚕絹フイブ口インの何れかを必須とする 2以上の蛋白質の組み合 わせからなる絹様高分子を設計し、 該絹又は設計された高分子の最小単 位を合成し、 合成された該最小単位の高分子を、 T 7プロモーターを含 む発現ベクターの中から選択された少なく とも 1つの発現ベクターに組 み込み、 次いで該発現ベクターを、 B L 2 1 ( D E 3 ) p L y s S又は B LR (D E 3 ) p L y s Sの何れかの大腸菌に,祖み込み、 該大腸菌を 、 複合培地から選択された培地を用いて育成することを特徴とする絹様 蛋白質の生産方法によって達成された。 An object of the present invention is a combination of two or more proteins selected from among silkworm silk fiproin, wild silkworm fibrous mouth, elastin, and fibronectin, wherein at least one of the above silkworm silk fibroin or wild silkworm silk fibrin is required. A silk-like polymer consisting of a combination is designed, the minimum unit of the silk or the designed polymer is synthesized, and the synthesized polymer of the minimum unit is extracted from an expression vector containing a T7 promoter. Integrate into at least one selected expression vector, and then transfer the expression vector to BL21 (DE3) pLysS or BLR (DE 3) p Lys S, which is achieved by a method for producing a silk-like protein, wherein the Escherichia coli is grown on a medium selected from a complex medium. Was done.
また、 本発明は、 大腸菌の育成温度を、 大腸菌の增殖最適温度より 2 〜7°C下げることが好ましく、 特に、 T 7プロモーターを含む発現べク ターとして T 7 1 a cプロモーターを含む発現ベクターを使用すること が好ましい。 図面の簡単な説明  In the present invention, it is preferable that the temperature for growing Escherichia coli be lowered by 2 to 7 ° C. below the optimal temperature for growing Escherichia coli.In particular, an expression vector containing a T71ac promoter as an expression vector containing a T7 promoter is preferably used. It is preferable to use them. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 S L P 2、 4、 6を大腸菌株 B L 2 1 (DE 3) p L y s S内で発現させたときの S D S— PAGE (ドデシル硫酸ナトリ ウムー ポリアク リルアミ ドゲル電気泳動) の結果である。  Figure 1 shows the results of SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) when SLP 2, 4, and 6 were expressed in E. coli strain BL 21 (DE 3) p Lys S. .
第 2図は、 S L PA4を SD S— PAGEで分離した後、 H i s— T a g抗体を用いたウェスタンプロットで検出した結果である。  FIG. 2 shows the results of separation of SLPA4 by SDS-PAGE and detection by Western plot using a His-Tag antibody.
第 3図は、 S E L P 8を S D S— P AG Eで分離した後、 H i s— T a g抗体を用いたウェスタンプロットで検出した結果である。  FIG. 3 shows the results of Western blot using His-Tag antibody after SELP8 was separated by SDS-PAGE.
第 4図は、 S L P F 5を SD S— PAGEで分離した後、 H i s— T a g抗体を用いたゥヱスタンプ口ットで検出した結果である。 発明を実施するための最良の形態  FIG. 4 shows the results of separation of SLP F5 by SDS-PAGE followed by detection with a ゥ ヱ stamp mouth using a His-Tag antibody. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 家蚕絹フイブ口インとは、 家蚕 (Borabyx mori) の後部絹糸腺から分泌されるタンパク質を意味し、 野蚕絹フイブ口イン は、 野蚕の後部絹糸腺から分泌されるタンパク質を意味する。  In the present invention, the term “silk 5” is a protein secreted from the posterior silk gland of the silkworm (Borabyx mori), and the term “silk 5” is a protein secreted from the posterior silk gland of the silkworm. .
これらについては、 蚕糸学用語辞典 日本蚕糸学会編 ( 1 9 7 9) に 記載されている。  These are described in the Terminology of Sericultural Sciences, edited by The Japanese Society of Sericultural Sciences (19779).
また、 エラスチンとは、 様々な生物の組織に存在する弾性を担うタン パク質であり、 このエラスチンの一次構造の中には、 Val— Pro— Gly— Val-Gly (配列表 1 ) という 5残基のアミノ酸配列が数回連なった領 域が、 頻度高く存在する (例えば、 ヒョコのエラスチンについては Bre ssan, G. k. , Argos, P. and Stanley, K. K. Repeating structure o f chick tropoelastin revealed by complementary DNA cloning , Biochemistry 26, 1497— 1503 (1987)、 ゥシのエラスチン ίこつ ヽ ては Raju,K. and Anwar, R. A. Primary structures of bovine el astin a, b and c deduced from the sequences of cDNA clones , J. Biol. Chern. 262, 5755— 5762 (1987)に詳しい) 。 従って、 本発明におけるエラスチンの機能性部位モチーフとは、 上記 5残基のァ ミノ酸配列を意味する。 Elastin is a type of elastin that exists in the tissues of various organisms. In the primary structure of elastin, there is a high frequency of a five-residue amino acid sequence Val-Pro-Gly-Val-Gly (Sequence Table 1). For example, for elastin in chicks, Bressan, G. k., Argos, P. and Stanley, KK Repeating structure of chick tropoelastin revealed by complementary DNA cloning, Biochemistry 26, 1497—1503 (1987), See Raju, K. and Anwar, RA Primary structures of bovine el astin a, b and c deduced from the sequences of cDNA clones, and J. Biol. Chern. 262, 5755-5762 (1987)). Therefore, the functional site motif of elastin in the present invention means the amino acid sequence of the above five residues.
また、 フイブロネクチンとは、 様々な生物の細胞外マトリックスに存 在する細胞接着性のタンパク質であり、 この細胞接着性は、 そこに含ま れる Arg_Gly— Asp— Ser (配列表 2 ) という 4残基のアミノ酸配列が 関連して発現している (参考文献: Pierschbacher M D, Rouslahti E, Nature 309 30〜33 (1984) ) 。 従ってフイブロネクチンに含まれ る Arg— Gly— Asp— Serという 4残基のァミノ酸配列はフィブロネクチ ンの機能性部位モチーフである。 そこで本発明では Ar g— Gly-Asp-S erが細胞接着性を発現するために必要な二次構造を保持できるように するために、 Thr— Gly— Arg_Gly_Asp— Ser— Pro— Ala (酉己歹 IJ表 3 ) を機能性部位モチーフとした。 従って必ずこの 8残基の配列でなけれ ばならないというわけではないが、 上記の余分な配列部分は、 人工皮膚 などとして利用する場合の生体適合性を考慮し、 ヒ トのフイブロネクチ ンに含まれる Arg— Gly— Asp— Ser配列の周辺のアミノ酸配列をそのま ま採用したものである。  In addition, fibronectin is a cell-adhesive protein that exists in the extracellular matrix of various organisms. This cell-adhesive protein is composed of four residues of Arg_Gly—Asp—Ser (Sequence Table 2). The amino acid sequence is expressed in association (Reference: Pierschbacher MD, Rouslahti E, Nature 309 30-33 (1984)). Therefore, the four amino acid sequence Arg-Gly-Asp-Ser contained in fibronectin is a functional site motif of fibronectin. Thus, in the present invention, Thr-Gly-Arg_Gly_Asp-Ser-Pro-Ala (Toroki-Gly-Asp-Ser) is used in order to allow Arg-Gly-Asp-Ser to retain a secondary structure necessary for expressing cell adhesion. System IJ Table 3) was used as the functional site motif. Therefore, the sequence of these eight residues is not necessarily required.However, considering the biocompatibility when used as artificial skin, etc., the extra sequence described above is the Arg contained in human fibronectin. — Gly — Asp — Serative amino acid sequence around the Ser sequence.
本発明においては、 Lewisらによって提案された、 絹タンパク質に含 まれるモチーフの種類とその組み合わせ方を様々に変えることによって 、 絹の物性、 機能性が変化するという考え方に基いてタンパク寳を設計 する。 本発明では、 天然絹繊維に含まれるモチーフやエラスチン、 フィ プロネクチンに特有の機能 (それらはそれぞれ熱応答性 (温度を上げる と凝集して水に溶けなくなる性質) 、 細胞接着性) を発現すると考えら れているモチーフ配列を様々に組み合わせる。 In the present invention, the silk proteins proposed by Lewis et al. Designing protein treasures based on the idea that the physical properties and functionality of silk will change by changing the types of motifs and how they are combined. In the present invention, it is considered that motifs contained in natural silk fibers, elastin, and functions specific to fipronectin (they each exhibit heat responsiveness (the property of being insoluble in water by increasing the temperature) and cell adhesion). Various motif sequences are combined.
具体的には、 天然絹繊維に含まれるモチーフを新たに様々に組み換え ることによって、 天然絹繊維にはない新しい物性、 機能性を持つタンパ ク質を設計するために、 SLP (絹様タンパク質) 、 SLPA (ポリアラニン を有する絹様タンパク質) 、 SELP (絹及ぴエラスチン様タンパク質) 、 SLPF (フイブロネクチンを有する絹様タンパク質) を下記のように 設計した。  Specifically, SLP (silk-like protein) has been developed in order to design proteins with new physical properties and functions not found in natural silk fibers by recombining the motifs contained in natural silk fibers. , SLPA (silk-like protein with polyalanine), SELP (silk and elastin-like protein), and SLPF (silk-like protein with fibronectin) were designed as follows.
SLP (Silk-like Protein (絹様タンパク質) の略号) :家蚕絹に含 まれるアミノ酸配列 (Gly Ala Gly Ser Gly Ala) 3 (配列表 4) と 野蚕絹に含まれるグリシンリッチ領域のアミノ酸配列 Gly Gly Ala Gl y Ser Gly Tyr Gly Gly Gly Tyr Gly His Gly Tyr Gly Ser Asp Gly Gly (配列表 5 ) の組み合わせ SLP (Abbreviation of Silk-like Protein): Amino acid sequence (Gly Ala Gly Ser Gly Ala) 3 (Sequence Table 4) contained in silkworm silk and amino acid sequence Gly in rich region of glycine contained in silkworm wild silk Gly Ala Gly Ser Gly Tyr Gly Gly Gly Tyr Gly His Gly Tyr Gly Ser Asp Gly Gly (Sequence Table 5) Combination
SLPA (Silk-like Protein with poly- alanine (ポリアラニンを 有する絹様タンパク質) の略号) :家蚕絹に含まれるアミノ酸配列 Gly Val Gly Ala Gly Tyr (配歹 U表 6) 、 Gly Ala Gly Ala Gly Tyr ( 配列表 7) 、 Gly Val Gly Ala Gly Tyr及び Gly Ala Gly Val Gly Tyr (配列表 8) と野蚕絹に含まれるポリアラニン領域に類似したアミ ノ酸配列 (A) 18 (配列表 9) の組み合わせ SLPA (abbreviation for Silk-like Protein with poly-alanine): Amino acid sequence contained in silkworm silk Gly Val Gly Ala Gly Tyr (System U Table 6), Gly Ala Gly Ala Gly Tyr (SEQ ID NO: 7), Gly Val Gly Ala Gly Tyr and Gly Ala Gly Val Gly Tyr (SEQ ID NO: 8) and amino acid sequence (A) 18 (SEQ ID NO: 9) similar to the polyalanine region contained in wild silkworm silk combination
SELP (Silk and Elastin - like Protein (絹及ぴエラスチン様タ ンパク質) の略号) :家蚕絹に含まれるアミノ酸配列 (Gly Ala Gly Ser Gly Ala) 3 (配列表 4) とエラスチンに含まれるアミノ酸配列 ( Gly Val Pro Gly Val) 2 (配列表 1 0) の組み合わせSELP (Abbreviation for Silk and Elastin-like Protein): Amino acid sequence contained in silkworm silk (Gly Ala Gly Ser Gly Ala) 3 (Sequence Table 4) and amino acid sequence contained in elastin ( Gly Val Pro Gly Val) 2 (Sequence Table 10) Combinations
SLPF (Silk-like Protein with Fibronectine (フイブロネクチ ンを有する絹様タンパク質) の略号) :家蚕絹に含まれるアミノ酸配列 (Gly Ala Gly Ser Gly Ala) 3 (配列表 4) とフィプロネクチンに 含まれるアミノ酸酉己歹 IJThr Gly Arg Gly Asp Ser Pro Ala (酉己歹 U表 1 1 ) の組み合わせ SLPF (Abbreviation for Silk-like Protein with Fibronectine): Amino acid sequence contained in silkworm silk (Gly Ala Gly Ser Gly Ala) 3 (sequence table 4) and amino acid contained in fipronectin Combination of IJThr Gly Arg Gly Asp Ser Pro Ala
繊維には、 結晶領域と非晶領域が存在することが必要であり、 新しい絹 様タンパク質を設計する際には、 これらの領域を同時に形成するように モチーフを組み合わせることが必要である。 例えば、 SLPと SLPAの場合 には、 家蚕絹、 野蚕絹の 1種であるエリ蚕絹中で、 結晶領域又は非晶領 域を形成するようなモチーフをそれぞれ組み合わせる。 また、 SELPと S LPFの場合には、 繊維としてだけではなく、 バイオマテリアルとして利 用するためにエラスチン、 フイブロネクチンの機能性部位モチーフを絹 タンパク質と組み合わせることによって、 絹が持つ熱安定性や生分解性 などの機能性に加えて、 さらに新たな機能性を付与することが出来る。 本発明においては、 発現ベクターとして T 7プロモーターを含む p E T 3 0 a、 発現の際の宿主大腸菌として発現誘導型の B L 2 1 (DE 3 ) p L y s S又は B LR (DE 3) p L y s Sを選択する。 これらの組 み合わせにより、 発現誘導物質として I P TG (ィソプロピルチオ一 β 一 D—ガラク トシド) を添加するまでは、 Τ 7 RNAポリメラーゼが 発現しない為に Τ 7プロモーターの下流にある目的タンパク質が発現さ れず、 従って大過剰発現による大腸菌へのス トレスが軽減される。 また 、 プラスミ ド p L y s Sはさらに Τ 7リゾチームを発現して Τ 7 RN Aポリメラーゼを不活性化するため、 2段階での抑制が期待できる。 本 発明においては、 発現ベクターを、 T 7 1 a cプロモーターを含む発現 ベクターの中から選択することが好ましく、 特に p ET 3 0 aを使用す フ ることが好ましい。 Fibers must have crystalline and amorphous domains, and when designing new silk-like proteins, it is necessary to combine motifs to form these domains simultaneously. For example, in the case of SLP and SLPA, motifs that form a crystalline region or an amorphous region in Eri silkworm silk, which is a type of domestic silk or wild silk, are respectively combined. In the case of SELP and SLPF, the functional stability motifs of elastin and fibronectin are combined with silk proteins for use as biomaterials, not just as fibers. In addition to the functions such as the properties, further new functions can be provided. In the present invention, pET30a containing a T7 promoter as an expression vector, BL21 (DE3) pLysS or BLR (DE3) pL of an inducible expression type as a host E. coli for expression. Select ys S. By combining these, until the addition of IPTG (isopropylthio-1β-1D-galactoside) as an expression inducer, the target protein downstream of the Τ7 promoter is expressed because Τ7 RNA polymerase is not expressed. Therefore, stress on E. coli due to large overexpression is reduced. In addition, since plasmid pLysS further expresses Τ7 lysozyme and inactivates Τ7 RNA polymerase, two-step suppression can be expected. In the present invention, it is preferable to select an expression vector from expression vectors containing a T71ac promoter, and particularly to use pET30a. Preferably.
