WO2003099836A1 - C-aryl glucoside sglt2 inhibitors and method - Google Patents
C-aryl glucoside sglt2 inhibitors and method Download PDFInfo
- Publication number
- WO2003099836A1 WO2003099836A1 PCT/US2003/015591 US0315591W WO03099836A1 WO 2003099836 A1 WO2003099836 A1 WO 2003099836A1 US 0315591 W US0315591 W US 0315591W WO 03099836 A1 WO03099836 A1 WO 03099836A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- agent
- inhibitor
- compound
- combination
- sglt2
- Prior art date
Links
- QPZPXLSXJAICSR-WNUZMASBSA-N CCOc1ccc(C/C(/C)=C(/C=C\CC(C)([C@@H]([C@@H]([C@H]2O)O)O[C@H](CCO)[C@H]2O)C=C)\Cl)cc1 Chemical compound CCOc1ccc(C/C(/C)=C(/C=C\CC(C)([C@@H]([C@@H]([C@H]2O)O)O[C@H](CCO)[C@H]2O)C=C)\Cl)cc1 QPZPXLSXJAICSR-WNUZMASBSA-N 0.000 description 1
- CZFRIPGHKLGMEU-UHFFFAOYSA-N CCOc1ccc(Cc2cc(I)ccc2Cl)cc1 Chemical compound CCOc1ccc(Cc2cc(I)ccc2Cl)cc1 CZFRIPGHKLGMEU-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
- C07D309/08—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D309/10—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/20—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
- C07C43/225—Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/48—Drugs for disorders of the endocrine system of the pancreatic hormones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
- C07C45/46—Friedel-Crafts reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C49/00—Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
- C07C49/76—Ketones containing a keto group bound to a six-membered aromatic ring
- C07C49/84—Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/20—Carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H15/00—Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
- C07H15/20—Carbocyclic rings
- C07H15/203—Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H7/00—Compounds containing non-saccharide radicals linked to saccharide radicals by a carbon-to-carbon bond
- C07H7/04—Carbocyclic radicals
Definitions
- the present invention relates to C-aryl glucosides which are inhibitors of sodium dependent glucose transporters found in the intestine and kidney (SGLT2) and to a method for treating diabetes, especially type II diabetes, as well as hyperglycemia, hyperinsulinemia, obesity, hypertriglyceridemia, Syndrome X, diabetic complications, atherosclerosis and related diseases, employing such C-aryl glucosides alone or in combination with one, two or more other type antidiabetic agent and/or one, two or more other type therapeutic agents such as hypolipidemic agents .
- SGLT2 sodium dependent glucose transporters found in the intestine and kidney
- NIDDM type II diabetes
- hyperglycemia due to excessive hepatic glucose production and peripheral insulin resistance, the root causes for which are as yet unknown.
- Hyperglycemia is considered to be the major risk factor for the development of diabetic complications, and is likely to contribute directly to the impairment of insulin secretion seen in advanced NIDDM.
- Normalization of plasma glucose in NIDDM patients would be predicted to improve insulin action, and to offset the development of diabetic complications.
- An inhibitor of the sodium-dependent glucose transporter SGLT2 in the kidney would be expected to aid in the normalization of plasma glucose levels, and perhaps body weight, by enhancing glucose excretion.
- NIDDM National Diabetes Management
- Plasma glucose is normally filtered in the kidney in the glomerulus and actively reabsorbed in the proximal tubule.
- SGLT2 appears to be the major transporter responsible for the reuptake of glucose at this site.
- the SGLT specific inhibitor phlorizin or closely related analogs inhibit this reuptake process in diabetic rodents and dogs resulting in normalization of plasma glucose levels by promoting glucose excretion without hypoglycemic side effects.
- SGLT2 is likely to be the major transporter responsible for this reuptake.
- SGLT2 is a 672 amino acid protein containing 14 membrane-spanning segments that is predominantly expressed in the early SI segment of the renal proximal tubules.
- the substrate specificity, sodium dependence, and localization of SGLT2 are consistent with the properties of the high capacity, low affinity, sodium- dependent glucose transporter previously characterized in human cortical kidney proximal tubules.
- SGLT2 is the predominant Na /glucose cotransporter in the SI segment of the proximal tubule, since virtually all Na-dependent glucose transport activity encoded in mRNA from rat kidney cortex is inhibited by an antisense oligonucleotide specific to rat SGLT2.
- SGLT2 is a candidate gene for some forms of familial glucosuria, a genetic abnormality in which renal glucose reabsorption is impaired to varying degrees . None of these syndromes investigated to date map to the SGLT2 locus on chromosome 16. However, the studies of highly homologous rodent
- SGLTs strongly implicate SGLT2 as the major renal sodium-dependent transporter of glucose and suggest that the glucosuria locus that has been mapped encodes an SGLT2 regulator. Inhibition of SGLT2 would be predicted to reduce plasma glucose levels via enhanced glucose excretion in diabetic patients .
- SGLTl another Na-dependent glucose cotransporter that is 60% identical to SGLT2 at the amino acid level, is expressed in the small intestine and in the more distal S3 segment of the renal proximal tubule.
- human SGLTl and SGLT2 are biochemically distinguishable.
- SGLTl the molar ratio of Na + to glucose transported is 2:1, whereas for
- the K m for Na + is 32 and 250- 300 mM for SGLTl and SGLT2 , respectively.
- K m values for uptake of glucose and the nonmetabolizable glucose analog ⁇ -methyl-D-glucopyranoside (AMG) are similar for SGLTl and SGLT2, i.e. 0.8 and 1.6 mM (glucose) and 0.4 and 1.6 mM (AMG) for SGLTl and SGLT2 transporters, respectively.
- the two transporters do vary in their substrate specificities for sugars such as galactose, which is a substrate for SGLTl only.
- phlorizin a specific inhibitor of SGLT activity, provided proof of concept in vivo by promoting glucose excretion, lowering fasting and fed plasma glucose, and promoting glucose utilization without hypoglycemic side effects in several diabetic rodent models and in one canine diabetes model.
- No adverse effects on plasma ion balance, renal function or renal morphology have been observed as a consequence of phlorizin treatment for as long as two weeks.
- no hypoglycemic or other adverse effects have been observed when phlorizin is administered to normal animals, despite the presence of glycosuria.
- Phlorizin itself is unattractive as an oral drug since it is a nonspecific SGLT1/SGLT2 inhibitor that is hydrolyzed in the gut to its aglycone phloretin, which is a potent inhibitor of facilitated glucose transport.
- Concurrent inhibition of facilitative glucose transporters (GLUTs) is undesirable since such inhibitors would be predicted to exacerbate peripheral insulin resistance as well as promote hypoglycemia in the CNS.
- Inhibition of SGLTl could also have serious adverse consequences as is illustrated by the hereditary syndrome glucose/galactose malabsorption (GGM) , in which mutations in the SGLTl cotransporter result in impaired glucose uptake in the intestine, and life-threatening diarrhea and dehydration.
- GGM hereditary syndrome glucose/galactose malabsorption
- the familial glycosuria syndromes are conditions in which intestinal glucose transport, and renal transport of other ions and amino acids, are normal. Familial glycosuria patients appear to develop normally, have normal plasma glucose levels, and appear to suffer no major health deficits as a consequence of their disorder, despite sometimes quite high (110-114 g/daily) levels of glucose excreted.
- the major symptoms evident in these patients include polyphagia, polyuria and polydipsia, and the kidneys appear to be normal in structure and function. Thus, from the evidence available thus far, defects in renal reuptake of glucose appear to have minimal long term negative consequences in otherwise normal individuals .
- A is 0, S , NH, or (CH 2 ) n where n is 0 3;
- R x ' R z and R a are independently hydrogen, OH, OR 5 , alkyl, CF 3 , 0CHF 2 , 0CF 3 , SR 5i or halogen, etc;
- R and R are independently hydrogen, OH, OR 5a , OAryl, OCH 2 Aryl, alkyl, cycloalkyl, CF 3 , -OCHF 2 , -OCF 3 , halogen, etc .
- These compounds are reported to be inhibitors of the SGLT2 transporter and consequently represent a mode for treatment of diabetes and complications thereof.
- WO 98/31697 discloses compounds of the structure
- Ar includes, among others, phenyl, biphenyl, diphenylmethane, diphenylethane, and diphenylether
- R 1 is a glycoside
- R 2 is H, OH, amino, halogen, carboxy, alkyl, cycloalkyl, or carboxamido
- R 3 is hydrogen, alkyl, or acyl
- k, m, and n are independently 1 - 4.
- a C-aryl glucoside compound which has the structure including pharmaceutically acceptable salts thereof, all stereoisomers thereof, and all prodrug esters thereof.
- the compound of formula I possesses activity as inhibitors of the sodium dependent glucose transporters found in the intestine and kidney of mammals and is useful in the treatment of diabetes and the micro- and macrovascular complications of diabetes such as retinopathy, neuropathy, nephropathy, and wound healing.
- the present invention provides for compound of formula I, pharmaceutical compositions employing such a compound and for methods of using such a compound.
- a method for treating or delaying the progression or onset of diabetes, especially type I and type II diabetes, including complications of diabetes, including retinopathy, neuropathy, nephropathy and delayed wound healing, and related diseases such as insulin resistance (impaired glucose homeostasis) , hyperglycemia, hyperinsulinemia, elevated blood levels of fatty acids or glycerol, obesity, hyperlipidemia including hypertriglyceridemia, Syndrome X, atherosclerosis and hypertension, and for increasing high density lipoprotein levels, wherein a therapeutically effective amount of a compound of structure I is administered to a human patient in need of treatment.
- insulin resistance impaired glucose homeostasis
- hyperglycemia hyperinsulinemia
- hyperinsulinemia hyperinsulinemia
- elevated blood levels of fatty acids or glycerol obesity
- hyperlipidemia including hypertriglyceridemia, Syndrome X, atherosclerosis and hypertension
- a therapeutically effective amount of a compound of structure I is administered to a human patient in need of treatment
- a method for treating diabetes and related diseases as defined above and hereinafter wherein a therapeutically effective amount of a combination of a compound of structure I and another type of antidiabetic agent and/or another type of therapeutic agent such as a hypolipidemic agent is administered to a human patient in need of treatment.
- “Syndrome X” also known as Metabolic Syndrome
- Other type of therapeutic agents refers to one or more antidiabetic agents (other than SGLT2 inhibitors of formula I) , one or more anti-obesity agents, anti-hypertensive agents, anti- platelet agents, anti-atherosclerotic agents and/or one or more lipid-lowering agents (including anti- atherosclerosis agents) .
- the compound of structure I of the invention will be employed in a weight ratio to the one, two or more antidiabetic agent and/or one, two or more other type therapeutic agent
- the compound of formula I of the invention can be prepared as shown in the following reaction scheme and description thereof wherein temperatures are expressed in degrees Centigrade.
- Compound of formula I can be prepared as shown in
- a base such as LiOH or NaOH in a solvent such as a 1:2:3 mixture of H 2 0/THF/MeOH or aq. MeOH or aq. EtOH.
- the compound of formula II (which is a novel intermediate that readily crystallizes) provides a convenient means to purify crude compound of formula la which was obtained as a mixture of ⁇ and ⁇ anomers.
- the compound of formula II can be prepared by treatment of compound of formula la with Ac 2 0 in a solvent such as CH 2 C1 2 containing pyridine and a catalyst such as dimethylaminopyridine (DMAP) .
- a solvent such as CH 2 C1 2 containing pyridine and a catalyst such as dimethylaminopyridine (DMAP) .
- Compounds of formula la can be prepared by reduction of a compound of formula III with a reducing agent such as Et 3 SiH in a solvent such as 1:1 CH 2 Cl 2 /MeCN at -10° in the presence of a Lewis acid catalyst such as BF 3 -Et 2 0. Ill
- the compound of formula II can alternatively be prepared from compound of formula III by first acetylating compound of formula III with Ac 2 0 in a solvent such toluene or CH 2 C1 2 containing a base such as Hunig's base or Et 3 N and a catalyst such as DMAP to generate compound of formula IV.
- a solvent such toluene or CH 2 C1 2 containing a base such as Hunig's base or Et 3 N and a catalyst such as DMAP to generate compound of formula IV.
- Subsequent conversion of compound of formula IV to compound of formula II can be achieved by treatment at 20° treatment with a reducing agent such as Et 3 SiH in a solvent such as MeCN containing 1 equiv of H 2 0 and a Lewis acid catalyst such as BF 3 -Et 2 0.
- a reducing agent such as Et 3 SiH
- a solvent such as MeCN containing 1 equiv of H 2 0
- a Lewis acid catalyst such as BF 3 -Et 2 0.
- the compound of formula III can be prepared, as outlined in Scheme 2, by 1) addition of a cold THF solution of an aryl lithium of formula V to a persilylated gluconolactone of formula VI in a solvent such as toluene at -75°. Subsequently , a methanol solution of a protic acid such methanesulfonic acid (MSA) is added after 30 min and the solution stirred at 20° until transformation of the intermediary lactol to III is complete .
- MSA methanesulfonic acid
- the compound of formula VI can be prepared by treatment of commercially available D-gluconolactone with a silylating agent such as trimethylsilyl chloride in a solvent such as THF containing a base such as N- methylmorpholine .
- a silylating agent such as trimethylsilyl chloride in a solvent such as THF containing a base such as N- methylmorpholine .
- the compound of formula V can be prepared by treatment of compound of formula VII with an alkyl lithium such as n-BuLi or t-BuLi in a solvent such as THF at -75°.
- an alkyl lithium such as n-BuLi or t-BuLi in a solvent such as THF at -75°.
- the compound of formula VII can be readily prepared by treatment of compound of formula VIII with a reducing agent such as Et 3 SiH in a solvent such as 1:1 CH 2 Cl /MeCN at 0° - 20° in the presence of a Lewis acid catalyst such as BF 3 -Et 2 0. VIII
- a reducing agent such as Et 3 SiH
- a solvent such as 1:1 CH 2 Cl /MeCN
- a Lewis acid catalyst such as BF 3 -Et 2 0.
- the compound of formula VIII can be prepared by Friedel-Craft acylation of commercially available ethoxybenzene (phenetole) with 2-chloro-5-bromobenzoyl chloride in a solvent such as CH 2 CI2 containing an equivalent of a Lewis Acid such as AlCl 3 or AlBr 3 .
- 2-Chloro-5-bromobenzoyl chloride is readily prepared from commercially available 2-chloro-5-bromobenzoic acid by treatment with oxalyl chloride in a solvent such as CH 2 C1 2 containing a catalytic amount of DMF .
- Ph phenyl
- TBS tert-butyldi ethylsilyl
- THF tetrahydrofuran
- NaBH 4 sodium borohydride
- n-BuLi n-butyllithium
- LiOH lithium hydroxide 2 C0 3 - potassium carbonate
- lower alkyl as employed herein alone or as part of another group includes both straight and branched chain hydrocarbons containing 1 to 8 carbons
- alkyl and alk as employed herein alone or as part of another group includes both straight and branched chain hydrocarbons containing 1 to 20 carbons, preferably 1 to 10 carbons, more preferably 1 to 8 carbons, in the normal chain, such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4- dimethylpentyl , octyl , 2,2, 4-trimethylpentyl , nonyl , decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups including 1 to 4 substituents such as halo, for
- cycloalkyl as employed herein alone or as part of another group includes saturated or partially unsaturated (containing 1 or 2 double bonds) cyclic hydrocarbon groups containing 1 to 3 rings, including monocyclicalkyl, bicyclicalkyl and tricyclicalkyl, containing a total of 3 to 20 carbons forming the rings, preferably 3 to 10 carbons, forming the ring and which may be fused to 1 or 2 aromatic rings as described for aryl, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, cyclohexenyl,
- any of which groups may be optionally substituted with 1 to 4 substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol and/or alkylthio and/or any of the alkyl substituents.
- substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol and/or alkylthio and/or any of the alkyl substituents.
- alkanoyl as used herein alone or as part of another group refers to alkyl linked to a carbonyl group .
- halogen or halo as used herein alone or as part of another group refers to chlorine, bromine, fluorine, and iodine, with chlorine or fluorine being preferred.
- metal ion refers to alkali metal ions such as sodium, potassium or lithium and alkaline earth metal ions such as magnesium and calcium, as well as zinc and aluminum.
- aryl or “Aryl” as employed herein alone or as part of another group refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl including 1-naphthyl and 2-naphthyl) and may optionally include one to three additional rings fused to a carbocyclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl or cycloheteroalkyl rings for example
- lower alkoxy , “alkoxy”, “aryloxy” or “aralkoxy” as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to an oxygen atom.
- lower alkylthio alkylthio
- arylthio arylthio
- aralkylthio as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to a sulfur atom.
- polyhaloalkyl refers to an "alkyl” group as defined above which includes from 2 to 9, preferably from 2 to 5 , halo substituents, such as F or CI, preferably F, such as CF 3 CH 2 , CF 3 or CF 3 CF 2 CH 2 .
- polyhaloalkyloxy refers to an "alkoxy” or “alkyloxy” group as defined above which includes from 2 to 9, preferably from 2 to 5, halo substituents, such as F or Cl, preferably F, such as CF 3 CH 2 O, CF 3 O or CF 3 CF 2 CH 2 0.
- prodrug esters as employed herein includes esters and carbonates formed by reacting one or more hydroxyls of compounds of formula I with alkyl, alkoxy, or aryl substituted acylating agents employing procedures known to those skilled in the art to generate acetates, pivalates, methylcarbonates , benzoates and the like.
- prodrug esters which are known in the art for carboxylic and phosphorus acid esters such as methyl, ethyl, benzyl and the like.
- prodrug esters examples include
- the compound of structure I may form a pharmaceutically acceptable salt such as alkali metal salts such as lithium, sodium or potassium, alkaline earth metal salts such as calcium or magnesium as well as zinc or aluminum and other cations such as ammonium, choline, diethanolamine, lysine (D or L) , ethylenediamine, t-butylamine, t-octylamine, tris- (hydroxymethyl) aminomethane (TRIS), N-methyl glucosamine (NMG) , triethanolamine and dehydroabietylamine .
- alkali metal salts such as lithium, sodium or potassium
- alkaline earth metal salts such as calcium or magnesium
- other cations such as ammonium, choline, diethanolamine, lysine (D or L) , ethylenediamine, t-butylamine, t-octylamine, tris- (hydroxymethyl) aminomethane (TRIS), N-methyl glucosamine (NMG
- All stereoisomers of the compound of the instant invention are contemplated, either in admixture or in pure or substantially pure form.
- the compound of the present invention can have asymmetric centers at any of the carbon atoms including any one of the R substituents. Consequently, compound of formula I can exist in enantiomeric or diastereomeric forms or in mixtures thereof .
- the processes for preparation can utilize racemates, enantiomers or diastereomers as starting materials . When diastereomeric or enantiomeric products are prepared, they can be separated by conventional methods for example, chromatographic or fractional crystallization.
- the compound of structure I may be used in combination with one or more other types of antidiabetic agents and/or one or more other types of therapeutic agents which may be administered orally in the same dosage form, in a separate oral dosage form or by injection.
- the other type of antidiabetic agent which may be optionally employed in combination with the SGLT2 inhibitor of formula I may be 1,2,3 or more antidiabetic agents or antihyperglycemic agents including insulin secretagogues or insulin sensitizers, or other antidiabetic agents preferably having a mechanism of action different from SGLT2 inhibition and may include biguanides, sulfonyl ureas, glucosidase inhibitors, PPAR ⁇ agonists such as thiazolidinediones, aP2 inhibitors, PPAR ⁇ / ⁇ dual agonists, dipeptidyl peptidase IV (DP4) inhibitors, and/or meglitinides, as well as insulin, glucagon-like peptide-1 (GLP-1) , PTPlB inhibitors, glycogen phosphorylase inhibitors and/or glucos-6- phosphatase inhibitors .
- GLP-1 glucagon-like peptide-1
- the other types of therapeutic agents which may be optionally employed in combination with the SGLT2 inhibitor of formula I include anti-obesity agents, antihypertensive agents, antiplatelet agents, antiatherosclerotic agents and/or lipid lowering agents.
- the SGLT2 inhibitor of formula I may also be optionally employed in combination with agents for treating complications of diabetes . These agents include PKC inhibitors and/or AGE inhibitors. It is believed that the use of the compound of structure I in combination with 1, 2, 3 or more other antidiabetic agents produces antihyperglycemic results greater than that possible from each of these medicaments alone and greater than the combined additive antihyperglycemic effects produced by these medicaments .
- the other antidiabetic agent may be an oral antihyperglycemic agent preferably a biguanide such as metformin or phenformin or salts thereof, preferably metformin HC1.
- the compound of structure I will be employed in a weight ratio to biguanide within the range from about 0.01:1 to about 100:1, preferably from about 0.1:1 to about 5:1.