発現誘導後は、 複合培地から選択された培地を用い 培養温度及び I P T G添加濃度並びに p H等の培養条件を最適化することにより、 大腸 菌へのス ト レスを軽減させる。 本発明においては、 故意に大腸菌の増殖 にとつて最適な培養条件からはずすことによって、 目的タンパク質の発 現を穏やかに進行させることが出来、 これによつて長時間の培養が可能 となり、 目的タンパク質の収量を上げることが出来る。 従 3て、 本発明 においては、 培養温度を、 大腸菌の増殖最適温度より 2〜 7°C低温に設 定することが好ましい。  After the induction of expression, stress on E. coli is reduced by optimizing culture conditions such as culture temperature, IPTG addition concentration, and pH using a medium selected from the complex medium. In the present invention, the expression of the target protein can be gently progressed by intentionally removing the optimal culture conditions for the growth of Escherichia coli. Can increase the yield. Therefore, in the present invention, it is preferable to set the culture temperature to 2 to 7 ° C. lower than the optimum temperature for the growth of E. coli.
また、 本発明で使用する培地は TB培地であることが特に好ましい。 I PTG添加濃度は 0. 2〜 1. 0 mMであることが好ましい。 更に p Hは 6. 7〜7. 0であることが好ましい。 実施例  The medium used in the present invention is particularly preferably a TB medium. The concentration of I PTG added is preferably from 0.2 to 1.0 mM. Further, the pH is preferably 6.7 to 7.0. Example
以下、 本発明を実施例によって更に詳述するが、 本発明はこれによつ て限定されるものではない。 尚、 以下において、 特にことわりのない限 り、 「%」 は 「重量%」 を表し、 比は重量比を意味する。 又、 文章中の 各記号の意味は下記の通りである。 実施例 1.  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In the following, unless otherwise specified, “%” represents “% by weight”, and the ratio means a weight ratio. The meaning of each symbol in the text is as follows. Example 1.
く SLP遺伝子の構築 > Construction of SLP gene>
旭テクノグラス(株)の合成による、 配列表 1 2〜 1 5に示された 4 本のオリゴヌクレオチドを設計した。  Four oligonucleotides shown in Sequence Listings 12 to 15 were synthesized by Asahi Techno Glass Co., Ltd.
合成したフィルム状のオリゴヌクレオチドを、 Tris (トリス) EDTA (10 mM Tris-HCl (pH8.0) , ImM EDTA (pH8.0) : 以下 T Eとする The synthesized film-like oligonucleotide is defined as Tris (Tris) EDTA (10 mM Tris-HCl (pH 8.0), ImM EDTA (pH 8.0): hereinafter referred to as TE.
) を用いて、 濃度が 1μ g/ 1となるように溶解した。 それぞれの相補 鎖を等モル混合し、 9 9 °Cで 3 0秒間熱処理した後、 1時間かけて 3 7 °Cに冷まし、 3 0分間静置することによって、 配列表 1 6及び 1 7で表 されるアミノ酸をコードする 2本の二本鎖 DNAを構築した。 それぞれの 二本鎖 DNAを等量混合した後、 TaKaRa Ligation Kit ver 2 slution I (タカララィゲーシヨ ンキッ トパージヨ ン 2溶液 I (宝酒造 (株) 製の商品名) ) を用い、 1 6 °Cで 1時間結合させ、 SLPモノマーをコー ドする二本鎖 DNAを調整した (SLPのアミノ酸酉己歹 IJ ; Thr Ser[Gly Gly Ala Gly Ser Gly Tyr Gly Gly Gly Tyr Gly His Gly Tyr Gly S er Asp Gly Gly (Gly Ala Gly Ala Gly Ser) 3 Ala Ser ]n (n=2, 4, 6)、 配列表 1 8 (n = 2の場合) 参照) 。 ) And dissolved at a concentration of 1 μg / 1. Each complement The chains are equimolarly mixed, heat-treated at 99 ° C for 30 seconds, cooled to 37 ° C over 1 hour, and allowed to stand for 30 minutes to be represented by Sequence Listing 16 and 17 Two double-stranded DNAs encoding amino acids were constructed. After mixing equal amounts of each double-stranded DNA, use TaKaRa Ligation Kit ver 2 slution I (Takara ligation kit purge ion 2 solution I (trade name, manufactured by Takara Shuzo Co., Ltd.)) at 16 ° C. After binding for 1 hour, double-stranded DNA encoding SLP monomer was prepared (SLP amino acid sequence IJ; Thr Ser [Gly Gly Ala Gly Ser Gly Tyr Gly Gly Gly Tyr Gly His Gly Tyr Gly Ser Asp Gly Gly (Gly Ala Gly Ala Gly Ser) 3 Ala Ser] n (n = 2, 4, 6), see Sequence Listing 18 (when n = 2)).
クローニングベクター pUC118 (宝酒造 (株) 製) を、 制限酵素 BamH Iを用レヽて 37。Cで 1時間 3 0分 f肖ィ匕し、 CIAP (Calf Intestine Alkal ine Phosphatase (仔ゥシ小腸由来アルカリ性フォスファターゼ) ( 宝酒造 (株) 製) ) を加え、 3 7でで 3 0分間処理を行った (以降 「ァ ルカリフォスファターゼ処理」 と記す) 。 反応液を、 フエノール:クロ 口ホルム:イ ソアミルアルコールが 2 5 : 2 4: 1 (重量比) の混合溶液 を用いて抽出し、 精製した。 精製した反応液にエタノールを加えて生じ た沈殿を滅菌水に溶解し、 ベクター試料とした。  Using the cloning vector pUC118 (Takara Shuzo Co., Ltd.) with the restriction enzyme BamHI 37. Add 1 hour 30 minutes with C, add CIAP (Calf Intestine Alkaline Phosphatase (Alkaline phosphatase from small intestine of larva) (Takara Shuzo Co., Ltd.)), and treat with 37 for 30 minutes. (Hereinafter referred to as “alkaline phosphatase treatment”). The reaction solution was extracted and purified using a mixed solution of phenol: clog form: isoamyl alcohol in a ratio of 25: 24: 1 (weight ratio). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
SLPのモノマー DNAと pUC 1 1 8ベクター試料を 1 0 : 1 (重量比) で 混合し、 Takara Ligation Kit ver 2 slution Iを用いて 1 6。Cで 1時間結合させた。 反応終了後、 コンビテントセル DH5ひを用いて形質 転換した。 X— gal ( 5—プロモ一 4—クロ口一 3—インドリル一 j3 — D—ガラク トビラノシド) を用いたカラーセレクションによって挿入遺 伝子の有無を確認し、 挿入遺伝子を含むものについて DNAシータエンシ ングを行い、 配列を確認することによって SLPのモノマー DNAを含むプ ラスミ ド pUC— SLP ( 1 ) を得た。 く PUC— Linkの構築〉 The SLP monomer DNA and pUC118 vector sample were mixed at a ratio of 10: 1 (weight ratio), and the mixture was mixed with Takara Ligation Kit ver 2 slution I 16. C for 1 hour. After completion of the reaction, transformation was carried out using Combinent Cell DH5. The presence or absence of the inserted gene is confirmed by color selection using X—gal (5-promo 1—black 1—indolyl 1—j3—D—galactobyranoside), and DNA sheeting is performed on those containing the inserted gene. The sequence was confirmed, and a plasmid pUC-SLP (1) containing SLP monomer DNA was obtained. Construction of PUC-Link>
本研究に用いるクロー-ングベクター PUC118は、 制限酵素 Nhe I、 S pe Iによって消化される領域を含まない。 そこで、 pUC118に制限酵素 Nhe I及ぴ Spe Iの認識領域を付け加える事を目的とし、 アダプターを 設計して (配列表 1 9) 、 pUC118— Link (設計したアダプターを含む プラスミ ド) を構築した。 またアダプターには制限酵素 Nhe I及ぴ Spe Iの認識領域の他に、 メチォニン残基をコードするコ ドンを両側に配置 させた。 これにより、 発現して得られたタンパク質の挿入遺伝子の両側 にメチォニン残基が付加され、 臭化シアンを用いてメチォニン残基を特 異的に切断することにより、 プラスミ ド由来の配列を含まない試料が得 られた。  The cloning vector PUC118 used in this study does not contain a region digested by the restriction enzymes NheI and SpeI. Therefore, for the purpose of adding a recognition region for restriction enzymes Nhe I and Spe I to pUC118, an adapter was designed (Sequence Table 19), and pUC118-Link (a plasmid containing the designed adapter) was constructed. In addition, codons encoding methionine residues were arranged on both sides of the adapter in addition to the recognition regions for the restriction enzymes Nhe I and Spe I. As a result, methionine residues are added to both sides of the inserted gene of the protein obtained by expression, and the methionine residue is specifically cleaved using cyanogen bromide, so that the sequence derived from plasmid is not included. A sample was obtained.
合成したフィルム状のオリ ゴヌク レオチドを、 TE (10 raM Tris- HC1 (pH8.0) , ImM EDTA (pH8.0) ) を用いて 1 μ g/ μ 1となるように 溶解した。 それぞれの相補鎖を等モル混合し、 9 9°Cで 3 0秒間熱処理 した後、 1時間かけて 3 7 °Cに冷まし、 3 0分間静置することによって 二本鎖 DNAを構築した。 それぞれの二本鎖 DNAを等量混合した後、 クロ 一二ングベクター pUC118 (宝酒造 (株) 製) を、 制限酵素 Xba Iを用 い、 3 7 °Cで 1時間 3 0分消化し、 CIAPを加え、 3 7 で 3 0分間処 理を行った。 反応液を、 フエノール : クロ口ホルム : イ ソアミルァ ルコールが 2 5 : 2 4 : 1 (重量比) の混合溶液を用いて抽出し精製し た。 精製した反応液にエタノールを加えて生じた沈殿を滅菌水に溶解し 、 ベクター試料とした。 アダプター DNAと pUC 1 1 8ベクター試料を 1 0 : 1 (重量比) で混 合し、 Takara Ligation Kit ver 2 s lut ion Iを用いて 1 o Cで 1 時間結合させた。 反応終了後、 コンビテントセル DH5aを用いて形質転 換した。 X— galを用いたカラーセレクションによって揷入遺伝子の有 無を確認し、 揷入遺伝子を含むものについて DNAシークェンシングを行 い、 配列を確認することによって、 アダプターを含むプラスミ ド pUC— Linkを得た。 The synthesized oligonucleotide was dissolved in TE (10 raM Tris-HCl (pH 8.0), ImM EDTA (pH 8.0)) at a concentration of 1 µg / µ1. After equimolar mixing of the respective complementary strands and heat treatment at 99 ° C for 30 seconds, the mixture was cooled to 37 ° C over 1 hour and left standing for 30 minutes to construct double-stranded DNA. After mixing equal amounts of each double-stranded DNA, the closing vector pUC118 (manufactured by Takara Shuzo Co., Ltd.) was digested with restriction enzyme Xba I at 37 ° C for 1 hour 30 minutes, and CIAP , And the treatment was performed at 37 for 30 minutes. The reaction solution was extracted and purified using a mixed solution of phenol: cloth-form: isoamyl alcohol (25: 24: 1) (weight ratio). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterile water to obtain a vector sample. The adapter DNA and pUC118 vector sample were mixed at a ratio of 10: 1 (weight ratio), and ligated at 1 ° C. for 1 hour using Takara Ligation Kit ver. After the completion of the reaction, transformation was performed using the competent cell DH5a. X—The presence of the introduced gene by color selection using gal After confirming the absence, the DNA containing the introduced gene was subjected to DNA sequencing, and the sequence was confirmed to obtain a plasmid pUC-Link containing the adapter.
<SLP (n) の構築 > <Construction of SLP (n)>
SLPモノマーの両端には、 Spe Iと Nhe Iの制限酵素認識領域が含ま れている。 制限酵素 Spe Iと Nhe Iによって消化された断片の突出末端 は、 いずれも相祷的であり互いに結合することができる。 さらに、 結合 して新たに出来た配列は、 Spe Iと Nhe Iの制限酵素認識領域のいずれ とも異なっており、 Spe Iと Nhe Iによっては消化されない。 この性質 を利用して、 一方向に SLPモノマーを重合して SLPを n回繰り返しコード する DNAを含むプラスミ ド pUC— Link SLP (n) を構築した。  Both ends of the SLP monomer contain the Spe I and Nhe I restriction enzyme recognition regions. The protruding ends of the fragments digested with the restriction enzymes Spe I and Nhe I are both synonymous and can bind to each other. In addition, the newly combined sequence differs from both the Spe I and Nhe I restriction enzyme recognition regions and is not digested by Spe I and Nhe I. Utilizing this property, we constructed a plasmid pUC-Link SLP (n) containing DNA that encodes SLP n times by polymerizing SLP monomer in one direction.
pUC-SLP (1) で、 コンビテントセル DH 5 αを形質転換し、 2χΥΤ培 地で、 3 7°Cで 1 8時間培養した。 培養液から、 アルカリ一 SDS法によ つてプラスミ ドを抽出し、 TEに溶解した。 試料を、 3 7°じで 1時間 3 0分、 Nhe I及 Spe I (共に宝酒造 (株) 製) によって同時に消化し 、 プラスミ ドから SLP ( 1 ) を単離した。 反応液をマイクロコン (Micr oCon) (Millipore社製) を用いて 5 μ 1にまで濃縮した後、 1.5%のァ ガロースゲルを用いて電気泳動させ、 ィンサート DNAのバンドを切り出 した。 ゲノレ力、らの DNAの抽出には UltrafreeDA (ゥノレトラフリー DA) ( Millipore社製) を用い、 抽出液を再ぴマイクロコンを用いて 5 1に まで濃縮し、 揷入遺伝子試料とした。  Combinent cell DH5α was transformed with pUC-SLP (1), and cultured at 37 ° C for 18 hours in a 2χΥΤ medium. Plasmid was extracted from the culture solution by the alkali-SDS method and dissolved in TE. The sample was simultaneously digested with Nhe I and Spe I (both from Takara Shuzo Co., Ltd.) for 1 hour and 30 minutes at 37 ° C., and SLP (1) was isolated from plasmid. The reaction solution was concentrated to 5 μl using MicroCon (Millipore), and subjected to electrophoresis using 1.5% agarose gel to cut out an insert DNA band. For extraction of Geno force, DNA of UltranoDA (ゥ Noretrafree DA) (manufactured by Millipore), the extract was concentrated to 51 using a regeneration microcon to obtain an imported gene sample.
pUC— Linkを Nhe Iで消化した後、 CIAPを加えてアルカリフォスファ ターゼ処理した。 反応液を、 フエノール : クロ口ホルム : イソアミ ルアルコールの混合溶液 (重量比で 25:24:1) を用いて抽出し、 精製し た。 精製した反応液にエタノールを加えて生じた沈殿を滅菌水に溶解し 、 ベクター試料とした。 1.5%ァガロースゲルを用いた電気泳動法によって、 挿入遺伝子試料 とベクター試料中の DNA濃度を確認し、 挿入遺伝子試料とベクター試料 力 S 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation ki t ver2 solution Iを加え、 1 6でで 1時間結合させた。 After pUC-Link was digested with NheI, CIAP was added and treated with alkaline phosphatase. The reaction solution was extracted and purified using a mixed solution (25: 24: 1 in weight ratio) of phenol: cloth form: isoamyl alcohol. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterile water to obtain a vector sample. The DNA concentration in the inserted gene sample and the vector sample was confirmed by electrophoresis using a 1.5% agarose gel, and the inserted gene sample and the vector sample were mixed so that the force became 10: 1. Takara Ligation kit ver2 solution I was added, and the cells were ligated with 16 for 1 hour.
反応終了後、 コンビテン トセル DH5 αを形質転換した。 アンピシリ ン を加えた LBプレートに植菌してスクリ一ユングした。 発生したコロニ 一をピックアップして 2χΥΤ培地に接種し、 3 7°Cで 1 8時間培養した 。 培地から、 アルカリ一 SDSミニプレップ法によってプラスミ ドを抽出 し、 TEに溶解して試料とした。 試料を、 Nhe Iと Spe Iを用いて同時に 消化した後、 電気泳動法によって、 挿入遺伝子の有無とサイズを確認し た。 その後、 DNAシークェンシングを行い、 配列を確認することによつ てプラスミ ド pUC— Link SLP (1 ) を得た。  After completion of the reaction, a competent cell DH5α was transformed. The cells were inoculated on an LB plate containing ampicillin and screened. The colonies generated were picked up, inoculated on a 2χΥΤ medium, and cultured at 37 ° C for 18 hours. Plasmid was extracted from the culture medium by the alkali-SDS miniprep method and dissolved in TE to obtain a sample. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the inserted gene were confirmed by electrophoresis. Thereafter, DNA sequencing was performed, and the sequence was confirmed to obtain plasmid pUC-Link SLP (1).
pUC-Link SLP (1) を、 Nhe Iで消化した後、 CIAPを加えてアル力 リフォスファターゼ溶液処理をした。 反応液を、 フエノール:クロロホ ルム:イソアミルアルコールの混合溶液 (重量比で 25:24: 1) を用いて 抽出し、 精製した。 精製した反応液にエタノールを加えて生じた沈殿を 滅菌水に溶解し、 ベクター試料とした。  After pUC-Link SLP (1) was digested with NheI, CIAP was added thereto and treated with an alkaline phosphatase solution. The reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterile water to obtain a vector sample.
1.5%のァガロースゲルを用いた電気泳動法によって、 揷入遺伝子試 料とベクター試料中の DNA濃度を確認し、 挿入遺伝子試料とベクター試 料が重量比で 1 0 : 1になるように混合し、 混合液と等量の Takara Li gation kit ver2 solution Iをカロえ、 1 6 °Cで 1時間結合させた。 反応終了後、 コンビテン トセル DH5 αを形質転換した。 アンピシリ ン を加えた LBプレートに植菌してスクリーユングした。 発生したコロニ 一をピックアップして 2χΥΤ培地に接種し、 3 7でで 1 8時間培養した 。 培地から.、 アルカリ一 SDSミュプレップ法によってプラスミ ドを抽出 し、 ΤΕに溶解して試料とした。 試料を、 Nhe Iと Spe Iを用いて同時に 消化した後、 電気泳動によって揷入遺伝子の有無とサイズを確認した。 その後、 DNAシークェンシングを行い、 配列を確認することによってプ ラスミ ド pUC— Link SLP ( 2 ) ( 2量体) を得た。 The DNA concentrations of the inserted gene sample and the vector sample were confirmed by electrophoresis using a 1.5% agarose gel, and the inserted gene sample and the vector sample were mixed at a weight ratio of 10: 1. An equivalent amount of Takara Ligation kit ver2 solution I was mixed with the mixed solution, and allowed to bind at 16 ° C for 1 hour. After completion of the reaction, it was transformed Konbiten Toseru DH5 α. The cells were inoculated on LB plates containing ampicillin and screened. The colonies generated were picked up, inoculated into a 2χΥΤ medium, and cultured at 37 for 18 hours. Plasmid was extracted from the culture medium by the alkali-SDS muprep method, dissolved in ΤΕ, and used as a sample. Simultaneously use Nhe I and Spe I After digestion, the presence and size of the introduced gene was confirmed by electrophoresis. Thereafter, DNA sequencing was performed, and the sequence was confirmed to obtain a plasmid pUC-Link SLP (2) (dimer).
pUC-Link SLP (2) に SLP (2) を揷入して pUC— Link SLP (4) (4量体) を構築し、 次いで pUC— Link SLP (4) に SLP (2) を挿入 して pUC— Link SLP (6) ( 6量体) を構築した。  Insert SLP (2) into pUC-Link SLP (2) to construct pUC-Link SLP (4) (tetramer), then insert SLP (2) into pUC-Link SLP (4) pUC—Link SLP (6) (hexamer) was constructed.
く発現ベクター pET— SLP (n) の構築〉 Construction of expression vector pET—SLP (n)>
上記のようにして得られた pUC— Link SLP ( 2、 4、 6) を、 制限 酵素 BamHI及ぴ Hind III (共に宝酒造 (株) 製) を用いて消化した。 反応液をマイクロコンを用いてを 5 X 1にまで濃縮した後、 1.5%のァガ ロースゲルを用い、 電気泳動法によってィンサート DNAのパンドを切り 出した。 ゲル力 らの DNAの抽出には UltrafreeDAを用い、 抽出液を再び マイクロコンを用いてを 5 1にまで濃縮し、 挿入遺伝子試料とした。 発現ベクター pET30a (Novagen社製) を、 BamHIと Hind IIIで?肖ィ匕 した後、 CIAPを加えてアルカリフォスファターゼ処理した。 反応液を フエノール : クロ口ホルム : イ ソアミルアルコールの混合溶液 (重 量比で 25:24:1) を用いて抽出し、 精製レた。 精製した反応液にエタノ ールを加えて生じた沈殿を滅菌水に溶解し、 ベクター試料とした。  The pUC-Link SLP (2, 4, 6) obtained as described above was digested with restriction enzymes BamHI and Hind III (both from Takara Shuzo). After concentrating the reaction solution to 5 × 1 using a microcon, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. UltrafreeDA was used to extract the DNA from the gel force, and the extract was again concentrated to 51 using a microcon to obtain an inserted gene sample. Use the expression vector pET30a (Novagen) with BamHI and HindIII? After shading, CIAP was added and treated with alkaline phosphatase. The reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (25: 24: 1 by weight). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
1.5%のァガロースゲルを用いた電気泳動法によって、 挿入遺伝子試 料とベクター試料中の DNA濃度を確認し、 挿入遺伝子試料とベクター試 料が 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation kit ver2 solution Iをカロえ、 1 6 で 1時間結合させた。  Confirm the DNA concentration in the inserted gene sample and the vector sample by electrophoresis using a 1.5% agarose gel, mix the inserted gene sample and the vector sample so that the ratio becomes 10: 1, and mix with the mixture. The amount of Takara Ligation kit ver2 solution I was calorie-coupled with 16 for 1 hour.
ライゲーショ ン反応液をコンビテントセル DH5c¾で形質転換し、 カナ マイシンを加えた LBプレートに植菌してスクリーユングした。 発生し たコロニーをピックアップし、 2 X YT培地に接種して培養した。 培地 から、 アルカリ一 SDS法によってベクターを抽出し、 TEに溶解して試料 とした。 試料を、 Nhe Iと Spe Iを用いて同時に消化した後、 電気泳動 法によってィンサート DNAの有無とサイズを確認した後 DNAシークェン シングによって酉 S列の確認を行い、 発現ベクター pET— SLP ( 2, 4、 6 ) を構築した。 The ligation reaction mixture was transformed with the competent cell DH5cII, inoculated on an LB plate containing kanamycin, and screened. The generated colonies were picked up, inoculated on 2 XYT medium, and cultured. Extract the vector from the medium by alkaline SDS method, dissolve in TE And After digesting the sample simultaneously using Nhe I and Spe I, the presence and size of the insert DNA were confirmed by electrophoresis, and the rooster S row was confirmed by DNA sequencing, and the expression vector pET-SLP (2, 4, 6) were constructed.
く pET— SLP ( 2、 4、 6 ) の発現 > Expression of pET—SLP (2, 4, 6)>
上記のようにして得られたプラスミ ド pET— SLP ( 2、 4、 6 ) それ ぞれを持つ宿主大腸菌 BL 2 1 (DE3) pLysS (Novagen社製) を、 1mlの 2 X TY ( 2 5 μ g/ ml カナマイシン、 2 5 μ g /mlクロラムフエニコ ール) 液体培地で、 3 7 °Cで 1 6時間培養した。 次に、 その培養液 1 0 0 μ 1を 5mlの前記 2xTY ( .2 5 μ g/mlカナマイシン、 2 5 U g/inlクロラ ムフエ二コール) の入った L字管に加え、 3 7 °Cで 1時間 (0D6。。= 0. 5 ~0.7 (Shiniadzu UV- 1 6 0 ) ) 培養した。 この場合、 SLPの発現を誘 導するために IPTG (最終濃度 ImM) を添加し、 1時間おきに Ι Ο Ο μ Ι の培地をエツペンドルフチューブに採取して 3時間まで培養した。 採取 した培地は、 遠心分離 (14500rpm、 5分、 4°C) した後上清を捨て、 ぺ レットを 2 X sample buffer (試料溶解用緩衝液) に溶解した後 100°C で 5分間熱処理し、 SDS— PAGEの試料とした。 第 1図に示したように、 S LP 2では 1 9 kDa、 SLP 4では 2 9 kDa、 SLP 6では 4 0 kDaに、 それぞ れ IPTGに依存したユニークなバンドが観測された。 このことから、 IPT G添加により SLP遺伝子が誘導され、 大量発現する株を得ることの出来 ることが実証された。 Plasmid pET—SLP (2, 4, 6) obtained as described above, and host E. coli BL21 (DE3) pLysS (Novagen) having each were added to 1 ml of 2 X TY (25 μl). g / ml kanamycin, 25 μg / ml chloramphenicol) The cells were cultured at 37 ° C for 16 hours in a liquid medium. Next, 100 μl of the culture solution was added to an L-shaped tube containing 5 ml of the 2xTY (0.25 μg / ml kanamycin, 25 Ug / inl chloramphenicol), and the mixture was heated at 37 ° C. in 1 hour (0D 6 .. = 0. 5 ~ 0.7 (Shiniadzu UV- 1 6 0)) were cultured. In this case, IPTG (final concentration ImM) was added to induce the expression of SLP, and 1 Ο Ο μΙ of the medium was collected every other hour into an eppendorf tube and cultured for up to 3 hours. The collected medium was centrifuged (14,500 rpm, 5 minutes, 4 ° C), the supernatant was discarded, the pellet was dissolved in 2X sample buffer (sample lysis buffer), and then heat-treated at 100 ° C for 5 minutes. And SDS-PAGE samples. As shown in FIG. 1, unique IPTG-dependent bands were observed at 19 kDa for SLP2, 29 kDa for SLP4, and 40 kDa for SLP6. This proved that the addition of IPTG induces the SLP gene and obtains a strain that overexpresses SLP.
次に、 プラスミ ド pET— SLP (2、 4、 6) それぞれを持つ宿主大腸菌 B L 2 1 (DE3) pLysSを、 2.5mlの 2 x TY ( 2 5 μ g/ml カナマイシン、 2 5 μ g/ml クロラムフエ-コール) 液体培地で、 3 7 °Cで 1 6時間培 養した。 次に、 その培養液を 2 5 0 mlの 2xTY ( 2 5 μ g/ml カナマイ シン、 2 5 μ g/ml クロラムフエ-コール) の入った 5 0 0 mlのコルべ ンに加え、 3 7°Cで 1時間 (0D6。。=0.5〜0.7 (島津 UV- 160) ) 培養し た。 この際に、 タンパク質の発現を誘導するために IPTG (最終濃度 lm M) を添加し、 さらに 2時間培養して集菌 (5000rpm、 10分、 4°C) する ことにより菌体を得た。 得られた菌体を一 3 0°Cで保存した。 Next, host E. coli BL21 (DE3) pLysS with plasmid pET-SLP (2, 4, 6) was added to 2.5 ml of 2 x TY (25 μg / ml kanamycin, 25 μg / ml (Chloram-Fuecol) The cells were cultured in a liquid medium at 37 ° C for 16 hours. Next, the culture solution was added to 250 ml of 200 ml of 2xTY (25 μg / ml kanamycin, 25 μg / ml chloramphene-col) in 500 ml In addition, the cells were cultured at 37 ° C for 1 hour (0D 6 = 0.5 to 0.7 (Shimadzu UV-160)). At this time, IPTG (final concentration lmM) was added to induce protein expression, and the cells were further cultured for 2 hours and harvested (5000 rpm, 10 minutes, 4 ° C) to obtain cells. The obtained cells were stored at 130 ° C.
一 3 0 °Cで保存した上記菌体を氷上でゆつく り解凍し、 Lysis buff er (タンノ ク質溶角早用緩衝液) ( 5 OmM Tris— HCl、 300 mM NaCl 、 1 OmM イミダゾール) に懸濁し、 氷上で超音波破砕 (Out put 3.5 、 Duty 6 0 % (TOMY UD201) ) を、 1分間の冷却時間を設けながら 1 分間ずつ、 4回行った。 得られた菌体破砗液を遠心分離 (10, 000rpm、 10分、 4 ) し、 上清を回収した。  Gently thaw the above cells stored at 130 ° C on ice and place in Lysis buffer (5 OmM Tris-HCl, 300 mM NaCl, 1 OmM imidazole). The suspension was suspended and sonicated on ice (Out put 3.5, Duty 60% (TOMY UD201)) four times for 1 minute each with a cooling time of 1 minute. The obtained bacterial cell disruption was centrifuged (10,000 rpm, 10 minutes, 4), and the supernatant was recovered.
得られた上清を添加試料とし、 あらかじめ同緩衝液を用いて平衡化し た Ni— NTA ァガロースビーズを充填したカラムを用い、 ァフィ二ティ 一クロマトグラフィー (流速 1 5〜 2 Oml/時間) による精製を行った 。 各溶出液を分画し、 SDS— PAGEによって目的タンパク質の存在する分 画を確認し回収した。  Using the obtained supernatant as an additional sample, purify by affinity chromatography (flow rate: 15 to 2 Oml / hour) using a column packed with Ni-NTA agarose beads previously equilibrated with the same buffer. went . Each eluate was fractionated, and the fraction containing the target protein was confirmed and recovered by SDS-PAGE.
得られた分画を、 蒸留水に対して 24〜48時間適宜外液を交換しな がら透析した後、 凍結乾燥することによって白色粉末が得られた。 分子 量 1 9kDa、 2 9kDa、 40 kDaの各タンパク質についてそれぞれの収量 を表 1に示す。  The obtained fraction was dialyzed against distilled water for 24 to 48 hours while appropriately exchanging the external solution, and then lyophilized to obtain a white powder. Table 1 shows the yield of each protein with a molecular weight of 19 kDa, 29 kDa, and 40 kDa.
[表 1 ] 収夏 (mg) 収量 (%〉  [Table 1] Yield (mg) Yield (%)
SLP6 21 52.5 SLP6 21 52.5
SLP4 24 60.0  SLP4 24 60.0
SLP2 15 50.0  SLP2 15 50.0
<SLPの同定 > 各タンパク質について、 N—末端アミノ酸シーケンスにより N—末端 の数残基のアミノ酸配列を決定した。 各タンパク質を、 ポリアクリルァ ミ ドゲルを用いた電気泳動法によって挟雑タンパク質から分離し、 ザル トプロッ ト 2— S (ザルトリ ウス社製) を用いて PVDF (ポリビエリデン フロラィ ド) 膜に転写した。 転写後、 染色液で 5分間染色した後、 メタ ノールで脱色し洗浄したハサミを用いて目的タンパク質のバンドを切り だした。 この試料を用い、 ABI 4 7 3 気相式エドマンシーケンサーに よって N—末端アミノ酸配列を決定した。 この結果は予想されるアミノ 酸配列と一致し、 発現したタンパク質がプラスミ ド由来のタンパク質で あることが確認された。 <Identification of SLP> For each protein, the amino acid sequence of the N-terminal several residues was determined by the N-terminal amino acid sequence. Each protein was separated from the contaminating proteins by electrophoresis using a polyacrylamide gel, and transferred to a PVDF (polyvinylidene fluoride) membrane using Saltprot 2-S (manufactured by Sartorius). After the transfer, the cells were stained with a staining solution for 5 minutes, and the band of the target protein was cut out using scissors washed with methanol and washed. Using this sample, the N-terminal amino acid sequence was determined using an ABI 473 gas-phase Edman sequencer. This result was consistent with the expected amino acid sequence, confirming that the expressed protein was a protein derived from plasmid.
<臭化シアンによるタグ配列の切断 >  <Cleavage of tag sequence by cyanogen bromide>
設計した SLP 2、 4、 6には、 アダプターによって挿入遺伝子の両側に メチォニン残基が配置されている。 SLP 2、 4、 6自身にはメチォニン残 基を含まないため、 メチォニン残基を化学的に切断することによって、 タグなどプラスミ ド由来のアミノ酸配列を含まないタンパク質を得るこ とができる。 タンパク質のメチォェン残基を切断し、 N—末端アミノ酸 シーケンスにより N—末端の数残基のアミノ酸配列を決定した。  In designed SLPs 2, 4, and 6, methionine residues are arranged on both sides of the inserted gene by adapters. Since SLPs 2, 4, and 6 themselves do not contain methionine residues, proteins that do not contain plasmin-derived amino acid sequences such as tags can be obtained by chemically cleaving methionine residues. The methionine residue of the protein was cleaved, and the amino acid sequence of the N-terminal several residues was determined by the N-terminal amino acid sequence.