- the other antidiabetic agent may also preferably be a sulfonyl urea such as glyburide (also known as glibenclamide) , glimepiride (disclosed in U.S. Patent No. 4,379,785), glipizide, gliclazide or chlorpropamide, other known sulfonylureas or other antihyperglycemic agents which act on the ATP-dependent channel of the ⁇ - cells, with glyburide and glipizide being preferred, which may be administered in the same or in separate oral dosage forms .
- the compound of structure I will be employed in a weight ratio to the sulfonyl urea in the range from about 0.01:1 to about 100:1, preferably from about 0.2:1 to about 10:1.
- the oral antidiabetic agent may also be a glucosidase inhibitor such as acarbose (disclosed in U.S. Patent No. 4,904,769) or miglitol (disclosed in U.S. Patent No. 4,639,436), which may be administered in the same or in a separate oral dosage forms .
- acarbose disclosed in U.S. Patent No. 4,904,769
- miglitol disclosed in U.S. Patent No. 4,639,436
- the compound of structure I will be employed in a weight ratio to the glucosidase inhibitor within the range from about 0.01:1 to about 100:1, preferably from about 0.5:1 to about 50:1.
- the compound of structure I may be employed in combination with a PPAR ⁇ agonist such as a thiazolidinedione oral anti-diabetic agent or other insulin sensitizers (which has an insulin sensitivity effect in NIDDM patients) such as troglitazone (Warner- Lambert's Rezulin ® , disclosed in U.S. Patent No. 4,572,912), rosiglitazone (SKB), pioglitazone (Takeda), Mitsubishi's MCC-555 (disclosed in U.S. Patent No.
- a PPAR ⁇ agonist such as a thiazolidinedione oral anti-diabetic agent or other insulin sensitizers (which has an insulin sensitivity effect in NIDDM patients) such as troglitazone (Warner- Lambert's Rezulin ® , disclosed in U.S. Patent No. 4,572,912), rosiglitazone (SKB), pioglitazone (Takeda), Mitsubishi'
- Glaxo-Welcome's GL-262570 englitazone (CP- 68722, Pfizer) or darglitazone (CP-86325, Pfizer, isaglitazone (MIT/J&J) , JTT-501 (JPNT/P&U) , L-895645 (Merck), R-119702 (Sankyo/WL) , NN-2344 (Dr. Reddy/NN) , or YM-440 (Yamanouchi) , preferably rosiglitazone and pioglitazone .
- the compound of structure I will be employed in a weight ratio to the thiazolidinedione in an amount within the range from about 0.01:1 to about 100:1, preferably from about 0.2:1 to about 10:1.
- the sulfonyl urea and thiazolidinedione in amounts of less than about 150 mg oral antidiabetic agent may be incorporated in a single tablet with the compound of structure I .
- the compound of structure I may also be employed in combination with an antihyperglycemic agent such as insulin or with glucagon-like peptide-1 (GLP-1) such as GLP-K1-36) amide, GLP-1 (7-36) amide, GLP-1 (7-37) (as disclosed in U.S. Patent No. 5,614,492 to Habener, the disclosure of which is incorporated herein by reference) , as well as AC2993 (Amylen) and LY-315902 (Lilly), which may be administered via injection, intranasal, or by transdermal or buccal devices .
- GLP-1 such as GLP-K1-36
- metformin the sulfonyl ureas, such as glyburide, glimepiride, glipyride, glipizide, chlorpropamide and gliclazide and the glucosidase inhibitors acarbose or miglitol or insulin (injectable, pulmonary, buccal, or oral) may be employed in formulations as described above and in amounts and dosing as indicated in the Physician's Desk Reference (PDR) .
- metformin or salt thereof may be employed in amounts within the range from about 500 to about 2000 mg per day which may be administered in single or divided doses one to four times daily.
- the thiazolidinedione anti-diabetic agent may be employed in amounts within the range from about 0.01 to about 2000 mg/day which may be administered in single or divided doses one to four times per day.
- present insulin may be employed in formulations, amounts and dosing as indicated by the Physician's Desk Reference.
- GLP-1 peptides may be administered in oral buccal formulations, by nasal administration or parenterally as described in U.S. Patent Nos. 5,346,701 (TheraTech) , 5,614,492 and 5,631,224 which are incorporated herein by reference .
- the other antidiabetic agent may also be a PPAR / ⁇ dual agonist such as AR-H039242 (Astra/Zeneca) , GW-409544 (Glaxo-Wellcome) , KRP297 (Kyorin Merck) as well as those disclosed by Murakami et al, "A Novel Insulin Sensitizer Acts As a Coligand for Peroxisome Proliferation - Activated Receptor Alpha (PPAR alpha) and PPAR gamma. Effect on PPAR alpha Activation on Abnormal Lipid
- the other antidiabetic agent may be an aP2 inhibitor such as disclosed in U.S. application Serial No. 09/391,053, filed September 7, 1999, and in U.S. provisional application No. 60/127,745, filed April 5, 1999 (attorney file LA27*), employing dosages as set out herein. Preferred are the compounds designated as preferred in the above application.
- the other antidiabetic agent may be a DP4 inhibitor such as disclosed in WO99/38501, W099/46272, W099/67279 (PROBIODRUG) , W099/67278 (PROBIODRUG) , W099/61431 (PROBIODRUG) , NVP-DPP728A (1- [ [ [2- [ (5-cyanopyridin-2- yl) amino] ethyl] amino] acetyl] -2-cyano- (S) -pyrrolidine) (Novartis) (preferred) as disclosed by Hughes et al, Biochemistry, 38(36), 11597-11603, 1999, TSL-225 (tryptophyl-1, 2,3, 4-tetrahydroisoquinoline-3-carboxylic acid (disclosed by Yamada et al, Bioorg.
- the meglitinide which may optionally be employed in combination with the compound of formula I of the invention may be repaglinide, nateglinide (Novartis) or KAD1229 (PF/Kissei) , with repaglinide being preferred.
- the SGLT2 inhibitor of formula I will be employed in a weight ratio to the meglitinide, PPAR ⁇ agonist, PPAR ⁇ / ⁇ dual agonist, aP2 inhibitor or DP4 inhibitor within the range from about 0.01:1 to about 100:1, preferably from about 0.2:1 to about 10:1.
- the hypolipidemic agent or lipid-lowering agent which may be optionally employed in combination with the compounds of formula I of the invention may include 1,2,3 or more MTP inhibitors, HMG CoA reductase inhibitors, squalene synthetase inhibitors, fibric acid derivatives, ACAT inhibitors, lipoxygenase inhibitors, cholesterol absorption inhibitors, ileal NaVbile acid cotransporter inhibitors, upregulators of LDL receptor activity, bile acid sequestrants, and/or nicotinic acid and derivatives thereof .
- MTP inhibitors employed herein include MTP inhibitors disclosed in U.S. Patent No. 5,595,872, U.S. Patent No. 5,739,135, U.S. Patent No. 5,712,279, U.S. Patent No. 5,760,246, U.S. Patent No. 5,827,875, U.S. Patent No. 5,885,983 and U.S. Application Serial No. 09/175,180 filed October 20, 1998, now U.S. Patent No. 5,962,440. Preferred are each of the preferred MTP inhibitors disclosed in each of the above patents and applications. All of the above U.S. Patents and applications are incorporated herein by reference.
- the hypolipidemic agent may be an HMG CoA reductase inhibitor which includes, but is not limited to, mevastatin and related compounds as disclosed in U.S. Patent No. 3,983,140, lovastatin (mevinolin) and related compounds as disclosed in U.S. Patent No. 4,231,938, pravastatin and related compounds such as disclosed in U.S. Patent No. 4,346,227, simvastatin and related compounds as disclosed in U.S. Patent Nos. 4,448,784 and 4,450,171.
- the hypolipidemic agent may also be the compounds disclosed in U.S. provisional application nos. 60/211,594 and 60/211,595.
- HMG CoA reductase inhibitors which may be employed herein include, but are not limited to, fluvastatin, disclosed in U.S. Patent No. 5,354,772, cerivastatin disclosed in U.S. Patent Nos. 5,006,530 and 5,177,080, atorvastatin disclosed in U.S. Patent Nos. 4,681,893, 5,273,995, 5,385,929 and 5,686,104, atavastatin (Nissan/Sankyo' s nisvastatin (NK- 104)) disclosed in U.S. Patent No. 5,011,930, Shionogi- Astra/Zeneca visastatin (ZD-4522) disclosed in U.S. Patent No.
- lovastatin as disclosed in European Patent Application No.0,142, 146 A2
- quinoline and pyridine derivatives disclosed in U.S. Patent No. 5,506,219 and 5,691,322.
- phosphinic acid compounds useful in inhibiting HMG CoA reductase suitable for use herein are disclosed in GB 2205837.
- the squalene synthetase inhibitors suitable for use herein include, but are not limited to, ⁇ -phosphono- sulfonates disclosed in U.S. Patent No. 5,712,396, those disclosed by Biller et al, J. Med. Chem., 1988, Vol. 31, No. 10, pp 1869-1871, including isoprenoid (phosphinyl- methyl ) phosphonates as well as other known squalene synthetase inhibitors, for example, as disclosed in U.S. Patent No. 4,871,721 and 4,924,024 and in Biller, S.A., Neuenschwander, K. , Ponpipom, M.M. , and Poulter, CD., Current Pharmaceutical Design, 2, 1-40 (1996) .
- squalene synthetase inhibitors suitable for use herein include the terpenoid pyrophosphates disclosed by P. Ortiz de Montellano et al, J. Med. Chem., 1977, 20, 243-249, the farnesyl diphosphate analog A and presqualene pyrophosphate (PSQ- PP) analogs as disclosed by Corey and Volante, J. Am. Chem. Soc, 1976, 98, 1291-1293, phosphinylphosphonates reported by McClard, R.W.
- hypolipidemic agents suitable for use herein include, but are not limited to, fibric acid derivatives, such as fenofibrate, gemfibrozil, clofibrate, bezafibrate, ciprofibrate, clinofibrate and the like, probucol, and related compounds as disclosed in U.S. Patent No.
- bile acid sequestrants such as cholestyramine, colestipol and DEAE-Sephadex (Secholex®, policexide®) , as well as lipostabil (Rhone-Poulenc) , Eisai ⁇ -5050 (an N- substituted ethanola ine derivative) , imanixil (HOE-402) , tetrahydrolipstatin (THL) , istigmastanylphos- phorylcholme (SPC, Roche) , aminocyclodextrin (Tanabe Seiyoku) , Ajinomoto AJ-814 (azulene derivative), melinamide (Sumitomo) , Sandoz 58-035, American Cyanamid CL-277,082 and CL-283 , 546 (disubstituted urea derivatives) , nicotinic acid, acipimox, acifran,
- the other hypolipidemic agent may be an ACAT inhibitor such as disclosed in, Drugs of the Future 24, 9-15 (1999), (Avasi ibe) ; "The ACAT inhibitor, Cl-1011 is effective in the prevention and regression of aortic fatty streak area in hamsters", Nicolosi et al, Atherosclerosis (Shannon, Irel) . (1998), 137(1), 77-85; "The pharmacological profile of FCE 27677: a novel ACAT inhibitor with potent hypolipidemic activity mediated by selective suppression of the hepatic secretion of ApoBlOO-containing lipoprotein", Ghiselli, Giancarlo,
- ACAT inhibitors potential anti-atherosclerotic agents
- Sliskovic et al Curr. Med. Chem. (1994), 1(3), 204-25
- Inhibitors of acyl-CoA cholesterol O-acyl transferase (ACAT) as hypocholesterolemic agents .
- Inhibitors of acyl-CoA cholesterol acyltransferase (ACAT). 7.
- the hypolipidemic agent may be an upregulator of LD2 receptor activity such as MD-700 (Taisho Pharmaceutical Co. Ltd) and LY295427 (Eli Lilly) .
- the hypolipidemic agent may be a cholesterol absorption inhibitor preferably Schering-Plough's
- the hypolipidemic agent may be an ileal NaVbile acid cotransporter inhibitor such as disclosed in Drugs of the Future, 24, 425-430 (1999) .
- Preferred hypolipidemic agents are pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin, cerivastatin, atavastatin and rosuvastatin.
- the compound of formula I of the invention will be employed in a weight ratio to the hypolipidemic agent (where present), within the range from about 500:1 to about 1:500, preferably from about 100:1 to about 1:100.
- the dose administered must be carefully adjusted according to age, weight and condition of the patient, as well as the route of administration, dosage form and regimen and the desired result.
- the dosages and formulations for the hypolipidemic agent will be as disclosed in the various patents and applications discussed above.
- the MTP inhibitor for oral administration, a satisfactory result may be obtained employing the MTP inhibitor in an amount within the range of from about 0.01 mg/kg to about 500 mg and preferably from about 0.1 mg to about 100 mg, one to four times daily.
- a preferred oral dosage form such as tablets or capsules, will contain the MTP inhibitor in an amount of from about 1 to about 500 mg, preferably from about 2 to about 400 mg, and more preferably from about 5 to about 250 mg, one to four times daily.
- an HMG CoA reductase inhibitor for example, pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin or cerivastatin in dosages employed as indicated in the Physician's Desk Reference, such as in an amount within the range of from about 1 to 2000 mg, and preferably from about 4 to about 200 mg.
- the squalene synthetase inhibitor may be employed in dosages in an amount within the range of from about 10 mg to about 2000 mg and preferably from about 25 mg to about 200 mg.
- a preferred oral dosage form such as tablets or capsules, will contain the HMG CoA reductase inhibitor in an amount from about 0.1 to about 100 mg, preferably from about 5 to about 80 mg, and more preferably from about 10 to about 40 mg.
- a preferred oral dosage form such as tablets or capsules will contain the squalene synthetase inhibitor in an amount of from about 10 to about 500 mg, preferably from about 25 to about 200 mg.
- the other hypolipidemic agent may also be a lipoxygenase inhibitor including a 15-lipoxygenase (15- LO) inhibitor such as benzimidazole derivatives as disclosed in WO 97/12615, 15-LO inhibitors as disclosed in WO 97/12613, isothiazolones as disclosed in WO 96/38144, and 15-LO inhibitors as disclosed by Sendobry et al "Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15- lipoxygenase inhibitor lacking significant antioxidant properties, Brit. J. Pharmacology (1997) 120, 1199-1206, and Cornicelli et al, "15-Lipoxygenase and its Inhibition: A Novel Therapeutic Target for Vascular Disease", Current Pharmaceutical Design, 1999, 5, 11-20.
- 15- LO 15-lipoxygenase
- benzimidazole derivatives as disclosed in WO 97/12615
- 15-LO inhibitors as disclosed in WO 97/
- the compounds of formula I and the hypolipidemic agent may be employed together in the same oral dosage form or in separate oral dosage forms taken at the same time.
- the compositions described above may be administered in the dosage forms as described above in single or divided doses of one to four times daily. It may be advisable to start a patient on a low dose combination and work up gradually to a high dose combination.
- the preferred hypolipidemic agents are pravastatin, simvastatin, lovastatin, atorvastatin, fluvastatin, cerivastatin, atavastatin and rosuvastatin.
- the other type of therapeutic agent which may be optionally employed with the SGLT2 inhibitor of formula I is 1, 2, 3 or more of an anti-obesity agent, it may include a beta 3 adrenergic agonist, a lipase inhibitor, a serotonin (and dopamine) reuptake inhibitor, a thyroid receptor beta drug, an anorectic agent, an NPY antagonist, a Leptin analog and/or an MC4 agonist.
- the beta 3 adrenergic agonist which may be optionally employed in combination with a compound of formula I may be AJ9677 (Takeda/Dainippon) , L750355 (Merck) , or CP331648 (Pfizer) or other known beta 3 agonists as disclosed in U.S. Patent Nos. 5,541,204, 5,770,615, 5,491,134, 5,776,983 and 5 , 488 , 064, with AJ9677, L750,355 and CP331648 being preferred.
- the lipase inhibitor which may be optionally employed in combination with a compound of formula I may be orlistat or ATL-962 (Alizyme) , with orlistat being preferred.
- the serotonin (and dopamine) reuptake inhibitor which may be optionally employed in combination with a compound of formula I may be sibutramine, topiramate (Johnson & Johnson) or axokine (Regeneron) , with sibutramine and topiramate being preferred.
- the thyroid receptor beta compound which may be optionally employed in combination with a compound of formula I may be a thyroid receptor ligand as disclosed in W097/21993 (U. Cal SF) , WO99/00353 (KaroBio) and GB98/284425 (KaroBio) , with compounds of the KaroBio applications being preferred.
- the anorectic agent which may be optionally employed in combination with a compound of formula I may be dexamphetamine, phentermine, phenylpropanolamine or mazindol, with dexamphetamine being preferred.
- anti-obesity agents described above may be employed in the same dosage form with the compound of formula I or in different dosage forms, in dosages and regimens as generally known in the art or in the PDR.
- anti-platelet agent examples include abciximab, ticlopidine, eptifibatide, dipyrida ole, aspirin, anagrelide, tirofiban and/or clopidogrel.
- anti-hypertensive agent (s) which may be optionally employed in combinations of this invention include ACE inhibitors, calcium antagonists, alpha- blockers, diuretics, centrally acting agents, angiotensin-II antagonists, beta-blockers and vasopeptidase inhibitors .
- Examples of ACE inhibitors include lisinopril, enalapril, quinapril, benazepril, fosinopril, ramipril, captopril, enalaprilat, moexipril, trandolapril and perindopril;
- examples of calcium antagonists include amlodipine, diltiazem, nifedipine, verapamil, felodipine, nisoldipine, isradipine and nicardipine;
- examples of alpha-blockers include terazosin, doxazosin and prazosin;
- examples of diuretics include hydrochlorothiazide, torasemide, furosemide, spironolactone and indapamide;
- examples of centrally acting agents include clonidine and guanfacine;
- examples of angiotensin-II antagonists include losartan, valsartan,
- a pharmaceutical composition will be employed containing the compound of structure I, with or without another antidiabetic agent and/or antihyperlipidemic agent, or other type therapeutic agent, in association with a pharmaceutical vehicle or diluent.
- the pharmaceutical composition can be formulated employing conventional solid or liquid vehicles or diluents and pharmaceutical additives of a type appropriate to the mode of desired administration.
- the compounds can be administered to mammalian species including humans, monkeys, dogs, etc. by an oral route, for example, in the form of tablets, capsules, granules or powders, or they can be administered by a parenteral route in the form of injectable preparations, or they can be administered intranasally or in transdermal patches.
- the dose for adults is preferably between 10 and 2,000 mg per day, which can be administered in a single dose or in the form of individual doses from 1-4 times per day.
- a typical injectable preparation is produced by aseptically placing 250 mg of compounds of structure I into a vial, aseptically freeze-drying and sealing. For use, the contents of the vial are mixed with 2 mL of physiological saline, to produce an injectable preparation.
- SGLT2 inhibitor activity of the compounds of the invention may be determined by use of an assay system as set out below. Assay for SGLT2 Activity
- the mRNA sequence for human SGLT2 (GenBank #M95549) was cloned by reverse-transcription and amplification from human kidney mRNA, using standard molecular biology techniques.
- the cDNA sequence was stably transfected into CHO cells, and clones were assayed for SGLT2 activity essentially as described in Ryan et al. (1994) .
- Evaluation of inhibition of SGLT2 activity in a clonally selected cell line was performed essentially as described in Ryan et al . , with the following modifications.
- Cells were grown in 96-well plates for 2-4 days to 75,000 or 30,000 cells per well in F-12 nutrient mixture (Ham's F- 12), 10% fetal bovine serum, 300 ug/ml Geneticin and penicillin-streptomycin. At confluence, cells were washed twice with 10 mM Hepes/Tris, pH 7.4, 137 mM N-methyl-D- glucamine, 5.4 mM KCl, 2.8 mM CaCl 2 , 1.2 mM MgS0 .
- HK-2 an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney International 45: 48-57.
- the following Working Examples represent preferred embodiments of the present invention. All temperatures are expressed in degrees Centigrade unless otherwise indicated.
- the reaction was quenched after 1.5 hr by addition of H 2 0 (1.8L) once HPLC analysis indicated the reaction to be complete.
- the mixture was extracted 2x with CH 2 C1 2 (total volume 2.7L); the combined organic layers were washed 2x with IN HCL (1.8L), 2x with brine (1.8L) prior to drying over MgS0 .
- the mother liquors contained the corresponding ⁇ -C-glucoside as well as a more polar furanose iso er.
- the O-methylglucoside of Part D can first be aceylated and then reduced to yield the desired tetraacetylated C-arylglucoside utilizing the following procedure .
- a solution of Part D O-methylglucoside (3.0g, 6.8 mmol) in toluene (45 mL) containing diisopropylethylamme (6.9 mL, 40 mmol) was cooled to 0° prior to addition of acetic anhydride (3.35 mL, 35.5 mmol) and DMAP (84 mg, 0.68 mmol) .
- the solution was allowed to gradually warm to 20°; after six hours, tic analysis revealed complete conversion to tetraacetate.
- the reaction was quenched by addition of 50 L of 20% HP0 . After separation of the layers, the aq. phase was extracted 2x with toluene. The combined organic phases were washed lx with 50 mL of H 2 0 prior to concentration under vacuum. The resultant oil was dissolved in 20 mL of toluene and reconcentrated to yield a thick oil (4.15g) that was used without further purification .
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Diabetes (AREA)
- Epidemiology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Endocrinology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Urology & Nephrology (AREA)
- Cardiology (AREA)
- Dermatology (AREA)
- Ophthalmology & Optometry (AREA)
- Child & Adolescent Psychology (AREA)
- Vascular Medicine (AREA)
- Psychiatry (AREA)
- Emergency Medicine (AREA)
- Hospice & Palliative Care (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Description
Claims
Priority Applications (32)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MXPA04011371 MX249731B (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method. |
KR1020047018685A KR101021752B1 (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method |
EP03736643A EP1506211B1 (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method |
CA2486539A CA2486539C (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method |
NZ536605A NZ536605A (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside inhibitors of sodium dependent glucose transporters found in the intestine and kidney (SGLT2) |
AU2003237886A AU2003237886B2 (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside SGLT2 inhibitors and method |
MEP-130/08A MEP13008A (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method |
MEP-2008-130A ME00091B (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method |
BR122017015091A BR122017015091B8 (en) | 2002-05-20 | 2003-05-15 | intermediate compounds for c-aryl glycoside sglt2 inhibitors |
YUP-992/04A RS51469B (en) | 2002-05-20 | 2003-05-15 | S-aryl glucoside sglt2 inhibitors and method |
JP2004507493A JP5090621B2 (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside SGLT2 inhibitors and methods |
DE60311649T DE60311649T2 (en) | 2002-05-20 | 2003-05-15 | C-arylglucoside SGLT2 inhibitors and methods |
DK03736643T DK1506211T3 (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside SGLT2 inhibitors and method |
SI200330776T SI1506211T1 (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method |
BRPI0311323A BRPI0311323B8 (en) | 2002-05-20 | 2003-05-15 | sglt2 c-aryl glycoside inhibitor compound, pharmaceutical composition and combination |
UA20041210415A UA77306C2 (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method for their use |
IL16511904A IL165119A0 (en) | 2002-05-20 | 2004-11-09 | C-aryl glucoside derivatives and pharmaceutical compositions containing the same |
NO20044915A NO329107B1 (en) | 2002-05-20 | 2004-11-11 | C-aryl glucosides, pharmaceutical preparations containing them and the use thereof for the manufacture of medicaments for the treatment of disease |
IS7529A IS7529A (en) | 2002-05-20 | 2004-11-16 | C-aryl glucoside SGLT2 inhibitors and method |
HR20041084A HRP20041084B1 (en) | 2002-05-20 | 2004-11-18 | C-aryl glucoside sglt2 inhibitors and method |
HK05101975A HK1068214A1 (en) | 2002-05-20 | 2005-03-08 | C-aryl glucoside sglt2 inhibitors and method |
CY20071100584T CY1106465T1 (en) | 2002-05-20 | 2007-05-03 | C-ARYL GLUCODISIUM SGLT2 INHIBITORS AND METHOD |
LTPA2013008C LTC1506211I2 (en) | 2002-05-20 | 2013-04-03 | C-ARYL GLUCOSIDE SGLT2 INHIBITORS AND METHOD |
BE2013C025C BE2013C025I2 (en) | 2002-05-20 | 2013-04-09 | |
CY2013013C CY2013013I2 (en) | 2002-05-20 | 2013-04-10 | C-ARYL GLUCODISIUM SGLT2 INHIBITORS AND METHOD |
NO2013007C NO2013007I1 (en) | 2002-05-20 | 2013-04-12 | Dapagliflozin and pharmaceutically acceptable salts thereof |
LU92182C LU92182I2 (en) | 2002-05-20 | 2013-04-17 | Dapagliflozin and its pharmaceutically acceptable salts |
FR14C0054C FR14C0054I1 (en) | 2002-05-20 | 2014-07-08 | C-ARYL GLUCOSIDES AS SGLT-2 INHIBITORS AND RELATED METHOD |
BE2014C041C BE2014C041I2 (en) | 2002-05-20 | 2014-07-09 | |
NO2014017C NO2014017I1 (en) | 2002-05-20 | 2014-07-09 | A combination of dapagliflozin or a pharmaceutically acceptable salt thereof and metformin or a pharmaceutically acceptable salt thereof |
CY2014025C CY2014025I2 (en) | 2002-05-20 | 2014-07-11 | C-ARYL GLUCODISIUM SGLT2 INHIBITORS AND METHOD |
NO2022041C NO2022041I1 (en) | 2002-05-20 | 2022-10-03 | Dapagliflozin and its pharmaceutically acceptable salts - extended SPC |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/151,436 | 2002-05-20 | ||
US10/151,436 US6515117B2 (en) | 1999-10-12 | 2002-05-20 | C-aryl glucoside SGLT2 inhibitors and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003099836A1 true WO2003099836A1 (en) | 2003-12-04 |
Family
ID=29582046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2003/015591 WO2003099836A1 (en) | 2002-05-20 | 2003-05-15 | C-aryl glucoside sglt2 inhibitors and method |
Country Status (39)
Country | Link |
---|---|
US (1) | US6515117B2 (en) |
EP (1) | EP1506211B1 (en) |
JP (4) | JP5090621B2 (en) |
KR (1) | KR101021752B1 (en) |
CN (5) | CN101092409A (en) |
AR (1) | AR040032A1 (en) |
AT (1) | ATE353334T1 (en) |
AU (1) | AU2003237886B2 (en) |
BE (2) | BE2013C025I2 (en) |
BR (2) | BRPI0311323B8 (en) |
CA (1) | CA2486539C (en) |
CY (3) | CY1106465T1 (en) |
DE (1) | DE60311649T2 (en) |
DK (1) | DK1506211T3 (en) |
ES (1) | ES2280759T3 (en) |
FR (2) | FR13C0022I2 (en) |
GE (1) | GEP20084403B (en) |
HK (2) | HK1068214A1 (en) |
HR (1) | HRP20041084B1 (en) |
IL (1) | IL165119A0 (en) |
IN (1) | IN2004DE03573A (en) |
IS (1) | IS7529A (en) |
LT (1) | LTC1506211I2 (en) |
LU (2) | LU92182I2 (en) |
ME (2) | ME00091B (en) |
MX (1) | MX249731B (en) |
MY (1) | MY142499A (en) |
NO (4) | NO329107B1 (en) |
NZ (1) | NZ536605A (en) |
PE (1) | PE20040760A1 (en) |
PL (1) | PL210304B1 (en) |
PT (1) | PT1506211E (en) |
RS (1) | RS51469B (en) |
RU (4) | RU2337916C2 (en) |
SI (1) | SI1506211T1 (en) |
TW (1) | TWI310770B (en) |
UA (1) | UA77306C2 (en) |
WO (1) | WO2003099836A1 (en) |
ZA (1) | ZA200409295B (en) |
Cited By (171)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006002912A1 (en) * | 2004-07-06 | 2006-01-12 | Boehringer Ingelheim International Gmbh | D-xylopyranosyl-substituted phenyls, medicaments containing said compounds, the use thereof, and methods for producing the same |
WO2006008038A1 (en) * | 2004-07-17 | 2006-01-26 | Boehringer Ingelheim International Gmbh | Methylidene-d-xylopyranosyl-substituted and oxo-d-xylopyranosyl-substituted phenyls, medicaments containing these compounds, their use and method for the production thereof |
WO2006034489A2 (en) * | 2004-09-23 | 2006-03-30 | Bristol-Myers Squibb Company | C-aryl glucoside sglt2 inhibitors and method for their production |
WO2006064033A2 (en) * | 2004-12-16 | 2006-06-22 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
JP2006520365A (en) * | 2003-03-13 | 2006-09-07 | フルニエ ラボラトリーズ アイルランド リミテッド | Use of fibrates and orlistat to treat obesity |
US7169761B2 (en) | 2002-08-05 | 2007-01-30 | Astellas Pharma Inc. | Azulene derivatives and salts thereof |
WO2007031548A2 (en) * | 2005-09-15 | 2007-03-22 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted (ethynyl-benzyl)-benzene derivatives and intermediates thereof |
WO2007093610A1 (en) | 2006-02-15 | 2007-08-23 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture |
WO2007128761A2 (en) | 2006-05-04 | 2007-11-15 | Boehringer Ingelheim International Gmbh | Uses of dpp-iv inhibitors |
JPWO2005085265A1 (en) * | 2004-03-04 | 2008-01-17 | キッセイ薬品工業株式会社 | Fused heterocyclic derivative, pharmaceutical composition containing the same, and pharmaceutical use thereof |
WO2008013280A1 (en) | 2006-07-27 | 2008-01-31 | Chugai Seiyaku Kabushiki Kaisha | Substituted spiroketal derivative and use thereof as drug for treating diabetes |
WO2008013277A1 (en) | 2006-07-27 | 2008-01-31 | Chugai Seiyaku Kabushiki Kaisha | Fused ring spiroketal derivative and use thereof as drug for treating diabetes |
JP2008508213A (en) * | 2004-07-27 | 2008-03-21 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | D-glucopyranosyl-phenyl-substituted cyclics, pharmaceuticals containing such compounds, their use and methods for their production |
WO2008044762A1 (en) | 2006-10-13 | 2008-04-17 | Chugai Seiyaku Kabushiki Kaisha | Thioglucose spiroketal derivative and use thereof as therapeutic agent for diabetes |
JP2008515993A (en) * | 2004-10-13 | 2008-05-15 | アイシス ファーマシューティカルズ インコーポレイティッド | Antisense regulation of PTP1B expression |
WO2008070692A2 (en) | 2006-12-06 | 2008-06-12 | Smithkline Beecham Corporation | Bicyclic compounds and use as antidiabetics |
US7419959B2 (en) | 2004-10-01 | 2008-09-02 | Boehringer Ingelheim International, Gmbh | D-pyranosyl-substituted phenyl derivatives, medicaments containing such compounds, their use and process for their manufacture |
JP2008535895A (en) * | 2005-04-15 | 2008-09-04 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Glucopyranosyl-substituted (heteroaryloxy-benzyl) -benzene derivatives as SGLT inhibitors |
WO2008116195A2 (en) * | 2007-03-22 | 2008-09-25 | Bristol-Myers Squibb | Compositions comprising an sglt2 ingibitor for treating obesity |
WO2008116179A1 (en) * | 2007-03-22 | 2008-09-25 | Bristol-Myers Squibb | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
WO2009022010A1 (en) * | 2007-08-16 | 2009-02-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a sglt2 inhibitor in combination with a dpp-iv inhibitor |
WO2009022007A1 (en) | 2007-08-16 | 2009-02-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivative |
WO2009096455A1 (en) | 2008-01-31 | 2009-08-06 | Astellas Pharma Inc. | Pharmaceutical composition for treatment of fatty liver diseases |
US7579449B2 (en) | 2004-03-16 | 2009-08-25 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted phenyl derivatives, medicaments containing such compounds, their use and process for their manufacture |
WO2009143021A1 (en) * | 2008-05-22 | 2009-11-26 | Bristol-Myers Squibb Company | Method for treating and preventing kidney stones employing an sglt2 inhibitor and composition containing same |
WO2009143010A1 (en) * | 2008-05-22 | 2009-11-26 | Bristol-Myers Squibb Company | Method for treating hyponatremia employing an sglt2 inhibitor and composition containing same |
US7666845B2 (en) | 2006-12-04 | 2010-02-23 | Janssen Pharmaceutica N.V. | Compounds having inhibitory activity against sodium-dependent glucose transporter |
US20100063141A1 (en) * | 2008-07-15 | 2010-03-11 | Theracos, Inc. | Deuterated benzylbenzene derivatives and methods of use |
US7683160B2 (en) | 2005-08-30 | 2010-03-23 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzyl-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
WO2010031813A1 (en) * | 2008-09-19 | 2010-03-25 | Novartis Ag | Glycoside derivatives and uses thereof |
US7713938B2 (en) | 2005-05-03 | 2010-05-11 | Boehringer Ingelheim International Gmbh | Crystalline form of 1-chloro-4-(β-D-glucopyranos-1-yl)-2-[4-((S)-tetrahydrofuran-3-yloxy)-benzyl]-benzene, a method for its preparation and the use thereof for preparing medicaments |
US7723309B2 (en) | 2005-05-03 | 2010-05-25 | Boehringer Ingelheim International Gmbh | Crystalline forms of 1-chloro-4-(β-D-glucopyranos-1-yl)-2-[4-((R)-tetrahydrofuran-3-yloxy)-benzyl]-benzene, a method for its preparation and the use thereof for preparing medicaments |
US7767651B2 (en) | 2005-01-28 | 2010-08-03 | Chugai Seiyaku Kabushiki Kaisha | Spiroketal derivatives and use thereof as diabetic medicine |
US7772378B2 (en) | 2005-02-23 | 2010-08-10 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted ((hetero)arylethynyl-benzyl)-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
US7772191B2 (en) | 2005-05-10 | 2010-08-10 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives and intermediates therein |
US7776830B2 (en) | 2006-05-03 | 2010-08-17 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture |
WO2010092124A1 (en) | 2009-02-13 | 2010-08-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising linagliptin and optionally a sglt2 inhibitor, and uses thereof |
WO2010092123A1 (en) | 2009-02-13 | 2010-08-19 | Boehringer Ingelheim International Gmbh | Sglt-2 inhibitor for treating type 1 diabetes mellitus, type 2 diabete mellitus, impaired glucose tolerance or hyperglycemia |
WO2010092126A1 (en) | 2009-02-13 | 2010-08-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising glucopyranosyl diphenylmethane derivatives, pharmaceutical dosage form thereof, process for their preparation and uses thereof for improved glycemic control in a patient |
WO2010092125A1 (en) | 2009-02-13 | 2010-08-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a sglt2 inhibitor, a dpp-iv inhibitor and optionally a further antidiabetic agent and uses thereof |
US7781577B2 (en) | 2006-09-29 | 2010-08-24 | Lexicon Pharmaceuticals, Inc. | Inhibitors of sodium glucose co-transporter 2 and methods of their use |
EP2226076A1 (en) | 2009-02-25 | 2010-09-08 | Henning Vollert | Plant Extract for the Prophylaxis and Treatment of Hyperglycemic Diseases |
US7820815B2 (en) | 2004-11-05 | 2010-10-26 | Boehringer Ingelheim International Gmbh | Process for the preparation of chiral 8-(-3-aminopiperidin-1-yl) xanthines |
US7838499B2 (en) | 2007-08-23 | 2010-11-23 | Theracos, Inc. | Benzylbenzene derivatives and methods of use |
WO2010138535A1 (en) * | 2009-05-27 | 2010-12-02 | Bristol-Myers Squibb Company | Methods for treating type 2 diabetes in patients resistant to previous treatment with other anti-diabetic drugs employing an sglt2 inhibitor and compositions thereof |
US7846945B2 (en) | 2007-03-08 | 2010-12-07 | Lexicon Pharmaceuticals, Inc. | Piperdine-based inhibitors of sodium glucose co-transporter 2 and methods of their use |
US7851602B2 (en) | 2005-07-27 | 2010-12-14 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
US7851617B2 (en) | 2006-07-27 | 2010-12-14 | Mitsubishi Tanabe Pharma Corporation | Indole derivatives |
WO2011039337A1 (en) | 2009-10-02 | 2011-04-07 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
US7935674B2 (en) | 2005-01-31 | 2011-05-03 | Mitsubishi Tanabe Pharma Corporation | Indole derivatives |
WO2011051864A1 (en) | 2009-11-02 | 2011-05-05 | Pfizer Inc. | Dioxa-bicyclo[3.2.1]octane-2,3,4-triol derivatives |
US7943788B2 (en) | 2003-08-01 | 2011-05-17 | Mitsubishi Tanabe Pharma Corporation | Glucopyranoside compound |
US7943582B2 (en) | 2006-12-04 | 2011-05-17 | Mitsubishi Tanabe Pharma Corporation | Crystalline form of 1-(β-D-glucopyransoyl)-4-methyl-3-[5-(4-fluorophenyl)-2- thienylmethyl]benzene hemihydrate |
US7943748B2 (en) | 2004-07-27 | 2011-05-17 | Chugai Seiyaku Kabushiki Kaisha | Glucitol derivative, prodrug thereof and salt thereof, and therapeutic agent containing the same for diabetes |
WO2011060256A2 (en) | 2009-11-13 | 2011-05-19 | Bristol-Myers Squibb Company | Bilayer tablet formulations |
WO2011058193A1 (en) | 2009-11-16 | 2011-05-19 | Mellitech | [1,5]-diazocin derivatives |
WO2011060290A2 (en) | 2009-11-13 | 2011-05-19 | Bristol-Myer Squibb Company | Immediate release tablet formulations |
WO2011107494A1 (en) | 2010-03-03 | 2011-09-09 | Sanofi | Novel aromatic glycoside derivatives, medicaments containing said compounds, and the use thereof |
WO2011120923A1 (en) | 2010-03-30 | 2011-10-06 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising an sglt2 inhibitor and a ppar- gamma agonist and uses thereof |
US8039441B2 (en) | 2006-08-15 | 2011-10-18 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted cyclopropylbenzene derivatives, pharmaceutical compositions containing such compounds, their use as SGLT inhibitors and process for their manufacture |
US8048897B2 (en) | 2004-07-26 | 2011-11-01 | Chugai Seiyaku Kabushiki Kaisha | Cyclohexane derivative, prodrug thereof and salt thereof, and therapeutic agent containing the same for diabetes |
US8106060B2 (en) | 2005-07-30 | 2012-01-31 | Boehringer Ingelheim International Gmbh | 8-(3-amino-piperidin-1-yl)-xanthines, their preparation, and their use as pharmaceuticals |
US8119648B2 (en) | 2002-08-21 | 2012-02-21 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
WO2012025857A1 (en) | 2010-08-23 | 2012-03-01 | Hetero Research Foundation | Cycloalkyl methoxybenzyl phenyl pyran derivatives as sodium dependent glucose co transporter (sglt2) inhibitors |
US8129434B2 (en) | 2007-12-13 | 2012-03-06 | Theracos, Inc. | Benzylphenyl cyclohexane derivatives and methods of use |
WO2012031124A2 (en) | 2010-09-03 | 2012-03-08 | Bristol-Myers Squibb Company | Drug formulations using water soluble antioxidants |
WO2012041898A1 (en) | 2010-09-29 | 2012-04-05 | Celon Pharma Sp. Z O.O. | Combination of sglt2 inhibitor and a sugar compound for the treatment of diabetes |
WO2012055169A1 (en) | 2010-10-27 | 2012-05-03 | 上海艾力斯医药科技有限公司 | C-arylglucoside derivative, preparation method therefor, and use thereof |
WO2012062698A1 (en) | 2010-11-08 | 2012-05-18 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US8198464B2 (en) | 2006-12-21 | 2012-06-12 | Astellas Pharma Inc. | Method for producing C-glycoside derivative and intermediate for synthesis thereof |
WO2012106303A1 (en) | 2011-02-01 | 2012-08-09 | Bristol-Myers Squibb Company | Pharmaceutical formulations including an amine compound |
WO2012107476A1 (en) | 2011-02-09 | 2012-08-16 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
WO2012109996A1 (en) | 2011-02-18 | 2012-08-23 | 上海璎黎科技有限公司 | Aryl glycoside compound, preparation method and use thereof |
US8283326B2 (en) | 2006-10-27 | 2012-10-09 | Boehringer Ingelheim International Gmbh | Crystalline form of 4-(beta-D-glucopyranos-1-yl)-1-methyl-2-[4-((S)-tetrahydrofuran-3-yloxy)-benzyl]-benzene, a method for its preparation and the use thereof for preparing medicaments |