SLP 6を 1 0 mgエツペンドルフチューブに取り、 9 0 %のギ酸に溶解 した。 完全に溶解したことを確認した後、 mi l l i Q 水 (超純水) を加 ぇギ酸の最終濃度が 7 0 %となるまで希釈した。 臭化シアン 1 O mgを試 料溶液に加えて溶解した後、 アルミホイルで完全に遮光し、 室温で 1 2 〜4 8時間放置した。 反応溶液に対して 1 0倍量の mi l l i Q 水を加え 、 反応を止めた後、 蒸留水を外液にして透析を行い、 次いで凍結乾燥を 行う事によって白色粉末を得た。 得られた白色粉末を 2 X s amp l e buf ferに溶解し、 SDS— PAGEによって分子量を比較したところ、 臭化シァ ン処理前の試料に比べて分子量の減少が確認された。 この様にして精製された SLP 6を、 ポリアクリルアミ ドゲルを用いた 電気泳動法によって不純タンパク質から分離し、 ザルトブロッ ト 2— S (ザルトリ ウス) を用いて PVDF膜に転写した。 転写後、 染色液を用い て 5分間染色した後メタノールで脱色し、 洗浄したハサミを用いて目的 とするタンパク質のバン ドを切りだした。 この試料を用い、 ABI 4 7 3気相式ェドマンシーケンサーを用いて N—末端ァミノ酸配列を決定し た。 決定した N-末端ァミノ酸配列は予想されるアミノ酸配列と一致し 、 目的としたタンパク質 SLP 6であることが確認された。 SLP 6 was taken in a 10 mg eppendorf tube and dissolved in 90% formic acid. After confirming complete dissolution, miliQ water (ultrapure water) was diluted to a final concentration of 70% formic acid. After adding 1 O mg of cyanogen bromide to the sample solution and dissolving it, it was completely shielded from light with aluminum foil and allowed to stand at room temperature for 12 to 48 hours. After adding 10 times the amount of miliQ water to the reaction solution and terminating the reaction, dialysis was performed using distilled water as an external solution, followed by freeze-drying to obtain a white powder. The obtained white powder was dissolved in 2 × sample buf fer, and the molecular weight was compared by SDS-PAGE. As a result, a decrease in the molecular weight was confirmed as compared with the sample before the treatment with cyanogen bromide. SLP6 purified in this manner was separated from impure proteins by electrophoresis using polyacrylamide gel, and transferred to a PVDF membrane using Zaltoblock 2-S (Sartorius). After the transfer, the cells were stained with a staining solution for 5 minutes, decolorized with methanol, and the band of the target protein was cut out using washed scissors. Using this sample, the N-terminal amino acid sequence was determined using an ABI 473 gas-phase Edman sequencer. The determined N-terminal amino acid sequence was consistent with the expected amino acid sequence, and it was confirmed that the target protein was SLP6.
実施例 2. Example 2.
く SLPA遺伝子の構築 > Construction of SLPA gene>
旭テクノグラス(株)で合成した配列表 2 0〜 2 3に示される 4本の オリゴヌクレオチドを設計した。  Four oligonucleotides shown in Sequence Listings 20 to 23 synthesized by Asahi Techno Glass Co., Ltd. were designed.
合成したフィルム状のォリゴヌクレオチドを、 TE ( 1 OmM Tris-H CI (pH8.0) , ImM EDTA (pH8.0) ) を用いて、 濃度が 1 μ g/ μ 1となる ように溶解した。 それぞれの相補鎖を等モル混合し、 9 9 °Cで 3 0秒間 熱処理した後 1時間かけて 3 7°Cに冷まし、 3 0分間静置して配列表 2 4及び 2 5で表されるアミノ酸配列をコードする 2本の二本鎖 DNAを構 築した。  The synthesized film-form oligonucleotides were dissolved in TE (1 OmM Tris-HCI (pH8.0), ImM EDTA (pH8.0)) to a concentration of 1 μg / μ1. . Equimolarly mix each of the complementary strands, heat treat them at 30 ° C for 30 seconds, cool them to 37 ° C over 1 hour, and let them stand for 30 minutes to be represented by Sequence Listing 24 and 25 Two double-stranded DNAs encoding the amino acid sequence were constructed.
クローニングべクター pUC118を、 制限酵素 BamHIを用いて 3 7 °Cで 1時間 3 0分消化し、 CIAPを加え、 3 7 °Cで 3 0分間処理を行った。 反応液を、 フエノーノレ : クロ口ホルム : イ ソアミルアルコールの混 合溶液 (重量比で 2 5 : 2 4 : 1 ) を用いて抽出し、 精製した。 精製し た反応液にエタノールを加え、 生じた沈殿を滅菌水に溶解してベクター 試料とした。  The cloning vector pUC118 was digested with the restriction enzyme BamHI at 37 ° C for 1 hour and 30 minutes, added with CIAP, and treated at 37 ° C for 30 minutes. The reaction solution was extracted and purified using a mixed solution (25: 24: 4 in weight ratio) of phenol / form / isoamyl alcohol. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterile water to obtain a vector sample.
それぞれの二本鎖 DNAと pUC 1 1 8ベクター試料を 1 0 : 1で混合し 、 TaKaRa Ligation Kit ver 2 solution Iを用いて 1 6。Cで 1時間 結合させ、 配列表 24及び 2 5で表されるアミノ酸配列をコードする二 本鎖 DN Aを調製した。 反応終了後、 コンビテントセル DH5aを用いて 形質転換した。 X— galを用いたカラーセレクションによって挿入遺伝 子の有無を確認し、 挿入遺伝子を含むものについて DNAシークェンシン グを行い、 配列を確認することによって、 ポリアラニン (配列表 24) をコードする DNA配列を含むプラスミ ド pUC— ALAと、 グリシンの交互共 重合体 GX (X=Ala、 Tyr、 Val) (配列表 2 5 ) をコードする丽 A配列を 含むプラスミ ド pUC— GXを得た。 Each double-stranded DNA was mixed with the pUC118 vector sample at 10: 1, and the mixture was mixed with TaKaRa Ligation Kit ver 2 solution I 16. 1 hour at C Ligation was performed to prepare a double-stranded DNA encoding the amino acid sequence represented by Sequence Listings 24 and 25. After the completion of the reaction, transformation was performed using the competent cell DH5a. The presence or absence of the inserted gene is confirmed by color selection using X-gal, DNA sequencing is performed on those containing the inserted gene, and the sequence is confirmed, whereby the DNA sequence encoding polyalanine (Sequence Table 24) can be identified. A plasmid pUC-GX containing a 丽 A sequence encoding an alternating copolymer of plasmid pUC-ALA and glycine GX (X = Ala, Tyr, Val) (SEQ ID NO: 25) was obtained.
pUC— ALAをコンビテン トセル DH5 αで形質転換し、 2xYT培地で、 3 7°Cで 1 8時間培養した。 培養液から、 アルカリ一 SDS法によってブラ スミ ドを抽出し、 TEに溶解した。 試料を 3 7°Cで 1時間 3 0分、 Nhe I と Spe Iを用いて同時に消化し、 プラスミ ドから ALAを単離した。 反応 液をマイクロコンを用いて 5 μ 1にまで濃縮した後、 1.5%のァガロース ゲルを用い、 電気泳動法によってィンサート DNAのパンドを切り出レた 。 ゲル力、らの DNAの抽出には UltrafreeDAを用い、 再ぴマイクロコンを 用いて抽出した液を 5 μ 1にまで濃縮し、 揷入遺伝子試料とした。  pUC-ALA was transformed with the competent cell DH5α and cultured in 2xYT medium at 37 ° C for 18 hours. From the culture broth, the alkali was extracted by the SDS method and dissolved in TE. The sample was digested simultaneously with Nhe I and Spe I at 37 ° C. for 1 hour and 30 minutes, and ALA was isolated from plasmid. After concentrating the reaction solution to 5 μl using a microcon, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. UltrafreeDA was used to extract the DNA of the gel force and the like, and the solution extracted using a regenerative microcon was concentrated to 5 μl to obtain an imported gene sample.
PUC— GXを Spe Iを用いて消化した後、 CIAPを加えてアル力リフォス ファターゼ処理した。 反応液を、 フエノール:クロ口ホルム:イソアミ ルアルコールの混合溶液 (重量比で 25:24:1) を用いて抽出し、 精製し た。 精製した反応液にエタノールを加え、 生じた沈殿を滅菌水に溶解し てベクター試料とした。  After digesting PUC-GX with Spe I, CIAP was added and treated with alkaline phosphatase. The reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
1.5%のァガロースゲルを用いた電気泳動法によって、 挿入遺伝子試 料とベクター試料中の DNA濃度を確認し、 挿入遺伝子試料とベクター試 料が 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation kit ver2 solution Iをカロえ、 1 6 °Cで 1時間結合させた。 Confirm the DNA concentration in the inserted gene sample and the vector sample by electrophoresis using a 1.5% agarose gel, mix the inserted gene sample and the vector sample so that the ratio becomes 10: 1, and mix with the mixture. An amount of Takara Ligation kit ver2 solution I was caloried and allowed to bind at 16 ° C for 1 hour.
反応終了後、 コンビテン トセル DH5 αを形質転換した。 アンピシリ ン を加えた LBプレートに植菌してスクリ一ユングした。 発生したコロニ 一をピックァップして 2xYT培地に接種し、 3 7 °Cで 1 8時間培養した 。 培地からアルカリ一 SDSミ-プレップ法でプラスミ ドを抽出し、 TEに 溶解して試料とした。 試料を、 Nhe Iと Spe Iで同時に消化した後、 電 気泳動法によって挿入遺伝子の有無とサイズを確認した。 次いで、 DNA シークェンシングを行って配列を確認することにより、 プラスミ ド pUCAfter completion of the reaction, it was transformed Konbiten Toseru DH5 α. Ampicillin The seeds were inoculated on an LB plate to which was added and screened. The colonies generated were picked up, inoculated into 2xYT medium, and cultured at 37 ° C for 18 hours. Plasmid was extracted from the medium by the alkali-SDS mi-prep method, dissolved in TE, and used as a sample. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the inserted gene were confirmed by electrophoresis. Then, DNA sequencing is performed to confirm the sequence.
-SLPA (1) を得た (SLPAのアミノ酸配列 ; [Ala Ser (Ala)18 Thr S er Gly Val Gly Ala Gly Tyr Gly Ala Gly Ala Gly Tyr Gly Val Gly Ala Gly Tyr Gly Ala Gly Val Gly Tyr Gly Ala Gly Ala G ly Tyr]n、 配列表 2 6 (n=4の場合) 参照) 。 -SLPA (1) was obtained (SLPA amino acid sequence; [Ala Ser (Ala) 18 Thr Ser Gly Val Gly Ala Gly Tyr Gly Ala Gly Ala Gly Tyr Gly Val Gly Ala Gly Tyr Gly Ala Gly Val Gly Tyr Gly Ala Gly Ala Gly Tyr] n , see Sequence Listing 26 (when n = 4)).
<SLPA (n) の構築 > <Construction of SLPA (n)>
pUC-SLPA (1) を用いてコンビテントセル DH 5 αを形質転換し、 2χ ΥΤ培地で、 3 7°Cで 1 8時間培養した。 アルカリ一 SDS法によって培養 液からプラスミ ドを抽出し、 TEに溶解した。 試料を 3 7でで 1時間 3 0分、 Nhe Iと Spe Iで同時に消化し、 プラスミ ドから SLPA (1 ) を単 離した。 マイクロコンを用いて反応液を 5 μ 1にまで濃縮した後、 1.5% のァガロースゲルを用いた電気泳動法によってィンサート DNAのパンド を切り出した。 ゲル力、らの DNAの抽出には UltrafreeDAを用い、 再びマ ィクロコンを用いて抽出した液を 5; u lにまで濃縮し、 挿入遺伝子試料 とした。  Combinent cell DH5α was transformed using pUC-SLPA (1), and cultured in a 2C medium at 37 ° C. for 18 hours. Plasmid was extracted from the culture solution by the alkali-SDS method and dissolved in TE. The sample was digested simultaneously with Nhe I and Spe I at 37 for 1 hour and 30 minutes to isolate SLPA (1) from plasmid. After concentrating the reaction solution to 5 μl using a microcon, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. The gel force was extracted using Ultrafree DA, and the solution extracted using a microcon was again concentrated to 5 μl to obtain an inserted gene sample.
pUC-SLPA (1) を Nhe Iで消化した後、 CIAPを加えてアルカリフォ スファターゼ処理した。 反応液を、 フエノール:ク ロ口ホルム:イ ソァ ミルアルコール混合溶液 (重量比 25:24:1) を用いて抽出し、 精製した 。 精製した反応液にエタノールを加えて生じた沈殿を滅菌水に溶解し、 ベタター試料とした。  After pUC-SLPA (1) was digested with NheI, CIAP was added thereto and treated with alkaline phosphatase. The reaction solution was extracted and purified using a phenol: clog-form: isoamyl alcohol mixed solution (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a solid sample.
1.5%のァガロースゲルを用いた電気泳動法によって、 挿入遺伝子試 料とベクター試料中の DNA濃度を確認し、 揷入遺伝子試料とベクター試 料が 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation kit ver2 solution Iを加え、 1 6 °Cで 1時間結合させた。 The inserted gene test was performed by electrophoresis using 1.5% agarose gel. Check the DNA concentration in the sample and the vector sample, mix the introduced gene sample and the vector sample so that the ratio becomes 10: 1, add an equal amount of Takara Ligation kit ver2 solution I to the mixture, and add 16 ° C. C for 1 hour.
反応終了後、 コンビテン トセル DH5 αを形質転換した。 アンピシリ ン を加えた LBプレートに植菌してスク リーニングした。 発生したコロニ 一をピックアップし、 2χΥΤ培地に接種し、 3 7°Cで 1 8時間培養した 。 アルカリ一 SDSミニプレップ法によって培地からプラスミ ドを抽出し 、 TEに溶解して試料とした。 試料を、 Nhe Iと Spe Iで同時に消化した 後、 電気泳動法によって揷入遺伝子の有無とサイズを確認した。 次いで 、 DNAシークェンシングを行い、 配列を確認することによってプラスミ ド pUC— SLPA ( 2 ) (2量体) を得た。  After completion of the reaction, a competent cell DH5α was transformed. The cells were inoculated on an LB plate supplemented with ampicillin and screened. The colonies generated were picked up, inoculated on a 2χΥΤ medium, and cultured at 37 ° C. for 18 hours. Plasmid was extracted from the culture medium by the alkali-SDS miniprep method and dissolved in TE to prepare a sample. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the introduced gene were confirmed by electrophoresis. Subsequently, DNA sequencing was performed, and the sequence was confirmed to obtain plasmid pUC-SLPA (2) (dimer).
pUC-SLPA (2) に SLPA (2) を挿入して pUC— SLPA (4) ( 4量体 ) を構築した。  pUC-SLPA (4) (tetramer) was constructed by inserting SLPA (2) into pUC-SLPA (2).
く発現ベクター pET— SLPA (4) の構築 > Construction of expression vector pET—SLPA (4)>
pUC-SLPA (4) を BamHIを用いて消化した。 マイクロコンを用いて 反応液を 5 μ 1にまで濃縮した後、 1.5%のァガロースゲルを用いた電気 泳動法によってィンサート DNAのバンドを切り出した。 ゲルからの DNA の抽出には Ultrafree DAを用い、 再ぴマイクロコンを用いて抽出した 液を 5 にまで濃縮し、 挿入遺伝子試料とした。  pUC-SLPA (4) was digested with BamHI. After concentrating the reaction solution to 5 μl using a microcon, the band of the insert DNA was cut out by electrophoresis using a 1.5% agarose gel. Ultrafree DA was used to extract DNA from the gel, and the solution extracted using a microcon was concentrated to 5 to obtain an inserted gene sample.
発現ベクター pET30aを BamHIで消化した後、 CIAPを加えてアルカリ フォスファターゼ処理した。 反応液を、 フエノール:ク ロ口ホルム:ィ ソァミルアルコールの混合溶液 (重量比で 25 :24:1) を用いて抽出し精 製した。 精製した反応液にエタノールを加えて生じた沈殿を滅菌水に溶 解し、 ベクター試料とした。  After digestion of the expression vector pET30a with BamHI, CIAP was added and treated with alkaline phosphatase. The reaction solution was extracted and purified using a mixed solution (25: 24: 1 by weight ratio) of phenol: cloform form: isoamyl alcohol. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
1.5%のァガロースゲルを用いた電気泳動法によって、 挿入遺伝子試 料とベクター試料中の DNA濃度を確認し、 挿入遺伝子試料とベクター試 料が 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation kit ver2 solution Iを加え、 1 6 °Cで 1時間結合させた。 The DNA concentration in the inserted gene sample and the vector sample was confirmed by electrophoresis using a 1.5% agarose gel. The mixture was mixed so that the mixture became 10: 1, an equal amount of Takara Ligation kit ver2 solution I was added to the mixture, and the mixture was allowed to bind at 16 ° C for 1 hour.