US8283454B2 (en) | 2008-08-22 | 2012-10-09 | Theracos, Inc. | Processes for the preparation of SGLT2 inhibitors |
WO2012163990A1 (en) | 2011-06-03 | 2012-12-06 | Boehringer Ingelheim International Gmbh | Sglt-2 inhibitors for treating metabolic disorders in patients treated with neuroleptic agents |
WO2013007557A1 (en) | 2011-07-08 | 2013-01-17 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
EP2597090A1 (en) | 2011-11-28 | 2013-05-29 | Sandoz AG | Crystalline dapagliflozin hydrate |
US8507450B2 (en) | 2005-09-08 | 2013-08-13 | Boehringer Ingelheim International Gmbh | Crystalline forms of 1-chloro-4-(β-D-glucopyranos-1-yl)-2-[4-ethynyl-benzyl)-benzene, methods for its preparation and the use thereof for preparing medicaments |
US8513264B2 (en) | 2008-09-10 | 2013-08-20 | Boehringer Ingelheim International Gmbh | Combination therapy for the treatment of diabetes and related conditions |
EP2679229A1 (en) | 2012-06-30 | 2014-01-01 | BioActive Food GmbH | Composition for the treatment of hyperglycemic diseases |
US8697868B2 (en) | 2004-02-18 | 2014-04-15 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions |
CN103739581A (en) * | 2014-01-23 | 2014-04-23 | 中国药科大学 | C-aryl glucoside SGLT2 (Sodium-Glucose Co-transporter 2) inhibitor |
JP2014512399A (en) * | 2011-04-25 | 2014-05-22 | ベイジン・プレリュード・ファーム・サイ・アンド・テック・カンパニー・リミテッド | Sodium-dependent glucose transport protein inhibitor and preparation method and use thereof |
WO2014101865A1 (en) | 2012-12-31 | 2014-07-03 | 上海璎黎科技有限公司 | Composition of glucose derivative and proline, crystal, preparation method and application |
US8785403B2 (en) | 2003-08-01 | 2014-07-22 | Mitsubishi Tanabe Pharma Corporation | Glucopyranoside compound |
US8802842B2 (en) | 2009-09-30 | 2014-08-12 | Boehringer Ingelheim International Gmbh | Method for the preparation of a crystalline form |
EP2774619A1 (en) | 2013-03-04 | 2014-09-10 | BioActive Food GmbH | Composition for the treatment of hyperglycaemic diseases |
US8846695B2 (en) | 2009-01-07 | 2014-09-30 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy comprising a DPP-IV inhibitor |
US8853156B2 (en) | 2008-08-06 | 2014-10-07 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients inappropriate for metformin therapy |
US8853385B2 (en) | 2008-01-17 | 2014-10-07 | Mitsubishi Tanabe Pharma Corporation | Combination therapy comprising SGLT inhibitors and DPP4 inhibitors |
WO2014161836A1 (en) | 2013-04-04 | 2014-10-09 | Boehringer Ingelheim Vetmedica Gmbh | Treatment of metabolic disorders in equine animals |
US8865729B2 (en) | 2008-12-23 | 2014-10-21 | Boehringer Ingelheim International Gmbh | Salt forms of a xanthine compound |
WO2014170383A1 (en) | 2013-04-18 | 2014-10-23 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US8883800B2 (en) | 2011-07-15 | 2014-11-11 | Boehringer Ingelheim International Gmbh | Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions |
US8987323B2 (en) | 2010-06-12 | 2015-03-24 | Theracos, Inc. | Crystalline form of benzylbenzene SGLT2 inhibitor |
US9024010B2 (en) | 2009-09-30 | 2015-05-05 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives |
US9024009B2 (en) | 2007-09-10 | 2015-05-05 | Janssen Pharmaceutica N.V. | Process for the preparation of compounds useful as inhibitors of SGLT |
US9034883B2 (en) | 2010-11-15 | 2015-05-19 | Boehringer Ingelheim International Gmbh | Vasoprotective and cardioprotective antidiabetic therapy |
US9035044B2 (en) | 2011-05-09 | 2015-05-19 | Janssen Pharmaceutica Nv | L-proline and citric acid co-crystals of (2S, 3R, 4R, 5S,6R)-2-(3-((5-(4-fluorophenyl)thiopen-2-yl)methyl)4-methylphenyl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol |
US9056850B2 (en) | 2008-10-17 | 2015-06-16 | Janssen Pharmaceutica N.V. | Process for the preparation of compounds useful as inhibitors of SGLT |
TWI495472B (en) * | 2011-10-31 | 2015-08-11 | Scinopharm Taiwan Ltd | Crystalline and non-crystalline forms of sglt2 inhibitors |
US9149478B2 (en) | 2010-06-24 | 2015-10-06 | Boehringer Ingelheim International Gmbh | Diabetes therapy |
US9155705B2 (en) | 2008-04-03 | 2015-10-13 | Boehringer Ingelheim International Gmbh | DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation |
US9174971B2 (en) | 2009-10-14 | 2015-11-03 | Janssen Pharmaceutica Nv | Process for the preparation of compounds useful as inhibitors of SGLT2 |
US9186392B2 (en) | 2010-05-05 | 2015-11-17 | Boehringer Ingelheim International Gmbh | Combination therapy |
EP2944311A1 (en) | 2014-05-16 | 2015-11-18 | BioActive Food GmbH | Combination of biologically active substances for treating hyperglycemic diseases |
US9192617B2 (en) | 2012-03-20 | 2015-11-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US9193751B2 (en) | 2012-04-10 | 2015-11-24 | Theracos, Inc. | Process for the preparation of benzylbenzene SGLT2 inhibitors |
US9266888B2 (en) | 2006-05-04 | 2016-02-23 | Boehringer Ingelheim International Gmbh | Polymorphs |
AU2014201239B2 (en) * | 2007-03-22 | 2016-03-10 | Astrazeneca Ab | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
US9457029B2 (en) | 2009-11-27 | 2016-10-04 | Boehringer Ingelheim International Gmbh | Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin |
US9464043B2 (en) | 2013-10-12 | 2016-10-11 | Theracos Sub, Llc | Preparation of hydroxy-benzylbenzene derivatives |
WO2016161995A1 (en) | 2015-04-08 | 2016-10-13 | Zentiva, K.S. | Solid forms of amorphous dapagliflozin |
US9486526B2 (en) | 2008-08-06 | 2016-11-08 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients inappropriate for metformin therapy |
US9526728B2 (en) | 2014-02-28 | 2016-12-27 | Boehringer Ingelheim International Gmbh | Medical use of a DPP-4 inhibitor |
US9526730B2 (en) | 2012-05-14 | 2016-12-27 | Boehringer Ingelheim International Gmbh | Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome |
US9555001B2 (en) | 2012-03-07 | 2017-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition and uses thereof |
US9573959B2 (en) | 2013-03-14 | 2017-02-21 | Msd International Gmbh | Methods for preparing SGLT2 inhibitors |
WO2017064193A1 (en) | 2015-10-15 | 2017-04-20 | Boehringer Ingelheim International Gmbh | Sglt-2 inhibitor for use in the treatment of a metabolic myopathy |
WO2017063617A1 (en) | 2015-10-13 | 2017-04-20 | Zentiva, K.S. | Preparation of intermediates for the synthesis of canagliflozin and dapagliflozin |
CN106892929A (en) * | 2015-12-17 | 2017-06-27 | 上海艾力斯医药科技有限公司 | Spiroketals derivative and its preparation method and application |
US9713618B2 (en) | 2012-05-24 | 2017-07-25 | Boehringer Ingelheim International Gmbh | Method for modifying food intake and regulating food preference with a DPP-4 inhibitor |
EP3114115A4 (en) * | 2014-03-06 | 2017-08-23 | MSN Laboratories Private Limited | Process for the preparation of (1s)-1,5-anhydro-1-c-[4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl]-d-glucitol and its solvate thereof |
US9914724B2 (en) | 2014-04-14 | 2018-03-13 | Shanghai De Novo Pharmatech Co., Ltd. | C-aryl glycosid derivatives, pharmaceutical composition, preparation process and uses thereof |
US9949998B2 (en) | 2013-04-05 | 2018-04-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US9949997B2 (en) | 2013-04-05 | 2018-04-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
WO2018073154A1 (en) | 2016-10-19 | 2018-04-26 | Boehringer Ingelheim International Gmbh | Combinations comprising an ssao/vap-1 inhibitor and a sglt2 inhibitor, uses thereof |
US20180185291A1 (en) | 2011-03-07 | 2018-07-05 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions |
WO2018207111A1 (en) * | 2017-05-09 | 2018-11-15 | Piramal Enterprises Limited | A process for the preparation of sglt2 inhibitors and intermediates thereof |
US10155000B2 (en) | 2016-06-10 | 2018-12-18 | Boehringer Ingelheim International Gmbh | Medical use of pharmaceutical combination or composition |
EP3485890A1 (en) | 2014-01-23 | 2019-05-22 | Boehringer Ingelheim Vetmedica GmbH | Treatment of metabolic disorders in canine animals |
WO2019201752A1 (en) | 2018-04-17 | 2019-10-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
EP3363807B1 (en) | 2006-06-28 | 2019-11-13 | AstraZeneca AB | Pharmaceutical composition comprising crystalline (2s,3r,4s,5s,6r)-2-[4-chloro-3-(4-ethoxy-benzyl)-phenyl]-6-hydroxymethyl-2-methoxy-tetrahydro-pyran-3,4,5-triol (s)-propylene glycol solvate |
KR20190130432A (en) | 2018-05-14 | 2019-11-22 | 씨제이헬스케어 주식회사 | Pharmaceutical Composition comprising SGLT-2 inhibitor and DPP-IV inhibitor |
US10544135B2 (en) | 2011-04-13 | 2020-01-28 | Janssen Pharmaceutica Nv | Process for the preparation of compounds useful as inhibitors of SGLT2 |
WO2020039394A1 (en) | 2018-08-24 | 2020-02-27 | Novartis Ag | New drug combinations |
US10617668B2 (en) | 2010-05-11 | 2020-04-14 | Janssen Pharmaceutica Nv | Pharmaceutical formulations |
EP3721882A1 (en) | 2014-04-01 | 2020-10-14 | Boehringer Ingelheim Vetmedica GmbH | Treatment of metabolic disorders in equine animals |
WO2021105152A1 (en) | 2019-11-28 | 2021-06-03 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors in the drying-off of non-human mammals |
US11033552B2 (en) | 2006-05-04 | 2021-06-15 | Boehringer Ingelheim International Gmbh | DPP IV inhibitor formulations |
EP3862003A1 (en) | 2013-12-17 | 2021-08-11 | Boehringer Ingelheim Vetmedica GmbH | An sglt-2 inhibitor for use in the treatment of a metabolic disorder in feline animals |
WO2021165177A1 (en) | 2020-02-17 | 2021-08-26 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of cardiac diseases in felines |
WO2021165316A1 (en) | 2020-02-21 | 2021-08-26 | Zakłady Farmaceutyczne POLPHARMA S.A. | Pharmaceutical composition comprising dapagliflozin |
WO2021178768A1 (en) | 2020-03-06 | 2021-09-10 | Vertex Pharmaceuticals Incorporated | Methods of treating apol-1 dependent focal segmental glomerulosclerosis |
WO2021176096A1 (en) | 2020-03-05 | 2021-09-10 | Krka, D.D., Novo Mesto | Pharmaceutical composition comprising sglt2 inhibitor |
WO2021245253A1 (en) | 2020-06-05 | 2021-12-09 | Krka, D.D., Novo Mesto | Preparation of highly pure amorphous dapagliflozin |
US11207337B2 (en) | 2015-09-15 | 2021-12-28 | Janssen Pharmaceutica Nv | Co-therapy comprising canagliflozin and phentermine for the treatment of obesity and obesity related disorders |
WO2022009163A1 (en) | 2020-07-10 | 2022-01-13 | Astrazeneca Ab | Combination of zibotentan and dapagliflozin for the treatment of chronic kidney disease |
WO2022022865A1 (en) | 2020-07-27 | 2022-02-03 | Astrazeneca Ab | Methods of treating chronic kidney disease with dapagliflozin |
US11253508B2 (en) | 2017-04-03 | 2022-02-22 | Coherus Biosciences, Inc. | PPARy agonist for treatment of progressive supranuclear palsy |
WO2022051316A1 (en) | 2020-09-03 | 2022-03-10 | Coherus Biosciences, Inc. | Fixed dose combinations of chs-131 and a sglt-2 inhibitor |
WO2022067724A1 (en) | 2020-09-30 | 2022-04-07 | 北京睿创康泰医药研究院有限公司 | Sglt-2 inhibitor sarcosine co-crystal, preparation method therefor and use thereof |
US11400072B2 (en) | 2015-03-09 | 2022-08-02 | Coherus Biosciences, Inc. | Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy |
WO2022208172A1 (en) | 2021-04-01 | 2022-10-06 | Astrazeneca Uk Limited | Systems and methods for managing prediabetes with a gliflozin sodium-glucose cotransport 2 inhibitor pharmaceutical composition |
WO2023006718A1 (en) | 2021-07-28 | 2023-02-02 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of cardiac diseases in non-human mammals excluding felines, in particular canines |
WO2023006745A1 (en) | 2021-07-28 | 2023-02-02 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of hypertension in non-human mammals |
WO2023006747A1 (en) | 2021-07-28 | 2023-02-02 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of renal diseases in non-human mammals |
US11576894B2 (en) | 2009-07-08 | 2023-02-14 | Janssen Pharmaceutica Nv | Combination therapy for the treatment of diabetes |
WO2023019849A1 (en) | 2021-08-16 | 2023-02-23 | 浙江奥翔药业股份有限公司 | Method for preparing 5-bromo-2-chloro-benzoic acid as raw material in hypoglycemic drug synthesis |
WO2023129595A1 (en) | 2021-12-30 | 2023-07-06 | Newamsterdam Pharma B.V. | Obicetrapib and sglt2 inhibitor combination |
WO2023144722A1 (en) | 2022-01-26 | 2023-08-03 | Astrazeneca Ab | Dapagliflozin for use in the treatment of prediabetes or reducing the risk of developing type 2 diabetes |
US11813275B2 (en) | 2013-04-05 | 2023-11-14 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
WO2023227492A1 (en) | 2022-05-25 | 2023-11-30 | Boehringer Ingelheim Vetmedica Gmbh | Aqueous pharmaceutical compositions comprising sglt-2 inhibitors |
WO2023237512A1 (en) | 2022-06-07 | 2023-12-14 | Astrazeneca Ab | Combinations of rxfp1 modulators and sglt2 inhibitors |
US11911388B2 (en) | 2008-10-16 | 2024-02-27 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug |
KR20240028315A (en) | 2022-08-24 | 2024-03-05 | 주식회사 제뉴원사이언스 | Combination preparation comprising dapagliflozin, sitagliptin and metformin |
EP4403230A2 (en) | 2014-09-25 | 2024-07-24 | Boehringer Ingelheim Vetmedica GmbH | Combination treatment of sglt2 inhibitors and dopamine agonists for preventing metabolic disorders in equine animals |
RU2824129C2 (en) * | 2009-11-13 | 2024-08-06 | Астразенека Аб | Two-layer tablet composition |
WO2024166009A1 (en) | 2023-02-08 | 2024-08-15 | Astrazeneca Ab | Combination of zibotentan and dapagliflozin for the treatment of high proteinuria chronic kidney disease |
WO2024184293A1 (en) | 2023-03-06 | 2024-09-12 | Boehringer Ingelheim Vetmedica Gmbh | Systems for delivery of liquid pharmaceutical compositions in particular comprising one or more sglt-2 inhibitor(s) |
Families Citing this family (160)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6515117B2 (en) * | 1999-10-12 | 2003-02-04 | Bristol-Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
FR2809310B1 (en) * | 2000-05-26 | 2004-02-13 | Centre Nat Rech Scient | USE OF BIGUANIDE DERIVATIVES FOR MANUFACTURING A MEDICINAL PRODUCT HAVING A HEALING EFFECT |
AU2002227052A1 (en) | 2000-11-30 | 2002-06-11 | University Of Florida | Treatments for neurogenetic disorders, impulse control disorders, and wound healing |
ATE353900T1 (en) * | 2001-02-24 | 2007-03-15 | Boehringer Ingelheim Pharma | XANTHINE DERIVATIVES, THEIR PRODUCTION AND THEIR USE AS MEDICINAL PRODUCTS |
US6936590B2 (en) * | 2001-03-13 | 2005-08-30 | Bristol Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
WO2002080936A1 (en) * | 2001-04-04 | 2002-10-17 | Ortho Mcneil Pharmaceutical, Inc. | Combination therapy comprising glucose reabsorption inhibitors and ppar modulators |
AU2002254567B2 (en) * | 2001-04-11 | 2007-10-11 | Bristol-Myers Squibb Company | Amino acid complexes of C-aryl glucosides for treatment of diabetes and method |
EP1432720A1 (en) * | 2001-09-05 | 2004-06-30 | Bristol-Myers Squibb Company | O-pyrazole glucoside sglt2 inhibitors and method of use |
US7576063B2 (en) * | 2002-10-04 | 2009-08-18 | Kissei Pharmaceutical Co., Ltd. | Pyrazole derivative, medicinal composition containing the same, medicinal use thereof and intermediate in producing the same |
DE10258007B4 (en) * | 2002-12-12 | 2006-02-09 | Sanofi-Aventis Deutschland Gmbh | Aromatic fluoroglycoside derivatives, medicaments containing these compounds and methods for the preparation of these medicaments |
BR0317929A (en) * | 2003-01-03 | 2006-04-11 | Bristol Myers Squibb Co | methods of producing c-aryl glycoside sglt2 inhibitors |
PL1609785T3 (en) | 2003-03-14 | 2016-07-29 | Astellas Pharma Inc | C-glycoside derivatives and salts thereof |
JP2004300102A (en) * | 2003-03-31 | 2004-10-28 | Kissei Pharmaceut Co Ltd | Condensed heterocyclic derivative, pharmaceutical composition containing the same and its pharmaceutical application |
AR048376A1 (en) * | 2003-08-01 | 2006-04-26 | Janssen Pharmaceutica Nv | C- SUBSTITUTED FUSIONED GLYCYCLE GLYCYCLES |
EA011515B1 (en) * | 2003-08-01 | 2009-04-28 | Янссен Фармацевтика Н.В. | Substituted benzimidazole-, benztriazole-, and benzimidazolone-o-glucosides |
EP1680131A4 (en) * | 2003-08-01 | 2009-05-27 | Janssen Pharmaceutica Nv | Substituted indole-o-glucosides |
RS20060320A (en) * | 2003-08-01 | 2008-08-07 | Janssen Pharmaceutica N.V., | Substituted indazole-o-glucosides |
US7371759B2 (en) * | 2003-09-25 | 2008-05-13 | Bristol-Myers Squibb Company | HMG-CoA reductase inhibitors and method |
US7420059B2 (en) * | 2003-11-20 | 2008-09-02 | Bristol-Myers Squibb Company | HMG-CoA reductase inhibitors and method |
ATE493973T1 (en) | 2004-06-04 | 2011-01-15 | Teva Pharma | PHARMACEUTICAL COMPOSITION CONTAINING IRBESARTAN |
US7572805B2 (en) | 2004-07-14 | 2009-08-11 | Bristol-Myers Squibb Company | Pyrrolo(oxo)isoquinolines as 5HT ligands |
MX2007003785A (en) * | 2004-09-29 | 2007-07-12 | Kissei Pharmaceutical | 1-( ??-d-glycopyranosyl)-3-substituted nitrogenous heterocyclic compound, medicinal composition containing the same, and medicinal use thereof. |
AR053329A1 (en) * | 2005-01-31 | 2007-05-02 | Tanabe Seiyaku Co | INDOL DERIVATIVES USEFUL AS INHIBITORS OF GLUCOSE CONVEYORS DEPENDENT ON SODIUM (SGLT) |
EP1846410B1 (en) * | 2005-02-10 | 2009-01-21 | Bristol-Myers Squibb Company | Dihydroquinazolinones as 5ht modulators |
WO2007000445A1 (en) * | 2005-06-29 | 2007-01-04 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzyl-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
TW200726755A (en) * | 2005-07-07 | 2007-07-16 | Astellas Pharma Inc | A crystalline choline salt of an azulene derivative |
BRPI0614485A2 (en) * | 2005-07-28 | 2011-03-29 | Bristol-Myers Squibb Company | tetrahydro-1h-pyrido [4, 3, b] substituted indoles as serotonin receptor agonists and antagonists |
US7795436B2 (en) * | 2005-08-24 | 2010-09-14 | Bristol-Myers Squibb Company | Substituted tricyclic heterocycles as serotonin receptor agonists and antagonists |
BRPI0620718A2 (en) * | 2005-10-28 | 2011-11-22 | Takeda Pharmaceutical | agent for the protection of the pancreas, and, use of a glucose-lowering drug |
WO2007143052A1 (en) * | 2006-06-01 | 2007-12-13 | Glycomimetics, Inc. | Galactosides and thiodigalactosides as inhibitors of pa-il lectin from pseudomonas |