ライゲーション反応液を DH5aを用いて形質転換し、 カナマイシンを 加えた LBプレートに植菌してスクリーユングした。 発生したコロニー をピックアップし、 2 X YT培地に接種して培養した。 アルカリ一 SDS法 を用いて培地からベクターを抽出し、 TEに溶解して試料とした。 試料 を、 Nhe Iと Spe Iで同時に消化した後、 電気泳動法によってインサー ト DNAの有無とサイズを確認した。 次いで DNAシークェンシングによつ て配列の確認を行うことにより、 発現ベクター pET— SLPA (4) を構築 した。  The ligation reaction was transformed using DH5a, inoculated on an LB plate containing kanamycin, and screened. The generated colonies were picked up, inoculated on 2 XYT medium, and cultured. The vector was extracted from the culture medium using the alkaline-SDS method and dissolved in TE to obtain a sample. After digesting the sample simultaneously with Nhe I and Spe I, the presence and size of the insert DNA were confirmed by electrophoresis. Next, the expression vector pET-SLPA (4) was constructed by confirming the sequence by DNA sequencing.
<pET-SLPA (4) の発現〉  <Expression of pET-SLPA (4)>
プラスミ ド pET_SLPA (4) それぞれを持つ宿主大腸菌 BL2 1 (DE3 ) pLysSを、 1.5mlの 2 x TY ( 25 g/ ml カナマイシン、 2 5 μ g I mlクロラムフエ二コール) 液体培地で、 3 7 °Cで 1 6時間培養した。 次にその培養液 Ι Ο Ο μ Ιを、 5mlの 2 x TY ( 2 5 g/ml カナマイシ ン、 2 5 g/ml クロラムフエ二コール) の入った試験管に加え、 3 7 °Cで 1時間 (0D600 = 0.5〜0.7 ( 島津 UV- 1 6 0 ) ) 培養した。 こ の場合、 SLPA 4の発現を誘導するために IPTG (最終濃度 ImM) を添加 し、 1時間おきに 1 0 0 μ 1の培地をエツペン ドルフチューブに採取し 、 4時間まで培養した。 採取した培地を遠心 (14500rpm、 5分、 4°C) 分離した後上清を捨て、 ペレットを 2 X sample bufferに溶解した後 、 100°Cで 5分間熱処理して SDS— PAGEの試料とした。  Plasmid pET_SLPA (4) Host E. coli BL21 (DE3) pLysS, each containing 1.5 ml of 2 x TY (25 g / ml kanamycin, 25 μg I ml chloramphenicol) liquid medium at 37 ° C For 16 hours. Next, add the culture medium Ο Ο Ο μ に to a test tube containing 5 ml of 2 x TY (25 g / ml kanamycin, 25 g / ml chloramphenicol) at 37 ° C for 1 hour. (0D600 = 0.5 to 0.7 (Shimadzu UV-160)). In this case, IPTG (final concentration ImM) was added to induce the expression of SLPA4, and 100 μl of the medium was collected in an Eppendorf tube every hour and cultured for up to 4 hours. The collected medium was separated by centrifugation (14,500 rpm, 5 minutes, 4 ° C), the supernatant was discarded, the pellet was dissolved in 2X sample buffer, and heat-treated at 100 ° C for 5 minutes to prepare a sample for SDS-PAGE. .
SDS— PAGEとした後、 His— Tag抗体を用いたウェスタンブロッ トを 行うことにより、 SLPA 4を検出した (第 2図) 。  After SDS-PAGE, SLPA4 was detected by Western blot using His-Tag antibody (Fig. 2).
図から明らかなように、 SLPA 4では 2 9kDaにパンドが観測された。 この結果から、 IPTG添加によって SLP遺伝子が誘導され大量発現する株 を得られることが実証された。 As is clear from the figure, a band was observed at 29 kDa in SLPA4. These results indicate that the SLP gene is induced by IPTG addition, It was proved that it could be obtained.
プラスミ ド pET— SLPA (4) を持つ宿主大腸菌 BL 2 1 (DE3) pLysSを 、 1. 5mlの 2xYT ( 2 5 μ g/ml カナマイシン、 2 5 μ g/ml クロラムフ ェ二コール) 液体培地で、 3 7°Cで 1 6時間培養した。 次にその培養液 を 1 2 mlの 2xYT ( 2 5 μ g/ml カナマイシン、 2 5 μ g/ml クロラムフ ヱ二コール) の入った試験管に加え、 3 7 °Cで 1 6時間培養した。 次に 、 1.21の 2xYT ( 2 5 μ g/ml カナマイシン、 2 5 μ g/ml クロラムフエ 二コール) の入った 21のフアーメンターに加え、 3 7 °Cで 0D600 = 0 .5〜0. 7 (島津 UV -160) ) となるまで培養した。 この場合、 タンパ ク質の発現を誘導するために IPTG (最終濃度 ImM) を添加し、 さらに 4時間培養して集菌 (8500rpm、 30分、 4°C) することにより菌体を得 た。 得られた菌体を一 2 0 °Cで保存した。  Plasmid pET—Host E. coli BL21 (DE3) pLysS with SLPA (4) was added to 1.5 ml of 2xYT (25 μg / ml kanamycin, 25 μg / ml chloramphenicol) liquid medium. The cells were cultured at 37 ° C for 16 hours. Next, the culture solution was added to a test tube containing 12 ml of 2xYT (25 μg / ml kanamycin, 25 μg / ml chloramphenicol) and cultured at 37 ° C for 16 hours. Next, it was added to 21 fermenters containing 1.21 of 2xYT (25 μg / ml kanamycin, 25 μg / ml chloramphenicol), and at 37 ° C, 0D600 = 0.5 to 0.7 ( Shimadzu UV-160)). In this case, IPTG (final concentration ImM) was added to induce protein expression, and the cells were further cultured for 4 hours and harvested (8500 rpm, 30 minutes, 4 ° C) to obtain cells. The obtained cells were stored at 120 ° C.
一 2 0 °Cで保存された菌体を氷上でゆつく り解凍し、 Lysis buffer ( 5 OmM Tris-HCl, 3 0 0 mM NaCl、 l OmM イミダゾール) に懸濁 し、. 氷上で超音波破砕 (Out put 3.5、 Duty 6 0 % (TOMY UD201) ) を、 1分間の冷却時間を設けながら、 2分間ずつ 2 0回行った。 得ら れた菌体破砕液について遠心分離 (10,000rPm、 40分、 4°C) 操作を行 い、 沈殿を回収した。 Gently thaw the cells stored at 20 ° C on ice, suspend in Lysis buffer (5 OmM Tris-HCl, 300 mM NaCl, l OmM imidazole) and sonicate on ice. (Out put 3.5, Duty 60% (TOMY UD201)) was performed 20 times for 2 minutes each with a cooling time of 1 minute. The resulting et the disrupted cells was centrifuged (10,000 r P m, 40 min, 4 ° C) have row operations, and the precipitate was collected.
得られた沈殿に Buffer B (lOOmM NaH2P04、 10mM Tris— Cl、 8M 尿 素、 pH8.0) を加え、 超音波破砕を行った。 ここで得られた菌体破碎液 を遠心分離 (10,000rpm、 40分、 4°C) して、 上清を回収した。 Buffer B To the resulting precipitate (lOOmM NaH 2 P0 4, 10mM Tris- Cl, 8M urea, pH 8.0) was added and subjected to sonication. The cell suspension obtained here was centrifuged (10,000 rpm, 40 minutes, 4 ° C), and the supernatant was recovered.
得られた上清を添加試料とし、 あらかじめ同緩衝液を用いて平衡化し た Ni— ΝΤΑ ァガロースビーズを充填したカラムを用い、 ァフイエティ 一クロマトグラフィー (流速 1 5〜 2 O ml/h) による精製を行った。 各溶出液を分画し、 SDS— PAGEによって目的とするタンパク質が存在す る分画を確認し回収した。 蒸留水に対して 24 4 8時間適宜外液を交換しながら得られた分画 を透析した後、 凍結乾燥することによって白色粉末を得た。 収量は 3 4 . 2mgZLであった。 The obtained supernatant was used as an additional sample, and purification was performed by affinity monochromatography (flow rate: 15 to 2 Oml / h) using a column packed with Ni-agagarose beads previously equilibrated with the same buffer. Was. Each eluate was fractionated, and the fraction containing the target protein was confirmed by SDS-PAGE and collected. The obtained fraction was dialyzed while appropriately exchanging the external solution with distilled water for 2448 hours, and then lyophilized to obtain a white powder. The yield was 34.2 mg ZL.
実施例 3. Example 3.
<SELP遺伝子の構築 > <Construction of SELP gene>
旭テクノグラス(株)で合成し配列表 2 7 3 0で表される、 4本の オリゴヌクレオチドを設計した。  Four oligonucleotides synthesized by Asahi Techno Glass Co., Ltd. and represented by Sequence Listing 2730 were designed.
合成したフィルム状のォリ ゴヌクレオチドを、 TE ( 1 OmM Tris-H CI (pH8.0) ImM EDTA (pH8.0) ) を用いて 1 μ g/ μ 1となるように溶 解した。 それぞれの相補鎖を等モル混合し、 9 9°Cで 3 0秒間熱処理し た後 1時間かけて 3 7°Cに冷まし、 3 0分間静置して配列表 3 1及び 3 2で表されるアミノ酸配列をコードする 2本の二本鎖 DNAを構築した。 それぞれの二本鎖 DNAを等量混合した後、 TaKaRa Ligation Kit ver 2 solution Iを用い、 1 6 °Cで 1時間結合させ、 SELPモノマーをコ ードするで表される二本鎖 DNAを調整した (SELPのアミノ酸配歹 IJ ; Thr Ser [ (Gly Val Pro Gly Val)2 Gly Gly (Gly Ala Gly Ala Gly Se r)2 Ala Ser]n、 配列表 3 3 (n=8の場合) 参照) 。 The synthesized oligonucleotide in the form of a film was dissolved in TE (1 OmM Tris-HCI (pH 8.0) ImM EDTA (pH 8.0)) to 1 μg / μl. Equimolarly mix the respective complementary strands, heat-treat at 30 ° C for 30 seconds, cool to 37 ° C over 1 hour, allow to stand for 30 minutes, and represent the sequence listings 31 and 32. Two double-stranded DNAs encoding different amino acid sequences were constructed. After mixing equal amounts of each double-stranded DNA, use TaKaRa Ligation Kit ver 2 solution I to bind at 16 ° C for 1 hour, and prepare double-stranded DNA represented by coding SELP monomer. (See SELP amino acid sequence IJ; Thr Ser [(Gly Val Pro Gly Val) 2 Gly Gly (Gly Ala Gly Ala Gly Ser) 2 Ala Ser] n , Sequence Table 33 (when n = 8)) .
クローニングべクター pUC118を、 制限酵素 BamHIを用いて 37°Cで 1 時間 3 0分消化し、 CIAPをカ卩え、 3 7°Cで 3 0分間処理した。 反応液 をフエノール : クロ口ホルム : イ ソアミルアルコール混合溶液 (重 量比 2 5 : 24 : 1 ) を用いて抽出し精製した。 精製した反応液にエタ ノールを加え、 生じた沈殿を滅菌水に溶解してベクター試料とした。  The cloning vector pUC118 was digested with the restriction enzyme BamHI at 37 ° C for 1 hour and 30 minutes, and CIAP was purified and treated at 37 ° C for 30 minutes. The reaction solution was extracted and purified using a phenol: cloth form: isoamyl alcohol mixed solution (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
SELPモノマー DNAと pUC 1 1 8ベクター試料を 1 0 : 1で混合し、 Ta KaRa Ligation Kit ver 2 solution Iを用いて 1 6°Cで 1時間結合 させた。 反応終了後、 コンビテントセル DH5aを用いて形質転換した。 X galを用いたカラーセレクションによって揷入遺伝子の有無を確認 し、 挿入遺伝子を含むものについて DNAシークェンシングを行い、 配列 を確認することによって SELPモノマー DNAを含むプラスミ ド pUC— SELPSELP monomer DNA and pUC118 vector sample were mixed at a ratio of 10: 1 and ligated at 16 ° C for 1 hour using Ta KaRa Ligation Kit ver 2 solution I. After the completion of the reaction, transformation was performed using the competent cell DH5a. Confirm the presence of transgene by color selection using X gal Then, the DNA containing the inserted gene is subjected to DNA sequencing, and the sequence is confirmed to confirm that the plasmid containing the SELP monomer DNA pUC— SELP
( 1) を得た。 (1) was obtained.
<SELP (n) の構築 > <Construction of SELP (n)>
pUC-SELP (1) を用いて、 コンビテン トセル DH5 aを形質転換し、 2xYT培地で 3 7°C、 1 8時間培養した。 培養液からアルカリ一 SDS法に よってプラスミ ドを抽出し、 次いで TEに溶解した。 試料を 3 7。Cで 1 時間 3 0分、 Nhe Iと Spe Iによって同時に消化し、 プラスミ ドカ ら SL P ( 1 ) を単離した。 マイクロコンを用いて反応液を 5 i lにまで濃縮 した後、 1, 5%のァガロースゲルを用いた電気泳動法によってインサー ト DNAのノ ンドを切り出した。 ゲ /レカ らの DNAの抽出には Ultrafree DA を用い、 再びマイク口コンを用いて抽出した液を 5 μ 1にまで濃縮し、 挿入遺伝子試料とした。  Using pUC-SELP (1), the transformant cell DH5a was transformed and cultured in a 2xYT medium at 37 ° C for 18 hours. Plasmid was extracted from the culture solution by the alkaline SDS method and then dissolved in TE. Samples 37. C, digested simultaneously with Nhe I and Spe I for 1 hour and 30 minutes, and isolated SLP (1) from Plasmidoca. After concentrating the reaction solution to 5 il using a microcon, the insert DNA was cut out by electrophoresis using a 1.5% agarose gel. Ultrafree DA was used to extract the DNA of Ge / Reca, and the extracted solution was again concentrated using a microphone-mouth cone to 5 μl to obtain an inserted gene sample.
pUC— Linkを Nhe Iで消化した後、 CIAPを加えてアル力リフォスファ ターゼ処理した。 反応液をフエノール : クロ口ホルム : イ ソアミル アルコールの混合溶液 (重量比で 25:24:1) を用いて抽出し精製した。 精製した反応液にエタノールを加え、 生じた沈殿を滅菌水に溶解してベ クタ一試料とした。  After pUC-Link was digested with NheI, CIAP was added and treated with alkaline phosphatase. The reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (25: 24: 1 by weight). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a sample of one vector.
1.5%のァガロースゲルを用いた電気泳動法よつて、 揷入遺伝子試料 とベクター試料中の DNA濃度を確認し、 揷入遺伝子試料とベクター試料 が 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation ki t ver2 solution Iを加え、 1 6でで 1時間結合させた。  Confirm the DNA concentration in the transfected gene sample and the vector sample by electrophoresis using a 1.5% agarose gel, mix the transfected gene sample and the vector sample so that the ratio becomes 10: 1, and mix with the mixed solution. An equal volume of Takara Ligation kit ver2 solution I was added, and the cells were ligated with 16 for 1 hour.
反応終了後、 コンビテン トセル DH5 aを形質転換した。 アンピシリ ン を加えた LBプレートに植菌してスクリーユングした。 発生したコロニ 一をピックアップし、 2xYT培地に接種して 3 7 °Cで 1 8時間培養した 。 アルカリ一 SDSミニプレップ法によって培地からプラスミ ドを抽出し 、 TEに溶解して試料とした。 試料を、 Nhe Iと Spe Iで同時に消化した 後、 電気泳動法によって揷入遺伝子の有無とサイズを確認した。 次いで 、 DNAシークェンシングを行い、 配列を確認することによってプラスミ pUC-Link SELP ( 1) を得た。 After completion of the reaction, the transformant cell DH5a was transformed. The cells were inoculated on LB plates containing ampicillin and screened. The colonies generated were picked up, inoculated into 2xYT medium, and cultured at 37 ° C for 18 hours. Extract the plasmid from the culture medium using the alkaline SDS miniprep method. And dissolved in TE to obtain a sample. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the introduced gene were confirmed by electrophoresis. Subsequently, DNA sequencing was performed, and the sequence was confirmed to obtain plasmid pUC-Link SELP (1).