DE102006028862A1 (en) | 2006-06-23 | 2007-12-27 | Merck Patent Gmbh | 3-amino-imidazo [1,2-a] pyridine |
US7795291B2 (en) | 2006-07-07 | 2010-09-14 | Bristol-Myers Squibb Company | Substituted acid derivatives useful as anti-atherosclerotic, anti-dyslipidemic, anti-diabetic and anti-obesity agents and method |
WO2008028957A2 (en) * | 2006-09-07 | 2008-03-13 | Glaxosmithkline Biologicals S.A. | Vaccine |
US20080194575A1 (en) * | 2006-10-04 | 2008-08-14 | Naiara Beraza | Treatment for non-alcoholic-steatohepatitis |
DE102007008420A1 (en) | 2007-02-21 | 2008-08-28 | Merck Patent Gmbh | benzimidazole derivatives |
PE20090696A1 (en) | 2007-04-20 | 2009-06-20 | Bristol Myers Squibb Co | CRYSTALLINE FORMS OF SAXAGLIPTIN AND PROCESSES FOR PREPARING THEM |
US8969514B2 (en) | 2007-06-04 | 2015-03-03 | Synergy Pharmaceuticals, Inc. | Agonists of guanylate cyclase useful for the treatment of hypercholesterolemia, atherosclerosis, coronary heart disease, gallstone, obesity and other cardiovascular diseases |
US20100120694A1 (en) | 2008-06-04 | 2010-05-13 | Synergy Pharmaceuticals, Inc. | Agonists of Guanylate Cyclase Useful for the Treatment of Gastrointestinal Disorders, Inflammation, Cancer and Other Disorders |
CA3089569C (en) | 2007-06-04 | 2023-12-05 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of gastrointestinal disorders, inflammation, cancer and other disorders |
PL2183263T3 (en) * | 2007-07-26 | 2012-03-30 | Lexicon Pharmaceuticals Inc | Methods and compounds useful for the preparation of sodium glucose co-transporter 2 inhibitors |
NZ600126A (en) * | 2007-08-17 | 2013-12-20 | Boehringer Ingelheim Int | Purine derivatives for use in the treatment of fap-related diseases |
DE102007048716A1 (en) | 2007-10-11 | 2009-04-23 | Merck Patent Gmbh | Imidazo [1,2-a] pyrimidine derivatives |
WO2009068617A1 (en) * | 2007-11-30 | 2009-06-04 | Boehringer Ingelheim International Gmbh | 1, 5-dihydro-pyrazolo (3, 4-d) pyrimidin-4-one derivatives and their use as pde9a modulators for the teatment of cns disorders |
CN104387354A (en) * | 2007-12-27 | 2015-03-04 | 阿斯利康公司 | Crystal structures and preparation methods of SGLT2 inhibitors |
CN101503399B (en) * | 2008-02-04 | 2012-06-27 | 白鹭医药技术(上海)有限公司 | C-aryl glucoside SGLT2 inhibitor |
UA105362C2 (en) | 2008-04-02 | 2014-05-12 | Бьорингер Ингельхайм Интернациональ Гмбх | 1-heterocyclyl-1, 5-dihydro-pyrazolo [3, 4-d] pyrimidin-4-one derivatives and their use as pde9a modulators |
DE102008017590A1 (en) | 2008-04-07 | 2009-10-08 | Merck Patent Gmbh | Glucopyranosidderivate |
BRPI0913129A2 (en) * | 2008-05-22 | 2016-01-05 | Bristol Myers Squibb Co | method for treating hyperuricemia employing an sglt2 inhibitor and composition containing the same |
PE20100156A1 (en) * | 2008-06-03 | 2010-02-23 | Boehringer Ingelheim Int | NAFLD TREATMENT |
EP2321341B1 (en) | 2008-07-16 | 2017-02-22 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase useful for the treatment of gastrointestinal, inflammation, cancer and other disorders |
AU2009281122C1 (en) * | 2008-08-15 | 2016-04-21 | Boehringer Ingelheim International Gmbh | Purin derivatives for use in the treatment of fab-related diseases |
CN102149717B (en) * | 2008-08-28 | 2014-05-14 | 辉瑞大药厂 | Dioxa-bicyclo[3.2.1]octane-2,3,4-triol derivatives |
NZ590788A (en) | 2008-09-08 | 2012-11-30 | Boehringer Ingelheim Int | Pyrazolopyrimidines and their use for the treatment of cns disorders |
WO2010045656A2 (en) * | 2008-10-17 | 2010-04-22 | Nectid, Inc. | Novel sglt2 inhibitor dosage forms |
EP2398786B1 (en) * | 2009-02-23 | 2012-12-12 | Taisho Pharmaceutical Co., Ltd. | 4 -isopropylphenyl glucitol compounds as sglt1 inhibitors |
ES2460019T3 (en) | 2009-03-31 | 2014-05-13 | Boehringer Ingelheim International Gmbh | Derivatives of 1-heterocyclyl-1,5-dihydro-pyrazolo [3,4-d] pyrimidin-4-one and its use as PDE9A modulators |
PT2451797E (en) | 2009-07-10 | 2013-06-25 | Janssen Pharmaceutica Nv | Crystallisation process for 1-(ss-d-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene |
AR077859A1 (en) * | 2009-08-12 | 2011-09-28 | Boehringer Ingelheim Int | COMPOUNDS FOR THE TREATMENT OF CNS DISORDERS |
US8163704B2 (en) * | 2009-10-20 | 2012-04-24 | Novartis Ag | Glycoside derivatives and uses thereof |
AR079438A1 (en) | 2009-12-09 | 2012-01-25 | Panacea Biotec Ltd | SUGAR DERIVATIVES, PHARMACEUTICAL COMPOSITIONS AND THEIR USES |
CN102134226B (en) * | 2010-01-26 | 2013-06-12 | 天津药物研究院 | Phenyl C-glucoside derivatives, preparation method and use thereof |
CN102985075A (en) | 2010-05-11 | 2013-03-20 | 田边三菱制药株式会社 | Canagliflozin containing tablets |
HUE033378T2 (en) | 2010-08-12 | 2017-11-28 | Boehringer Ingelheim Int | 6-cycloalkyl-1, 5-dihydro-pyrazolo [3, 4-d] pyrimidin-4-one derivatives and their use as pde9a inhibitors |
US8921328B2 (en) | 2010-09-14 | 2014-12-30 | Glycomimetics, Inc. | E-selectin antagonists |
US9616097B2 (en) | 2010-09-15 | 2017-04-11 | Synergy Pharmaceuticals, Inc. | Formulations of guanylate cyclase C agonists and methods of use |
TWI631963B (en) * | 2011-01-05 | 2018-08-11 | 雷西肯製藥股份有限公司 | Compositions comprising and methods of using inhibitors of sodium-glucose cotransporters 1 and 2 |
US8809345B2 (en) | 2011-02-15 | 2014-08-19 | Boehringer Ingelheim International Gmbh | 6-cycloalkyl-pyrazolopyrimidinones for the treatment of CNS disorders |
CN102167715B (en) * | 2011-03-07 | 2013-04-24 | 上海惠斯生物科技有限公司 | Eutectic preparation method of sodium-glucose cotransporter 2 bulk pharmaceutical chemicals |
SG194954A1 (en) * | 2011-05-26 | 2013-12-30 | Tfchem | Family of aryl, heteroaryl, o-aryl and o-heteroaryl carbasugars |
EP2714049A1 (en) * | 2011-06-03 | 2014-04-09 | Ratiopharm GmbH | Pharmaceutical composition comprising dapagliflozin and cyclodextrin |
EP2529742B1 (en) | 2011-06-03 | 2013-11-20 | ratiopharm GmbH | Pharmaceutical composition comprising dapagliflozin and cyclodextrin |
US9562029B2 (en) | 2011-06-25 | 2017-02-07 | Xuanzhu Pharma Co., Ltd. | C-glycoside derivatives |
JP2014530186A (en) | 2011-09-13 | 2014-11-17 | パナセア バイオテック リミテッド | Novel SGLT inhibitor |
AU2012358150B2 (en) | 2011-12-22 | 2017-07-20 | Glycomimetics, Inc. | E-selectin antagonist compounds, compositions, and methods of use |
WO2013178064A1 (en) * | 2012-05-29 | 2013-12-05 | 广东东阳光药业有限公司 | Glucopyranosyl derivative, preparation method thereof, and pharmaceutical application thereof |
CN104780942A (en) * | 2012-08-30 | 2015-07-15 | 大正制药株式会社 | Combination of SGLT2 inhibitor and anti-hypertension drug |
CN104837492B (en) | 2012-12-07 | 2018-04-27 | 糖模拟物有限公司 | Use compound, composition and the method for E-Selectin antagonist mobilizing hematopoietic cell |
US8652527B1 (en) | 2013-03-13 | 2014-02-18 | Upsher-Smith Laboratories, Inc | Extended-release topiramate capsules |
US9101545B2 (en) | 2013-03-15 | 2015-08-11 | Upsher-Smith Laboratories, Inc. | Extended-release topiramate capsules |
EP2970384A1 (en) | 2013-03-15 | 2016-01-20 | Synergy Pharmaceuticals Inc. | Agonists of guanylate cyclase and their uses |
JP2016514670A (en) | 2013-03-15 | 2016-05-23 | シナジー ファーマシューティカルズ インコーポレイテッド | Guanylate cyclase receptor agonists in combination with other drugs |
WO2014178040A1 (en) | 2013-04-29 | 2014-11-06 | Mapi Pharma Ltd. | Co-crystals of dapagliflozin |
RS65632B1 (en) | 2013-06-05 | 2024-07-31 | Bausch Health Ireland Ltd | Ultra-pure agonists of guanylate cyclase c, method of making and using same |
US20160214953A1 (en) | 2013-09-23 | 2016-07-28 | Sun Pharmaceutical Industries Limited | Process for the preparation of dapagliflozin |
WO2015044849A1 (en) | 2013-09-27 | 2015-04-02 | Ranbaxy Laboratories Limited | Process for the purification of dapagliflozin |
EP2895490B1 (en) | 2013-09-27 | 2016-10-19 | Sunshine Lake Pharma Co., Ltd. | Glucopyranosyl derivatives and their uses in medicine |
WO2015063726A1 (en) | 2013-10-31 | 2015-05-07 | Ranbaxy Laboratories Limited | Process for the preparation of 4-bromo-1-chloro-2-(4-ethoxybenzyl)benzene |
WO2015101916A1 (en) | 2013-12-30 | 2015-07-09 | Mylan Laboratories Ltd. | Process for the preparation of empagliflozin |
CN106349201B (en) * | 2014-01-03 | 2018-09-18 | 山东轩竹医药科技有限公司 | The C- glycosides derivatives of optically pure benzyl -4- chlorphenyls |
US9315438B2 (en) | 2014-01-03 | 2016-04-19 | Xuanzhu Pharma Co., Ltd | Optically pure benzyl-4-chlorophenyl-C-glucoside derivative |
CN104829572B (en) * | 2014-02-10 | 2019-01-04 | 江苏豪森药业集团有限公司 | Dapagliflozin novel crystal forms and preparation method thereof |
IN2014MU00626A (en) * | 2014-02-21 | 2015-09-25 | Cadila Healthcare Ltd | |
WO2015128853A1 (en) | 2014-02-28 | 2015-09-03 | Sun Pharmaceutical Industries Limited | Dapagliflozin compositions |
ES2900843T3 (en) * | 2014-05-16 | 2022-03-18 | Astrazeneca Ab | Method for suppressing glucagon secretion of an sglt2 inhibitor |
WO2015198227A1 (en) | 2014-06-23 | 2015-12-30 | Sun Pharmaceutical Industries Limited | Co-crystal of dapagliflozin with citric acid |
MX2017003944A (en) | 2014-09-25 | 2017-06-26 | Astrazeneca Ab | Combination of an omega-3 fatty acid and an sglt-2 inhibitor for treating diseases of the liver. |
CN104327027B (en) * | 2014-10-14 | 2017-04-05 | 中国药科大学 | One class novel C aryl glucoside SGLT2 inhibitor |
CN104478839A (en) * | 2014-11-24 | 2015-04-01 | 苏州乔纳森新材料科技有限公司 | Synthesis method of dapagliflozin |
CN104496952B (en) * | 2014-11-28 | 2017-04-19 | 深圳翰宇药业股份有限公司 | Synthesis method of dapagliflozin |
EP3227310B1 (en) | 2014-12-03 | 2019-07-31 | GlycoMimetics, Inc. | Heterobifunctional inhibitors of e-selectins and cxcr4 chemokine receptors |
CN105753910A (en) * | 2014-12-16 | 2016-07-13 | 康普药业股份有限公司 | Preparation method of canagliflozin intermediate |
CN104529970A (en) * | 2015-01-08 | 2015-04-22 | 江苏联环药业股份有限公司 | Method for preparing Dapagliflozin |
CN104478959A (en) * | 2015-01-14 | 2015-04-01 | 佛山市赛维斯医药科技有限公司 | Compound with nitrile group biphenyl double-glucoside structure and preparation method and application thereof |
CN104478966A (en) * | 2015-01-14 | 2015-04-01 | 佛山市赛维斯医药科技有限公司 | O-galactoside derivative with aniline thiazolyl and preparation method and application thereof |
CN104478968A (en) * | 2015-01-14 | 2015-04-01 | 佛山市赛维斯医药科技有限公司 | O-galactoside derivative with thiazolyl and preparation method and application thereof |
CN104530149A (en) * | 2015-01-14 | 2015-04-22 | 佛山市赛维斯医药科技有限公司 | Halogen-substituted phenyl group double-O-glucoside derivant, and preparation method and application thereof |
CN104478957A (en) * | 2015-01-14 | 2015-04-01 | 佛山市赛维斯医药科技有限公司 | Derivative containing nitrile-based benzene and bis-O-glucoside, preparation method thereof and application |
CN104497070A (en) * | 2015-01-15 | 2015-04-08 | 佛山市赛维斯医药科技有限公司 | Compound with trifluoromethyl-S-glucoside and application |
CN104478963A (en) * | 2015-01-15 | 2015-04-01 | 佛山市赛维斯医药科技有限公司 | Compound containing nitrile-based benzene S-glucoside structure and application of compound |
CN104478965A (en) * | 2015-01-15 | 2015-04-01 | 佛山市赛维斯医药科技有限公司 | Alkoxy phenyl S-glucoside derivative and preparation method and application thereof |
WO2016128995A1 (en) | 2015-02-09 | 2016-08-18 | Indoco Remedies Limited | Process for the preparation of sglt inhibitor compounds |
US10556877B2 (en) | 2015-05-05 | 2020-02-11 | Glenmark Life Sciences Limited | Process for preparation of dapagliflozin |
CN106317068A (en) * | 2015-06-23 | 2017-01-11 | 中国科学院上海药物研究所 | C, O-spiro aryl glycoside compound and preparation and application thereof |
CN104961715B (en) * | 2015-07-10 | 2017-08-22 | 浙江美诺华药物化学有限公司 | A kind of preparation method of Dapagliflozin |
US10428053B2 (en) | 2015-09-15 | 2019-10-01 | Laurus Labs Limited | Co-crystals of SGLT2 inhibitors, process for their preparation and pharmaceutical compositions thereof |
CN105218329B (en) * | 2015-10-15 | 2017-05-03 | 上海应用技术学院 | Intermediate of liflozin analogues and preparation method of intermediate |
US9845303B2 (en) | 2015-10-19 | 2017-12-19 | Cadila Healthcare Limited | Process for the preparation of dapagliflozin |
CN105693669A (en) * | 2015-12-28 | 2016-06-22 | 南昌大学 | Antidiabetic compound and preparation method and application thereof |
KR101987403B1 (en) * | 2016-01-04 | 2019-06-10 | 제일약품주식회사 | C-glycoside derivatives having fused phenyl ring or pharmaceutical acceptable salts thereof, method for preparing the same and pharmaceutical composition comprising the same |
WO2017118945A1 (en) | 2016-01-08 | 2017-07-13 | Lupin Limited | Premix of dapagliflozin and process for the preparation thereof |
US11045485B2 (en) | 2016-01-22 | 2021-06-29 | Glycomimetics, Inc. | Glycomimetic inhibitors of PA-IL and PA-IIL lectins |
US9834533B2 (en) * | 2016-02-19 | 2017-12-05 | Scinopharm Taiwan, Ltd. | Process for preparing SGLT2 inhibitors and intermediates thereof |
US11291678B2 (en) | 2016-03-02 | 2022-04-05 | Glycomimetics, Inc | Methods for the treatment and/or prevention of cardiovascular disease by inhibition of E-selectin |
US20190110994A1 (en) | 2016-03-31 | 2019-04-18 | Lupin Limited | Pharmaceutical composition of dapagliflozin |
CN107304194A (en) * | 2016-04-20 | 2017-10-31 | 扬子江药业集团上海海尼药业有限公司 | The method for preparing Dapagliflozin |
BR112018071991A2 (en) * | 2016-05-24 | 2019-02-12 | Jiangsu Hansoh Pharmaceutical Group Co., Ltd. | dapaglifozine crystal form and method for its preparation and use |
WO2017203229A1 (en) | 2016-05-27 | 2017-11-30 | Cipla Limited | Dapagliflozin premixes |
WO2018002673A1 (en) | 2016-07-01 | 2018-01-04 | N4 Pharma Uk Limited | Novel formulations of angiotensin ii receptor antagonists |
JP2019524791A (en) | 2016-08-08 | 2019-09-05 | グリコミメティクス, インコーポレイテッド | Combinations of T cell checkpoint inhibitors with inhibitors of E-selectin or inhibitors of CXCR4 or with heterobifunctional inhibitors of both E-selectin and CXCR4 |
WO2018029611A1 (en) * | 2016-08-09 | 2018-02-15 | Laurus Labs Limited | Novel processes for preparation of dapagliflozin or its solvates or co-crystals thereof |
WO2018029264A1 (en) | 2016-08-10 | 2018-02-15 | Amneal Pharmaceuticals Company Gmbh | Process for preparation of dapagliflozin and intermediates thereof |
US11072625B2 (en) | 2016-10-07 | 2021-07-27 | Glycomimetics, Inc. | Highly potent multimeric e-selectin antagonists |
KR20180058510A (en) | 2016-11-24 | 2018-06-01 | 한미약품 주식회사 | Pharmaceutical formulation comprising dapagliflozin l-proline |
CN108218928B (en) * | 2016-12-13 | 2020-06-30 | 华润双鹤药业股份有限公司 | Bicyclic derivatives of glucoside, preparation method and application thereof |
WO2018142422A1 (en) * | 2017-02-02 | 2018-08-09 | Indoco Remedies Limited | Process for the preparation of dapagliflozin |
EP3596096A1 (en) | 2017-03-15 | 2020-01-22 | GlycoMimetics, Inc. | Galactopyranosyl-cyclohexyl derivatives as e-selectin antagonists |
WO2018167589A1 (en) | 2017-03-16 | 2018-09-20 | Inventia Healthcare Private Limited | Pharmaceutical composition comprising dapagliflozin |
TWI797133B (en) | 2017-06-09 | 2023-04-01 | 丹麥商諾佛 儂迪克股份有限公司 | Solid compositions for oral administration |
KR101943382B1 (en) | 2017-09-19 | 2019-01-29 | 오토텔릭바이오 주식회사 | A pharmaceutical composition comprising SGLT-2 inhibitor and angiotensin receptor blocker |
EP3717013A1 (en) | 2017-11-30 | 2020-10-07 | GlycoMimetics, Inc. | Methods of mobilizing marrow infiltrating lymphocytes and uses thereof |
EP3732186A1 (en) | 2017-12-29 | 2020-11-04 | GlycoMimetics, Inc. | Heterobifunctional inhibitors of e-selectin and galectin-3 |
EP3761994A1 (en) | 2018-03-05 | 2021-01-13 | GlycoMimetics, Inc. | Methods for treating acute myeloid leukemia and related conditions |
WO2020001812A1 (en) | 2018-06-25 | 2020-01-02 | Pharmathen S.A. | A novel process for the preparation of sglt-2 inhibitors |
SG11202100417RA (en) * | 2018-07-19 | 2021-02-25 | Astrazeneca Ab | Methods of treating hfpef employing dapagliflozin and compositions comprising the same |
KR102131359B1 (en) | 2018-09-07 | 2020-07-07 | 오토텔릭바이오 주식회사 | A pharmaceutical composition with an improved stability |
CN109705075B (en) * | 2018-12-13 | 2022-12-23 | 苏中药业集团股份有限公司 | Purification method of dapagliflozin |
WO2020139962A1 (en) | 2018-12-27 | 2020-07-02 | Glycomimetics, Inc. | Heterobifunctional inhibitors of e-selectin and galectin-3 |
KR102359799B1 (en) | 2019-08-30 | 2022-02-09 | 아스트라제네카 아베 | How to treat heart failure with reduced ejection fraction with dapagliflozin |
EP4138826A1 (en) | 2020-04-22 | 2023-03-01 | Bayer Aktiengesellschaft | Combination of finerenone and a sglt2 inhibitor for the treatment and/or prevention of cardiovascular and/or renal diseases |
US20230165856A1 (en) | 2020-04-29 | 2023-06-01 | Astrazeneca Ab | Dapagliflozin and ambrisentan for the prevention and treatment of covid-19 |
WO2021260617A1 (en) * | 2020-06-25 | 2021-12-30 | Hikal Limited | An improved process for preparation of dapagliflozin propanediol monohydrate |
WO2022119543A1 (en) | 2020-12-03 | 2022-06-09 | Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi | A process for tablet formulations comprising amorphous dapagliflozin and metformin hydrochloride |
TR202019592A2 (en) | 2020-12-03 | 2022-06-21 | Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi | Solid pharmaceutical formulations of amorphous dapagliflozin |
TR202019590A2 (en) | 2020-12-03 | 2022-06-21 | Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi | A PROCESS FOR FORMULATIONS OF DAPAGLYFLOZIN AND METFORMIN HYDROCHLORIDE |
TR202019589A2 (en) | 2020-12-03 | 2022-06-21 | Sanovel Ilac Sanayi Ve Ticaret Anonim Sirketi | FILM COATED TABLET FORMULATION CONTAINING DAPAGLYFLOZIN AND METFORMIN HYDROCHLORIDE |
EP4079296A1 (en) | 2021-04-21 | 2022-10-26 | Sanovel Ilac Sanayi Ve Ticaret A.S. | A bilayer tablet formulation comprising amorphous dapagliflozin and metformin |
EP4212150A1 (en) | 2022-01-13 | 2023-07-19 | Sanovel Ilac Sanayi Ve Ticaret A.S. | A bilayer tablet composition comprising amorphous dapagliflozin and metformin |
KR102490653B1 (en) * | 2022-08-03 | 2023-01-20 | 진양제약주식회사 | Pharmaceutical composition comprising dapagliflozin and glimepiride |
EP4431088A1 (en) | 2023-03-06 | 2024-09-18 | Galenicum Health S.L.U. | Pharmaceutical compositions comprising dapagliflozin and metformin |