pUC-Link SELP (1) を用いて、 コンビテントセ/レ DH 5 αを形質転 換し、 2χΥΤ培地で、 3 7 °Cで 1 8時間培養した。 培養液からアルカリ 一 SDS法によってプラスミ ドを抽出し、 TEに溶解した。 試料を 3 7でで 1時間 3 0分、 Nhe Iと Spe Iによって同時に消化し、 プラスミ ドから SELP (1 ) を単離した。 マイクロコンを用いて反応液を 5 1にまで濃 縮した後、 1.5%のァガロースゲルを用いた電気泳動法によってインサ 一ト DNAのノ ンドを切り出した。 ゲル力、らの DNAの抽出には Ultrafree DAを用い、 再びマイクロコンを用いて抽出液を 5 μ 1にまで濃縮し、 揷 入遺伝子試料とした。  Using pUC-Link SELP (1), DH5α was transformed and cultured in a 2χΥΤ medium at 37 ° C for 18 hours. Plasmid was extracted from the culture solution by the alkaline SDS method and dissolved in TE. The sample was digested simultaneously with Nhe I and Spe I at 37 for 1 hour and 30 minutes and SELP (1) was isolated from plasmid. After concentrating the reaction solution to 51 using a microcon, the insert DNA nodes were cut out by electrophoresis using a 1.5% agarose gel. Ultrafree DA was used to extract the DNA of the gel force and the like, and the extract was again concentrated to 5 μl using a microcon to obtain a transfected gene sample.
pUC-Link SELP (1) を Nhe Iによって消ィ匕した後、 CIAPをカロえて アルカリフォスファターゼ処理した。 反応液をフヱノール : クロロホ ルム : イソアミルアルコールの混合溶液 (重量比で 25:24: 1) を用い て抽出し精製した。 精製した反応液にエタノールを加え、 生じた沈殿を 轉菌水に溶解してベクター試料とした。  After pUC-Link SELP (1) was digested with Nhe I, CIAP was treated with alkaline phosphatase. The reaction solution was extracted and purified using a mixed solution of phenol: chloroform: isoamyl alcohol (weight ratio: 25: 24: 1). Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in bacterial water to obtain a vector sample.
1.5%のァガロースゲルを用いた電気泳動法によって揷入遺伝子試料 とベクター試料中の DNA濃度を確認し、 挿入遺伝子試料とベクター試料 力 S 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation ki t ver2 solution Iを加え、 1 6 °Cで 1時間結合させた。  Confirm the DNA concentration in the inserted gene sample and the vector sample by electrophoresis using 1.5% agarose gel, mix the inserted gene sample and the vector sample so that the force becomes 10: 1, and make an equivalent volume of the mixed solution. Takara Ligation kit ver2 solution I was added and allowed to bind at 16 ° C for 1 hour.
反応終了後、 コンビテントセル DH5ひを形質転換した。 アンピシリ ン を加えた LBプレートに植菌してスクリーユングした。 発生したコ口- 一をピックアップし、 2xYT培地に接種し、 3 7 °Cで 1 8時間培養した 。 アルカリ一 SDSミニプレップ法によって培地からプラスミ ドを抽出し PC蘭菌 10 After completion of the reaction, the competent cell DH5 was transformed. The cells were inoculated on LB plates containing ampicillin and screened. The generated eggs were picked up, inoculated into 2xYT medium, and cultured at 37 ° C for 18 hours. Extract the plasmid from the culture medium using the alkaline SDS miniprep method. PC orchid 10
25  twenty five
、 TEに溶解して試料とした。 試料を、 Nhe Iと Spe Iで同時に消化した 後、 電気泳動法によって揷入遺伝子の有無とサイズを確認した。 次いでAnd dissolved in TE to obtain a sample. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the introduced gene were confirmed by electrophoresis. Then
、 DNAシークェンシングを行い、 配列を確認することによってプラスミ ド pUC-Link SELP (2) を得た。 By performing DNA sequencing and confirming the sequence, a plasmid pUC-Link SELP (2) was obtained.
pUC-Link SELP (2) に SELP ( 2) を揷入して pUC— Link SELP ( Enter SELP (2) into pUC-Link SELP (2) and enter pUC—Link SELP (
4) を構築し、 pUC— Link SELP (4) に SELP (4) を挿入して pUC— L ink SELP (8) を構築した。 4) was constructed and SELP (4) was inserted into pUC-Link SELP (4) to construct pUC-Link SELP (8).
く発現ベクター pET— SELP (n) の構築〉 Construction of expression vector pET—SELP (n)>
pUC-SELP 8を BamHIと Hind IIIを用いて消化した。 マイクロコン を用いて反応液を 5 μ 1にまで濃縮した後、 1.5%のァガロースゲルを用 いた電気泳動法によってィンサート DNAのバンドを切り出した。 ゲルか らの DNAの抽出には UltrafreeDAを用い、 再びマイク口コンを用いて抽 出液を 5 μΐにまで濃縮し、 挿入遺伝子試料とした。  pUC-SELP8 was digested with BamHI and HindIII. After concentrating the reaction solution to 5 μl using a microcontroller, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. UltrafreeDA was used to extract DNA from the gel, and the extract was again concentrated to 5 μΐ using a microphone-mouth to obtain an inserted gene sample.
発現ベクター pET30aを制限酵素 BamHIと Hind IIIで消化した後、 CI APを加えてアル力リフォスファターゼ処理した。 反応液をフエノール After the expression vector pET30a was digested with restriction enzymes BamHI and HindIII, CIAP was added thereto and treated with alkaline phosphatase. Reaction solution is phenol
: クロ口ホルム : イ ソアミルアルコールの混合溶液 (簞量比で 25:24: Black mouth form: Mixed solution of isoamyl alcohol (25:24 by volume ratio)
:1) を用いて抽出し精製した。 精製した反応液にエタノールを加え、 生じた沈殿を滅菌水に溶解してベクター試料とした。 : 1) and extracted and purified. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
1.5%のァガロースゲルを使用した電気泳動法によって、 挿入遺伝子 試料とベクター試料中の DNA濃度を確認し、 揷入遺伝子試料とベクター 試料が 1 0 : 1になるように混合し、 混合液と等量の Takara Ligatio n kit ver2 solution Iを加え、 1 6 °Cで 1時間結合させた。  Confirm the DNA concentration in the inserted gene sample and the vector sample by electrophoresis using a 1.5% agarose gel. Mix the inserted gene sample and the vector sample so that the ratio becomes 10: 1, and equip with the mixed solution. Of Takara Ligation kit ver2 solution I was added and allowed to bind at 16 ° C for 1 hour.
ライゲーショ ン反応液を用いてコンビテントセル DH5aを形質転換し The ligation reaction was used to transform competent cell DH5a.
、 カナマイシンを加えた LBプレートに植菌してスクリーユングした。 発生したコロニーをピックアップし、 2 X YT培地に接種して培養したThe cells were inoculated on an LB plate containing kanamycin and screened. The resulting colonies were picked, inoculated into 2XYT medium, and cultured.
。 アルカリ一 SDS法によって培地からベクターを抽出し、 TEに溶解して 試料とした。 試料を、 Nhe Iと Spe Iで同時に消化した後、 電気泳動法 によってインサート DNAの有無とサイズを確認し、 DNAシークェンシン グによって配列の確認をおこなうことにより、 発現ベクター pET— SELP 8を構築した。 . Extract the vector from the culture medium by alkaline SDS method, dissolve in TE A sample was used. After simultaneously digesting the sample with Nhe I and Spe I, the presence and size of the insert DNA was confirmed by electrophoresis, and the sequence was confirmed by DNA sequencing, whereby the expression vector pET-SELP8 was constructed.
pET-SELP ( 8 ) の発現 Expression of pET-SELP (8)
プラスミ ド pET— SELP ( 8) それぞれを持つ宿主大腸菌 BL2 1 (DE3 ) pLysSを、 1.5mlの 2 x YT ( 2 5 μ g/ ml カナマイシン、 2 5 μ g I mlクロラムフエ-コール) 液体培地で、 3 7 °Cで 1 6時間培養した。 次に、 5mlの 2 X YT ( 2 5 g/ml カナマイシン、 2 5 μ g/ml クロラ ムフエ二コール) の入った試験管にその培養液 1 0 0 μ 1を加え、 3 7 °Cで 0D6。。= 0.5〜0.7となるまで培養した。 この場合、 SELP 8の発現 を誘導させるために IPTG (最終濃度 ImM) を添加し、 1時間おきに 1 0 0 μ ΐの培地をエツペン ドルフチューブに採取し、 4時間まで培養し た。 採取した培地を遠心分離 (14, 500rpm、 5分、 4で) して上清を捨 て、 ペレッ トを 2 X sample bufferに溶角早した後、 1 0 0。Cで 5分間熱 処理して SDS— PAGEの試料とした。 Plasmid pET— E. coli BL21 (DE3) pLysS with each of SELP (8) and 1.5 ml of 2 x YT (25 μg / ml kanamycin, 25 μg I ml chloramphen-col) liquid medium The cells were cultured at 37 ° C for 16 hours. Next, add 100 μl of the culture solution to a test tube containing 5 ml of 2 X YT (25 g / ml kanamycin, 25 μg / ml chloramphenicol), and add 0D at 37 ° C. 6 . . = 0.5-0.7. In this case, IPTG (final concentration ImM) was added to induce the expression of SELP8, and 100 μ μ of the medium was collected every hour into an Eppendorf tube and cultured for up to 4 hours. The collected medium was centrifuged (14,500 rpm, 5 minutes, 4), and the supernatant was discarded. C for 5 minutes to give a sample for SDS-PAGE.
SDS— PAGEとした後、 His— Tag抗体を用いたウェスタンプロッ トを 行うことによって、 SELP 8を検出した (第 3図) 。  After SDS-PAGE, SELP 8 was detected by Western blot using His-Tag antibody (Fig. 3).
図に示したように、 SELP 8では 3 5 kDaにバンドが観測された。 こ の結果から、 IPTG添加により SLP遺伝子が誘導され、 大量発現する株を 得られることが実証された。  As shown in the figure, a band was observed at 35 kDa in SELP 8. These results demonstrate that the addition of IPTG induces the SLP gene and yields a strain that overexpresses it.
プラスミ ド pET— SELP 8それぞれを持つ宿主大腸菌 BL2 1 (DE3) p LysSを、 1.5mlの 2 x YT ( 2 5 g/ml カナマイシン、 2 5 g/ml ク 口ラムフエ-コール) 液体培地で、 3 7 °Cで 1 6時間培養した。 次に、 その培養液を 1 2mlの 2 X YT ( 2 5 g/ml カナマイシン、 2 5 μ g/m 1 クロラムフエ二コール) 液体培地で、 3 7 °Cで 1 6時間培養した。 さらにその培養液を 1· 21の 2xYT ( 2 5 g/ml カナマイシン、 2 5 g /ml クロラムフエニコーノレ) の入った 21のフアーメンターにカロえ、 3 7°ςで 0D6。。= 0.5〜0.7となるまで培養した。 この場合、 タンパク質の 発現を誘導させるために IPTG (最終濃度 0.2mM) を添加し、 温度を 3 0°Cまで下げてさらに 4時間培養し、 集菌 (8500rpm、 3 0分、 4°C) することにより菌体を得た。 得られた菌体は一 2 0°Cで保存した。 Plasmid pET— E. coli BL21 (DE3) p LysS with each of SELP 8 in 1.5 ml of 2 x YT (25 g / ml kanamycin, 25 g / ml Kuala ramfe-col) liquid medium The cells were cultured at 7 ° C for 16 hours. Next, the culture solution was cultured at 37 ° C. for 16 hours in 12 ml of 2 × YT (25 g / ml kanamycin, 25 μg / ml chloramphenicol) liquid medium. The culture was further transferred to 21 fermenters containing 1 · 2 2xYT (25 g / ml kanamycin, 25 g / ml chloramphenicone), and 37 ° ς at 0D 6 . . = 0.5-0.7. In this case, IPTG (0.2 mM final concentration) was added to induce protein expression, the temperature was lowered to 30 ° C, and the cells were cultured for another 4 hours, and the cells were collected (8500 rpm, 30 minutes, 4 ° C). Then, the cells were obtained. The obtained cells were stored at 120 ° C.
— 20 °Cで保存した菌体を水上でゆつく り解凍し、 Lysis buffer ( 5 OmM Tris-HCl, 3 00 mM NaCl, 1 0 raM イミダゾール) に懸濁し 、 水上で超音波碑砕 (Out put 3.5、 Duty 6 0 % (TOMY UD201) ) を、 1分間の冷却時間を設けながら、 2分間ずつ 2 0回行った。 得られ た菌体破砕液を遠心分離 (10000rpm、 3 0分、 4°C) して上清を回収し た。  — Slowly thaw the cells stored at 20 ° C on water, suspend in Lysis buffer (5 OmM Tris-HCl, 300 mM NaCl, 10 raM imidazole), and sonicate on water (Out put) 3.5, Duty 60% (TOMY UD201)) was performed 20 times for 2 minutes each with a cooling time of 1 minute. The obtained cell lysate was centrifuged (10000 rpm, 30 minutes, 4 ° C), and the supernatant was recovered.
得られた上清を添加試料とし、 あらかじめ同緩衝液を用いて平衡化し た Ni— NTA ァガロースビーズを充填したカラムを用い、 ァフィ二ティ 一クロマトグラフィー (流速 1 5〜 2 Oml/h) による精製を行った。 各溶出液を分画し、 SDS— PAGEによって目的とするタンパク質の存在す る分画を確認し回収した。  Using the obtained supernatant as an added sample, purification by affinity chromatography (flow rate 15 to 2 Oml / h) was performed using a column packed with Ni-NTA agarose beads that had been equilibrated with the same buffer in advance. went. Each eluate was fractionated, and the fraction containing the target protein was confirmed and recovered by SDS-PAGE.
蒸留水に対して 24〜4 8時間適宜外液を交換しながら、 得られた分 画を透析した後凍結乾燥することによって、 白色粉末が得られた。 3 5 kDaのタンパク質についての収量は 3 8. 8mgであった。  The obtained fraction was dialyzed while appropriately exchanging the external solution with distilled water for 24 to 48 hours, and then lyophilized to obtain a white powder. The yield for the 35 kDa protein was 38.8 mg.
実施例 4. Example 4.
ぐ SLPF遺伝子の構築 > Construction of SLPF gene>
旭テクノグラス(株)によって合成され、 配列表 3 4〜 3 7に示され る 4本のオリゴヌクレオチドを設計した。  Four oligonucleotides synthesized by Asahi Techno Glass Co., Ltd. and shown in Sequence Listings 34 to 37 were designed.
合成したフィルム状のォリゴヌクレオチドを、 TE ( 1 OmM Tris-H CI (pH8.0) , ImM EDTA (pH8.0) ) を用レヽて 1 μ g/ μ 1となるように溶 解した。 それぞれの相補鎖を等モル混合し、 9 9°Cで 3 0秒間熱処理し た後、 1時間かけて 3 7でに冷まし、 3 0分間静置して配列表 3 8及び 3 9で表されるアミノ酸配列をコードする 2本の二本鎖 DNAを構築した 。 それぞれの二本鎖 DNAを等量混合した後、 TaKaRa Ligation Kit ve r 2 solution Iを用いて 1 6 °Cで 1時間結合させ、 SLPFモノマーをコ ードする二本鎖 DNAを調整した (SLPFのアミノ酸配列; [Thr Ser Thr Gly Arg Gly Asp Ser Pro Ala Gly Gly (Gly Ala Gly Ala Gly S er )3 Ala Ser]n、 配列表 40 (n=5の場合) 参照) 。 The synthesized oligonucleotide in the form of a film is dissolved in TE (1 OmM Tris-HCI (pH 8.0), ImM EDTA (pH 8.0)) to a concentration of 1 μg / μ1. I understand. Equimolarly mix each of the complementary strands, heat-treat at 30 ° C for 30 seconds, cool to 37 over 1 hour, allow to stand for 30 minutes, and represent the sequence listings 38 and 39. Two double-stranded DNAs encoding different amino acid sequences were constructed. After mixing equal amounts of each double-stranded DNA, they were bound at 16 ° C for 1 hour using TaKaRa Ligation Kit vero 2 solution I to prepare double-stranded DNA encoding SLPF monomer (SLPF Amino acid sequence of [Thr Ser Thr Gly Arg Gly Asp Ser Pro Ala Gly Gly (Gly Ala Gly Ala Gly Ser) 3 Ala Ser] n , see Sequence Listing 40 (when n = 5)).
クローニングべクター pUC118を制限酵素 BaraHIを用いて 37°Cで 1時 間 3 0分消化し、 次いで CIAPを加え、 3 7でで 3 0分間処理を行った 。 反応液をフエノール : クロ 口ホルム : イ ソアミルアルコールの混 合溶液 (重量比で 2 5: 24: 1 ) を用いて抽出し精製した。 精製した 反応液にエタノールを加え、 生じた沈殿を滅菌水に溶解してベクター試 料とした。  The cloning vector pUC118 was digested with the restriction enzyme BaraHI at 37 ° C. for 1 hour and 30 minutes, and then CIAP was added, followed by treatment with 37 at 30 minutes. The reaction solution was extracted and purified using a mixed solution (25: 24: 1 in weight ratio) of phenol: chloroform: isoamyl alcohol. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to obtain a vector sample.