EP4427742A1 (en) | 2023-03-06 | 2024-09-11 | Galenicum Health S.L.U. | Pharmaceutical compositions comprising dapagliflozin and metformin |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5444050A (en) * | 1994-04-29 | 1995-08-22 | Texas Biotechnology Corporation | Binding of E-selectin or P-selectin to sialyl Lewisx or sialyl-Lewisa |
US5663377A (en) * | 1992-11-13 | 1997-09-02 | The Ohio State Research Foundation | C-glycoside analogues of N-(4-hydroxyphenyl) retinamide-O-glucuronide |
US6414126B1 (en) * | 1999-10-12 | 2002-07-02 | Bristol-Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
US6515117B2 (en) * | 1999-10-12 | 2003-02-04 | Bristol-Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1088346A1 (en) * | 1982-09-28 | 1986-12-30 | Тихоокеанский институт биоорганической химии Дальневосточного научного центра АН СССР | Acetilized glycosides of 2,5- and 2,8-dihydroxy-1,4-naphthoquinones possessing antifungus activity |
JPH03133746A (en) * | 1989-10-19 | 1991-06-06 | Taiyo Kagaku Kogyo Kk | Self-supporting bag and its manufacturing method |
CA2102591C (en) | 1992-11-12 | 2000-12-26 | Kenji Tsujihara | Hypoglycemic agent |
US5830873A (en) | 1994-05-11 | 1998-11-03 | Tanabe Seiyaku Co., Ltd. | Propiophenone derivative and a process for preparing the same |
JP2814950B2 (en) | 1994-05-11 | 1998-10-27 | 田辺製薬株式会社 | Hypoglycemic agent |
JP3059088B2 (en) | 1995-11-07 | 2000-07-04 | 田辺製薬株式会社 | Propiophenone derivatives and their production |
JP3034192B2 (en) | 1995-11-07 | 2000-04-17 | 田辺製薬株式会社 | Propiophenone derivatives and their production |
JP3006513B2 (en) | 1995-11-07 | 2000-02-07 | 田辺製薬株式会社 | Pharmaceutical composition |
TW406086B (en) | 1996-12-26 | 2000-09-21 | Tanabe Seiyaku Co | Propiophenone derivatives and process for preparing the same |
AU6024998A (en) | 1997-01-15 | 1998-08-07 | Glycomed Incorporated | Aryl c-glycoside compounds and sulfated esters thereof |
JPH10245391A (en) | 1997-03-03 | 1998-09-14 | Dainippon Ink & Chem Inc | Diabetes therapeutic agent containing 7-glycosyloxybenzopyran derivative as active ingredient |
PT1002792E (en) * | 1997-04-04 | 2004-12-31 | Mitsubishi Pharma Corp | 2-AMINOPROPANE-1,3-DIOLE COMPOUNDS, ITS MEDICINAL AND INTERMEDIATE USE OF THE SYMPTOMS OF THE SAME |
JP3451000B2 (en) | 1997-10-20 | 2003-09-29 | 新日本製鐵株式会社 | Method of forming insulating film on grain-oriented silicon steel sheet |
DE19806803A1 (en) * | 1998-02-18 | 1999-11-25 | Hermann Koepsell | Transporter for saccharide-coupled cytostatics in tumor cells |
GB9811427D0 (en) * | 1998-05-29 | 1998-07-22 | Zeneca Ltd | Chemical compounds |
US6486299B1 (en) | 1998-09-28 | 2002-11-26 | Curagen Corporation | Genes and proteins predictive and therapeutic for stroke, hypertension, diabetes and obesity |
US6683056B2 (en) * | 2000-03-30 | 2004-01-27 | Bristol-Myers Squibb Company | O-aryl glucoside SGLT2 inhibitors and method |
US6555519B2 (en) * | 2000-03-30 | 2003-04-29 | Bristol-Myers Squibb Company | O-glucosylated benzamide SGLT2 inhibitors and method |
AU2002254567B2 (en) * | 2001-04-11 | 2007-10-11 | Bristol-Myers Squibb Company | Amino acid complexes of C-aryl glucosides for treatment of diabetes and method |
-
2002
- 2002-05-20 US US10/151,436 patent/US6515117B2/en active Active
-
2003
- 2003-05-14 TW TW092113121A patent/TWI310770B/en active
- 2003-05-15 DE DE60311649T patent/DE60311649T2/en not_active Expired - Lifetime
- 2003-05-15 CN CNA2007101089864A patent/CN101092409A/en active Pending
- 2003-05-15 KR KR1020047018685A patent/KR101021752B1/en active IP Right Review Request
- 2003-05-15 MX MXPA04011371 patent/MX249731B/en active IP Right Grant
- 2003-05-15 CN CN2009101586866A patent/CN101628905B/en not_active Expired - Lifetime
- 2003-05-15 WO PCT/US2003/015591 patent/WO2003099836A1/en active IP Right Grant
- 2003-05-15 RS YUP-992/04A patent/RS51469B/en unknown
- 2003-05-15 BR BRPI0311323A patent/BRPI0311323B8/en active IP Right Grant
- 2003-05-15 CN CN201410345395.9A patent/CN104230866A/en active Pending
- 2003-05-15 EP EP03736643A patent/EP1506211B1/en not_active Expired - Lifetime
- 2003-05-15 PL PL373369A patent/PL210304B1/en unknown
- 2003-05-15 AT AT03736643T patent/ATE353334T1/en active
- 2003-05-15 AU AU2003237886A patent/AU2003237886B2/en active Active
- 2003-05-15 JP JP2004507493A patent/JP5090621B2/en not_active Expired - Lifetime
- 2003-05-15 CA CA2486539A patent/CA2486539C/en not_active Expired - Lifetime
- 2003-05-15 RU RU2004137489/04A patent/RU2337916C2/en not_active IP Right Cessation
- 2003-05-15 SI SI200330776T patent/SI1506211T1/en unknown
- 2003-05-15 PT PT03736643T patent/PT1506211E/en unknown
- 2003-05-15 ME MEP-2008-130A patent/ME00091B/en unknown
- 2003-05-15 CN CNB038113538A patent/CN100534997C/en not_active Expired - Lifetime
- 2003-05-15 NZ NZ536605A patent/NZ536605A/en not_active IP Right Cessation
- 2003-05-15 ME MEP-130/08A patent/MEP13008A/en unknown
- 2003-05-15 BR BR122017015091A patent/BR122017015091B8/en active IP Right Grant
- 2003-05-15 CN CN201210054766.9A patent/CN102627676B/en not_active Expired - Lifetime
- 2003-05-15 ES ES03736643T patent/ES2280759T3/en not_active Expired - Lifetime
- 2003-05-15 GE GEAP8537A patent/GEP20084403B/en unknown
- 2003-05-15 DK DK03736643T patent/DK1506211T3/en active
- 2003-05-15 UA UA20041210415A patent/UA77306C2/en unknown
- 2003-05-16 MY MYPI20031803A patent/MY142499A/en unknown
- 2003-05-16 AR ARP030101713A patent/AR040032A1/en active IP Right Grant
- 2003-05-20 PE PE2003000491A patent/PE20040760A1/en active IP Right Grant
-
2004
- 2004-11-09 IL IL16511904A patent/IL165119A0/en active Protection Beyond IP Right Term
- 2004-11-11 NO NO20044915A patent/NO329107B1/en not_active IP Right Cessation
- 2004-11-16 IS IS7529A patent/IS7529A/en unknown
- 2004-11-16 IN IN3573DE2004 patent/IN2004DE03573A/en unknown
- 2004-11-18 HR HR20041084A patent/HRP20041084B1/en not_active IP Right Cessation
- 2004-11-18 ZA ZA200409295A patent/ZA200409295B/en unknown
-
2005
- 2005-03-08 HK HK05101975A patent/HK1068214A1/en not_active IP Right Cessation
-
2007
- 2007-05-03 CY CY20071100584T patent/CY1106465T1/en unknown
-
2008
- 2008-06-06 RU RU2008122558A patent/RU2489151C3/en active Protection Beyond IP Right Term
-
2009
- 2009-08-18 JP JP2009189324A patent/JP5340077B2/en not_active Expired - Lifetime
-
2012
- 2012-07-19 JP JP2012160579A patent/JP5584738B2/en not_active Expired - Lifetime
-
2013
- 2013-04-03 LT LTPA2013008C patent/LTC1506211I2/en unknown
- 2013-04-04 FR FR13C0022C patent/FR13C0022I2/en active Active
- 2013-04-08 RU RU2013115635A patent/RU2643764C9/en active IP Right Revival
- 2013-04-09 BE BE2013C025C patent/BE2013C025I2/fr unknown
- 2013-04-10 CY CY2013013C patent/CY2013013I2/en unknown
- 2013-04-12 NO NO2013007C patent/NO2013007I1/en unknown
- 2013-04-17 LU LU92182C patent/LU92182I2/en unknown
- 2013-08-02 JP JP2013161572A patent/JP5604568B2/en not_active Expired - Lifetime
-
2014
- 2014-07-08 FR FR14C0054C patent/FR14C0054I1/en active Active
- 2014-07-09 NO NO2014017C patent/NO2014017I1/en unknown
- 2014-07-09 BE BE2014C041C patent/BE2014C041I2/fr unknown
- 2014-07-10 LU LU92496C patent/LU92496I2/en unknown
- 2014-07-11 CY CY2014025C patent/CY2014025I2/en unknown
-
2015
- 2015-06-19 HK HK15105854.7A patent/HK1205120A1/en unknown
-
2017
- 2017-09-07 RU RU2017131447A patent/RU2017131447A/en unknown
-
2022
- 2022-10-03 NO NO2022041C patent/NO2022041I1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5663377A (en) * | 1992-11-13 | 1997-09-02 | The Ohio State Research Foundation | C-glycoside analogues of N-(4-hydroxyphenyl) retinamide-O-glucuronide |
US5444050A (en) * | 1994-04-29 | 1995-08-22 | Texas Biotechnology Corporation | Binding of E-selectin or P-selectin to sialyl Lewisx or sialyl-Lewisa |
US6414126B1 (en) * | 1999-10-12 | 2002-07-02 | Bristol-Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
US6515117B2 (en) * | 1999-10-12 | 2003-02-04 | Bristol-Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
Cited By (303)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7169761B2 (en) | 2002-08-05 | 2007-01-30 | Astellas Pharma Inc. | Azulene derivatives and salts thereof |
US8664232B2 (en) | 2002-08-21 | 2014-03-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
US9321791B2 (en) | 2002-08-21 | 2016-04-26 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
US8119648B2 (en) | 2002-08-21 | 2012-02-21 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
US9556175B2 (en) | 2002-08-21 | 2017-01-31 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and thier use as pharmaceutical compositions |
US9108964B2 (en) | 2002-08-21 | 2015-08-18 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
US10023574B2 (en) | 2002-08-21 | 2018-07-17 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
US10202383B2 (en) | 2002-08-21 | 2019-02-12 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
US8178541B2 (en) | 2002-08-21 | 2012-05-15 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions |
JP4928256B2 (en) * | 2003-03-13 | 2012-05-09 | フルニエ ラボラトリーズ アイルランド リミテッド | Use of fibrates and orlistat to treat obesity |
JP2006520365A (en) * | 2003-03-13 | 2006-09-07 | フルニエ ラボラトリーズ アイルランド リミテッド | Use of fibrates and orlistat to treat obesity |
US8785403B2 (en) | 2003-08-01 | 2014-07-22 | Mitsubishi Tanabe Pharma Corporation | Glucopyranoside compound |
US7943788B2 (en) | 2003-08-01 | 2011-05-17 | Mitsubishi Tanabe Pharma Corporation | Glucopyranoside compound |
US8222219B2 (en) | 2003-08-01 | 2012-07-17 | Mitsubishi Tanabe Pharma Corporation | Glucopyranoside compound |
US8202984B2 (en) | 2003-08-01 | 2012-06-19 | Mitsubishi Tanabe Pharma Corporation | Glucopyranoside compound |
US8697868B2 (en) | 2004-02-18 | 2014-04-15 | Boehringer Ingelheim International Gmbh | 8-[3-amino-piperidin-1-yl]-xanthines, their preparation and their use as pharmaceutical compositions |
JPWO2005085265A1 (en) * | 2004-03-04 | 2008-01-17 | キッセイ薬品工業株式会社 | Fused heterocyclic derivative, pharmaceutical composition containing the same, and pharmaceutical use thereof |
JP5078350B2 (en) * | 2004-03-04 | 2012-11-21 | キッセイ薬品工業株式会社 | Fused heterocyclic derivative, pharmaceutical composition containing the same, and pharmaceutical use thereof |
EP2295422A2 (en) | 2004-03-16 | 2011-03-16 | Boehringer Ingelheim International GmbH | Glucopyranosyl substituted benzol derivatives, pharmaceutical compositions containing these compounds, use thereof and method for their production |
EP2360165A2 (en) | 2004-03-16 | 2011-08-24 | Boehringer Ingelheim International GmbH | Glucopyranosyl-substituted benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
US7579449B2 (en) | 2004-03-16 | 2009-08-25 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted phenyl derivatives, medicaments containing such compounds, their use and process for their manufacture |
EP2360164A2 (en) | 2004-03-16 | 2011-08-24 | Boehringer Ingelheim International GmbH | Glucopyranosyl-substituted benzol derivatives, drugs containing said compounds, the use thereof and method for the production thereof |
WO2006002912A1 (en) * | 2004-07-06 | 2006-01-12 | Boehringer Ingelheim International Gmbh | D-xylopyranosyl-substituted phenyls, medicaments containing said compounds, the use thereof, and methods for producing the same |
US7393836B2 (en) | 2004-07-06 | 2008-07-01 | Boehringer Ingelheim International Gmbh | D-xylopyranosyl-substituted phenyl derivatives, medicaments containing such compounds, their use and process for their manufacture |
WO2006008038A1 (en) * | 2004-07-17 | 2006-01-26 | Boehringer Ingelheim International Gmbh | Methylidene-d-xylopyranosyl-substituted and oxo-d-xylopyranosyl-substituted phenyls, medicaments containing these compounds, their use and method for the production thereof |
US8048897B2 (en) | 2004-07-26 | 2011-11-01 | Chugai Seiyaku Kabushiki Kaisha | Cyclohexane derivative, prodrug thereof and salt thereof, and therapeutic agent containing the same for diabetes |
JP2008508213A (en) * | 2004-07-27 | 2008-03-21 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | D-glucopyranosyl-phenyl-substituted cyclics, pharmaceuticals containing such compounds, their use and methods for their production |
US7943748B2 (en) | 2004-07-27 | 2011-05-17 | Chugai Seiyaku Kabushiki Kaisha | Glucitol derivative, prodrug thereof and salt thereof, and therapeutic agent containing the same for diabetes |
WO2006034489A2 (en) * | 2004-09-23 | 2006-03-30 | Bristol-Myers Squibb Company | C-aryl glucoside sglt2 inhibitors and method for their production |
WO2006034489A3 (en) * | 2004-09-23 | 2006-07-06 | Bristol Myers Squibb Co | C-aryl glucoside sglt2 inhibitors and method for their production |
CN101065391B (en) * | 2004-09-23 | 2011-07-27 | 布里斯托尔-迈尔斯斯奎布公司 | C-aryl glucoside sglt2 inhibitors and method |
US7589193B2 (en) | 2004-09-23 | 2009-09-15 | Bristol-Myers Squibb Company | C-aryl glucoside SGLT2 inhibitors and method |
US7419959B2 (en) | 2004-10-01 | 2008-09-02 | Boehringer Ingelheim International, Gmbh | D-pyranosyl-substituted phenyl derivatives, medicaments containing such compounds, their use and process for their manufacture |
JP4944034B2 (en) * | 2004-10-13 | 2012-05-30 | アイシス ファーマシューティカルズ, インコーポレーテッド | Antisense regulation of PTP1B expression |
JP2008515993A (en) * | 2004-10-13 | 2008-05-15 | アイシス ファーマシューティカルズ インコーポレイティッド | Antisense regulation of PTP1B expression |
US9751855B2 (en) | 2004-11-05 | 2017-09-05 | Boehringer Ingelheim International Gmbh | Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines |
US8883805B2 (en) | 2004-11-05 | 2014-11-11 | Boehringer Ingelheim International Gmbh | Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines |
US8541450B2 (en) | 2004-11-05 | 2013-09-24 | Boehringer Ingelheim International Gmbh | Process for the preparation of chiral 8-(3-aminopiperidin-1yl)-xanthines |
US7820815B2 (en) | 2004-11-05 | 2010-10-26 | Boehringer Ingelheim International Gmbh | Process for the preparation of chiral 8-(-3-aminopiperidin-1-yl) xanthines |
US9499546B2 (en) | 2004-11-05 | 2016-11-22 | Boehringer Ingelheim International Gmbh | Process for the preparation of chiral 8-(3-aminopiperidin-1-yl)-xanthines |
US7687469B2 (en) | 2004-12-16 | 2010-03-30 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
WO2006064033A3 (en) * | 2004-12-16 | 2007-04-12 | Boehringer Ingelheim Int | Glucopyranosyl-substituted benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
WO2006064033A2 (en) * | 2004-12-16 | 2006-06-22 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
US7767651B2 (en) | 2005-01-28 | 2010-08-03 | Chugai Seiyaku Kabushiki Kaisha | Spiroketal derivatives and use thereof as diabetic medicine |
US7935674B2 (en) | 2005-01-31 | 2011-05-03 | Mitsubishi Tanabe Pharma Corporation | Indole derivatives |
US7772378B2 (en) | 2005-02-23 | 2010-08-10 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted ((hetero)arylethynyl-benzyl)-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
US7662790B2 (en) | 2005-04-15 | 2010-02-16 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted (heteroaryloxy-benzyl)-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
JP2008535895A (en) * | 2005-04-15 | 2008-09-04 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Glucopyranosyl-substituted (heteroaryloxy-benzyl) -benzene derivatives as SGLT inhibitors |
US7723309B2 (en) | 2005-05-03 | 2010-05-25 | Boehringer Ingelheim International Gmbh | Crystalline forms of 1-chloro-4-(β-D-glucopyranos-1-yl)-2-[4-((R)-tetrahydrofuran-3-yloxy)-benzyl]-benzene, a method for its preparation and the use thereof for preparing medicaments |
US7713938B2 (en) | 2005-05-03 | 2010-05-11 | Boehringer Ingelheim International Gmbh | Crystalline form of 1-chloro-4-(β-D-glucopyranos-1-yl)-2-[4-((S)-tetrahydrofuran-3-yloxy)-benzyl]-benzene, a method for its preparation and the use thereof for preparing medicaments |
US10442795B2 (en) | 2005-05-10 | 2019-10-15 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives and intermediates therein |
JP4834080B2 (en) * | 2005-05-10 | 2011-12-07 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Process for the preparation of glucopyranosyl-substituted benzyl-benzene derivatives and intermediates in these processes |
US7772191B2 (en) | 2005-05-10 | 2010-08-10 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives and intermediates therein |
US9127034B2 (en) | 2005-05-10 | 2015-09-08 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivates and intermediates therein |
US7851602B2 (en) | 2005-07-27 | 2010-12-14 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted ((hetero)cycloalkylethynyl-benzyl)-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
US8637530B2 (en) | 2005-07-30 | 2014-01-28 | Boehringer Ingelheim International Gmbh | 8-(3-amino-piperidin-1-yl)-xanthines, their preparation, and their use as pharmaceuticals |
US8106060B2 (en) | 2005-07-30 | 2012-01-31 | Boehringer Ingelheim International Gmbh | 8-(3-amino-piperidin-1-yl)-xanthines, their preparation, and their use as pharmaceuticals |
US7683160B2 (en) | 2005-08-30 | 2010-03-23 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzyl-benzene derivatives, medicaments containing such compounds, their use and process for their manufacture |
US8507450B2 (en) | 2005-09-08 | 2013-08-13 | Boehringer Ingelheim International Gmbh | Crystalline forms of 1-chloro-4-(β-D-glucopyranos-1-yl)-2-[4-ethynyl-benzyl)-benzene, methods for its preparation and the use thereof for preparing medicaments |
WO2007031548A2 (en) * | 2005-09-15 | 2007-03-22 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted (ethynyl-benzyl)-benzene derivatives and intermediates thereof |
US7847074B2 (en) | 2005-09-15 | 2010-12-07 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted (ethynyl-benzyl)-benzene derivatives and intermediates thereof |
WO2007031548A3 (en) * | 2005-09-15 | 2007-04-26 | Boehringer Ingelheim Int | Processes for preparing of glucopyranosyl-substituted (ethynyl-benzyl)-benzene derivatives and intermediates thereof |
JP2009507898A (en) * | 2005-09-15 | 2009-02-26 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | Process for producing glucopyranosyl-substituted (ethynyl-benzyl) -benzene derivative and its intermediate |
WO2007093610A1 (en) | 2006-02-15 | 2007-08-23 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture |
US7745414B2 (en) | 2006-02-15 | 2010-06-29 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture |
US8557782B2 (en) | 2006-05-03 | 2013-10-15 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture |
US7776830B2 (en) | 2006-05-03 | 2010-08-17 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted benzonitrile derivatives, pharmaceutical compositions containing such compounds, their use and process for their manufacture |
US8232281B2 (en) | 2006-05-04 | 2012-07-31 | Boehringer Ingelheim International Gmbh | Uses of DPP-IV inhibitors |
EP2351568A2 (en) | 2006-05-04 | 2011-08-03 | Boehringer Ingelheim International GmbH | Uses of dpp-iv inhibitors |
US11291668B2 (en) | 2006-05-04 | 2022-04-05 | Boehringer Ingelheim International Gmbh | Uses of DPP IV inhibitors |
WO2007128761A2 (en) | 2006-05-04 | 2007-11-15 | Boehringer Ingelheim International Gmbh | Uses of dpp-iv inhibitors |
US9815837B2 (en) | 2006-05-04 | 2017-11-14 | Boehringer Ingelheim International Gmbh | Polymorphs |
US9173859B2 (en) | 2006-05-04 | 2015-11-03 | Boehringer Ingelheim International Gmbh | Uses of DPP IV inhibitors |
US11919903B2 (en) | 2006-05-04 | 2024-03-05 | Boehringer Ingelheim International Gmbh | Polymorphs |
US10080754B2 (en) | 2006-05-04 | 2018-09-25 | Boehringer Ingelheim International Gmbh | Uses of DPP IV inhibitors |
US11084819B2 (en) | 2006-05-04 | 2021-08-10 | Boehringer Ingelheim International Gmbh | Polymorphs |
US9266888B2 (en) | 2006-05-04 | 2016-02-23 | Boehringer Ingelheim International Gmbh | Polymorphs |
US9493462B2 (en) | 2006-05-04 | 2016-11-15 | Boehringer Ingelheim International Gmbh | Polymorphs |
US11033552B2 (en) | 2006-05-04 | 2021-06-15 | Boehringer Ingelheim International Gmbh | DPP IV inhibitor formulations |
US8673927B2 (en) | 2006-05-04 | 2014-03-18 | Boehringer Ingelheim International Gmbh | Uses of DPP-IV inhibitors |
US10301313B2 (en) | 2006-05-04 | 2019-05-28 | Boehringer Ingelheim International Gmbh | Polymorphs |
NO346828B1 (en) * | 2006-06-28 | 2023-01-23 | Astrazeneca Ab | CRYSTALLINE (S)-PROPYLENE GLYCOL SOLVATE OF 1-C-6-CHLORO-4'-ETHOXYDIPHENYLMETHAN-3-YL-β-D-GLUCOPYRANOSE |
EP3363807B1 (en) | 2006-06-28 | 2019-11-13 | AstraZeneca AB | Pharmaceutical composition comprising crystalline (2s,3r,4s,5s,6r)-2-[4-chloro-3-(4-ethoxy-benzyl)-phenyl]-6-hydroxymethyl-2-methoxy-tetrahydro-pyran-3,4,5-triol (s)-propylene glycol solvate |
WO2008013280A1 (en) | 2006-07-27 | 2008-01-31 | Chugai Seiyaku Kabushiki Kaisha | Substituted spiroketal derivative and use thereof as drug for treating diabetes |
US7851617B2 (en) | 2006-07-27 | 2010-12-14 | Mitsubishi Tanabe Pharma Corporation | Indole derivatives |
WO2008013277A1 (en) | 2006-07-27 | 2008-01-31 | Chugai Seiyaku Kabushiki Kaisha | Fused ring spiroketal derivative and use thereof as drug for treating diabetes |
US8039441B2 (en) | 2006-08-15 | 2011-10-18 | Boehringer Ingelheim International Gmbh | Glucopyranosyl-substituted cyclopropylbenzene derivatives, pharmaceutical compositions containing such compounds, their use as SGLT inhibitors and process for their manufacture |
US8476413B2 (en) | 2006-09-29 | 2013-07-02 | Lexicon Pharmaceuticals, Inc. | Sulfanyl-tetrahydropyran-based compounds and methods of their use |
US9365602B2 (en) | 2006-09-29 | 2016-06-14 | Lexicon Pharmaceuticals, Inc. | Sodium glucose co-transporter inhibitors and methods of their use |
US7781577B2 (en) | 2006-09-29 | 2010-08-24 | Lexicon Pharmaceuticals, Inc. | Inhibitors of sodium glucose co-transporter 2 and methods of their use |
WO2008044762A1 (en) | 2006-10-13 | 2008-04-17 | Chugai Seiyaku Kabushiki Kaisha | Thioglucose spiroketal derivative and use thereof as therapeutic agent for diabetes |
US8283326B2 (en) | 2006-10-27 | 2012-10-09 | Boehringer Ingelheim International Gmbh | Crystalline form of 4-(beta-D-glucopyranos-1-yl)-1-methyl-2-[4-((S)-tetrahydrofuran-3-yloxy)-benzyl]-benzene, a method for its preparation and the use thereof for preparing medicaments |
US8513202B2 (en) | 2006-12-04 | 2013-08-20 | Mitsubishi Tanabe Pharma Corporation | Crystalline form of 1-(β-D-glucopyranosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene hemihydrate |
US7943582B2 (en) | 2006-12-04 | 2011-05-17 | Mitsubishi Tanabe Pharma Corporation | Crystalline form of 1-(β-D-glucopyransoyl)-4-methyl-3-[5-(4-fluorophenyl)-2- thienylmethyl]benzene hemihydrate |
US7666845B2 (en) | 2006-12-04 | 2010-02-23 | Janssen Pharmaceutica N.V. | Compounds having inhibitory activity against sodium-dependent glucose transporter |
EP2325182A1 (en) | 2006-12-06 | 2011-05-25 | Glaxosmithkline LLC | Bicyclic compounds and use as antidiabetics |
WO2008070692A2 (en) | 2006-12-06 | 2008-06-12 | Smithkline Beecham Corporation | Bicyclic compounds and use as antidiabetics |
US8198464B2 (en) | 2006-12-21 | 2012-06-12 | Astellas Pharma Inc. | Method for producing C-glycoside derivative and intermediate for synthesis thereof |
US7846945B2 (en) | 2007-03-08 | 2010-12-07 | Lexicon Pharmaceuticals, Inc. | Piperdine-based inhibitors of sodium glucose co-transporter 2 and methods of their use |
US8883743B2 (en) | 2007-03-22 | 2014-11-11 | Astrazeneca Ab | Methods for treating obesity employing an SGLT2 inhibitor |
US8088743B2 (en) | 2007-03-22 | 2012-01-03 | Bristol-Myers Squibb Company | Methods for treating obesity employing an SGLT2 inhibitor |
EA027769B1 (en) * | 2007-03-22 | 2017-08-31 | Бристол-Маерс Сквибб Компани | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
US8221786B2 (en) | 2007-03-22 | 2012-07-17 | Bristol-Myers Squibb Company | Pharmaceutical formulations containing an SGLT2 inhibitor |
EP4245299A3 (en) * | 2007-03-22 | 2023-12-13 | Astrazeneca AB | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
EP2508188A1 (en) * | 2007-03-22 | 2012-10-10 | Bristol-Myers Squibb Company | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
EP2139494B1 (en) | 2007-03-22 | 2020-03-11 | AstraZeneca AB | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
US9198925B2 (en) | 2007-03-22 | 2015-12-01 | Astrazeneca Ab | Pharmaceutical formulations containing an SGLT2 inhibitor |
AU2014201239B2 (en) * | 2007-03-22 | 2016-03-10 | Astrazeneca Ab | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
US8361972B2 (en) | 2007-03-22 | 2013-01-29 | Bristol Myers-Squibb Company | Pharmaceutical formulations containing an SGLT2 inhibitor |
WO2008116195A2 (en) * | 2007-03-22 | 2008-09-25 | Bristol-Myers Squibb | Compositions comprising an sglt2 ingibitor for treating obesity |
WO2008116179A1 (en) * | 2007-03-22 | 2008-09-25 | Bristol-Myers Squibb | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
WO2008116195A3 (en) * | 2007-03-22 | 2008-11-20 | Bristol Myers Squibb | Compositions comprising an sglt2 ingibitor for treating obesity |
US7851502B2 (en) | 2007-03-22 | 2010-12-14 | Bristol-Myers Squibb Company | Pharmaceutical formulations containing an SGLT2 inhibitor |
EA020288B1 (en) * | 2007-03-22 | 2014-10-30 | Бристол-Маерс Сквибб Компани | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
AU2008228714B2 (en) * | 2007-03-22 | 2013-12-19 | Astrazeneca Ab | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
EP2508188B1 (en) | 2007-03-22 | 2023-05-10 | AstraZeneca AB | Pharmaceutical formulations containing dapagliflozin propylene glycol hydrate |
US8716251B2 (en) | 2007-03-22 | 2014-05-06 | Bristol-Myers Squibb Company | Pharmaceutical formulations containing an SGLT2 inhibitor |
US8551957B2 (en) | 2007-08-16 | 2013-10-08 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivate |
EP2187879B1 (en) | 2007-08-16 | 2016-10-12 | Boehringer Ingelheim International GmbH | Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivative |
EP3939577A1 (en) | 2007-08-16 | 2022-01-19 | Boehringer Ingelheim International GmbH | Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivative |
WO2009022007A1 (en) | 2007-08-16 | 2009-02-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivative |
EP2698152A1 (en) | 2007-08-16 | 2014-02-19 | Boehringer Ingelheim International GmbH | Pharmaceutical composition comprising a glucopyranosyl-substituted benzene derivative |
WO2009022010A1 (en) * | 2007-08-16 | 2009-02-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a sglt2 inhibitor in combination with a dpp-iv inhibitor |
US8802637B2 (en) | 2007-08-23 | 2014-08-12 | Theracos, Inc. | Benzylbenzene derivatives and methods of use |
US8106021B2 (en) | 2007-08-23 | 2012-01-31 | Theracos, Inc. | Benzylbenzene derivatives and methods of use |
EP3318562A3 (en) * | 2007-08-23 | 2018-09-12 | Theracos Sub, LLC | Benzylbenzene derivatives and methods of use |
US7838499B2 (en) | 2007-08-23 | 2010-11-23 | Theracos, Inc. | Benzylbenzene derivatives and methods of use |
US8575321B2 (en) | 2007-08-23 | 2013-11-05 | Theracos, Inc. | Benzylbenzene derivatives and methods of use |
US9024009B2 (en) | 2007-09-10 | 2015-05-05 | Janssen Pharmaceutica N.V. | Process for the preparation of compounds useful as inhibitors of SGLT |
US8129434B2 (en) | 2007-12-13 | 2012-03-06 | Theracos, Inc. | Benzylphenyl cyclohexane derivatives and methods of use |
US8853385B2 (en) | 2008-01-17 | 2014-10-07 | Mitsubishi Tanabe Pharma Corporation | Combination therapy comprising SGLT inhibitors and DPP4 inhibitors |
EP2236137A1 (en) * | 2008-01-31 | 2010-10-06 | Astellas Pharma Inc. | Pharmaceutical composition for treatment of fatty liver diseases |
WO2009096455A1 (en) | 2008-01-31 | 2009-08-06 | Astellas Pharma Inc. | Pharmaceutical composition for treatment of fatty liver diseases |
EP2236137A4 (en) * | 2008-01-31 | 2014-01-01 | Astellas Pharma Inc | Pharmaceutical composition for treatment of fatty liver diseases |
US10022379B2 (en) | 2008-04-03 | 2018-07-17 | Boehringer Ingelheim International Gmbh | DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation |
US9415016B2 (en) | 2008-04-03 | 2016-08-16 | Boehringer Ingelheim International Gmbh | DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation |
US10973827B2 (en) | 2008-04-03 | 2021-04-13 | Boehringer Ingelheim International Gmbh | DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation |
US9155705B2 (en) | 2008-04-03 | 2015-10-13 | Boehringer Ingelheim International Gmbh | DPP-IV inhibitor combined with a further antidiabetic agent, tablets comprising such formulations, their use and process for their preparation |
US8518895B2 (en) | 2008-05-22 | 2013-08-27 | Bristol-Myers Squibb Company | Method for treating hyponatremia employing an SGLT2 inhibitor and composition containing same |
US8603989B2 (en) | 2008-05-22 | 2013-12-10 | Bristol-Myers Squibb Company | Method for treating and preventing kidney stones employing an SGLT2 inhibitor and composition containing same |
WO2009143010A1 (en) * | 2008-05-22 | 2009-11-26 | Bristol-Myers Squibb Company | Method for treating hyponatremia employing an sglt2 inhibitor and composition containing same |
WO2009143021A1 (en) * | 2008-05-22 | 2009-11-26 | Bristol-Myers Squibb Company | Method for treating and preventing kidney stones employing an sglt2 inhibitor and composition containing same |
US20100063141A1 (en) * | 2008-07-15 | 2010-03-11 | Theracos, Inc. | Deuterated benzylbenzene derivatives and methods of use |
US9061060B2 (en) * | 2008-07-15 | 2015-06-23 | Theracos Inc. | Deuterated benzylbenzene derivatives and methods of use |
US8853156B2 (en) | 2008-08-06 | 2014-10-07 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients inappropriate for metformin therapy |
US9486526B2 (en) | 2008-08-06 | 2016-11-08 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients inappropriate for metformin therapy |
US10034877B2 (en) | 2008-08-06 | 2018-07-31 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients inappropriate for metformin therapy |
US8283454B2 (en) | 2008-08-22 | 2012-10-09 | Theracos, Inc. | Processes for the preparation of SGLT2 inhibitors |
US9006403B2 (en) | 2008-08-22 | 2015-04-14 | Theracos, Inc. | Processes for the preparation of SGLT2 inhibitors |
US8513264B2 (en) | 2008-09-10 | 2013-08-20 | Boehringer Ingelheim International Gmbh | Combination therapy for the treatment of diabetes and related conditions |
WO2010031813A1 (en) * | 2008-09-19 | 2010-03-25 | Novartis Ag | Glycoside derivatives and uses thereof |
US11911388B2 (en) | 2008-10-16 | 2024-02-27 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients with insufficient glycemic control despite therapy with an oral or non-oral antidiabetic drug |
US9056850B2 (en) | 2008-10-17 | 2015-06-16 | Janssen Pharmaceutica N.V. | Process for the preparation of compounds useful as inhibitors of SGLT |
US9212183B2 (en) | 2008-12-23 | 2015-12-15 | Boehringer Ingelheim International Gmbh | Salt forms of 1-[(4-methyl-quinazolin-2-yl)methyl]-3-methyl-7-(2-butyn-1-yl)-8-(3-(R)-amino-piperidin-1-yl)-xanthine |
US8865729B2 (en) | 2008-12-23 | 2014-10-21 | Boehringer Ingelheim International Gmbh | Salt forms of a xanthine compound |
US8846695B2 (en) | 2009-01-07 | 2014-09-30 | Boehringer Ingelheim International Gmbh | Treatment for diabetes in patients with inadequate glycemic control despite metformin therapy comprising a DPP-IV inhibitor |
WO2010092124A1 (en) | 2009-02-13 | 2010-08-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising linagliptin and optionally a sglt2 inhibitor, and uses thereof |
WO2010092125A1 (en) | 2009-02-13 | 2010-08-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising a sglt2 inhibitor, a dpp-iv inhibitor and optionally a further antidiabetic agent and uses thereof |
US10406172B2 (en) | 2009-02-13 | 2019-09-10 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
WO2010092126A1 (en) | 2009-02-13 | 2010-08-19 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising glucopyranosyl diphenylmethane derivatives, pharmaceutical dosage form thereof, process for their preparation and uses thereof for improved glycemic control in a patient |
EP2395984B1 (en) | 2009-02-13 | 2016-10-19 | Boehringer Ingelheim International GmbH | Pharmaceutical composition comprising linagliptin and a sglt2 inhibitor,and uses thereof |
US12115179B2 (en) | 2009-02-13 | 2024-10-15 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
WO2010092123A1 (en) | 2009-02-13 | 2010-08-19 | Boehringer Ingelheim International Gmbh | Sglt-2 inhibitor for treating type 1 diabetes mellitus, type 2 diabete mellitus, impaired glucose tolerance or hyperglycemia |
EP4327867A2 (en) | 2009-02-13 | 2024-02-28 | Boehringer Ingelheim International GmbH | Pharmaceutical composition comprising glucopyranosyl diphenylmethane derivatives, pharmaceutical dosage form thereof, process for their preparation and uses thereof for improved glycemic control in a patient |
EP2226076A1 (en) | 2009-02-25 | 2010-09-08 | Henning Vollert | Plant Extract for the Prophylaxis and Treatment of Hyperglycemic Diseases |
WO2010138535A1 (en) * | 2009-05-27 | 2010-12-02 | Bristol-Myers Squibb Company | Methods for treating type 2 diabetes in patients resistant to previous treatment with other anti-diabetic drugs employing an sglt2 inhibitor and compositions thereof |
US11576894B2 (en) | 2009-07-08 | 2023-02-14 | Janssen Pharmaceutica Nv | Combination therapy for the treatment of diabetes |
US9024010B2 (en) | 2009-09-30 | 2015-05-05 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives |
US8802842B2 (en) | 2009-09-30 | 2014-08-12 | Boehringer Ingelheim International Gmbh | Method for the preparation of a crystalline form |
US9873714B2 (en) | 2009-09-30 | 2018-01-23 | Boehringer Ingelheim International Gmbh | Processes for preparing of glucopyranosyl-substituted benzyl-benzene derivatives |
EP4371560A2 (en) | 2009-10-02 | 2024-05-22 | Boehringer Ingelheim International GmbH | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
AU2010302641B2 (en) * | 2009-10-02 | 2013-12-05 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
EP4371560A3 (en) * | 2009-10-02 | 2024-08-21 | Boehringer Ingelheim International GmbH | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
US10610489B2 (en) | 2009-10-02 | 2020-04-07 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
EA027181B1 (en) * | 2009-10-02 | 2017-06-30 | Бёрингер Ингельхайм Интернациональ Гмбх | Solid pharmaceutical dosage form comprising sglt-2 inhibitor and metformin hydrochloride for treating |
TWI477509B (en) * | 2009-10-02 | 2015-03-21 | Boehringer Ingelheim Int | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
AP3438A (en) * | 2009-10-02 | 2015-10-31 | Boehring Ingelheim Internat Gmbh | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
EP3150200A1 (en) * | 2009-10-02 | 2017-04-05 | Boehringer Ingelheim International GmbH | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
WO2011039337A1 (en) | 2009-10-02 | 2011-04-07 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, pharmaceutical dosage form, process for their preparation, methods for treating and uses thereof |
US9174971B2 (en) | 2009-10-14 | 2015-11-03 | Janssen Pharmaceutica Nv | Process for the preparation of compounds useful as inhibitors of SGLT2 |
WO2011051864A1 (en) | 2009-11-02 | 2011-05-05 | Pfizer Inc. | Dioxa-bicyclo[3.2.1]octane-2,3,4-triol derivatives |
RU2824129C2 (en) * | 2009-11-13 | 2024-08-06 | Астразенека Аб | Two-layer tablet composition |
WO2011060256A2 (en) | 2009-11-13 | 2011-05-19 | Bristol-Myers Squibb Company | Bilayer tablet formulations |
WO2011060290A2 (en) | 2009-11-13 | 2011-05-19 | Bristol-Myer Squibb Company | Immediate release tablet formulations |
EP3315124A1 (en) | 2009-11-13 | 2018-05-02 | Astrazeneca AB | Bilayer tablet formulations |
WO2011058193A1 (en) | 2009-11-16 | 2011-05-19 | Mellitech | [1,5]-diazocin derivatives |
US8765728B2 (en) | 2009-11-16 | 2014-07-01 | Mellitech | [1,5]-diazocin derivatives |
US9457029B2 (en) | 2009-11-27 | 2016-10-04 | Boehringer Ingelheim International Gmbh | Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin |
US10092571B2 (en) | 2009-11-27 | 2018-10-09 | Boehringer Ingelheim International Gmbh | Treatment of genotyped diabetic patients with DPP-IV inhibitors such as linagliptin |
WO2011107494A1 (en) | 2010-03-03 | 2011-09-09 | Sanofi | Novel aromatic glycoside derivatives, medicaments containing said compounds, and the use thereof |
WO2011120923A1 (en) | 2010-03-30 | 2011-10-06 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition comprising an sglt2 inhibitor and a ppar- gamma agonist and uses thereof |
US9603851B2 (en) | 2010-05-05 | 2017-03-28 | Boehringer Ingelheim International Gmbh | Combination therapy |
US10004747B2 (en) | 2010-05-05 | 2018-06-26 | Boehringer Ingelheim International Gmbh | Combination therapy |
US9186392B2 (en) | 2010-05-05 | 2015-11-17 | Boehringer Ingelheim International Gmbh | Combination therapy |
US10617668B2 (en) | 2010-05-11 | 2020-04-14 | Janssen Pharmaceutica Nv | Pharmaceutical formulations |
US8987323B2 (en) | 2010-06-12 | 2015-03-24 | Theracos, Inc. | Crystalline form of benzylbenzene SGLT2 inhibitor |
US10981942B2 (en) | 2010-06-12 | 2021-04-20 | Theracos Sub, Llc | Crystalline form of benzylbenzene SGLT2 inhibitor |
US10533032B2 (en) | 2010-06-12 | 2020-01-14 | Theracos Sub, Llc | Crystalline form of benzylbenzene SGLT2 inhibitor |
US9834573B2 (en) | 2010-06-12 | 2017-12-05 | Theracos Sub, Llc | Crystalline form of benzylbenzene SGLT2 inhibitor |
US9149478B2 (en) | 2010-06-24 | 2015-10-06 | Boehringer Ingelheim International Gmbh | Diabetes therapy |
WO2012025857A1 (en) | 2010-08-23 | 2012-03-01 | Hetero Research Foundation | Cycloalkyl methoxybenzyl phenyl pyran derivatives as sodium dependent glucose co transporter (sglt2) inhibitors |
WO2012031124A2 (en) | 2010-09-03 | 2012-03-08 | Bristol-Myers Squibb Company | Drug formulations using water soluble antioxidants |
WO2012041898A1 (en) | 2010-09-29 | 2012-04-05 | Celon Pharma Sp. Z O.O. | Combination of sglt2 inhibitor and a sugar compound for the treatment of diabetes |
WO2012055169A1 (en) | 2010-10-27 | 2012-05-03 | 上海艾力斯医药科技有限公司 | C-arylglucoside derivative, preparation method therefor, and use thereof |
US8871726B2 (en) | 2010-10-27 | 2014-10-28 | Shanghai Allist Pharmaceuticals, Inc. | C-aryl glucoside derivative, preparation method therefor, and use thereof |
WO2012062698A1 (en) | 2010-11-08 | 2012-05-18 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
EP3539540A1 (en) | 2010-11-08 | 2019-09-18 | Boehringer Ingelheim International GmbH | Pharmaceutical composition, methods for treating and uses thereof |
US9034883B2 (en) | 2010-11-15 | 2015-05-19 | Boehringer Ingelheim International Gmbh | Vasoprotective and cardioprotective antidiabetic therapy |
US11911387B2 (en) | 2010-11-15 | 2024-02-27 | Boehringer Ingelheim International Gmbh | Vasoprotective and cardioprotective antidiabetic therapy |
WO2012106303A1 (en) | 2011-02-01 | 2012-08-09 | Bristol-Myers Squibb Company | Pharmaceutical formulations including an amine compound |
WO2012107476A1 (en) | 2011-02-09 | 2012-08-16 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US8980829B2 (en) | 2011-02-18 | 2015-03-17 | Shanghai Yingli Science And Technology Co., Ltd | Aryl glycoside compound, preparation method and use thereof |
WO2012109996A1 (en) | 2011-02-18 | 2012-08-23 | 上海璎黎科技有限公司 | Aryl glycoside compound, preparation method and use thereof |
US20180185291A1 (en) | 2011-03-07 | 2018-07-05 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions |
US10596120B2 (en) | 2011-03-07 | 2020-03-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions |
US11564886B2 (en) | 2011-03-07 | 2023-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical compositions |
US10544135B2 (en) | 2011-04-13 | 2020-01-28 | Janssen Pharmaceutica Nv | Process for the preparation of compounds useful as inhibitors of SGLT2 |
JP2014512399A (en) * | 2011-04-25 | 2014-05-22 | ベイジン・プレリュード・ファーム・サイ・アンド・テック・カンパニー・リミテッド | Sodium-dependent glucose transport protein inhibitor and preparation method and use thereof |
US9035044B2 (en) | 2011-05-09 | 2015-05-19 | Janssen Pharmaceutica Nv | L-proline and citric acid co-crystals of (2S, 3R, 4R, 5S,6R)-2-(3-((5-(4-fluorophenyl)thiopen-2-yl)methyl)4-methylphenyl)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol |
WO2012163990A1 (en) | 2011-06-03 | 2012-12-06 | Boehringer Ingelheim International Gmbh | Sglt-2 inhibitors for treating metabolic disorders in patients treated with neuroleptic agents |
WO2013007557A1 (en) | 2011-07-08 | 2013-01-17 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US9199998B2 (en) | 2011-07-15 | 2015-12-01 | Boehringer Ingelheim Internatioal Gmbh | Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions |
US8962636B2 (en) | 2011-07-15 | 2015-02-24 | Boehringer Ingelheim International Gmbh | Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions |
US8883800B2 (en) | 2011-07-15 | 2014-11-11 | Boehringer Ingelheim International Gmbh | Substituted quinazolines, the preparation thereof and the use thereof in pharmaceutical compositions |
TWI495472B (en) * | 2011-10-31 | 2015-08-11 | Scinopharm Taiwan Ltd | Crystalline and non-crystalline forms of sglt2 inhibitors |
WO2013079501A1 (en) | 2011-11-28 | 2013-06-06 | Sandoz Ag | Crystalline dapagliflozin hydrate |
EP2597090A1 (en) | 2011-11-28 | 2013-05-29 | Sandoz AG | Crystalline dapagliflozin hydrate |
US9555001B2 (en) | 2012-03-07 | 2017-01-31 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition and uses thereof |
US9192617B2 (en) | 2012-03-20 | 2015-11-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US9725478B2 (en) | 2012-04-10 | 2017-08-08 | Theracos Sub, Llc | Process for the preparation of benzylbenzene SGLT2 inhibitors |
US9193751B2 (en) | 2012-04-10 | 2015-11-24 | Theracos, Inc. | Process for the preparation of benzylbenzene SGLT2 inhibitors |
US10195203B2 (en) | 2012-05-14 | 2019-02-05 | Boehringr Ingelheim International GmbH | Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome |
US9526730B2 (en) | 2012-05-14 | 2016-12-27 | Boehringer Ingelheim International Gmbh | Use of a DPP-4 inhibitor in podocytes related disorders and/or nephrotic syndrome |
US9713618B2 (en) | 2012-05-24 | 2017-07-25 | Boehringer Ingelheim International Gmbh | Method for modifying food intake and regulating food preference with a DPP-4 inhibitor |
EP3549587A1 (en) | 2012-06-30 | 2019-10-09 | BioActive Food GmbH | Composition for the treatment of hyperglycemic diseases |
EP2679229A1 (en) | 2012-06-30 | 2014-01-01 | BioActive Food GmbH | Composition for the treatment of hyperglycemic diseases |
WO2014101865A1 (en) | 2012-12-31 | 2014-07-03 | 上海璎黎科技有限公司 | Composition of glucose derivative and proline, crystal, preparation method and application |
US9738603B2 (en) | 2012-12-31 | 2017-08-22 | Shanghai Yingli Pharmaceutical Co., Ltd. | Complex of glucose derivative and proline, crystal, preparation method and use |
EP2774619A1 (en) | 2013-03-04 | 2014-09-10 | BioActive Food GmbH | Composition for the treatment of hyperglycaemic diseases |
US9573959B2 (en) | 2013-03-14 | 2017-02-21 | Msd International Gmbh | Methods for preparing SGLT2 inhibitors |
EP3466431A1 (en) | 2013-03-14 | 2019-04-10 | MSD International GmbH | Crystalline forms and methods for preparing sglt2 inhibitors |
WO2014161836A1 (en) | 2013-04-04 | 2014-10-09 | Boehringer Ingelheim Vetmedica Gmbh | Treatment of metabolic disorders in equine animals |
EP4245765A2 (en) | 2013-04-04 | 2023-09-20 | Boehringer Ingelheim Vetmedica GmbH | Treatment of metabolic disorders in equine animals |
US9949997B2 (en) | 2013-04-05 | 2018-04-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US11813275B2 (en) | 2013-04-05 | 2023-11-14 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US11833166B2 (en) | 2013-04-05 | 2023-12-05 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US10258637B2 (en) | 2013-04-05 | 2019-04-16 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US11918596B2 (en) | 2013-04-05 | 2024-03-05 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US11090323B2 (en) | 2013-04-05 | 2021-08-17 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US9949998B2 (en) | 2013-04-05 | 2018-04-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US11666590B2 (en) | 2013-04-18 | 2023-06-06 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
WO2014170383A1 (en) | 2013-04-18 | 2014-10-23 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
US10093616B2 (en) | 2013-10-12 | 2018-10-09 | Theracos Sub, Llc | Preparation of hydroxy-benzylbenzene derivatives |
US9464043B2 (en) | 2013-10-12 | 2016-10-11 | Theracos Sub, Llc | Preparation of hydroxy-benzylbenzene derivatives |
EP3862003A1 (en) | 2013-12-17 | 2021-08-11 | Boehringer Ingelheim Vetmedica GmbH | An sglt-2 inhibitor for use in the treatment of a metabolic disorder in feline animals |
EP4285995A2 (en) | 2013-12-17 | 2023-12-06 | Boehringer Ingelheim Vetmedica GmbH | An sglt-2 inhibitor for use in the treatment of a metabolic disorder in feline animals |
EP3485890A1 (en) | 2014-01-23 | 2019-05-22 | Boehringer Ingelheim Vetmedica GmbH | Treatment of metabolic disorders in canine animals |
EP3485890B1 (en) | 2014-01-23 | 2023-05-10 | Boehringer Ingelheim Vetmedica GmbH | Sglt2 inhibitors for treatment of metabolic disorders in canine animals |
EP4234012A2 (en) | 2014-01-23 | 2023-08-30 | Boehringer Ingelheim Vetmedica GmbH | Sglt2 inhibitors for treatment of metabolic disorders in canine animals |
CN103739581A (en) * | 2014-01-23 | 2014-04-23 | 中国药科大学 | C-aryl glucoside SGLT2 (Sodium-Glucose Co-transporter 2) inhibitor |
US9526728B2 (en) | 2014-02-28 | 2016-12-27 | Boehringer Ingelheim International Gmbh | Medical use of a DPP-4 inhibitor |
EP3114115A4 (en) * | 2014-03-06 | 2017-08-23 | MSN Laboratories Private Limited | Process for the preparation of (1s)-1,5-anhydro-1-c-[4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl]-d-glucitol and its solvate thereof |
EP3721882A1 (en) | 2014-04-01 | 2020-10-14 | Boehringer Ingelheim Vetmedica GmbH | Treatment of metabolic disorders in equine animals |
US9914724B2 (en) | 2014-04-14 | 2018-03-13 | Shanghai De Novo Pharmatech Co., Ltd. | C-aryl glycosid derivatives, pharmaceutical composition, preparation process and uses thereof |
WO2015173383A1 (en) | 2014-05-16 | 2015-11-19 | Bioactive Food Gmbh | Combination of biologically active substances for treatment of hyperglycaemic disorders |
EP2944311A1 (en) | 2014-05-16 | 2015-11-18 | BioActive Food GmbH | Combination of biologically active substances for treating hyperglycemic diseases |
EP4403230A2 (en) | 2014-09-25 | 2024-07-24 | Boehringer Ingelheim Vetmedica GmbH | Combination treatment of sglt2 inhibitors and dopamine agonists for preventing metabolic disorders in equine animals |
US11400072B2 (en) | 2015-03-09 | 2022-08-02 | Coherus Biosciences, Inc. | Methods for the treatment of nonalcoholic fatty liver disease and/or lipodystrophy |
WO2016161995A1 (en) | 2015-04-08 | 2016-10-13 | Zentiva, K.S. | Solid forms of amorphous dapagliflozin |
US11207337B2 (en) | 2015-09-15 | 2021-12-28 | Janssen Pharmaceutica Nv | Co-therapy comprising canagliflozin and phentermine for the treatment of obesity and obesity related disorders |
WO2017063617A1 (en) | 2015-10-13 | 2017-04-20 | Zentiva, K.S. | Preparation of intermediates for the synthesis of canagliflozin and dapagliflozin |
WO2017064193A1 (en) | 2015-10-15 | 2017-04-20 | Boehringer Ingelheim International Gmbh | Sglt-2 inhibitor for use in the treatment of a metabolic myopathy |
CN106892929A (en) * | 2015-12-17 | 2017-06-27 | 上海艾力斯医药科技有限公司 | Spiroketals derivative and its preparation method and application |
US10155000B2 (en) | 2016-06-10 | 2018-12-18 | Boehringer Ingelheim International Gmbh | Medical use of pharmaceutical combination or composition |
WO2018073154A1 (en) | 2016-10-19 | 2018-04-26 | Boehringer Ingelheim International Gmbh | Combinations comprising an ssao/vap-1 inhibitor and a sglt2 inhibitor, uses thereof |
US11253508B2 (en) | 2017-04-03 | 2022-02-22 | Coherus Biosciences, Inc. | PPARy agonist for treatment of progressive supranuclear palsy |
US11312740B2 (en) | 2017-05-09 | 2022-04-26 | Piramal Pharma Limited | Process for the preparation of SGLT2 inhibitors and intermediates thereof |
WO2018207111A1 (en) * | 2017-05-09 | 2018-11-15 | Piramal Enterprises Limited | A process for the preparation of sglt2 inhibitors and intermediates thereof |
WO2019201752A1 (en) | 2018-04-17 | 2019-10-24 | Boehringer Ingelheim International Gmbh | Pharmaceutical composition, methods for treating and uses thereof |
KR20190130432A (en) | 2018-05-14 | 2019-11-22 | 씨제이헬스케어 주식회사 | Pharmaceutical Composition comprising SGLT-2 inhibitor and DPP-IV inhibitor |
WO2020039394A1 (en) | 2018-08-24 | 2020-02-27 | Novartis Ag | New drug combinations |
WO2021105152A1 (en) | 2019-11-28 | 2021-06-03 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors in the drying-off of non-human mammals |
WO2021165177A1 (en) | 2020-02-17 | 2021-08-26 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of cardiac diseases in felines |
WO2021165316A1 (en) | 2020-02-21 | 2021-08-26 | Zakłady Farmaceutyczne POLPHARMA S.A. | Pharmaceutical composition comprising dapagliflozin |
WO2021176096A1 (en) | 2020-03-05 | 2021-09-10 | Krka, D.D., Novo Mesto | Pharmaceutical composition comprising sglt2 inhibitor |
WO2021178768A1 (en) | 2020-03-06 | 2021-09-10 | Vertex Pharmaceuticals Incorporated | Methods of treating apol-1 dependent focal segmental glomerulosclerosis |
WO2021245253A1 (en) | 2020-06-05 | 2021-12-09 | Krka, D.D., Novo Mesto | Preparation of highly pure amorphous dapagliflozin |
WO2022009163A1 (en) | 2020-07-10 | 2022-01-13 | Astrazeneca Ab | Combination of zibotentan and dapagliflozin for the treatment of chronic kidney disease |
WO2022022865A1 (en) | 2020-07-27 | 2022-02-03 | Astrazeneca Ab | Methods of treating chronic kidney disease with dapagliflozin |
WO2022051316A1 (en) | 2020-09-03 | 2022-03-10 | Coherus Biosciences, Inc. | Fixed dose combinations of chs-131 and a sglt-2 inhibitor |
WO2022067724A1 (en) | 2020-09-30 | 2022-04-07 | 北京睿创康泰医药研究院有限公司 | Sglt-2 inhibitor sarcosine co-crystal, preparation method therefor and use thereof |
WO2022208172A1 (en) | 2021-04-01 | 2022-10-06 | Astrazeneca Uk Limited | Systems and methods for managing prediabetes with a gliflozin sodium-glucose cotransport 2 inhibitor pharmaceutical composition |
WO2023006718A1 (en) | 2021-07-28 | 2023-02-02 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of cardiac diseases in non-human mammals excluding felines, in particular canines |
WO2023006745A1 (en) | 2021-07-28 | 2023-02-02 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of hypertension in non-human mammals |
WO2023006747A1 (en) | 2021-07-28 | 2023-02-02 | Boehringer Ingelheim Vetmedica Gmbh | Use of sglt-2 inhibitors for the prevention and/or treatment of renal diseases in non-human mammals |
WO2023019849A1 (en) | 2021-08-16 | 2023-02-23 | 浙江奥翔药业股份有限公司 | Method for preparing 5-bromo-2-chloro-benzoic acid as raw material in hypoglycemic drug synthesis |
WO2023129595A1 (en) | 2021-12-30 | 2023-07-06 | Newamsterdam Pharma B.V. | Obicetrapib and sglt2 inhibitor combination |
WO2023144722A1 (en) | 2022-01-26 | 2023-08-03 | Astrazeneca Ab | Dapagliflozin for use in the treatment of prediabetes or reducing the risk of developing type 2 diabetes |
WO2023227492A1 (en) | 2022-05-25 | 2023-11-30 | Boehringer Ingelheim Vetmedica Gmbh | Aqueous pharmaceutical compositions comprising sglt-2 inhibitors |
WO2023237512A1 (en) | 2022-06-07 | 2023-12-14 | Astrazeneca Ab | Combinations of rxfp1 modulators and sglt2 inhibitors |
KR20240028315A (en) | 2022-08-24 | 2024-03-05 | 주식회사 제뉴원사이언스 | Combination preparation comprising dapagliflozin, sitagliptin and metformin |
WO2024166009A1 (en) | 2023-02-08 | 2024-08-15 | Astrazeneca Ab | Combination of zibotentan and dapagliflozin for the treatment of high proteinuria chronic kidney disease |
WO2024184293A1 (en) | 2023-03-06 | 2024-09-12 | Boehringer Ingelheim Vetmedica Gmbh | Systems for delivery of liquid pharmaceutical compositions in particular comprising one or more sglt-2 inhibitor(s) |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1506211B1 (en) | C-aryl glucoside sglt2 inhibitors and method | |
EP1224195B1 (en) | C-aryl glucoside sglt2 inhibitors | |
US6936590B2 (en) | C-aryl glucoside SGLT2 inhibitors and method | |
US20030087843A1 (en) | O-pyrazole glucoside SGLT2 inhibitors and method of use | |
RU2800510C1 (en) | C-aryl glucose sglt2 inhibitors and method of their use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: P-992/04 Country of ref document: YU |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2004/011371 Country of ref document: MX Ref document number: 536605 Country of ref document: NZ Ref document number: 3573/DELNP/2004 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004/09295 Country of ref document: ZA Ref document number: P20041084A Country of ref document: HR Ref document number: 200409295 Country of ref document: ZA Ref document number: 1-2004-501873 Country of ref document: PH Ref document number: 20038113538 Country of ref document: CN Ref document number: 2486539 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 373369 Country of ref document: PL Ref document number: 1020047018685 Country of ref document: KR Ref document number: 2003237886 Country of ref document: AU Ref document number: 2004507493 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003736643 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1200401327 Country of ref document: VN |
|
ENP | Entry into the national phase |
Ref country code: GE Ref document number: GE P |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8537 Country of ref document: GE |
|
ENP | Entry into the national phase |
Ref document number: 2004137489 Country of ref document: RU Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 1020047018685 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2003736643 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2003736643 Country of ref document: EP |