SLPFモノマー DNAと pUCl 1 8べクター試料を 1 0 : 1で混合し、 Ta KaRa Ligation Kit ver 2 solution Iを用いて 1 6。Cで 1 Bき間結合 させた。 反応終了後、 コンビテントセル DH5aを用いて形質転換した。 X— galを用いたカラーセレクションによって挿入遺伝子の有無を確認 し、 揷入遺伝子を含むものについて DNAシークェンシングを行い、 配列 を確認することによって SLPFモノマー DNAを含むプラスミ ド pUC— SLPF ( 1 ) を得た。  The SLPF monomer DNA and pUCl 18 vector sample were mixed at a ratio of 10: 1, and the mixture was mixed with TaKaRa Ligation Kit ver 2 solution I 16. C was used for 1 B gap. After the completion of the reaction, transformation was performed using the competent cell DH5a. The presence of the inserted gene is confirmed by color selection using X-gal, the DNA containing the inserted gene is subjected to DNA sequencing, and the sequence is confirmed to confirm that the plasmid containing the SLPF monomer DNA pUC-SLPF (1) I got
<SLPF (n) の構築 > <Construction of SLPF (n)>
SLPFモノマーの両端には Spe Iと、 Nhe Iの制限酵素認識領域を含ん でいる。 Spe Iと、 Nhe Iによって消化された断片の突出末端は、 いず れも相補的であり互いに結合することができる。 さらに、 結合して新た に出来た配列は、 Spe Iと、 Nhe I制限酵素認識領域のいずれとも異な つており、 Spe Iと、 Nhe Iによっては消化されない。 この性質を利用 して、 一方向に SLPFモノマーを重合して pUC Link SLPF (n) を構築 した。 Both ends of the SLPF monomer contain the Spe I and Nhe I restriction enzyme recognition regions. The protruding ends of the fragments digested by Spe I and Nhe I are both complementary and can bind to each other. In addition, the newly joined sequence differs from both the Spe I and Nhe I restriction enzyme recognition regions. It is not digested by Spe I and Nhe I. Utilizing this property, pUC Link SLPF (n) was constructed by polymerizing the SLPF monomer in one direction.
pUC-SLPF (1) を、 コンビテントセル DH5 ひを用いて形質転換し、 2xYT培地で、 3 7°Cで 1 8時間培養した。 培養液からアル力リ一 SDS法 によってプラスミ ドを抽出し、 TEに溶解した。 試料を、 3 7でで 1時 間 3 0分 Nhe Iと Spe Iを用いて同時に消化し、 プラスミ ドカ、ら SLPF ( 1) を単離した。 マイクロコンを用いて反応液を 5 1にまで濃縮した 後、 1.5%のァガロースゲルを用いた電気泳動法によってィンサート DNA のゾ ンド、を切り出した。 ゲノレ力、らの DNAの抽出には UltrafreeDAを用 ヽ 、 再ぴマイクロコンを用いて抽出した液を 5 μ 1にまで濃縮し、 揷入遺 伝子試料とした。  pUC-SLPF (1) was transformed using the DH5 cell, and cultured in 2xYT medium at 37 ° C for 18 hours. Plasmid was extracted from the culture solution by the Alkali-rich SDS method and dissolved in TE. The sample was simultaneously digested with Nhe I and Spe I at 37 for 1 hour 30 minutes to isolate Plasmidoka, et al. SLPF (1). After concentrating the reaction solution to 51 using a microcon, the insert DNA zone was cut out by electrophoresis using a 1.5% agarose gel. For extraction of the DNA of Geno force, et al., UltrafreeDA was used, and the liquid extracted using a regenerative microcon was concentrated to 5 μl to obtain an imported gene sample.
1.5%のァガロースゲルを用いた電気泳動法によって揷入遺伝子試料 中の DNA濃度を確認し、 揷入遺伝子試料と等量の Takara Ligation ki t ver2 solution Iをカロえて 1 6°Cで 1 6時間結合させた。  Confirm the DNA concentration in the transfected gene sample by electrophoresis using a 1.5% agarose gel, and calcine an equivalent amount of Takara Ligation kit ver2 solution I with the transfected gene sample and bind at 16 ° C for 16 hours I let it.
pUC— Linkを Nhe Iで消化した後、 CIAPを加えてアル力リフォスファ ターゼ処理した。 反応液をフエノール : クロ口ホルム : イソアミル アルコールの混合溶液 (重量比で 25:24:1) を用いて抽出し精製した。 精製した反応液 エタノールを加えて生じた沈殿を滅菌水に溶解してベ クタ一試料とした。  After pUC-Link was digested with NheI, CIAP was added and treated with alkaline phosphatase. The reaction solution was extracted and purified using a mixed solution (25: 24: 1 in weight ratio) of phenol: cloth form: isoamyl alcohol. Purified reaction solution Ethanol was added, and the resulting precipitate was dissolved in sterilized water to make one vector sample.
1.5%のァガロースゲルを用いた電気泳動法によって、 揷入遺伝子試 料とベクター試料中の DNA濃度を確認し、 挿入遺伝子試料とベクター試 料が 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation kit ver2 solution Iを加え、 1 6でで 1時間結合させた。  Confirm the DNA concentration in the inserted gene sample and the vector sample by electrophoresis using a 1.5% agarose gel. Mix the inserted gene sample and the vector sample so that the ratio becomes 10: 1. An equal amount of Takara Ligation kit ver2 solution I was added, and the mixture was ligated with 16 for 1 hour.
反応終了後、 コンビテントセル DH5 αを形質転換した。 アンピシリ ン を加えた LBプレートに植菌してスクリー-ングした。 発生したコロニ 一をピックアップし、 2xYT培地に接種して、 3 7°Cで 1 8時間培養し た。 アルカリ一 SDSミニプレップ法によって培地からプラスミ ドを抽出 し、 TEに溶解して試料と した。 試料を、 Nhe Iと Spe Iで同時に消化し た後、 電気泳動法によって挿入遺伝子の有無とサイズを確認した。 次い で、 DNAシークェンシングを行い、 配列を確認することによってプラス ミ ド pUC— Link SLPF (5) を得た。 After completion of the reaction, the competent cell DH5α was transformed. The cells were inoculated on an LB plate containing ampicillin and screened. The generated colony One was picked up, inoculated into 2xYT medium, and cultured at 37 ° C for 18 hours. Plasmid was extracted from the culture medium by the alkali-SDS miniprep method and dissolved in TE to obtain a sample. After digesting the sample simultaneously with Nhe I and Spe I, the presence and size of the inserted gene were confirmed by electrophoresis. Next, DNA sequencing was performed and the sequence was confirmed to obtain plasmid pUC—Link SLPF (5).
く発現ベクター pET— SLPF (5) の構築〉 Construction of expression vector pET—SLPF (5)>
pUC-SLPF (5) を BamHIと Hind IIIを用いて消ィ匕した。 マイクロコ ンを用いて反応液を 5 t 1にまで濃縮した後、 1, 5%のァガロースゲルを 用いた電気泳動法によってインサート DNAのパンドを切り出した。 ゲル 力、らの DNAの抽出には UltrafreeDAを用レヽ、 再ぴマイクロコンを用いて 抽出液を 5 1にまで濃縮し、 揷入遺伝子試料とした。  pUC-SLPF (5) was digested with BamHI and HindIII. After concentrating the reaction solution to 5 t1 using a microcomputer, the insert DNA band was cut out by electrophoresis using a 1.5% agarose gel. To extract the DNA of the gel force, et al., The extract was concentrated to 51 using UltrafreeDA and a reproduction microcon to obtain an imported gene sample.
発現ベクター pET30aを、 BamHIと Hind IIIで消ィ匕した後、 CIAPをカロ えてアルカリフォスファターゼ処理した。 反応液をフエノール : クロ 口ホルム : イ ソアミルアルコールの混合溶液 (重量比で 25 : 24 : 1 After the expression vector pET30a was digested with BamHI and HindIII, CIAP was treated with alkaline phosphatase. The reaction solution is a mixed solution of phenol: chloroform: isoamyl alcohol (25: 24: 1 by weight)
) を用いて抽出し精製した。 精製した反応液にエタノールを加え、 生じ た沈殿を滅菌水に溶解してベクタ一試料とした。 ) And extracted and purified. Ethanol was added to the purified reaction solution, and the resulting precipitate was dissolved in sterilized water to prepare a vector sample.
1.5%のァガロースゲルを用いた電気泳動法によって、 揷入遺伝子試 料とベクター試料中の DNA濃度を確認し、 揷入遺伝子試料とベクター試 料が 1 0 : 1になるように混合し、 混合液と等量の Takara Ligation kit ver2 solution Iを加え、 1 6 °Cで 1時間結合させた。  Confirm the DNA concentration in the transfected gene sample and the vector sample by electrophoresis using a 1.5% agarose gel, and mix the transfected gene sample and the vector sample so that the ratio becomes 10: 1. And an equal amount of Takara Ligation kit ver2 solution I, and allowed to bind at 16 ° C for 1 hour.
ライゲーション反応液を用いてコンビデントセル DH5aを形質転換し Using the ligation reaction mixture, transform the Combinant Cell DH5a
、 カナマイシンを加えた LBプレートに植菌してスク リ一ユングした。 発生したコロニーをピックアップし、 2 X YT培地に接種して培養した 。 アルカリ一 SDS法によって培地からベクターを抽出し、 TEに溶解して 試料とした。 試料を、 Nhe Iと Spe Iで同時に消化した後、 電気泳動法 によってィンサート DNAの有無とサイズを確認し、 DNAシークェンシン グによって配列の確認をおこない、 発現ベクター pET— SLPF 5を構築 した。 The cells were inoculated on an LB plate supplemented with kanamycin and screened. The generated colonies were picked up, inoculated on 2 X YT medium, and cultured. The vector was extracted from the culture medium by the alkaline-SDS method, dissolved in TE, and used as a sample. After digesting the sample simultaneously with Nhe I and Spe I, electrophoresis The presence and size of the insert DNA were confirmed by DNA, and the sequence was confirmed by DNA sequencing to construct the expression vector pET-SLPF5.
pET-SLPF ( 5 ) の発現 Expression of pET-SLPF (5)
プラスミ ド pET— SLPF ( 5 ) を持つ宿主大腸菌 BLR (DE3) pLysS (No vagen社製) を 1.5mlの 2 x TY ( 2 5 μ g/ml カナマイシン、 2 5 μ g/ mlクロラムフエ-コール) 液体培地で、 3 7 °Cで 1 6時間培養した。 次に、 5mlの 2 X TY ( 2 5 μ g/ml カナマイシン、 2 5 g/ml クロラ ムフエ二コール) の入った試験管にその培養液 1 0 0 μ 1を加え、 3 7 °Cで 0D60。= 0.5〜0.7となるまで培養した。 この場合、 SLPF 5の発現 を誘導させるために IPTG (最終濃度 ImM) を添加し、 1時間おきに 1 0 0 μ 1の培地をェッペンドルフチューブに採取して 4時間まで培養し た。 採取した培地を遠心分離 (14500rpm、 5分、 4°C) して上清を捨て 、 ペレットを 2 X sample bufferに溶解した後、 1 0 0 °Cで 5分間熱処 理して SDS'— PAGEの試料とした。 Plasmid pET— Escherichia coli BLR (DE3) pLysS (Novagen) with SLPF (5) in 1.5 ml of 2 x TY (25 μg / ml kanamycin, 25 μg / ml chloramphenol) liquid The cells were cultured in the medium at 37 ° C for 16 hours. Next, add 100 μl of the culture solution to a test tube containing 5 ml of 2 X TY (25 μg / ml kanamycin, 25 g / ml chloramphenicol), and add 0D at 37 ° C. 60 . = 0.5-0.7. In this case, IPTG (final concentration ImM) was added to induce the expression of SLPF5, and 100 μl of the medium was collected every other hour in an Eppendorf tube and cultured for up to 4 hours. The collected medium was centrifuged (14,500 rpm, 5 minutes, 4 ° C), the supernatant was discarded, the pellet was dissolved in a 2X sample buffer, and then heat-treated at 100 ° C for 5 minutes for SDS'— PAGE sample.
SDS— PAGEとした後、 His— Tag抗体を用いたゥエスタンブロ ッ トを 行うことにより、 SLPF 5を検出した (第 4図) 。  After SDS-PAGE, SLPF5 was detected by performing an easter blot using His-Tag antibody (Fig. 4).
第 4図に示したように、 SLPF 5では 2 3 kDaにバンドが観測された 。 この結果から、 IPTG添加により SLPF遺伝子が誘導され大量発現する 株を得られることが実証された。  As shown in FIG. 4, a band was observed at 23 kDa in SLPF5. From these results, it was demonstrated that the addition of IPTG induced a strain in which the SLPF gene was induced and expressed in large amounts.
プラスミ ド pET— SLPF 5それぞれを持つ宿主大腸菌 BLR (DE3) pLys Sを、 1.5mlの 2 x YT ( 2 5 μ g/ml カナマイシン、 2 5 g/ml ク口 ラムフヱニコール) 液体培地で、 3 7 °Cで 1 6時間培養した。 次にその 培養液を、 5mlの 2 X YT ( 2 5 μ g/ml カナマイシン、 2 5 μ g/ml ク 口ラムフヱニコール) 液体培地で、 3 7 °Cで 1 6時間培養した。 さらに その培養液を、 250mlの 2xYT ( 2 5 μ g/ml カナマイシン、 2 5 g/ml クロラムフエニコーノレ) の入った 11の三角フラスコに力 []え、 3 7でで OD6。。=0.5〜0.7となるまで培養した。 この場合、 タンパク質の発現を 誘導させるために IPTG (最終濃度 0.2mM) を添加し、 さらに 4時間培 養して集菌 (8,500rpra、 3 0分、 4°C) することにより菌体を得た。 得 られた菌体を一 2 0°Cで保存した。 Plasmid pET—Host E. coli BLR (DE3) pLysS with SLPF 5 in 1.5 ml of 2xYT (25 μg / ml kanamycin, 25 g / ml Kuala rampunicol) liquid medium at 37 ° C C. The cells were cultured for 16 hours. Next, the culture solution was cultured at 37 ° C. for 16 hours in 5 ml of a 2 × YT (25 μg / ml kanamycin, 25 μg / ml mouth rampunicol) liquid medium. Then, add 250 ml of 2xYT (25 μg / ml kanamycin, 25 g / ml Force [] to 11 Erlenmeyer flasks containing chloramphenicone) and OD 6 at 37. . = 0.5 to 0.7. In this case, IPTG (final concentration: 0.2 mM) is added to induce protein expression, and the cells are further cultured for 4 hours and collected (8,500 rpra, 30 minutes, 4 ° C) to separate the cells. Obtained. The obtained cells were stored at 120 ° C.
一 20でで保存した菌体を氷上でゆつく り解凍し、 Lysis buffer ( 5 OmM Tris— HC1、 3 0 0 raM NaCl、 1 0 mM ィミダゾール) に懸濁し 、 氷上で超音波破碎 (Out put 3.5、 Duty 6 0 % (TOMY UD201) ) を、 1分間の冷却時間を設けながら、 2分間ずつ 2 0回行った。 得られ た菌体破砕液を遠心分離 (10000rpm、 3 0分、 4°C) して上清を回収し た。  Slowly thaw the cells stored in step 20 on ice, suspend them in Lysis buffer (5 OmM Tris-HC1, 300 raM NaCl, 10 mM imidazole), and sonicate on ice (Out put 3.5 , Duty 60% (TOMY UD201)) was performed 20 times for 2 minutes each with a cooling time of 1 minute. The obtained cell lysate was centrifuged (10000 rpm, 30 minutes, 4 ° C), and the supernatant was recovered.
得られた上清を添加試料とし、 あらかじめ同緩衝液を用いて平衡化し た Ni— NTA ァガロースビーズを充填した力ラムを用いてァフィ二ティ 一クロマトグラフィー (流速 1 5〜 2 Oml/h) による精製を行った。 各溶出液を分画し、 SDS— PAGEによって目的とするタンパク質の存在す る分画を確認し、 回収した。  Purification by affinity chromatography (flow rate: 15 to 2 Oml / h) using a force ram packed with Ni-NTA agarose beads previously equilibrated with the same buffer using the resulting supernatant as an added sample Was done. Each eluate was fractionated, and the fraction containing the target protein was confirmed by SDS-PAGE and collected.
蒸留水に対して 24〜4 8時間適宜外液を交換しながら、 得られた分 画を透析した後凍結乾燥することによって、 白色粉末が得られた。 2 3 kDaのタンパク質について収量は 38. 8mgZLであった。  The obtained fraction was dialyzed while appropriately exchanging the external solution with distilled water for 24 to 48 hours, and then lyophilized to obtain a white powder. The yield was 38.8 mg ZL for the 23 kDa protein.

Claims

請 求 の 範 囲 The scope of the claims
1. 家蚕絹フイブ口イン、 野蚕絹フイブ口イン、 エラスチン及びフイブ ロネクチンの中から選択され、 前記家蚕絹フイブ口イン又は野蚕絹フィ プロインの何れかを必須とする少なく とも 1個のタンパク質からなる絹 又は絹様高分子を設計し、 該絹又は設計された高分子の最小単位を合成 し、 合成された該最小単位の高分子を、 T 7プロモーターを含む発現べ クタ一の中から選択された少なく とも iつの発現ベクターに組み込み、 次いで該発現ベクターを、 B L 2 1 (DE 3) p L y s S又は B LR ( DE 3) p L y s Sの何れかの大腸菌に組み込み、 該大腸菌を、 複合培 地から選択された培地を用いて育成することを特徴とする、 絹又は絹様 タンパク質の生産方法。 1. At least one protein selected from the group consisting of silkworm silk mouth, wild silkworm silk mouth, elastin, and fibronectin, wherein at least one of the above silkworm silk silk mouth or wild silkworm fiproin is required. Designing a silk or silk-like polymer, synthesizing the smallest unit of the silk or the designed polymer, and selecting the synthesized polymer of the smallest unit from an expression vector including a T7 promoter. At least i expression vector, then incorporating the expression vector into E. coli either BL21 (DE3) pLysS or BLR (DE3) pLysS, A method for producing silk or silk-like protein, characterized in that the method is grown using a medium selected from a composite medium.
2. 前記大腸菌の育成に際し、 大腸菌の増殖最適温度より 2〜7°C下げ た温度条件で培養する請求項 1に記載された、 絹又は遺伝子組換え絹様 タンパク質の生産方法。  2. The method for producing silk or a recombinant silk-like protein according to claim 1, wherein the cultivation of the Escherichia coli is carried out at a temperature lower by 2 to 7 ° C than the optimal growth temperature of the Escherichia coli.
3. 発現ベクターが T 7 1 a cプロモーターを含む発現ベクターの中か ら選択された発現ベクターである、 請求項 1又は 2に記載された、 絹又 は遺伝子組換え絹様タンパク質の生産方法。  3. The method for producing silk or a recombinant silk-like protein according to claim 1, wherein the expression vector is an expression vector selected from expression vectors containing a T71 ac promoter.
4. 発現ベクターが p E T 30 aである請求項 3に記載された、 絹又は 遺伝子組換え絹様タンパク質の生産方法。  4. The method for producing silk or a recombinant silk-like protein according to claim 3, wherein the expression vector is pET30a.
5. 前記培地が TB培地である請求項 1に記載された、 絹又は遺伝子組 換え絹様タンパク質の生産方法。  5. The method for producing silk or a recombinant silk-like protein according to claim 1, wherein the medium is a TB medium.
PCT/JP2002/005010 2002-05-23 2002-05-23 Process for the mass production of silk protein and genetically modified silk-like protein having function imparted thereto WO2003100065A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2002/005010 WO2003100065A1 (en) 2002-05-23 2002-05-23 Process for the mass production of silk protein and genetically modified silk-like protein having function imparted thereto
JP2004508303A JPWO2003100065A1 (en) 2002-05-23 2002-05-23 Silk protein and method for mass production of genetically modified silk-like protein with added functionality
US11/197,315 US20060019348A1 (en) 2002-05-23 2005-08-05 Method of mass producing silk protein and gene recombinant silk-like protein with added functionality

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/005010 WO2003100065A1 (en) 2002-05-23 2002-05-23 Process for the mass production of silk protein and genetically modified silk-like protein having function imparted thereto

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10515264 A-371-Of-International 2002-05-23
US11/197,315 Continuation-In-Part US20060019348A1 (en) 2002-05-23 2005-08-05 Method of mass producing silk protein and gene recombinant silk-like protein with added functionality

Publications (1)

Publication Number Publication Date
WO2003100065A1 true WO2003100065A1 (en) 2003-12-04

Family

ID=29561072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005010 WO2003100065A1 (en) 2002-05-23 2002-05-23 Process for the mass production of silk protein and genetically modified silk-like protein having function imparted thereto

Country Status (2)

Country Link
JP (1) JPWO2003100065A1 (en)
WO (1) WO2003100065A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358101A (en) * 1986-08-29 1988-03-12 Hitachi Ltd Position detector
JP2009509550A (en) * 2005-10-05 2009-03-12 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Silk protein
WO2019065968A1 (en) * 2017-09-29 2019-04-04 Spiber株式会社 Expression cassette

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2162190A (en) * 1984-07-06 1986-01-29 Pa Consulting Services Improvements in or relating to production of silk
WO1988003533A1 (en) * 1986-11-04 1988-05-19 Syntro Corporation Construction of synthetic dna and its use in large polypeptide synthesis
WO1991005866A1 (en) * 1989-10-19 1991-05-02 Schering Corporation Novel expression systems utilizing bacteriophage t7 promoters and gene sequences

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2162190A (en) * 1984-07-06 1986-01-29 Pa Consulting Services Improvements in or relating to production of silk
WO1988003533A1 (en) * 1986-11-04 1988-05-19 Syntro Corporation Construction of synthetic dna and its use in large polypeptide synthesis
WO1991005866A1 (en) * 1989-10-19 1991-05-02 Schering Corporation Novel expression systems utilizing bacteriophage t7 promoters and gene sequences

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Molecular tools for life science research", NOVAGEN 2000 CATALOG, 2000, pages 68, XP002955878 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358101A (en) * 1986-08-29 1988-03-12 Hitachi Ltd Position detector
JP2009509550A (en) * 2005-10-05 2009-03-12 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Silk protein
JP2015002746A (en) * 2005-10-05 2015-01-08 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Silk proteins
WO2019065968A1 (en) * 2017-09-29 2019-04-04 Spiber株式会社 Expression cassette
US11851684B2 (en) 2017-09-29 2023-12-26 Spiber Inc. Expression cassette

Also Published As

Publication number Publication date
JPWO2003100065A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
US20170044220A1 (en) Expression of triple-helical collagen-like products in e.coli
Lewis et al. Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins
US5514581A (en) Functional recombinantly prepared synthetic protein polymer
CN100489114C (en) Low-cost production for peptides
CN105143243B (en) Purification of triple helical proteins
JP6077570B2 (en) Crude purification method for hydrophilic recombinant protein
CN108218972B (en) Proteins from the web of the Nephilengys Cruentata spider
CA2230556C (en) Novel procollagens
Peng et al. A simple cost-effective methodology for large-scale purification of recombinant non-animal collagens
KR20130113967A (en) Protein body-inducing polypeptide sequences
US8759487B2 (en) Methods of processing recombinant procollagen
JPH09510349A (en) CDNA encoding a small spitduct silk protein of spider
JP3362050B2 (en) Method for mass production of antimicrobial peptides
Yang et al. Biosynthesis and characterization of a non-repetitive polypeptide derived from silk fibroin heavy chain
WO2012063088A2 (en) Collagen
Smit et al. Structural and functional analysis of the S-layer protein crystallisation domain of Lactobacillus acidophilus ATCC 4356: evidence for protein–protein interaction of two subdomains
US20160168226A1 (en) Process for production of insulin and insulin analogues
JP6362878B2 (en) Fusion protein containing modified peptide repeat peptide and silk fiber containing the fusion protein
JP2023537054A (en) A novel bacterial protein fiber
CN110387366B (en) Expression method of AEP cyclase in pichia pastoris and application thereof
US20060248615A1 (en) Synthetic spider silk proteins and expression thereof in transgenic plants
WO2003100065A1 (en) Process for the mass production of silk protein and genetically modified silk-like protein having function imparted thereto
US20140093965A1 (en) Expression systems and methods of producing spider silk proteins
CN110540601B (en) Recombinant PLB-hEGF fusion protein and application thereof
US20060019348A1 (en) Method of mass producing silk protein and gene recombinant silk-like protein with added functionality

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004508303

Country of ref document: JP

122 Ep: pct application non-entry in european phase